WO2004076525A1 - ポリエステル樹脂 - Google Patents

ポリエステル樹脂 Download PDF

Info

Publication number
WO2004076525A1
WO2004076525A1 PCT/JP2004/002324 JP2004002324W WO2004076525A1 WO 2004076525 A1 WO2004076525 A1 WO 2004076525A1 JP 2004002324 W JP2004002324 W JP 2004002324W WO 2004076525 A1 WO2004076525 A1 WO 2004076525A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
less
emission intensity
ppm
fluorescence emission
Prior art date
Application number
PCT/JP2004/002324
Other languages
English (en)
French (fr)
Inventor
Yoshinao Matsui
Atsusi Hara
Yasuki Nakai
Fumiaki Nishinaka
Keiichiro Togawa
Naoki Nishimori
Takahiro Nakajima
Koji Yoshida
Hirota Nagano
Kinichi Inuzuka
Osamu Kimura
Yoshitaka Eto
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to US10/546,959 priority Critical patent/US20070065649A1/en
Priority to JP2005502936A priority patent/JPWO2004076525A1/ja
Publication of WO2004076525A1 publication Critical patent/WO2004076525A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids

Definitions

  • the present invention relates to a polyester resin, a polyester resin composition comprising the polyester resin, and a polyester molded product comprising the polyester resin, which are preferably used as a material for a molded product such as a hollow molded article such as a beverage bottle, a sheet, a film, and a monofilament.
  • a molded article with excellent transparency, moderate and stable crystallization rate, and excellent dimensional stability under heat was provided, and the emission of fluorescent light during irradiation with ultraviolet light was prevented.
  • Polyester resin and polyester resin composition which give a molded article, etc., and which provide a molded article, less likely to stain a mold during molding, and which give a hollow molded article, a sheet and a stretched film excellent in flavor retention. It is about things. Background art
  • Polyester is excellent in mechanical strength, heat resistance, transparency and gas barrier properties, so it is especially suitable for beverage filling containers such as juices, soft drinks, carbonated drinks, etc., packaging films, audio / video films, etc. It is the best material and is used in large quantities.
  • the bottle In a polyester bottle for beverages, the bottle is hot-filled with a beverage sterilized at a high temperature, or after the beverage is filled, the bottle is sterilized at a high temperature. Shrinkage and deformation may occur.
  • the crystallinity of the bottle is increased by heat treatment of the bottle cap, or the stretched bottle is thermally fixed.
  • the stopper is not sufficiently crystallized or if the degree of crystallinity is large, the sealing performance with the cap will be poor and the contents may leak.
  • the crystallinity of the shoulder, trunk, etc. of the pottle is insufficient, thermal deformation may occur and the commercial value may decrease.
  • heat treatment of the preform or molded pottle's plug is used to crystallize it.
  • the method JP-A-55-79237, JP-A-58-110221
  • spherulite crystallization is promoted and the plug appearance becomes white, but the crystallinity increases and the heat resistance (ie, heat deformation temperature) increases. Becomes higher).
  • a method of performing heat treatment at a high temperature of the stretch blow mold is adopted (Japanese Patent Publication No. 59-61216).
  • Such a method that is, a method of improving the heat resistance by heat-treating the stopper part and the shoulder part, has a significant effect on the productivity and time for the crystallization treatment, and the treatment can be performed at a low temperature and in a short time.
  • PET with a high crystallization rate is preferable.
  • the body is required to be transparent even when subjected to heat treatment during molding so as not to deteriorate the color tone of the contents of the bottle and from the aspect of design. Conflicting properties are required.
  • the crystallization rate of the PET is too high, the crystallization of the preform surface will proceed when the preform is reheated before stretching, and the pottle surface will become cloudy after stretch blowing and heat setting. May occur.
  • a PET reforming method by contacting a PET chip with a polyethylene member under flowing conditions Japanese Patent Application Laid-Open No. Hei 9-171 639
  • a method of modifying PET by contacting a member made of a polypropylene-based resin or a polyamide-based resin under similar conditions Japanese Patent Application Laid-Open No. 11-209492
  • the plug portion of the hollow molded body made of polyester that has been contact-treated with the polyethylene member or the like is crystallized by heat treatment with an infrared heating device or the like to improve heat-resistant dimensional stability. If the crystallization speed of the previous polyester is too high, it has been found that the hollow plug from the contact-treated polyester has excessively crystallized the plug portion and the dimensions of the plug portion will not be within the standard value range. . As a result, it was found that normal cabbing was impossible, so that the adhesiveness between the cap and the stopper was deteriorated, causing a fatal problem of leakage of the contents.
  • the heating of the plug portion of the hollow molded body is generally performed only from the outside, the outer surface of the plug portion crystallizes faster than the inner surface or the intermediate portion. As a result, the degree of crystallinity of the plug portion becomes uneven in the inner and outer layers. Also, since the spout has a complicated shape with different thicknesses, the dimensions of the spout vary depending on the crystallinity of the polyester and the heating conditions.
  • polyester generally used as a beverage container a method of increasing the molecular weight of a polymerization chip obtained by melt polymerization by solid-phase polymerization is often adopted.
  • the solid-phase polymerization treatment is performed at a temperature lower than the melting point of the polyester under reduced pressure or an inert gas atmosphere.
  • the continuous solid-state polymerization method in which solid-state polymerization is performed while continuously supplying polyester chips in an inert gas atmosphere which has excellent cost performance and is widely used, has excellent flavor properties.
  • the solid-state polymerization temperature and the oxygen concentration in the solid-state polymerization tank are controlled under certain conditions, that is, the solid-state polymerization temperature X ( V), solid-state polymerization under the condition that the oxygen concentration Y (ppm) in the solid-state polymerization tank satisfies 190 ⁇ X ⁇ 230 and Y ⁇ -0.866 X + 230.
  • the processing is performed (Japanese Patent Application Laid-Open No. 9-59332).
  • an inert gas containing hydrogen in the absence of oxygen is used. It is carried out under an air stream, that is, the concentration of oxygen in the inert gas during the solid phase polymerization is 1 mo 1% or less in the whole gas, and the amount of hydrogen in the inert gas is 0.1 lmo in the whole gas. It is carried out at 1% or more and 7Omo 1% or less (Japanese Unexamined Patent Publication No. 9-17979).
  • Fig. 1 Top view of stepped plate used in the example
  • FIG. 2 Side view of the stepped plate of Fig. 1
  • the present invention solves the above-mentioned problems of the polyester resin according to the prior art, has excellent transparency, has an appropriate and stable crystallization rate, has excellent heat-resistant dimensional stability, and emits fluorescence when irradiated with ultraviolet light.
  • Prevented molded products, especially heat-resistant hollow molded products can be efficiently produced, and have excellent long-term continuous moldability with less contamination of the mold, and provide packaging materials with excellent flavor retention.
  • An object is to provide a stell resin, a polyester resin composition, and a polyester molded article.
  • the present invention provides a polyester resin, a polyester resin composition, and a polyester molded product, which have little change in the above-mentioned properties even when exposed to unnecessary drying.
  • the present inventors have made intensive studies on polyesters that use molded polyesters mainly composed of a terephthalic acid component and a glycol component to provide molded articles having excellent transparency and heat-resistant dimensional stability and little change in crystallization rate. As a result, the inventors have found that the fluorescence emission intensity of the polyester is related to the properties such as the transparency and the crystallization speed of the molded article made of the polyester, and completed the present invention.
  • the present invention is as follows.
  • fluorescence scan Bae spectrum obtained can and the fluorescence emission intensity of 3 9 5 nm and (a h), the ratio of the time of the fluorescence emission intensity of 450 nm and (B h) (B h ZA h), unreacted
  • the difference from the ratio (B 0 / A 0 ) when the same fluorescence emission intensity at 395 nm of the heat-treated polyester resin is (A 0 ) and the relative fluorescence intensity at 450 nm is (B 0 ) is 0.7.
  • the ratio (B h ZA h ) when the fluorescence emission intensity at 450 nm is defined as (B h ), the fluorescence emission intensity at 395 nm of the unheated polyester resin (A 0 ), and the fluorescence emission intensity at 450 nm
  • the polyester resin according to any one of (1) to (5), wherein the difference from the ratio (B./A 0 ) when (B 0 ) is 0.7 or less.
  • a polyester fine having the same composition as the polyester, containing 0.1-10000 ppm, and having a melting point of 265 or less as measured by DSC, which is not more than (1)-
  • thermomechanical analysis TMA
  • polyester resin according to any one of (1) to (16), and at least one resin selected from the group consisting of polyolefin resin, polyamide resin, and polyacetal resin.
  • a polyester resin composition characterized in that the polyester resin composition is contained in an amount of 0.1 lppb to 50,000 ppm with respect to the ester resin.
  • the polyester resin of the present invention is a polyester resin having specific fluorescence emission characteristics as described above, and includes (A 0 ), (B 0 ), (A h ), (B h ), (A so ), (B so), (a sh), (B s h) when defined as follows, it satisfies any of the following formulas 1) to equation (6. Note that the characteristics of these equations may be collectively referred to as fluorescence emission characteristics.
  • Excitation light having a wavelength of 343 nm was applied to the fluorescent light-emitting chip selected by the method described in the measurement method section of the example while irradiating excitation light consisting of ultraviolet light having a maximum wavelength of 352 nm and 300 to 400 nm. Emission intensity at 395 nm in a fluorescent spectrum obtained when irradiating
  • the fluorescence emission intensity at 450 nm (B 0 ) of the polyester is It is preferably 15 or less, more preferably 10 or less, and even more preferably 7 or less.
  • (B h -B 0 ) is preferably 25 or less, more preferably 20 or less, and most preferably 15 or less.
  • (B 0 / A 0 ) is preferably 0.30 or less, more preferably 0.20 or less, and most preferably 0.10 or less.
  • (B h / A h ) ⁇ (B./A 0 ) is preferably 0.5 or less, more preferably 0.45 or less, further preferably 0.40 or less, and most preferably 0.35 or less.
  • (B so / A so ) is preferably 0.20 or less, more preferably 0.10 or less, and most preferably 0.007 or less.
  • (B sh / A sh ) is preferably 0.45 or less, more preferably 0.40 or less, and most preferably 0.35 or less.
  • the crystallization speed of the plug portion of the hollow molded article obtained from such a polyester resin is high, and the crystallization becomes excessive.
  • the size of the plug is no longer within the specified range, and the difference between the crystallinity of the outer surface of the heat-crystallized hollow plug and the crystallinity of the inner surface and the middle part of the plug becomes large.
  • the non-uniformity of the crystallinity of the part increases, and the fluctuation of the crystallinity between the compacts may become very large.
  • the hollow molded preform may become white, and the transparency of the hollow molded product obtained by stretch-blowing may be extremely poor, and normal stretching may not be possible.
  • a molded article such as a hollow molded article obtained from such a polyester resin is irradiated with ultraviolet rays and visually observed, the commercial value is reduced due to the undesirable characteristic of strongly emitting pale fluorescent light. Sometimes. These problems are more pronounced when subjected to prolonged drying before molding.
  • a polyester mainly composed of a terephthalic acid component and a glycol component inherently has fluorescence emission characteristics, and when irradiated with excitation light of 343 nm, It has a peak at 395 nm and emits fluorescence up to a region of about 600 nm.
  • the emitted fluorescent spectrum was measured in the range of 350 nm to 600 nm by the method described in the section of the measurement method, and the relative intensity of the fluorescent emission at 450 nm was obtained. Is referred to as the fluorescence emission intensity in the present invention.
  • the fluorescence intensity at the peak of 395 nm of the normal polyester manufactured with great care in the laboratory is less than 85, and the fluorescence intensity at 450 nm is less than about 20. It turned out that it was.
  • k is a device constant such as light collection and detection efficiency
  • Io is the intensity of the excitation light
  • e is the molar extinction coefficient
  • c is the sample concentration
  • d is the length of the sample layer.
  • the fluorescent emission intensity of the polyester resin is affected by the quality of the terephthalic acid used, the polycondensation method, the polycondensation apparatus and the polycondensation conditions, or the drying method, the drying apparatus and the drying conditions.
  • the fluorescence emission intensity increased and that the chips with different fluorescence emission intensity and fluorescence spectrum tended to be mixed. This tendency is remarkable when continuous production is carried out using a batch-type melt-condenser or a subsequent batch-type solid-state polymerization device. Therefore, it is important to obtain polyester resin under conditions sufficient to maintain normal fluorescence emission intensity and to eliminate or minimize poly- esters having different fluorescence emission intensities and different fluorescence spectra as much as possible.
  • the fluorescence emission intensity of the polyester resin and the increase in the fluorescence emission intensity are measured by the following method.
  • the polyester resin composition of the present invention is excellent in transparency, has little change in transparency, prevents the emission of fluorescent light upon irradiation with purple water, does not easily cause mold contamination during molding, and has a crystal in the plug portion.
  • Polyester resin composition that gives molded products with excellent chemical control properties, and has excellent heat resistance, mechanical properties, residual off-flavors, and off-odors, and is excellent in fragrance retention. Give film or monofilament.
  • polyester resin of the present invention a polyester resin composition comprising the same, and embodiments of the application thereof will be specifically described.
  • the polyester resin of the present invention is a polyester resin mainly obtained from a terephthalic acid component and a glycol component, preferably a polyester resin containing 70 mol% or more of a structural unit obtained from the terephthalic acid component and a glycol component. It is preferably a polyester resin containing at least 85% by mole, particularly preferably at least 95% by mole.
  • glycol component constituting the polyester resin of the present invention examples include aliphatic glycols such as ethylene glycol, 1,3-propylene glycol, and tetramethylene glycol, and alicyclic dalicols such as cyclohexanedimethanol. Is mentioned.
  • dicarponic acid as a copolymer component used when the polyester resin is a copolymer include isophthalic acid, diphenyl-1,4'-dicarboxylic acid, diphenoxene dicarboxylic acid, and 4,4-diphenylecarboxylic acid.
  • Aromatic dicarboxylic acids such as monoterdicarboxylic acid, 4,4, -diphenylketone dicarponic acid and functional derivatives thereof, oxyacids such as P-oxybenzoic acid and oxycabroic acid and functional derivatives thereof, adipic acid, sebacic acid , Succinic acid, daltaric acid, die Examples thereof include aliphatic dicarboxylic acids such as meric acid and functional derivatives thereof, alicyclic dicarboxylic acids such as hexahydroterephthalic acid, hexahydroisophthalic acid, and cyclohexanedicarboxylic acid, and functional derivatives thereof.
  • Dalicol as a copolymer component used when the polyester resin is a copolymer includes diethylene glycol, 1,3-trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, and Aliphatic glycols such as butamethylene glycol, decamethylene glycol, 2-ethyl-1-butyl-1,3-propanediol, neopentyl glycol, dimer glycol, 1,2-cyclohexanediol, and 1,4-cyclohexanediol Alicyclic glycols such as 1,1,1-cyclohexane dimethylol, 1,4-cyclohexane dimethylol, 2,5-norpolnandimethylol, xylylene glycol, 4,4'-dihydroxybiphenyl, 2,, 2-bis (4, - ⁇ -hydroxyethoxy) Aromatic glycols such as propenyl, bis (4-hydroxyphenyl)
  • the multifunctional compound as a copolymer component used when the polyester resin is a copolymer trimellitic acid, pyromellitic acid, etc. may be mentioned as an acid component, and glycerin may be mentioned as a glycol component. , Penyu erythritol can be mentioned.
  • the amount of the above-mentioned copolysynthetic component used must be such that the polyester resin maintains a substantially linear shape.
  • a monofunctional compound such as benzoic acid or naphthoic acid may be copolymerized.
  • polyester resin of the present invention is a polyester resin whose main constituent unit is composed of ethylene terephthalate, more preferably contains 70% by mole or more of ethylene terephthalate unit, and isophthalic acid as a copolymer component. It is a copolymer polyester resin containing 1,4-cyclohexanedimethanol and the like, and is particularly preferred. A polyester resin containing at least 90 mol% of ethylene terephthalate units is preferred.
  • polyester resins examples include polyethylene terephthalate (hereinafter abbreviated as PET), poly (ethylene terephthalate ethylene isophthalate) copolymer, and poly (ethylene terephthalate 1,4-cyclohexanedimethylene).
  • PET polyethylene terephthalate
  • Terephthalate copolymer poly (ethylene terephthalate-dioxyethylene terephthalate) copolymer, poly (ethylene terephthalate) 1,3-propylene terephthalate copolymer), poly (ethylene terephthalate)
  • polyester resin of the present invention is a polyester resin whose main structural unit is composed of 1,3-propylene terephthalate. More preferably, 1,3-propylene terephthalate unit is 70 mol%.
  • the polyester resin containing the above is particularly preferable.
  • the polyester resin containing 90 mol% or more of 1,3-propylene terephthalate unit is particularly preferable.
  • these polyester resins include polypropylene terephthalate (PTT), poly (1,3-propylene terephthalate 1,1,3-propylene isophthalate) copolymer, and poly (1,3-propylene terephthalate 1-1, 4-cyclohexanedimethylene terephthalate) copolymer.
  • polyester resin of the present invention is a polyester resin whose main structural unit is composed of butyl terephthalate, and more preferably a copolymerized polyester resin containing at least 70 mol% of butylene terephthalate unit. Particularly preferred is a polyester resin containing 90 mol% or more of butylene terephthalate units.
  • polyester resins examples include polybutylene terephthalate (PBT), poly (butylene terephthalate-butylene isophthalate) copolymer, and poly (preneterephthalate-1-1,4-cyclohexanedimethylene terephthalate) copolymer And poly (butylene terephthalate 1,3-propylene terephthalate) copolymer, and poly (butylene terephthalate monobutylene cyclohexylene dicarboxylate) copolymer.
  • the above polyester resin can be basically produced by a conventionally known continuous melt polycondensation method or continuous melt polycondensation monocontinuous solid state polymerization method. That is, in the case of PET, terephthalic acid and ethylene glycol and, if necessary, other copolymerization components are directly reacted to distill water, and after esterification, are subjected to polycondensation under reduced pressure. It is produced by a transesterification method in which dimethyl terephthalate is reacted with ethylene glycol and, if necessary, other copolymerization components, to distill off methyl alcohol to effect ester exchange, and then to carry out polycondensation under reduced pressure. .
  • the polyester resin thus melt-polycondensed is continuously solid-phase polymerized.
  • an example of a preferred continuous production method of the polyester resin of the present invention will be described using polyethylene terephthalate as an example, but the production method of the polyester resin of the present invention is not limited thereto.
  • an inert gas having an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, and most preferably 1 ppm or less is passed through the gas phase portion of the slurry preparation tank and the slurry storage tank. Therefore, it is desirable to remove oxygen mixed into the system together with the raw materials and at the same time to prevent air from being mixed.
  • the oxygen concentration in the gaseous phase may be maintained at 100 ppm or less, preferably 70 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and most preferably 10 ppm or less. desirable.
  • high-purity terephthalic acid is usually in the form of powder and contains air between these particles, etc., so that oxygen is brought into the slurry mixing tank and the slurry storage tank.
  • the atmosphere in the silo is an inert gas atmosphere having an oxygen concentration of 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and most preferably 10 ppm or less. It is desirable to keep.
  • ethylene glycol Since oxygen is also dissolved in ethylene glycol, ethylene glycol has an oxygen concentration of 5 ppm or less in advance, preferably 3 ppm or less, more preferably 2 ppm or less, and most preferably 1 ppm or less. It is also preferable that the slurry mixing tank and the slurry storage tank be bubbled with the above inert gas after the slurry mixing.
  • Esterification is carried out in a single-stage apparatus consisting of one esterification reactor or in a multi-stage apparatus in which at least two esterification reactors are connected in series, under conditions in which ethylene dalicol is refluxed.
  • An inert gas having an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, and most preferably 1 ppm or less is passed through the portion, and water or alcohol generated by the reaction is passed through a rectification column. Perform while removing outside the system.
  • the oxygen concentration in the gas phase is preferably maintained at 100 ppm or less, more preferably 70 ppm or less, still more preferably 50 ppm or less, still more preferably 30 ppm or less, and most preferably 10 ppm or less. .
  • the temperature of the first-stage esterification reaction is 240 to 270 ° (: preferably 245 to 265, and the pressure is 0.2 to 3 kg / cm 2 G, preferably 0.5 to 2 kgZcm 2 G.
  • the temperature of the final esterification reaction is usually 250 to 275 ° C, preferably 255 to 270, and the pressure is usually 0 to 1.5 kg / cm 2 G, preferably 0 to 1.3 k. gZc m 2 G.
  • the reaction conditions for the intermediate-stage esterification reaction are those between the above-mentioned first-stage reaction conditions and final-stage reaction conditions. It is preferable that the increase in the reaction rate of these esterification reactions is smoothly distributed in each stage, and that the esterification reaction rate finally reaches 90% or more, preferably 93% or more.
  • low-order condensates having a molecular weight of about 500 to 5,000 can be obtained.
  • the esterification reaction can be carried out without a catalyst by the catalytic action of terephthalic acid as an acid, but may be carried out in the presence of a polycondensation catalyst.
  • tertiary amines such as triethylamine, tree n-butylamine, and benzyldimethylamine; hydroxylated compounds such as tetraethylammonium hydroxide, tetran-butylammonium hydroxide, and trimethylbenzylammonium hydroxide.
  • the dioxetylene terephthalate component unit in the main chain of the polyethylene terephthalate is reduced. This is preferable because the ratio can be kept at a relatively low level (5 mol% or less based on the total diol component).
  • the dimethyl terephthalate dissolving tank or the ethylene dalicol solution dissolving tank therefor has an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, most preferably in the gas phase portion of the solution storage tank.
  • an inert gas of 1 ppm or less is allowed to flow to remove oxygen mixed into the system together with the raw materials so that air is not mixed at the same time.
  • the oxygen concentration in the gas phase is preferably 100 ppm or less, more preferably 70 ppm or less, even more preferably 5 ppm or less, still more preferably 30 ppm or less, and most preferably 10 ppm or less. Is preferably maintained.
  • the dissolving tank is bubbled with an inert gas having an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, and most preferably 1 ppm or less.
  • dimethyl terephthalate is usually in the form of powder or flakes, contains air between these particles, etc., and sufficiently introduces oxygen into the dissolution tank and storage tank.
  • the atmosphere in the atmosphere may be an inert gas atmosphere of 100 ppm or less, preferably 70 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and most preferably 10 ppm or less. desirable.
  • ethylene glycol is previously inert with an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, and most preferably 1 ppm or less. It is also preferable to bubble with a gas, and to bubble the dissolving tank and the storage tank with the above-mentioned inert gas after preparing the slurry.
  • the transesterification reaction is carried out under conditions in which one or two transesterification reactors are connected in series and the ethylene glycol is distilled back, and the gas phase has an oxygen concentration of 50 ppm or less, preferably 10 ppm or less. It is desirable to carry out the reaction while passing an inert gas of not more than 5 ppm, more preferably not more than 5 ppm, and most preferably not more than 1 ppm, and removing methanol produced by the reaction outside the system using a rectification column.
  • the oxygen concentration in the gas phase can be maintained at lO Oppm or less, preferably 70 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and most preferably 10 ppm or less. preferable.
  • the temperature of the first stage transesterification is 180 to 250, preferably 200 to 24.
  • the temperature of the final transesterification reaction is usually from 230 to 270 T, preferably from 240 to 265.
  • fatty acids such as Zn, Cd, Mg, Mn, Co, Ca, and Ba are used.
  • the raw material mixing is performed. It is a very important factor to control the oxygen concentration in the gas phase of the tank / reactor within the above range, and as a result, it has excellent transparency, a stable crystallization rate, and excellent flavor retention. It is possible to obtain a polyester resin that gives a molded article or the like.
  • Examples of the starting materials dimethyl terephthalate, terephthalic acid or ethylene glycol include dimethyl terephthalate of virgin derived from paraxylene, and ethylene glycol derived from terephthalic acid or ethylene. That the used PE Use of recovered raw materials such as dimethyl terephthalate, terephthalic acid, bishydroxyethyl terephthalate or ethylene glycol recovered by chemical recycling methods such as decomposition of ethylene glycol and ethylene glycol as at least a part of starting materials You can do it. It goes without saying that the quality of the recovered material must be purified to a purity and quality according to the purpose of use.
  • the obtained low-order condensate is supplied to a multi-stage liquid-phase polycondensation step.
  • the polycondensation reaction conditions are as follows: the reaction temperature of the first stage polycondensation is 250 to 285 ° (preferably 260 to 280 ° C., the pressure is 100 to 10 Torr, preferably 70 to 15 Torr, The temperature of the polycondensation reaction is 265 to 290 ° C., preferably 275 to 285, and the pressure is 5 to 0.01 To rr, preferably 3 to 0.2 To rr.
  • the degree of vacuum it is preferable to increase the degree of vacuum so that the reaction proceeds at a low temperature and in a short time
  • the time for the polycondensation reaction is preferably 1 to 7 hours, and the temperature at 270 or higher is within 5 hours
  • the reaction conditions for the polycondensation reaction in the intermediate stage are those between the above-mentioned first-stage reaction conditions and the last-stage reaction conditions.
  • the degree of increase in the intrinsic viscosity achieved in each of the polycondensation reaction steps can be distributed smoothly. Preferred.
  • melt polycondensation reactor should be designed so that air leakage into the system from the design stage does not occur as much as possible. It is important to take measures to maximize the prevention of air leakage under reduced pressure.
  • the effect of air leaks from the seals of movable parts such as pumps used for transportation between the stirring shaft and the reaction tank is significant, and in addition to a seal structure with little leakage, the seal part has an oxygen concentration of 5 ppm or less. It is preferable to flow an inert gas of preferably 3 ppm or less, more preferably 2 ppm or less, and most preferably 1 ppm or less.
  • the polyester having an intermediate degree of polymerization introduced into the reactor is sequentially polycondensed to obtain the final polycondensate.
  • a plug having high plug flowability discharged as a gas it is preferable that the shape of the stirring blade is optimal and the rotation speed of the stirring blade is appropriately set, and a reactor equipped with a biaxial stirring blade is also preferable.
  • a one-stage polycondensation apparatus may be used for the polycondensation reaction.
  • the polycondensation reaction is performed using a polycondensation catalyst.
  • the polycondensation catalyst it is preferable to use at least one compound selected from the compounds of Ge, Sb, Ti, and A1. These compounds are added to the reaction system as a powder, an aqueous solution, an ethylene glycol solution, an ethylene glycol slurry, or the like.
  • catalyst solutions, slurries, etc., at the time of or after the preparation are published with an inert gas having an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, and most preferably 1 ppm or less.
  • an inert gas having an oxygen concentration of 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, and most preferably 1 ppm or less.
  • it is desirable that the same inert gas is allowed to flow in the gas phase after bubbling with the inert gas in the same manner.
  • amorphous germanium dioxide, crystalline germanium dioxide powder or slurry of ethylene glycol, a solution in which crystalline germanium is dissolved in water by heating, or a solution in which ethylene daricol is added thereto and heated, etc. are used.
  • germanium tetroxide germanium hydroxide, germanium oxalate, germanium chloride, germanium tetraethoxide, germanium tetra-n-butoxide, and germanium phosphite are exemplified.
  • the amount of Ge compound used is 10 to 150 ppm, preferably 13 to 100 ppm, more preferably 15 to 70 ppm as the amount of Ge remaining in the polyester resin.
  • germanium dioxide as a catalyst
  • the content of sodium or potassium in germanium dioxide or the total content of sodium and potassium may be 100 ppm or less, preferably 5 ppm or less, and more preferably 10 ppm or less. preferable.
  • the heating loss of the germanium dioxide is preferably in the range of 1.5 to 15.0%, preferably 1.5 to 4.5%, and more preferably 1.5 to 4.0%.
  • Ti compound examples include tetraalkyl titanates such as tetraethyl titanate, tetraisopropyl titanate, tetra-n-propyl titanate, tetra-n-butyl titanate, and partial hydrolysates thereof, titanium acetate, Hydrolysis of titanyl oxalate, titanyl ammonium oxalate, sodium sodium thiocyanate, potassium titanyl oxalate, titanyl calcium oxalate, titanyl strontium oxalate, etc., titanyl oxalate compounds, titanium trimellitate, titanium sulfate, titanium chloride, titanium halide, hydrolysis of titanium halide Material, titanium oxalate, titanium fluoride, potassium hexafluorotitanate, ammonium hexafluorotitanate, cobalt hexafluorotitanate, manganese hexafluorotitanate, titanium Examples include
  • Sb compound examples include antimony trioxide, antimony acetate, antimony tartrate, antimony tartrate, antimony oxychloride, antimony glycolate, antimony pentoxide, triphenylantimony and the like.
  • the Sb compound is added so that the remaining amount of Sb in the produced polymer is in the range of 50 to 250 ppm.
  • A1 compound examples include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, and trichloride.
  • Carboxylates such as aluminum acetate, aluminum lactate, aluminum citrate, aluminum salicylate, etc., aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, poly aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, phosphon Inorganic acid salts such as aluminum phosphate, aluminum methoxide, aluminum ethoxide, aluminum n-propoxide, aluminum iso-pro
  • organic aluminum compounds such as trimethylaluminum and triethylaluminum, and partial hydrolysates thereof, and aluminum oxide.
  • carboxylate, inorganic acid salt and chelate compound are preferred, and among these, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, polyaluminum chloride and Aluminum acetyl acetonate is particularly preferred.
  • the A1 compound is added so that the remaining amount of A1 in the produced polymer is in the range of 5 to 200 ppm.
  • an alkali metal compound or an alkaline earth metal compound may be used in combination.
  • the alkali metal or alkaline earth metal may be at least one selected from Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba.
  • use of an alkali metal or a compound thereof is more preferable.
  • alkali metal or alkaline earth metal compounds examples include saturated aliphatic carboxylate such as formic acid, acetic acid, propionic acid, butyric acid, and oxalic acid, and unsaturated aliphatic carboxylic acid such as acrylic acid and methacrylic acid.
  • Acid aromatic carboxylate such as benzoic acid, halogen-containing carboxylate such as trichloroacetic acid, hydroxycarboxylate such as lactic acid, citric acid, salicylic acid, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, Inorganic acid salts such as hydrogen carbonate, hydrogen phosphate, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid, bromic acid, 1-propanesulfonic acid, 1-pentanesulfonic acid, naphthalenesulfonic acid, etc.
  • aromatic carboxylate such as benzoic acid
  • halogen-containing carboxylate such as trichloroacetic acid
  • hydroxycarboxylate such as lactic acid, citric acid, salicylic acid
  • carbonic acid sulfuric acid, nitric acid, phosphoric acid, phosphonic acid
  • Inorganic acid salts such as hydrogen
  • Organic sulfonates organic sulfates such as lauryl sulfate, methoxy, ethoxy, ⁇ -propoxy, iso-propoxy, n-butyl Alkoxy, alkoxides such as tert- butoxy, chelate one bets compounds and the like Asechi Ruasetoneto, hydrides, oxides, and hydroxides and the like.
  • the above alkali metal compound or alkaline earth metal compound is added to the reaction system as a powder, an aqueous solution, an ethylene glycol solution or the like.
  • the alkaline metal compound or alkaline earth metal compound is added to the resulting polymer such that the remaining amount of these elements is in the range of 1 to 50 pm.
  • the polyester resin of the present invention may be a metal containing at least one element selected from the group consisting of silicon, manganese, iron, cobalt, zinc, gallium, strontium, zirconium, tin, tungsten, and lead. It may contain a compound.
  • These metal compounds include saturated aliphatic carboxylate such as acetate of these elements, unsaturated aliphatic carboxylate such as acrylate, aromatic carboxylate such as benzoic acid, and halogen such as trichloroacetic acid.
  • various P compounds can be used in combination with the above polymerization catalyst.
  • the P compounds it is particularly preferable to use a phosphorus compound having a phenol moiety in the same molecule.
  • the P compound is not particularly limited, but is selected from the group consisting of a phosphonic acid compound, a phosphinic acid compound, a phosphoxide compound, a phosphonous acid compound, a phosphinous acid compound, and a phosphine compound. It is preferable to use one or more compounds. Among these, it is particularly preferable to use one or more phosphonic acid compounds. Among these phosphorus compounds, it is preferable to use a compound having an aromatic ring structure.
  • P compound used in the present invention include phosphoric acid, trimethyl phosphate, triethyl phosphate, triptyl phosphate, triphenyl phosphate, monomethyl phosphate, phosphoric acid monomethyl ester, and phosphoric acid.
  • phosphoric acid such as dimethyl ester, monobutyl phosphate and dibutyl phosphate
  • phosphorous acid derivatives such as phosphorous acid, trimethyl phosphite, triethyl phosphite and tributyl phosphite
  • methylphosphon Acid methyl phosphonate dimethyl ester, ethyl phosphonate dimethyl ester, phenyl phosphonate dimethyl ester, phenyl phosphonate dimethyl ester, phenyl phosphonate dimethyl ester, phenyl phosphonate diphenyl ester and other phosphonic acid derivatives, diphenyl phosphinic acid,Phenylene Le phosphine Sanme chill a Jifue two Le phosphinic acid phenyl, phenylalanine phosphinic acid, phenylalanine phosphinic acid methylation, derivatives of phosphinic acid such as phenyla
  • Phosphorus compounds having a phenol moiety in the same molecule for example, p-hydroxyphenylphosphonic acid, dimethyl P-hydroxyphenylphosphonate, getyl P-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, Bis (p-hydroxyphenyl) phosphinic acid, methyl bis (p-hydroxyphenyl) phosphinate, phenylphenyl bis (p-hydroxyphenyl) phosphinate, p-hydroxyphenylphenylphosphinic acid, p-hydroxyphenyl Methyl phenyl phosphinate, p-hydroxyphenyl phenyl phosphinate phenyl: p-hydroxyphenyl phosphinate, methyl p-hydroxy phenyl phosphinate, phenyl p-hydroxy phenyl phosphinate, bis (p —Hydroxyphenyl) phosph Indium oxide,
  • ethyl benzylphosphonate benzylphosphonic acid, ethyl (9-anthryl) methylphosphonate, ethyl 4-hydroxybenzylphosphonate, ethyl 2-methylbenzylphosphonate, phenyl phenyl phenylphosphonate, 4-amino Methyl benzylphosphonate, 4-me Ethyl ethoxybenzylphosphonate, getyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and the like can also be used.
  • metal salt compounds of phosphorus for example, lithium [3,5-di-tert-butyl-4-hydroxybenzylphosphonate], sodium [3,5-di-tert-butyl-4-ethylhydroxybenzylphosphonate], Potassium [3,5-di-tert-butyl-4-hydroxybenzylphosphonate], Magnesium bis [3,5-di-tert-butyl-4-ethylhydroxybenzyl phosphonate], Magnesium bis [3,5-di] — Tert-butyl-1-hydroxybenzylphosphonic acid], calcium bis [3,5-di-tert-butyl-4-hydroxybenzylphosphonate], calcium bis [3,5-ditert-butyl-4-hydroxybenzylphosphonic acid] , Beryllium bis [3,5-di-tert-butyl-4-hydroxybenzyl phosphonate methyl], stronch Mubisu [3, 5-di-tert- Puchiru 4-hydroxy
  • the P compound can be added at any stage of the polyester formation reaction step so that the residual amount of P in the resulting polymer is in the range of 1 to 1000 ppm.
  • a known one may be used.
  • ⁇ 1-tetratetra extract [3- (3,5-di-tert-butyl-14-hydr-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), 1,1,3-tris (2-Methyl-1-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 3 , 9-bis ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5-methyl-3- (3-tert-butyl-4-hydroxy-15-methylphenyl) propionyloxy) 1,1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] indecan, 1,3,5 tris (4-tert-butyl-1,3-hydroxy-2,6-d
  • the hindered phenol-based oxidation stabilizer may be bonded to the polyester, and the amount of the hindered phenol-based oxidation stabilizer in the polyester resin is 1% by weight or less based on the weight of the polyester resin. preferable. This is because if it exceeds 1% by weight, coloring may occur, and even if it is added in an amount of 1% by weight or more, the ability to improve the melt stability is saturated. Preferably, it is from 0.02 to 0.5% by weight.
  • the above-mentioned metal compounds, stabilizers and antioxidants are added to the reaction system as powder, aqueous solution, ethylene glycol solution, slurry of ethylene glycol and the like.
  • these solutions or slurries should be coupled with an inert gas having an oxygen concentration of 50 ppm or less, preferably 10 ppm or less, more preferably 5 ppm or less, and most preferably 1 ppm or less. It is desirable that a similar inert gas be passed through the gas phase.
  • the melt polycondensed polyester obtained as described above is formed into chips after the completion of the melt polycondensation, so that it can be kept in a molten state at a temperature as low as possible and for a short time until extruded from the pores. is necessary.
  • the holding conditions in the molten state are not lower than the melting point and not higher than 290, preferably not higher than 285 ° C, more preferably not higher than 280 ° C within 20 minutes. It is preferably within 15 minutes, more preferably within 10 minutes, particularly preferably within 5 minutes. It is necessary to design piping and the like so as to quickly and quickly form a cooling chip after melt polycondensation.
  • the fluorescence emission intensity (B 0 ) is 20 or less, and the increase in the fluorescence emission intensity after heat treatment (B h- B 0 ) does not become 30 or less, and the crystallization rate of the obtained molded article becomes too high, which causes the above-mentioned problem.At the same time, the flavor retention of the content may be deteriorated. You.
  • the fluorescence emission intensity (Bo) is 20 or less, and the increase in the fluorescence emission intensity after the heat treatment (B h —B 0 ) May not be less than 30. Therefore, it is desirable to cool to about 100 as quickly as possible by the following method.
