KR20200010285A - 증가된 nadph를 유도하는 생합성 경로의 게놈 공학 - Google Patents
증가된 nadph를 유도하는 생합성 경로의 게놈 공학 Download PDFInfo
- Publication number
- KR20200010285A KR20200010285A KR1020197035414A KR20197035414A KR20200010285A KR 20200010285 A KR20200010285 A KR 20200010285A KR 1020197035414 A KR1020197035414 A KR 1020197035414A KR 20197035414 A KR20197035414 A KR 20197035414A KR 20200010285 A KR20200010285 A KR 20200010285A
- Authority
- KR
- South Korea
- Prior art keywords
- amino acid
- seq
- gene
- enzyme
- acid sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/01—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
- C12Y102/01012—Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) (1.2.1.12)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0014—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
- C12N9/0016—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/36—Dinucleotides, e.g. nicotineamide-adenine dinucleotide phosphate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/01—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
- C12Y102/01003—Aldehyde dehydrogenase (NAD+) (1.2.1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/01—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
- C12Y102/01011—Aspartate-semialdehyde dehydrogenase (1.2.1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y104/00—Oxidoreductases acting on the CH-NH2 group of donors (1.4)
- C12Y104/01—Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
- C12Y104/01003—Glutamate dehydrogenase (NAD(P)+)(1.4.1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y105/00—Oxidoreductases acting on the CH-NH group of donors (1.5)
- C12Y105/01—Oxidoreductases acting on the CH-NH group of donors (1.5) with NAD+ or NADP+ as acceptor (1.5.1)
- C12Y105/01017—Alanopine dehydrogenase (1.5.1.17)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y117/00—Oxidoreductases acting on CH or CH2 groups (1.17)
- C12Y117/01—Oxidoreductases acting on CH or CH2 groups (1.17) with NAD+ or NADP+ as acceptor (1.17.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/02—Aldehyde-lyases (4.1.2)
- C12Y401/02042—D-Threonine aldolase (4.1.2.42)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicinal Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
본 발명은 NADPH를 사용하여 생산된 화합물의 생산을 증가시키는 변형된 NADPH 이용 가능성을 갖는 숙주 세포 및 이의 사용 방법에 관한 것이다. NADPH 이용 가능성은 숙주 세포에서 변형된 GAPDH의 발현, 변이체 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 발현, 신규 니코틴아마이드 뉴클레오타이드 수소전달 효소의 발현, 신규 트레오닌 알돌라제의 발현 및 피루베이트 카복실라제의 발현 또는 발현의 조절에 의해 변형된다.
Description
본 발명은 일반적으로 미생물 세포에서 NADPH 이용 가능성을 증가시키는 미생물 공학적 방법에 관한 것이다.
특히, 본 발명은 숙주 세포에서 변형된 GAPDH, 변이체 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB), 메소-다이아미노피멜레이트 탈수소 효소(ddh), 트레오닌 알돌라제(ltaE), 피루베이트 카복실라제(pyc) 및 신규 니코틴아마이드 뉴클레오타이드 수소전달 효소의 하나 이상을 발현함으로써 NADPH 이용 가능성을 증가시키기 위해 숙주 세포를 조작하는 것에 관한 것이다.
환원 당량으로서 NADPH는 당과 같은 산업적으로 중요한 화합물 및 L-리신 및 L-트레오닌과 같은 아미노산의 합성을 위한 많은 중요한 생물 공정에 관여한다. 그러나, NADPH의 정상적인 세포 공급은 NADPH를 사용하여 생산된 화합물의 생산에 제한 요소가 될 수 있는 것으로 알려져 있다. 예를 들어, C. 글루타미쿰에서 산업적 규모로 L-리신을 생산할 때 NADPH는 제한 인자일 수 있다(Becker et al. (2005), Appl. Environ. Microbiol., 71(12):8587-8596).
따라서, 예를 들어 L-리신 또는 L-트레오닌을 생성하기 위해 사용된 세포와 같이 NADPH를 사용하여 제조된 화합물을 생산하는 데 사용된 세포에서 NADPH의 이용 가능성에 대한 한계를 극복하기 위한 산업 미생물을 조작하는 새로운 방법에 대한 당업계에는 큰 요구가 있다.
본 발명은 숙주 세포에서 NADPH 이용 가능성에 대한 한계를 극복하기 위한 적어도 6가지 전략에 관한 것으로, 이는 L-리신, L-트레오닌, L-아이소류신, L-메티오닌 또는 L-글리신 생산을 증가시킨다: (1) 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖는다; (2) NADH로부터 NADPH를 생성하는 숙주 세포에서 수소전달 효소를 발현시킨다; (3) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍한다; (4) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍한다; (5) 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍한다; 및 (6) 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시킨다.
특정 실시태양에서, NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법이 제공되며, 이 방법은 세포의 이용 가능한 NADPH를 변경시키는 단계를 포함한다.
특정 실시태양에서, 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 숙주 세포가 제공되며, 숙주 세포는 변형된 GAPDH가 없는 상대 숙주 세포에 비해 NADPH를 사용하여 생산된 화합물의 생산을 개선시킨다.
특정 실시태양에서, 코리네박테리움 종 균주를 배양하는 단계 및 배양된 코리네박테리움 종 균주 또는 배양액으로부터 L-리신을 회수하는 단계를 포함하는 L-리신의 생산 방법이 제공되며, 코리네박테리움 종 균주는 조효소로서 NADP를 사용하는 변형된 GAPDH를 발현하며, 코리네박테리움 종 균주는 L-리신의 개선된 생산성을 갖는다.
특정 실시태양에서, GAPDH를 변형시켜 변형된 GAPDH가 조효소 NADP 및 NAD에 대해 이중 특이성을 갖게 하는 단계를 포함하여 GAPDH의 조효소 특이성을 확장시키는 방법이 제공된다.
특정 실시태양에서, 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법이 제공되며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타낸다.
특정 실시태양에서, 효소 gdh, asd, dapB 및 ddh의 하나 이상의 변이체를 포함하는 숙주 세포가 제공되며, 변이체는 조효소 NADH 및 NADPH에 대해 이중 특이성을 나타낸다.
특정 실시태양에서, 숙주 세포에서 신규한 니코틴아마이드 뉴클레오타이드 수소전달 효소를 발현시키는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법이 제공된다.
특정 실시태양에서, 다음 단계 중 둘 이상을 포함하여 숙주 세포에 의한 L-리신 생산 효율을 개선시키는 방법이 제공된다:
내인성 GAPDH를 변형시켜 변형된 GAPDH가 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대해 증가된 특이성을 갖게 하는 단계;
숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계로서, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내는 단계; 및
숙주 세포에서 신규한 니코틴아마이드 뉴클레오타이드 수소전달 효소를 발현시키는 단계.
