WO2004058959A1 - PNPaseの製造法 - Google Patents

PNPaseの製造法 Download PDF

Info

Publication number
WO2004058959A1
WO2004058959A1 PCT/JP2003/016653 JP0316653W WO2004058959A1 WO 2004058959 A1 WO2004058959 A1 WO 2004058959A1 JP 0316653 W JP0316653 W JP 0316653W WO 2004058959 A1 WO2004058959 A1 WO 2004058959A1
Authority
WO
WIPO (PCT)
Prior art keywords
pnpase
acid
gene
tag
coli
Prior art date
Application number
PCT/JP2003/016653
Other languages
English (en)
French (fr)
Inventor
Masatoshi Murai
Original Assignee
Nippon Shinyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co., Ltd. filed Critical Nippon Shinyaku Co., Ltd.
Priority to JP2004562927A priority Critical patent/JPWO2004058959A1/ja
Priority to EP03768192A priority patent/EP1582584A4/en
Priority to US10/540,145 priority patent/US20060166315A1/en
Priority to AU2003292772A priority patent/AU2003292772A1/en
Publication of WO2004058959A1 publication Critical patent/WO2004058959A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1258Polyribonucleotide nucleotidyltransferase (2.7.7.8), i.e. polynucleotide phosphorylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02001Purine-nucleoside phosphorylase (2.4.2.1)