  • the melt polycondensation polyester obtained as described above has a chemical oxygen demand (COD) from the pores after the completion of the melt polycondensation of preferably not more than 2.0 mg / l, more preferably not more than 1.5 mg / l.
  • COD chemical oxygen demand
  • Lower more preferably 1.Extruding into cooling water of Omg / 1 or less and cutting in water, or extruding into air and immediately cutting while cooling with cooling water with the same COD value as above It is made into chips according to the method.
  • the lower limit of the COD is not particularly limited, it is 0.0 lmgZ1 in practical terms, and if the lower limit is less than 0.0 lmgZl, the equipment cost becomes high and economical chipping is not possible. May be possible.
  • the COD of the cooling water used in the Chipdig process exceeds 2.0 mgZl, the fluorescent emission intensity (B Q ) of the polyester resin is 20 or less, and the increase in the fluorescent emission intensity during heat treatment (B h — B 0 ) does not become 30 or less, and the crystallization speed of the obtained molded article becomes too high, which causes the above-mentioned problem. At the same time, the flavor retention of the content may be deteriorated. is there. 'A method for reducing COD in cooling water in the chipping step will be described below, but the present invention is not limited to this.
  • a device for reducing COD may be installed in at least one or more places in the process until the water discharged from the chipping process is returned to the chipping process again.
  • devices for reducing COD include devices that perform ultrafiltration, reverse osmosis filtration, coagulation sedimentation, activated sludge treatment, activated carbon treatment, and ultraviolet irradiation.
  • the temperature of the chip cooling water is preferably in the range of about 5 to about 40.
  • the content of sodium (N), the content of magnesium (M), the content of silicon (S) and the content of calcium (C) are as follows: More preferably, at least one of (4) to (4) is cooled, and more preferably, the molten polycondensed polyester is chipped using cooling water.
  • the sodium content (N) in the cooling water is preferably N ⁇ 0.5 ppm, more preferably N ⁇ 0.1 ppm.
  • the magnesium content (M) in the cooling water is preferably M ⁇ 0.3 ppm, more preferably M ⁇ 0.1 ppm.
  • the content (S) of silicon in the cooling water is preferably S ⁇ 0.5 ppm, and more preferably S ⁇ 0.3 ppm.
  • the calcium content (C) in the cooling water is preferably C ⁇ 0.5 ppm, and more preferably C ⁇ 0.1 ppm.
  • the lower limits of (S) and calcium content (C) are not particularly limited, but in practical terms, N ⁇ 0.001 ppm, M ⁇ 0.001 ppm, S ⁇ 0.02 ppm, and C ⁇ 0 001 p pm. To lower the lower limit would require enormous capital investment, and the operating costs would be very high, making economic production difficult.
  • the chip adheres to the chip surface in the chip forming step and is brought into the solid-state polymerization reaction device.
  • the metal-containing substance adheres to the inner wall of the solid-state polymerization apparatus together with part of the surface layer of the polyester resin chip, and this is converted into a scale with a high metal content by prolonged heating at a high temperature of about 170 or more. It sticks to the container wall. Then, there is a problem that this peels off from time to time and mixes into the polyester resin chip, and becomes a foreign substance in the molded body such as a pottle, thereby deteriorating the commercial value. Further, when producing a sheet, the scale is clogged in the molten polymer filtration filter during film formation, so that the filter filtration pressure increases sharply, which may cause a problem that operability and productivity are deteriorated. is there.
  • a filter will be installed to remove clay minerals such as particulate silicon dioxide and aluminosilicate.
  • An apparatus for removing sodium, magnesium, calcium, and silicon include an ion exchange apparatus, a filtration apparatus for filtering water, a reverse osmosis membrane apparatus, and the like.
  • Particles with a particle size of 1-2 existing in water introduced from outside the system as chip cooling water Particles with a particle size of 1-2 existing in water introduced from outside the system as chip cooling water
  • the number of particles having a particle size of 1 to 25 m in the cooling water is preferably 1,000,000 / 100 m1 or less, more preferably 10000 m2 or less.
  • Particles having a particle diameter of more than 25 ⁇ in the introduced water are not particularly specified, but are preferably not more than 200 particles / 1 O m 1, more preferably 500 particles Z l O m 1, More preferably, the number is 100 / Oml, particularly preferably 100 / Oml or less.
  • the following is an example of a method for controlling particles having a particle size of 1 to 25 zm to 50,000 particles Z10m1 or less in the introduced water introduced in the chipping step, but the present invention is not limited thereto. Not something.
  • a device that removes particles in at least one place until natural water such as industrial water is supplied to the chipping process Is installed.
  • a device for removing particles from the water intake in the natural world to the above-mentioned chipping process is installed, and particles having a particle size of 1 to 25 m in water supplied to the chipping process are installed. Is preferably not more than 5,000 / lOml.
  • the device for removing particles include a filter filtration device, a membrane filtration device, a sedimentation tank, a centrifugal separator, and a foam entrainer.
  • a filtration device such as a belt filter system, a bag filter system, a cartridge filter system, or a centrifugal filtration system may be used.
  • a belt-filtration type, centrifugal filtration type or bag filter type filtration device is suitable.
  • the furnace material include paper, metal, and cloth. It also removes particles and introduces water
  • the size of the mesh of the filter is 5 to 100 111, preferably 10 to 70 m, and more preferably 15 to 40 im.
  • the cooling water for the chips it is preferable to use the cooling water for the chips while repeatedly recycling them from the viewpoint of improving economic efficiency and productivity.
  • a filter, a temperature controller, a device for removing impurities such as acetate, and the like can be provided.
  • an apparatus for removing the above-mentioned particles, sodium, magnesium, potassium / silium, and silicon may be provided.
  • the oxygen solubility in water 1 atm, about 38. 0 cm 3/1 about at 10, is about 26. 0 cm 3/1 about at 3 0 ° C, the low industrial water having a water temperature
  • oxygen may be dissolved in excess of its solubility in a supersaturated state, or at the bottom of the storage tank, more oxygen may be dissolved by the pressure of its own weight.
  • the chip cooling water is reused while being recycled as described above, low-molecular-weight compounds such as monomers and oligomers dissolved in the cooling water due to the influence of oxygen such as supersaturation, and organic compounds from outside the system. It is also conceivable that the oxidation reaction of impurities such as compounds progresses and the residual off-flavor and off-flavor increase.
  • oxygen enters the resin chip and the chip emits fluorescence.
  • Examples of a device for reducing dissolved oxygen include a deaerator for blowing an inert gas such as nitrogen gas or carbon dioxide gas, a vacuum heating deaerator, and a heating deaerator. Such a device can also be used in the case of water treatment described below.
  • a deaerator for blowing an inert gas such as nitrogen gas or carbon dioxide gas
  • a vacuum heating deaerator such as a vacuum heating deaerator
  • a heating deaerator such a device can also be used in the case of water treatment described below.
  • oxygen is not adsorbed on the high-temperature resin before the molten polymer is sprayed and comes into contact with the cooling water.
  • the oxygen concentration of the inert gas to be blown is 5 ppm or less, preferably 3 ppm or less, more preferably 2 ppm or less, and most preferably 1 ppm or less.
  • oxygen is dissolved in the cooling water and the dissolved oxygen concentration increases.
  • ppm or less preferably 300 ppm or less, more preferably 100 ppm or less, even more preferably 50 ppm or less, most preferably 10 ppm or less, and the fluctuation range is 30% or less, preferably 20 ppm or less. %.
  • the adhesion moisture of the molten polycondensed polyester resin chip obtained in the chipping step is preferably 3000 ppm or less, more preferably 2500 ppm or less, still more preferably 2000 ppm or less. Is preferred. If the attached moisture exceeds 3000 ppm, such a polyester resin chip may be dried or solid-phase polymerized to reduce the fluorescence emission intensity (B Q ) to 20 or less, Increase in fluorescence emission intensity (It may be difficult to keep B h — B below 30.
  • the attached water is a trace moisture meter from Mitsubishi Chemical Corporation (model: CA-06 / VA-06)
  • the method of reducing the adhering water to 3000 ppm or less is to use centrifugal separation, vibration, or a method of blowing heated gas when water is removed from the chip. It can be achieved by strengthening the operating conditions of.
  • the polyester chips whose adhering water content has been reduced to 3000 ppm or less after chipping are sent to a drying step and dried.
  • the oxygen concentration in the gas phase is 100 ppm or less, preferably 80 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and most preferably 30 ppm or less.
  • the drying temperature is from about 50 to about 150 ° C, preferably from about 60 to about 140, and the drying time is from about 3 hours to about 30 hours, preferably from about 4 hours to 20 hours. It is. Particularly preferably, it is 4 hours to 15 hours.
  • the drying gas has a dew point of ⁇ 25 or less and an oxygen concentration of 100 ppm or less, preferably 80 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and most preferably An inert gas of 10 ppm or less is preferred.
  • the inert gas used in the above includes nitrogen gas, carbon dioxide gas, helium gas and the like, and nitrogen gas is most convenient.
  • the dew point should be less than 25 T :, the SOX should be about 0.01 ppm or less, and the NOx should be about 0.01 ppm or less. Drying with moist air at a temperature of about 50 to about 100 ° C. for a time of about 3 hours to about 10 hours is also possible. In this case, it is necessary to suppress the fluorescence emission intensity by making other conditions strict.
  • an activated carbon filter, a filter containing metal particles having a catalytic action, or the like can be used as means for removing SO x and NO x from the air.
  • the fluorescence intensity (B 0 ) of the polyester resin exceeds 20 and the increase S (B h -B 0 ) of the fluorescence intensity during the heat treatment is 3 It can be higher than zero and very likely to be a problem.
  • the drying device has a structure in which the introduced resin is sequentially discharged.
  • 95% by weight is preferably between 0.9 t and 1.1 t.
  • the apparatus discharges 98% by weight, more preferably 99% by weight of if fat.
  • a vertical hopper type dryer is used, and the angle of the apex of the lower inverted conical portion where the outlet for the dried chips is installed is set to an angle appropriately obtained from the angle of repose of the chips. It is preferable to use a baffle cone and a horizontal dryer with a transport paddle / disc installed on the rotating shaft to improve plug flow.
  • the amount of increase in the fluorescence emission intensity after the treatment (B h —B 0) may be higher than 30 and is very likely to cause a problem.
  • the obtained melt polycondensation polyester chips have an oxygen concentration of 100 ppm or less, preferably 50 ppm or less, more preferably 30 ppm or less, and most preferably 10 ppm or less. Transported and temporarily stored in a chip storage tank under an inert gas atmosphere of less than ppm, and following the melt polycondensation, reduce the acetoaldehyde content and increase the intrinsic viscosity. It is desirable to carry out solid phase polymerization continuously.
  • the polyester subjected to solid-state polymerization is pre-crystallized under an inert gas or in an atmosphere of water vapor or an inert gas containing water vapor, and subsequently dried to a moisture content of about 1 ppm (hereinafter referred to as pre-crystallization).
  • pre-crystallization One drying is collectively referred to as pre-crystallization).
  • pre-crystallization before complete drying blocks the penetration of oxygen into the resin, making it less likely to be affected by oxygen during subsequent drying.
  • the temperature during the pre-crystallization is preferably 180 ° or less, more preferably 170 ° C or less, and even more preferably 170 ° C or less, and the lower limit of the temperature is preferably 100 ° C or less. C or more, more preferably 120 ° C. or more, and the time of the pre-crystallization step is preferably 5 hours or less, more preferably 4 hours or less, even more preferably 3.5 hours or less, and the lower limit is 0.
  • the time is 5 minutes or more, more preferably 1 minute or more. If the temperature during pre-crystallization is increased, the time must be shortened, and if the time is increased, the temperature must be decreased. For example, it is preferably about 2 hours at 180 ° C., about 3 hours at 160 ° C., and about 3.5 hours at 150 ° C.
  • the oxygen concentration in the inert gas atmosphere is preferably 50 ppm or less, preferably 40 ppm or less, more preferably 30 ppm or less, still more preferably 20 ppm or less, and most preferably 10 ppm.
  • the following is preferred. .
  • solid-state polymerization is performed in an inert gas atmosphere having an oxygen concentration of preferably 50 ppm or less, more preferably 40 ppm or less, still more preferably 30 ppm or less, and most preferably 20 ppm or less.
  • the mixture is cooled in the same inert gas atmosphere as described above so that the chip temperature becomes about 60 or less.
  • the upper limit of the solid-state polymerization temperature is preferably 220 or lower, more preferably 215 or lower, particularly preferably 210 or lower, and the lower limit is 190 or higher, preferably 195 or higher. It is.
  • the solid phase polymerization time is preferably 30 hours or less, more preferably 15 hours or less, further preferably 10 hours or less, particularly preferably 8 hours or less, and most preferably 8 hours or less. 7 hours or less. Even in solid-state polymerization, if the temperature is high, the time must be shortened; if solid-state polymerization is performed for a long time, the temperature must be set low, and excessive temperature and time history must be avoided. As a guide, it is about 20 hours or less at 210 ° C and about 25 hours or less at 205.
  • the storage of the melt polycondensation chip before the solid phase polymerization is limited to a maximum of 10 days even under the above-mentioned conditions, and it is desirable to keep the chip as short as possible. Solid state polymerization of the molten polycondensed polyester after standing in air for a long time must be avoided.
  • melt polycondensation reaction device and the solid phase polymerization device are directly connected and operated continuously, if the storage of the melt polycondensation polymer is within one day, the solid state polymerized polyester It is also possible not to affect the fluorescence characteristics.
  • the inert gas discharged from each step in the present invention removes solid compounds such as monomers, and compounds containing volatile substances such as water, ethylene glycol, and aldehydes by appropriate equipment, and fresh inert gas.
  • the oxygen concentration can be reduced as described above by mixing with an active gas or contacting with an oxygen scavenger, and can be reused.
  • polyester chips Furthermore, during pre-crystallization or solid-phase polymerization, it is necessary to reduce long-term residence of polyester chips. If polyester chips stay, some of the chips will have an excessively high thermal history, causing the overall fluorescence emission intensity (B 0) to exceed 20 and an increase in fluorescence emission intensity after heat treatment.
  • the quantity (B h — ⁇ 0 ) can be higher than 30.
  • the introduced resin is discharged sequentially.
  • the resin is between 0.9 t and 1.1 t. It is preferable that the apparatus discharges 5% by weight, preferably 98% by weight, and more preferably 99% by weight of resin.
  • the pre-crystallization device the above-mentioned device is used. Is preferred.
  • the solid-phase polymerization device is a vertical hopper-type solid-phase polymerization reactor.
  • the angle of the apex angle of the inverted conical part at the bottom where the outlet of the solid-phase-polymerized chip is installed is defined as the repose angle of the chip. It is preferable to use a method in which the angle is more appropriately determined and an auxiliary equipment such as a paffle cone is installed at the chip outlet to prevent the chip from coming off.
  • the fluorescence emission intensity (B 0 ) will exceed 20 and The increase in the fluorescence emission intensity (B h —B 0 ) may exceed 30 and is very likely to cause a problem.
  • the inert gas used in the above includes nitrogen gas, carbon dioxide gas, helium gas and the like, and nitrogen gas is most convenient.
  • the limiting viscosity of the polyester resin of the present invention is 0.55 to 2.00 deciliter / gram, preferably 0.60 to 1.50 deciliter / gram, and Preferably it is in the range of 0.65 to 1.00 deciliter / gram, most preferably in the range of 0.65 to 0.90 deciliter / gram. If the intrinsic viscosity of the polyester resin is less than 0.55 deciliter gram, the mechanical properties of the obtained molded article are poor.
  • the limiting viscosity of the polyester resin of the present invention particularly, the polyester resin whose main structural unit is composed of 1,3-propylene terephthalate is 0.50 to 2.00 deciliters Z gram, preferably 0.55 to 0.5 g. It is in the range of 1.50 deciliter / gram, more preferably 0.60 to 1.00 deciliter / gram. If the intrinsic viscosity is less than 0.50 deciliter gram, there is a problem that the obtained fiber has poor elastic recovery and durability. The upper limit of the intrinsic viscosity is 2.0 deciliter tornogram. If it exceeds this value, the resin temperature rises during melt spinning, causing severe thermal decomposition, drastic reduction in molecular weight, and coloring in yellow. Problems occur.
  • the polyester resin of the present invention has an increase in the force b value of 4 or less, more preferably 3.5 or less, even more preferably 3.0 or less when the polyester resin is subjected to a heat treatment at a temperature of 180 for 10 hours. Most preferably, it is preferably 2.0 or less. If the increase in the force b value after the above-mentioned heat treatment exceeds 4, the hue of the obtained molded article or the like becomes very yellow, which is problematic.
  • the polyester resin of the present invention in particular, the main repeating unit is composed of ethylene terephthalate, and the chip density of the crystallized or solid-phase polymerized polyester resin is 1.37 g / cm 3 or more, preferably 1.38 to 1.43 g / cm 3 , more preferably 1.39 to 1.42 gZ cm 3 .
  • the content of the dialkylene glycol copolymerized in the polyester resin of the present invention is preferably 0.5 to 7.0 mol%, more preferably 1.0 to 6.0 mol% of the glycol component constituting the polyester resin. 0 mol%, more preferably 1.0 to 5.0 mol%.
  • the amount of dialkylene glycol exceeds 7.0 mol%, thermal stability is deteriorated, the molecular weight is greatly reduced during molding, and the content of aldehydes is undesirably increased.
  • the dialkylene glycol copolymerized in the polyester resin is, for example, in the case of a polyester resin whose main structural unit is ethylene terephthalate, by-produced from ethylene glycol which is a darikol during production.
  • ethylene glycols it is diethylene glycol (hereinafter abbreviated as DEG) copolymerized with the polyester resin.
  • DEG diethylene glycol
  • a polyester resin containing 1,3-propylene terephthalate as a main constituent unit
  • di (1,3-propylene glycol) (or bis (3-hydroxypropyl) ether) by-produced from 1,3-propylene glycol, which is a glycol, of the dipolymer copolymerized with the polyester resin.
  • DPG 1,3-propylene glycol
  • the amount of diethylene glycol copolymerized with the polyester resin of the present invention is 1.0 to 5.0 mol of the glycol component constituting the polyester resin. %, Preferably 1.3 to 4.5 mol%, more preferably 1.5 to 4.0 mol%. If the amount of diethylene glycol exceeds 5.0 mol%, the thermal stability becomes poor, the molecular weight decreases during molding, and the acetoaldehyde content and the formaldehyde content increase undesirably. When the content of diethylene dali alcohol is less than 1.0 mol%, the transparency of the obtained molded article is deteriorated.
  • the content of aldehydes such as acetoaldehyde in the polyester resin of the present invention is desirably 50 ppm or less, preferably 30 ppm or less, more preferably 10 ppm or less.
  • the aldehyde content of the polyester resin is 8 ppm or less, preferably 6 ppm or less. Desirably, it is less than ppm, more preferably less than 5 ppm. If the aldehyde content exceeds 50 ppm, the effect of retaining the flavor of contents such as a molded article molded from the polyester resin will be deteriorated.
  • the aldehydes are acetoaldehyde when the polyester resin is a polyester resin mainly composed of ethylene terephthalate, and is an aldehyde when the polyester resin is mainly a polyester resin mainly composed of 1,3-propylene terephthalate. Is arylaldehyde.
  • the content of the cyclic ester oligomer of the polyester resin of the present invention is 70% or less, preferably 60% or less, more preferably 50% of the content of the cyclic ester oligomer contained in the melt polycondensate of the polyester resin. Or less, particularly preferably 35% or less.
  • the content of the cyclic trimer of the polyester resin of the present invention particularly, the polyester resin whose main repeating unit is composed of ethylene terephthalate is 0.7% by weight or less, preferably 0.5% by weight or less, more preferably Is 0.40% by weight or less.
  • the shape of the polyester resin chip of the present invention may be any of a cylinder type, a square type, a spherical shape or a flat plate shape, and the average particle size is usually 1.0 to 5 mm, preferably 1.1 to 4. 5 mm, more preferably in the range of 1.2 to 4.0 mm.
  • the length is about 1.0 to 4 mm and the diameter is about 1.0 to 4 mm.
  • the maximum particle size is 1.1 to 2.0 times the average particle size and the minimum particle size is 0.7 times or more the average particle size.
  • the practical weight of the chip is in the range of 2 to 4 OmgZ.
  • the amount of increase in cyclic ester oligomer is preferably 0.50% by weight or less, more preferably 0.30% by weight or less. Preferably, it is 0.10% by weight or less.
  • the amount of the cyclic ester oligomer increases, and the adhesion of the oligomer to the surface of the heating mold rapidly increases, and the transparency of the obtained hollow molded article or the like is extremely deteriorated.
  • the polyester resin of the present invention in which the amount of the cyclic ester oligomer increased by 0.50% by weight or less when melted at the temperature of (: 60 minutes) is the polyester resin obtained after the melt polycondensation or after the solid phase polymerization.
  • the polycondensation catalyst can be produced by deactivating the polycondensation catalyst.
  • the polyester resin chip is subjected to water, steam or steam after melt polycondensation or after solid-phase polymerization. A method of carrying out contact treatment with a contained gas can be used.
  • the method of contact-treating the polyester resin chip with water, steam, or a gas containing steam will be described below.
  • the contact treatment of the polyester resin chip with water or steam is referred to as water treatment.
  • Examples of the water treatment method include a method of immersing in water and a method of spraying water on a chip with a shower.
  • the treatment time is 5 minutes to 2 days, preferably 10 minutes to 1 day, more preferably 30 minutes to 10 hours, and the temperature of water or steam is 20 to 180 " ⁇ , preferably 4 to 10 hours.
  • the temperature is from 0 to ⁇ 50 ° C., and more preferably from 50 to 120 ° C.
  • the treatment method may be either a continuous method or a batch method, but a continuous method is preferable for industrial use.
  • a silo-type treatment tank may be used. That is, a polyester resin chip is received into the mouth of the sieve by a patch method, and water treatment is performed.
  • the polyester resin chips are treated with water in a continuous manner, the polyester resin chips can be continuously or intermittently received from above in a tower-type treatment tank and subjected to water treatment.
  • natural water In the case of industrial water treatment of polyester resin chips, natural water (industrial water) and wastewater are often reused due to the large amount of water used for the treatment. Normally, this natural water is collected from river water, groundwater, etc. and refers to water (liquid) that has been subjected to sterilization, foreign matter removal, etc. without changing its shape.
  • natural water used industrially includes inorganic particles such as clay minerals such as silicates and aluminoketes derived from nature, bacteria, bacteria, etc., and origins from spoiled plants and animals. Contains many organic particles. When water treatment is performed using such natural water, particles adhere and permeate into the polyester resin chips to form crystal nuclei, and the transparency of the hollow molded article using such polyester resin chips becomes extremely poor.
  • the number of particles having a particle size of 1 to 25 / im in water introduced from outside the system is represented by X,
  • the content of sodium is N
  • the content of magnesium is M
  • the content of calcium is C
  • the content of silicon is S
  • water treatment is performed by satisfying at least one of the following (5) to (9). It is desirable to do.
  • a device that removes particles in at least one place in the process of supplying natural water such as industrial water to the treatment tank Is installed.
  • These devices include devices similar to those used for the treatment of chip cooling water.
  • At least one place of sodium, magnesium, and calcium is required in the process before natural water such as industrial water is supplied to the treatment tank.
  • a device for removing silicon is installed. These devices include devices similar to those used for the treatment of chip cooling water.
  • water treatment to maintain the dissolved oxygen concentration in the treated water in the treated water and / or treatment tank is introduced from outside the system to about 18 cm 3/1 or less in the case of continuous water treatment method
  • the dissolved oxygen concentration of the treatment water in the treatment layer is Y cm 31 and the temperature of the treatment water is Xt, preferably Y ⁇ 23.0-0. 5.5 ⁇ 10-2 2 , more preferably 22. 5— 0. 5.
  • 5X 10- 2 X more preferably Y ⁇ 22. 0- 0. 5.
  • 5X 10- 2 ⁇ most preferred properly ⁇ 21. 5-0. 5.
  • the oxygen solubility in ordinary water 1 atm, 80 ° C with 17. 6 cm 3/1 or so, but a 2 cm 3/1 about 17. 90, in case of heating the water is not Kira missing oxygen
  • the polyester resin chips left for a long time after the polycondensation are treated with water, the oxygen absorbed by the chips is released into the treated water and becomes supersaturated.
  • the water treatment method is continuous or batchwise, if all or most of the treated water discharged from the treatment tank is converted into industrial wastewater, a large amount of new water is needed. Therefore, there is concern about the impact on the environment due to the increase in wastewater volume. In other words, by returning at least a part of the treated water discharged from the treatment tank to the water treatment tank and reusing it, the required amount of water can be reduced, and the effect on the environment by increasing the amount of wastewater can be reduced. Furthermore, if the wastewater returned to the water treatment tank maintains a certain temperature, the amount of heated treated water can be reduced.
  • the treated water discharged from the treatment tank is returned to the treatment tank and reused, the content of fine and film-like substances contained in the treated water in the treatment tank will gradually increase. As a result, fines and film-like substances contained in the treated water may adhere to the treatment tank wall and the piping wall and clog the piping.
  • the fine film material contained in the treated water adheres to the polyester resin chip again, and then the fine film film adheres to the polyester resin chip by the electrostatic effect at the stage of drying and removing the water. Therefore, even if fine ⁇ film is removed after drying, It will be difficult. Since this fine film has a crystallization promoting effect, the crystallinity of the polyester resin is promoted, resulting in poor transparency of the pottle, and the degree of crystallinity at the time of crystallization of the plug portion becomes excessive. However, the dimensions of the plug part do not conform to the standard, resulting in poor cabling of the plug part.
  • 100,000 particles having a particle size of 1 to 40: m which are present in the treated water which is at least partially returned to the treatment tank after being discharged from the water treatment tank and reused, are Z 1. It is desirably maintained at 0 ml or less, preferably 80,000 pieces 10 m 1 or less, and more preferably 50,000 pieces Z 10 m 1 or less.
  • the treated water returned to the treatment tank and reused in this way is referred to as recycled water.
  • a method of reducing the number of particles having a particle size of 1 to 40 m in the recycled water to 100000/10 m 1 or less will be exemplified below, but the present invention is not limited thereto.
  • As a method for reducing the number of particles having a particle diameter of 1 to 40 / im in the recycle water to 100000 / 10ml or less at least one or more places in the process until the treated water discharged from the treatment tank is returned to the treatment tank again.
  • Install a device to remove particles. Examples of the device for removing particles include a filter filtration device, a membrane filtration device, a sedimentation tank, a centrifugal separator, and a foam entrainer.
  • examples of the method include filtration devices such as an automatic self-cleaning system, a belt filter system, a bag filter system, a cartridge filter system, and a centrifugal filtration system.
  • a belt filter system, a centrifugal filtration system, and a bag filter system are suitable for continuous operation.
  • examples of the filter medium include paper, metal, and cloth.
  • the size of the first mesh of the filter is 5 to 100 m, preferably 5 to 70 m, and more preferably 5 to 40 m.
  • steam or a steam-containing gas at a temperature of 50 to 150, preferably 50 to 110 ° C, preferably 1 kg of the granular polyester resin is used.
  • the steam is supplied in an amount of 0.5 g or more as steam, or is brought into contact with the granular polyester resin and steam.
  • the oxygen concentration in these gases is 50 ppm or less, preferably 10 ppm or less, and more preferably 5 ppm or less.
  • the contact between the polyester resin chips and water vapor is usually performed for 10 minutes to 2 days, preferably for 20 minutes to 10 hours.
  • the method of industrially performing the contact treatment between the granular polyester resin and steam or a steam-containing gas will be exemplified below, but the method is not limited thereto.
  • the processing method may be either a continuous method or a batch method.
  • a sieve type treatment device When a polyester resin chip is subjected to a contact treatment with steam in a batch system, a sieve type treatment device may be used. That is, a chip of polyester resin is received in a silo, and steam or a gas containing water vapor is supplied in a batch system to perform a contact treatment.
  • the polyester resin chips are to be treated continuously with steam
  • the granular polyethylene terephthalate is continuously received from the top in a tower-type treatment device, and steam is continuously supplied in parallel or countercurrent to contact with steam. Can be done.
  • the granular polyester resin when treated with water or steam, the granular polyester resin is drained, for example, using a vibrating screen or a Simon Carter, and is transferred to the next drying step as necessary.
  • Drying of the polyester resin chips which have been subjected to contact treatment with water or steam can be carried out by using a commonly used polyester resin drying treatment.
  • a hopper-type through-air dryer that supplies polyester resin chips from the upper part and allows the drying gas to flow from the lower part is usually used.
  • drying may be performed while passing an inert gas dehumidified under atmospheric pressure.
  • the drying temperature is from about 50 ° C to about 150 ° C, preferably from about 60 ° C to about 140 ° C, and the drying time is from 3 hours to 15 hours, preferably from 4 hours to 10 hours. Time.
  • the drying gas has a dew point of 125 or less and an oxygen concentration of 100 ppm or less, preferably 80 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, and most preferably 1 ppm or less. Inert gases of 0 ppm or less are preferred.
  • the inert gas used in the above includes nitrogen gas, carbon dioxide gas, helium gas and the like, and nitrogen gas is most convenient.
  • the use of an inert gas is not economical, so the dew point is -25 ° C or less, SO x is about 0.01 ppm or less, and NOX is about 0.01 ppm or less. Drying with air at a temperature of about 50 ° C. to about 100 hours for a time of about 3 hours to about 10 hours is also possible.
  • the drying device be configured to discharge the introduced resin sequentially. Assuming that the average residence time of the resin is t, 95% by weight is between 0.9 t and 1.1 t. Preferably 98% by weight, It is more preferable that the apparatus discharges 99% by weight of the resin.
  • a vertical hopper type dryer is used, and the angle of the apex angle of the lower inverted conical part where the dried chip discharge ri is installed is set to the angle appropriately obtained from the repose angle of the chip. It is preferable to install a baffle cone, etc., or a horizontal dryer with a transport paddle or disk installed on the rotating shaft.
  • the fluorescence emission intensity (B 0 ) will exceed 20 and after the heat treatment
  • the increase in the fluorescence emission intensity (B h —B 0 ) of the sample may exceed 30 and is very likely to cause a problem.
  • the gas which comes into contact with the polyester resin is preferably an inert gas having the same oxygen concentration as the gas at the time of drying or dehumidified air.
  • the fluorescence emission intensity (B 0 ) of the polyester resin exceeds 20 and the increase in fluorescence emission intensity (B h — B o) during the heat treatment is 3 It can be higher than zero and very likely to be a problem.
  • the dryer does not have a dead space where abnormally shaped products such as chips and fines may stay for a long time. If there is a dead space, the chip or the like that has stayed there for a long time has a fluorescence intensity (B o) exceeding 20 and the increase in fluorescence intensity (B h — B 0 ) during the heat treatment is 30. This can be a problem.
  • the polyester resin after the completion of the melt polycondensation reaction is mixed with a polyester resin blended with a phosphatized compound in a molten state in a device such as a line mixer to allow polycondensation.
  • a method for inactivating the fflj medium is also known as melt polycondensation polyester.
  • a method of blending a phosphorus compound into a solid-phase polymerized polyester resin a method of dry-blending a phosphorus compound with a solid-phase polymerized polyester resin, a polyester master patch chip in which a phosphorus compound is melt-kneaded and blended, and a solid phase are used.
  • the phosphorus compound to be used include phosphoric acid, phosphorous acid, phosphonic acid and derivatives thereof. Specific examples include various phosphorus compounds used in the above-mentioned melt polycondensation step.
  • the polyester resin contains a considerable amount of fine powder, that is, fine, which is generated during the manufacturing process and whose copolymer component and the content of the copolymer component are the same as those of the polyester resin chip.
  • fine has a property of accelerating the crystallization of the polyester resin, and when present in a large amount, the transparency of a polyester molded article molded from the polyester resin composition containing such a fine is extremely high.
  • the amount of shrinkage at the time of crystallization of the potter plug will not be within the specified range, and it will not be possible to seal with a cap.
  • the content of fines in the polyester having the same composition as the polyester in the polyester resin of the present invention is 0.1 to 1000 ppm, preferably 0.5 to 100 ppm, More preferably, l to 500 ppm, even more preferably; 3300 ppm, most preferably from 1 to Lpppm. If the compounding amount is less than 0.1 ppm, the crystallization speed becomes extremely slow.For example, the crystallization of the stopper portion of the hollow molded container becomes insufficient. It does not fall within the range, making it impossible to cap, or stretching the heat-resistant hollow molding container. The heat-fixed mold is very dirty, so if you try to obtain a transparent hollow molding container, you must clean the mold frequently. Must.
  • the fine content of the polyester resin composition for a hollow molded body is preferably from 0.1 to 500 ppm.
  • such fine or film-like materials may include those having a melting point of about 10 to 20 or more higher than a normal melting point.
  • a feeder that applies an impact or shear force to the molten polycondensed polyester chip or solid-phase polymerized polyester chip, or when using a stirrer that applies a shear force to the chip, about 10 to 2 O: above the normal melting point
  • Very large amounts of fine and film-like materials with high melting points are generated. This is because the chip generates heat due to a large force such as an impact force applied to the chip surface, and at the same time, orientational crystallization of polyester occurs on the chip surface, resulting in a dense crystal structure.
  • polyester resin containing such a high melting point fine or the like is further subjected to solid-phase polymerization or a contact treatment with water as described below, the melting point of the fine or the like may be further increased.
  • the polyester resin of the present invention is PET, fine or film-like substances having a melting point exceeding 260 to 26 ° C. may be problematic.
  • the melting point of chips, fines, and the like is measured by a differential scanning calorimeter (DSC) according to the following method, and the melting peak temperature of DSC is called the melting point.
  • the melting peak representing this melting point is composed of one or more melting peaks.
  • the peak temperature and the melting peak are determined.
  • the highest melting peak temperature is referred to as “the highest peak temperature of the fine melting peak temperature”, and in Examples, etc. Melting point ”.
  • the fine-film-like material having such properties has an effect of further promoting the crystallization of the polyester resin, and when present in a large amount, the transparency of the obtained molded article becomes very poor, and sometimes the obtained molded article becomes extremely poor. There is a possibility of causing a foreign matter-like defect whitened by crystallization.
  • the polyester composition of the present invention contains at least one resin selected from the group consisting of a polyolefin resin, a polyamide resin, and a polyacetal resin as described below, these resins are generally used as the polyester resin of the present invention. Since thermal stability is often inferior, molding at a high temperature of 30 Ot or more causes thermal decomposition to generate a large amount of by-products as described above. This will have a greater effect on the flavor and other factors.
  • melt polycondensation polyester after melt polycondensation, the molten polyester is extruded into water from a die and cut into water, or extruded into the atmosphere and then immediately cooled and cooled with water to form chips.
  • the polyester chips formed into chips are drained, they are subjected to a vibrating sieve process, a gas flow classification process using a gas stream, or a water washing process. Or to a storage tank by bucket-type conveyor transport system.
  • Chips are extracted from the tank by a screw feeder and transported to the next step by a plug transport method or a bucket-type conveyor transport method. Perform removal processing.
  • the molten polycondensed polyester that has been subjected to the above-mentioned fine or film-like material removal treatment is removed again by a gas flow classification step using an air stream immediately before the solid-state polymerization step, and the fine-film-like substance is removed. throw into.
  • a gas flow classification step using an air stream immediately before the solid-state polymerization step
  • the fine-film-like substance is removed. throw into.
  • the oxygen concentration in these transport pipes and in the removal treatment of fines and films is 100 ppm or less, preferably 80 ppm or less, more preferably 50 ppm or less, still more preferably 30 ppm or less, It is most preferable to use an inert gas of 10 ppm or less.
  • the polyester resin containing a chip that emits fluorescent light usually includes fine particles that emit fluorescent light to the same extent.
  • the crystallization-promoting effect of such a luminescent fine particle is very large. Since it causes various problems to the same extent or more, the content of such a fine particle should be reduced as much as possible. is important.