특정 실시태양에서, 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh) 및 아스파르테이트 세미알데하이드 탈수소 효소(asd)의 하나 또는 둘 다의 변이체 효소를 발현시키는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법이 제공되며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타낸다.
특정 실시태양에서, 숙주 세포에서 트레오닌 알돌라제의 변이체 효소를 발현시키는 단계를 포함하여 숙주 세포에 의한 L-트레오닌 생산 효율을 개선시키는 방법이 제공되며, 변이체 효소는 대장균 트레오닌 알돌라제(ltaE)와 상이한 기질 선호도 또는 효소 동역학을 나타낸다.
특정 실시태양에서, 숙주 세포에서 효소 글리세르알데하이드 3-포스페이트 탈수소 효소(gapA), 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 트레오닌 알돌라제(ltaE) 및 피루베이트 카복실라제(pyc)의 하나 이상의 변이체 효소를 발현시키는 단계를 포함하여 숙주 세포에 의한 L-트레오닌 생산을 증가시키는 방법이 제공된다.
특정 실시태양에서, 각각 하나 이상의 합성 프로모터에 작동 가능하게 연결된 thrA 유전자, thrB 유전자 및 thrC 유전자를 포함하는 다중-카피 복제 플라스미드를 포함하는 숙주 세포가 제공된다.
특정 실시태양에서, 다음 단계 중 둘 이상을 포함하여 숙주 세포에 의해 화합물의 생산 효율을 개선시키는 방법이 제공된다: (1) 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하는 단계; (2) NADH로부터 NADPH를 생성하는 숙주 세포에서 수소전달 효소를 발현시키는 단계; (3) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하는 단계; (4) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하는 단계; (5) 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하는 단계; 및 (6) 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시키는 단계.
특정 실시태양에서, 절단된 글리세르알데하이드-3-포스페이트 탈수소 효소 (gapA) 유전자를 암호화하는 인공 폴리뉴클레오타이드가 제공되며, 폴리뉴클레오타이드는 SEQ ID NO: 290, 291, 292, 및 293으로 이루어진 그룹으로부터 선택된 폴리뉴클레오타이드 서열과 적어도 85%, 90%, 95% 또는 99% 동일한 서열을 포함한다.
특정 실시태양에서, 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 재조합 단백질 단편이 제공되며, 재조합 단백질 단편은 SEQ ID NO: 233, 234, 235, 236, 및 298로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70%, 80%, 90% 또는 95% 동일한 서열을 포함한다.
특정 실시태양에서, NADPH를 생산하는 숙주 세포의 능력을 증가시키는 단계를 포함하여 숙주 세포에 의한 L-리신 또는 L-트레오닌 생산 효율을 개선시키는 방법이 제공된다. 일부 양태에서, 본 방법은 이의 조효소 특이성이 넓도록 글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)를 변형시키는 단계를 포함한다. 특정 경우에, 변형된 GAPDH는 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대한 특이성이 증가된다. 특정 양태에서, 숙주 세포는 원핵 세포이다. 특정 양태에서, 숙주 세포는 코리네박테리움 종이다. 일부 양태에서, 숙주 세포는 코리네박테리움 글루타미쿰이다. 일부 실시태양에서, 숙주 세포는 대장균이다. 일부 실시태양에서, 자연 발생 GAPDH는 SEQ ID NO: 58의 아미노산 서열을 갖는다. 일부 양태에서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 서열과 적어도 95% 동일한 아미노산 서열을 포함한다. 특정 실시태양에서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 37에 해당하는 위치에 아미노산 치환을 포함한다. 다른 실시태양에서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 36 및 37에 해당하는 위치에 아미노산 치환을 포함한다. 특정 양태에서, SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신으로 대체되었다. 다른 양태에서, SEQ ID NO: 58의 아미노산 36에 해당하는 위치의 류신은 트레오닌으로 대체되었고, SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신으로 대체되었다.
특정 실시태양에서, 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 L-리신 생산의 효율을 개선시키는 방법이 제공되며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타낸다. 특정 양태에서, 모든 4개의 효소가 숙주 세포에서 동시에 발현된다. 특정 실시태양에서, 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh) 및 아스파르테이트 세미알데하이드 탈수소 효소(asd)의 하나 또는 둘 모두의 변이체 효소를 발현시키는 단계를 포함하여 숙주 세포에 의해 L-트레오닌 생산 효율을 개선시키는 방법이 제공되며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타낸다. 일부 실시태양에서, 변이체 효소는 NADPH보다 NADH를 더 효과적으로 사용한다. 특정 실시태양에서, 상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하고, 변이체 효소는 SEQ ID NO: 42의 아미노산 서열에 적어도 약 70%, 75%, 80%, 85%, 90%, 95% 또는 100% 동일한 아미노산 서열을 포함한다. 특정 양태에서, 상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하며, 변이체 효소는 SEQ ID NO: 42의 아미노산 서열과 적어도 약 95% 동일한 아미노산 서열을 포함한다. 다른 실시태양에서, 상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하고, 변이체 효소는 SEQ ID NO: 40의 아미노산 서열에 적어도 약 70%, 75%, 80%, 85%, 90%, 95% 또는 100% 동일한 아미노산 서열을 포함한다. 다른 양태에서, 상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하며, 변이체 효소는 SEQ ID NO: 40의 아미노산 서열과 적어도 95% 동일한 아미노산 서열을 포함한다. 또 다른 양태에서, 상기 방법은 dapB의 변이체 효소를 발현시키는 단계를 포함하며, 변이체 효소는 SEQ ID NO: 46의 아미노산 서열과 적어도 95% 동일한 아미노산 서열을 포함한다. 또 다른 양태에서, 상기 방법은 ddh의 변이체 효소를 발현시키는 단계를 포함하며, ddh 효소는 SEQ ID NO: 4의 아미노산 서열을 포함한다. 특정 실시태양에서, gdh의 변이체 효소는 SEQ ID NO: 44의 아미노산 서열을 포함한다. 다른 실시태양에서, asd의 변이체 효소는 SEQ ID NO: 30의 아미노산 서열을 포함한다. 또 다른 실시태양에서, dapB의 변이체 효소는 SEQ ID NO: 48의 아미노산 서열을 포함한다.