Definitions

  • the present invention relates to a method for producing PNPase (polynucleotide phosphorylase), which is an enzyme useful for producing a synthetic nucleic acid polymer.
  • PNPase polynucleotide phosphorylase
  • PNPase is an enzyme discovered by S. Ochoa in 1955. It catalyzes the reversible polymerization of ribonucleoside diphosphoric acid and releases inorganic phosphorus. This enzyme is widely distributed in bacteria but not present in animals.
  • This enzyme can be used in vitro to polymerize ribonucleoside diphosphoric acid, which is useful for synthesizing high molecular weight homopolymers, copolymers, or oligomers with a defined sequence.
  • PNPase can be obtained by classical separation and extraction from bacteria, a method that can be produced in large amounts in microorganisms by a recombinant DNA technique is also known (US Pat. No. 4,912,496). ).
  • a PNPase gene (hereinafter also referred to as a “pnp gene”) is incorporated into a vector containing an appropriate expression control signal to increase the expression level of an enzyme gene, and PNPase is produced in large amounts in the transformed cells.
  • pnp gene a PNPase gene
  • T7 RNA polymerase (Genbank accession number M38308) efficiently and specifically promotes the transcription of genes downstream of the T7 promoter (US Pat. No. 4,912,496; US Pat. No. 5,693,34). 89 'US Patent No. 5,869,320). Disclosure of the invention
  • the present invention provides a PNPase which can produce PNPase more easily and more efficiently than conventionally known methods, and which can reduce endotoxin contamination which is a problem in the synthesis of nucleic acid polymers as a drug material.
  • the present inventors have conducted intensive studies and as a result, solved the above-mentioned problems by using, for example, a transformant of Escherichia coli or the like having a T7 RNA polymerase gene with an expression vector linking the pnp gene and the T7 promoter.
  • the present invention has been completed. Examples of the present invention include the following.
  • a method for producing a PNPase comprising at least the following steps.
  • C. a step of causing the transformant to express the PNPase gene, thereby accumulating the PNPase in the cells, and continuing expression until the cells are broken and the PNPase exudes into the extracellular supernatant;
  • the production method (2) is preferred.
  • the origin of the pnp gene is not particularly limited, and includes, for example, Escherichia coli (eg, K12 strain, 0157 strain) and related fungi (eg, Salmonella typhimuriimi).
  • Escherichia coli eg, K12 strain, 0157 strain
  • related fungi eg, Salmonella typhimuriimi
  • an imp gene derived from Escherichia coli is particularly preferred. Les,
  • the plasmid having the T7 promoter which is an expression control signal, is not particularly limited as long as it has a ⁇ 7 promoter, but is capable of replicating in a bacterial cell, has a specific restriction enzyme cleavage site, and has a specific restriction enzyme cleavage site. It is preferable to use the plasmid vector having a high copy number. Specific examples include ⁇ -based plasmid (manufactured by Nopagen), pRSET-A and p-RSET-B pRSET-C (manufactured by Invitrogen).
  • the plasmid has a tag gene capable of adding a so-called tag to the PNPase of the present invention (hereinafter also referred to as the enzyme).
  • tag genes include, for example, His tag gene, T7 tag gene, S tag gene, Nus tag gene, GST tag gene, DsbA tag gene, DsbC tag gene, CBD cex tag gene, CBDcenA tag gene, CBDclos tag Gene, Trx tag gene, HSV tag gene and 3X FLAG tag gene.
  • a His tag gene is suitable.
  • Escherichia coli or its relatives as a host are not particularly limited as long as they have a T7 RNA polymerase gene, but those used in recombinant DNA experiments are preferable.
  • Specific examples include BL21 [DE3] E. coli, BL21 [DE3] pLysS strain E. coli, BLR [DE3] strain E. coli, Rosetta [DE3] strain E. coli, and B834 [DE3] strain E. coli.
  • nucleic acid polymers such as nucleic acid homopolymer, nucleic acid copolymer, and oligonucleic acid can be synthesized.
  • specific examples of the nucleic acid polymer that can be synthesized include polyinosinic acid, polycytidylic acid, polyperidilic acid, polyaduric acid, polyguanylic acid, poly (5-promocitylic acid), poly (2-thiocytidylic acid), and poly (2-thiocytidylic acid).
  • the pnp gene can be cloned from Escherichia coli chromosomal DNA by a conventional method.
  • a specific example is cloning by the colony hybridization method.
  • the Ndel breakpoint was introduced into the start codon of the pnp gene by polymerase chain reaction (PCR), and the EcoRI breakpoint was introduced downstream of the stop codon.
  • the pnp gene was introduced from this Ndel breakpoint by a conventional method. DNA fragments up to the EcoRI breakpoint can be obtained.
  • This DNA fragment is digested with Ndel and EcoRI in advance, mixed with a plasmid having a T7 promoter whose terminal has been dephosphorylated, and subjected to a ligation reaction to construct a desired expression vector. be able to.
  • Escherichia coli having T7 RNA polymerase gene or a related bacterium can be transformed by a conventional method.
  • the transformed E. coli and the like can be cryopreserved by a conventional method.
  • the transformation method can be performed by a conventional method, and is not particularly limited. Specifically, for example, a method such as a calcium chloride method and an electoral poration method can be used.
  • the transformant can be cultured and grown in a medium that can grow by a conventional method. In culturing and growing, it is preferable to pre-culture at 37 ° C., for example. After starting the main culture and reaching an appropriate turbidity (for example, the turbidity at 600 nm is 0.4 to 1.0), an appropriate amount of an appropriate expression inducer is added to express the pnp gene. Enzyme 'can be induced into cells. If the culture is carried out for 7 to 9 hours after the addition of the inducer, the accumulation of the enzyme in the cells usually becomes the maximum, but if the culture is continued for further 24 hours, the cells usually usually self-digest. Incubate the enzyme The supernatant can be extracted. When the enzyme is exuded into the culture supernatant, the enzyme having a higher purity can be obtained since there is no cell destruction process and extraction process, and the contamination of endotoxin can be reduced.
  • an appropriate turbidity for example, the turbidity at 600 nm is
  • Examples of the above-mentioned expression inducing agent include isopropyl-1] 3-D-thiogalactopyranoside (hereinafter referred to as IPTG) and lactose.
  • the transformant can be cultured by a conventional method using a medium containing nutrients necessary for the growth of microorganisms such as a carbon source and a nitrogen source.
  • a medium containing nutrients necessary for the growth of microorganisms such as a carbon source and a nitrogen source.
  • a medium used for ordinary Escherichia coli culture such as 2XYT medium, LB medium, and M9CA medium can be used.
  • the cultivation can be performed, for example, at a culturing temperature of 20 to 40 ° C. with aeration and stirring as necessary.
  • an appropriate amount of an antibiotic can be added to the culture medium and cultured.
  • an appropriate amount of an appropriate defoaming agent for example, Adekinol LG-109 (Asahi Denka Kogyo), AntifoamAF Emulsion (Nacalai Tesque) is added to prevent overflow due to foaming at the latter stage of the culture. You can also.
  • an appropriate defoaming agent for example, Adekinol LG-109 (Asahi Denka Kogyo), AntifoamAF Emulsion (Nacalai Tesque)
  • a method for recovering the cells after culture and induction and extracting and purifying the enzyme can be carried out by a conventional method.
  • the enzyme when the enzyme is accumulated in the cells, the cells are suspended in an appropriate buffer, and the cells are physically destroyed by ultrasonic treatment, French press treatment, etc.
  • the enzyme can be obtained by removing body residues. If purification is necessary, the enzyme can be purified by salting out with ammonium sulfate, dialysis, treatment with a solvent such as ethanol, various types of chromatography, ultrafiltration, or the like.
  • the enzyme expressed with a tag it can be more easily recovered and purified by a conventional method.
  • the collected supernatant is applied with a force suitable for the applied tag. It can be purified by treating with ram.
  • the enzyme produced by the method of the present invention can be treated with an endotoxin removal column in order to synthesize an endotoxin-free nucleic acid polymer usable as a pharmaceutical.
  • an endotoxin removal column in order to synthesize an endotoxin-free nucleic acid polymer usable as a pharmaceutical.
  • the step of destroying the bacterial cells is not required, so that endotoxin contamination can be prevented accordingly.
  • a nucleic acid polymer can be synthesized by allowing the enzyme obtained by the method of the present invention to act on ribonucleoside diphosphoric acid in a conventional manner.
  • the enzyme to which the tag is attached can be used as it is, but can also be used after removing the tag by an ordinary method.
  • FIG. 1 shows a plasmid map of a PNPase (His-PNPase) expression plasmid with a His tag, pET28a ⁇ E.coli ⁇ His-PNPase.
  • FIG. 2 shows a plasmid map of a PNPase (native-PNPase) expression plasmid without a His tag, pET30a ⁇ E.coli ⁇ native-PNPase.
  • FIG. 3 shows the activity of a His-tagged PNPase.
  • the vertical axis indicates the PNPase activity (U / L culture solution), and the horizontal axis indicates the culture time (hours) after the induction of expression.
  • the black column shows the PNPase activity in the cell lysate, and the white column shows the PNPase activity in the culture supernatant.
  • FIG. 4 shows the activity of a PNPase without a His tag.
  • the vertical axis shows the PNPase activity (U / L culture solution), and the horizontal axis shows the culture time (hours) after expression induction.
  • the black column shows the PNPase activity in the cell lysate, and the white column shows the PNPase activity in the culture supernatant.
  • FIG. 5 shows the synthesis reaction yield and average chain length of polyinosinic acid.
  • the left vertical axis represents the synthesis reaction yield (%)
  • the right vertical axis represents the average chain length (the number of bases)
  • the horizontal axis represents the time (hour).
  • -Hataichi indicates the transition of the synthesis reaction yield
  • '-- ⁇ ... indicates the transition of the average chain length.
  • FIG. 6 shows the synthesis reaction yield and average chain length of polycytidylic acid.
  • the left vertical axis represents the synthesis reaction yield (%)
  • the right vertical axis represents the average chain length (the number of bases)
  • the horizontal axis represents the time (hour).
  • Ichiichi represents the transition of the synthesis reaction yield, and 100 ... represents the transition of the average chain length.
  • the pnp gene was cloned from the chromosomal DNA of Escherichia coli C600K- by colony hybridization, the Ndel breakpoint was introduced at the start codon of the pnp gene by PCR, and the EcoRI breakpoint was introduced downstream of the stop codon.