  • the polyester of the present invention in particular, a polyester resin containing ethylene terephthalate as a main repeating unit, has a molded plate having a thickness of 5 mm obtained by injection molding and having a haze of 30% or less, and injection molding. It is desirable that the crystallization temperature (hereinafter referred to as “T cl”) of the test piece from the 2 mm thick molded body obtained after heating be in the range of 150 to 175 ° C .
  • the haze of the formed plate is preferably 15% or less, more preferably 10% or less, and the crystallization temperature (T el) at the time of raising the temperature is preferably 153-173, more preferably. Is in the range of 155-170 ° C.
  • the haze of the formed plate exceeds 30%, the transparency of the obtained hollow molded body is deteriorated, and this may be a problem, especially in the case of an extended hollow molded body.
  • T c1 exceeds 175, the heating crystallization rate becomes extremely slow, and the crystallization of the plug portion of the hollow molded article becomes insufficient, which may cause leakage of the contents. Problem occurs. If Tc1 is less than 150 ° C, the transparency of the hollow molded article may be reduced, which may cause a problem.
  • the polyester resin having ethylene terephthalate as a main repeating unit of the present invention has a dimensional change rate of a molded plate having a thickness of 3 mm obtained by injection molding of the polyester resin as measured by thermomechanical analysis (TA). It is desirably in the range of 1.0% to 7.0%, preferably 1.2% to 6.0%, and more preferably 1.3% to 5.0%. '
  • the dimensional change rate is 1.0% or less, the transparency of the heat-resistant blow-molded container is reduced, and this is a problem particularly in a large-sized blow-molded container of 1.5 liter or more.
  • manufacturing polyester resin with a dimensional change rate of less than 1.0% involves many problems, such as high equipment costs and extremely low productivity. If the dimensional change rate exceeds 7.0%, the rate of heat crystallization is low, so the heat-resistant hollow molded body shrinks during the heat treatment of the plug part, causing a problem of leakage of the contents. In addition, the productivity of the hollow molded container deteriorates, which is a problem. Also, in the case of vacuum forming of a sheet, the shrinkage after forming becomes large, and the opening property of the lid and the fitting property with the lid are deteriorated, which is a problem.
  • the dimensional change rate of the molded product specifying the polyester of the present invention is determined by a method described later using a thermo-mechanical analysis (TMA), type TMA4000S manufactured by Mac-Science Corporation. It was measured.
  • TMA thermo-mechanical analysis
  • the polyester resin composition of the present invention the polyester resin and polyolefin resin, polyamide resin, at least one kind of resin selected from the group consisting of polyacetate resin 0.1 ppb ⁇ 50,000ppm It is preferable that the resin composition is a polyester resin composition.
  • the blending ratio of the resin used in the present invention to the polyester resin composition is from 0.3 ppb to 50,000 ppm, preferably from 0.3 ppb to 10,000 ppm, more preferably from 0.5 ppb to 1000 ppm, Preferably, it is 0.5 ppb to 100 ppb. If the compounding amount is less than 0 lppb, the crystallization speed becomes very slow, and the crystallization of the hollow plug of the hollow molded body becomes insufficient. It does not fall within the specified value range, resulting in poor cabling.Furthermore, the stretch heat-fixing mold used to mold the heat-resistant hollow molded article is very dirty, and frequent cleaning is required to obtain a transparent hollow molded article. Have to do.
  • the concentration exceeds 50 000 ppm, the crystallization rate will be high, and the crystallization of the hollow plug of the hollow molded article will be excessive, and the shrinkage and shrinkage fi of all the rhones will not fall within the specified value range ffl. Bad In some cases, leakage of the contents may occur, or the preform for the hollow molded body may be whitened, and normal stretching may not be possible. In the case of a sheet-like material, if the content exceeds 50,000 ppm, the transparency becomes extremely poor, and the stretchability is deteriorated, so that normal stretching is impossible, the thickness unevenness is large, and the transparency is poor. Sometimes only a stretched film is obtained.
  • polyolefin resin blended in the polyester resin composition of the present invention examples include a polyethylene-based resin, a polypropylene-based resin, and an en-one-year-old olefin-based resin. These resins may be crystalline or amorphous.
  • polyethylene resin blended in the polyester resin composition of the present invention examples include, for example, an ethylene homopolymer, ethylene, propylene, butene-1,3-methylbutene-11, pentene-11,4-methylpentene Other 1,2-hexene, such as hexene-1, octene-1, decene-1, etc., and other monoolefins, such as pinyl acetate, vinyl chloride, acrylic acid, methacrylic acid, and acrylate. And methacrylic acid esters, styrene, and copolymers with vinyl compounds such as unsaturated epoxy compounds. Specifically, for example, ultra-low, low, medium, high-density polyethylene, etc.
  • polypropylene resin blended in the polyester resin composition of the present invention examples include, for example, propylene homopolymer, propylene, ethylene, butene-1,3-methylbutene-11, pentene1-1,4-methylpentene-11 , Hexene-1, 1-octene-1, 1-decene-1, etc., other 1- to 2-carbon olefins, such as vinyl acetate, vinyl chloride, acrylic acid, methacrylic acid, acrylic acid ester, and methyl acryl.
  • Examples thereof include a copolymer with a vinyl compound such as an acid ester and styrene, and a copolymer with a gen such as hexadiene, octadiene, decadiene, and dicyclopentene.
  • a copolymer with a vinyl compound such as an acid ester and styrene
  • a copolymer with a gen such as hexadiene, octadiene, decadiene, and dicyclopentene.
  • propylene-based resins such as propylene homopolymer (atactic, isotactic, syndiotactic polypropylene), propylene-ethylene copolymer, and propylene-ethylene-butene-11 copolymer.
  • Examples of the ⁇ -olefin resin blended in the polyester resin composition of the present invention include homopolymers of monoolefin having about 2 to 8 carbon atoms, such as 4-methylpentene-11, and the like. And other monoolefins having about 2 to 20 carbon atoms such as ethylene, propylene, butene 1-1, 3-methylbutene 1-1, pentene 1-1, hexene 1-1, octene 1-1, and decene 1-1. Examples include polymers.
  • butene-11-based resins such as butene-1 homopolymer, 4-methylpentene-11 homopolymer, butene-11-ethylene copolymer, butene-11-propylene copolymer and the like, methylpentene one 1 and copolymer of ⁇ - old Refuin of Cs Ci 8, etc Ru include.
  • Examples of the polyamide resin blended in the polyester resin composition of the present invention include lactam polymers such as butyrolactam, ⁇ 5-valerolactam, ⁇ -force prolactam, enantolactam, ⁇ -laurolactam, and the like.
  • aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, hexamethylene diamine, nonamethylene diamine, decamethylene diamine, dodecamethylene diamine, pendeca Aliphatic diamines such as methylenediamine, 2,2,4- or 2,4,4-trimethylhexamethylenediamine, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis Alicyclic diamines such as ( ⁇ -aminocyclohexylmethane) and diamines such as m- or aromatic diamines such as ⁇ -xylylenediamine
  • dicarboxylic acid units such as aliphatic dicarboxylic acids such as daltalic acid, adipic acid, suberic acid, and sebacic acid; alicyclic dicarboxylic acids such as cyclohexane dicarboxylic acid; and aromatic dicarcar
  • Polycondensates of these, and copolymers thereof, and the like are Specifically, for example, nylon 4, nylon 6, nylon 7, nylon 8, nylon 9, nylon 11, nylon 12, nylon 66, and nylon 66, Nylon 69, Nylon 610, Nylon 611, Nylon 612, Nylon 6T, Nylon 61, Nylon MXD6, Nylon 6ZMXD6, Nylon MXD6 / MXD I, Nylon 6 No. 66, Nylon 6/610, Nylon 6/12, Nylon 6Z6 T, Nylon 6 I 6 ⁇ .
  • These resins may be crystalline or amorphous.
  • Examples of the polyacetal resin blended in the polyester resin composition of the present invention include a polyacetal homopolymer and a copolymer.
  • the polyacetal homopolymer, density measured by the measuring method A STM D 792 is 1. 40 ⁇ 1 42 g / cm 3, AS TMD -.
  • 190 were measured with a load of 2160 g Merutofu Polyacetals with a mouth-to-mouth (MFR) force of 0.5 to 50 g / 10 minutes are preferred.
  • the polyacetal co-union has a density of 1.38 to: L. 43 gZcm 3 ASTMD-1238 according to the measurement method of ASTM-D792, 19 Ot :, load 2
  • Polyacetate copolymers having a melt flow ratio (MFR) measured at 160 g in the range of 0.4 to 50 g / 10 minutes are preferred.
  • MFR melt flow ratio
  • these copolymer components include ethylene oxide and cyclic ether.
  • the production of the polyester resin composition containing the polyolefin resin and the like is carried out by directly adding and melting and kneading a resin such as the polyolefin resin to the polyester resin so that the content falls within the above range
  • the resin may be added to the polyester resin at the production step, for example, at the time of melt polycondensation, immediately after melt polycondensation, immediately after pre-crystallization, and solid phase
  • the time of polymerization at any stage such as immediately after solid-phase polymerization, or during the process from the end of the production stage to the molding stage, directly added as powders or the polyester resin chip
  • the resin member under flow conditions or by melt-kneading after the contact treatment.
  • the polyester resin chip is brought into collision with the member in a space where the resin member exists.
  • the polyester resin chip is brought into collision with the member in a space where the resin member exists.
  • the force for making a part of the pneumatic transport pipe, the gravity transport pipe, the silo, the magnet part of the magnet catcher or the like made of the resin, or the resin Lining or installing the resin member such as a rod or net in the transfer path How to transfer the resin chips and the like.
  • the contact time of the polyester resin chip with the member is usually very short, about 0.01 second to several minutes, but a small amount of the resin can be mixed into the polyester resin.
  • the polyester resin and the polyester resin composition of the present invention can be obtained by using a raw material such as dimethyl terephthalate / terephthalic acid obtained by purifying a used PET pottle by a chemical recycling method as at least a part of a starting material. PET and used PET bottles can be mixed with flake-like PET and chip-like PET that are purified and recovered by mechanical recycling.
  • the polyester resin or the polyester resin composition of the present invention is preferably used as a hollow molding, a tray, a packaging material such as a biaxially stretched film, a film for covering a metal can, a fiber containing a monofilament, or the like. It can be used well. Further, the polyester resin or the polyester resin composition of the present invention can be used as one constituent layer of a multilayer molded article, a multilayer film, or the like.
  • the polyester resin or polyester resin composition of the present invention can be used to form films, sheets, containers, and other packaging materials by using a commonly used melt molding method. Further, the mechanical strength can be improved by stretching the sheet-like material comprising the polyester resin or the polyester resin composition of the present invention in at least one axial direction.
  • the stretched film made of the polyester resin or the polyester resin composition of the present invention is obtained by subjecting a sheet obtained by injection molding or extrusion to uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching, which are usually used for stretching PET. Is formed by using any stretching method. It can also be formed into a cup-shaped or tray-like shape by pressure forming or vacuum forming.
  • the polyester resin or polyester resin composition of the present invention Prior to molding, the polyester resin or polyester resin composition of the present invention is usually dried, but the drying temperature is about 50 ° C to about 150 ° C, preferably about 60 ° C to about 14 ° C. 0 ° C. and the drying time is about 1 hour to about 20 hours, preferably about 2 hours to 10 hours.
  • the drying gas is an inert gas having a dew point of -25 or less and an oxygen concentration of 100 ppm or less, preferably 10 ppm or less, more preferably 5 ppm or less, and most preferably lppm or less.
  • the fluctuation range is within 30%, preferably within 20%.
  • the inert gas used in the above includes nitrogen gas, carbon dioxide gas, helium gas and the like, and nitrogen gas is most convenient.
  • the use of an inert gas is not economical, so the dew point is --25 ° C or less, S 0 X is about 0.01 ppm or less, and N 0 X is about 0.01 ppm or less. It is also possible to dry at a temperature of about 50 ° C. to about 100 ° C. for about 3 hours to about 10 hours using dehumidified air.
  • the dryer does not have a dead space where abnormal shapes such as chips and fines may stay for a long time. If there is a dead space, the chip or the like that has stayed there for a long time will have a fluorescence intensity (B.) exceeding 20 and the increase in fluorescence intensity (B h — B Q ) during heat treatment will be 30. It is very likely to be a problem because it can be higher.
  • the stretching temperature is usually 80 to 13O.
  • the stretching may be uniaxial or biaxial, but is preferably biaxial from the viewpoint of practical properties of the film.
  • the stretching ratio is usually from 1.1 to 10 times, preferably from 1.5 to 8 times in the case of uniaxial stretching.
  • biaxial stretching it is usually 1.1 in both the longitudinal and transverse directions. It may be carried out in a range of up to 8 times, preferably 1.5 to 5 times.
  • the vertical magnification Z and the horizontal magnification are generally 0.5 to 2, preferably 0.7 to 1.3.
  • the obtained stretched film can be further heat-set to improve heat resistance and mechanical strength. Heat setting is usually performed under tension at 120 ° (: ⁇ 240, preferably 150 ⁇ ⁇ ⁇ ⁇ 230), usually for several seconds to several hours, preferably for several tens seconds to several minutes.
  • a preform formed from the polyester resin or the polyester resin composition of the present invention is formed by stretch pro-molding, and an apparatus which has been conventionally used for PET pro-molding is used.
  • a preform is formed once by injection molding or extrusion molding, and after processing the stopper and the bottom part as it is or after reheating it, a biaxial stretching process such as a hot parison method or a cold parison method is performed.
  • a molding method is applied.
  • the molding temperature in this case, specifically, the temperature of each part of the cylinder and the nozzle of the molding machine is usually in the range of 260 to 30O.
  • the stretching temperature is usually 70 to 120 ° C, preferably 90 to 110 T, and the stretching ratio is usually 1.5 to 3.5 times in the longitudinal direction and 2 to 5 times in the circumferential direction. It should be done in.
  • the obtained hollow molded article can be used as it is, but in particular, in the case of beverages that require hot filling, such as fruit juice beverages and oolong tea, generally, heat-setting treatment is further performed in a blow mold, Used with heat resistance.
  • the heat setting is usually carried out at 100 to 200 ° C., preferably 120 to 180 ° C., for several seconds to several hours, preferably for several seconds to several minutes, under tension by compressed air or the like.
  • the stopper of the preform obtained by injection molding or extrusion molding is crystallized in a far-infrared or near-infrared heating oven, or potted. Later, the plug is crystallized by the heater.
  • the polyester resin or the polyester resin composition of the present invention may contain, if necessary, a known ultraviolet absorber, an antioxidant, an oxygen scavenger, a lubricant added from outside, a lubricant internally deposited during the reaction, and a mold release.
  • Various additives such as an agent, a nucleating agent, a stabilizer, an antistatic agent, a dye, and a pigment may be blended.
  • calcium carbonate is contained in the polyester resin in order to improve handling properties such as slipperiness, winding property and blocking resistance.
  • Inorganic particles such as barium acid, lithium phosphate, calcium phosphate, and magnesium phosphate
  • organic salt particles such as terephthalate such as oxalic acid calcium calcium, barium, zinc, manganese, and magnesium divinylbenzene, styrene, and acrylic acid.
  • Inert particles such as crosslinked polymer particles such as homo- or copolymers of vinyl monomers of methacrylic acid, acrylic acid or methacrylic acid can be contained.
  • DEG content Polyethylene content of diethylene glycol (hereinafter referred to as “DEG content”)
  • the polyester was decomposed with methanol, the amount of DEG was quantified by gas chromatography, and expressed as a ratio (mol%) to the total glycol components.
  • CT content Polyester cyclic trimer content
  • AA content Acetaldehyde content of polyester
  • Extraction treatment was performed at 60 ° C for 2 hours. After cooling, acetoaldehyde in the extract was measured by high-sensitivity gas chromatography, and the concentration was expressed in ppm.
  • the color b value was measured using a resin chip and a color difference meter (MODEL TC-1500MC-88 manufactured by Tokyo Denshoku Co., Ltd.).
  • the increase in color b value after heat treatment is calculated as the difference between the color b value of the chip heat treated in (12) and the color b value of the untreated chip.
  • the fines sifted under the above sieve (B) are washed with 0.1% aqueous solution of a cationic surfactant, then washed with ion-exchanged water, and filtered through a G1 glass filter manufactured by Iwaki Glass Co., Ltd. And collected. Each of these was dried in a dryer at 100 ° C for 2 hours, cooled, and weighed. The same operation of washing and drying with ion-exchanged water was repeated again, and it was confirmed that the weight became constant. The weight of the glass filter was subtracted from this weight to obtain a fine weight S. The fine content is the fine weight, the total resin weight after sieving.
  • the density of the plug part was determined as an average value of ten samples crystallized by the method of (11), and the deviation of the density of the stopper part was determined from these ten values.
  • DSC differential scanning calorimeter
  • RDC-220 manufactured by Seiko Electronic Industry Co., Ltd. Fines collected from 20 kg of polyester by the method of (7) were freeze-ground and dried under reduced pressure at 25 for 3 days. From this time, 4 mg of sample was used for one measurement at a heating rate of 20 / min. Perform DSC measurement to determine the melting peak temperature at the highest temperature of the melting peak temperature. The measurement is performed on a maximum of 10 samples, and the average of the highest melting point and peak temperature is determined.
  • the preform plug was heat-treated for 180 seconds with a homemade Akiba heater, and a sample was taken from the top to measure the density.
  • EMI SS ION START WAVELENGTH (emission start wavelength): 350 nm EMI SS ION END WAVELENGTH (emission end wavelength): 600 nm
  • a tangent line is drawn on the low wave number side and high wave number side of the emission spectrum obtained for the sample chip by the above method, and the intersection of the perpendicular line drawn from the point (a) of the spectrum at 395 nm to the tangent line (b) Measure the length A between them, and the length B between the intersection (d) of the perpendicular drawn from the point (c) of the spectrum at 450 nm to the tangent.
  • Fluorescence Intensity A and B are expressed as relative values when the length from 0 to 100 is defined as 100.
  • the fluorescence emission intensity at 395 nm (A) and the fluorescence emission intensity at 450 nm (B). Replace with a new chip, measure five times, and calculate the average value.
  • the peak at 395 nm and the peak at 450 nm may be shifted by several nm. In this case, use the spectrum peak value, and if no clear peak is observed, use the values at 395 nm and 450 nm.
  • the amount of increase in the fluorescence emission intensity was determined by measuring the fluorescence spectrum of the polyester chip heat-treated according to the method of (13) in the same manner.
  • the fluorescence emission intensity (A h ) at 395 nm of the heat-treated chip and 45 Onm Is the fluorescence emission intensity (B h ).
  • a black light (National FL 2 OS. BL-B, 20W, emits near-ultraviolet light of 300 to 400 nm, maximum wavelength of 352 nm) is applied to about 500 g of the polyester chip that has not been heat-treated or heat-treated by the method of (13). Irradiate, visually determine and select about 2-3 grams of chips in the order of the intensity of emitted fluorescence. This is crushed by a freezing mill (SPEX Freezer Mill), and about 1 gram of the milled powder is packed into a quartz solid sample measuring cell (inner diameter: 24.5 mm, height: 2 mm) in a dense state, and a quartz glass plate is used. Cover and measure similarly. When almost all the chips emit the same amount of fluorescent light when irradiated with black light, the measurement sample chip may be selected arbitrarily.
  • Fluorescence intensity ratio after heat treatment B h / A h
  • the sample was irradiated with black light (National FL 2 OS. BL-B, 20W, emitting near-ultraviolet light of 300 to 400 nm, maximum wavelength of 352 nm), and judgment was made visually.
  • black light National FL 2 OS. BL-B, 20W, emitting near-ultraviolet light of 300 to 400 nm, maximum wavelength of 352 nm
  • DSC Differential thermal analyzer manufactured by Seiko Denshi Kogyo Co., Ltd., measured at 0 (: -220.)
  • a 1 Omg sample from the center of a 2 mm thick plate of the following (16) was used. The temperature is raised by 20 degrees CZ, and the peak temperature of the crystallization peak observed in the middle is measured and defined as the crystallization temperature during heating (Te 1).
  • a test piece with a size of 8 mm x 1 Omm was cut out from a plate part having a thickness of 3 mm from the step-formed plate shown in (16) below and used as a measurement sample.
  • the formed plate has a molecular orientation derived from the flow during the forming process, but the orientation state varies depending on the portion of the formed plate. Therefore, the molding plate is sandwiched between two polarizing plates whose polarization planes are orthogonal to each other, and the orientation is observed by observing the intensity distribution of light transmitted through the molding plate when irradiating visible light from the direction perpendicular to the polarizing plate surface. I checked the status.
  • Specimens were cut from sites where the molecular dimensions did not include non-uniformity (such as the degree of orientation or fluctuations in the orientation direction) within the above dimensions.
  • the orientation of the optical anisotropy is confirmed in advance, and the relationship with the orientation of the specimen to be cut out is as follows.
  • the orientation of the optical anisotropy was determined using a polarizing microscope and a sensitive color plate according to the method described in New Polymer Experimental Science 6 Structure of Polymer (2) (Kyoritsu Shuppan Co., Ltd.). The specimen was cut out so that the direction of the axis with the smaller refractive index (the axis with the faster light velocity) and the long axis of the test piece were parallel.
  • the birefringence was measured using a polarizing microscope (Nikon's ECLIPSE E600 POL) by a Berek compensator overnight method. The measured value was the value obtained at the center of the test piece.
  • the dimensional change in the process of raising and lowering the temperature of the test specimen prepared as described above was measured by a thermomechanical analysis (TMA), type TMA4000S, manufactured by Mac-Scens Co., Ltd. The measurement was performed in the compression load mode, and the change in sample length in the direction parallel to the long axis of the test specimen was observed.
  • TMA thermomechanical analysis
  • a polyester chip dried under reduced pressure at 140 at a reduced pressure for about 16 hours using a reduced pressure dryer is used with an M-150C-DM type injection molding machine manufactured by Meiki Seisakusho.
  • M-150C-DM type injection molding machine manufactured by Meiki Seisakusho.
  • gate part (G) 2mm ⁇ l lmm
  • the thickness of the part E was 10 mm and the thickness of the part F was 11 mm).
  • Dry inert gas (nitrogen gas) purging was performed inside the molding material hopper to prevent moisture absorption of the chips during molding using polyester chips that had been dried under reduced pressure using Yamato Scientific Vacuum Dryer DP 61. .
  • the injection conditions were such that the injection speed and dwelling speed were 20% and the injection pressure and dwelling pressure were adjusted so that the molded product weight was 146 ⁇ 0.2 g. Adjusted 5MPa lower.
  • the upper limits of the injection time and dwell time are set to 0 and 7 seconds, respectively, and the cooling time is set to 50 seconds.
  • the overall cycle time including the removal time of the molded product is about 75 seconds.
  • the test plate for evaluating the characteristics of the molded product was selected arbitrarily from among the stable molded products at the 11th to 18th shots from the start of molding after the molding material was introduced and the resin was replaced.
  • the 2 mm-thick plate (A in Fig. 1) measures the crystallization temperature (Te l) at elevated temperature
  • the 3 mm-thick plate (B in the figure) measures the dimensional change
  • the 5 mm-thick plate (Fig. 1) D part) is used for haze (haze%) measurement.
  • polyester is dried at 140 ° C under normal pressure for 10 hours using a dryer using dehumidified air, and resin temperature is measured using M-150C (DM) injection molding machine manufactured by each machine.
  • the preform was molded at 290 ° C.
  • the plug part of this preform was heated and crystallized with a home-made plug part crystallization apparatus.
  • the preform is biaxially stretched and blown at a magnification of about 2.5 times in the vertical direction and about 3.8 times in the circumferential direction using an LB-01 E molding machine manufactured by C OPOPLAS T, followed by about 150 °.
  • the container was heat-set in a mold set at C for about 7 seconds to form a 200-Occ container (body thickness 0.45 mm).
  • the stretching temperature was controlled at 100 ° C.
  • the hollow molded body molded in the above (17) was filled with hot water at 90 ° C., cavitated by a caving machine, the container was turned down, and the contents were checked for leakage. In addition, the deformation of the stopper after cabbing was also examined.
  • the cooling water filtered by Iwaki Glass 1G1 Glass Filler is measured according to the method of JIS-K0101.
  • the cooling water and introduced water after particle removal and ion exchange were collected, filtered through a 1 G1 glass filter manufactured by Iwaki Glass Co., Ltd., and the filtrate was measured with an inductively coupled plasma emission analyzer manufactured by Shimadzu Corporation.
  • dissolved oxygen measurement method Measured by the dissolved oxygen measurement method described in the “24. Dissolved oxygen” section of the industrial water test method, JIS-K0101. It is measured by the Winkler method, the modified Winkler sodium azide method, the modified Miller method, or the diaphragm electrode method.
  • Water introduced from outside the system is supplied from the cooling water storage tank or the sampling port installed near the ion-exchanged water introduction port of the water treatment tank, and the treated water in the cooling water tank or the water treatment tank is treated with the respective water. Collect from outlet.
  • PET was obtained by a continuous melt polycondensation apparatus and a continuous solid-state polymerization apparatus.
  • a slurry of high-purity terephthalic acid and ethylene glycol prepared in a slurry preparation tank is continuously supplied to the first esterification reactor containing the reactants in advance, and about 2501, 0.5 kg under stirring.
  • the reaction was performed at an average residence time of 3 hours at / cm 2 G.
  • This reaction product was sent to the second esterification reactor, and reacted under stirring at a temperature of about 260 ° (: 0.05 kg / cm 2 to a predetermined degree of reaction.
  • the oxygen concentration in the gas phase of the tank was maintained at 20 to 30 ppm or less, and the oxygen concentration in the gas phase of the first and second esterification reactors was maintained at 20 to 30 pm or less.
  • the solution is bubbled with nitrogen gas with an oxygen concentration of about 1 ppm or less, The same nitrogen gas flow was passed through the liquid tank and the phosphoric acid solution tank
  • the esterification reaction product was continuously supplied to the first polycondensation reactor, and stirred at about 265 at 25 torr for 1 hour. Then, the mixture was subjected to polycondensation at about 2651: 3 torr for 1 hour with stirring in the second polycondensation reactor for 1 hour and further at about 275 for 0.5 to 1 torr with stirring in the final polycondensation reactor. Had an intrinsic viscosity of 0.54 d 1 / g.
  • the obtained molten polycondensation prepolymer is extruded from the pores into approximately 20 cooling water with the following water quality.
  • the chips were formed by forcing in water, and after solid-liquid separation, the water adhering to the chips was reduced to about 800 ppm or less by centrifugation.
  • Industrial water derived from underground river water
  • a coagulating sedimentation device filter-filtration device, nitrogen gas blown heating deaerator, activated carbon adsorption device, and ion exchange device.
  • the chips are transported to a storage tank under a nitrogen atmosphere having an oxygen concentration of 50 ppm or less in the gas phase, and then fine and film-like substances are removed by a vibrating sieving process and an airflow classification process.
  • the fine content was set to about 50 ppm or less.
  • This is sent to a crystallizer, where it is continuously crystallized at about 155 ° C for 3 'hours under a nitrogen gas flow with an oxygen concentration of 20 ppm or less.
  • Solid phase polymerization was carried out continuously at about 209 ° C under a nitrogen gas flow of 20 ppm or less to obtain a solid phase polymerized polyester.
  • a silo-type container was used, and the lower angle was set to 5 degrees larger than the repose angle of the resin, and a baffle cone was installed.
  • the mixture was continuously treated in a sieving step and a fine removal step to remove a fine film.
  • the oxygen concentration in the nitrogen gas discharged from the solid-state polymerization vessel was 25 ppm or less.
  • nitrogen gas having an oxygen concentration of 2 ppm or less was passed through a seal portion of a movable part such as a stirrer or a pump of the melt polycondensation reactor and the solid-state polymerization reactor.
  • the molten polycondensation PET chips and the solid-phase polymerized PET chips were transported almost using a packet-type conveyor-transport system or plug-transport system, and a screw-type feeder was mainly used for extraction from the reactor and storage tank.
  • a nitrogen atmosphere having an oxygen concentration of 30 to 50 ppm was used, and nitrogen gas having an oxygen concentration of 30 to 50 ppm was used for airflow classification.
  • Example 11 PET was obtained using a continuous melt polycondensation apparatus and a continuous solid-state polymerization apparatus different from those in Example 1.
  • a slurry of high-purity terephthalic acid and ethylene glycol prepared in a slurry mixing tank is continuously supplied to a first esterification reactor containing a reactant in advance, and is stirred for about 250 The reaction was performed at 0.5 kg / cm 2 G for an average residence time of 3 hours.
  • This reaction product was sent to the second esterification reactor and reacted under stirring at a temperature of about 260 ° (: 0.05 kg / cm 2 to a predetermined degree of reaction.
  • the solution was separately and continuously supplied to the second esterification reactor.
  • a nitrogen gas having an oxygen concentration of 1 ppm or less was passed through these mixing tanks and each reactor, and the gas in the slurry mixing tank was supplied.
  • the oxygen concentration in the phase was maintained at 20-30 ppm or less, and the oxygen concentration in the gas phase of the first and second esterification reactors was maintained at 20-30 ppm or less.
  • the esterification reaction product was continuously supplied to the first polycondensation reactor, and was stirred at about 265 ° C., 25 torr for 1 hour, and then continuously.
  • the polycondensation was carried out at about 265 ° C, 3 t 0 rr for 1 hour under stirring in a double polycondensation reactor, and further at about 275 ° C, 0.5 to: L torr while stirring in a final polycondensation reactor.
  • the intrinsic viscosity of the melt polycondensation prepolymer was 0.54 dl / g.
  • the obtained molten polycondensation pre-polymer is extruded from the pores into cooling water of the following water quality of about 20 ° C, cut in water to form chips, and after centrifugation after solid-liquid separation, the water adhering to chips is about 900 pm or less. did.
  • Cooling water COD of cooling water was 0.3-0.5mg / l.
  • fines and a film-like substance are removed by a vibrating sieving process and an airflow classification process to reduce the fine content to about 50 ppm or less.
  • it is stored in the atmosphere for about 3 to 5 hours and immediately sent to the crystallizer.At about 155 ° C for 3 hours under a nitrogen gas flow with an oxygen concentration of 20 ppm or less.
  • the mixture is charged into a column-type solid-state polymerization reactor, and continuously solid-phase-polymerized at about 208 ° C under a nitrogen gas flow having an oxygen concentration of 15 to 20 ppm or less, to obtain a solid-phase polymerized polyester. Obtained.
  • a silo-type vessel was used, and the lower angle was set to 5 degrees larger than the repose angle of the resin, and a baffle cone was installed. After the solid-phase polymerization, it was continuously treated in the sieving process and the fin removal process to remove fines and films.
  • the oxygen concentration in the nitrogen gas discharged from the solid-state polymerization vessel was 30 ppm or less.
  • a nitrogen gas having an oxygen concentration of 1 ppm was supplied to the seal portion of the stirrer of the melt polycondensation reactor and the solid-state polymerization reactor.
  • Melt polycondensation PET chips and solid-phase polymerization PET chips were transported using almost a bucket-type conveyor transport method or plug transport method, and screw-type feeders were mainly used for removal from the reactor and storage tank.
  • a nitrogen atmosphere with an oxygen concentration of 30 to 50 ppm was used, and nitrogen gas with an oxygen concentration of 30 to 50 ppm was used for airflow classification.
  • Example 1 was repeated except that a basic aluminum acetate ethylene dalicol solution, Irgano 1222 (manufactured by Ciba Specialty Chemicals) and an ethylene glycol solution pre-heated with ethylene glycol were used as the polycondensation catalyst.
  • Melt polycondensation PET was obtained under the same conditions and by the same method.
  • the intrinsic viscosity of the obtained melt polycondensation PET was 0.58 deciliter / gram.
  • solid-state polymerization was performed in the same manner as in Example 1.
  • Tables 1 and 2 show the properties of the obtained PET, the formed plate formed from the PET, and the biaxially drawn pot. The result was good and no problem.
  • melt polycondensation PET was obtained.
  • the intrinsic viscosity of the obtained melt polycondensation PET was 0.56 deciliter / gram.
  • solid-state polymerization was performed in the same manner as in Example 1. This was evaluated in the same manner as in Example 1.
  • Tables 1 and 2 show the properties of the obtained PET, the formed plate formed from the PET, and the biaxially stretched pot. The result was good and no problem.
  • Melt polycondensation PET was obtained in the same manner as in Example 1, except that an ethylene glycol solution of antimony trioxide, an ethylene glycol solution of magnesium acetate tetrahydrate, and an ethylene glycol solution of phosphoric acid were used as the polycondensation catalyst.
  • the intrinsic viscosity of the obtained melt polycondensation PET was 0.59 deciliters Z gram.
  • solid-state polymerization was performed in the same manner as in Example 1.
  • Tables 1 and 2 show the properties of the obtained PET, the formed plate formed from the PET, and the biaxially drawn pot. The result was good and no problem.
  • the used polyethylene terephthalate bottle from which the label and cap have been removed is pulverized and washed with water.
  • the recovered flakes are depolymerized with ethylene glycol in the presence of a depolymerization catalyst.
  • the crude dimethyl terephthalate obtained by transesterification in the evening was purified by distillation, and the purified dimethyl terephthalate thus obtained was hydrolyzed to obtain high-purity terephthalic acid.
  • the quality was comparable to high-purity terephthalic acid produced from para-xylene.
  • Solid-state polymerized PET was obtained in the same manner as in Example 1 except that a mixture of 30 parts by weight of the high-purity terephthalic acid thus obtained and 70 parts by weight of the high-purity terephthalic acid obtained from para-xylene was used. . This was evaluated in the same manner as in Example 1. Tables 1 and 2 show the properties of the obtained PET, the formed plate formed from the PET, and the biaxially stretched pot. The result was good and no problem.
  • Example 1-2 The solid-phase polymerization PET obtained in Example 1-2 was treated with water as follows.
  • the raw material chip supply port (1) at the top of the treatment tank, the overflow discharge port (2) located at the upper limit of the treatment water in the treatment tank, and the discharge port (3) for the mixture of polyester chips and treatment water at the bottom of the treatment tank Treated water discharged from the bar flow discharge port and draining device discharged from the discharge port at the bottom of the treatment tank
  • the treated water passed through (4) is sent again to the water treatment tank via a fine removal device (5), which is a continuous filter made of 30 papers, and the piping (6) Removed treated water Inlet (7); Adsorption tower (10) for adsorbing acetoaldehyde / glycol in treated water after fine removal, (10) New ion-exchanged water inlet (8), and nitrogen gas blowing deaerator
  • the above solid-phase polymerization PET chips were treated by a vibrating sieving process and an airflow classification process, and the content of fines and film was adjusted to about 40 ppm, and the treated water temperature was controlled at 95.
  • Water treatment was performed by continuously feeding PET chips from the discharge port (3) at the bottom of the water treatment tank in 5 hours of water treatment while continuously extracting PET chips together with the treated water in the water supply time (1) at the top of the treatment tank.
  • the content of particles with a particle size of 1 to 25 in the introduction water collected before the ion-exchanged water introduction port (9) of the above treatment equipment is about 700 particles / 10 m 1, the sodium content is 0.05 ppm, and the magnesium content The amount is 0.03 ppm, the calcium content is 0.03 ppm, the silicon content is 0.12 ppm, the dissolved oxygen is about 17.0 cm 3 / l, and the filtration device (5) and adsorption tower ( The particle size of the recycled water after treatment in step 8) was about 18000 Zl Oml.
  • the contact treatment with polyethylene was performed in the same manner as in Example 7 after the fin removal step by airflow classification after water treatment in Example 6.
  • the polyethylene content was about 12 ppb.
  • Various evaluations were performed on the obtained PET. The results are shown in Tables 1 and 2.
  • the industrial water used to cool the chips was about 60,000 to 80,000 particles with a particle size of 1 to 25 m, 10 m 1, a sodium content of 3.5 to 5.0 ppm, and a magnesium content of 0. 7 to 1.0 ppm, calcium content S 2.0 to 2.5 ppm, silicon content 3.0 to 4.5 ppm, COD 4.0 to 6.7 mg / l, dissolved oxygen there is about 42 ⁇ 45 cm 3/1, deposited water during chip was about 5000 ⁇ 7000 p pm.
  • Example 1 After leaving this prepolymer in a flexible container in the atmosphere for about 3 months, it was supplied to the same continuous solid-state polymerization apparatus as in Example 1 to perform solid-state polymerization. However, the reaction was carried out in the same manner as in Example 1 except that the oxygen concentration in the heated nitrogen supplied to the solid-state polymerization apparatus was 1000 ppm or more. This was evaluated in the same manner as in Example 1. Tables 1 and 2 show the properties of the obtained PET, the formed plate formed from the PET, and the biaxially stretched pot.
  • the transparency of the obtained pottle was poor, and gray-brown foreign matters were scattered on its body. Deformation of the stopper and leakage of the contents were examined, but leakage of the contents was observed.
  • the bottle was illuminated with the black light used in the measurement method (12), and the bottle was observed with the naked eye.
  • Industrial applicability According to the polyester resin composition of the present invention, a molded article excellent in transparency, moderate, and has a stable crystallization speed, and excellent in heat-resistant dimensional stability and flavor retention, particularly a heat-resistant hollow molded article, is provided. give. Furthermore, a molded product of stable quality can be obtained even when the product is subjected to excessive drying or the like before molding.