다른 실시태양에서, 코리네박테리움 종 또는 대장균 균주를 배양하는 단계 및 배양된 코리네박테리움 종 또는 대장균 균주 또는 배양액으로부터 L-리신 또는 L-트레오닌을 회수하는 단계를 포함하여 L-리신 또는 L-트레오닌의 생산 방법이 제공되며, 코리네박테리움 종 또는 대장균 균주는 조효소로서 NADP를 사용하는 변형된 GAPDH를 발현하고, 코리네박테리움 종 또는 대장균 균주는 L-리신 또는 L-트레오닌의 개선된 생산성을 갖는다.
또 다른 실시태양에서, GAPDH를 변형시킴으로써 GAPDH의 조효소 특이성을 넓히는 방법이 제공되며, 변형된 GAPDH는 조효소 NADP 및 NAD에 대한 이중 특이성을 갖는다. 특정 양태에서, 변형된 GAPDH는 NAD에 비해 조효소 NADP에 대한 특이성이 증가된다. 다른 양태에서, 변형된 GAPDH는 NAD보다 NADP를 더 효과적으로 사용한다.
일부 실시태양에서, 변형된 GAPDH를 포함하는 숙주 세포가 제공되며, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산과 적어도 95% 동일한 아미노산 서열을 포함하며, SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신으로 대체되었다. 특정 양태에서, 숙주 세포는 C. 글루타미쿰이다.
다른 실시태양에서, 변형된 GAPDH를 포함하는 숙주 세포가 제공되며, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산과 적어도 95% 동일한 아미노산 서열을 포함하며, SEQ ID NO: 58의 아미노산 36에 해당하는 위치의 류신은 트레오닌으로 대체되었고, SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신으로 대체되었다. 특정 양태에서, 숙주 세포는 C. 글루타미쿰이다.
추가의 실시태양에서, 하나 이상의 효소 gdh, asd, dapB 및 ddh의 변이체를 포함하는 숙주 세포가 제공되며, 변이체는 조효소 NADH 및 NADPH에 대해 이중 특이성을 나타낸다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 상기 방법은 세포의 이용 가능한 NADPH를 변경시키는 단계를 포함한다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력를 개선시키는 방법을 교시하며, 이용 가능한 NADPH는 세포에서 된 글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)를 발현시킴으로써 변형되고, 변형된 GAPDH는 이의 조효소 특이성이 확장되도록 변형된다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 변형된 GAPDH는 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대한 특이성이 증가된다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 숙주 세포는 코리네박테리움 종이다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 숙주 세포는 코리네박테리움 글루타미쿰이다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 자연 발생 GAPDH는 gapA이다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, gapA는 SEQ ID NO: 58의 아미노산 서열을 가진다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 서열과 적어도 95% 동일한 아미노산 서열을 포함한다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 37에 해당하는 위치에 아미노산 치환을 포함한다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 36 및 37에 해당하는 위치에 아미노산 치환을 포함한다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신으로 대체되었다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, SEQ ID NO: 58의 아미노산 36에 해당하는 위치의 류신은 트레오닌으로 대체되었고, SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신으로 대체되었다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 화합물은 폴리케타이드(예를 들어, 피크로마이신, 에리트로마이신 A, 클라리트로마이신, 아지트로마이신, 아버멕틴, 이버멕틴, 스피노사드, 젤다나마이신, 맥베신, 리파마이신, 암포테리신, 나이스타틴, 피마리신, 모넨신, 독시사이클린, 불라타신, 스쿠아모신, 몰비자린, 우바리신, 아노나신, 타크롤리무스, 시롤리무스, 라디시콜, 로바스타틴, 디스코더몰리드, 아플라톡신, 우스닌산 및 안트라마이신); 카테킨(예를 들어, 에피카테킨, 에피갈로카테킨, 에피카테킨 갈레이트, 에피갈로카테킨 갈레이트, 에피아프젤레친, 피세티니돌, 구이보우리티니돌, 메스퀴톨 및 로빈에티니돌); 테르펜(예를 들어, 프레놀, 아이소발레르산, 게라니올, 테르피네올, 리모넨, 마이르센, 리날로울, 피넨, 휴뮬렌, 파르네센, 파네솔, 카페스톨, 카올, 셈브렌, 탁사다이엔, 레티놀, 레티날, 피톨, 제라닐파네솔, 스쿠알렌, 라노스테롤, 사이클로아테놀, 콜레스테롤, 페루지카다이올, 테트라프레닐커쿠멘, 리코펜, 감마-카로틴, 알파-및 베타-카로틴, 3-옥소-α-이온올, 7,8-다이하이드로이오논, 메가스티그만-3,9-다이올 및 3-옥소-7,8-다이하이드로-α-이온올); 지방산(예를 들어, 미리스톨레산, 팔미톨레산, 사피엔산, 올레산, 엘라이드산, 바센산, 리놀레산, 리노에라이드산, α-리놀렌산, 아라키돈산, 에이코사펜타엔산, 에루크산, 도코사헥사엔산, 카프릴산, 카프르산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키드산, 베헨산, 리그노세르산 및 세로산); 아미노산 또는 이의 유도체(예를 들어, S-아데노실 메티오닌, 아이소류신, 류신, 발린, 메티오닌, 트레오닌, 리신, 글루타메이트, 트립토판, 티로신, L-리신 및 페닐알라닌); 코리스메이트 경로로부터의 화합물(예를 들어, 인돌, 코리스메이트, 시키메이트, 살리실산, 2,3-다이하이드록시벤조산, 파라-아미노벤조에이트, 비타민 k 및 엽산); 및 알칼로이드(예를 들어, 에페드린, 호모하링토닌, 갈란타민, 빈카민, 퀴니딘, 모르핀, 첼에르트린, 피페린, 카페인, 니코틴, 테오브로민 및 퀴닌)로 이루어진 그룹으로부터 선택된다.
일부 실시태양에서, 본 발명은 NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 개선시키는 방법을 교시하며, 화합물은 표 2로부터 선택된다.
일부 실시태양에서, 본 발명은 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 숙주 세포를 교시하며, 숙주 세포는 변형된 GAPDH가 없는 상대 숙주 세포에 비해 NADPH를 사용하여 생산된 화합물의 생산을 개선시켰다.
일부 실시태양에서, 본 발명은 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 숙주 세포를 교시하며, 변형된 GAPDH는 자연적으로 존재하는 GAPDH에 비해 NADP에 대한 증가된 특이성을 가졌다.
일부 실시태양에서, 본 발명은 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 숙주 세포를 교시하며, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 서열과 적어도 95% 동일한 아미노산 서열을 포함한다.