  • the DNA fragment from the Ndel breakpoint to the EcoRI breakpoint containing the pnp gene was obtained by 3 ⁇ 4.
  • This DNA fragment was previously cleaved with Ndel and EcoRI, and mixed with an expression vector plasmid pET28a (including His tag gene; Novagen), which had been dephosphorylated at the 5 'end, and subjected to a binding reaction to express the tag gene.
  • the vector was constructed.
  • This expression vector was composed of pET28aDNA into which a DNA fragment of about 2400 base pairs had been inserted, and this plasmid was named pET28a ⁇ E.coli ⁇ His-PNPase (see FIG. 1).
  • the part derived from the vector matches the sequence published by Novagen, and the part of the pnp gene is described in the public gene database Genbank registration number NC000913. It completely matched the DNA sequence of the E. coli K12 strain corresponding to the pnp gene.
  • pET28a'E.coli'His-PNPase DNA was cut with Ndel and EcoRI, and agarose gel electrophoresis was performed to extract an Ndel-EcoRI DNA fragment of about 2400 base pairs.
  • this DNA fragment was cut with Ndel and EcoRI in advance, and the 5'-terminal dephosphorylated expression vector plasmid pET30a (without the tag gene). (Novagen) and a binding reaction was carried out to construct an expression vector without a tag gene.
  • This expression vector was composed of pET30a DNA into which a DNA fragment of about 2400 base pairs had been inserted, and this plasmid was named pET30a ⁇ E. coli ⁇ native-PNPase (see Fig. 2).
  • Escherichia coli BL21 [DE3] (Novagen) was transformed by the above-mentioned plasmid pET28a ⁇ E.coli ⁇ His-PNPase or pET30a ⁇ E.coli ⁇ native-PNPase according to a conventional method. Transformants were prepared.
  • a LB medium (LB BROTH BASE, manufactured by Invito Kuchigen, cat No. 12780-052) is charged to a 10-L tabletop jar arm mentor (manufactured by Oriental Yeast Co., Ltd., LS-10), and the preculture is inoculated.
  • the turbidity at 600 mn at the start of culture was about 0.2
  • aeration culture was performed at 37 ° C, 1 vvm, and 500 rpm.
  • 'IPTG manufactured by Nacalai Tester
  • Kanamycin was added at a concentration of 25 mg / L to prevent the expression vector from dropping off.
  • extraction buffer A 20 mM Tris-HCl pH 8.0
  • the crude cell extract was subjected to Ni + affinity chromatography ( ⁇ 2.6 ⁇ 20, His Bind Flactogel M, Novagen) to purify the His-tagged enzyme. After applying the crude cell extract to a column equilibrated with extraction buffer A at 5 mL / min, the resin is washed with 1 L of extraction buffer A, and finally 1 L of 0.5 M imidazole is added. The enzyme to which the His tag was added was eluted from the column with extraction buffer A containing the enzyme. Next, in order to change the pH and remove sodium chloride and imidazole, diafiltration using an ultrafiltration membrane was performed.
  • ND Not measured As is clear from Table 1, approximately 200,000 units of the enzyme were obtained from 112 L of cultured cells (cultured for 3 hours after induction). In addition, endotoxin contained in a large amount after the first diafiltration was almost completely removed by Kurimoverll column treatment, and the final product contained only 9.3 EU endotoxin per PNPase unit.
  • the His-tagged enzyme was purified from the cells collected from 56 L of culture solution (7 L cultures x 8 times) 7 hours after the induction of expression by IPTG addition.
  • the cells were suspended in about 1/30 of the culture volume of extraction buffer B (20 mM Tris-HCl pH 8.0, 0.5 M sodium chloride, 5% glycerol), and suspended at 50 mg / L.
  • extraction buffer B (20 mM Tris-HCl pH 8.0, 0.5 M sodium chloride, 5% glycerol
  • the mixture was shaken at room temperature for 30 minutes, and then frozen at _80 ° C. After rapidly thawing the frozen cells at 37 ° C, the cells were sonicated for about 5 minutes at maximum output using a crushing horn of an Astrasson ultrasonic cell crusher XL2020 and cat No.200.
  • the cell lysate was centrifuged at 20,000 X g at 4 ° C for 60 minutes, and the supernatant was collected to prepare a 1.5 L crude cell extract.
  • the crude cell extract was subjected to Ni + affinity chromatography to purify the His-tagged enzyme.
  • the crude cell extract is applied to the column equilibrated with B. At 5 mL / min, the resin is washed with 1 L of extraction buffer B and finally 1 L of 0.5 M imidazole.
  • the protein tagged with His was eluted from the column with extraction buffer B containing.
  • a diafiltration using an ultrafiltration membrane was performed.
  • Ultrafiltration was performed while adding a buffer (20 mM Tris-HCl pH 8.0, 5 mM magnesium chloride, 5% glycerol) to keep the amount of the enzyme solution constant. Ultrafiltration was continued until the filtrate reached ⁇ L, the buffer solution composition of the enzyme solution was changed, and the solution was stored frozen at 120 ° C. A sample was collected at each purification step, and the activity of the enzyme and the amount of endotoxin were measured.
  • a buffer (20 mM Tris-HCl pH 8.0, 5 mM magnesium chloride, 5% glycerol)
  • ND Not measured As is clear from Table 2, approximately 170,000 units of the enzyme could be obtained from 56 L of cultured cells (cultured for 7 hours after induction). This was almost the same as the amount of the enzyme purified from the 112 L cells cultured for 3 hours after induction, and proved that increasing the culture time increased the yield of the enzyme. In addition, the endotoxin contained in large amounts after the first filtration was almost completely removed by the Kurimoverll column treatment, and the final product contained only 1.0 EU endotoxin per unit of the enzyme. Was. This value was lower than the amount of endotoxin (9.3 EU / U-PNPase) contained in the enzyme purified from 112 L of cells cultured for 3 hours after induction.
  • the enzyme adsorbed on the ion exchange resin was washed with 5 L of 20 mM Tris-HCl pH 8.0 and 0.1 M sodium chloride, Elution was carried out with a buffer containing 0.5 M sodium chloride to obtain a crude enzyme solution.
  • the crude enzyme solution was subjected to Ni + affinity chromatography to purify the His-tagged enzyme.
  • the resin is mixed with 1 L of extraction buffer B and 1 L of extraction buffer B containing 50 mM imidazole.
  • the His-tagged enzyme was eluted from the column with extraction buffer B containing 0.5 L of 0.5 M imidazole.
  • diafiltration using an ultrafiltration membrane was performed for the purpose of changing pH and removing sodium chloride and imidazole.
  • ultrafiltration was performed while adding a buffer (50 mM Tris-HCl pH 7.0, 0.15 M sodium chloride). Ultrafiltration was continued until the filtrate reached 7 L, and the buffer composition of the enzyme solution was changed.
  • the enzyme solution was applied to a Kurimover II column.
  • the enzyme solution was treated at 1.7 mL / min on the activated Kurimover II column, and the flow-through fraction was collected.
  • a diafiltration was carried out using a P-Tori extrafiltration membrane (PREP / SCALE-TFF, molecular weight cut off: 30,000, manufactured by Millipore).
  • Ultrafiltration was performed while adding a buffer solution (20 mM Tris-HCl pH 8.0, 5 mM magnesium chloride, 5% glycerol) so as to keep the amount of the enzyme solution constant. Ultrafiltration was continued until the filtrate reached 7 L.
  • the enzyme solution was stored frozen at 120 ° C. A sample was collected at each stage of purification, and the activity of the enzyme and the amount of endotoxin were measured. The results are shown in Table 3.
  • Table 3 Table 3
  • ND Not measured As is clear from Table 3, about 50,000 units of the enzyme were obtained from 28 L culture supernatant for 24 hours. This enzyme showed almost no presence of other proteins in the protein purity assay by SDS-PAGE / Kumasi Blue staining. In addition, endotoxin contained in large amounts after the first diafiltration was mostly removed by Kurimoverll column treatment, and the final product contained only 1.2 EU endotoxin per unit of the enzyme. . This value was lower than the amount of endotoxin (9.3 EU / U-PNPase) contained in the enzyme purified from 112 L cells cultured for 3 hours after induction. From this, it can be said that purification of the enzyme from the culture supernatant is a method of obtaining the enzyme of high purity, which can omit the process of crushing cells, which is difficult to scale up.
  • both the enzyme with the His tag and the enzyme without the tag had the maximum accumulation in the cells within 7 to 9 hours after induction, It decreased after 24 hours. At 24 hours after induction, more of the enzyme was released into the culture supernatant than the amount accumulated in the cells 7 to 9 hours after induction (see Figs. 3 and 4).
  • the supernatant was separated by centrifugation at 4 ° C, 15,000 rpm for 5 minutes (MR-150, manufactured by Tommy Seie).
  • 50 L of the supernatant and 50 ⁇ L of Tassky-Shorr reagent 0.5 M sulfuric acid, 10 g / (L-ammonium molybdate, 50 g / L ferrous sulfate) was added, stirred for 30 seconds, and left at room temperature for 5 minutes.
  • the absorbance at 660 nm was measured (Model 550, manufactured by BkrRad), and the activity of the enzyme was calculated.
  • 1U as defined here is the amount of enzyme that releases 1 mole of inorganic phosphate by a reaction at 37 ° C, pH 9.0, for 15 minutes.
  • Polyinosinic acid (RNA homopolymer) was synthesized using the enzyme purified from 112 L cultured cells. The conditions under which a small-scale synthesis reaction was performed in advance to determine a polymer with a high reaction yield and a long average chain length were determined. The synthesis of polyinosinic acid was performed in a total volume of 350 mL and the reaction solution composition (100 mM 2- [4- (2-hydroxyethyl) -l-piperazinyl] ethanesulfonic acid (HEPES) -NaOH ⁇ 7.5, 0.4 mM EDTA sodium , 50 mM magnesium chloride, 0.1 g / L The test was performed at 37 ° C.
  • the chain length was determined using a degradation product of pUC119 (manufactured by Takara Shuzo) with restriction enzymes EcoRI, Narl and Nspl (manufactured by New England Bio Lab) as an index.
  • Figure 5 shows the results. As is evident from FIG. 5, polyinosinic acid having an average chain length of about 2200 bases was obtained at a reaction yield of about 50% by the reaction at 37 ° C. for 11 hours.
  • polycytidylic acid was synthesized. Total volume 350 mL, reaction solution composition (100 mM glycine-NaOH pH 9.0, 0.4 mM EDTA disodium, 25 mM magnesium chloride, 0.1 g / L citidine diphosphate trisodium sodium salt (Yamasa Shoyu Co., Ltd.), 11.43 U / mL His-PNPase) at 37 ° C. Samples were collected over time and a portion was analyzed by gel filtration HPLC under denaturing conditions to calculate the average chain length and reaction yield.
  • Figure 6 shows the results. As is clear from FIG. 6, polycytidylic acid having an average chain length of about 2200 bases was obtained by a reaction at 37 ° C. for 7 hours with a reaction yield of about 65%.
  • expression of the tagged enzyme greatly facilitates purification, and the unexpected effect of increasing the production of the enzyme by Escherichia coli about twice is obtained.
  • the enzyme due to the cultivation method, the enzyme is released into the culture supernatant without accumulating in the cells, preventing the contamination of a large amount of endotoxin due to cell disruption.
  • the enzyme can be purified quickly and easily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