Description

明細書 ポリエステル樹脂 技術分野
本発明は、 飲料用ボトルをはじめとする中空成形体、 シート状物、 フィルム、 モノフィラメ ントなどの成形体の素材として好適に用いられるポリエステル樹脂およびそれからなるポリエ ステル樹脂組成物ならびにそれからなるポリエステル成形体等に関するものであり、 特に、 透 明性に優れ、 適度で、 かつ安定した結晶化速度を持ち、 耐熱寸法安定性に優れた成形体等を与 え、 紫外線照射時に蛍光の発光が防止された成形体等を与え、 また、 成形体の成形時に金型汚 れが発生しにくく、 さらに、 香味保持性に優れた中空成形体、 シート状物および延伸フィルム を与えるポリエステル樹脂およびそれからなるポリエステル樹脂組成物に関するものである。 背景技術
ポリエステルは機械的強度、 耐熱性、 透明性およびガスバリヤ一性に優れているので、 特に ジュ一ス、 清涼飲料、 炭酸飲料などの飲料充填用容器や、 包装用フィルム、 オーディオ ' ビデ ォ用フィルム等の素材として最適であり、 大量に使用されている。
また、 衣料用繊維やタイヤコードなどの産業資材としても世界的な規模で大量に使用されて いる。
飲料用ポリエステル製ボトルでは、 ボトルに高温で殺菌した飲料を熱充填したり、 また飲料 を充填後高温で殺菌したりするが、 通常のポリエステル製ポ卜ルでは、 このような熱充填処理 時等に収縮、 変形が起こり問題となる。
そこでポリエステル製ボトルの耐熱性を向上させる方法として、 ボトル口栓部を熱処理して 結晶化度を高めたり、 また延伸したボトルを熱固定させたりする方法が提案されている。 特に ロ栓部の結晶化が不十分であつたり、 また結晶化度のばらつきが大きい場合にはキヤップとの 密封性が悪くなり、 内容物の漏れが生ずることがある。 また、 ポトルの肩部 ·胴部等の結晶化 度が不十分な場合には、 熱変形を起こし商品価値が低下することがある。
具体的には、 果汁飲料、 ウーロン茶およびミネラルウォー夕などのように熱充填を必要とす る飲料の場合には、 プリフォームまたは成形されたポトルの口栓部を熱処理して結晶化する方 法 (特開昭 5 5 - 7 9 2 3 7号公報、 特開昭 5 8— 1 1 0 2 2 1号公報) が一般的である。 非 晶状態のプリフォーム口栓部を加熱結晶化させた場合には、 いわゆる球晶結晶化が促進され口 栓部外観は白色になるが、 結晶化度が高くなり耐熱性 (すなわち熱変形温度が高くなる) を向 上させることができる。 また、 ボトル胴部の耐熱性を向上させるため、 延伸ブロー金型の温度 を高温にして熱処理する方法が採られる (特公昭 5 9 - 6 2 1 6号公報) 。
その様なプリフォームを延伸プロ一して得られたポトルの肩部 ·胴部を高温の金型壁面に接 触させる事により熱処理した場合には、 延伸ブローによる配向結晶化に加え、 球晶より結晶サ ィズの小さい微結晶の生成が促進され結晶化度が高くなり、 ポトルの耐熱性を向上させること ができる。
このような方法、 すなわちロ栓部、 肩部を熱処理して耐熱性を向上させる方法は、 結晶化処 理をする時間 ·温度が生産性に大きく影響し、 低温でかつ短時間で処理できる、 結晶化速度が 速い P E Tであることが好ましい。 一方、 胴部についてはボトル内容物の色調を悪化させない ように、 また意匠性の面からも、 成形時の熱処理を施しても透明であることが要求されており、 ロ栓部と胴部では相反する特性が必要である。 しかし P E Tの結晶化速度が余りにも速過ぎる 場合には、 延伸プロ一前のプリフォーム再加熱時にプリフォーム表面の結晶化が進行し、 延伸 ブロー及び熱固定処理後のポトル表面が白濁する問題が生じる事がある。
また、 ボトル胴部の耐熱性を向上させるため、 延伸ブロー金型の温度を高温にして熱処理す る方法が採られる (特公昭 5 9— 6 2 1 6号公報) 。 しかし、 このような方法によって同一金 型を用いて多数のボトル成形を続けると、 長時間の運転に伴って得られるポトルが白化して透 明性が低下し、 商品価値のないボトルしか得られなくなる。 これは金型表面が P E Tに起因す る付着物で汚れ、 この金型汚れがボトルの表面に転写するためであることが分かった。 特に、 近年では、 ボトルの小型化とともに成形速度が高速化されてきており、 生産性の面からロ栓部 の結晶化のための加熱時間短縮や金型汚れはより大きな問題となってきている。
このような問題を解決するために種々の提案がなされている。 例えば、 ポリエチレンテレフ タレ—卜に力オリン、 タルク等の無機核剤を添加する方法 (特開昭 5 6— 2 3 4 2号公報、 特 開昭 5 6— 2 1 8 3 2号公報) 、 モンタン酸ワックス塩等の有機核剤を添加する方法 (特開昭 5 7 - 1 2 5 2 4 6号公報、 特開昭 5 7 - 2 0 7 6 3 9号公報) があるが、 これらの方法は異 物やくもりの発生を伴い実用化には問題がある。 また、 原料ポリエステルに、 前記ポリエステ ルから溶融成形して得たポリエステル成形体を粉砕した処理ポリエステルを添加する方法 (特 開平 5— 1 0 5 8 0 7号公報) があるが、 この方法は溶融成形粉砕という余分な工程が必要で あり、 さらにこのような後工程でポリエステル以外の夾雑物が混入する危険性があり、 経済的 および品質的に好ましい方法ではない。 また、 耐熱性樹脂製ピースをロ栓部に挿入する方法 (特開昭 6 1 - 2 5 9 9 4 6号公報、 特開平 2— 2 6 9 6 3 8号公報) が提案されているが、 ボトルの生産性が悪く、 また、 リサイクル性にも問題がある。
また、 P E Tをシート状物に押出し、 これを真空成形して得た成形体に食品を充填後同一素 材からなる蓋をして放置しておくと収縮が起こり蓋の開封性が悪くなったり、 また前記成形体 を長期間放置しておくと収縮が起こり蓋が出来なくなつたりする。
このような問題点をより一層解決するための解決策として、 P E Tチップを流動条件下にポ リエチレン部材と接触させることによる P E Tの改質法 (特開平 9一 7 1 6 3 9号公報) や、 同様の条件下にポリプロピレン系樹脂またはポリアミド系樹脂からなる部材と接触させること による P E Tの改質法 (特開平 1 1一 2 0 9 4 9 2号公報) が提案されているが、 このような 方法によっても、 適度の、 安定した結晶化速度を持ち、 加熱結晶化した後のロ栓部の寸法安定 性や透明性に優れた成形体を与えるポリエステルを得るのが非常に困難であることが分かつた。 前記のポリエチレン部材等と接触処理されたポリエステルからの中空成形体のロ栓部は、 赤 外線加熱装置等による加熱処理によつて結晶化されて耐熱寸法安定性が向上するが、 接 ^ίί処理 前のポリエステルの結晶化速度が速すぎると、 接触処理されたポリエステルからの中空成形体 ロ栓部の結晶化が過大となり、 ロ栓部の寸法が規格値範囲内に収まらなくなることが判ってき た。 その結果、 正常なキヤッビングが不可能となるためにキヤップとロ栓部との密着性が悪く なり、 内容物の漏れが発生するという致命的な問題が生じることが判った。 また、 中空成形体 のロ栓部の加熱は、 一般的に外部からのみの加熱のため、 ロ栓部の外表面部が内表面部や中間 部よりも早く結晶化する。 その結果、 ロ栓部の結晶化度は内外層において不均一になる。 また、 口栓部は、 厚さが異なる複雑な形状をしているので、 ポリエステルの結晶性や加熱条件によつ てロ栓部の寸法が変動する。 したがって、 外部加熱の場合には、 結晶化速度が非常に速いポリ エステルを用いると、 加熱条件によってはロ栓部寸法の変動が非常に大きくなり、 安定した操 業が困難となったり、 ロ栓部規格外品の発生頻度が増加すること、 また、 得られた成形体の透 明性も悪くなることも判ってきた。
また、 通常成形前には樹脂チップを乾燥させることが一般的であるが、 トラブルなどで成形 が停止したり様々な状況で必要以上に乾燥が長引くことがあり、 従来のポリエステルではこの ように乾燥が長引いたポリエステルを用いた場合、 透明性が低下したり結晶化速度が安定しな かったり、 香味保持性が悪くなるといつたトラブルがあった。
また、 一般的に飲料容器として用いられるポリエステルは、 溶融重合により得られた重合チ ップを固相重合により分子量増大させる方法が採用される事が多い。 その固相重合処理では、 ポリエステルの融点以下の温度で減圧下や不活性ガス雰囲気下で実施される。 これらのうち、 コストパフォーマンスの優れ広く採用されている不活性ガス雰囲気下で連続的にポリエステル チップを供給しながら固相重合処理される連続式固相重合方法に於いては、 フレーバー性に優 れたポリエチレンテレフ夕レート (以下 P E Tと省略することがある) を製造する為に固相重 合温度と固相重合槽内酸素濃度とをある条件下で実施するもの、 すなわち固相重合温度 X (V)、 固相重合槽内酸素濃度 Y (ppm)について、 1 9 0≤X≤ 2 3 0 且つ Y≤— 0 . 8 6 9 6 X + 2 3 0 . 0を満たす条件下で固相重合処理を実施するものもある (特開平 9— 5 9 3 6 2号 公報) 。
またフレーパー性に優れた最終製品を得ることを目的として固相重合反応時のァセトアルデ ヒドゃホルムアルデヒド等の副生成物の発生を抑制させるために、 酸素の不存在下、 水素を含 有する不活性ガス気流下で実施する、 すなわち固相重合時の不活性ガス中の酸素濃度が、 全気 体中 1 m o 1 %以下であり、 且つ不活性ガス中に占める水素の量が全気体中 0 . l m o 1 %以上 7 O m o 1 %以下で実施している (特開平 9— 3 1 7 9号公報) 。
また、 成形後の飲料容器中のァセトアルデヒド、 ホルムアルデヒドを低減する為に、 固相重 合した P E Tを酸素の不存在下、 水素を含有する不活性気体気流下で乾燥させるものもある (特開平 9— 3 1 8 2号公報) 。
しかしながら、 このような方法によったり、 またこのようなポリエステル樹脂組成物を用い ても、 フレーバー性の改良自体も不十分であったり、 また P E Tの結晶化速度が変動すること があり、 適度の安定した結晶化速度を持ち、 加熱結晶化した後のロ栓部の寸法安定性や透明性 に優れた成形体を与えるポリエステルを得るのが非常に困難であることが分かった。
また、 通常成形前には樹脂チップを乾燥させることが一般的であるが、 トラブルなどで成形 が停止したり様々な状況で必要以上に乾燥が長引くことがあったり、 水分を多く含む樹脂を乾 燥するために長時間の乾燥を余儀なくされたなどのように、 従来のポリエステルではこのよう に乾燥が長引いたポリエステルを用いた場合、 透明性が低下したり結晶化速度が安定しなかつ たり、 香味保持性が悪くなるといったトラブルがあつた。 ' 図面の簡単な説明
図 1 実施例において使用した段付成形板の平面図
図 2 図 1の段付成形板の側面図
図 3 P E Tの蛍光スペクトル 発明の開示
本発明は、 上記従来の技術によるポリエステル樹脂の有する問題点を解決し、 透明性に優れ、 適度で、 かつ安定した結晶化速度を持ち、 耐熱寸法安定性に優れ、 紫外線照射時に蛍光の発光 が防止された成形体、 特に耐熱性中空成形体を効率よく生産することができ、 また金型を汚す ことの少ない長時間連続成形性に優れ、 さらに、 香味保持性に優れた包装材料を与えるポリエ ステル樹脂並びにポリエステル樹脂組成物並びにポリエステル成形体を提供することを目的と する。 さらには、 必要以上の乾燥に晒されても、 上記特性に変化の少ないポリエステル樹脂及 びポリエステル樹脂組成物並びにポリエステル成形体を提供する。
本発明者らは、 主としてテレフ夕ル酸成分とグリコール成分とから構成されるポリエステル を用いて、 透明性および耐熱寸法安定性に優れ、 結晶化速度変動が少ない成形体を与えるポリ エステルについて鋭意検討した結果、 ポリエステルの蛍光発光強度がポリエステルからの成形 体の透明性や結晶化速度等の特性に関係することを見出し、 本発明を完成した。
本発明は、 以下の通りである。
( 1 ) 主としてテレフタル酸成分とグリコール成分とから構成されるボリエステル樹脂であ つて、 該ポリエステル樹脂に波長 3 4 3 nmの励起光を照射したときに得られる蛍光スぺクト ルにおける 4 5 0 nmの蛍光発光強度 (B 0) が 2 0以下であることを特徴とするポリエステ ル樹脂。
( 2 ) 主としてテレフタル酸成分とグリコール成分とから構成されるポリエステル樹脂であ つて、 1 8 0での温度で 1 0時間加熱処理した該ポリエステル樹脂に波長 3 4 3 nmの励起光 を照射したときに得られる蛍光スペクトルにおける 4 5 0 nmの蛍光発光強度を (B h) 、 未 加熱処理ポリエステル樹脂の同様の 4 5 0 nmの蛍光発光強度を (B 0) とした際に、 (B h 一 B 0) が 3 0以下であることを特徴とするポリエステル樹脂。
( 3 ) 1 8 0 の温度で 1 0時間加熱処理したポリエステル樹脂に波長 3 4 3 nmの励起光 を照射したときに得られる蛍光スペクトルにおける 4 5 0 nmの蛍光発光強度を (B h) 、 未 加熱処理ポリエステル樹脂の同様の 450 nmの蛍光発光強度を (B0) とした際に、 (Bh -B0) が 30以下であることを特徴とする (1) に記載のポリエステル樹脂。
(4) 主としてテレフタル酸成分とグリコール成分とから構成されるポリエステル樹脂であ つて、 該ポリエステル樹脂に波長 343 nmの励起光を照射したときに得られる蛍光スぺクト ルにおける、 39 5 nmの蛍光発光強度を (A0) 、 450 nmの蛍光発光強度を (B0) と した際、 (B Q/A0) 力 0. 4以下であることを特徴とするポリエステル樹脂。
(5) 波長 343 nmの励起光を照射したときに得られる蛍光スぺクトルにおける、 39 5 nmの蛍光発光強度を (A0) 、 450 nmの蛍光発光強度を (B0) とした際、 (BD/A o) が 0. 4以下であることを特徴とする、 (1) 〜 (3) のいずれかに記載のポリエステル 樹脂。
(6) 主としてテレフ夕ル酸成分とグリコ一ル成分とから構成されるポリエステル樹脂であ つて、 1 80 °Cの温度で 1 0時間加熱処理した該樹脂に波長 343 nmの励起光を照射したと きに得られる蛍光スぺクトルにおける、 3 9 5 nmの蛍光発光強度を (Ah) 、 450 nmの 蛍光発光強度を (Bh) とした際の比 (BhZAh) と、 未加熱処理ポリエステル樹脂の同様の 39 5 nmの蛍光発光強度を (A0) 、 450 nmの蛍光相対強度を (B0) とした際の比 (B0/A0) との差が 0. 7以下であることを特徴とするポリエステル樹脂。
(7) 180 °Cの温度で 1 0時間加熱処理したポリエステル樹脂に波長 343 nmの励起光 を照射したときに得られる蛍光スペクトルにおける、 39 5 nmの蛍光発光強度を (Ah) 、
450 nmの蛍光発光強度を (Bh) とした際の比 (BhZAh) と、 未加熱処理ポリエステル 樹脂の 3 95 nmの蛍光発光強度を (A0) 、 450 nmの蛍光発光強度を (B0) とした際 の比 (B。/A0) との差が 0. 7以下であることを特徴とする (1) 〜 (5) のいずれか.に 記載のポリエステル樹脂。
(8) 主としてテレフ夕ル酸成分とグリコール成分とから構成されるチップ形状のポリエス テル樹脂から選別したチップに波長 343 nmの励起光を照射したときに得られる蛍光スぺク トルにおいて、 39 5 nmの蛍光発光強度を (AS()) 、 450 nmの蛍光相対強度を (Bs o) とした際、 (BS0ZAS0) が 0. 3以下であることを特徴とするポリエステル樹脂。
(9) (1) 〜 (9) のいずれかに記載されたチップ形状ポリエステル樹脂であって、 選別 した蛍光発光チップに波長 343 nmの励起光を照射したときに得られる蛍光スぺクトルにお いて、 395 nmの蛍光発光強度を (Asc) 、 450 nmの蛍光発光強度を (Bso) とした 際、 (BS0ZAS0) が 0. 3以下であることを特徴とするポリエステル樹脂。
(10) 主としてテレフタル酸成分とグリコール成分とから構成されるチップ形状ポリエス テル樹脂を 180°Cの温度で 10時間加熱処理した後に選別した蛍光発光チップに波長 343 nmの励起光を照射したときに得られる蛍光スぺクトルにおいて、 395 nmの蛍光発光強度 を (Ash) 、 450 nmの蛍光発光強度を (BSh) とした際、 (BshZASh) が 0. 5以下 であることを特徴とするポリエステル樹脂。
(11) (1) 〜 (7) のいずれかに記載されたチップ形状ポリエステル樹脂であって、 該 チップを 180°Cの温度で 10時間加熱処理した後に選別した蛍光発光チップに波長 343 η mの励起光を照射したときに得られる蛍光スぺクトルにおいて、 395 nmの蛍光発光強度を (Ash) 、 450 nmの蛍光発光強度を (Bsh) とした際、 (BshZASh) が 0.. 5以下で あることを特徴とするポリエステル樹脂。 '
(12) 180での温度で 10時間加熱処理した時のカラー b値の増加量が 4以下であるこ とを特徴とする (1) 〜 (11) のいずれか記載のポリエステル樹脂。
(13) 環状 3量体含有量が 0. 7重量%以下である、 エチレンテレフ夕レートを主たる繰 り返し単位とするポリエステル樹脂であることを特徴とする (1) 〜 (12) のいずれかに記 載のポリエステル樹脂。
(14) ポリエステル樹脂を 2901の温度で 60分間溶融したときの環状エステルオリゴ マー増加量が、 0. 50重量%以下であることを特徴とする (1) 〜 (13) のいずれかに記 載のポリエステル樹脂。
(15) ポリエステルと同一組成のポリエステルのファインを 0. l〜10000ppm含 有し、 DSCで測定した該ファインの融点が 265で以下であることを特徴とする (1) ~
(16) のいずれかに記載のポリエステル樹脂。
(16) 射出成形して得られた厚さ 3 mmの成形板を熱機械分析 (TMA) により測定した 寸法変化率が 1. 0%~7. 0%であることを特徴とする (1) 〜 (15) のいずれかに記載 のポリエステル樹脂。
(17) (1) 〜 (16) のいずれかに記載のポリエステル樹脂、 および、 ポリオレフイン樹 脂、 ポリアミド樹脂、 ポリアセタール樹脂からなる群から選ばれた少なくとも一種の樹脂をポ リエステル樹脂に対して 0. l ppb〜50000p pm含有することを特徴とする特徴とす るポリエステル樹脂組成物。
本発明のポリエステル樹脂は、 前述したように特定の蛍光発光特性を持つポリエステル樹脂 であり、 (A0) 、 (B0) 、 (Ah) 、 (Bh) 、 (Aso) 、 (Bso) 、 (Ash) 、 (Bs h) を以下の通り規定した際、 下記式 1〜式 6のいずれかを満たす。 なお、 これらの式の特性 を総称して蛍光発光特性と呼ぶことがある。
(B0) ≤20
(Bh-B0) ≤30
(B。/A0) ≤0. 4
(Bh/Ah) - (B/A) 0. 7
(BS0ZAS0) ≤0. 3
(Bsh/Ash) ≤0. 5 (A0) :ポリエステル樹脂に波長 343 nmの励起光を照射したときに得られる蛍光スぺク トルにおける 395 nmの蛍光発光強度
(B0) :ポリエステル樹脂に波長 343 nmの励起光を照射したときに得られる蛍光スぺク トルにおける 450 nmの蛍光発光強度
(Ah) : 180 °Cの温度で 10時間加熱処理したポリエステル樹脂に波長 343 nmの励起 光を照射したときに得られる蛍光スぺクトルにおける 395 nmの蛍光発光強度
(B h) : 180 の温度で 10時間加熱処理したポリエステル樹脂に波長 343 nmの励起 光を照射したときに得られる蛍光スぺクトルにおける 450 nmの蛍光発光強度
(Aso) :最大波長が 352 nmで 300〜400 nmの紫外線からなる励起光を照射しな がら実施例の測定法の項に記載した方法で選別した蛍光発光チップに波長 343 nmの励起光 を照射したときに得られる蛍光スぺクトルにおける 395 nmの蛍光発光強度
(B go) :最大波長が 352 nmで 300〜 400 nmの紫外線からなる励起光を照射しな がら実施例の測定法の項に記載した方法で選別した蛍光発光チップに波長 343 nmの励起光 を照射したときに得られる蛍光スぺクトルにおける 450 nmの蛍光発光強度 (Ash) : 180°Cの温度で 10時間加熱処理した後に最大波長が 352 nmで 300〜4 00 n mの紫外線からなる励起光を照射しながら実施例の測定法の項に記載した方法で選別し た蛍光発光チップに波長 343 nmの励起光を照射したときに得られる蛍光スぺクトルにおけ る 395 nmの蛍光発光強度
(Bsh) : 180°Cの温度で 10時間加熱処理した後に最大波長が 352 nmで 300〜4 00 n mの紫外線からなる励起光を照射しながら実施例の測定法の項に記載した方法で選別し た蛍光発光チップに波長 343 nmの励起光を照射したときに得られる蛍光スぺクトルにおけ る 450 n mの蛍光発光強度 本発明において、 ポリエステルの 450 nmの蛍光発光強度 (B0) は、 好ましくは 15以 下、 より好ましくは 10以下、 さらに好ましくは 7以下である。
(Bh-B0) は、 好ましくは 25以下、 さらに好ましくは 20以下、 最も好ましくは 15 以下である。
(B0/A0) は、 好ましくは 0. 30以下、 さらに好ましくは 0. 20以下、 最も好まし くは 0. 10以下である。
(Bh/Ah) - (B。/A0) は、 好ましくは 0. 5以下、 より好ましくは 0. 45以下、 さらに好ましくは 0. 40以下、 最も好ましくは 0. 35以下である。
(Bso/Aso) は、 好ましくは 0. 20以下、 さらに好ましくは 0. 10以下、 最も好ま しくは 0 · 07以下である
(Bsh/Ash) は、 好ましくは 0. 45以下、 さらに好ましくは 0. 40以下、 最も好ま しくは 0. 35以下である。
これらの蛍光発光特性は、 必ずしもすべて満足する必要はないが、 任意の組み合わせで、 少 なくとも 2つ以上、 さらには 3つ以上、 望ましくは 4つ以上、 特には 5つ以上満足することが 好ましい。 最も好ましくはすべて満足することである。
ポリエステル樹脂が、 蛍光発光特性が上記範囲から外れる場合には、 このようなポリエステ ル樹脂から得られた中空成形体のロ栓部の結晶化速度が速いために結晶化が過大となり、 ロ栓 部の寸法が規格範囲内に収まらなくなり、 また加熱結晶化された中空成形体ロ栓部の外表面部 の結晶化度と内表面部や中間部の結晶化度との差が大きくなつて口栓部の結晶化度の不均一性 が拡大し、 かつ成形体間の結晶化度の変動も非常に大きくなることがある。 これらが原因とな つてロ栓部の収縮量が規定値範囲内におさまらなくなり、 ロ栓部のキヤッピング不良が発生し、 内容物の漏れが生じることがある。 また中空成形用予備成形体が白化し、 延伸ブローして得ら れた中空成形体の透明性が非常に悪くなり、 また正常な延伸が不可能となる場合がある。 また、 このようなポリエステル樹脂から得られた中空成形体などの成形体に紫外線を照射して目視で 観察すると、 青白い蛍光を強く発するという望ましくない特性を発揮するために商品価値が落 ちてしまうことがある。 これらの問題は、 成形前に長時間の乾燥に晒された場合に顕著になる。 本発明者らの検討によると、 主としてテレフ夕ル酸成分とグリコール成分とから構成される ポリエステルは、 本質的に蛍光発光特性を持っており、 これに 3 4 3 nmの励起光を照射する と、 3 9 5 nmにピークを持ち、 約 6 0 0 nm程度の領域までの蛍光を発光する。 測定法の項 で説明する方法によって、 この発光した蛍光スぺクトルを 3 5 0 nm~ 6 0 0 nmの範囲で測 定し、 4 5 0 nmにおける蛍光発光の相対的な強度を求め、 これを本発明においては蛍光発光 強度と称する。
実験室での細心の注意を払い製造された正常な前記ポリエステルの 3 9 5 nmのピークにお ける蛍光発光強度は 8 5以下であり、 かつ 4 5 0 n mにおける蛍光発光強度は約 2 0以下であ ることが判った。
本発明において、 蛍光とは、 分析化学実験ハンドブック (日本分析化学会編: 4 2 5頁:丸 善) 記載のとおり、 ある種の物質が光エネルギーを吸収して励起状態となり、 基底状態にもど るときに発する光である。 放射される蛍光の強度 I f は、 吸収された励起光の強さ I aと量子 収率 Φ f に比例し、 I f = k I a φ fで表される。 励起光の吸収は、 ランバートベールの法 則にしたがうため、 I f = k I o ( 1— 1 0— e c d) φ ίとなる。 ここで kは集光、 検出効率 等の装置定数、 I oは励起光の強度であり、 eはモル吸光係数、 cは試料濃度、 dは試料層の 長さである。 ここで、 励起蛍光波長および装置条件を一定にすると、 eと φ ίは試料に固有の 値となり、 同一試料ではこの値は無関係になり、 I f = k cと表されることになり蛍光強度 は、 相対強度として表される。
しかし、 用いるテレフタル酸の品質、 重縮合方法、 重縮合装置や重縮合条件、 あるいは乾燥 方法、 乾燥装置や乾燥条件などによって前記ポリエステル樹脂の蛍光発光強度が影響を受け、 特に工業的な連続生産を行つた際には、 蛍光発光強度が増大したり、 また蛍光発光強度や蛍光 スぺクトルが異なるチップが混在する傾向が大きいことが判った。 回分式溶融璽縮合装置やこ れに続く回分式固相重合装置により連続的な生産を行なう場合には、 その傾向は顕著である。 従って、 正常な蛍光発光強度を維持し、 異なる蛍光発光強度や異なる蛍光スペクトルを持つボ リエステルを可能な限り無くす、 または最小限にするに十分な条件においてポリエステル樹脂 を得ることが大切であり、 その製造法は下記に説明する。 なお、 ポリエステル樹脂で蛍光発光 強度が増大、 また蛍光発光強度や蛍光スぺクトルが異なるチップが混在する原因としては、 樹 脂そのもの、 または、 樹脂中に取り込まれた有機物が熱酸化分解し、 微量な蛍光物質が生成す るためと考えられるが定かではなく、 また、 原因の如何によるものでもない。
なお、 ポリエステル樹脂の蛍光発光強度や蛍光発光強度の増加量は、 下記の方法により測定 する。
上記の本発明のポリエステル樹脂組成物は、 透明性に優れ、 透明性の変動が少なく、 紫^ 泉 照射時に蛍光の発光が防止され、 成形時に金型汚れが発生しにくく、 ロ栓部の結晶化コント口 ール性に優れた成形体を与えるポリエステル樹脂組成物であり、 優れた耐熱性、 機械的特性、 残留異味、 異臭が少なく保香性の優れた中空成形体、 シート状物や延伸フィルム、 またはモノ フィラメントを与える。 発明を実施するための最良の形態
以下、 本発明のポリエステル樹脂およびそれからなるポリエステル樹脂組成物およびその用 途の実施の形態を具体的に説明する。
本発明のポリエステル樹脂は、 主としてテレフタル酸成分とグリコール成分とから得られる ポリエステル樹脂であつて、 好ましくはテレフタル酸成分とグリコール成分から得られる構成 単位を 7 0モル%以上含むポリエステル樹脂であり、 さらに好ましくは 8 5モル%以上、 特に 好ましくは 9 5 %モル以上含むポリエステル樹脂である。
また本発明のポリエステル樹脂を構成するグリコール成分としては、 エチレングリコール、 1 , 3—プロピレングリコール、 テトラメチレングリコールなどの脂肪族グリコール、 あるい はシクロへキサンジメ夕ノ一ル等の脂環族ダリコール等が挙げられる。
前記ポリエステル樹脂が共重合体である場合に使用される共重合成分としてのジカルポン酸 としては、 イソフタル酸、 ジフェニール一 4 , 4 ' ージカルボン酸、 ジフエノキシェ夕ンジカ ルボン酸、 4 , 4,—ジフエ二ルェ一テルジカルボン酸、 4 , 4,—ジフエ二ルケトンジカルポ ン酸等の芳香族ジカルボン酸及びその機能的誘導体、 P—ォキシ安息香酸、 ォキシカブロン酸 等のォキシ酸及びその機能的誘導体、 アジピン酸、 セバシン酸、 コハク酸、 ダルタル酸、 ダイ マー酸等の脂肪族ジカルボン酸及びその機能的誘導体、 へキサヒドロテレフタル酸、 へキサヒ ドロイソフタル酸、 シクロへキサンジカルボン酸等の脂環族ジカルボン酸及ぴその機能的誘導 体などが挙げられる。
前記ポリエステル樹脂が共重合体である場合に使用される共重合成分としてのダリコールと しては、 ジエチレングリコール、 1 , 3—トリメチレングリコール、 テトラメチレングリコー ル、 ペンタメチレングリコール、 へキサメチレングリコール、 ォクタメチレングリコール、 デ カメチレングリコール、 2—ェチル一 2—ブチルー 1 , 3—プロパンジオール、 ネオペンチル グリコール、 ダイマーグリコール等の脂肪族グリコール、 1, 2—シクロへキサンジオール、 1 , 4ーシクロへキサンジオール、 1 , 1 —シクロへキサンジメチロール、 1, 4—シクロへ キサンジメチロール、 2 , 5—ノルポルナンジメチロール等の脂環族グリコール、 キシリレン グリコール、 4 , 4 'ージヒドロキシビフエニル、 2 , 2—ビス (4,— β—ヒドロキシェトキ シフエニル) プロパン、 ビス (4—ヒドロキシフエニル) スルホン、 ビス (4— β—ヒドロキ シェトキシフエ二ル) スルホン酸、 ビスフエノール Αのアルキレンォキサイド付加物等の芳香 族グリコール、 ポリエチレングリコール、 ポリブチレングリコール等のポリアルキレングリコ ールなどが挙げられる。
さらに、 前記ポリエステル樹脂が共重合体である場合に使用される共重合成分としての多官 能化合物としては、 酸成分として、 トリメリット酸、 ピロメリット酸等を挙げることができ、 グリコール成分としてグリセリン、 ペン夕エリスリトールを挙げることができる。 以上の共重 合成分の使用量は、 ポリエステル樹脂が実質的に線状を維持する程度でなければならない。 ま た、 単官能化合物、 例えば安息香酸、 ナフ卜ェ酸等を共重合させてもよい。
本発明のポリエステル樹脂の好ましい一例は、 主たる構成単位がエチレンテレフタレートか ら構成されるポリエステル樹脂であり、 さらに好ましくはエチレンテレフ夕レート単位を 7 0 モル%以上含み、 共重合成分としてイソフタル酸、 1 , 4ーシクロへキサンジメタノールなど を含む共重合ポリエステル樹脂であり、 特に好ましい.くはエチレンテレフタレ一ト単位を 9 0 モル%以上含むポリエステル榭脂である。
これらポリエステル樹脂の例としては、 ポリエチレンテレフ夕レート (以下、 P E Tと略 称) 、 ポリ (エチレンテレフタレ一トーエチレンイソフタレート) 共重合体、 ポリ (エチレン テレフタレ一トー 1 , 4ーシクロへキサンジメチレンテレフ夕レート) 共重合体、 ポリ (ェチ レンテレフ夕レート一ジォキシエチレンテレフ夕レート) 共重合体、 ポリ (エチレンテレフ夕 レート一 1 , 3—プロピレンテレフ夕レート) 共重合体、 ポリ (エチレンテレフタレート一ェ
Figure imgf000015_0001
また本発明のポリエステル樹脂の好ましいその他の例としては、 主たる構成単位が 1 , 3— プロピレンテレフタレートから構成されるポリエステル樹脂であり、 さらに好ましくは 1 , 3 一プロピレンテレフ夕レート単位を 7 0モル%以上含むポリエステル樹脂であり、 特に好まし いのは 1, 3—プロピレンテレフタレート単位を 9 0モル%以上含むポリエステル樹脂である。 これらポリエステル樹脂の例としては、 ポリプロピレンテレフ夕レート (P T T) 、 ポリ ( 1, 3—プロピレンテレフタレ一トー 1 , 3—プロピレンイソフタレート) 共重合体、 ポリ ( 1 , 3—プロピレンテレフタレート一 1 , 4—シクロへキサンジメチレンテレフタレート) 共重合体などが挙げられる。
さらにまた本発明のポリエステル樹脂の好ましいその他の例としては、 主たる構成単位がプ チレンテレフタレートから構成されるポリエステル樹脂であり、 さらに好ましくはブチレンテ レフ夕レート単位を 7 0モル%以上含む共重合ポリエステル樹脂であり、 特に好ましいくはブ チレンテレフタレート単位を 9 0モル%以上含むボリエステル樹脂である。
これらポリエステル樹脂の例としては、 ポリブチレンテレフ夕レート (P B T) 、 ポリ (ブ チレンテレフタレート一ブチレンイソフタレート) 共重合体、 ポリ (プレンテレフ夕レート一 1, 4ーシクロへキサンジメチレンテレフタレート) 共重合体、 ポリ (ブチレンテレフ夕レー トー 1 , 3—プロピレンテレフ夕レート) 共重合体、 ポリ (ブチレンテレフタレ一トーブチレ ンシクロへキシレンジカルポキシレート) 共重合体などが挙げられる。
上記のポリエステル樹脂は、 基本的には従来公知の連続溶融重縮合法、 あるいは連続溶融重 縮合一連続固相重合法によって製造することが出来る。 即ち、 P E Tの場合には、 テレフ夕一 ル酸とエチレングリコール及び必要により他の共重合成分を直接反応させて水を留去し、 エス テル化した後、 減圧下に重縮合を行なう直接エステル化法、 または、 テレフタル酸ジメチルと エチレングリコール及び必要により他の共重合成分を反応させてメチルアルコールを留去しェ ステル交換させた後、 減圧下に重縮合を行なうエステル交換法により製造される。
次いで、 必要に応じて極限粘度を増大させたり、 また低フレーバー飲料用耐熱容器や飲料用 金属缶の内面用フィルム等のように低ァセトアルデヒド含有量や低環状 3量体含有量とするた めに、 このようにして得られた溶融重縮合されたポリエステル樹脂は、引き続き、連続的に固相 重合される。 以下に、 ポリエチレンテレフタレートを例にして、 本発明のポリエステル樹脂の好ましい連 続式製造方法の一例について説明するが、 本発明のポリエステル樹脂の製造方法はこれに限定 されるものではない。
まず、 エステル化反応により低重合体を製造する場合について説明する。 高純度テレフタル 酸またはそのエステル誘導体 1モルに対して 1. 02〜1. 9モル、 好ましくは 1. 03〜: 1. 7モルのェチレングリコールが含まれたスラリーを調整し、 これをエステル化反応工程に連続 的に供給する。
この際、 スラリー調合槽ゃスラリー貯蔵槽の気相部分には、 酸素濃度が 5ppm以下、 好ま しくは 3 p p m以下、 さらに好ましくは 2 p p m以下、 最も好ましくは 1 p p m以下の不活性 気体を流通させて、 原料と一緒に系内に混入する酸素を除去すると同時に空気が混入しないよ うにすることが望ましい。 前記気相中の酸素濃度は、 100 p pm以下、 好ましくは 70 p p m以下、 さらに好ましくは 50 p pm以下、 さらに一層好ましくは 30 p pm以下、 最も好ま しくは 10 p pm以下に維持することが望ましい。
特に、 高純度テレフタル酸は通常粉末状であり、 この粒子等の合間に空気を含んでおり、 ス ラリー調合槽ゃスラリー貯蔵槽に酸素を持ち込むため、 十分に酸素を追い出すか、 テレフタル 酸の貯蔵サイロ内の雰囲気を酸素濃度 200 p pm以下、 好ましくは 100 p pm以下、 さら に好ましくは 50 p pm以下、 さらに一層好ましくは 30 p pm以下、 最も好ましくは 10 p m以下の不活性気体雰囲気にしておくことが望ましい。
また、 エチレングリコールにも酸素が溶存しているため、 エチレングリコールは予め酸素濃 度が 5ppm以下、 好ましくは 3p pm以下、 さらに好ましくは 2 p pm以下、 最も好ましく は 1 p pm以下の不活性ガスでバブリングしておき、 またスラリ一調合槽ゃスラリ一貯蔵槽は スラリ一調合後に上記の様な不活性ガスでパブリングすることも好ましい。
エステル化反応は、 1個のエステル化反応器から成る一段式装置または少なくとも 2個のェ ステル化反応器を直列に連結した多段式装置を用いてエチレンダリコールが還流する条件下で、 気相部分には酸素濃度が 5 p pm以下、 好ましくは 3ppm以下、 さらに好ましくは 2 ppm 以下、 最も好ましくは 1 p pm以下の不活性気体を流通させ、 反応によって生成した水または アルコールを精留塔で系外に除去しながら実施する。 気相中の酸素濃度は、 100 p pm以下、 好ましくは 70 p pm以下、 さらに好ましくは 50 p pm以下、 さらに一層好ましくは 30 p pm以下、 最も好ましくは 10 p pm以下に維持することが好ましい。 第 1段目のエステル化反応の温度は 240〜270° (:、 好ましくは 245〜265で、 圧力 は 0. 2〜3 k g/cm2G、 好ましくは 0. 5〜 2 k gZ c m2Gである。 最終段目のエステ ル化反応の温 itは通常 250〜 275 °C好ましくは 255〜 270 であり、 圧力は通常 0〜 1. 5kg/cm2G、 好ましくは 0〜1. 3 k gZc m2Gである。 3段階以上で実施する場 合には、 中間段階のエステル化反応の反応条件は、 上記第 1段目の反応条件と最終段目の反応 条件の間の条件である。 これらのエステル化反応の反応率の上昇は、 それぞれの段階で滑らか に分配されることが好ましい。 最終的にはエステル化反応率は 90%以上、 好ましくは 93% 以上に達することが望ましい。 これらのエステル化反応により分子量 500〜5000程度の 低次縮合物が得られる。
上記エステル化反応は原料としてテレフタル酸を用いる場合は、 テレフタル酸の酸としての 触媒作用により無触媒でも反応させることができるが重縮合触媒の共存下に実施してもよい。 また、 トリェチルァミン、 トリー n—プチルァミン、 ベンジルジメチルァミンなどの第 3級 ァミン、 水酸化テトラエチルアンモニゥム、 水酸化テトラ— n—プチルアンモニゥム、 水酸化 トリメチルベンジルアンモニゥムなどの水酸化第 4級アンモニゥムおよび炭酸リチウム、 炭酸 ナトリウム、 炭酸カリウム、 酢酸ナトリウムなどの塩基性化合物を少量添加して実施すると、 ポリエチレンテレフタレ一卜の主鎖中のジォキシェチレンテレフタレ一卜成分単位の割合を比 較的低水準 (全ジオール成分に対して 5モル%以下) に保持できるので好ましい。
次に、 エステル交換反応によって低重合体を製造する場合は、 テレフタル酸ジメチル 1モル に対して 1. 1~1. 8モル、 好ましくは 1. 2〜1. 6モルのエチレングリコールが含まれ た溶液を調整し、 これをエステル交換反応工程に連続的に供給する。
この際、 テレフタル酸ジメチル溶解槽またはこれのエチレンダリコール溶液溶解槽ゃ前記溶 液貯蔵槽の気相部分には酸素濃度が 5 p p m以下、 好ましくは 3 p p m以下、 さらに好ましく は 2 p p m以下、 最も好ましくは 1 p p m以下の不活性気体を流通させさせて、 原料と一緒に 系内に混入する酸素を除去すると同時に空気が混入しないようにすることが望ましい。 前記気 相中の酸素濃度は、 好ましくは 100 p pm以下、 より好ましくは 70 p pm以下、 さらに好 ましくは 5 O p pm以下、 さらに一層好ましくは 30 p pm以下、 最も好ましくは 10 ppm 以下に維持することが好ましい。 また、 前記溶解槽は、 酸素濃度が 5 ppm以下、 好ましくは 3 p p m以下、 さらに好ましくは 2 p p m以下、 最も好ましくは 1 p p m以下の不活性気体で バブリングすることも好ましい。 特に、 テレフタル酸ジメチルは通常粉末もしくはフレーク状であり、 この粒子等の合間に空 気を含み、 溶解槽ゃ貯蔵槽に酸素を持ち込むため、 十分に酸素を追い出すか、 テレフタル酸ジ メチルの貯蔵サイロ内の雰囲気を 100 p pm以下、 好ましくは 70 p pm以下、 さらに好ま しくは 50ppm以下、 さらに一層好ましくは 30 p pm以下、 最も好ましくは 10 p pm以 下の不活性気体雰囲気にしておくことが望ましい。
また、 エチレングリコールにも酸素が溶存しているため、 エチレングリコールは予め酸素濃 度が 5ppm以下、 好ましくは 3 p pm以下、 さらに好ましくは 2 p pm以下、 最も好ましく は 1 p pm以下の不活性ガスでバプリングしておき、 また溶解槽ゃ貯蔵槽はスラリー調合後に 上記の様な不活性ガスでパブリングすることも好ましい。
エステル交換反応は、 1〜 2個のエステル交換反応器を直列に連結した装置を用いてェチレ ングリコ—ルが還留する条件下で、 気相部分には酸素濃度が 50 p p m以下、 好ましくは 10 ppm以下、 さらに好ましくは 5 p pm以下、 最も好ましくは 1 p pm以下の不活性気体を流 通させ、 反応によって生成したメタノールを精留塔で系外に除去しながら実施する事が望まし レ^ 気相中の酸素濃度は、 l O Oppm以下、 好ましくは 70 p pm以下、 さらに好ましくは 50 ppm以下、 さらに一層好ましくは 30 p pm以下、 最も好ましくは 10 p pm以下に維 持することが好ましい。
第 1段目のエステル交換反応の温度は 180〜250で、 好ましくは 200〜24 であ る。 最終段目のエステル交換反応の温度は通常 230〜270T:、 好ましくは 240~26 5でであり、 エステル交換触媒として、 Zn, Cd, Mg, Mn, Co, Ca, B aなどの脂 肪酸塩、 炭酸塩や Pb, Zn, Sb, Ge酸化物等を用いる。 これらのエステル交換反応によ り分子量約 200〜500程度の低次縮合物が得られる。
ポリエステル樹脂の蛍光発光強度 (BQ) 及び加熱処理時の蛍光発光強度の増加量 (Bh— B0) を前記の目的とする範囲に維持する方法の 1つとして、 前記のように原料調合槽ゃ反応 器の気相の酸素濃度を前記の範囲に管理することが非常に重要な要素であり、 結果として、 透 明性に優れ、 安定した結晶化速度を持ち、 香味保持性に優れた成形体等を与えるポリエステル 樹脂を得ることができるのである。
前記の出発原料であるジメチルテレフタレ一ト、 テレフタル酸またはェチレングリコールと しては、 パラキシレンから誘導されるバージンのジメチルテレフタレート、 テレフタル酸ある いはェチレンから誘導されるェチレングリコールは勿論のこと、 使用済み P E丁ポトルからメ 夕ノール分解ゃェチレングリコ一ル分解などのケミカルリサイクル法により回収したジメチル テレフ夕レート、 テレフタル酸、 ビスヒドロキシェチルテレフタレ一トあるいはエチレングリ コールなどの回収原料も、 出発原料の少なくとも一部として利用することが出来る。 前記回収 原料の品質は、 使用目的に応じた純度、 品質に精製されていなければならないことは言うまで もない。
次いで得られた低次縮合物は多段階の液相重縮合工程に供給される。 重縮合反応条件は、 第 1段階目の重縮合の反応温度は 250〜 285° (、 好ましくは 260〜 280 °Cであり、 圧力 は 100〜10To r r、 好ましくは 70〜15To r rで、 最終段階の重縮合反応の温度は 265〜290°C、 好ましくは 275〜 285でであり、 圧力は 5〜0. 01 To r r、 好ま しくは 3〜0. 2 To r rである。 重縮合反応はなるべく低温でかつ短時間で反応が進むよう 減圧度を上げることが好ましい。 重縮合反応の時間としては 1〜 7時間であることが好ましく、 270で以上の温度を経過するのは 5時間以内であることが好ましい。 3段階以上で実施する 場合には、 中間段階の重縮合反応の反応条件は、 上記第 1段目の反応条件と最終段目の反応条 件の間の条件である。 これらの重縮合反応工程の各々において到達される極限粘度の上昇の度 合は滑らかに分配されることが好ましい。