일부 실시태양에서, 본 발명은 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 숙주 세포를 교시하며, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하며 변형된 GAPDH는 SEQ ID NO: 58의 위치 36, 37 또는 둘 다에서 아미노산에 대한 치환을 포함한다.
일부 실시태양에서, 본 발명은 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 숙주 세포를 교시하며, 화합물은 폴리케타이드(예를 들어, 피크로마이신, 에리트로마이신 A, 클라리트로마이신, 아지트로마이신, 아버멕틴, 이버멕틴, 스피노사드, 젤다나마이신, 맥베신, 리파마이신, 암포테리신, 나이스타틴, 피마리신, 모넨신, 독시사이클린, 불라타신, 스쿠아모신, 몰비자린, 우바리신, 아노나신, 타크롤리무스, 시롤리무스, 라디시콜, 로바스타틴, 디스코더몰리드, 아플라톡신, 우스닌산 및 안트라마이신); 카테킨(예를 들어, 에피카테킨, 에피갈로카테킨, 에피카테킨 갈레이트, 에피갈로카테킨 갈레이트, 에피아프젤레친, 피세티니돌, 구이보우리티니돌, 메스퀴톨 및 로빈에티니돌); 테르펜(예를 들어, 프레놀, 아이소발레르산, 게라니올, 테르피네올, 리모넨, 마이르센, 리날로울, 피넨, 휴뮬렌, 파르네센, 파네솔, 카페스톨, 카올, 셈브렌, 탁사다이엔, 레티놀, 레티날, 피톨, 제라닐파네솔, 스쿠알렌, 라노스테롤, 사이클로아테놀, 콜레스테롤, 페루지카다이올, 테트라프레닐커쿠멘, 리코펜, 감마-카로틴, 알파-및 베타-카로틴, 3-옥소-α-이온올, 7,8-다이하이드로이오논, 메가스티그만-3,9-다이올 및 3-옥소-7,8-다이하이드로-α-이온올); 지방산(예를 들어, 미리스톨레산, 팔미톨레산, 사피엔산, 올레산, 엘라이드산, 바센산, 리놀레산, 리노에라이드산, α-리놀렌산, 아라키돈산, 에이코사펜타엔산, 에루크산, 도코사헥사엔산, 카프릴산, 카프르산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키드산, 베헨산, 리그노세르산 및 세로산); 아미노산 또는 이의 유도체(예를 들어, S-아데노실 메티오닌, 아이소류신, 류신, 발린, 메티오닌, 트레오닌, 리신, 글루타메이트, 트립토판, 티로신, L-리신 및 페닐알라닌); 코리스메이트 경로로부터의 화합물(예를 들어, 인돌, 코리스메이트, 시키메이트, 살리실산, 2,3-다이하이드록시벤조산, 파라-아미노벤조 에이트, 비타민 k 및 엽산); 및 알칼로이드(예를 들어, 에페드린, 호모하링토닌, 갈란타민, 빈카민, 퀴니딘, 모르핀, 첼에르트린, 피페린, 카페인, 니코틴, 테오브로민 및 퀴닌)로 이루어진 그룹으로부터 선택된다.
일부 실시태양에서, 본 발명은 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 숙주 세포를 교시하며, 화합물은 표 2로부터 선택된다.
일부 실시태양에서, 본 발명은 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 숙주 세포를 교시하며, 변형은 트레오닌에 의한 SEQ ID NO: 58의 아미노산 36에 해당하는 위치에서 류신의 대체 및 리신에 의한 SEQ ID NO: 58의 아미노산 37에 해당하는 위치에서 트레오닌의 대체를 포함한다.
일부 실시태양에서, 본 발명은 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 숙주 세포를 교시하며, 숙주 세포는 C. 글루타미쿰이다.
일부 실시태양에서, 본 발명은 코리네박테리움 종 균주를 배양하는 단계 및 배양된 코리네박테리움 종 균주 또는 배양액으로부터 L-리신을 회수하는 단계를 포함하는 L-리신의 생산 방법을 교시하며, 코리네박테리움 종 균주는 조효소로서 NADP를 사용하는 변형된 GAPDH를 발현하며, 코리네박테리움 종 균주는 L-리신의 개선된 생산성을 갖는다.
일부 실시태양에서, 본 발명은 GAPDH를 변형시켜 변형된 GAPDH가 조효소 NADP 및 NAD에 대해 이중 특이성을 갖게 하는 단계를 포함하여 GAPDH의 조효소 특이성을 확장시키는 방법을 교시한다.
일부 실시태양에서, 본 발명은 GAPDH를 변형시켜 변형된 GAPDH가 조효소 NADP 및 NAD에 대해 이중 특이성을 갖게 하는 단계를 포함하여 GAPDH의 조효소 특이성을 확장시키는 방법을 교시하며, 변형된 GAPDH는 NAD에 비해 조효소 NADP에 대한 특이성이 증가된다.