高効率で簡便にPNPaseを製造することができ、また医薬品原料としての核酸重合体の合成において問題となるエンドトキシンの混入を低減できる、PNPaseの製造法を提供することである。PNPase遺伝子とT7プロモーターとを連結する発現ベクターにより、T7 RNAポリメラーゼ遺伝子を有する大腸菌等を形質転換したものを用いることなどにより、PNPaseを製造する。また、PNPaseの精製工程をより簡便にするために、タグ遺伝子を有する発現ベクターを利用したり、培養時間を長くする。

Description

明細書
PNPaseの製造法. 技術分野
本発明は、合成核酸重合体を製造するために有用な酵素である PNPase (ポ リヌクレオチドホスホリラーゼ) の製造法に関するものである。 従来の技術
PNPaseは、 1955年に S.Ochoaにより発見された酵素であり、 リボヌクレ オシドニリン酸の可逆的重合を触媒し、 無機リンを放出する酵素である。 こ の酵素は、 細菌に広く分布しているが、 動物には存在しない。
試験管内でこの酵素を作用させればリボヌクレオシドニリン酸の重合を行 うことができるので、 高分子量のホモポリマー、 コポリマー、 または配列の 決まったオリゴマーを合成するのに有用である。
PNPaseは、古典的には細菌から分離抽出して得ることができるが、組換え DNA手法により微生物内で大量に製造しうる方法も知られている (米国特許 第 4 9 1 2 4 9 6号)。 特許文献 1では酵素遺伝子の発現量を上昇させるため に適当な発現制御シグナルを含むベクターに PNPase遺伝子 (以下、 「pnp遺 伝子」 ともいう) を組み込み、 形質転換した菌体内で PNPase を大量に蓄積 させた後、 菌体破碎を行い PNPaseを抽出精製する方法が示されている。
T7 RNAポリメラーゼ (Genbank登録番号 M38308) は、 高効率にかつ特 異的に T7プロモーター下流の遺伝子の転写を促進する(米国特許第 4 9 1 2 4 9 6号 .米国特許第 5 6 9 3 4 8 9号 '米国特許第 5 8 6 9 3 2 0号)。 発明の開示
本発明は、 従来から知られている方法よりも高効率で簡便に PNPase を製 造することができ、 また医薬品原料としての核酸重合体の合成において問題 となるェンドトキシンの混入を低減できる、 PNPaseの製造法を主として提供 することにある。
本発明者らは、 鋭意検討した結果、 pnp 遺伝子と T 7プロモーターとを連 結する発現ベクターにより、 T7 RNA ポリメラーゼ遺伝子を有する大腸菌等 を形質転換したものを用いることなどにより、 上記課題を解決することがで き、 本発明を完成した。 本発明として、 例えば、 下記のものを挙げることができる。
( 1 ) 少なくとも次の工程を含有する PNPaseの製造法。
A . 発現制御シグナルである T 7プロモーターを有するプラスミ ドに原核 生物由来の PNPase遺伝子を組み込んだ発現ベクターを構築する工程;
B . 当該ベクターを用いて、 T7 RNA ポリメラーゼ遺伝子を有する大腸菌 又はその類縁菌を形質転換する工程;
C . 当該形質転換体に PNPase遺伝子を発現させることによって、 PNPase を菌体内に蓄積させる工程;
D . PNPaseが蓄積された菌体を回収し、 PNPaseを抽出精製する工程。 または、
( 2 ) 少なくとも次の工程を含有する PNPaseの製造法。
A . 発現制御シグナルである T 7プロモーターを有するプラスミ ドに原核 生物由来の PNPase遺伝子を組み込んだ発現ベクターを構築する工程;
B . 当該ベクターを用いて、 T7 RNA ポリメラーゼ遺伝子を有する大腸菌 又はその類縁菌を形質転換する工程;
C. 当該形質転換体に PNPase遺伝子を発現させることによって、 PNPase を菌体内に蓄積させ、 さらに菌体が壊れ PNPaseが菌体外上清中に滲出する まで発現を続ける工程;
D'. 上清中に滲出した PNPaseを回収精製する工程。
この中、 上記 (2 ) の製造法が好ましい。
pnp遺伝子の起源は特に制限されず、 例えば、 大腸菌 (例、 K12株、 0157 株) やその類縁菌 (例、 Salmonella typhimuriimi) を挙げることができる。 本発明においては、 特に大腸菌 (特に、 K12株) 由来の imp遺伝子が好まし レ、
発現制御シグナルである T 7プロモーターを有するプラスミ ドとしては、 Τ 7プロモーターを有するプラスミ ドであれば特に制限されないが、 菌体内 で複製可能であり、 特定の制限酵素切断部位を有し、 菌体内のコピー数の高 い当該プラスミ ドベクターを用いるのが好ましい。 具体例としては、 ρΕΤ 系 プラスミ ド (ノパゲン社製)、 pRSET-A, p-RSET-B pRSET-C (インヴィ ト ロゲン社製) を挙げることができる。
また、 当該プラスミ ドについては、 本発明に係る PNPase (以下、 当該酵素 ともいう) にいわゆるタグを付与することができる、 タグ遺伝子を有するも のが好ましい。 このようなタグ遺伝子としては、 例えば、 His タグ遺伝子、 T7タグ遺伝子、 Sタグ遺伝子、 Nusタグ遺伝子、 GSTタグ遺伝子、 DsbAタ グ遺伝子、 DsbCタグ遺伝子、 CBDcexタグ遺伝子、 CBDcenAタグ遺伝子、 CBDclos タグ遺伝子、 Trxタグ遺伝子、 HSVタグ遺伝子、 3 X FLAGタグ遺伝子を挙 げることができる。 特に Hisタグ遺伝子が適当である。
宿主としての大腸菌又はその類縁菌としては、 T7 RNA ポリメラーゼ遺伝 子を有するものであれば特に制限されないが、 '組換え DNA実験で使用される ものが好ましい。 具体例としては、 BL21 [DE3]大腸菌、 BL21[DE3]pLysS株 大腸菌、 BLR[DE3]株大腸菌、 Rosetta[DE3]株大腸菌、 B834[DE3]株大腸菌 を挙げることができる。
本発明によって製造された当該酵素を用いれば、 核酸ホモポリマー、 核酸 コポリマー、 オリゴ核酸など種々の核酸重合体を合成することができる。 合 成しうる核酸重合体の具体例としては、 ポリイノシン酸、 ポリシチジル酸、 ポリゥリジル酸、 ポリアデュル酸、 ポリグァニル酸、 ポリ (5—プロモシチ ジル酸)、 ポリ (2—チオシチジル酸)、 ポリ (7—デァザイノシン酸)、 ポリ ( 2 ' 一アジドイノシン酸)、 ポリ (シチジン一 5 ' —チォリン酸)、 ポリ ( 1一ビュルシチジル酸)、 ポリ (シチジル酸、 ゥリジル酸)、 ポリ (シチジル 酸、 4 _チォゥリジル酸)、 ポリ (アデニル酸、 ゥリジル酸) を挙げることが できる。 本発明を実施するための操作自体は、 全て公知の方法により行うことがで さる。
I . 工程 A〜Dについて
工程 A:
例えば、 大腸菌の染色体 DNAから常法により pnp遺伝子をクローニング することができる。 具体例として、 コロニーハイプリダイゼーシヨン法によ るクローニングを挙げることができる。
次に、 ポリメラーゼ連鎖反応 (PCR法) により、 pnp遺伝子の開始コドン に Ndel切断点を導入し、 また終止コドン下流に EcoRI切断点を導入し、 常 法によりこの Ndel切断点から、 pnp遺伝子を含んだ EcoRI切断点までの DNA 断片を得ることができる。
この DNA断片を、 予め Ndelおよび EcoRIで切断し、 5,末端を脱リン酸化 した、 T 7プロモーターを有するプラスミ ドと常法により混合し結合反応を 行うことにより、 目的とする発現ベクターを構築することができる。
工程 B :
上記により得られた発現ベクターを用いて、 常法により T7 RNAポリメラ ーゼ遺伝子を有する大腸菌又はその類縁菌を形質転換することができる。 形 質転換された大腸菌等は、 常法により凍結保存することができる。
形質転換法としては、 常法により行うことができ特に限定されない。 具体 的には、 例えば、 塩化カルシウム法、 エレク ト口ポレーシヨン法などの方法 を挙げることができる。
工程 C:
当該形質転換体は、 増殖可能な培地中で常法により培養増殖することがで きる。培養増殖に際しては、 37°Cで例えばー晚、前培養することが好ましい。 そして、 本培養を開始して適当な濁度まで到達した後 (例えば、 600 nmでの 濁度が 0.4〜: 1.0)、適当な発現誘導剤を適当量添加して pnp遺伝子を発現させ 、 当該酵素'を菌体内に誘導することができる。 当該誘導剤添加後、 例えば 7 〜9時間培養を行えば、 菌体内への当該酵素の蓄積が通常最大になるが、 さ らに例えば 24時間培養を続ければ、 通常、 菌体が自己消化し当該酵素を培養 上清に摻出させることができる。 当該酵素を培養上清に滲出させる方が、 菌 体破壌過程と抽出過程がないためそれだけ純度の高い当該酵素を得ることが でき、 またェンドトキシンの混入を低減することができる。
上記発現誘導剤としては、例えばィソプロピル一 ]3— D—チォガラク トピラ ノシド (以下、 IPTGという)、 ラク トースを挙げることができる。
形質転換体の培養は、 炭素源、 窒素源などの微生物の増殖に必要な栄養源 を含有する培地を用いて常法により行うことができる。 当該培地としては、 例えば、 2 XYT培地、 LB培地、 M9CA培地など通常の大腸菌培養に用いられ る培地を用いることができる。 培養は、 例えば 20〜40°Cの培養温度で必要に より通気、 攪拌しながら行うことができる。 また、 培養中におけるプラスミ ドの脱落を防ぐために適当な抗生物質 (プラスミ ドの薬剤耐性マーカーに応 じて、 アンピシリン、 カナマイシンなど) を適当量培養液に加えて培養する こともできる。その際、培養後期の発泡によるオーバーフローを防ぐために、 適当な消泡剤 (例えば、 アデ力ノール L G— 1 0 9 (旭電化工業社製)、 AntifoamAF Emulsion (ナカライテスク社製)) を適当量添加することもでき る。
工程 D、 D':
培養 ·誘導を終えた菌体を回収し、 当該酵素を抽出 ·精製する方法として は、 常法により行うことができる。
まず、 菌体内に当該酵素が蓄積されている場合には、 適当な緩衝液中に菌 体を懸濁させ、 超音波処理、 フレンチプレス処理などの方法により物理的に 菌体を破壊し、 菌体残渣を除去して当該酵素を得ることができる。 精製が必 要な場合には、 硫酸アンモ-ゥムによる塩析処理、 透析処理、 エタノールな どの溶媒処理、 各種クロマトグラフィー処理、 限外濾過などで当該酵素を精 製することができる。
長時間の培養 *誘導により、当該酵素が培養上清に滲出している場合には、 上記のような菌体破壊の工程を省略することができる。
タグ付きで発現した当該酵素の場合には、 常法により更に容易に回収精製 を行うことができる。 例えば、 回収した上清を、 付与されたタグに適した力 ラムで処理することにより精製することができる。
本発明方法により製造された当該酵素は、 医薬品として使用可能なェンド トキシンフリ一の核酸重合体を合成するためにェンドトキシン除去カラムで 処理することもできる。 なお、 長時間の培養 ·誘導により、 培養上清に滲出 させて当該酵素を製造した場合には、 菌体の破壊という工程が不要であるた め、 ェンドトキシンの混入をそれだけ防ぐことができる。
II. 核酸重合体の合成方法
リボヌクレオシドニリン酸に、 本発明方法で得られた当該酵素を常法によ り作用させることにより、 核酸重合体を合成することができる。 タグが付与 されている当該酵素は、 そのまま用いることができるが、 常法によりタグを 外して用いることもできる。 図面の簡単な説明
第 1図は、 Hisタグを付与した PNPase (His-PNPase)発現プラスミ ド pET28 a · E.coli · His-PNPaseのプラスミ ドマップを示す。