溶融重縮合反応器は、 設計段階から系内への空気の漏れが出来るだけ起こらない設備にして おくことは当然であり、 また定修時などの定期的なオーバーホールの際に、 溶融重縮合反応時 の減圧下における空気の漏れを最大限度に防止するような対策をしておくことが肝要である。 特に攪拌軸や反応槽間の輸送に用いられるポンプ等の可動部のシール部分からの空気のリーク の影響は大きく、 漏れの少ないシール構造にするほか、 シール部分には酸素濃度が 5 ppm以 下、 好ましくは 3ppm以下、 さらに好ましくは 2 p pm以下、 最も好ましくは 1 p pm以下 の不活性気体を流しておくことが好ましい。
また、 重縮合の 2段目以降、 特に最終段階の重縮合反応器としては、 ポリエステルの滞留が 少なく、 反応器に導入された中間段階の重合度のポリエステルが順次重縮合されて最終重縮合 物として排出されるプラグフロー性の高いものが好ましい。 このためには、 最適の攪拌翼の形 状とし、 蹬拌翼の回転数を適切に設定することが好ましく、 また二軸の攪拌翼を設置した反応 器も好-ましい。
なお、 重縮合反応には一段式重縮合装置を用いてもよい。 重縮合反応は、 重縮合触媒を用いて行う。 重縮合触媒としては、 Ge、 Sb、 T i、 または A 1の化合物から選ばれる少なくとも一種の化合物が用いられることが好ましい。 これらの化 合物は、 粉体、 水溶液、 エチレングリコール溶液、 エチレングリコールのスラリー等として反 応系に添加される。
これらの触媒溶液、 スラリー等は、 調合時または調合後、 酸素濃度が 5ppm以下、 好まし くは 3ppm以下、 さらに好ましくは 2 p pm以下、 最も好ましくは 1 p pm以下の不活性気 体でパブリングさせるか、 あるいは、 同様にして不活性気体でバブリング後気相中に同様の不 活性気体を流通させておくことが望ましい。
Ge化合物としては、 無定形二酸化ゲルマニウム、 結晶性二酸化ゲルマニウム粉末またはェ チレングリコールのスラリ一、 結晶性二酸化ゲルマニウムを水に加熱溶解した溶液またはこれ にエチレンダリコールを添加加熱処理した溶液等が使用される力 特に本発明で用いるポリェ ステル樹脂を得るには二酸化ゲルマニウムを水に加熱溶解した溶液、 またはこれにエチレング リコールを添加加熱した溶液を使用するのが好ましい。 また、 これらの他に、 四酸化ゲルマ二 ゥム、 水酸化ゲルマニウム、 蓚酸ゲルマニウム、 塩化ゲルマニウム、 ゲルマニウムテトラエト キシド、 ゲルマニウムテトラ— n—ブ卜キシド、 亜リン酸ゲルマニウム等の化合物が挙げられ る。 Ge化合物を使用する場合、 その使用量はポリエステル樹脂中の Ge残存量として 10〜 150 p pm、 好ましくは 13〜100 p pm、 更に好ましくは 15〜70 p pmである。 触媒として二酸化ゲルマニウムを用いる場合、 二酸化ゲルマニウムのナトリゥム又は力リゥ ムの含有量、 あるいはナトリウムとカリウムの合計含有量が 100 p pm以下、 好ましくは 5 Oppm以下、 さらに好ましくは 10 ppm以下であることが好ましい。 また、 二酸化ゲルマ 二ゥムの加熱減量が 1. 5〜15. 0%、 好ましくは 1. 5〜4. 5%、 さらに好ましくは 1. 5-4. 0%の範囲であることが好ましい。
T i化合物としては、 テトラエチルチタネ一ト、 テトライソプロピルチタネート、 テトラ一 n—プロピルチタネート、 テトラー n—プチルチタネ一ト等のテトラアルキルチタネ一トおよ びそれらの部分加水分解物、 酢酸チタン、 蓚酸チタニル、 蓚酸チタ二ルアンモニゥム、 蓚酸チ 夕二ルナトリウム、 蓚酸チタニルカリウム、 蓚酸チタニルカルシウム、 蓚酸チタニルストロン チウム等の蓚酸チタニル化合物、 トリメリット酸チタン、 硫酸チタン、 塩化チタン、 チタンハ ロゲン化物の加水分解物、 シユウ化チタン、 フッ化チタン、 六フッ化チタン酸カリウム、 六フ ッ化チタン酸アンモニゥム、 六フッ化チタン酸コバルト、 六フッ化チタン酸マンガン、 チタン ァセチルァセトナート、 チタンおよびケィ素あるいはジルコニウムからなる複合酸化物、 チタ ンアルコキサイドとリン化合物の反応物等が挙げられる。 T i化合物は、 生成ポリマー中の T i残存量として 0 . 1〜5 0 p p mの範囲に'なるように添加する。
S b化合物としては、 三酸化アンチモン、 酢酸アンチモン、 酒石酸アンチモン、 酒石酸アン チモンカリ、 ォキシ塩化アンチモン、 アンチモングリコレ一卜、 五酸化アンチモン、 トリフエ ニルァンチモン等が挙げられる。
S b化合物は、 生成ポリマー中の S b残存量として 5 0 ~ 2 5 0 p p mの範囲になるように添 加する。
また、 A 1化合物としては、 具体的には、 ギ酸アルミニウム、 酢酸アルミニウム、 塩基性酢 酸アルミニウム、 プロピオン酸アルミニウム、 蓚酸アルミニウム、 アクリル酸アルミニウム、 ラウリン酸アルミニウム、 ステアリン酸アルミニウム、 安息香酸アルミニウム、 トリクロ口酢 酸アルミニウム、 乳酸アルミニウム、 クェン酸アルミニウム、 サリチル酸アルミニウムなどの カルボン酸塩、 塩化アルミニウム、 水酸化アルミニウム、 水酸化塩化アルミニウム、 ポリ塩化 アルミニウム、 硝酸アルミニウム、 硫酸アルミニウム、 炭酸アルミニウム、 リン酸アルミニゥ ム、 ホスホン酸アルミニウムなどの無機酸塩、 アルミニウムメトキサイド、 アルミニウムエト キサイド、 アルミニウム n-プロポキサイド、 アルミニウム iso-プロポキサイド、 アルミニゥ ム n-ブトキサイド、 アルミニウム tーブトキサイドなどアルミニウムアルコキサイド、 アル ミニゥムァセチルァセトネート、 アルミニウムァセチルアセテート、 アルミニウムェチルァセ トアセテート、 アルミニウムェチルァセ卜アセテートジ iso-プロポキサイドなどのアルミ二 ゥムキレート化合物、 トリメチルアルミニウム、 トリェチルアルミニウムなどの有機アルミ二 ゥム化合物およびこれらの部分加水分解物、 酸化アルミニウムなどが挙げられる。 これらのう ちカルボン酸塩、 無機酸塩およびキレート化合物が好ましく、 これらの中でもさらに塩基性酢 酸アルミニウム、 乳酸アルミニウム、 塩化アルミニウム、 水酸化アルミニウム、 水酸化塩化ァ ルミ二ゥム、 ポリ塩化アルミニウムおよびアルミニウムァセチルァセトネートがとくに好まし い。 A 1化合物は、 生成ポリマ一中の A 1残存量として 5〜2 0 0 p p mの範囲になるように 添加する。
また、 本発明のポリエステル桉脂の製造方法においては、 アルカリ金属化合物またはアル力 リ土類金属化合物を併用してもよい。 アルカリ金厲、 アルカリ土類金属としては、 L i , N a , K, R b , C s , B e , M g , C a, S r , B aから選択される少なくとも 1種であることが 好ましく、 アルカリ金属ないしその化合物の使用がより好ましい。 アルカリ金属ないしその化 合物を使用する場合、 特に L i , N a , Kの使用が好ましい。 アルカリ金属やアルカリ土類金 属の化合物としては、 例えば、 これら金属のギ酸、 酢酸、 プロピオン酸、 酪酸、 蓚酸などの飽 和脂肪族カルボン酸塩、 アクリル酸、 メタクリル酸などの不飽和脂肪族カルボン酸塩、 安息香 酸などの芳香族カルボン酸塩、 トリクロ口酢酸などのハロゲン含有カルボン酸塩、 乳酸、 クェ ン酸、 サリチル酸などのヒドロキシカルボン酸塩、 炭酸、 硫酸、 硝酸、 リン酸、 ホスホン酸、 炭酸水素、 リン酸水素、 硫化水素、 亜硫酸、 チォ硫酸、 塩酸、 臭化水素酸、 塩素酸、 臭素酸な どの無機酸塩、 1一プロパンスルホン酸、 1—ペンタンスルホン酸、 ナフタレンスルホン酸な どの有機スルホン酸塩、 ラウリル硫酸などの有機硫酸塩、 メトキシ、 エトキシ、 η—プロポキ シ、 i s o—プロボキシ、 n—ブトキシ、 t e r t—ブトキシなどのアルコキサイド、 ァセチ ルァセトネートなどとのキレ一ト化合物、 水素化物、 酸化物、 水酸化物などが挙げられる。 前記のアルカリ金属化合物またはアルカリ土類金属化合物は、 粉体、 水溶液、 エチレングリ コール溶液等として反応系に添加される。 アル力リ金属化合物またはアル力リ土類金属化合物 は、 生成ポリマ一中にこれらの元素の残存量として 1〜5 0 p mの範囲になるように添加す る。
さらにまた、 本発明のポリエステル樹脂は、 ケィ素、 マンガン、 鉄、 コバルト、 亜鉛、 ガリ ゥム、 ストロンチウム、 ジルコニウム、 錫、 タングステン、 鉛からなる群から選ばれた少なく とも 1種の元素を含む金属化合物を含有してもよい。
これらの金属化合物としては、 これら元素の酢酸塩等の飽和脂肪族カルボン酸塩、 アクリル 酸塩などの不飽和脂肪族カルボン酸塩、 安息香酸などの芳香族カルボン酸塩、 トリクロ口酢酸 などのハロゲン含有カルボン酸塩、 乳酸塩などのヒドロキシカルボン酸塩、 炭酸塩などの無機 酸塩、 1—プロパンスルホン酸塩などの有機スルホン酸塩、 ラウリル硫酸などの有機硫酸塩、 酸化物、 水酸化物、 塩化物、 アルコキサイド、 ァセチルァセトナート等とのキレート化合物が あげられ、 粉体、 水溶液、 エチレングリコール溶液、 エチレングリコールのスラリー等として 反応系に添加される。 これらの金厲化合物は、 生成ポリマー 1 トン当りにこれらの金属化合物 の元素の残存量として 0 . 0 5 ~ 3 . 0モルの範囲になるように添加する。 これらの金厲化合 物は、 前記のポリエステル生成反応工程の任意の段階で添加することができる。
また、 上述の重合触媒に組み合わせて種々の P化合物を使用することができる。 P化合物の 中でも特にフエノ一ル部を同一分子内に有するリン化合物を用いることが好ましい。 P化合物としては特に限定はされないが、 ホスホン酸系化合物、 ホスフィン酸系化合物、 ホ スフインォキサイド系化合物、 亜ホスホン酸系化合物、 亜ホスフィン酸系化合物、 ホスフィン 系化合物からなる群より選ばれる一種または二種以上の化合物を用いることが好ましい。 これ らの中でも、 一種または二種以上のホスホン酸系化合物を用いることがとくに好ましい。 これ らのリン化合物の中でも、 芳香環構造を有する化合物を用いることが好ましい。
本発明で使用される P化合物の具体例としては、 リン酸、 リン酸トリメチルエステル、 リン酸 トリェチルエステル、 リン酸トリプチルエステル、 リン酸卜リフエニールエステル、 リン酸モ ノメチルエステル、 リン酸ジメチルエステル、 リン酸モノブチルエステル、 リン酸ジブチルェ ステルなどのリン酸の誘導体、 亜リン酸、 亜リン酸トリメチルエステル、 亜リン酸トリェチル エステル、 亜リン酸トリブチルエステルなどの亜リン酸の誘導体、 メチルホスホン酸、 メチル ホスホン酸ジメチルエステル、 ェチルホスホン酸ジメチルエステル、 フエニールホスホン酸ジ メチルエステル、 フエニールホスホン酸ジェチルエステル、 フエニールホスホン酸ジフエ二一 ルエステルなどのホスホン酸の誘導体、 ジフエ二ルホスフィン酸、 ジフエ二ルホスフィン酸メ チル、 ジフエ二ルホスフィン酸フエニル、 フエニルホスフィン酸、 フエニルホスフィン酸メチ ル、 フエニルホスフィン酸フエニルなどのホスフィン酸の誘導体等である。
またフエノール部を同一分子内に有するリン化合物、 たとえば、 p—ヒドロキシフエニルホ スホン酸、 P—ヒドロキシフエニルホスホン酸ジメチル、 P—ヒドロキシフエニルホスホン酸 ジェチル、 p—ヒドロキシフエニルホスホン酸ジフエニル、 ビス ( p—ヒドロキシフエニル) ホスフィン酸、 ビス ( P—ヒドロキシフエニル) ホスフィン酸メチル、 ビス (p—ヒドロキシ フエニル) ホスフィン酸フエニル、 p—ヒドロキシフエニルフエニルホスフィン酸、 p—ヒド ロキシフエニルフエニルホスフィン酸メチル、 p—ヒドロキシフエニルフエニルホスフィン酸 フエ:^ル、 p—ヒドロキシフエニルホスフィン酸、 p—ヒドロキシフエニルホスフィン酸メチ ル、 p—ヒドロキシフエニルホスフィン酸フエニル、 ビス (p—ヒドロキシフエニル) ホスフ インオキサイド、 トリス (P—ヒドロキシフエニル) ホスフィンオキサイド、 ビス (P—ヒド ロキシフエニル) メチルホスフィンォキサイドなども使用できる。
また、 ベンジルホスホン酸ェチル、 ベンジルホスホン酸、 ( 9—アンスリル) メチルホスホ ン酸ェチル、 4ーヒドロキシベンジルホスホン酸ェチル、 2—メチルベンジルホスホン酸ェチ ル、 4一クロ口べンジルホスホン酸フエニル、 4ーァミノべンジルホスホン酸メチル、 4ーメ トキシベンジルホスホン酸ェチル、 3, 5—ジ— tert—ブチル—4—ヒドロキシベンジルホス ホン酸ジェチルなども使用できる。
さらにまた、 リンの金属塩化合物、 たとえば、 リチウム [3, 5—ジー tert—プチルー 4— ヒドロキシベンジルホスホン酸ェチル] 、 ナトリウム [3, 5—ジー tert—プチルー 4—ヒド ロキシベンジルホスホン酸ェチル] 、 カリウム [3, 5—ジ一 tert—ブチルー 4—ヒドロキシ ベンジルホスホン酸ェチル] 、 マグネシウムビス [3, 5—ジ— tert—プチルー 4—ヒドロキ シべンジルホスホン酸ェチル] 、 マグネシウムビス [3, 5—ジ— tert—ブチル一4ーヒドロ キシベンジルホスホン酸] 、 カルシウムビス [3, 5—ジ— tert—プチルー 4ーヒドロキシべ ンジルホスホン酸ェチル] 、 カルシウムビス [3, 5—ジー tert—プチルー 4ーヒドロキシべ ンジルホスホン酸] 、 ベリリウムビス [3, 5—ジ— tert—プチルー 4—ヒドロキシベンジル ホスホン酸メチル] 、 ストロンチウムビス [3, 5—ジー tert—プチルー 4ーヒドロキシベン ジルホスホン酸ェチル] 、 バリウムビス [3, 5ージ一 t e r t—プチル— 4—ヒドロキシべ ンジルホスホン酸フエニル] なども使用できる。
これらは単独で使用してもよく、 また 2種以上を併用してもよい。 P化合物は、 生成ボリマ 一中の P残存量として 1〜1000 p pmの範囲になるように前記のポリエステル生成反応ェ 程の任意の段階で添加することができる。
さらにまた、 ヒンダードフエノール系酸化防止剤を添加することも好ましい。
このようなヒンダードフエノール系酸化防止剤としては、 公知のものを使用してよく、 例示す' るならばペン夕エリスリ! ^一ルーテトラエキス [3 - (3, 5—ジ一 tert—ブチル一4—ヒド 3— (3, 5—ジー tert—ブチル一4ーヒドロキシフエニル) プロピオネート) 、 1, 1, 3 —トリス (2—メチル一4ーヒドロキシー 5— tert—ブチルフエニル) ブタン、 1, 3, 5— トリメチルー 2, 4, 6—卜りス (3, 5—ジ— tert—プチルー 4—ヒドロキシベンジル) ベ ンゼン、 3, 9—ビス {2— [3- (3— tert—ブチル一4ーヒドロキシー 5—メチ 3— (3 —tert—ブチル—4ーヒドロキシ一 5—メチルフエニル) プロピオニルォキシ) 一 1, 1ージ メチルェチル] -2, 4, 8, 10ーテトラオキサスピロ [5, 5] ゥンデカン、 1, 3, 5 ートリス (4一 tert—ブチル一3—ヒドロキシ— 2, 6—ジメチルベンゼン) イソフタル酸、 1、リエチルグリコ一ルービス [3 - (3— tert—プチルー 5—メチルー 4—ヒドロキ 3— (3 一 tert—プチルー 5—メチル—4—ヒドロキシフエニル) プロピオネート) 、 1, 6一へキサ ンジォ一ルービス [3— (3, 3 - (3, 5—ジ一 tert—プチルー 4—ヒドロキシフエニル) プロピオネート) 、 2 , 2—チォ一ジエチレン一ビス [ 3— ( 3 , 5—ジー tert—プチルー 4 —ヒドロキシフ 3— (3 , 5—ジ一 tert—ブチル一4—ヒドロキシフエニル) プロピオネー ト) 、 ォクタデシル一 3— ( 3 , 5一ジ一 tert—プチルー 4ーヒドロキシフエニル) プロピオ ネート] 、 3 , 5—ジ— tert—ブチルー 4—ヒドロキシベンジルホスホン酸ェチル、 3 , 5— ジ— tert—ブチルー 4—ヒドロキシベンジルホスホン酸メチル、 3 , 5—ジ—tert—プチルー 4 —ヒドロキシベンジルホスホン酸イソプロピル、 3 , 5—ジー tert—ブチル一4—ヒドロキシ ベンジルホスホン酸フエニル、 3 , 5—ジ一 tert—ブチル—4ーヒドロキシベンジルホスホン 酸ォクタデシル、 3, 5—ジ— tert—プチルー 4ーヒドロキシベンジルホスホン酸を例示する ことができる。
この場合ヒンダードフエノール系酸化安定剤は、 ポリエステルに結合していてもよく、 ヒン ダ一ドフエノール系酸化安定剤のポリエステル樹脂中の量としては、 ポリエステル樹脂の重量 に対して、 1重量%以下が好ましい。 これは、 1重量%を越えると着色する場合があることと、 1重量%以上添加しても溶融安定性を向上させる能力が飽和するからである。 好ましくは、 0 . 0 2〜0 . 5重量%である。
前記の金属化合物や安定剤や酸化防止剤などは、 粉体、 水溶液、 エチレングリコール溶液、 エチレングリコ—ルのスラリ一等として反応系に添加される。
これらの溶液あるいはスラリーなどは、 調合時または調合後、 酸素濃度が 5 0 p p m以下、 好ましくは 1 0 p p m以下、 さらに好ましくは 5 p p m以下、 最も好ましくは 1 p p m以下の 不活性気体でパプリングさせるか、 またはその後気相中に同様の不活性気体を流通させておく ことが望ましい。
前記のようにして得られた溶融重縮合ポリエステルは、 溶融重縮合終了後チップ化するため、 細孔から押し出すまでの間は出来るだけ低温度で短時間の条件下に溶融状態で保持することが 必要である。 溶融重縮合終了後の溶融状態での保持条件は、 融点以上、 2 9 0で以下、 好まし くは 2 8 5 °C以下、 さらに好ましくは 2 8 0 °C以下の温度で 2 0分以内、 好ましくは 1 5分以 内、 さらに好ましくは 1 0分以内、 特に好ましくは 5分以内が望ましく、 溶融重縮合後に速や カ こ冷却チップ化されるよう配管等を設計する必要がある。 2 9 0で以上の高温度で 2 0分以 上の長時間滞留させると、 蛍光発光強度 (B 0 ) が 2 0以下で、 また加熱処理後の蛍光発光強 度の増加量 (B h - B 0) が 3 0以下にならず、 得られた成形体の結晶化速度が速くなりすぎ て前記のような問題が発生すると同時に、 内容物の香味保持性も悪くなることがあり問題であ る。 また、 融点以下の温度であってもポリエステル樹脂を大気中に長時間放置すると、 蛍光発 光強度 (Bo) が 20以下で、 また加熱処理後の蛍光発光強度の増加量 (Bh—B0) が 30以 下にならない場合も生ずるので、 下記の方法によって可及的速やかに約 100で以下に冷却す ることが望ましい。
前記のようにして得られた溶融重縮合ポリエステルは、 溶融重縮合終了後に細孔から化学的 酸素要求量 (COD) が、 好ましくは 2. Omg/ 1以下、 より好ましくは 1. 5mg/l以 下、 さらに好ましくは 1. Omg/ 1以下の冷却水中に押出して水中でカットする方式、 ある いは大気中に押出した後、 直ちに前記と同一の COD値の冷却水で冷却しながらカツ卜する方 式によってチップ化される。 CODの下限値は特に限定するものではないが、 実用的な面で 0. 0 lmgZ 1であって、 0. 0 lmgZl未満にする場合は、 設備費が高くなり経済的なチッ ブイ匕が不可能となることがある。 また、 チップィヒ工程で使用する冷却水の CODが、 2. 0m gZlを超える場合は、 ポリエステル樹脂の蛍光発光強度 (BQ) が 2 0以下で、 加熱処理時 の蛍光発光強度の増加量 (Bh— B0) が 30以下にならず、 得られた成形体の結晶化速度が 速くなりすぎて前記のような問題が発生すると同時に、 内容物の香味保持性も悪くなることが あり問題である。 ' 以下に、 チップ化工程の冷却水中の CODを低減させる方法を例示するが、 本発明は、 これ に限定するものではない。
チップ化工程に導入する新しい水の CODを低減させるために、 チップ化工程に供給するた めに工業用水がチップ化工程に送られるまでの工程の少なくとも 1ケ所以上に水の CODを低 減させる装置を設置する。 また、 更にチップ化工程から排出した水が再びチップィ匕工程に返さ れるまでの工程にも少なくとも 1ケ所以上に CODを低減させる装置を設置してもよい。 CO Dを低減させる装置としては、 限外濾過や逆浸透濾過、 凝集沈殿、 活性汚泥処理、 活性炭処理、 紫外線照射をおこなう装置などが挙げられる。
チップの形状ゃ融着の点からチップ冷却水の温度は約 5で〜約 40での範 Hが好適である。 また本発明では、 チップ化工程の冷却水として、 ナトリウムの含有量 (N) 、 マグネシウム の含有量 (M) 、 珪素の含有量 (S) 及びカルシウムの含有量 (C) が下記の (1) 〜 (4) の少なくとも一つを、 さらに好ましくは全てを満足する冷却水を用いて溶融重縮合ポリエステ ルのチップィヒを行なうのがより一層好ましい。
N ≤ 1. 0 (p pm) (1) M ≤ 0. 5 (p pm) (2)
S ≤ 2. 0 (p pm) (3)
C ≤ 1. 0 (p pm) (4)
冷却水中のナトリウム含有量 (N) は、 好ましくは N≤0. 5ppmであり、 さらに好まし くは N≤0. l ppmである。 冷却水中のマグネシウム含有量 (M) は、 好ましくは M≤0. 3 ppmであり、 さらに好ましくは M≤0. I ppmである。 また、 冷却水中の珪素の含有量 (S) は、 好ましくは S≤0. 5ppmであり、 さらに好ましくは S≤0. 3ppmである。 さらに、 冷却水中のカルシウム含有量 (C) は、 好ましくは C≤0. 5ppmであり、 さらに 好ましくは C≤0. I ppmである。 ,
また、 冷却水中のナトリウム含有量 (N) 、 マグネシウム含有量 (M) 、 珪素の含有量
(S) およびカルシウム含有量 (C) の下限値は特に限定するものではないが実用的な面では、 N≥0. 001 ppm、 M≥0. 001 ppm、 S≥0. 02ppmおよび C≥0. 001 p pmである。 このような下限値以下にするには、 莫大な設備投資が必要であり、 また運転費用 も非常に高くなり経済的な生産は困難であることがある。
前記の条件を外れる冷却水を用いた場合には、 これらの金属含有化合物がポリエステル樹脂 チップ表面に付着し、 得られたポリエステル樹脂の結晶化速度が非常に早く、 またその変動が 大きくなり好ましくない。 工業用水中の前記の金属の含有量は 1年を通じてかなり変動してお り、 この変動に応じてポリエステル樹脂に付着する金属含有量が変動するから力、 前記の (1) 〜 (4) の少なくとも一つを満足する冷却水を用いた場合に比較して、 工業用水をチッ プ化時の冷却水として用いて得られたポリエステル樹脂からの成形体の透明性が悪く、 かつそ の変動が非常に大きい。 なお、 前記 (1) 〜 (4) はすべてを満足することが好ましい。
また、 前記の条件を外れる冷却水を用いて冷却しながらチッブイ匕した溶融重縮合ポリエステ ルを固相重合すると、 チップ化工程においてチップ表面に付着して固相重合反応装置に持ち込 まれた前記の金属含有物質は、 ポリエステル樹脂チップの表面層の一部と共に固相重合装置の 器壁に固着し、 これが約 170で以上の高温度での長時間加熱によって金属含有量の高いスケ ールとなつて器壁に付着していく。 そして、 これが時々剥離してポリエステル樹脂チップ中に 混入し、 ポトル等成形体中の異物となって商品価値を低下さすという問題が発生することがあ る。 また、 シートを製造する際には、 製膜時に前記のスケールが溶融ポリマー濾過フィルタ—に 詰まるためフィルター濾過圧の上昇が激しくなり、 操業性や生産性が悪くなるという問題も発 生することがある。
以下にチップの冷却水のナトリウム含有量、 マグネシウム含有量、 珪素含有量、 カルシウム 含有量を前記の範囲に抑える方法を例示するが、 本発明はこれに限定するものではない。
冷却水のナトリウムやマグネシウム、 カルシウム、 珪素を低減させるために、 チップ冷却ェ 程に工業用水が送られるまでの工程で少なくとも 1ケ所以上にナトリウムやマグネシウム、 力 ルシゥム、 珪素を除去する装置を設置する。 また、 粒子状になった二酸化珪素やアルミノ珪酸 塩等の粘土鉱物を除去するためにはフィルターを設置する。 ナトリウムやマグネシウム、 カル シゥム、 珪素を除去する装置としては、 イオン交換装置、 P艮外濾過装置や逆浸透膜装置などが 挙げられる。
また、 チップ冷却水として系外から導入する水の中に存在する粒径が 1〜2 の粒子を
5 0 0 0 0個 / 1 0 m 1以下にした水を使用することが望ましい。 冷却水中の粒径 1〜2 5 mの粒子の個数は、 好ましくは 1 0 0 0 0個/ 1 0 m 1以下、 さらに好ましくは 1 0 0 0個 Z 1 O m l以下である。 導入水中の粒径 2 5 μ πιを越える粒子は、 特に規定するものではないが、 好ましくは 2 0 0 0個/ 1 O m 1以下、 より好ましくは 5 0 0個 Z l O m 1以下、 さらに好ま しくは 1 0 0個 / 1 O m l , 特に好ましくは 1 0個 / 1 O m l以下である。
以下にチップ化工程で導入する導入水中の、 粒径 1 ~ 2 5 zmの粒子を 5 0 0 0 0個 Z 1 0 m 1以下に制御する方法を例示するが、 本発明はこれに限定するものではない。
水中の'粒子数を 5 0 0 0 0個ノ 1 O m l以下にする方法としては、 工業用水等の自然水をチ ップ化工程に供給するまでの少なくとも 1ケ所以上に粒子を除去する装置を設置する。 好まし くは自然界の水の採取口から、 前記したチップィ匕工程に至るまでの間に粒子を除去する装置を 設置し、 チップ化工程に供給する水中の、 粒径 1〜2 5 mの粒子の含有量を 5 0 0 0 0個/ 1 O m l以下にすることが好ましい。 粒子を除去する装置としてはフィルター濾過装置、 膜濾 過装置、 沈殿槽、 遠心分離器、 泡沫同伴処理機等が挙げられる。 例えばフィルター濾過装置で あれば、 方式としてベルトフィル夕一方式、 バグフィルター方式、 カートリッジフィルタ一方 式、 遠心濾過方式等の濾過装置が挙げられる。 中でも連続的に行なうにはベルトフィル夕一方 式、 遠心滤過方式、 バグフィルター方式の濾過装置が適している。 またベルトフィルター方式 の滤過装置であれば爐材としては、 紙、 金属、 布等が挙げられる。 また粒子の除去と導入水の 流れを効率良く行なうため、 フィルターの目のサイズは 5〜100 111、 好ましくは 10〜7 0 m, さらに好ましくは 15〜40 imがよい。
また、 チップの冷却水は繰り返しリサィクルしながら使用することが経済性、 生産性を向上 させる点から好ましい。 冷却水のリサイクル工程中に、 フィルターや温度調節機、 ァセ卜アル デヒド等の不純物を除去する装置等を設けることができる。 また、 前記の粒子やナトリウムや マグネシウム、 力 ^/シゥム、 珪素を除去する装置を設けることもできる。
また、 本発明においては、 系外からチップ化工程で用いられる冷却水の溶存酸素濃度を約 4 5 c m 3 / 1以下に維持してチップ化することが好ましい。
また、 同時に、 冷却水の溶存酸素濃度を Y cm3/ 1、 冷却水の温度を X°Cとした場合、 好 ましくは l ogY≤l. 78 - 8. 23 X 10— 3X、 より好ましくは 1 o gY≤l. 73— 8. 23 X 10 3X、 さらに好ましくは 1 o gY≤l. 68- 8. 23 X 10— 3X、 最も好 ましくは l ogY^l. 63 - 8. 23 X 10— 3Xの関係を満たす。
なお、 通常、 水に対する酸素溶解度は、 1気圧、 10でで約 38. 0 cm3/ 1程度、 3 0°Cで約 26. 0 cm3/ 1程度であるが、 水温の低い工業用水を用いる場合などにおいては 過飽和状態で溶解度以上に酸素が溶存したり、 貯槽底部では水の自重による圧力でこれ以上の 酸素が溶解することになる。 特に、 前記のようにチップ冷却水をリサイクルしながら再使用す る場合には、 過飽和等の酸素の影響で冷却水中に溶解したモノマ—類やオリゴマ一類などの低 分子化合物や系外からの有機化合物等の不純物の酸化反応が進み、 残留異味、 異臭が強くなる ことも考えられる。 また、 樹脂チップ内に酸素が入り込み、 チップが蛍光を発しゃすくなると 考えられる。
以下に冷却水として用いられる水中の溶存酸素濃度を前記の値以下にする方法を例示するが、 本発明はこれに限定するものではない。 冷却水として用いられる水中の溶存酸素濃度を抑える ためには冷却水として供給するまでの工程の少なくとも 1ケ所以上に、 また冷却水槽中の水の 溶存酸素濃度を抑えるためには冷却櫓から水が排出して再び冷却水貯槽に循環水が戻されるま での工程中の少なくとも 1力所以上に、 そして冷却槽中の溶存酸素濃度を抑えるためには冷却 槽中に、 溶存酸素を低減さすための適切な装置を設置することが好ましい。 溶存酸素を低減さ す装置としては、 窒素ガスまたは炭酸ガス等の不活性気体吹き込み脱気装置、 真空加熱式脱気 装置、 加熱式脱気装置等が挙げられる。 このような装置は、 下記に説明する水処理の場合にも 用いることができる。 また、 溶融重縮合後にダイスの細孔からポリエステル溶融体を大気中に押出した後、 冷却水 で冷却しながらカットする方式によってチップ化する場合には、 不活性気体をダイスの細孔か ら出てくる溶融ポリマ一に吹き付け、 冷却水に接触するまでに高温の樹脂に酸素が吸着しない ようにすることも好ましい。 吹き付ける不活性ガスの酸素濃度は 5 p pm以下、 好ましくは 3 ppm以下、 さらに好ましくは 2 p pm以下、 最も好ましくは 1 p pm以下が好ましい。 また、 冷却水を溶融樹脂にシャヮー状に吹き付けて冷却する方法を採用する場合には、 冷却 水に酸素が溶军し、 溶存酸素濃度上がるため、 冷却工程の気相中の酸素濃度を、 500 ppm 以下、 好ましくは 300 p pm以下、 さらに好ましくは 100 p pm以下、 さらに一層好まし くは 50 ppm以下、 最も好ましくは 10 p pm以下に維持、 またその変動巾を 30 %以内、 好ましくは 20%以内に抑えることが好ましい。 冷却工程での気相中の酸素濃度をコントロー ルする方法としては、 溶融ポリマーに吹き付ける不活性ガスをそのまま冷却工程に流すことが 好ましい。
またさらに、 本発明のボリエステル樹脂の製造方法においては、 チップ化工程で得られる溶融 重縮合ポリエステル樹脂チップの付着水分が好ましくは 3000PP m以下、 より好ましくは 2500 ppm以下、 さらに好ましくは 2000 p p m以下にすることが好ましい。 付着水分 が 3000 p pmを超える場合は、 このようなポリエステル樹脂チップを乾燥処理したり、 あ るいは固相重合処理したりすると、 蛍光発光強度 (BQ) を 20以下、 また加熱処理時の蛍光 発光強度の増加量 (B h— B を 30以下に維持することが難しくなリ問題が生じることが ある。 付着水は三菱化学 (株) の微量水分測定器 (mode l : CA-06/VA-06) を 用いて測定する。 付着水分を 3000 p pm以下にする方法としては、 チップから水を切る際 に遠心分離法、 振動法や加熱気体を吹き付ける方法を採ることが多いが、 これらの運転条件を 強めることにより達成することが出来る。
溶融重縮合樹脂をそのまま成形用などに用いる場合には、 チップ化後付着水分を 3000 p pm以下にされたポリエステルチップは乾燥工程に送られ、 乾燥させる。 また、 冷却から乾燥 工程までの間においても、 気相中の酸素濃度は、 100 p pm以下、 好ましくは 80 p pm以 下、 さらに好ましくは 50 ppm以下、 さらに一層好ましくは 30 p pm以下、 最も好ましく は 10 p pm以下に維持することが望ましい。 乾燥温度は約 5 0で〜約 1 5 0 °C、 好ましくは約 6 0で〜約 1 4 0 であり、 乾燥時間は約 3時間〜約 3 0時間、 好ましくは約 4時間〜 2 0時間である。 特に好ましくは 4時間〜 1 5時 間である。
乾燥ガスとしては、 露点が— 2 5で以下で、 酸素濃度が 1 O O p pm以下、 好ましくは 8 0 p p m以下、 さらに好ましくは 5 0 p p m以下、 さらに一層好ましくは 3 0 p p m以下、 最も 好ましくは 1 0 p p m以下の不活性気体が好ましい。
なお、 前記で用いる不活性気体としては、 窒素ガス、 炭酸ガス、 ヘリウムガスなどが挙げら れるが、 窒素ガスが最も好都合である。
但し、 不活性気体を用いると経済性が問題になる場合は、 露点が一 2 5 T:以下であり、 S O Xが約 0 . 0 1 p p m以下、 NO xが約 0 . 0 1 p p m以下の脱湿空気を用いて約 5 0で〜約 1 0 0 °Cの温度で、 約 3時間〜約 1 0時間の時間で乾燥することも可能である。 この場合には、 他の条件を厳しくすることで、 蛍光発光強度を抑えることが必要である。 なお、 空気から S O x、 N O Xを除去する手段としては、 活性炭フィルターや触媒作用のある金属粒子を含んだフ ィルター等を用いることができる。
種々の乾燥条件が上記の範囲を外れる場合には、 ポリエステル樹脂の蛍光発光強度 (B 0) が 2 0を越え、 また加熱処理時の蛍光発光強度の増加 S (B h - B 0) が 3 0を越えて高くな ることがあり問題となる可能性が非常に高い。
また、 乾燥装置にはチップゃフアイン等の形状異常品が長期滞留する可能性があるデッドス ペースがないことも大切である。 デッドスペースがあると、 そこに長期滞留したチップ等は蛍 光発光強度 。) が 2 0を越え、 また加熱処理時の蛍光発光強度の増加量 (
ノ B h— B Q ) が 3
0を越えて髙くなることがあり問題となる。
また、 乾燥装置では導入された樹脂が順次排出される構造とすることが好ましく、 樹脂の平 均滞留時間を tとすると、 0 . 9 tから 1 . 1 tの間に 9 5重量%、 好ましくは 9 8重量%、 さらに好ましくは 9 9重量%の if脂が排出されるような装置とすることが好ましい。 これらの 装置としては、 縦型のホッパータイプの乾燥機で、 乾燥されたチップの排出口が設置される下 部の逆円錐状部分の頂角の角度をチップの安息角より適宜求めた角度にしてかつバッフルコ— ンを設置したものや横型乾燥機で回転軸に輸送用パドルゃディスクなどを設置しプラグフロー 性を高めたものなどが好ましい。 順次スムーズに排出されなかつたりデッドスペースがあると、 そこに長期滞留したチップ等 は熱履歴が大きくなり、 このチップが混入した場合、 蛍光発光強度 (B 0) が 2 0を越え、 ま た加熱処理後の蛍光発光強度の増加量 (B h— B 0 ) が 3 0を越えて高くなることがあり問題 となる可能性が非常に高い。
次いで、 固相重合する場合には、 得られた溶融重縮合ポリエステルチップは、 酸素濃度が 1 O O p p m以下、 好ましくは 5 0 p p m以下、 さらに好ましくは 3 0 p p m以下、 最も好まし くは 1 0 p p m以下の不活性気体雰囲気下のチップ貯槽に輸送して一時的に保管し、 溶融重縮 合に引き続き、 ァセトアルデヒド含有量を低下させ、 極限粘度を増大させるために、 前記のポ リエステルを連続的に固相重合することが望ましい。 まず固相重合に供される前記のポリエス テルは、 不活性気体下あるいは水蒸気または水蒸気含有不活性気体雰囲気下において、 予備結 晶化され引き続いて水分率 1 O p p m程度まで乾燥 (以下予備結晶化一乾燥をまとめて予備結 晶化と称する) されることが好ましい。 まず完全に乾燥される前に予備結晶化されることによ り、 樹脂内への酸素の侵入が遮断され、 その後の乾燥時の酸素の影響を受けにくくなると考え られる。
予備結晶化の際の温度は好ましくは 1 8 0 1以下、 より好ましくは 1 7 5 °C以下、 さらに好 ましくは 1 7 0 °C以下であり、 温度の下限は好ましくは 1 0 0 °C以上、 より好ましくは 1 2 0 °C以上であり、 予備結晶化工程の時間は好ましくは 5時間以下、 より好ましくは 4時間以下、 さらに好ましくは 3 . 5時間以下であり、 下限は 0 . 5分以上、 より好ましくは 1分以上であ る。 予備結晶化の際の温度を高くすると時間を短くする必要があり、 また、 時間を長くする場 合には温度を下げる必要がある。 例えば 1 8 0 °Cでは 2時間程度、 1 6 0 °Cでは 3時間程度、 1 5 0 °Cでは 3 . 5時間程度であることが好ましい。
この際、 不活性気体雰囲気の酸素濃度は好ましくは 5 0 p p m以下、 好ましくは 4 0 p p m 以下、 さらに好ましくは 3 0 p p m以下、 さらに一層好ましくは 2 0 p p m以下、 最も好まし くは 1 0 p p m以下であることが好ましい。 .
次いで酸素濃度が好ましくは 5 0 p p m以下、 より好ましくは 4 0 p p m以下、 さらに好ま しくは 3 0 p p m以下、 最も好ましくは 2 0 p p m以下の不活性気体雰囲気下に固相重合を行 レ 固相重合終了後、 前記と同様の不活性気体雰囲気下にチップ温度が約 6 0 以下になるよ うに冷却する。 固相重合の温度としては、 上限は 2 2 0 以下が好ましく、 さらには 2 1 5で 以下、 特には 2 1 0で以下が好ましく、 下限は 1 9 0で以上、 好ましくは 1 9 5で以上である。 また、 固相重合時間は目的とする重合度にもよるが、 3 0時間以下が好ましく、 より好ましく は 1 5時間以下、 さらに好ましくは 1 0時間以下、 特に好ましくは 8時間以下、 最も好ましく は 7時間以下である。 固相重合でも、 温度が高い場合には時間を短くし、 長時間固相重合を行 う場合には温度を低く設定する必要があり、 過度の温度、 時間履歴は避ける必要がある。 目安 としては、 2 1 0 °Cで約 2 0時間以下、 2 0 5でで約 2 5時間以下程度である。 比較的低温で かつ短時間で固相重合が終了するように、 減圧度を調整するか、 不活性気体の流量を上げると 、 またはポリエステルチップ形状の比表面積を大きくする等の工夫をする必要がある。 予備結晶化時および固相重合時の不活性気体中の酸素濃度が 5 0 p mを越える場合、 必要 以上の温度、 時間をかけた場合には、 蛍光発光強度 (B 0) が 2 0を越え、 また加熱処理後の 蛍光発光強度の増加量 (B h— B 0) が 3 0を越えることがあり好ましくない。
また、 溶融重縮合チップの固相重合前の保管は、 前記の条件下においても最大 1 0日間が限 度であり、 出来るだけ短時間にすることが望ましい。 溶融重縮合ポリエステルを空気中に長時 間放置後に固相重合することは避けなければならない。
但し、 溶融重縮合反応装置と固相重合装置が直結して連続運転される場合には、 溶融重縮合ポ リマーの保管が 1日以内であれば大気下保管でも得られた固相重合ポリエステルの蛍光発光特 性には影響しないようにすることも可能である。
また、 本発明における各工程から排出される不活性気体は、 モノマーなどの固形物、 水、 ェ チレングリコール、 アルデヒドなどの揮発性物質などの含有化合物を適切な設備によって除去 し、 また新鮮な不活性気体と混合したり、 脱酸素剤と接触させて酸素濃度を前記のように低減 させて再使用することが出来る。
さらに、 予備結晶化や固相重合の際には、 ポリエステルチップの長時間滞留を少なくするこ とが必要である。 ポリエステルチップの滞留があると、 チップの中には必要以上に熱履歴のか かったものが混じり、 全体として蛍光発光強度 ( B 0 ) が 2 0を越え、 また加熱処理後の蛍光 発光強度の増加量 (B h— Β 0) が 3 0を越えて高くなることがある。 このためには予備結晶 化装置や固相重合装置にはチップゃフアイン等の形状異常品が長期滞留する可能性があるデッ ドスペースがないことが大切である。 また、 予備結晶化や固相重合装置では導入された樹脂が 順次排出される構造とすることが好ましく、 樹脂の平均滞留時間を tとすると、 0 . 9 tから 1 . 1 tの間に 9 5重量%、 好ましくは 9 8重量%、 さらに好ましくは 9 9重量%の樹脂が排 出されるような装置とすること力好ましい。 予備結晶化装置としては、 前記のような装置を用 いることが好ましい。 また固相重合装置としては、 縦型のホッパータイプの固相重合反応器で、 固相重合されたチップの排出口が設置される下部の逆円錐状部分の頂角の角度をチップの安息 角より適宜求めた角度にし、 チップ出口にチップの素抜けを防止するためのパッフルコーンな どの付属設備を設置したものなどの方式であることが好ましい。
順次スムーズに排出されなかったりデッドスペースがあると、 そこに長期滞留したチップ等 は熱履歴が大きくなり、 このチップが混入した場合蛍光発光強度 (B0) が 20を越え、 また 加熱処理後の蛍光発光強度の増加量 (B h— B 0) が 30を越えて髙くなることがあり問題と なる可能性が非常に高い。
なお、 前記で用いる不活性気体としては、 窒素ガス、 炭酸ガス、 ヘリウムガスなどが挙げら れるが、 窒素ガスが最も好都合である。
本発明のポリエステル樹脂、 特に、 主たる繰り返し単位がエチレンテレフタレートから構成 されるポリエステル樹脂の極限粘度は、 0. 55〜2. 00デシリットル/グラム、 好ましく は 0. 60〜1. 50デシリットル/グラム、 さらに好ましくは 0. 65〜1. 00デシリツ トル/グラム、 最も好ましくは 0. 65-0. 90デシリットル/グラムの範囲である。 ポリ エステル樹脂の極限粘度が 0. 55デシリットルノグラム未満では、 得られた成形体等の機械 的特性が悪い。 また、 ポリエステル樹脂の極限粘度が 2. 00デシリットル Zグラムを越える 場合は、 成形機等による溶融時に樹脂温度が高くなつて熱分解が激しくなり、 保香性に影響を 及ぼす遊離の低分子量化合物が増加したり、 成形体が黄色に着色する等の問題が起こる。
また本発明のポリエステル樹脂、 特に、 主たる構成単位が 1, 3—プロピレンテレフタレ一 卜から構成されるポリエステル樹脂の極限粘度は、 0. 50~2. 00デシリットル Zグラム、 好ましくは 0. 55~1. 50デシリットル/グラム、 さらに好ましくは 0. 60〜1. 00 デシリットル/グラムの範囲である。 極限粘度が 0. 50デシリットル グラム未満では、 得 られた繊維の弾性回復および耐久性が悪くなり問題である。 また極限粘度の上限値は、 2. 0 0デシリツトルノグラムであり、 これを越える場合は、 溶融紡糸時に樹脂温度が高くなつて熱 分解が激しくなり、 分子量の低下が激しく、 また黄色に着色する等の問題が起こる。
また本発明のポリエステル樹 '脂は、 これを 180 の温度で 10時間加熱処理したときの力 ラ一b値の増加量が 4以下、 より好ましくは 3. 5以下、 さらに好ましく 3. 0以下、 最も好 ましくは 2. 0以下であることが好ましい。 前記の加熱処理後の力ラ一 b値の増加量が 4を越 える場合は、 得られた成形体等の色相が非常に黄色くなり問題となる。 本発明のポリエステル樹脂、 特に、 主たる繰り返し単位がエチレンテレフ夕レートから構成 され、 結晶化もしくは固相重合処理を施されたポリエステル樹脂のチップの密度は、 1. 37 g/cm3以上、 好ましくは 1. 38〜; 1. 43 g/cm3、 より好ましくは 1. 39〜1. 42 gZ cm3であることが好ましい。