일부 실시태양에서, 본 발명은 GAPDH를 변형시켜 변형된 GAPDH가 조효소 NADP 및 NAD에 대해 이중 특이성을 갖게 하는 단계를 포함하여 GAPDH의 조효소 특이성을 확장시키는 방법을 교시하며, 변형된 GAPDH는 NAD보다 NADP를 더 효과적으로 사용한다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타낸다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, 화합물은 폴리케타이드(예를 들어, 피크로마이신, 에리트로마이신 A, 클라리트로마이신, 아지트로마이신, 아버멕틴, 이버멕틴, 스피노사드, 젤다나마이신, 맥베신, 리파마이신, 암포테리신, 나이스타틴, 피마리신, 모넨신, 독시사이클린, 불라타신, 스쿠아모신, 몰비자린, 우바리신, 아노나신, 타크롤리무스, 시롤리무스, 라디시콜, 로바스타틴, 디스코더몰리드, 아플라톡신, 우스닌산 및 안트라마이신); 카테킨(예를 들어, 에피카테킨, 에피갈로카테킨, 에피카테킨 갈레이트, 에피갈로카테킨 갈레이트, 에피아프젤레친, 피세티니돌, 구이보우리티니돌, 메스퀴톨 및 로빈에티니돌); 테르펜(예를 들어, 프레놀, 아이소발레르산, 게라니올, 테르피네올, 리모넨, 마이르센, 리날로울, 피넨, 휴뮬렌, 파르네센, 파네솔, 카페스톨, 카올, 셈브렌, 탁사다이엔, 레티놀, 레티날, 피톨, 제라닐파네솔, 스쿠알렌, 라노스테롤, 사이클로아테놀, 콜레스테롤, 페루지카다이올, 테트라프레닐커쿠멘, 리코펜, 감마-카로틴, 알파-및 베타-카로틴, 3-옥소-α-이온올, 7,8-다이하이드로이오논, 메가스티그만-3,9-다이올 및 3-옥소-7,8-다이하이드로-α-이온올); 지방산(예를 들어, 미리스톨레산, 팔미톨레산, 사피엔산, 올레산, 엘라이드산, 바센산, 리놀레산, 리노에라이드산, α-리놀렌산, 아라키돈산, 에이코사펜타엔산, 에루크산, 도코사헥사엔산, 카프릴산, 카프르산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키드산, 베헨산, 리그노세르산 및 세로산); 아미노산 또는 이의 유도체(예를 들어, S-아데노실 메티오닌, 아이소류신, 류신, 발린, 메티오닌, 트레오닌, 리신, 글루타메이트, 트립토판, 티로신, L-리신 및 페닐알라닌); 코리스메이트 경로로부터의 화합물(예를 들어, 인돌, 코리스메이트, 시키메이트, 살리실산, 2,3-다이하이드록시벤조산, 파라-아미노벤조 에이트, 비타민 k 및 엽산); 및 알칼로이드(예를 들어, 에페드린, 호모하링토닌, 갈란타민, 빈카민, 퀴니딘, 모르핀, 첼에르트린, 피페린, 카페인, 니코틴, 테오브로민 및 퀴닌)로 이루어진 그룹으로부터 선택된다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, 화합물은 표 2로부터 선택된다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, 변이체 효소는 NADPH보다 NADH를 더 효과적으로 사용한다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, 방법은 gdh의 변이체 효소를 발현하는 단계를 포함하며, 변이체 효소는 SEQ ID NO: 42의 아미노산 서열에 적어도 95% 동일한 아미노산 서열을 포함한다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, 방법은 asd의 변이체 효소를 발현하는 단계를 포함하며, 변이체 효소는 SEQ ID NO: 40의 아미노산 서열에 적어도 95% 동일한 아미노산 서열을 포함한다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, 방법은 dapB의 변이체 효소를 발현하는 단계를 포함하며, 변이체 효소는 SEQ ID NO: 46의 아미노산 서열에 적어도 95% 동일한 아미노산 서열을 포함한다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, 방법은 ddh를 발현하는 단계를 포함하며, ddh 효소는 SEQ ID NO: 4의 아미노산 서열을 포함한다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, gdh의 변이체 효소는 SEQ ID NO: 44의 아미노산 서열을 포함한다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, asd의 변이체 효소는 SEQ ID NO: 30의 아미노산 서열을 포함한다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, dapB의 변이체 효소는 SEQ ID NO: 48의 아미노산 서열을 포함한다.
일부 실시태양에서, 본 발명은 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법을 교시하며, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내며, 모든 4개의 효소의 변이체는 숙주 세포에서 동시에 발현된다.
일부 실시태양에서, 본 발명은 하나 이상의 효소 gdh, asd, dapB 및 ddh의 변이체를 포함하는 숙주 세포를 교시하며, 변이체는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타낸다.
일부 실시태양에서, 본 발명은 숙주 세포에서 신규한 니코틴아마이드 뉴클레오타이드 수소전달 효소를 발현시키는 단계를 포함하여 숙주 세포에 의해 L-리신의 생산 효율을 개선시키는 방법을 교시한다.
일부 실시태양에서, 본 발명은 다음 단계 중 둘 이상을 포함하여 숙주 세포에 의해 L-리신의 생산 효율을 개선시키는 방법을 교시한다: (1) 내인성 GAPDH를 변형시켜 변형된 GAPDH가 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대해 증가된 특이성을 갖게 하는 단계; (2) 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계로서, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내는 단계; 및 (3) 숙주 세포에서 신규한 니코틴아마이드 뉴클레오타이드 수소전달 효소를 발현시키는 단계.
일부 실시태양에서, 본 발명은 (1) 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하는 단계; (2) NADH로부터 NADPH를 생성하는 숙주 세포에서 수소전달 효소를 발현시키는 단계; (3) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하는 단계; (4) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하는 단계; (5) 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(lTA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하는 단계; 및 (6) 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시키는 단계의 둘 이상에 의해 L-리신, L-트레오닌, L-아이소류신, L-메티오닌 또는 L-글리신을 증가시키는 방법을 교시한다.
본 발명의 내용 중에 포함되어 있다.
도 1은 박테리아 리신 생합성 경로를 도시하고, 박테리아에서 L-리신의 수율 및 생산성을 개선시키기 위해 본 출원에 사용된 전략을 개괄한다. 숙주 세포에 의한 L-리신의 생산 효율은 하나 이상의 다음 단계에 의해 개선될 수 있다: (1) 내인성 GAPDH를 변형시켜 변형된 GAPDH가 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대해 증가된 특이성을 갖게 하여, NADPH의 생산을 초래하는 단계; (2) 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계로서, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내어, NADPH의 이용성을 감소시키는 단계; 및 (3) 숙주 세포에서 신규한 니코틴아마이드 뉴클레오타이드 수소전달 효소를 발현시켜 NADH로부터 NADPH의 생산을 초래하는 단계.
도 2는 실시예 1에 기술된 바와 같이 변형된 글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)를 발현하는 코리네박테리움 글루타미쿰 균주에서의 L-리신 생산성을 나타낸다. 각각의 다음의 돌연변이 중 하나 이상을 보유하는 gapA 효소를 발현하는 C. 글루타미쿰의 여러 균주가 생성되었다: D35G, L36T, T37K 및 P192S. 그런 후에, 균주를 천연 gapA를 갖는 부모 균주와 비교하여 L-리신을 생산하는 능력에 대해 테스트하였다. NADP에 대한 변형된 조효소 특이성을 부여하는 특정 돌연변이를 갖는 GAPDH의 도입은 L-리신의 생산성을 상당히 개선시켰다. T37K 단독 및 L36T를 갖춘 T37K는 2가지 배경에서 생산성을 크게 향상시킨다. 균주 7000182994 및 7000184348은 각각 T37K를 함유하며 각 부모 Parent_1 및 Parent_2보다 성능이 우수하다. 균주 7000182999 및 7000184352는 각각 T37K 및 L36T를 함유하며 각 부모 Parent_1 및 Parent_2보다 성능이 우수하다.