第 2図は、 Hisタグを付与しない PNPase(native-PNPase) 発現プラスミ ド p ET30a · E.coli · native -PNPaseのプラスミ ドマップを示す。
第 3図は、 Hisタグを付与した PNPaseの活性を示す。縦軸は PNPaseの活性( U/L培養液) を、 横軸は発現誘導後の培養時間 (時間) を、 それぞれ示す。 ま た、 黒いカラムは菌体破砕液中の PNPase活性を、 白いカラムは培養上清中の PNPase活性を示す。
第 4図は、 Hisタグを付与していない PNPaseの活性を示す。 縦軸は PNPase の活性 ( U/L培養液) を、 横軸は発現誘導後の培養時間 (時間) を、 それぞ れ示す。 また、 黒いカラムは菌体破砕液中の PNPase活性を、 白いカラムは培 養上清中の PNPase活性を示す。
第 5図は、 ポリイノシン酸の合成反応収率と平均鎖長を示す。 左縦軸は合成 反応収率 (%) を、 右縦軸は平均鎖長 (塩基数) を、 横軸は時間 (時間) をそ れぞれ表す。 ー秦一は合成反応収率の推移を、 '--〇…は平均鎖長の推移をそ れぞれ表す。 第 6図は、 ポリシチジル酸の合成反応収率と平均鎖長を示す。 左縦軸は合成 反応収率 (%) を、 右縦軸は平均鎖長 (塩基数) を、 横軸は時間 (時間)をそれ ぞれ表す。 一翁一は合成反応収率の推移を、 一〇…は平均鎖長の推移をそれ ぞれ表す。 発明を実施するための最良の形態
以下、 実施例、 試験例により本発明を更に詳述する。 但し、 本発明が下記 実施例に限定されないことは言うまでもない。
実施例 1
( 1 ) pnp遺伝子を組み込んだ発現ベクターの構築
大腸菌 C600K-株の染色体 DNAからコロニーハイブリダイゼーション法に より pnp遺伝子をクローニングし、 PCR法により、 pnp遺伝子の開始コドン に Ndel切断点を導入し、 また終止コドン下流に EcoRI切断点を導入し、 常 ¾によりこの Ndel切断点から、 pnp遺伝子を含んだ EcoRI切断点までの DNA 断片を得た。
この DNA断片を、 予め Ndelおよび EcoRIで切断し、 5'末端を脱リン酸化 した発現ベクタープラスミ ド pET28a (Hisタグ遺伝子を含む。ノバゲン社製) と混合し結合反応を行い、 タグ遺伝子を有する発現ベクターを構築した。 この発現べクターは、 約 2400 塩基対の DNA 断片が揷入された pET28aDNAで構成され、 このプラスミ ドを pET28a · E.coli · His-PNPase と命名した (図 1参照)。 ベクター由来の一部分を含めて、 pnp 遺伝子の全 DNA配列を解読した結果、 ベクター由来部分はノバゲン社が発表している配 列と一致し、 pnp 遺伝子部分は公的遺伝子データベース Genbank登録番号 NC000913に記載されている大腸菌 K12株の pnp遺伝子相当部分の DNA配 列と完全に一致した。
また、 pET28a ' E.coli ' His-PNPase DNAを Ndelおよび EcoRIで切断し、 ァガロースゲル電気泳動を行い、 約 2400塩基対の Ndel-EcoRI DNA断片を 抽出した。 次にこの DNA断片を、 予め Ndelおよび EcoRIで切断し、 5'末端 を脱リン酸化した発現ベクタープラスミ ド pET30a (タグ遺伝子を含まない。 ノバゲン社製) と混合し結合反応を行い、 タグ遺伝子を有しない発現べクタ 一を構築した。
この発現ベクターは、 約 2400塩基対の DNA断片が挿入された pET30a DNAで構成され、 このプラスミ ドを pET30a · E.coli · native-PNPase と命 名した (図 2参照)。
( 2 ) 形質転換体の調製
上記プラスミ ド pET28a · E.coli · His-PNPase ないし pET30a · E.coli · native-PNPaseを用いて、 大腸菌 BL21[DE3]株 (ノバゲン社製) を常法によ り形質転換して、 各々の形質転換体を調製した。
( 3 ) 当該酵素の産出
pET28a · E.coli · His-PNPaseを含む大腸菌 BL21[DE3]株の形質転換体な レヽし pET30a · E.coli · native -PNPase を含む大腸菌 BL21[DE3]株の形質転 換体を、カナマイシンを添加した変法 terrific broth培地(24 g/L酵母エキス (ナカライテスタ社製)、 12 g/L トリプトン(ナカライテスタ社製)、 0.4%[v/v] グリセロール) 中で 37°C、 約 16時間往復振盪培養 (MR-200L振盪培養機、 高崎科学社製) し、 前培養した。
10 L容卓上型ジャーフアーメンター (オリエンタル酵母社製、 LS-10) に LB培地 (LB BROTH BASE, ィンビト口ゲン社製、 cat No. 12780-052) を 仕込み、 前培養液を植菌し (培養開始時点での 600 mnでの濁度は約 0.2)、 37 °C、 1 vvm、 500 rpmで通気培養を行った。 600 nmでの濁度が 0.5〜0.7 に達した時、' IPTG (ナカライテスタ社製) を 0.4 mMとなるよう添加し、 発 現誘導を行うことにより 2つの当該酵素をそれぞれ産出した。
なお、 発現ベクターの脱落を阻止するため、 カナマイシンを 25 mg/Lとな るよう添加した。 消泡剤としてアデ力ノール LG-109 (旭電化工業社製) を、 培地 7 L当たり約 0.2 mL添加した。
( 4 ) 回収、 抽出、 精製
①まず、 IPTG添加による発現誘導 3時間後の培養液 112 L (7 L培養 X 16回) から集めた菌体より、 Hisタグを付与された当該酵素の精製を行った。
菌体を培養液量の約 1/60量の抽出用緩衝液 A (20 mM Tris-HCl pH8.0、 0.5 M塩化ナトリウム、 10% グリセロール) に懸濁し、 50 mg/Lとなるよう 卵白リゾチ一ムを加え、 室温で 30分振盪した後、 一80 °Cで凍結した。 37 °C で凍結菌体を急速に融解した後、ァストラソン社製超音波細胞破碎機 XL2020 および cat No.200の破砕ホーンを用いて、 最大出力にて約 5分間超音波破碎 した。 菌体破砕液を 20,000 X g、 4 °C , 60分間遠心し、 上清を採取し、 1.6 L の菌体粗抽出液を調製した。菌体粗抽出液を Ni+親和性クロマトグラフ( φ 2.6 X 20、 His Bind Flactogel M, ノバゲン社製) にかけ、 Hisタグが付与された 当該酵素を精製した。 菌体粗抽出液を抽出用緩衝液 Aで平衡化したカラムに 5 mL/minにアプライした後、樹脂を 1 Lの抽出用緩衝液 Aで洗浄し、最後に 1 Lの 0.5 M.ィミダゾールを含む抽出用緩衝液 Aで Hisタグが付与された当 該酵素をカラムから溶出した。 次に、 pHの変更、 塩化ナトリゥムおよぴィミ ダゾールを除去する目的で、 限外濾過膜を用いたダイァフィルトレーション を行った。 当該酵素を含む 1 L の溶出液を、 限外濾過カー ト リ ッジ (PREP/SCALE-TFF, 分画分子量: 10,000、 ミリポア社製) を用いて約 600 mLまで濃縮し、次に液量を一定に保つように緩衝液(50 mM Tris-HCl pH7.0、 0.15 M塩化ナトリウム、 5 % グリセロール) を添加しながら限外濾過を行つ た。 濾液が 7 Lに達するまで限外濾過を続け、 当該酵素溶液の緩衝液組成を 変更した。 次にこの酵素液をエンドトキシン除去カラム (Kurimover II、 φ 2.6 X 10 cm、 栗田工業社製) にかけた。 酵素液を 1.7 mL/minで活性化した Kurimover IIカラムに通し、 通過画分を集めた。 次に、 pHの変更、 塩化ナ トリゥムを除去する目的で、 限外濾過カートリッジを用いたダイァフィルト レーシヨ ンを行った。 酵素液の液量を一定に保つように緩衝液 (20 mM Tris-HCl pH8.0、 5 % グリセ口ール) を添加しながら、 限外濾過を行った。 濾液が 7 Lに達するまで限外濾過を続け、 当該酵素溶液の緩衝液組成を変更 した後、 一 20 °Cで凍結保存した。 精製の各工程で試料を採取し、,当該酵素の 活性測定とエンドトキシン量の測定を行つた。
その結果を表 1に示す。 表 1
PNPase - エン トキシン ェンにトキシン/ 活性 容積 総活性 収率 PNPase
(U/mL) (mL) (U) (%) (EU/mL) (EU/U) 粗抽出液 553 1 , 600 885, 520 100 ND ND
N i +ァフィ二ティカラム溶出液 520 1 , 000 520, 378 59 ND ND
1回目 ィアフィルトレ-シヨン 365 1 , 000 364, 825 41 626, 345 1 , 71 7
Kur i move r 1 1カラム溶出液 239 950 227 , 1 24 26 868 3. 6
2回目亍'ィァフィルトレ-シヨン 248 800 198, 714 22 2, 299 9. 3
ND:測定せず 表 1から明らかなように、 112 L培養菌体 (誘導後 3時間培養) から約 20 万ユニットの当該酵素を得ることができた。 また、 1回目のダイァフィルト レーシヨン後に多量に含まれていたエンドトキシンは、 Kurimoverll カラム 処理によりほとんど除去され、 最終産物には PNPase 1ユニット当たり、 9.3 EUのェンドトキシンが含まれるのみであった。
②次に、 IPTG添加による発現誘導 7時間後の培養液 56 L (7 L培養 X 8回) から集めた菌体より、 Hisタグが付与された当該酵素の精製を行った。菌体を 培養液量の約 1/30量の抽出用緩衝液 B (20 mM Tris-HCl pH8.0、 0.5 M塩 化ナトリウム、 5 % グリセ口ール) に懸濁し、 50 mg/Lとなるよう卵白リゾ チームを加え、 室温で 30分間振盪した後、 _ 80°Cで凍結した。 37°Cで凍結菌 体を急速に融解した後、 ァストラソン社製超音波細胞破碎機 XL2020および cat No.200の破碎ホーンを用いて、 最大出力にて約 5分間超音波破砕した。 菌体破砕液を 20,000 X g、 4°C、 60分間遠心し、 上清を採取し、 1.5 Lの菌体 粗抽出液を調製した。 菌体粗抽出液を Ni+親和性クロマトグラフにかけ、 His タグが付与された当該酵素を精製した。 菌体粗抽出液を抽出用緩衝液. Bで平 衡化したカラムに 5 mL/minにアプライした後、樹脂を 1 Lの抽出用緩衝液 B で洗浄し、 最後に 1 Lの 0.5 Mイミダゾールを含む抽出用緩衝液 Bで Hisタ グが付与されたタンパク質をカラムから溶出した。 次に、 pHの変更、 塩化ナ トリゥムおよびィミダゾールを除去する目的で、 限外濾過膜を用いたダイァ フィルトレーシヨンを行った。 当該酵素を含む 1 Lの溶出液を、 限外濾過力 一トリッジを用いて約 600 mLまで濃縮し、 次に液量を一定に保つように緩 衝液 (50 mM Tris-HCl pH7.0, 0.15 M塩化ナトリウム、 5 mM塩化マグネ シゥム、 5 % グリセ口ール) を添加しながら限外濾過を行つた。 濾液が 7 L に達するまで限外濾過を続け、 当該酵素溶液の緩衝液組成を変更した。 次に この酵素液を Kurimover IIカラムにかけた。 活性化した Kurimover IIカラ ムに酵素液を 1.7 mL/minで処理し、 通過画分を集めた。 次に、 pHの変更、 塩化ナトリゥムを除去する目的で、 限外濾過カートリッジを用いたダイァフ ィルトレーションを行った。酵素液の液量を一定に保つように緩衝液(20 mM Tris-HCl pH8.0、 5 mM塩化マグネシウム、 5 % グリセロール) を添加しな がら、 限外濾過を行った。 濾液が Ί Lに達するまで限外濾過を続け、 当該酵 素溶液の緩衝液組成を変更した後、 一 20°Cで凍結保存した。 精製の各工程で 試料を採取し、 当該酵素の活性測定とェンドトキシン量の測定を行った。