また本発明のポリエステル樹脂中に共重合されたジアルキレングリコール含有量は、 前記ポ リエステル樹脂を構成するグリコール成分の好ましくは 0. 5〜7. 0モル%、 より好ましく は 1. 0〜6. 0モル%、 さらに好ましくは 1. 0〜5. 0モル%である。 ジアルキレングリ コール量が 7. 0モル%を越える場合は、 熱安定性が悪くなり、 成型時に分子量低下が大きく なったり、 またアルデヒド類の含有量の増加量が大となり好ましくない。 またジアルキレング リコール含有量が 0. 5モル%未満のポリエステル樹脂を製造ずるには、 エステル交換条件、 エステル化条件あるいは重縮合条件として非経済的な製造条件を選択することが必要となり、 コストが合わない。 ここで、 ポリエステル樹脂中に共重合されたジアルキレングリコールとは、 例えば、 主たる構成単位がエチレンテレフ夕レートであるポリエステル樹脂の場合には、 ダリ コ—ルであるエチレングリコールから製造時に副生したジェチレングリコールのうちで、 前記 ポリエステル樹脂に共重合したジエチレングリコール (以下、 DEGと略称する) のことであ り、 1, 3—プロピレンテレフタレ一トを主たる構成単位とするポリエステル樹脂の場合には、 グリコールである 1, 3—プロピレングリコールから製造時に副生したジ (1, 3—プロピレ ングリコール) (またはビス (3—ヒドロキシプロピル) エーテル) のうちで、 前記ポリエス テル樹脂に共重合したジ (1, 3—プロピレングリコール (以下、 DPGと称する) ) のこと である。
そして本発明のポリエステル樹脂、 特に、 主たる繰り返し単位がエチレンテレフタレートか ら構成されるポリエステル樹脂に共重合されたジエチレングリコール量は前記のポリエステル 樹脂を構成するグリコ一ル成分の 1. 0〜5. 0モル%、 好ましくは 1. 3〜4. 5モル%、 更に好ましくは 1. 5〜4. 0モル%である。 ジエチレングリコール量が 5. 0モル%を越え る場合は、 熱安定性が悪くなり、 成形時に分子量低下が大きくなつたり、 またァセトアルデヒ ド含有量やホルムアルデヒド含有量の増加量が大となり好ましくない。 またジエチレンダリコ ール含有量が 1. 0モル%未満の場合は、 得られた成形体の透明性が悪くなる。
また、 本発明のポリエステル樹脂のァセトアルデヒドなどのアルデヒド類の含有量は、 50 ppm以下、 好ましくは 30 p pm以下、 より好ましくは 10 p pm以下であることが望まし レ^ 特に、 本発明のポリエステル樹脂が、 ミネラルウォー夕等の低フレーパー飲料用の容器の 材料として用いられる場合には、 前記ポリエステル樹脂のアルデヒド類の含有量は 8 p pm以 下、 好ましくは 6 ppm以下、 より好ましくは 5 p pm以下であることが望ましい。 アルデヒ ド類含有量が 50 p pmを超える場合は、 このポリエステル樹脂から成形された成形体等の内 容物の香味保持性の効果が悪くなる。 また、 これらの下限は製造上の問題から、 0. l ppb であることが好ましい。 ここで、 アルデヒド類とは、 ポリエステル樹脂がエチレンテレフタレ —トを主たる構成単位とするポリエステル樹脂の場合はァセトアルデヒドであり、 1, 3—プ ロピレンテレフタレートを主たる構成単位とするポリエステル樹脂の場合はァリルアルデヒド である。
また、 本発明のポリエステル樹脂の環状エステルオリゴマーの含有量は、 前記ポリエステル 樹脂の溶融重縮合体が含有する環状エステルオリゴマーの含有量の 70 %以下、 好ましくは 6 0%以下、 さらに好ましくは 50%以下、 特に好ましくは 35%以下であることが好ましい。 また、 本発明のポリエステル樹脂、 特に、 主たる繰り返し単位がエチレンテレフタレートか ら構成されるポリエステル樹脂の環状 3量体の含有量は 0. 7重量%以下、 好ましくは 0. 5 重量%以下、 さらに好ましくは 0. 40重量%以下である。 本発明のポリエステル樹脂から耐 熱性の中空成形体等を成形する場合は加熱金型内で熱処理を行なうが、 環状 3量体の含有量が 0. 7重量%以上含有する場合には、 加熱金型表面へのオリゴマー付着が急激に増加し、 得ら れた中空成形体等の透明性が非常に悪化する。
本発明のポリエステル樹脂のチップの形状は、 シリンダー型、 角型、 球状または扁平な板状 等の何れでもよく、 その平均粒径は、 通常 1. 0〜5mm、 好ましくは 1. 1〜4. 5mm、 さらに好ましくは 1. 2〜4. 0mmの範囲である。 例えば、 シリンダー型の場合は、 長さは 1. 0〜4mm、 径は 1. 0 ~4mm程度であるのが実用的である。 球状粒子の場合は、 最大 粒子径が平均粒子径の 1. 1〜2. 0倍、 最小粒子径が平均粒子径の 0. 7倍以上であるのが 実用的である。 また、 チップの重量は 2〜4 OmgZ個の範囲が実用的である。
また、 本発明のポリエステル樹脂を 290 の温度で 60分間溶融した時の環状エステルオ リゴマーの増加量が 0. 50蓴量%以下であることが好ましく、 より好ましくは 0. 30重 量%以下、 さらに好ましくは 0. 10重量%以下であることが好ましい。 290での温度で 6 0分間溶融した時の環状エステルオリゴマーの増加 fiが 0. 50重量%を越えると、 成形の樹 脂溶融時に環状エステルオリゴマー量が増加し、 加熱金型表面へのオリゴマー付着が急激に増 加し、 得られた中空成形体等の透明性が非常に悪化する。
2 9 0。(:の温度で 6 0分間溶融した時の環状エステルオリゴマーの増加量が 0 . 5 0重量% 以下である本発明のポリエステル樹脂は、 溶融重縮合後や固相重合後に得られたポリエステル 樹脂の重縮合触媒を失活処理することにより製造することができる。 ポリエステル樹脂の重縮 合触媒を失活処理する方法としては、 溶融重縮合後や固相重合後にポリエステル樹脂チップを 水や水蒸気または水蒸気含有気体と接触処理する方法が挙げられる。
前記のポリエステル樹脂チップを水や水蒸気または水蒸気含有気体と接触処理する方法を次 に述べる。 なお、 本発明においては前記の水や水蒸気などによるポリエステル樹脂チップの接 触処理を水処理と称する。
水処理方法としては、 水中に浸ける方法やシャワーでチップ上に水をかける方法等が挙げら れる。 処理時間としては 5分〜 2日間、 好ましくは 1 0分〜 1日間、 さらに好ましくは 3 0分 〜 1 0時間で、 水あるいは水蒸気の温度としては 2 0〜1 8 0 "Ό、 好ましくは 4 0〜Γ 5 0 °C、 さらに好ましくは 5 0〜 1 2 0 °Cである。
以下に水処理を工業的に行なう方法を例示するが、 これに限定するものではない。 また処理 方法は連続方式、 バッチ方式のいずれであっても差し支えないが、 工業的に行なうためには連 続方式の方が好ましい。
ポリエステル樹脂のチップをバッチ方式で水処理する場合は、 サイロタイプの処理槽が挙げ られる。 すなわちパッチ方式でポリエステル樹脂のチップをサイ口へ受け入れ水処理を行なう。 ポリエステル樹脂のチップを連続方式で水処理する場合は、 塔型の処理槽に継続的又は間欠的 にポリエステル樹脂のチップを上部より受け入れ、 水処理させることができる。
ポリエステル樹脂チップを工業的に水処理する場合、 処理に用いる水が大量であることから 天然水 (工業用水) や排水を再利用して使用することが多い。 通常この天然水は、 河川水、 地 下水などから採取したもので、 水 (液体) の形状を変えないまま、 殺菌、 異物除去等の処理を したものを言う。 また、 一般に工業的に用いられる天然水には、 自然界由来の、 ケィ酸塩、 ァ ルミノケィ酸塩等の粘土鉱物を代表とする無機粒子や細菌、 バクテリア等や、 腐敗した植物、 動物に起源を有する有機粒子を多く含有している。 これらの天然水を用いて水処理を行なうと、 ポリエステル樹脂チップに粒子が付着、 浸透して結晶核となり、 このようなポリエステル樹脂 チップを用いた中空成形体の透明性が非常に悪くなる。 したがって、 水処理方法が連続方式の場合であってもバッチ方式の場合であっても、 系外か ら導入する水の中に存在する粒径が 1〜25 /imの粒子の個数を X、 ナトリウムの含有量を N、 マグネシウムの含有量を M、 カルシウムの含有量 Cを、 珪素の含有量を Sとした場合、 下記 (5) 〜 (9) の少なくとも一つを満足させて水処理を行なうのが望ましい。
1 ≤ X < 50000 (個/ 10ml) (5)
0. 00 1 <: N < 1. 0 (p pm (6)
0. 00 1 M <: 0. 5 ( p p m (7)
0. 00 1 < C ≤ 0. 5 (p pm) (8)
0. 01 <: S 2. 0 (p pm; (9)
水処理槽に導入する水中の粒子個数、 ナトリウム、 マグネシウム、 カルシウム、 珪素の含有 量のいずれかを上記範囲に設定することにより、 スケールと呼ばれる酸化物や水酸化物等の金 属含有物質が処理水中に浮遊、 沈殿、 さらには処理槽壁ゃ配管壁に付着したりし、 これがポリ エステル樹脂チップに付着、 浸透して、 成形時での結晶化が促進され、 透明性の悪いボトルに なることを防ぐことができる。
水処理槽に導入する水中の粒子数を 50000個/ 10 m 1以下にする方法としては、 工業 用水等の自然水を処理槽に供給するまでの工程の少なくとも 1ケ所以上に粒子を除去する装置 を設置する。 これらの装置としてはチップ冷却水の処理に使用するのと同様の装置が挙げられ る。
また水処理槽に導入する水中のナトリウムやマグネシウム、 カルシウム、 珪素を低減させる ために、 工業用水等の自然水を処理槽に供給するまでの工程で少なくとも 1ケ所以上にナトリ ゥムゃマグネシウム、 カルシウム、 珪素を除去する装置を設置する。 これらの装置としてはチ ップ冷却水の処理に使用するのと同様の装置が挙げられる。
また、 本発明においては、 連続水処理方式の場合は系外から導入される処理水及び/又は処 理槽中の処理水の溶存酸素濃度を約 18 cm3/ 1以下に維持して水処理し、 またバッチ方式 の場合は系外から充填される処理水及び Z又は処理槽中の処理水の溶存酸素濃度を約 18 cm V 1以下に維持して水処理することが好ましい。
また、 同時に、 処理層中の処理水の溶存酸素濃度を Y cm3 1、 処理水の温度を Xtとし た場合、 好ましくは Y≤23. 0-0. 5. 5Χ10—2Χ、 より好ましくは 22. 5— 0. 5. 5X 10-2X、 さらに好ましくは Y≤22. 0— 0. 5. 5X 10— 2Χ、 最も好ま しくは Υ≤21. 5-0. 5. 5Χ 10— 2Χの関係を満たす。
なお、 通常水に対する酸素溶解度は、 1気圧、 80°Cで 17. 6 cm3/ 1程度、 90 で 17. 2 cm3/ 1程度であるが、 水を加熱する場合では酸素が抜け切らずに過飽和になり溶 解度以上に酸素が溶存したり、 処理槽底部では水の自重による圧力でこれ以上の酸素が溶解す ることになる。 また、 重縮合後長時間放置したポリエステル樹脂チップを水処理する場合には チップに吸収された酸素が処理水中に放出され、 過飽和の状態になる。 特に、 このように 8 0でを越える高温で水処理する場合には、 温度と過飽和等の酸素の影響で水処理槽中に溶解し たモノマーやオリゴマー等の不純物の酸化反応が進み、 残留異味、 異臭が強くなると考えられ る。 また、 樹脂チップ内に酸素が入り込み、 チップが蛍光を発しやすくなると考えられる。 系外から導入される水は、 水処理槽に直接導入してもよいし、 またリサイクル水の貯槽ゃリ サイクル水の送りの配管中においてリサイクル水と混合後水処理槽に導入してもよい。
水処理方法が連続的に、 又はバッチ的のいずれの場合であっても、 処理槽から排出した処理 水のすべて、 あるいは殆どを工業排水としてしまうと、 新しい水が多量に入用であるばかりで なく、 排水量増大による環境への影響が懸念される。 即ち、 処理槽から排出した少なくとも一 部の処理水を、 水処理槽へ戻して再利用することにより、 必要な水量を低減し、 また排水量増 大による環境への影響を低減することが出来、 さらには水処理槽へ返される排水がある程度温 度を保持していれば、 処理水の加熱量も小さく出来る。
しかし処理槽から排出される処理水には、 処理槽にポリエステル樹脂のチップを受け入れる 段階で既にポリエステル樹脂のチップに付着し、 前記の水洗処理によって除去されなかったフ アインゃフィルム状物や、 水処理時にポリエステル樹脂のチップ同士あるいは処理槽壁との摩 擦で発生するポリエステル樹脂のファインやフィルム状物が含まれている。
したがって、 処理槽から排出した処理水を再度処理槽へ戻して再利用すると、 処理槽内の処 理水に含まれるファインやフィルム状物含有量は次第に増えていく。 そのため、 処理水中に含 まれているファインやフィルム状物が処理槽壁ゃ配管壁に付着して、 配管を詰まらせることが ある。
また処理水中に含まれているフアインゃフィルム状物が再びポリエステル樹脂のチップに付 着し、 この後、 水分を乾燥除去する段階でポリエステル樹脂のチップにフアインゃフィルム状 物が静電効果により付着するため、 乾燥後にファインゃフィルム状物除去を行なっても除去が 困難となる。 このフアインゃフィルム状物には結晶化促進効果があるため、 ポリエステル樹脂 の結晶性が促進されて、 透明性の悪いポトルとなったり、 またロ栓部結晶化時の結晶化度が過 大となり、 口栓部の寸法が規格に入らなくなりロ栓部のキヤッビング不良となるのである。 したがって、 本発明において、 水処理槽から排出された後、 少なくともその一部を再度処理 槽へ戻して再利用される処理水中に存在する粒径が 1〜40 : mの粒子を 100000個 Z 1 0ml以下、 好ましくは 80000個ノ 10m 1以下、 さらに好ましくは 50000個 Z 10 m 1以下に維持するのが望ましい。 ここでは、 このようにして処理槽に戻して再利用される処 理水をリサイクル水と称する。
以下に該リサイクル水中の粒径が 1〜 40 mの粒子数を 100000個/ 10 m 1以下に する方法を例示するが、 本発明はこの限りではない。 該リサイクル水中の粒径が 1~40 /im の粒子数を 100000個/ 10ml以下にする方法としては、 処理槽から排出した処理水が 再び処理槽に返されるまでの工程で少なくとも 1ケ所以上に粒子を除去する装置を設置する。 粒子を除去する装置としてはフィルター濾過装置、 膜濾過装置、 沈殿槽、 遠心分離器、 泡沫同 伴処理機等が挙げられる。 例えばフィルタ一濾過装置であれば、 方式として自動自己洗浄方式、 ベルトフィルタ—方式、 バグフィルター方式、 カートリッジフィルター方式、 遠心濾過方式等 の濾過装置が挙げられる。 中でも連続的に行なうにはベルトフィルタ—方式、 遠心瀘過方式、 バグフィルタ一方式の濾過装置が適している。 またベルトフィルター方式の濾過装置であれば 濾材としては、 紙、 金属、 布等が挙げられる。 また粒子の除去と処理水の流れを効率良く行な うため、 フィルタ一の目のサイズは 5〜100 m 好ましくは 5〜70 ; m、 さらに好まし くは 5〜40 mがよい。
またポリエステル樹脂のチップと水蒸気または水蒸気含有ガスとを接触させて処理する場合 は、 50〜 150で、 好ましくは 50〜 110 °Cの温度の水蒸気または水蒸気含有ガスを好ま しくは粒状ポリエステル樹脂 lkg当り、 水蒸気として 0. 5 g以上の量で供給させるか、 ま たは存在させて粒状ポリエステル樹脂と水蒸気とを接触させる。
これらのガス中の酸素濃度は、 50ppm以下、 好ましくは 10 p pm以下、 さらに好まし くは 5 p pm以下であることが好ましい。
この、 ポリエステル桉 ί脂のチップと水蒸気との接触は、 通常 10分間〜 2日間、 好ましくは 20分間〜 10時間行われる。 以下に粒状ポリエステル樹脂と水蒸気または水蒸気含有ガスとの接触処理を工業的に行なう 方法を例示するが、 これに限定されるものではない。 また処理方法は連続方式、 バッチ方式の いずれであっても差し支えない。
ポリエステル樹脂のチップをバッチ方式で水蒸気と接触処理をする場合は、 サイ口タイプの 処理装置が挙げられる。 すなわちポリエステル樹脂のチップをサイロへ受け入れ、 バッチ方式 で、 水蒸気または水蒸気含有ガスを供給し接触処理を行なう。
. ポリエステル樹脂のチップを連続的に水蒸気と接触処理する場合は塔型の処理装置に連続で 粒状ポリエチレンテレフタレ一トを上部より受け入れ、 並流あるいは向流で水蒸気を連続供給 し水蒸気と接触処理させることができる。
上記の如く、 水又は水蒸気で処理した場合は粒状ポリエステル樹脂を、 例えば振動篩機、 シ モンカ—ターなどの水切り装置 水切りし、 必要に応じて次の乾燥工程へ移送する。
水又は水蒸気と接触処理したポリエステル樹脂のチップの乾燥は通常用いられるポリエステ ル樹脂の乾燥処理を用いることができる。 連続的に乾燥する方法としては、 上部よりポリエス テル樹脂のチップを供給し、 下部より乾燥ガスを通気するホッパー型の通気乾燥機が通常使用 される。
パッチ方式で乾燥する乾燥機としては大気圧下で脱湿した不活性気体を通気しながら乾燥し てもよい。
乾燥温度は約 5 0 °C〜約 1 5 0 °C、 好ましくは約 6 0 °C〜約 1 4 0 °Cであり、 乾燥時間は 3 時間〜 1 5時間、 好ましくは 4時間〜 1 0時間である。
乾燥ガスとしては、 露点が一 2 5 以下で、 酸素濃度が 1 0 0 p p m以下、 好ましくは 8 0 p p m以下、 さらに好ましくは 5 0 p p m以下、 さらに一層好ましくは 3 0 p p m以下、 最も 好ましくは 1 0 p p m以下の不活性気体が好ましい。
なお、 前記で用いる不活性気体としては、 窒素ガス、 炭酸ガス、 ヘリウムガスなどが挙げら れるが、 窒素ガスが最も好都合である。
但し、 不活性気体を用いると経済性が問題になるので、 露点が— 2 5 °C以下であり、 S O x が約 0 . 0 1 p p m以下、 N O Xが約 0 . 0 1 p m以下の脱湿空気を用いて約 5 0 °C〜約 1 0 0での温度で、 約 3時間〜約 1 0時間の時間で乾燥することも可能である。
また、 乾燥装置では導入された榭脂が順次排出される構造とすることが好ましく、 樹脂の平 均滞留時間を tとすると、 0 . 9 tから 1 . 1 tの間に 9 5重量%、 好ましくは 9 8重量%、 さらに好ましくは 9 9重量%の樹脂が排出されるような装置とすることが好ましい。 これらの 装置としては、 縦型のホッパータイプの乾燥機で、 乾燥されたチップの排出 riが設置される下 部の逆円錐状部分の頂角の角度をチップの安息角より適宜求めた角度にし、 バッフルコーン等 を設置したものや横型乾燥機で回転軸に輸送用パドルやディスクなどを設置したものなどが好 ましい。
順次スムーズに排出されなかったりデッドスペースがあると、 そこに長期滞留したチップ等 は熱履歴が大きくなり、 このチップが混入した場合蛍光発光強度 (B 0) が 2 0を越え、 また 加熱処理後の蛍光発光強度の増加量 (B h— B 0) が 3 0を越えて高くなることがあり問題と なる可能性が非常に高い。
また、 ポリエステル樹脂を水と分離する際、 及びこれ以降のポリエステル樹脂と接触する気 体も乾燥時の気体と同様の酸素濃度の不活性気体もしくは脱湿空気であることが好ましい。 種々の乾燥条件が上記の範囲を外れる場合には、 ポリエステル樹脂の蛍光発光強度 (B 0) が 2 0を越え、 また加熱処理時の蛍光発光強度の増加量 (B h— B o) が 3 0を越えて高くな ることがあり問題となる可能性が非常に高い。
また、 乾燥装置にはチップやファイン等の形状異常品が長期滞留する可能性があるデッドス ペースがないことも大切である。 デッドスペースがあると、 そこに長期滞留したチップ等は蛍 光発光強度 (B o) が 2 0を越え、 また加熱処理時の蛍光発光強度の増加量 (B h— B 0) が 3 0を越えて髙くなることがあり問題となる。
また重縮合触媒を失活させる別の手段として、 リン化合物を溶融重縮合後または固相重合後 のポリエステルの溶融物に添加、 混合して重縮合触媒を不活性化する方法が挙げられる。 溶融重縮合ポリエステルの場合には、 溶融重縮合反応終了後のポリエステル樹脂と、 リン化 合物を配合したポリエステル桉 ί脂とを溶融状態で混合できるラインミキサー等の機器中で混合 して重縮合 fflj媒を不活性化する方法が挙げられる。
また固相重合ポリエステル檀 ί脂にリン化合物を配合する方法としては、 固相重合ポリエステ ル樹脂にリン化合物をドライブレンドする方法やリン化合物を溶融混練して配合したポリエス テルマスターパッチチップと固相重合ポリエステル if脂チップを混合する方法によって所定量 のリン化合物をポリエステル ί針脂に配合後、 押出機や成形機中で溶融し、 重縮合触媒を不活性 化する方法等が挙げられる。 使用されるリン化合物としては、 リン酸、 亜リン酸、 ホスホン酸およびそれらの誘導体等が 挙げられる。 具体例としては、 前記の溶融重縮合工程おいて用いられる種々のリン化合物が挙 げられる。
一般的にポリエステル樹脂は、 製造工程中で発生する、 共重合成分及び前記共重合成分含量 がポリエステル樹脂のチップと同一である微粉、 すなわち、 ファインをかなりの量含んでいる。 このようなフアインはポリエステル樹脂の結晶化を促進させる性質を持つており、 多量に存在 する場合には、 このようなフアインを含む前記ポリエステル樹脂組成物から成形したポリエス テル成形体の透明性が非常に悪くなつたり、 またポトルの場合には、 ポトルロ栓部結晶化時の 収縮量が規定値の範囲内に収まらずキヤップで密栓できなくなるという問題が生じる。 したが つて、 本発明のポリエステル樹脂中での前記ポリエステルと同一組成のポリエステルのフアイ ンの含有量は、 0 . 1 ~ 1 0 0 0 0 p p m、 好ましくは 0 . 5 ~ 1 0 0 0 p p m、 より好まし くは l ~ 5 0 0 p p m、 さらに好ましく;!〜 3 0 0 p p m、 最も好ましくは 1〜: L 0 0 p p m であることが好ましい。 配合量が 0 . 1 p p m未満の場合は、 結晶化速度が非常におそくなり、 例えば、 中空成形容器のロ栓部の結晶化が不十分となり、 このためロ栓部の収縮量が規定値の 範囲内に収まらず、 キヤッピング不可能となったり、 また耐熱性中空成形容器を成形する延伸 熱固定金型の汚れが激しく、 透明な中空成形容器を得ようとすると頻繁に金型掃除をしなけれ ばならない。 また 1 0 0 0 0 p p mを超える場合は、 結晶化速度が早くなると共に、 その速度 の変動も大きくなる。 したがって、 シート状物の場合は、 透明性や表面状態が悪くなり、 これ を延伸した場合、 厚み斑が悪くなる。 また中空成形体のロ栓部の結晶化度が過大、 かつ変動大 となり、 このためロ栓部の収縮量が規定値範囲内におさまらないためロ栓部のキヤッピング不 良となり内容物の漏れが生じたり、 また中空成形用予備成形体が白化し、 このため正常な延伸 が不可能となる。 特に、 中空成形体用のポリエステル樹脂組成物のファイン含有量は、 0 . 1 〜 5 0 0 p p mが好ましい。
またこのようなファインやフィルム状物には、 正常な融点より約 1 0 ~ 2 0で以上高い融点 を持つものが含まれている場合がある。 溶融重縮合ポリエステルチップや固相重合ポリエステ ルチップに衝撃力やせん断力がかかる送り装置ゃチップにせん断力がかかる攪拌機などを用い たりする場合には、 正常な融点より約 1 0 ~ 2 O :以上高い融点のファインやフィルム状物が 非常に多量に発生する。 これは、 チップ表面に加わる衝撃力等の大きな力のためにチップが発 熱すると同時にチップ表面においてポリエステルの配向結晶化が起こり、 緻密な結晶構造が生 じるためではないかと推定される。 このような高融点のファイン等を含有するポリエステル樹 脂をさらに固相重合したり、 後記する水との接触処理などを行なうと、 ファイン等の融点はさ らに高くなることがある。 本発明のポリエステル樹脂が P E Tの場合には、 2 6 0 〜 2 6 5 °Cを超える融点を持つファインやフィルム状物が問題となる場合がある。
なお本発明においては、 チップやファイン等の融点は、 示差走査熱量計 (D S C ) を用いて 下記の方法で測定するが、 D S Cの融解ピーク温度を融点と呼ぶ。 そして、 この融点を表す融 解ピークは、 1つ、 またはそれ以上の複数の融解ピークから構成され、 本発明では、 融解ピー クが 1つの場合には、 そのピーク温度を、 また融解ピークが複数個の場合には、 これらの複数 の融解ピークの内、 最も高温側の融解ピーク温度を、 「ファインの融解ピーク温度の最も高温 側のピーク温度」 と称して、 実施例等においては 「ファインの融点」 とする。
このような性状のフアインゃフィルム状物は、 ポリエステル樹脂の結晶化をさらに一層促進 させる効果を持つており、 多量に存在する場合には得られた成形体の透明性が非常に悪くなり、 時には結晶化で白化した異物状欠点の原因となる可能性がある。
しかし、 前記の髙融点のファィン等を含むポリエステル樹脂ゃポリエステル樹脂組成物から 透明性や延伸性の良好な中空成形用予備成形体ゃシート状物を得ようとする場合には、 例えば P E Tでは、 3 0 0で以上の高温度において溶融成形しなければならない。 ところが、 このよ うな 3 0 0 以上の高温度では、 ポリエステルの熱分解が激しくなり、 ァセトアルデヒドなど のアルデヒド類等の副生物が大量に発生し、 その結果得られた成形体等の内容物の風味などに 大きな影響を及ぼすことになるのである。 また、 本発明のボリエステル組成物が、 下記のよう なポリオレフイン樹脂、 ポリアミド樹脂、 ポリアセタール樹脂からなる群から選ばれた少なく とも一種の樹脂を含む場合は、 一般にこれらの樹脂は、 本発明のポリエステル樹脂より熱安定 性に劣る場合が多いので、 上記のごとく 3 0 O t以上の高温度の成形においては熱分解を起し て多量の副生物を発生させるため、 得られた成形体等の内容物の風味などにより一層大きな影 響を及ぼすことになる。
また、 本発明のポリエステル樹脂がこのようなファインを含まないようにする方法の具体的 な例をつぎに説明する。 溶融重縮合ポリエステルの場合は、 溶融重縮合後ダイスより溶融ポリ エステルを水中に押出して水中でカットする方式、 あるいは大気中に押出した後、 直ちに冷却 水で冷却しながらカットする方式によってチップ化し、 ついでチップ状に形成したポリエステ ルチップを水切り後、 振動篩工程および気体流による気流分級工程、 あるいは水洗処理工程に やバケツト式コンベヤー輸送方式により貯蔵用タンクに送る。
前記タンクからのチップの抜出はスクリュー式フィーダ一により、 次工程へはプラグ輸送方 式やバケツト式コンベヤー輸送方式によって輸送し、 前記接触処理工程の直前や直後に空気流 による気流分級工程によってフアイン除去処理を行う。
次いで、 前記のファインやフィルム状物の除去処理を行った溶融重縮合ポリエステルを再度、 固相重合工程直前で空気流による気流分級工程によってフアインゃフィルム状物の除去を行い、 固相重合工程へ投入する。 溶融重縮合したプレボリマーチップを固相重合設備へ輸送する際や 固相重合後のポリエステルチップを篩分工程、 前記接触処理工程ゃ貯槽等へ輸送する際には、 これらの輸送の大部分はプラグ輸送方式やパケット式コンペャ輸送方式を採用し、 また結晶化 装置や固相重合反応器からのチップの抜出しはスクリュ—フィーダ一を使用するなどして、 チ ップと工程の機器や輸送配管等との衝撃を出来るだけ抑えることができる装置を使用する。 ま た、 これらの輸送配管中やファインやフィルムの除去処理においても酸素濃度が 1 0 0 p p m 以下、 好ましくは 8 0 p p m以下、 さらに好ましくは 5 0 p p m以下、 さらに一層好ましくは 3 0 p p m以下、 最も好ましくは 1 0 p p m以下の不活性気体を用いることが好ましい。
また、蛍光を発光するチップを含有するポリエステル樹脂は、通常は、同程度に蛍光を発光するファイン を含む。このような蛍光を発光したファインの結晶化促進効果は非常に大き 上記と同程度、あるいは、 それ以上に種々の問題を引き起こすので、このようなファインの含有量を可能な限り減らすようにすること が重要である。
本発明のポリエステル、 特にエチレンテレフ夕レートを主たる繰り返し単位とするポリエス テル樹脂は、 これを射出成形して得られた厚さ 5 mmの成形板のヘイズが 3 0 %以下、 また射 出成形して得た厚さ 2 mmの成形体からの試験片の昇温時の結晶化温度 (以下 「T c l」 と称 する) が、 1 5 0〜1 7 5 °Cの範囲であることが望ましい。 成形板のヘイズは、 好ましくは 1 5 %以下、 さらに好ましくは 1 0 %以下であり、 また昇温時の結晶化温度 (T e l ) は、 好ま しくは 1 5 3〜1 7 3 、 さらに好ましくは 1 5 5〜 1 7 0 °Cの範囲である。
成形板のヘイズが 3 0 %を超える場合は, 得られた中空成形体の透明性が悪くなり、 特に延 伸中空成形体の場合には問題となることがある。 また、 T c 1が 1 7 5 を越える場合は、 加 熱結晶化速度が非常に遅くなり中空成形体ロ栓部の結晶化が不十分となり、 内容物の漏れの問 題が発生する。 また、 Tc 1が 150°C未満の場合は、 中空成形体の透明性が低下し問題とな ることがある。
また、 本発明の、 エチレンテレフ夕レートを主たる繰り返し単位とするポリエステル樹脂は、 これを射出成形して得られた厚さ 3 mmの成形板を熱機械分析 (T A) により測定した寸法 変化率が 1. 0%〜7. 0%、 好ましくは 1. 2%〜6. 0%、 さらに好ましくは 1. 3%〜 5. 0%の範囲であることが望ましい。 '
寸法変化率が 1. 0%以下の場合は、 耐熱性中空成形容器の透明性が低下し、 特に 1. 5リ ッター以上の大型中空成形容器で問題となる。 また、 寸法変化率が 1. 0%に達しないポリエ ステル樹脂を製造するには、 設備費が高くなり、 生産性も非常に悪くなるなど問題点が多レ ^。 また、 寸法変化率が 7. 0%を越える場合は、 加熱結晶化速度が遅いために耐熱性中空成形体 ロ栓部の加熱処理時の収縮量が大きくなり、 内容物の漏れの問題が発生したり、 また中空成形 容器の生産性が悪くなり問題となる。 またシー卜の真空成形の場合は成形後の収縮率が大とな り, 蓋の開封性や蓋との嵌合性が悪くなり問題となる。
なお、 ここで、 本発明のポリエステルを特定する成形体の寸法変化率は、 (株) マック -サ ィエンス社製の熱機械分析 (TMA) 、 タイプ TMA4000 Sを用いて、 後記する方法によ つて測定した。
また、 本発明のポリエステル樹脂組成物は、 前記のポリエステル樹脂とポリオレフイン樹脂、 ポリアミド樹脂、 ポリァセタ一ル樹脂からなる群から選ばれた少なくとも一種の樹脂 0. 1 p pb〜50000p pmとを配合してなることを特徴とするボリエステル樹脂組成物であるこ とが好ましい。
本発明において用いられる前記樹脂のポリエステル樹脂組成物への配合割合は、 0. lpp b〜50000 p pm、 好ましくは 0. 3 p p b〜 10000 p pm、 より好ましくは 0. 5 ppb~1000 ppm、 さらに好ましくは 0. 5ppb〜100 p p bである。 配合量が 0· l ppb未満の場合は、 結晶化速度が非常におそくなり、 中空成形体のロ栓部の結晶化が不十 分となるため、 サイクルタイムを短くするとロネ全部の収縮量が規定値範囲内におさまらないた めキヤッビング不良となったり、 また、 耐熱性中空成形体を成形する延伸熱固定金型の汚れが 激しく、 透明な中空成形体を得ようとすると頻繁に金型掃除をしなければならない。 また 50 000 ppmを超える場合は、 結晶化速度が早くなり、 中空成形体のロ栓部の結晶化が過大と なり、 このためロネ全部の収縮収縮 fiが規定値範 ffl内におさまらないためキヤッビング不良とな り内容物の漏れが生じたり、 また中空成形体用予備成形体が白化し、 このため正常な延伸が不 可能となることがある。 また、 シート状物の場合、 5 0 0 0 0 p p mを越えると透明性が非常 に悪くなり、 また延伸性もわるくなつて正常な延伸が不可能で、 厚み斑の大きな、 透明性の悪 い延伸フィルムしか得られないことがある。
本発明のポリエステル樹脂組成物に配合されるポリオレフイン樹脂としては、 ポリエチレン 系樹脂、 ポリプロピレン系樹脂、 または en一才レフイン系樹脂が挙げられる。 またこれらの樹 脂は結晶性でも非晶性でもかまわない。
本発明のポリエステル樹脂組成物に配合されるポリエチレン系樹脂としては、 例えば、 ェチ レンの単独重合体、 エチレンと、 プロピレン、 ブテン一 1、 3—メチルブテン一 1、 ペンテン 一 1、 4—メチルペンテン一 1、 へキセン一 1、 才クテン一 1、 デセン一 1等の炭素数 2〜 2 0—程度の他の 一ォレフィンや、 酢酸ピニル、 塩化ビニル、 アクリル酸、 メタクリル酸、 ァク リル酸エステル、 メタクリル酸エステル、 スチレン、 不飽和エポキシ化合物等のビニル化合物 との共重合体等が挙げられる。 具体的には、 例えば、 超低 ·低 ·中 ·高密度ポリエチレン等 (分岐状又は直鎖状) のエチレン単独重合体、 エチレン一プロピレン共重合体、 エチレンーブ テン一 1共重合体、 工チレン _ 4ーメチルペンテン― 1共重合体、 エチレン一へキセン一 1共 重合体、 エチレンーォクテン— 1共重合体、 エチレン一酢酸ビニル共重合体、 エチレンーァク リル酸共重合体、 エチレン—メ夕クリル酸共重合体、 エチレン一アクリル酸ェチル共重合体等 のェチレン系樹脂が挙げられる。
また本発明のポリエステル樹脂組成物に配合されるポリプロピレン系樹脂としては、 例えば、 プロピレンの単独重合体、 プロピレンと、 エチレン、 ブテン一 1、 3—メチルブテン一 1、 ぺ ンテン一 1、 4ーメチルペンテン一 1、 へキセン— 1、 才クテン一 1、 デセン一 1等の炭素数 2 ~ 2 0程度の他の 一才レフインや、 酢酸ビニル、 塩化ビエル、 アクリル酸、 メタクリル酸、 アクリル酸エステル、 メ夕クリル酸エステル、 スチレン等のビニル化合物との共重合体、 ある いはへキサジェン、 ォク夕ジェン、 デカジエン、 ジシクロペン夕ジェン等のジェンとの共重合 体等が挙げられる。 具体的には、 例えば、 プロピレン単独重合体 (ァタクチック、 ァイソタク チック、 シンジオタクチックポリプロピレン) 、 プロピレン一エチレン共重合体、 プロピレン —エチレン一ブテン一 1共重合体等のプロピレン系樹脂が挙げられる。
また本発明のポリエステル樹脂組成物に配合される α—ォレフィン系樹脂としては、 4ーメ チルペンテン一 1等の炭素数 2 ~ 8程度の 一ォレフィンの単独重合体、 それらのひ一才レフ インと、 エチレン、 プロピレン、 ブテン一 1、 3—メチルブテン一 1、 ペンテン一 1、 へキセ ン一 1、 ォクテン一 1、 デセン一 1等の炭素数 2〜20程度の他の 一ォレフインとの共重合 体等が挙げられる。 具体的には、 例えば、 ブテン— 1単独重合体、 4ーメチルペンテン一 1単 独重合体、 ブテン— 1一エチレン共重合体、 ブテン一 1一プロピレン共重合体等のブテン一 1 系樹脂や 4—メチルペンテン一 1と Cs Ci 8の α—才レフインとの共重合体、 等が挙げられ る。
また、 本発明のポリエステル樹脂組成物に配合されるポリアミド樹脂としては、 例えば、 ブ チロラクタム、 <5—バレロラクタム、 ε—力プロラクタム、 ェナントラクタム、 ω—ラウロラ クタム等のラクタムの重合体、 6—アミノカプロン酸、 11一アミノウンデカン酸、 12—ァ ミノドデカン酸等のアミノカルボン酸の重合体、 へキサメチレンジァミン、 ノナメチレンジァ ミン、 デカメチレンジァミン、 ドデカメチレンジァミン、 ゥンデカメチレンジァミン、 2, 2, 4一又は 2, 4, 4—トリメチルへキサメチレンジァミン等の脂肪族ジァミン、 1, 3—又は 1, 4一ビス (アミノメチル) シクロへキサン、 ビス (ρ—アミノシクロへキシルメタン) 等 の脂環式ジアミン、 m—又は ρ—キシリレンジァミン等の芳香族ジアミン等のジァミン単位と、 ダルタル酸、 アジピン酸、 スベリン酸、 セバシン酸等の脂肪族ジカルボン酸、 シクロへキサン ジカルボン酸等の脂環式ジカルボン酸、 テレフタル酸、 イソフタル酸等の芳香族ジカルボン酸 等のジカルボン酸単位との重縮合体、 及びこれらの共重合体等が挙げられ、 具体的には、 例え ば、 ナイロン 4、 ナイロン 6、 ナイロン 7、 ナイロン 8、 ナイロン 9、 ナイロン 11、 ナイ口 ン 12、 ナイロン 66、 ナイロン 69、 ナイロン 610、 ナイロン 611、 ナイロン 612、 ナイロン 6T、 ナイロン 61、 ナイロン MXD6、 ナイロン 6ZMXD6、 ナイロン MXD6 /MXD I、 ナイロン 6ノ 66、 ナイロン 6 / 610、 ナイロン 6/12、 ナイロン 6Z6 T、 ナイロン 6 I 6 Τ等が挙げられる。 またこれらの樹脂は結晶性でも非晶性でもかまわない。 また、 本発明のポリエステル樹脂組成物に配合されるポリァセタール樹脂としては、 例えば ポリアセタール単独重合体や共重合体が挙げられる。 ポリアセタール単独重合体としては、 A STM— D 792の測定法により測定した密度が 1. 40〜1. 42 g/ c m3、 A S TMD - 1238の測定法により、 190 、 荷重 2160 gで測定したメルトフ口一比 (MFR) 力 0. 5〜50 g/10分の範囲のポリアセタールが好ましい。
また、 ポリアセタール共盧合体としては、 ASTM— D 792の測定法により測定した密度 が 1. 38〜: L. 43 gZcm3 ASTMD— 1238の測定法により、 19 Ot:、 荷重 2 1 6 0 gで測定したメルトフロー比 (MF R) が 0 . 4〜5 0 g/ 1 0分の範囲のポリアセ夕 ール共重合体が好ましい。 これらの共重合成分としては、 エチレンオキサイドや環状エーテル が挙げられる。
本発明における前記のポリオレフィン樹脂等を配合したポリエステル樹脂組成物の製造は、 前記ポリエステル樹脂に前記ポリオレフイン樹脂等の樹脂を、 その含有量が前記範囲となるよ うに直接に添加し溶融混練する方法、 または、 マスターバッチとして添加し溶融混練する方法 等の慣用の方法によるほか、 前記樹脂を、 前記ポリエステル樹脂の製造段階、 例えば、'溶融重 縮合時、 溶融重縮合直後、 予備結晶化直後、 固相重合時、 固相重合直後等のいずれかの段階、 または、 製造段階を終えてから成形段階に到るまでの工程などで、 粉粒体として直接に添加す るか、 或いは、 前記ポリエステル樹脂チップを流動条件下に前記樹脂製部材に接触させる等の 方法で混入させる方法、 または前記の接触処理後、 溶融混練する方法等によることもできる。 ここで、 ポリエステル樹脂チップを流動条件下に前記樹脂製の部材に接触させる方法として は、 前記樹脂製の部材が存在する空問内で、 ポリエステル樹脂チップを前記部材に衝突接触さ せることが好ましく、 具体的には、 例えば、 ポリエステル樹脂の溶融重縮合直後、 予備結晶化 直後、 固相重合直後等の製造工程時、 また、 ポリエステル樹脂チップの製品としての輸送段階 等での輸送容器充填 ·排出時、 また、 ポリエステル樹脂チップの成形段階での成形機投入時、 等における気力輸送配管、 重力輸送配管、 サイロ、 マグネットキャッチャーのマグネット部等 の一部を前記樹脂製とする力 または、 前記樹脂をライニングするとか、 或いは前記移送経路 内に棒状又は網状体等の前記樹脂製部材を設置する等して、 ポリエステル樹脂チップを移送す る方法が挙げられる。 ポリエステル樹脂チップの前記部材との接触時間は、 通常、 0 . 0 1秒 〜数分程度の極短時間であるが、 ポリエステル樹脂に前記樹脂を微量混入させることができる。 本発明のポリエステル樹脂やポリエステル樹脂組成物は、 使用済み P E Tポトルをケミカル リサイクル法によつて精製し回収したジメチルテレフ夕レートゃテレフタル酸などの原料を少 なくとも出発原料の一部として用いて得た P E Tや、 使用済み P E Tボトルをメカニカルリサ イクル法により精製し回収したフレーク状 P E Tゃチップ状 P E Tなどと混合して用いること ができる。
本発明のポリエステル樹脂あるいはポリエステル樹脂組成物は、 中空成形体、 トレー、 2軸 延伸フィルム等の包装材、 金属缶被 ¾用フィルム、 モノフィラメントを含む繊維などとして好 ましく用いることが出来る。 また、 本発明のポリエステル樹脂あるいはポリエステル樹脂組成 物は、 多層成形体や多層フィルム等の 1構成層としても用いることが出来る。
本発明のポリエステル樹脂あるいはポリエステル樹脂組成物は、 一般的に用いられる溶融成 形法を用いてフィルム、 シート、 容器、 その他の包装材料を成形することができる。 また、 本 発明のポリエステル榇 ί脂あるいはポリエステル樹脂組成物からなるシ一ト状物を少なくとも一 軸方向に延伸することにより機械的強度を改善することが可能である。 本発明のポリエステル 樹脂あるいはポリエステル樹脂組成物からなる延伸フィルムは射出成形もしくは押出成形して 得られたシート状物を、 通常 P E Tの延伸に用いられる一軸延伸、 逐次二軸延伸、 同時ニ軸延 伸のうちの任意の延伸方法を用いて成形される。 また圧空成形、 真空成形にょリカップ状ゃト レイ状に成形することもできる。
成形に先立ち、 本発明のポリエステル樹脂あるいはポリエステル樹脂組成物は、 通常は乾燥 されるが、 乾燥温度は約 5 0 °C〜約 1 5 0 °C、 好ましくは約 6 0 °C〜約 1 4 0 °Cであり、 乾燥 時間は約 1時間〜約 2 0時間、 好ましくは約 2時間〜 1 0時間である。
乾燥ガスとしては、 露点が— 2 5で以下で、 は酸素濃度が 1 0 0 p p m以下、 好ましくは 1 0 p p m以下、 さらに好ましくは 5 p p m以下、 最も好ましくは l p p m以下の不活性気体が好 まし好ましく、 またその変動巾が 3 0 %以内、 好ましくは 2 0 %以内であることが好ましい。 なお、 前記で用いる不活性気体としては、 窒素ガス、 炭酸ガス、 ヘリウムガスなどが挙げら れるが、 窒素ガスが最も好都合である。
但し、 不活性気体を用いると経済性が問題になるので、 露点が— 2 5 °C以下であり、 S 0 X が約 0 . 0 1 p p m以下、 N 0 Xが約 0 . 0 1 p p m以下の脱湿空気を用いて約 5 0 °C〜約 1 0 0 °Cの温度で、 約 3時間〜約 1 0時間の時間で乾燥することも可能である。
また、 乾燥装置にはチップゃフアイン等の形状異常品が長期滞留する可能性があるデッドス ペースがないことも大切である。 デッドスペースがあると、 そこに長期滞留したチップ等は蛍 光発光強度 (B。) が 2 0を越え、 また加熱処理時の蛍光発光強度の増加量 (B h— B Q) が 3 0を越えて高くなることことがあり問題となる可能性が非常に高い。
以上、 本発明を達成する手段を例示したが、 これらの工程や必ずしもすべての条件を満足す る必要があるわけではない。 樹脂からの蛍光が強い場合、 適宜上記の条件を厳しくする等の処 置を行い、 本発明の範囲のポリエステルを得、 これを用いることができる。