도 3은 NADPH보다 NADH를 더 효과적으로 사용하는 변이체 gdh, asd, dapB 및 ddh 효소를 발현시킴으로써 코리네박테리움 글루타미쿰에서 리신 합성을 위한 DAP-경로를 재프로그래밍하는 전략을 예시한다. C. 글루타미쿰 효소 gdh 및 dapB는 각각 NADH를 NADPH보다 더 효과적으로 사용하는 클로스트리디움 심비오섬 및 대장균에서 공지된 상동체를 가지고 있다. C. 글루타미쿰 adh 및 ddh의 변이체를 찾기 위해 숙주 세포에서 게놈-전체 상동성 검색을 수행하였다. 상동성 검색은 각 효소에 대해 9개의 변이체를 산출하였다. C. 글루타미쿰 gdh 및 dapB의 공지된 상동체뿐만 아니라 C. 글루타미쿰 asd 및 ddh의 9개의 변이체는 코돈 최적화되고 C. 글루타미쿰에서의 발현을 위해 플라스미드로 복제되었다.
도 4는 C. 글루타미쿰에서 변이체 gdh, asd, dapB 및 ddh 효소의 다양한 조합을 발현하기 위한 전략을 예시한다. 상이한 버전의 gdh, asd, dapB 및 ddh 효소 각각의 하나의 복제물은 다양한 조합으로 카나마이신 내성 마커 유전자를 함유하는 플라스미드에 복제하였다. 그런 후에, 각각의 플라스미드는 C. 글루타미쿰에 도입되었고 효소 유전자는 표준 상동성 재조합 기술에 의해 효소 유전자를 C. 글루타미쿰 염색체에 통합되었다. 효소 유전자를 이의 게놈에 성공적으로 통합시킨 클론은 카나마이신을 함유하는 배지에서 배양함으로써 선택하였다. 모든 4개의 효소는 C. 글루타미쿰에서 동시에 발현되었다.
도 5a-b는 C. 글루타미쿰에서 상이한 버전의 gdh, asd, dapB 및 ddh 효소의 다양한 조합의 발현 효과를 나타낸다. 도 5a는 2개의 C. 글루타미쿰 재조합 균주, 7000186960 및 7000186992에 대한 데이터를 나타내며, 각각은 ddh에 대한 천연 효소 및 각각의 부모 Parent_3 및 Parent_4에 비해 L-리신의 현저하게 개선된 생산성을 나타내는 gdh, asd 및 dapB에 대해 동일한 3개의 이종 효소(NADH를 사용하는 공지된 버전의 gdh 및 dapB, 및 락토바실러스 아길리스로부터의 asd의 변이체)를 함유한다. 7000186960 및 7000186992 각각은 gdh, asd 및 dapB에 대해 동일한 3개의 이종 효소와 ddh에 대한 천연 효소를 포함한다. 도 5b는 gdh 및 dapB에 대한 이종 효소는 또한 테스트된 3개 배경 중 2개에서 수율을 약간 증가시킨다는 것을 나타낸다.
도 6은 본 발명의 형질전환 플라스미드의 조립 및 숙주 유기체 속으로 이의 통합을 도시한다. 삽입체 DNA는 하나 이상의 합성된 올리고를 어셈블리 반응에서 결합함으로써 생성된다. 원하는 서열을 함유하는 DNA 삽입체는 게놈의 표적 부위와 상 동성을 갖는 DNA 영역에 인접해있다. 이런 상동성 영역은 게놈 통합을 용이하게 하고, 일단 통합되면, 후속 단계에서 벡터 백본 DNA를 루핑 아웃(looping-out)하기 위해 디자인된 직접 반복 영역을 형성한다. 조립된 플라스미드는 삽입체 DNA 및 임의적으로, 하나 이상의 선택 마커를 함유한다.
도 7은 숙주 균주로부터 DNA의 선택된 영역을 루핑 아웃하기 위한 절차를 도시한다. 삽입된 DNA 및 숙주 미생물 게놈의 직접 반복 영역은 재조합 이벤트에서 "루프 아웃(loop out)"될 수 있다. 선택 마커에 대해 선택된 세포 계수기는 직접 반복 영역에 의해 인접된 루프 DNA의 결실을 함유한다.
도 8a-b는 대장균 K-12, W3110에서 thrLABC 레귤론(도 8a) 또는 thrABC 오페론(도 8b)을 사용하는 대장균 W3110 트레오닌 기본 균주 구축 단계 1에 사용된 플라스미드 디자인을 나타낸다.
도 9는 리신 및 트레오닌에 대한 박테리아 생합성 경로를 예시하고, 박테리아에서 L-리신 또는 L-트레오닌의 수율 및 생산성을 개선시키기 위해 본 출원에서 사용된 전략을 개략적으로 설명한다. (1) 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하여 NADPH의 생산을 초래한다. (2) NADH로부터 NADPH를 생성하는 숙주 세포에서 수소전달 효소를 발현시켜 NADPH의 생산을 초래한다. (3) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하여 NADPH 이용성을 감소시킨다. (4) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하여 NADPH 이용성을 감소시킨다. (5) 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하여 확장된 NADPH의 단위당 증가된 트레오닌 생산을 초래한다. (6) 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시킨다.
도 10a-c는 이종 트레오닌 알돌라제 라이브러리(TAlib)의 발현에 의해 실현될 수 있는 시나리오를 보여주는 트레오닌 생합성의 대사 경로 지도를 도시한다. 도 10a는 천연 대장균 ltaE에 의해 선호되는 반응(트레오닌의 아세트알데하이드 및 글리신으로의 전환)을 보여주는 트레오닌 생합성의 대사 경로 지도를 도시한다. 도 10b는 트레오닌과 아세트알데하이드와 글리신 사이의 전환이 이종 TA 효소의 발현과 보다 균형을 이루는 개선된 시나리오를 나타내는 부분 경로를 도시한다. 도 10c는 아세트알데하이드 및 글리신의 트레오닌으로의 전환이 이종 TA 효소의 발현에 유리한 방향인 바람직한 시나리오를 나타내는 부분 경로를 도시한다.
도 11a-c는 코리네에서 테스트된 개별 유전자 또는 gapA, gsd, asd, ltaE의 천연 또는 변이체의 조합을 발현할 때 대장균 thrABC 배경 균주(W3110 pMB085thrABCㅿtdh; thrABC)에 의해 생산된 L-트레오닌의 역가(mg/L)를 나타낸다. 야생형 대장균 K12 W3110, tdh 결실을 갖는 W3110(tdh_del) 및 W3110 pMB085thrLABCㅿtdh(thrLABC) 균주의 역가도 비교를 위해 도시된다. 도 11a는 gapA에 대한 결과를 나타낸다. 본 발명자들이 테스트한 3개 gapA 변이체(gapAv5, gapAv7 및 gapAv8)는 대장균 gapA(Ec_gapA)의 여분의 복제물을 발현하는 균주를 포함하여 대조군에 비해 현저하게 높은 L-트레오닌 역가를 초래하였다. 도 11b는 asd에 대한 결과를 나타낸다. 락토바실러스 아길리스 asd는 제 2 복제물을 발현하는 동일한 기본 균주보다 현저하게 높은 역가를 초래하였다. 도 11c는 gdh에 대한 결과를 보여준다. 이 경우, 클로스트리디움 gdh(Csy_gdh)는 대장균 gdh의 두 번째 복제물을 발현하는 동일한 기본 균주와 유의미하게 다르지 않았지만, 부모 균주(thrABC)보다 더 잘 수행된 균주를 괴롭혔다.