'その結果を表 2に示す。 表 2
ェント *トキシン エンド !■キシン/
PNPase PNPase 活性 容 ft 1ΙΪ 生 収率 (EU/mL) (EU/U)
(U/mL) (mL) (U) (%)
粗抽出液 615 1 , 500 921 , 808 100 ND ND
N i +ァフィ二ティカラム溶出液 301 1 , 100 330, 740 36 ND ND
1回目テ'仃フィルトレ-シヨン 288 1 , 100 253, 377 34 156, 387 543
Kur i mover 1 1 カラム溶出液 230 1 , 100 227, 124 27 8, 180 35. 5
2回目亍'仃フィルトレ-シヨン 213 800 170, 771 19 207 1
ND:測定せず 表 2から明らかなように、 56 L培養菌体 (誘導後 7時間培養) から約 17 万ユニッ トの当該酵素を得ることができた。 これは、誘導後 3時間培養 112 L 菌体から精製した当該酵素量とほぼ同じであり、 培養時間を延長することで 当該酵素収量を増大させることを証明した結果となった。 また、 1回目のダ ィァフィル ト レーショ ン後に多量に含まれていたェン ドトキシンは、 Kurimoverll カラム処理によりほとんど除去され、 最終産物には当該酵素 1 ユニット当たり、 1.0 EUのエンドトキシンが含まれるのみであった。 この数 値は、 誘導後 3時間培養 112 L菌体から精製した当該酵素に含まれるエンド トキシン量 (9.3 EU/U-PNPase) を下回っていた。 ③次に、 IFTG添加による発現誘導 24時間後の培養液 28 L (7 L培養 X 4回) から集めた培養上清より、 Hisタグが付与された当該酵素の精製を行った。培 養上清を、 150 mL/minの速度で、予め 20 mM Tris-HCl pH8.0で平衡化した 陰イオン交換カラム (QAE-TOYOPERL 550C、 140 X 70 mm) にかけた。 カラムを 5 Lの 20 mM Tris-HCl pH8.0、 0.1M塩化ナトリウムを含む緩衝液 で洗浄した後、ィ 'オン交換樹脂に吸着した当該酵素を 5 Lの 20 mM Tris-HCl pH8.0、 0.5M塩化ナトリゥムを含む緩衝液で溶出し粗酵素液を得た。 粗酵素 液を Ni+親和性クロマトグラフにかけ、 Hisタグが付与された当該酵素を精製 した。 粗酵素液を抽出用緩衝液 Bで平衡化したカラムに 5 mL/minにァプラ ィした後、樹脂を 1 Lの抽出用緩衝液 B、および 1 Lの 50 mMイミダゾール を含む抽出用緩衝液 Bで洗浄し、 最後に 0.5 Lの 0.5 Mィミダゾールを含む 抽出用緩衝液 Bで Hisタグが付与された当該酵素をカラムから溶出した。 次 に、 pHの変更、 塩化ナトリウムおよびイミダゾールを除去する目的で、 限外 濾過膜を用いたダイァフィルトレーシヨンを行った。 当該酵素を含む 1 Lの 溶出液を、限外濾過カートリッジ(PREP/SCALE -ΤϊΈ、分画分子量: 30,000、 ミリポア社製) を用いて約 500 mLまで濃縮し、 次に液量を一定に保つよう に緩衝液 (50 mM Tris-HCl pH7.0、 0.15 M塩化ナトリウム) を添加しなが ら限外濾過を行った。 濾液が 7 Lに達するまで限外濾過を続け、 当該酵素溶 液の緩衝液組成を変更した。次にこの酵素液を Kurimover IIカラムにかけた。 活性化し.た Kurimover IIカラムに酵素液を 1.7 mL/minで処理し、 通過画分 を集めた。 次に、 pHの変更、 塩化ナトリゥムを除去する目的で、 P艮外濾過膜 (PREP/SCALE-TFF, 分画分子量: 30,000、 ミリポア社製) を用いたダイァ フィルトレーシヨンを行った。 酵素液の液量を一定に保つように緩衝液 (20 mM Tris-HCl pH8.0、 5 mM塩化マグネシゥム、 5 % グリセ口ール) を添加 しながら、 限外濾過を行った。 濾液が 7 Lに達するまで限外濾過を続け、 当 該酵素溶液の緩衝液組成を変更した後、 一 20°Cで凍結保存した。 精製の各ェ 程で試料を採取し、 当該酵素の活性測定とェンドトキシン量の測定を行った。 その結果を表 3に示す。 表 3
PNPase エンドトキシン エンドトキシン/ 活性 容積 総活性 収率 ϊ辰 isi PNPase
(U/mL) (mL) (U) (%) (EU/mL) (EU/U) 粗抽出液 23. 9 28, 000 669, 698 100 ND ND 陰イオン交換カラム溶出液 70. 4 5, 000 352, 029 53 ND ND
N i +ァフィ二ティカラム溶出液 158 500 79, 057 12 7, 811 , 004 49, 437
1 回目テ ァ: ルトレ -シヨン 135 500 67, 500 10 ND ND
Kur i mover 1 1 カラム溶出液 1 1 1 500 55, 300 8 22 0. 2
2回目亍'仃フィルトレ-ジョン 87. 5 500 43, 742 7 105 1 . 2
ND : 測定せず 表 3から明らかなように、 28 L培養上清 導後 24時間培養) から約 5 万ユニットの当該酵素を得ることができた。 本酵素は、 SDS-PAGE/クマシ一 ブルー染色によるタンパク質純度検定において、 他のタンパク質の存在をほ とんど認めなかった。 また、 1回目のダイァフィルトレーシヨン後に多量に 含まれていたエンドトキシンは、 Kurimoverll カラム処理によりほとんど除 去され、最終産物には当該酵素 1ユニット当たり、 1.2 EUのエンドトキシン が含まれるのみであった。 この数値は、 誘導後 3時間培養 112 L菌体から精 製した当該酵素に含まれるエンドトキシン量 (9.3 EU/U-PNPase) を下回つ ていた。 このことから、 培養上清からの当該酵素精製は、 菌体破碎というス ケールアップが困難な過程を省略することができ、 かつ純度の高い当該酵素 を得る方法であると言うことができる。
試験例 1 当該酵素の活性測定
発現誘導後 (IPTG添加後)、 0、 1、 2、 3、 5、 7、 9、 24時間に試料の採取 を行い、 当該酵素の活性を測定した。
その結果、図 3および図 4に示す通り、 Hisタグが付与された当該酵素およ びタグが付与されていない当該酵素ともに、誘導後 7〜9時間で菌体内への蓄 積が最大となり、 24時間後には減少していた。 誘導後 24時間では、 誘導後 7 〜9 時間で菌体内へ蓄積した量を上回る量の当該酵素が培養上清中に放出さ れていた (図 3、 図 4参照)。
①当該酵素の活性測定用の試料調製
500mLの遠心管に 400 mLの培養液を採取し、 5,000 X g、 室†显、 5分の遠 心分離 (日立ェ機社製 SCR-20BA) により菌体を回収した。 上澄みは培養上 清として保存した。 菌体を 30 mLの 50 mg/L卵白リゾチームを含む緩衝液
(20 mM Tris-HCl pH8.0、 0.15 M塩化ナトリ ウム、 10%[v/v]グリセ口ール、 1 mM Tris-carboxyethylphosphine HC1) に懸濁し、 室温で 15分間放置した 後、 一 80°C保存した。 凍結 Z融解を 2回繰り返し、 大腸菌を穏和に破碎した 後、 ァストラソン社製超音波細胞破碎機 XL2020および cat No.200の破碎ホ ーンを用いて、最大出力にて約 30秒間超音波破碎した。菌体破砕液を 10,000 X g、 4°C、 10分間遠心し、 上清を採取し、 菌体粗抽出液を調製した。
②当該酵素の活性測定
1.5 mL容遠心チューブ(エツペンドルフ社製) に 20 の酵素液と 80 L の当該酵素反応液 (125 mM Tris-HCl pH9.0、 0.25 mg/mL牛血清アルブミ ン、 0.5 mM EDTAニナトリウム、 6 mM塩化マグネシウム、 25 mM アデノ シンニリン酸三ナトリゥム塩) を加えて穏やかに混合し、 37 °Cで 15分間保 温した。 0.9 mLの氷冷した 4 %過塩素酸ナトリゥム水溶液を加えて反応を止 めた後、 氷上で 10分間放置した。 4 °C、 15,000 rpm、 5分間 (トミー精ェ社 製、 MR-150) の遠心により、 上清を分離した。 次に、 反応上清中に遊離した 無機リン酸を定量するために、 96穴プレート (コーユング社製) に 50 Lの 上清と 50 μ Lの Tassky-Shorr試薬 (0.5 M硫酸、 10 g/L モリブデン酸アン モニゥム、 50 g/L硫酸第一鉄) を加えて 30秒間攪拌した後、 室温で 5分間 放置した。 660 nmの吸光度を測定し (Model 550、 BkrRad社製)、 当該酵素 の活性を算出した。 ここで定義する 1Uとは、 37 °C、 pH9.0、 15分間の反応 により l moleの無機リン酸を遊離させる酵素量である。
実施例 2 ポリイノシン酸の合成
112 L培養菌体から精製した当該酵素を用いて、 ポリイノシン酸 (RNAホ モポリマー) の合成を行った。 予め、 小スケールの合成反応を行い、 反応収 率が高く平均鎖長の長いポリマーが合成できる条件を決定した。 ポリイノシ ン 酸 の 合成 は 、 総容 量 350 mL、 反 応 液組成 ( 100 mM 2-[4-(2-hydroxyethyl)-l-piperazinyl]ethanesulfonic acid (HEPES)-NaOH ρΗ7·5、 0.4 mM EDTAニナトリゥム、 50 mM塩化マグネシウム、 0.1 g/Lィ ノシンニリン酸三ナトリゥム塩(ャマサ醤油社製)、 11.43 U/mL His-PNPase)、 37 °Cで行った。 経時的に試料を採取し、 その一部を変性条件下 (7 M尿素存 在下) でのゲル濾過 HPLCで分析し、 平均鎖長と反応収率を計算した。
鎖長は、 pUC119 (宝酒造社製)の制限酵素 EcoRI、 Narlおよび Nspl (New England Bio Lab社製) による分解物を指標として決定した。
その結果を図 5に示す。 図 5から明らかなように、 37 °C、 11時間の反応に より、 反応収率約 50 %で平均鎖長が約 2200塩基のポリイノシン酸が得られ た。
実施例 3 ポリシチジル酸の合成
同様にしてポリシチジル酸の合成を行った。 総容量 350 mL、 反応液組成 ( 100 mM glycine -NaOH pH9.0、 0.4 mM EDTAニナトリウム、 25 mM塩 化マグネシウム、 0.1 g/L シチジンニリン酸三ナトリゥム塩(ャマサ醤油社製)、 11.43 U/mL His-PNPase)、 37 °Cで行った。 経時的に試料を採取し、 その一 部を変性条件下でのゲル濾過 HPLCで分析し、 平均鎖長と反応収率を計算し た。
その結果を図 6に示す。 図 6から明らかなように、 37 °C、 7時間の反応に より、 反応収率約 65 %で平均鎖長が約 2200塩基のポリシチジル酸が得られ た。
産業上の利用可能性
本発明ではタグを付けた当該酵素を発現させることにより精製が非常に簡 便になり、 また大腸菌の当該酵素生産量が 2倍程度増加するという予想外の 効果が得られた。 また、 培養法の工夫により、 当該酵素が菌体内に蓄積せず 培養上清中に放出されるようになり、 菌体破砕による大量のェンドトキシン の混入を防ぐことができるなど、 大量培養からでも迅速かつ簡便に当該酵素 を精製できる。