以下には、 P E Tの場合について種々の用途についての具体的な製法を簡単に説明する。 延伸フィルムを製造するに当たっては、 延伸温度は通常は 8 0〜1 3 O である。 延伸は一 軸でも二軸でもよいが、 好ましくはフィルム実用物性の点から二軸延伸である。 延伸倍率は一 軸の場合であれば通常 1 . 1〜1 0倍、 好ましくは 1 . 5〜 8倍の範囲で行い、 二軸延伸であ れば縦方向および横方向ともそれぞれ通常 1 . 1 ~ 8倍、 好ましくは 1 . 5〜 5倍の範囲で行 なえばよい。 また、 縦方向倍率 Z横方向倍率は通常 0 . 5〜2、 好ましくは 0 . 7〜1 . 3で ある。 得られた延伸フィルムは、 さらに熱固定して、 耐熱性、 機械的強度を改善することもで きる。 熱固定は通常緊張下、 1 2 0 ° (:〜 2 4 0、 好ましくは 1 5 0〜 2 3 0 で、 通常数秒〜 数時間、 好ましくは数十秒〜数分間行われる。
中空成形体を製造するにあたっては、 本発明のポリエステル樹脂あるいはポリエステル樹脂 組成物から成形したプリフォームを延伸プロ一成形してなるもので、 従来 P E Tのプロ一成形 で用いられている装置を用いることができる。 具体的には例えば、 射出成形または押出成形で 一旦プリフォームを成形し、 そのままあるいはロ栓部、 底部を加工後、 それを再加熱し、 ホッ トパリソン法あるいはコールドパリソン法などの二軸延伸プロ一成形法が適用される。 この場 合の成形温度、 具体的には成形機のシリンダー各部およびノズルの温度は通常 2 6 0〜3 0 O の範囲である。 延伸温度ば通常 7 0 ~ 1 2 0 °C、 好ましくは 9 0〜1 1 0 Tで、 延伸倍率 は通常縦方向に 1 . 5〜3 . 5倍、 円周方向に 2〜 5倍の範囲で行なえばよい。 得られた中空 成形体は、 そのまま使用できるが、 特に果汁飲料、 ウーロン茶などのように熱充填を必要とす る飲料の場合には一般的に、 さらにブロー金型内で熱固定処理を行い、 耐熱性を付与して使用 される。 熱固定は通常、 圧空などによる緊張下、 1 0 0〜2 0 0 °C、 好ましくは 1 2 0〜1 8 0 °Cで、 数秒〜数時間、 好ましくは数秒〜数分間行われる。
また、 ロ栓部に耐熱性を付与するために、 射出成形または押出成形により得られたプリフォ 一ムのロ栓部を遠赤外線や近赤外線ヒー夕設置オーブン内で結晶化させたり、 あるいはポトル 成形後に口栓部を前記のヒータで結晶化させる。
本発明のポリエステル樹脂あるいはポリエステル樹脂組成物には、 必要に応じて公知の紫外 線吸収剤、 酸化防止剤、 酸素捕獏剤、 外部より添加する滑剤や反応中に内部析出させた滑剤、 離型剤、 核剤、 安定剤、 帯電防止剤、 染料、 顔料などの各種の添加剤を配合してもよい。 また、 本発明のポリエステル樹脂あるいはポリエステル樹脂組成物をフィルム用途に使用す る場合には、 滑り性、 卷き性、 耐ブロッキング性などのハンドリング性を改善するために、 ポ リエステル樹脂中に炭酸カルシウム、 炭酸マグネシウム、 炭酸バリウム、 硫酸カルシウム、 硫 酸バリウム、 リン酸リチウム、 リン酸カルシウム、 リン酸マグネシウム等の無機粒子、 蓚酸力 ルシゥムゃカルシウム、 バリウム、 亜鉛、 マンガン、 マグネシウム等のテレフタル酸塩等の有 機塩粒子ゃジビニルベンゼン、 スチレン、 アクリル酸、 メタクリル酸、 アクリル酸またはメタ クリル酸のビニル系モノマーの単独または共重合体等の架橋高分子粒子などの不活性粒子を含 有させることが出来る。
実施例
以下本発明を実施例により具体的に説明するが本発明はこの実施例に限定されるものではな い。
なお、 主な特性値の測定法を以下に説明する。
( 1 ) ポリエステルの極限粘度 ( I V)
1 , 1 , 2 , 2—テトラクロルェタン/フエノール (2 : 3重量比) 混合溶媒中 3 0 °Cでの 溶液粘度から求めた。
( 2 ) ポリエステルのジエチレングリコール含有量 (以下 [D E G含有量」 という) メタノールによって分解し、 ガスクロマトグラフィーにより D E G量を定量し、 全グリコー ル成分に対する割合 (モル%) で表した。
( 3 ) ポリエステルの環状 3量体の含有量 (以下 「C T含有量」 という)
試料を冷凍粉碎後、 へキサフルォロイソプロパノール/ク口口フオルム混合液に溶解し、 さ らにクロロフオルムを加えて希釈する。 これにメタノールを加えてボリマ一を沈殿させた後、 濾過する。 濾液を蒸発乾固レ、 ジメチルフオルムアミドで定容とし、 液体クロマトグラフ法よ りエチレンテレフ夕レート単位から構成される環状 3量体を定量した。
( 4 ) ポリエステルのァセトアルデヒド含有量 (以下 「 A A含有量」 という)
試料/蒸留水 = 1グラム Z 2 c cを窒素置換したガラスアンプルに入れた上部を溶封し、 1
6 0 °Cで 2時間抽出処理を行い、 冷却後抽出液中のァセトアルデヒドを高感度ガスクロマトグ ラフィ一で測定し、 濃度を p p mで表示した。
( 5 ) ポリエステルの溶融時の環状 3量体増加量 (A C T量)
乾燥したポリエステルチップ 3 gをガラス製試験管に入れ、 窒素 囲気下で 2 9 0でのオイ ルパスに 6 0分浸漬させ溶融させる。 溶融時の環状 3量体増加量は、 次式により求める。 溶融時の環状 3量体増加量 (重量%) =
溶融後の環状 3量体含有量 (重量%) —溶融前の環状 3量体含有量 (重量%) (6) カラー b測定、 加熱処理後のカラー b値の増加量
カラー b値の測定は、 レジンチップを用い、 色差計 (東京電色 (株) 製 MODEL TC-1500MC- 88) を使用して行なった。
また熱処理後のカラー b値の増加量は、 (12) で熱処理したチップのカラー b値と未処理チ ップのカラー b値の差として求める。 b値は大きいほど黄味が強いことを示す。
(7) ファインの含有量の測定
樹脂約 0. 5 kgを、 J I S— Z 8801による呼び寸法 5. 6 mmの金網をはった篩 (A) と呼び寸法 1. 7mmの金網をはった篩 (直径 20 cm) (B) を 2段に組合せた篩の 上に乗せ、 テラ才力社製揺動型篩い振トウ機 SNF— 7で 1800 r pmで 1分間篩った。 こ の操作を繰り返し、 樹脂を合計 20 kg篩った。 ただし、 ファイン含有量が少ない場合には、 試料の量を適宜変更する。
前記の篩 (B) の下にふるい落とされたファインは、 0. 1 %のカチオン系界面活性剤水溶 液で洗浄し、 次いでイオン交換水で洗浄し岩城硝子社製 G 1ガラスフィルタ一で濾過して集め た。 これらをガラスフィルタ一ごと乾燥器内で 100°Cで 2時間乾燥後、 冷却して秤量した。 再度、 イオン交換水で洗浄、 乾燥の同一操作を繰り返し、 恒量になったことを確認し、 この重 量からガラスフィルターの重量を引き、 ファイン重 Sを求めた。 ファイン含有量は、 ファイン 重量 Z篩いにかけた全樹脂重量、 である。
(8) ポリエステルチップの平均密度、 プリフォームロ栓部の密度およびロ栓部密度偏差 硝酸カルシュゥム /水溶液の密度勾配管で 30 °Cで測定した。
また、 ロ栓部密度は、 (11) の方法により結晶化させた試料 10個の平均値として求め、 ま たロ栓部密度偏差は、 この 10個の値より求めた。
(9) ファインの融解ピーク温度 (ファインの融点) の測定
セイコー電子工業 (株) 製の示差走査熱量計 (DSC) 、 RDC— 220を用いて測定。 2 0 kgのポリエステルから (7) の方法で集めたファインを冷凍粉砕し、 25 で 3日間減圧 下に乾燥し、 これから一回の測定に試料 4mgを使用して昇温速度 20で/分で D S C測定を 行い、 融解ピーク温度の最も高温側の融解ピーク温度を求める。 測定は最大 10ケの試料につ いて実施し、 最も高温側の融解:ピーク温度の平均値を求める。
(10) ヘイズ (霞度%) および成形板ヘイズ斑 下記 (16) の成形体 (肉厚 5 mm) および (17) の中空成形体の胴部 (肉厚約 0. 45 mm) より試料を切り取り、 日本電色 (株)製ヘイズメータ—、 modelNDH2000で測定。 また、 10回連続して成形した成形板(肉厚 5mm)のヘイズを測定し、 成形板ヘイズ斑は下記 により求めた。 成形板ヘイズ斑 (%) =ヘイズの最大値 (%) —ヘイズの最小値 (%)
(11) プリフォームロ栓部の加熱による密度上昇
プリフォーム口栓部を自家製の赤夕線ヒーターによって 180秒間熱処理し、 天面から試料 を採取し密度を測定した。
(12) ポリエステルの蛍光発光強度の測定および蛍光発光の確認
i) 蛍光発光強度の測定方法 '
非作為的に取り出した試料チップ約 5 ~ 6グラムを固体試料測定用セル (内径 24. 5 mm, 高さ 12mm) に密な状態に詰め、 石英ガラス板でカバ一して分光蛍光光度計 (島津製作所製 の分光けい光光度計、 RF— 540型) の試料ホルダーに装着する。 45度の角度で励起光を 入射して発光した蛍光を直角の方向に取り出し、 分光器に導入して縦軸強度を 0~100とす る蛍光スぺクトルを下記の条件で測定する。 図 3に PETの蛍光スぺクトルを示す。
測定条件
AB S C I S S A S CALE (横軸) : X 2
ORD I NATE S CALE ((縦軸): X 4
SCAN SPEED (走査速度) : FAST
S ENS I T I V I TY (感度) : LOW
EXC I TAT I ON SL I T (励起側のスリット) (nm) : 5
EM I S S I ON SL I T (発光側のスリット) (nm) : 5
EXC I TAT I ON WAVELENGTH (励起光波長) : 343 nm
EMI SS ION START WAVELENGTH (発光開始波長) : 350 nm EMI SS ION END WAVELENGTH (発光終了波長) : 600 nm 上記の方法で試料チップについて得られた発光スぺクトルの低波数側と高波数側に接線を弓 I き、 395 nmにおけるスペクトルの点 (a) から前記接線に下ろした垂線の交点 (b) 間の 長さ Aおよび 450 nmにおけるスぺクトルの点 (c) から前記接線に下ろした垂線の交点 (d) 間の長さ Bを計測する。 蛍光発光強度 0から 100 までの長さを 100とした際の相 対値で A、 Bを表し、 395 nmの蛍光発光強度 (A) 、 450 nmの蛍光発光強度 (B) と する。 新しいチップに入れ替えて 5回測定し、 平均値を求める。 なお、 実際の測定では 395 nmのピーク、 450 nmのピークは数 nmずれることがある。 この場合はスぺクトルピーク の値を採用し、 また、 明確なピークが認められない場合には、 395 nmおよび 450 nmの 値を採用する。
非加熱処理のチップの蛍光発光強度 A、 Bはそれぞれ AQ、 B。と表す。
i i ) 加熱処理ポリエステルの蛍光発光強度
蛍光発光強度の増加量は、 (13) の方法により熱処理したポリエステルのチップについて 同様にして蛍光スぺクトルを測定し、 加熱処理後のチップの 395 nmの蛍光発光強度 (A h) 、 45 Onmの蛍光発光強度 (Bh) とする。
i i i) 蛍光チップの選別 (Bso, Asい Bsh、 Ashの測定の場合)
未加熱処理または (13) の方法により加熱処理したポリエステルチップ約 500 gにブラ ックライト (ナショナル FL 2 OS. BL— B、 20W、 300〜 400 nmの近紫外線を出 す、 最大波長 352 nm) を照射し、 目視により判断をして発光した蛍光の強い順にチップを 約 2 ~ 3グラム選び出す。 これを冷凍粉碎機 (SPEX Fr e e z e r Mi l l) で粉砕 し、 粉碎粉約 1グラムを石英製固体試料測定用セル (内径 24. 5mm、 高さ 2mm) に密な 状態に詰め、 石英ガラス板でカバ一して同様に測定する。 ブラックライトを照射した際、 ほと んど全てのチップの蛍光発光の程度が同程度の場合には、 測定試料チップは任意に選んでよい。 i V) 蛍光特性
また、 実施例での蛍光発光特性は以下の計算により求める。
蛍光発光強度 =B0
蛍光発光強度比 =BQ/AQ
加熱処理後蛍光発光強度の増加量 = B h— B。
加熱処理後蛍光発光強度比 = B h/Ah
加熱処理後の蛍光発光強度比の差 = B h/Ah -B0/A0 選別チップの蛍光発光強度比 = B s Qノ A s 0
加熱処理後に選別したチップの蛍光発光強度の増加量 = BSh-BS0
加熱処理後に選別したチップの加熱処理後蛍光発光強度比 = B s h/Ash
V) ポリエステル成形品の蛍光発光の確認
試料にブラックライト (ナショナル FL 2 OS. BL— B、 20W、 300〜400 nmの 近紫外線を出す、 最大波長 352 nm) を照射し、 目視により判断を行った。
(13) ポリエステルの加熱処理
約 80 °Cで 8時間 10 t 0 r r以下で減圧乾燥した試料 20グラムを 100 m 1のガラス容 器 (口内径 41mm、 胴外径 55mm、 全高 95 mm) に入れ、 ナガノ科学機械製作所製のギ ャ一式老化試験器 NH— 202 GTの夕一ンテ一ブル上に置き、 空気雰囲気下に 180 で 1 0時間加熱処理をする。
(14) 成形体の昇温時の結晶化温度 (Te l)
セイコー電子工業株式会社製の示差熱分析計 (DSC) 、 0(:— 220で測定。 下記 (1 6) の成形板の 2mm厚みのプレートの中央部からの試料 1 Omgを使用。 昇温速度 20度 C Z分で昇温し、 その途中において観察される結晶化ピークの頂点温度を測定し、 昇温時結晶化 温度 (Te l) とする。
(15) 成形体の寸法変化率
下記 (16) の段付成形板から 3mm厚みのプレート部より 8mmX 1 Ommの大きさの試 験片を切り出し、 測定試料とした。 成形板には、 成形加工時の流動に由来する分子配向が存在 するが、 配向状態は成形板の部位によりまちまちである。 そこで、 偏光面を直交させた 2枚の 偏光板の間に成形板を挟み込み、 偏光板表面に垂直な方向から可視光を照射した際の、 成形板 を透過する光の強度分布を観察することによって配向状態を確認した。 上記寸法内に分子配向 の不均一 (配向度や配向方向のゆらぎなど) を含むことのない部位より試験片を切り出した。 その際にあらかじめ光学異方性の方位を確認し、 切り出す試験片の方位との関係を以下のよう にする。 光学異方性の方位は、 偏光顕微鏡と鋭敏色検板を用い、 新高分子実験学 6 高分子の 構造 (2) (共立出版株式会社) に記載の方法で決定した。 屈折率の小さい軸 (光の速度が速 い軸) の方向と、 試験片の長軸が平行になるように切り出した。 試験片を切り出す際に導入さ れる配向乱れや切断面の凹凸は測定結果に著しく影響を与える。 そこで、 切断面の凹凸ゃ配向 の乱れた部位を力ッタ一を用いて削除し、 平坦な面を得た。 また、 試験片の密度や分子配向の度合いも結果に影響を及ぼす。 密度及び複屈折の値は、 そ れぞれ 1. 3345~1. 3355 g/ cm3及び 1. 30 X 10— 4 〜1. 50 X 10一4で なければならない。 密度は、 試験片採取部位の近傍よりサンプリングした樹脂を試料として、 水系密度勾配管を用いて測定した。 複屈折は、 偏光顕微鏡 (ニコン社製 ECLIPSE E600 POL) を用いて、 ベレックコンペンセ一夕一法で測定した。 測定値は試験片の中央部で得られ た値を採用した。 上記のように作製した試験片の昇降温過程の寸法変化を、 (株) マック -サ ィェンス社製の熱機械分析 (TMA) 、 タイプ TMA 4000 Sで測定した。 測定は、 圧縮荷 重モードで行い、 試験片の長軸に平行な方向の試料長の変化を観測した。 0. 2 gの一定圧縮 荷重、 A r雰囲気下で、 室温から 210でまで試料の温度を 27°CZmin.の速度で昇温し、 2 10°Cで 180秒間保持後、 室温まで試料の温度を 47 °C /rain.の速度で降温させ、 寸法変化 を測定した。 寸法変化率の算出は、 下記の式を用いた。 寸法変化率 (%) =
100 X 〔 (室温での測定前試料長) 一 (室温での測定後試料長) 〕 / (室温での測定前試料長) -
(16) 段付成形板の成形
本特許記載にかかる段付成形板の成形においては、 減圧乾燥機を用いて 140でで16時間 程度減圧乾燥したポリエステルチップを名機製作所製射出成形機 M— 150C— DM型射出成 形機により図 1、 図 2に示すようにゲート部 (G) を有する、 2mm〜l lmm (A部の厚み =2 mm, B部の厚み =3mm、 C部の厚み =4mm、 D部の厚み =5mm、 E部の厚み = 1 0mm, F部の厚み =1 1 mm) の厚さの段付成形板を射出成形した。
ャマト科学製真空乾燥器 DP 61型を用いて予め減圧乾燥したポリエステルチップを用い、 成形中にチップの吸湿を防止するために、 成形材料ホッパー内は乾燥不活性気体 (窒素ガス) パージを行った。 M— 150 C— DM射出成形機による可塑化条件としては、 フィードスクリ ュゥ回転数 = 70%、 スクリュウ回転数 = 120 rpm、 背圧 0. 5 MPa、 シリンダ一温度はホ ッパー直下から順に 45 °C、 250で、 以降ノズルを含め 2901:に設定した。 射出条件は射 出速度及び保圧速度は 20%、 また成形品重量が 146 ± 0. 2 gになるように射出圧力及び 保圧を調整し、 その際保圧は射出圧力に対して 0. 5MPa低く調整した。 射出時間、 保圧時間はそれぞれ上限を Γ0秒、 7秒, 冷却時間は 50秒に設定し、 成形品取出 時間も含めた全体のサイクルタイムは概ね 75秒程度である。
金型には常時、 水温 1 O :の冷却水を導入し温調するが、 成形安定時の金型表面温度は 22 °C 前後である。
成形品特性評価用のテストプレートは、 成形材料導入し樹脂置換を行つた後、 成形開始から 11〜18ショット目の安定した成形品の中から任意に選ぶものとした。
2 mm厚みのプレート (図 1の A部) は昇温時の結晶化温度 (Te l) 測定、 3 mm厚みの プレート (図の B部) は寸法変化率測定、 5mm厚みのプレート (図 1の D部) はヘイズ (霞 度%) 測定、 に使用する。
(17) 中空成形体の成形
過度の乾燥を行った場合を想定してポリエステルを脱湿空気を用いた乾燥機で常圧 140°C、 10時間乾燥し、 各機製作所製 M— 150 C (DM) 射出成形機により樹脂温度 290°Cでプ リフォームを成形した。 このプリフォームの口栓部を自家製のロ栓部結晶化装置で加熱結晶化 させた。 次にこの予備成形体を C OPOPLAS T社製の LB-01 E成形機で縦方法に約 2. 5倍、 周方向に約 3. 8倍の倍率に二軸延伸ブローし、 引き続き約 150°Cに設定した金型内 で約 7秒間熱固定し、 容量が 200 O c cの容器 (胴部肉厚 0. 45mm) を成形した。 延伸 温度は 100°Cにコントロールした。
(18) 中空成形体からの内容物の漏れ評価
前記 (17) で成形した中空成形体に 90°Cの温湯を充填し、 キヤッビング機によりキヤッ ビングをしたあと容器を倒し放置後、 内容物の漏洩を調べた。 また、 キヤッビング後のロ栓部 の変形状態も調べた。
(19) チップ化工程の冷却水の化学的酸素要求量 (COD) (mg/1)
岩城硝子社製 1 G1ガラスフィル夕一で濾過した冷却水を J I S-K0101の方法に準じ て測定する。
( 20) チップ化工程の冷却水および水処理工程の導入水中のナトリウム含有量、 カルシウム 含有量、 マグネシウム含有量および珪素含有量
粒子除去およびイオン交換済みの冷却水および導入水を採取し、 岩城硝子社製 1 G 1ガラス フィルターで濾過後、 漉液を島津製作所製誘導結合プラズマ発光分析装置で測定。
(21) チップ化工程の冷却水、 水処理工程の導入水中およびリサイクル水中の粒子数の測定 粒子除去およびイオン交換済みの冷却水、 導入水、 または濾過装置 (5) および吸着塔 ( 8 ) で処理したリサイクル水を光遮断法による粒子測定器である株式会社セィシン企業製の PAC 150を用いて測定し、 粒子数を個 10mlで表示した。
(22) 溶存酸素濃度
工業用水試験方法、 J I S— K0101の 「24. 溶存酸素」 の項に記載された溶存酸素測 定法によって測定する。 ウィンクラー法、 ウィンクラーアジ化ナトリウム変法、 ミラ—変法又 は隔膜電極法のいずれかの方法で測定する。 なお、 系外から導入される水は冷却水貯槽あるい は水処理槽のイオン交換水導入口の近くに設置した採取口より、 また冷却水槽中または水処理 槽中の処理水はそれぞれの水排出口から採取する。
(実施例 1一 1 )
高純度テレフタル酸とエチレングリコールを原料として用いて、 連続溶融重縮合装置及び連 続固相重合装置により P E Tを得た。
予め反応物を含有している第 1エステル化反応器に、 スラリー調合槽で調整した高純度テレ フタル酸とエチレングリコールとのスラリーを連続的に供給し、 撹拌下、 約 2501、 0. 5 kg/cm2 Gで平均滞留時間 3時間反応を行つた。
この反応物を第 2エステル化反応器に送付し、 撹拌下、 約 260° (:、 0. 05 kg/cm2 で所定の反応度まで反応を行った。 また、 重縮合触媒として、 結晶性二酸化ゲルマニウム (ナ 卜リゥム含有量が 0. 7 p p m、 カリゥム含有量が 0. 5 p m、 加熱減量が 2. 8%) を水に 加熱溶 し、 これにエチレングリコールを添加加熱処理した溶液、 および燐酸のエチレンダリ コール溶液、 を別々に第 2エステル化反応器に連続的に供給した。 なお、 スラリー調合槽ゃ各 反応器には酸素濃度が 2 p pm以下の窒素ガスを流通させて、 スラリー調合槽の気相中の酸素 濃度は 20〜 30 p p m以下、 第 1及び第 2エステル化反応器の気相中の酸素濃度は 20〜 3 0 pm以下に維持した。 また、 調合した触媒溶液や燐酸溶液には酸素濃度が約 1 p pm以下 の窒素ガスをパブリングさせ、 触媒溶液槽および燐酸溶液槽には同様の窒素ガス流通させた。 このエステル化反応生成物を連続的に第 1重縮合反応器に供給し、 撹拌下、 約 265で、 2 5 t o r rで 1時間、 次いで第 2重縮合反応器で撹拌下、 約 2651:、 3 t o r rで 1時間、 さらに最終重縮合反応器で撹拌下、 約 275で、 0. 5〜l t o r rで重縮合させた。 溶融重 縮合プレボリマーの極限粘度は 0. 54d 1/gであった。
得られた溶融重縮合プレボリマーを、 細孔より下記の水質の約 20 の冷却水中に押出して 水中で力ットしてチップ化し、 固液分離後遠心分離によりチップ付着水を約 800 p pm以下 とした。 工業用水 (河川伏流水由来) を凝集沈殿装置、 フィルタ—濾過装置、 窒素ガス吹き込 み加熱式脱気装置、 活性炭吸着装置およびイオン交換装置で処理した、 粒径 l〜25 zmの粒 子が約 500個 Z 10 m 1、 ナトリゥム含有量が 0. 06 p pm、 マグネシウム含有量が 0. 03 p pm, カルシウム含有量が 0. 05 ppm、 珪素含有量が 0. l l ppm、 CODが 0. 3mg/ 溶存酸素約 28. 0 cm lの導入水をチップ化工程の冷却水貯蔵夕ンクに導 入し、 またチップ化工程からの排出水を濾材が紙製の 30 mの連続式フィルタ一であるファ ィン除去装置およびエチレングリコール等を吸着処理させる活性炭吸着塔で処理後、 前記の冷 却水貯蔵タンクにほぼ全量を戻して前記の導入水と混合し、 冷却水として用いる。 この冷却水 を連続的に循環させながら不足分を系外から前記の導入水を補給して冷却水として使用する。 冷却水の CODは 0. 3〜0. 5mgZlであった。
次いで、 チップを気相中の酸素濃度が 50 p pm以下の窒素雰囲気下の貯蔵用タンクへ輸送 し、 引き続き、 振動式篩分工程および気流分級工程によってファインおよびフィルム状物を除 去することにより、 ファイン含有量を約 50 p pm以下とした。 これを結晶化装置に送り、 酸 素濃度 20 p pm以下の窒素ガス流通下に約 155 °Cで 3'時間連続的に結晶化し、 次いで塔型 固相重合器に投入し、 酸素濃度 15〜20 p pm以下の窒素ガス流通下、 約 209°Cで連続的 に固相重合し、 固相重合ポリエステルを得た。 予備結晶化、 固相重合にはサイロ型の容器を用 い下部の角度は樹脂の安息角より 5度大きく取り、 バッフルコーンを設置した。 固相重合後篩 分工程およびフアイン除去工程で連続的に処理しファインゃフィルム状物を除去した。 なお、 固相重合器から排出される窒素ガス中の酸素濃度は 25 p pm以下であった。 なお、 溶融重縮 合反応器及び固相重合反応器の攪拌機やポンプ等の可動部分のシール部には酸素濃度が 2 p p m以下の酸素濃度の窒素ガスを流した。
なお、 溶融重縮合 PETチップや固相重合 PETチップの輸送は、 ほぼパケット式コンペャ —輸送方式やプラグ輸送方式を用い、 反応器ゃ貯槽からの抜き出しはスクリュウ式フィーダ一 を主に用いた。 また、 各工程の輸送中は酸素濃度 30〜50 p pmの窒素雰囲気とし、 気流分 級でも酸素濃度 30〜50 p pmの窒素ガスを用いた。
このような製造法により、 得られた PETに関して各種の評価を行った。 結果を表 1及び 2 に記す。
(実施例 1一 2) 実施例 1一 1とは異なる連続溶融重縮合装置及び連続固相重合装置により P ETを得た。 予め反応物を含有している第 1エステル化反応器に、 スラリ一調合槽で調整した高純度テレ フタル酸とエチレングリコ一ルとのスラリ一を連続的に供給し、 撹拌下、 約 250 、 0. 5 k g/ cm2 Gで平均滞留時間 3時間反応を行った。 この反応物を第 2エステル化反応器に送 付し、 撹拌下、 約 260° (:、 0. 05 k g/cm2で所定の反応度まで反応を行った。 また、 結晶性二酸化ゲルマニウム (ナトリゥム含有量が 0. 5 p p m、 カリゥム含有量が 0. 3 p m、 加熱減量が 2. 7%) を水に加熱溶解し、 これにエチレングリコールを添加加熱処理した触媒 溶液および燐酸のエチレングリコ—ル溶液を別々に第 2エステル化反応器に連続的に供給した。 なお、 これらの調合槽ゃ各反応器には酸素濃度が 1 p pm以下の窒素ガスを流通させて、 スラ リー調合槽の気相中の酸素濃度は 20〜30 p pm以下、 第 1及び第 2エステル化反応器の気 相中の酸素濃度は 20〜30 p pm以下に維持した。 また、 調合した触媒溶液や燐酸溶液には 酸素濃度が約 1 P pm以下の窒素ガスをバブリングさせ、 触媒溶液槽および燐酸溶液槽には同 様の窒素ガス流通させた。 このエステル化反応生成物を連続的に第 1重縮合反応器に供給し、 撹拌下、 約 265°C、 25 t 0 r rで 1時間、 次いで第 2重縮合反応器で撹拌下、 約 265°C、 3 t 0 r rで 1時間、 さらに最終重縮合反応器で撹拌下、 約 275°C、 0. 5〜: L t o r rで 重縮合させた。 溶融重縮合プレボリマーの極限粘度は 0. 54d l/gであった。
得られた溶融重縮合プレボリマーを、 細孔より下記の水質の約 20°Cの冷却水中に押出して 水中でカットしてチップ化し、 固液分離後遠心分離によりチップ付着水を約 900 pm以下 とした。 工業用水 (河川伏流水由来) を凝集沈殿装置、 フィルター濾過装置、 窒素ガス吹き込 み加熱式脱気装置、 活性炭吸着装置およびィォン交換装置で処理した、 粒径 1〜 25 mの粒 子が約 700個/ 10 m 1、 ナトリゥム含有量が 0. 06 p pm、 マグネシウム含有量が 0. 03 p pm, カルシウム含有量が 0. 02ppm、 珪素含有量が 0. l l ppm、 (:00が0. 3mg/l、 溶存酸素約 28. 0 cm3/ 1の導入水をチップ化工程の冷却水貯蔵タンクに導 入し、 またチップ化工程からの排出水を濾材が紙製の 30 /xmの連続式フィルタ一であるファ ィン除去装置およびエチレンダリコ一ル等を吸着処理させる活性炭吸着塔で処理後、 前記の冷 却水貯蔵タンクにほぼ全量を戻して前記の導入水と混合し、 冷却水として用いる。 この冷却水 を連続的に循環させながら不足分を系外から前記の導入水を補給して冷却水として使用する。 冷却水の CODは 0. 3〜0. 5mg/lであった。 次いで、 振動式篩分工程および気流分級工程によってフアインおよびフィルム状物を除去す ることにより、 ファイン含有量を約 50 p pm以下としたあと、 溶融重縮合プレボリマーを連 続固相重合装置の予備結晶化装置に供給するまでの間、 大気下に約 3〜 5時間程度保管しただ けで直ちに結晶化装置に送り、 酸素濃度 20 p pm以下の窒素ガス流通下に約 155°Cで 3時 間連続的に結晶化し、 次いで塔型固相重合器に投入し、 酸素濃度 15~20 p pm以下の窒素 ガス流通下、 約 208°Cで連続的に固相重合し、 固相重合ポリエステルを得た。 予備結晶化、 固相重合にはサイロ型の容器を用い下部の角度は樹脂の安息角より 5度大きく取り、 バッフル コーンを設置した。 固相重合後篩分工程おょぴフアイン除去工程で連続的に処理しファインや フィルム状物を除去した。 なお、 固相重合器から排出される窒素ガス中の酸素濃度は 30 p p m以下であった。
なお、 溶融重縮合反応器及び固相重合反応器の攪拌機のシール部には酸素濃度が 1 p pmの 酸素濃度の窒素ガスを流した。 溶融重縮合 PETチップや固相重合 PETチップの輸送は、 ほ ぼバケツト式コンベヤー輸送方式やプラグ輸送方式を用い、 反応器ゃ貯槽からの抜き出しはス クリュゥ式フィ一ダ一を主に用いた。 また、 各工程の輸送中は酸素濃度 30〜50 ppmの窒 素雰囲気とし、 気流分級でも酸素濃度 30〜50 p pmの窒素ガスを用いた。
このような製造法により、 得られた PETに関して各種の評価を行った。 結果を表 1及び表 2に記す。
(実施例 2)
重縮合触媒として、 塩基性酢酸アルミニウムのエチレンダリコール溶液と、 I r g a n o 1222 (チバ ·スペシャルティーケミカルズ社製) とエチレングリコールを事前に加熱処理 したエチレングリコール溶液と、 を用いる以外は実施例 1と同様の条件下で同様の方法で溶融 重縮合 PETを得た。 得られた溶融重縮合 PETの極限粘度は 0. 58デシリットル/グラム であった。 次いで、 実施例 1と同様にして固相重合を行った。
これを実施例 1と同様にして評価した。 得られた PET、 これを成形した成形板およびニ軸延 伸成形ポトルの特性を表 1及び表 2に示す。 結果は良好で問題なかった。
(実施例 3)
重縮合触媒として、 チタニウムテトラブトキシドのエチレングリコール溶液、 酢酸マグネシ ゥム 4水和物のエチレンダリコール溶液、 および燐酸のエチレングリコール溶液を用いる以外 は実施例 1と同様の方法で溶融重縮合 P E Tを得た。 得られた溶融重縮合 P E Tの極限粘度は 0 . 5 6デシリットル/グラムであった。 次いで、 実施例 1と同様にして固相重合を行った。 これを実施例 1と同様にして評価した。 得られた P E T、 これを成形した成形板および二軸 延伸成形ポトルの特性を表 1及び表 2に示す。 結果は良好で問題なかった。
(実施例 4 )
重縮合触媒として、 三酸化アンチモンのエチレングリコール溶液、 酢酸マグネシゥム 4水和 物のエチレングリコール溶液、 および燐酸のエチレングリコール溶液を用いる以外は実施例 1 と同様の方法で溶融重縮合 P E Tを得た。 得られた溶融重縮合 P E Tの極限粘度は 0 . 5 9デ シリットル Zグラムであった。 次いで、 実施例 1と同様にして固相重合を行った。
これを実施例 1と同様にして評価した。 得られた P E T、 これを成形した成形板およびニ軸延 伸成形ポトルの特性を表 1及び表 2に示す。 結果は良好で問題なかった。
(実施例 5 )
異種樹脂製ポトルを選別除去後、 ラベル及びキヤップを取り外した使用済みポリエチレンテ レフ夕レートボトルを粉砕、 水洗して得た回収フレークを解重合触媒の存在下にエチレンダリ コールで解重合し、 次いでメ夕ノ一ルでエステル交換反応して得られた粗テレフ夕ル酸ジメチ ルを蒸留精製し、 この様にして得た精製テレフタル酸ジメチルを加水分解して高純度のテレフ タル酸を得た。 品質はパラキシレンから製造される高純度テレフタル酸と同程度のものであつ た。
このようにして得た高純度テレフタル酸 3 0重量部とパラキシレンから得られる高純度テレ フタル酸 7 0重量部との混合物を用いる以外は実施例 1と同様にして固相重合 P E Tを得た。 これを実施例 1と同様にして評価した。 得られた P E T、 これを成形した成形板および二軸 延伸成形ポトルの特性を表 1及び表 2に示す。 結果は良好で問題なかった。
(実施例 6 )
実施例 1一 2で得られた固相重合 P E Tを、 次のようにして水処理した。
処理槽上部の原料チップ供給口 (1 ) 、 処理槽の処理水上限レベルに位置するオーバーフロー 排出口 (2 ) 、 処理槽下部のポリエステルチップと処理水の混合物の排出口 (3 ) 、 このォー バーフロー排出口から排出された処理水と、 処理槽下部の排出口から排出され水切り装置
( 4 ) を経由した処理水が、 漉材が紙製の 3 0 の連続式フィルターであるファイン除去装 置 (5 ) を経由して再び水処理槽へ送られる配管 (6 ) 、 これらのファイン除去済み処理水の 導入口 (7) ; ファイン除去済み処理水中のァセトアルデヒドゃグリコール等を吸着処理させ る吸着塔 (10) 、 新しいイオン交換水の導入口 (8) および窒素ガス吹き込み式脱気装置
(12) を備えた内容量約 5 Om3の塔型の、 図 4に示す処理槽を使用して、 窒素ガス吹き込 み加熱式脱気装置 (9) および活性炭処理装置 (11) を経由したイオン交換水を連続的に導 入して PETチップを水処理した。
前記の固相重合 P E Tチップを振動式篩分工程および気流分級工程によつて処理し、 フアイ ン及びフィルム状物の含有量を約 40 p pmとした後、 処理水温度 95でにコントロールされ た処理槽の上部の供給口 (1) から連続投入し、 水処理時間 5時間で水処理槽下部の排出口 (3) から PETチップを処理水と共に連続的に抜出しながら水処理を行った。 上記処理装置 のイオン交換水導入口 ( 9 ) の手前で採取した導入水中の粒径 1 ~ 25 の粒子含有量は約 700個/ 10 m 1、 ナトリゥム含有量が 0. 05 p pm、 マグネシウム含有量が 0. 03 p pm、 カルシウム含有量が 0. 03ppm、 珪素含有量が 0. 12 p pm、 溶存酸素が約 17. 0 cm3/lであり、 また濾過装置 (5) および吸着塔 (8) で処理後のリサイクル水の粒径 1〜40 mの粒子数は約 18000個 Zl Omlであった。
水処理後、 加熱した乾燥窒素 (酸素濃度約 5 p pm以下) で連続的に乾燥し (120 C乾燥 時間 6時間) 、 引き続き振動式篩分工程および気流分級工程で処理してファイン及びフィルム 状物を除去し、 その合計含有量を約 50 p pmとした。 ファイン等の融解ピーク温度の最も高 温側のピーク温度は 245°Cであった。 乾燥はサイロ型の容器を用い下部の角度は樹脂の安息 角より 5度大きく取り、 パッフルコーンを設置した。
得られた P E Tに関して各種の評価を行った。 結果を表 1及び表 2に記す。
また、 前記 (17) の方法によるボトル連続成形で金型内での熱固定時間を 2分間にして、 連続 800本の加速試験を行ったところ、 10本目と 800本目何れも曇りの少ない良好なポ トルが得られた。
(実施例 7 )
実施例 1— 1での気流分級によるフアイン除去工程のあとに設置した輸送用容器充填工程に 接続する S US 304製の輸送 K管の一部に、 直鎖状低密度ポリエチレン (M I =約 0. 9 g /10分、 密度 =約 0. 923 g/cm3) 製の内径 7 Omm、 長さ 700 mmの円筒パイプ を接続した輸送配管内を約 3トン/時で輸送し、 流動条件下に接触処理を行った。 ポリエステ ルの単位時間当たり処理量 (トン/時) に対する円筒パイプの表面積 (cm2) の比 Aは、 約 513であった。 接触処理後、 気流分級工程でさらに処理した。 ポリエチレン含有量は約 10 p p bであった。 得られた P E Tに関して各種の評価を行つた。 結果を表 1及び表 2に記す。 (実施例 8)
実施例 6での水処理後の気流分級によるフアイン除去工程のあとに実施例 7と同様にポリェ チレンとの接触処理を行った。 ポリエチレン含有量は約 12 p p bであった。 得られた PET に関して各種の評価を行つた。 結果を表 1及び表 2に記す。
(比較例 1 )
重縮合触媒や燐酸の溶液調合時の窒素ガスパブリングゃ触媒溶液槽などへの窒素ガス流通を 中止し、 原料調合槽〜エステル化反応にかけての反応槽に窒素ガスを流通させず (これらの反 応器の気相中の酸素濃度を 1000 p pm以上) 、 反応器の攪拌機のシール部へ窒素ガスを流 さず、 またチップ冷却水としては約 10~15 の工業用水をそのまま用いる以外は実施例 1 と同様にして溶融重縮合を行い、 極限粘度が 0. 56 d 1 /gのプレボリマーを得た。
チップ化時の冷却に用いた工業用水は、 粒径 1〜25 mの粒子が約 60000~8000 0個 10m 1、 ナトリウム含有量が 3. 5〜5. 0 p pm、 マグネシウム含有量が 0. 7〜 1. 0 p pm、 カルシウム含有 Sが 2. 0〜2. 5 p pm、 珪素含有量が 3. 0〜4. 5 p p m、 CODが 4. 0〜6. 7mg/l、 溶存酸素量が約 42 ~45 c m3/ 1であり、 チップ 化時の付着水は約 5000~7000 p pmであった。
このプレボリマーをフレキシブルコンテナーに充填した状態で大気下に約 3ヶ月放置後、 実 施例 1と同じ連続固相重合装置に供給して固相重合を実施した。 但し、 固相重合装置へ供給す る加熱窒素中の酸素濃度は 1000 p pm以上とする以外は実施例 1と同様にして反応させた。 これを実施例 1と同様にして評価した。 得られた PET、 これを成形した成形板および二軸 延伸成形ポトルの特性を表 1及び表 2に示す。
得られたポトルの透明性は悪く、 その胴部には灰褐色の異物が散見され、 またロ栓部の変形、 及び内容物の漏洩を調べたが、 内容物の漏れが認められた。
また、 測定法 (12) で用いたブラックライトをボトルに照射して肉眼観察したが、 蛍光発光 はひどく、 問題であった。 産業上の利用可能性 本発明のポリエステル樹脂組成物によれば、 透明性に優れ、 適度で、 かつ安定した結晶化速 度を持ち、 耐熱寸法安定性および香味保持性に優れた成形体、 特に耐熱性中空成形体を与える。 さらに、 成形前に過度の乾燥等に晒された場合であっても安定した品質の成型品を得ることが 出来る。
実施例 比較例 項目(蛍光発光特性)
1 -1 1-2 2 3 4 5 6 7 8 1
450nmの蛍光発光強度 B0 6.4 6.7 4.3 6.8 6.5 6.7 6.5 6.4 6.2 22.3 非 395nmの蛍光発光強度 AQ 62.2 63.0 73.0 63.0 60.0 58.0 61.0 63.0 61.1 37.0 作加熱処理後の 450nmの蛍光発光強度 Bh 18.4 18.5 7.3 13.8 15.5 19.2 18J 18.4 19.0 55.3 為加熱処理後の 395nmの蛍光発光強度 Ah 39.0 40.2 50.0 40.5 40.0 39.0 40.1 39.3 42.0 35.0 的
チ加熱処理後蛍光発光強度の増加量 12 12 3 7 9 12.5 12 12 13 33
V 蛍光発光強度比 Bo/A0 0.10 0.11 0.06 0.1 1 0.11 0.12 0.11 0.10 0.10 0.60 プ加熱処理後蛍光発光強度比 Bh/Ah 0.47 0.46 0.15 0.34 0.39 0.49 0.47 0.47 0.45 1.58 加熱処理後の蛍光発光強度比の差 Bh/Ah- B0/A0 0.37 0.35 0.09 0.23 0.28 0.38 0.36 0.37 0.35 0.98
450nmの蛍光発光強度 ^so 2.5 2.5 1.9 2.6 2.5 2.6 3.3 2.6 3.4 16
395nmの蛍光発光強度 48.0 48.0 53.0 47.2 47.4 46.2 53.2 48.2 53.1 31.0 選
別 加熱処理後の 450nmの蛍光発光強度 BSh 7.1 7.0 3.5 5.1 5.8 7.2 10.3 7.0 10.2 49.0 チ加熱処理後の 395nmの蛍光発光強度 Ash 31.0 31.3 41.0 31.2 31.5 30.8 34.0 32.0 33.0 30.0 ッ 加熱処理後蛍光発光強度の増加量 Bsh_Bso 4.6 4.5 1.6 2.5 3.3 4.6 7.0 4.4 6.8 33 プ
蛍光発光強度比 Bs。/ Aso 0.05 0.05 0.04 0:06 0.05 0.06 0.06 0.05 0.06 0.52 加熱処理後蛍光発光強度比 Bsi/ Ash 0.23 0.22 0.09 0.16 0.18 0.23 0.30 0.22 0.31 1.63
実施例 比較例 項目(一般特性)
1-1 1-2 2 3 4 5 6 7 8 1
IV (dl/g) 0.74 0.75 0.75 0J5 0J5 0J5 0.75 0.74 075 0.74 ポ 加熱処理後のカラー b
1.8 0 0.3 2.3 1=5 2.0 1.3 1.8 1.5 4.6
U 値の増加量
X CT量(重量%) 0.45 0.33 0.40 0.39 0.42 0.43 0.33 0.45 0.33 0.46 ス 厶 CT量 (重量 ¾) 0.47 0.46 0.45 0.47 0.46 0.45 0.12 0.47 0.12 0.45 丁
DEG含有量 (モル0 /o) 2.6 2.7 2.6 2.6 2.8 2.6 2.Ί 2.6 2.Ί 2.9 ル
樹 AA含有量 (ppm) 2.9 3.0 3.1 3.0 3.1 2.9 3.1 2.9 3.1 4.3 脂 角虫某歹夷 (ppm) Ge: 41 Ge: 48 AI: 20 Ti: 3/ g: 2 Ge: 40 Ge: 47 Ge: 41 Ge: 46 Ge: 40 の
特 P残存 BAPpm) 25 29 36 6 18 24 25 25 25 25 性 ファイン 、ppm) 50 50 63 55 50 50 55 46 55 50 ファインの融点 (°C) 248 249 248 250 251 249 249 250 251 252 成形板 Tc1 (°C) 169 171 170 172 169 170 168 163 163 143 成形板 成形板ヘイズ (%) 4.2 4.0 4.9 3.8 5.2 4.5 4.8 4.4 5.1 32.2 特性 成形板ヘイズ斑(%) 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 3.69 寸法変化率 3.2 3.2 3 2.9 2.2 3.3 3.1 2.8 2.9 0.6 ボ P 密度 fe/cm3) 1.378 1.378 1.379 1.378 1.380 1.378 1.379 1.380 1.381 1.397 栓 密度偏差 fe/cm3) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01 部 変形 無し 無し 無し 無し 無し 無し 無し 無し 無し 無し 内容物漏れ 無し 無し 無し 無し 無し 無し 無し 無し 無し 漏れあり ル 胴部ヘイズ (%) 1.0 0.9 1.2 0.9 1.4 1.0 1.1 1.1 1.2 12.2
AA含有量(ppm) 21.0 20.0 21.3 24.0 23.5 24.0 16.0 22.0 21.0 23.1 ブラックライト観察 問 Sa'よし 問 is 'よし 問題なし 問題なし 問題なし 問題なし 問題なし ¾ΐϊέι し 問題なし 蛍光ひどい