도 12는 asd, gdh 및 ltaE 라이브러리 변이체의 발현에 사용되는 플라스미드를 구축하는 데 사용된 조절 요소(pMB038 프로모터(SEQ ID NO: 237) 및 thrL 터미네이터(SEQ ID NO: 238) 및 골격(p15A)(SEQ ID NO: 239)의 디자인을 나타낸다.
도 13은 pMB038 프로모터(SEQ ID NO: 237)와 터미네이터(SEQ ID NO: 238); 대조군 플라스미드) 사이에 복제된 라이브러리 변이체가 없는 p15A 빈 벡터(원형화된 p15A 플라스미드(SEQ ID NO: 239)로 형질전환된 야생형 대장균 K12 W3110 및 부모, 대조군 균주-트레오닌 기본 균주 THR02(W3110 pMB085thrABCㅿtdh)와 비교하여 L-트레오닌의 개선된 역가(mg/L)를 나타낸다. asd_13(SEQ ID NO: 108) 및 asd_18(SEQ ID NO: 118)을 발현하는 균주는 층이 개선되었지만 대조군 균주와 유의미한 차이는 없었다. 7개의 gdh 변이체: gdh_1(SEQ ID NO: 136) gdh_8(SEQ ID NO: 150), gdh_14(SEQ ID NO: 162), gdh_16(SEQ ID NO: 166), gdh_18(SEQ ID NO: 170), gdh_20(SEQ ID NO: 174) 및 gdh_22(SEQ ID NO: 178)는 모두 스튜던트의 평균 수단의 T 비교에 의해 결정된 현저하게 더 높은 L-트레오닌 역가를 초래하였다. 회색 원과 라벨은 대조군 균주보다 유의하게 실행되는 샘플을 나타낸다.
도 14는 pMB038 프로모터(SEQ ID NO: 237)와 터미네이터(SEQ ID NO: 238); 대조군 플라스미드) 사이에 복제된 라이브러리 변이체가 없는 p15A 빈 벡터(원형화된 p15A 플라스미드(SEQ ID NO: 239)로 형질전환된 야생형 대장균 K12 W3110 및 부모, 대조군 균주-트레오닌 기본 균주 THR02(W3110 pMB085thrABCㅿtdh)와 비교하여 트레오닌 알돌라제(ltaE) 라이브러리 변이체를 발현하는 균주로부터 생성되는 L-트레오닌의 개선된 역가(mg/L)를 나타낸다. ltaE_6(SEQ ID NO: 196), ltaE_11(SEQ ID NO: 206), ltaE_18(SEQ ID NO: 220), ltaE_20(SEQ ID NO: 224), lta_24(SEQ ID NO: 232) 모두는 평균의 스튜던트 T 비교에 의해 결정된 현저하게 더 높은 L-트레오닌 역가를 초래하였다. 회색 원과 레이블은 대조군 균주보다 유의하게 실행된 샘플을 나타낸다.
도 15는 개별적으로 발현될 때 각각 역가를 개선시킨 단일 asd, gdh 또는 ltaE 라이브러리 변이체와 Csy_gdh, gapAv5 또는 gapAv7의 조합을 발현하는 균주로부터 생성되는 개선된 트레오닌 역가를 나타낸다. W3110을 제외한 모든 균주는 pMB085-thrABC tdh 결실 배경에 있다. 이들 실험에서, 가장 관련성 있는 대조군은 빈 p15A 대조군 플라스미드(각각 7000349886, 7000349887 및 7000349885; Csy_gdh+p15A(-), gapAv5+p15A(-) 및 gapAv7+p15A(-))로 형질전환된 부모 균주(Csy_gdh, gapAv5 및 gapAv7)이다.
도 16은 NNK 라이브러리로부터 외인성 gapA 대립 유전자를 발현하는 C. 글루 타미쿰에 의한 리신의 생산을 위한 2개의 플레이트 모델에서의 라이브러리 성능을 도시한다. 각 모델의 평균 성능이 도시된다. 대부분의 구성 요소(회색 원)는 부모(검은색 다이아몬드)와 같거나 그보다 더 나쁘게 실행된다. 특정 gapA 대립 유전자는 두 플레이트 모델(검은색 원)에서 리신의 높은 역가를 초래한다.
도 2는 실시예 1에 기술된 바와 같이 변형된 글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)를 발현하는 코리네박테리움 글루타미쿰 균주에서의 L-리신 생산성을 나타낸다. 각각의 다음의 돌연변이 중 하나 이상을 보유하는 gapA 효소를 발현하는 C. 글루타미쿰의 여러 균주가 생성되었다: D35G, L36T, T37K 및 P192S. 그런 후에, 균주를 천연 gapA를 갖는 부모 균주와 비교하여 L-리신을 생산하는 능력에 대해 테스트하였다. NADP에 대한 변형된 조효소 특이성을 부여하는 특정 돌연변이를 갖는 GAPDH의 도입은 L-리신의 생산성을 상당히 개선시켰다. T37K 단독 및 L36T를 갖춘 T37K는 2가지 배경에서 생산성을 크게 향상시킨다. 균주 7000182994 및 7000184348은 각각 T37K를 함유하며 각 부모 Parent_1 및 Parent_2보다 성능이 우수하다. 균주 7000182999 및 7000184352는 각각 T37K 및 L36T를 함유하며 각 부모 Parent_1 및 Parent_2보다 성능이 우수하다.