Claims

請求の範囲
1 . 少なくとも次の工程を含有する PNPaseの製造法。
(A)発現制御シグナルである T 7プロモーターを有するプラスミ ドに原 核生物由来の PNPase遺伝子を組み込んだ発現ベクターを構築する工程;
( B ) 当該発現ベクターを用いて、 T7 RNAポリメラーゼ遺伝子を有する 大腸菌又はその類籙菌を形質転換する工程;
( C ) 当該形質転換体に PNPase 遺伝子を発現させることによって、 PNPaseを菌体内に蓄積させる工程;
( D ) PNPaseが蓄積された菌体を回収し、 PNPaseを抽出精製する工程
2 . 上記 C ) D ) の工程が、 各々下記 C ') D,) の工程である、 請求項 1記載 の製造法。
( C) 当該形質転換体に PNPase 遺伝子を発現させることによって、 PNPaseを菌体內に蓄積させ、 さらに菌体が壊れ PNPaseが菌体外上清中に 滲出するまで発現を続ける工程;
(D') 上清中に滲出した PNPaseを回収精製する工程。
3 . 当該プラスミ ドが、 製造される PNPase にタグを付与することができる タグ遺伝子を有するものである請求項 1または 2記載の製造法。
4 . タグ遺伝子が、 Hisタグ遺伝子、 T7タグ遺伝子、 Sタグ遺伝子、 Nusタ グ遺伝子、 GSTタグ遺伝子、 DsbAタグ遺伝子、 DsbC タグ遺伝子、 CBDcex タグ遺伝子、 CBDcenAタグ遺伝子、 CBDclsタグ遺伝子、 Trxタグ遺伝子、 HSV タグ遺伝子、 又は 3 X FLAGタグ遺伝子である請求項 3記載の製造法。
5 . 原核生物が、 大腸菌である請求項 1〜4のいずれかに記載の製造法。
6 . 大腸菌が、 K12株大腸菌、 又は 0157株大腸菌である請求項 5記載の製 造法。
7 . T7 RNAポリメラーゼ遺伝子を有する大腸菌が、 BL21[DE3]株大腸菌、 BL21[DE3]pLysS株大腸菌、 BLR[DE3]株大腸菌、 Rosetta[DE3]株大腸菌、 又は B834[DE3]株大腸菌である請求項 1〜 6記載の製造法。
8 . 請求項 1〜 7のいずれかに記載の製造法により製造された PNPase を用 いて製造された合成核酸重合体。
9 . 合成核酸重合体が、 ポリイノシン酸、 ポリシチジル酸、 ポリゥリジル酸、 ポリアデニル酸、 ポリグァニル酸、 ポリ ( 5—プロモシチジル酸)、 ポリ (2 —チオシチジル酸)、 ポリ (7—デァザイノシン酸)、 ポリ (2 ' —アジドィ ノシン酸)、 ポリ (シチジン一 5 ' —チォリン酸)、 ポリ (1—ビュルシチジ ル酸)、 ポリ (シチジル酸、 ゥリジル酸)、 ポリ (シチジル酸、 4—チォゥリ ジル酸)、 又はポリ (アデニル酸、 ゥリジル酸) である請求項 8記載の合成核 酸重合体。
PCT/JP2003/016653 2002-12-26 2003-12-25 PNPaseの製造法 WO2004058959A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004562927A JPWO2004058959A1 (ja) 2002-12-26 2003-12-25 PNPaseの製造法
EP03768192A EP1582584A4 (en) 2002-12-26 2003-12-25 PROCESS FOR PRODUCING PNPASE
US10/540,145 US20060166315A1 (en) 2002-12-26 2003-12-25 Process for producing pnpase
AU2003292772A AU2003292772A1 (en) 2002-12-26 2003-12-25 PROCESS FOR PRODUCING PNPase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002376780 2002-12-26
JP2002-376780 2002-12-26