Claims

請求の範囲
1. 主としてテレフタル酸成分とグリコール成分とから構成されるポリエステル樹脂であって、 該ポリエステル樹脂に波長 343 nmの励起光を照射したときに得られる蛍光スぺクトルにお ける 450 nmの蛍光発光強度 (B0) が 20以下であることを特徴とするポリエステル樹脂。
2. 主としてテレフタル酸成分とグリコール成分とから構成されるポリエステル樹脂であって、 180°Cの温度で 10時間加熱処理した該ポリエステル樹脂に波長 343 nmの励起光を照射 したときに得られる蛍光スペクトルにおける 450 nmの蛍光発光強度を (Bh) 、 未加熱処 理ポリエステル樹脂の同様の 450 nmの蛍光発光強度を (B0) とした際に、 蛍光発光強度 増加量 (Bh— B0) が 30以下であることを特徴とするポリエステル樹脂。
3. 180での温度で 10時間加熱処理したポリエステル樹脂に波長 343 nmの励起光を 照射したときに得られる蛍光スペクトルにおける 450 nmの蛍光発光強度を (Bh) 、 未加 熱処理ポリエステル樹脂の同様の 450 nmの蛍光発光強度を (BQ) とした際に、 蛍光発光 強度増加量 (Bh— B0) が 30以下であることを特徴とする請求項 1に記載のポリエステル 樹脂。
4. 主としてテレフタル酸成分とグリコール成分とから構成されるポリエステル樹脂であつ て、 該ポリエステル樹脂に波長 343 nmの励起光を照射したときに得られる蛍光スペクトル における、 395 nmの蛍光発光強度を (A0) 、 450 nmの蛍光発光強度を (B0) とし た際、 (BD/A0) が 0. 4以下であることを特徴とするポリエステル樹脂。
5. 波長 343 nmの励起光を照射したときに得られる蛍光スぺクトルにおける、 395 η mの蛍光発光強度を (A0) 、 450 nmの蛍光発光強度を (B0) とした際、 (B。ZA0) 力 0. 4以下であることを特徴とする、 請求項 1~3のいずれかに記載のポリエステル樹脂。
6. 主としてテレフ夕ル酸成分とグリコ一ル成分とから構成されるポリエステル樹脂であつ て、 180での温度で 10時間加熱処理した該桉脂に波長 343 nmの励起光を照射したとき に得られる蛍光スペクトルにおける、 395 nmの蛍光発光強度を (Ah) 、 450 nmの蛍 光発光強度を (Bh) とした際の比 (Bh/Ah) と、 未加熱処理ポリエステル樹脂の同様の 3 95 nmの蛍光発光強度を (A。) 、 450 nmの蛍光相対強度を (B。) とした際の比 (BQ /A0) との差が 0. 7以下であることを特徴とするポリエステル樹脂。
7. 180での温度で 10時間加熱処理したポリエステル樹脂に波長 343 nmの励起光を 照射したときに得られる蛍光スペクトルにおける、 395 nmの蛍光発光強度を (Ah) 、 4 5 Onmの蛍光発光強度を (Bh) とした際の比 (Bh/Ah) と、 未加熱処理ポリエステル樹 脂の 395 nmの蛍光発光強度を (A0) 、 450 nmの蛍光発光強度を (B0) とした際の 比 (B。/A0) との差が 0. 7以下であることを特徴とする請求項 1〜5のいずれかに記載 のポリエステル樹脂。
8. 主としてテレフタル酸成分とグリコ一ル成分とから構成されるチップ形状のポリエステ ル樹脂から選別したチップに波長 343 nmの励起光を照射したときに得られる蛍光スぺクト ルにおいて、 395 nmの蛍光発光強度を (AS()) 、 450 nmの蛍光発光強度を (Bso) とした際、 (Bso/Aso) が 0. 3以下であることを特徴とするボリエステル樹脂。
9. 請求項 1〜 9のいずれかに記載されたチップ形状ポリエステル樹脂であって、 選別した 蛍光発光チップに波長 343 nmの励起光を照射したときに得られる蛍光スぺクトルにおいて、 395 nmの蛍光発光強度を (Aso) 、 450 nmの蛍光発光強度を (Bso) とした際、 (Bso/Aso) が 0. 3以下であることを特徴とするポリエステル樹脂。
10. 主としてテレフタル酸成分とグリコール成分とから構成されるチップ形状ポリエステ ル樹脂を 180°Cの温度で 10時間加熱処理した後に選別した蛍光発光チップに波長 343 η mの励起光を照射したときに得られる蛍光スぺクトルにおいて、 395 nmの蛍光発光強度を (ASh) 、 450 nmの蛍光発光強度を (Bsh) とした際、 (Bsh/Ash) が 0. 5以下で あることを特徴とするポリエステル樹脂。
1 1. 請求項 1〜 7のいずれかに記載されたチップ形状ポリエステル樹脂であって、 該チッ プを 180°Cの温度で 10時間加熱処理した後に選別した蛍光発光チップに波長 343 nmの 励起光を照射したときに得られる蛍光スペクトルにおいて、 395 nmの蛍光発光強度を (A sh)、 450 nmの蛍光発光強度を (BSh) とした際、 (BshZAsh) が 0. 5以下である ことを特徴とするポリエステル樹脂。
12. 18 OXの温度で 10時間加熱処理した時の力ラー b値の増加量が 4以下であること を特徴とする請求項 1〜 1 1のいずれか記載のポリエステル樹脂。
13. 環状 3量体含有量が 0. 7重量%以下である、 エチレンテレフタレートを主たる繰り 返し単位とするポリエステル樹脂であることを特徴とする請求項 1〜 12のいずれかに記載の ポリエステル樹脂。
14. ポリエステル樹脂を 290 °Cの温度で 60分間溶融したときの環状エステルオリゴマ 一増加量が、 0. 50重量%以下であることを特徴とする請求項 1〜13のいずれかに記載の ポリエステル樹脂。
15. ポリエステルと同一組成のポリエステルのファインを 0. l~10000 ppm含有 し、 DSCで測定した該ファインの融点が 265 T以下であることを特徴とする請求項 1〜1 4のいずれかに記載のポリエステル樹脂。
16. 射出成形して得られた厚さ 3 mmの成形板を熱機械分析 (TMA) により測定した寸 法変化率が 1. 0 ~7. 0%であることを特徴とする請求項 1〜15のいずれかに記載のポ リエステル樹脂。
17. 請求項 1〜 16のいずれかに記載のポリエステル樹脂、 および、 ポリオレフィン樹脂、 ポリアミド樹脂、 ポリァセ夕ール樹脂からなる群から選ばれた少なくとも一種の樹脂を該ポリ エステル樹脂に対して 0. l ppb〜50000 ^pm含有することを特徴とする特徴とする ポリエステル樹脂組成物。
PCT/JP2004/002324 2003-02-28 2004-02-26 ポリエステル樹脂 WO2004076525A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/546,959 US20070065649A1 (en) 2003-02-28 2004-02-26 Polyester resin
JP2005502936A JPWO2004076525A1 (ja) 2003-02-28 2004-02-26 ポリエステル樹脂

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003053969 2003-02-28
JP2003-053969 2003-02-28
JP2003057967 2003-03-05
JP2003-057967 2003-03-05

Publications (1)

Publication Number Publication Date
WO2004076525A1 true WO2004076525A1 (ja) 2004-09-10

Family

ID=32929664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002324 WO2004076525A1 (ja) 2003-02-28 2004-02-26 ポリエステル樹脂

Country Status (5)

Country Link
US (1) US20070065649A1 (ja)
JP (1) JPWO2004076525A1 (ja)
KR (1) KR20050104394A (ja)
TW (1) TW200427728A (ja)
WO (1) WO2004076525A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299179A (ja) * 2005-04-25 2006-11-02 Teijin Fibers Ltd ポリエステル原料組成物及びその製造方法
US20090227735A1 (en) * 2008-03-07 2009-09-10 Eastman Chemical Company Miscible polyester blends and shrinkable films prepared therefrom
US10138338B2 (en) 2012-12-12 2018-11-27 Eastman Chemical Company Copolyesters plasticized with polymeric plasticizer

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527166C2 (sv) * 2003-08-21 2006-01-10 Kerttu Eriksson Förfarande och anordning för avfuktning
US20090186177A1 (en) * 2008-01-22 2009-07-23 Eastman Chemical Company Polyester melt phase products and process for making the same
GB0915687D0 (en) 2009-09-08 2009-10-07 Dupont Teijin Films Us Ltd Polyester films
KR101225831B1 (ko) * 2010-11-22 2013-01-23 롯데케미칼 주식회사 티타늄 촉매 복합물을 이용한 폴리에스테르 수지 조성물 및 그 제조방법
GB2488787A (en) * 2011-03-07 2012-09-12 Dupont Teijin Films Us Ltd Stabilised polyester films
JP6124719B2 (ja) * 2012-08-22 2017-05-10 花王株式会社 親水性ポリマー粒子の製造方法
GB201310837D0 (en) 2013-06-18 2013-07-31 Dupont Teijin Films Us Ltd Polyester film -IV
GB201317551D0 (en) 2013-10-03 2013-11-20 Dupont Teijin Films Us Ltd Co-extruded polyester films
EP3172215B1 (en) * 2014-07-24 2018-04-25 Graziano Vignali Organic titanium derivative and process for the preparation thereof, ink containing the derivative and ceramic digital printing method that uses the ink
JPWO2021100558A1 (ja) * 2019-11-20 2021-05-27
KR102282746B1 (ko) * 2021-06-17 2021-07-29 김지호 게르마늄 파동에너지 전사 기능성 섬유 제조방법 및 이에 의해 제조된 기능성 섬유
CN115181220B (zh) * 2022-09-13 2022-12-09 山东旺林新材料有限公司 一种对苯型不饱和聚酯树脂的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012788A (ja) * 2001-04-23 2003-01-15 Toyobo Co Ltd ポリエステルの製造方法
JP2003012789A (ja) * 2001-04-23 2003-01-15 Toyobo Co Ltd ポリエステルの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0711803B1 (en) * 1994-11-08 2000-01-19 Teijin Limited Method for preventing emission of fluorescence from polyalkylenenaphthalene-2,6-dicarboxylate
EP0982367B1 (en) * 1998-08-27 2006-06-21 Toyo Boseki Kabushiki Kaisha Polyester resin and production method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012788A (ja) * 2001-04-23 2003-01-15 Toyobo Co Ltd ポリエステルの製造方法
JP2003012789A (ja) * 2001-04-23 2003-01-15 Toyobo Co Ltd ポリエステルの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299179A (ja) * 2005-04-25 2006-11-02 Teijin Fibers Ltd ポリエステル原料組成物及びその製造方法
US20090227735A1 (en) * 2008-03-07 2009-09-10 Eastman Chemical Company Miscible polyester blends and shrinkable films prepared therefrom
US10138338B2 (en) 2012-12-12 2018-11-27 Eastman Chemical Company Copolyesters plasticized with polymeric plasticizer
US10329395B2 (en) 2012-12-12 2019-06-25 Eastman Chemical Company Copolyesters plasticized with polymeric plasticizer for shrink film applications
US10329393B2 (en) 2012-12-12 2019-06-25 Eastman Chemical Company Copolysters plasticized with polymeric plasticizer for shrink film applications

Also Published As

Publication number Publication date
TW200427728A (en) 2004-12-16
JPWO2004076525A1 (ja) 2006-06-01
US20070065649A1 (en) 2007-03-22
KR20050104394A (ko) 2005-11-02

Similar Documents

Publication Publication Date Title
WO2004076525A1 (ja) ポリエステル樹脂
JP3741095B2 (ja) ポリエステル組成物並びにそれからなるポリエステル成形体
JP2009052041A (ja) ポリエステルの製造方法
JP2003306540A (ja) ポリエステルの製造方法
JP2004285350A (ja) ポリエステル樹脂の製造方法および得られたポリエステル樹脂、ポリエステル樹脂組成物
JP2004300428A (ja) ポリエステル樹脂組成物およびそれからなるポリエステル成形体
JP3685328B2 (ja) ポリエステルの製造方法
JP2004285333A (ja) ポリエステル樹脂組成物
JP2004285332A (ja) ポリエステル樹脂
JP2005247886A (ja) ポリエステル組成物ならびにそれからなるポリエステル成形体
JP3613685B2 (ja) ポリエステルの製造方法及びそれによって得られるポリエステル
JP2003206346A (ja) ポリエステル組成物の製造方法
JP2004277732A (ja) ポリエステルの製造方法
JP2004285328A (ja) ポリエステル樹脂
JP2003073465A (ja) ポリエステルの製造方法
JP2006045555A (ja) ポリエステル及びそれかなるポリエステル成形体
JP2003160657A (ja) ポリエステルの製造方法
JP2004263106A (ja) ポリエステル組成物ならびにそれからなるポリエステル成形体
JP2004277733A (ja) ポリエステルの製造方法
JP4802664B2 (ja) ポリエステル予備成形体の製造方法およびポリエステル延伸成形体の製造方法
JP3698257B2 (ja) ポリエステルの製造方法
JP2004300427A (ja) ポリエステル樹脂組成物およびそれからなるポリエステル成形体
JP2003073467A (ja) 中空成形体用ポリエステルの製造方法
JP2005290392A (ja) ポリエステルの製造方法
JP2005206676A (ja) ポリエステル組成物並びにそれからなるポリエステル成形体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502936

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057015763

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 4384/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20048114825

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057015763

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007065649

Country of ref document: US

Ref document number: 10546959

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10546959

Country of ref document: US