Publications (1)

Publication Number Publication Date
WO2004058959A1 true WO2004058959A1 (ja) 2004-07-15

Family

ID=32677377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016653 WO2004058959A1 (ja) 2002-12-26 2003-12-25 PNPaseの製造法

Country Status (5)

Country Link
US (1) US20060166315A1 (ja)
EP (1) EP1582584A4 (ja)
JP (1) JPWO2004058959A1 (ja)
AU (1) AU2003292772A1 (ja)
WO (1) WO2004058959A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140019832A (ko) * 2011-04-13 2014-02-17 길리애드 사이언시즈, 인코포레이티드 항바이러스 치료를 위한 1''-치환 피리미딘 ν-뉴클레오사이드 유사체
CN102559667B (zh) * 2011-12-31 2013-12-04 浙江工业大学 脱氧次黄嘌呤在脱氧寡核苷酸链连接反应中的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110697A (en) * 1977-03-09 1978-09-27 Mitsubishi Chem Ind Ltd Preparation of polyguanylic acid
US4927755A (en) * 1987-11-02 1990-05-22 Societe De Conseils De Recherches Et D'applicatios Scientifiques (S.C.R.A.S.) Process for preparing polynucleotides
JPH0923886A (ja) * 1995-07-13 1997-01-28 Wako Pure Chem Ind Ltd 家蚕由来のプロフェノールオキシダーゼおよびフェノールオキシダーゼ、そのdnaならびにその製造方法
WO1998036080A1 (en) * 1997-02-13 1998-08-20 The Dow Chemical Company Recombinant haloaliphatic dehalogenases
WO1999057153A1 (en) * 1998-05-01 1999-11-11 Insight Strategy & Marketing Ltd. Heparanase specific molecular probes and their use in research and medical applications
EP0972836A2 (en) * 1998-05-22 2000-01-19 The Institute Of Physical & Chemical Research Endonuclease
JP2001245666A (ja) * 2000-03-06 2001-09-11 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
EP1153931A1 (en) * 1999-02-15 2001-11-14 Nippon Shinyaku Co., Ltd. Shortened-chain polynucleotides and process for the preparation thereof
WO2002010370A1 (fr) * 2000-07-31 2002-02-07 Takeda Chemical Industries, Ltd. Procede de production d'une proteine recombinee
EP1221478A2 (en) * 2001-01-09 2002-07-10 National Food Research Institute Polynucleotides coding for the type III, II and I erythrose reductases from Trichosporonoides megachilensis and uses thereof for the production of erythritol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253270A (ja) * 2000-07-31 2002-09-10 Takeda Chem Ind Ltd 組換え蛋白質の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110697A (en) * 1977-03-09 1978-09-27 Mitsubishi Chem Ind Ltd Preparation of polyguanylic acid
US4927755A (en) * 1987-11-02 1990-05-22 Societe De Conseils De Recherches Et D'applicatios Scientifiques (S.C.R.A.S.) Process for preparing polynucleotides
JPH0923886A (ja) * 1995-07-13 1997-01-28 Wako Pure Chem Ind Ltd 家蚕由来のプロフェノールオキシダーゼおよびフェノールオキシダーゼ、そのdnaならびにその製造方法
WO1998036080A1 (en) * 1997-02-13 1998-08-20 The Dow Chemical Company Recombinant haloaliphatic dehalogenases
WO1999057153A1 (en) * 1998-05-01 1999-11-11 Insight Strategy & Marketing Ltd. Heparanase specific molecular probes and their use in research and medical applications
EP0972836A2 (en) * 1998-05-22 2000-01-19 The Institute Of Physical & Chemical Research Endonuclease
EP1153931A1 (en) * 1999-02-15 2001-11-14 Nippon Shinyaku Co., Ltd. Shortened-chain polynucleotides and process for the preparation thereof
JP2001245666A (ja) * 2000-03-06 2001-09-11 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
WO2002010370A1 (fr) * 2000-07-31 2002-02-07 Takeda Chemical Industries, Ltd. Procede de production d'une proteine recombinee
EP1221478A2 (en) * 2001-01-09 2002-07-10 National Food Research Institute Polynucleotides coding for the type III, II and I erythrose reductases from Trichosporonoides megachilensis and uses thereof for the production of erythritol

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CROFTON S. ET AL.: "Cloning and orientation of the gene encoding polynucleotide phosphorylase in Escherichia coli", JOURNAL OF BACTERIOLOGY, vol. 154, no. 1, April 1983 (1983-04-01), pages 58 - 64, XP002977520 *
DATABASE GENBANK [online] 20 December 1995 (1995-12-20), Database accession no. J02638 *
DATABASE GENBANK [online] 7 March 2001 (2001-03-07), OHNISHI M. ET AL.: "Escherichia coli 0157:H7 DNA, complete genome, section 15/20", XP002977519, accession no. NCBI Database accession no. AP002564 *
DATABASE PROTEIN [online] 1 March 2002 (2002-03-01), Database accession no. H65106 *
REGNIER P. ET AL.: "Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNa-binding domain of ribosomal protein S1", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 262, no. 1, 5 January 1987 (1987-01-05), pages 63 - 68, XP001022419 *
See also references of EP1582584A4 *

Also Published As

Publication number Publication date
AU2003292772A1 (en) 2004-07-22
JPWO2004058959A1 (ja) 2006-04-27
US20060166315A1 (en) 2006-07-27
EP1582584A4 (en) 2006-05-31
EP1582584A1 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP6320621B2 (ja) プシコースエピマー化酵素及びこれを利用したプシコースの製造方法
KR101656063B1 (ko) 사이코스 에퍼머화 효소의 발현 시스템 및 이를 이용한 사이코스의 생산
JP2000505291A (ja) トランスアミナーゼ及びアミノトランスフェラーゼ
JP2010166934A (ja) グルコサミンを製造するためのプロセス及び物質
US20180251749A1 (en) Fructose to Allulose Conversion
JP2012531198A (ja) Crm197及びその誘導体の産生のための人工遺伝子の細菌発現
US11168317B2 (en) Expression system for psicose epimerase and production for psicose using the same
KR20200010285A (ko) 증가된 nadph를 유도하는 생합성 경로의 게놈 공학
JP3408737B2 (ja) ニトリルヒドラターゼの活性化に関与するタンパク質及びそれをコードする遺伝子
TWI719140B (zh) 新型多磷酸鹽依存性葡萄糖激酶與使用其製備葡萄糖-6-磷酸的方法
WO2023190564A1 (ja) メタクリル酸の製造方法
WO2004058959A1 (ja) PNPaseの製造法
JPH06303971A (ja) ニトリルヒドラターゼ活性を有する新規なタンパク質およびそれをコードする遺伝子ならびに該遺伝子を含有する形質転換体によるニトリル類からアミド類の製造方法
JP4469958B2 (ja) アセチル化アミノ糖及びアセチル化アミノ糖ヌクレオチド合成活性を有する耐熱性酵素
JPH06303981A (ja) ホルムアルデヒド脱水素酵素活性を有する蛋白質の遺伝情報を有するdna並びにホルムアルデヒド脱水素酵素の製造法
KR101710553B1 (ko) 헤모필루스 인플루엔자 Rd KW20 균주 유래 2-디옥시리보오스 5-포스페이트 알돌라아제 변이체
CN116042588A (zh) 重组肌酸酶的制备方法和应用
WO2024090440A1 (ja) フェルラ酸デカルボキシラーゼ、及びそれを用いた不飽和炭化水素化合物の製造方法
TW202409063A (zh) 變異型腈水合酶、編碼該變異型腈水合酶之核酸、含有該核酸之載體及轉形體、該變異型腈水合酶之製造方法、及醯胺化合物之製造方法
WO2024004661A1 (ja) 変異型ニトリルヒドラターゼ、該変異型ニトリルヒドラターゼをコードする核酸、該核酸を含むベクター及び形質転換体、該変異型ニトリルヒドラターゼの製造方法、並びにアミド化合物の製造方法
WO1999014229A1 (en) Truncated aspartase enzyme derivatives and uses thereof
JPS61247394A (ja) L−トリプトフアンの製造方法
JPH07143881A (ja) クレアチニンデイミナーゼ活性を有する蛋白質の遺伝情報を有するdna並びにクレアチニンデイミナーゼの製造法
JP2005287386A (ja) レプリカーゼを発現する形質転換体、およびそれを用いたレプリカーゼの製造方法
JP2001252088A (ja) クレアチンアミジノヒドロラーゼをコードする遺伝子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004562927

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006166315

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540145

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003768192

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003768192

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10540145

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003768192

Country of ref document: EP