도 3은 NADPH보다 NADH를 더 효과적으로 사용하는 변이체 gdh, asd, dapB 및 ddh 효소를 발현시킴으로써 코리네박테리움 글루타미쿰에서 리신 합성을 위한 DAP-경로를 재프로그래밍하는 전략을 예시한다. C. 글루타미쿰 효소 gdh 및 dapB는 각각 NADH를 NADPH보다 더 효과적으로 사용하는 클로스트리디움 심비오섬 및 대장균에서 공지된 상동체를 가지고 있다. C. 글루타미쿰 adh 및 ddh의 변이체를 찾기 위해 숙주 세포에서 게놈-전체 상동성 검색을 수행하였다. 상동성 검색은 각 효소에 대해 9개의 변이체를 산출하였다. C. 글루타미쿰 gdh 및 dapB의 공지된 상동체뿐만 아니라 C. 글루타미쿰 asd 및 ddh의 9개의 변이체는 코돈 최적화되고 C. 글루타미쿰에서의 발현을 위해 플라스미드로 복제되었다.
도 4는 C. 글루타미쿰에서 변이체 gdh, asd, dapB 및 ddh 효소의 다양한 조합을 발현하기 위한 전략을 예시한다. 상이한 버전의 gdh, asd, dapB 및 ddh 효소 각각의 하나의 복제물은 다양한 조합으로 카나마이신 내성 마커 유전자를 함유하는 플라스미드에 복제하였다. 그런 후에, 각각의 플라스미드는 C. 글루타미쿰에 도입되었고 효소 유전자는 표준 상동성 재조합 기술에 의해 효소 유전자를 C. 글루타미쿰 염색체에 통합되었다. 효소 유전자를 이의 게놈에 성공적으로 통합시킨 클론은 카나마이신을 함유하는 배지에서 배양함으로써 선택하였다. 모든 4개의 효소는 C. 글루타미쿰에서 동시에 발현되었다.
도 5a-b는 C. 글루타미쿰에서 상이한 버전의 gdh, asd, dapB 및 ddh 효소의 다양한 조합의 발현 효과를 나타낸다. 도 5a는 2개의 C. 글루타미쿰 재조합 균주, 7000186960 및 7000186992에 대한 데이터를 나타내며, 각각은 ddh에 대한 천연 효소 및 각각의 부모 Parent_3 및 Parent_4에 비해 L-리신의 현저하게 개선된 생산성을 나타내는 gdh, asd 및 dapB에 대해 동일한 3개의 이종 효소(NADH를 사용하는 공지된 버전의 gdh 및 dapB, 및 락토바실러스 아길리스로부터의 asd의 변이체)를 함유한다. 7000186960 및 7000186992 각각은 gdh, asd 및 dapB에 대해 동일한 3개의 이종 효소와 ddh에 대한 천연 효소를 포함한다. 도 5b는 gdh 및 dapB에 대한 이종 효소는 또한 테스트된 3개 배경 중 2개에서 수율을 약간 증가시킨다는 것을 나타낸다.
도 6은 본 발명의 형질전환 플라스미드의 조립 및 숙주 유기체 속으로 이의 통합을 도시한다. 삽입체 DNA는 하나 이상의 합성된 올리고를 어셈블리 반응에서 결합함으로써 생성된다. 원하는 서열을 함유하는 DNA 삽입체는 게놈의 표적 부위와 상 동성을 갖는 DNA 영역에 인접해있다. 이런 상동성 영역은 게놈 통합을 용이하게 하고, 일단 통합되면, 후속 단계에서 벡터 백본 DNA를 루핑 아웃(looping-out)하기 위해 디자인된 직접 반복 영역을 형성한다. 조립된 플라스미드는 삽입체 DNA 및 임의적으로, 하나 이상의 선택 마커를 함유한다.
도 7은 숙주 균주로부터 DNA의 선택된 영역을 루핑 아웃하기 위한 절차를 도시한다. 삽입된 DNA 및 숙주 미생물 게놈의 직접 반복 영역은 재조합 이벤트에서 "루프 아웃(loop out)"될 수 있다. 선택 마커에 대해 선택된 세포 계수기는 직접 반복 영역에 의해 인접된 루프 DNA의 결실을 함유한다.
도 8a-b는 대장균 K-12, W3110에서 thrLABC 레귤론(도 8a) 또는 thrABC 오페론(도 8b)을 사용하는 대장균 W3110 트레오닌 기본 균주 구축 단계 1에 사용된 플라스미드 디자인을 나타낸다.
도 9는 리신 및 트레오닌에 대한 박테리아 생합성 경로를 예시하고, 박테리아에서 L-리신 또는 L-트레오닌의 수율 및 생산성을 개선시키기 위해 본 출원에서 사용된 전략을 개략적으로 설명한다. (1) 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하여 NADPH의 생산을 초래한다. (2) NADH로부터 NADPH를 생성하는 숙주 세포에서 수소전달 효소를 발현시켜 NADPH의 생산을 초래한다. (3) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하여 NADPH 이용성을 감소시킨다. (4) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하여 NADPH 이용성을 감소시킨다. (5) 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하여 확장된 NADPH의 단위당 증가된 트레오닌 생산을 초래한다. (6) 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시킨다.
도 10a-c는 이종 트레오닌 알돌라제 라이브러리(TAlib)의 발현에 의해 실현될 수 있는 시나리오를 보여주는 트레오닌 생합성의 대사 경로 지도를 도시한다. 도 10a는 천연 대장균 ltaE에 의해 선호되는 반응(트레오닌의 아세트알데하이드 및 글리신으로의 전환)을 보여주는 트레오닌 생합성의 대사 경로 지도를 도시한다. 도 10b는 트레오닌과 아세트알데하이드와 글리신 사이의 전환이 이종 TA 효소의 발현과 보다 균형을 이루는 개선된 시나리오를 나타내는 부분 경로를 도시한다. 도 10c는 아세트알데하이드 및 글리신의 트레오닌으로의 전환이 이종 TA 효소의 발현에 유리한 방향인 바람직한 시나리오를 나타내는 부분 경로를 도시한다.
도 11a-c는 코리네에서 테스트된 개별 유전자 또는 gapA, gsd, asd, ltaE의 천연 또는 변이체의 조합을 발현할 때 대장균 thrABC 배경 균주(W3110 pMB085thrABCㅿtdh; thrABC)에 의해 생산된 L-트레오닌의 역가(mg/L)를 나타낸다. 야생형 대장균 K12 W3110, tdh 결실을 갖는 W3110(tdh_del) 및 W3110 pMB085thrLABCㅿtdh(thrLABC) 균주의 역가도 비교를 위해 도시된다. 도 11a는 gapA에 대한 결과를 나타낸다. 본 발명자들이 테스트한 3개 gapA 변이체(gapAv5, gapAv7 및 gapAv8)는 대장균 gapA(Ec_gapA)의 여분의 복제물을 발현하는 균주를 포함하여 대조군에 비해 현저하게 높은 L-트레오닌 역가를 초래하였다. 도 11b는 asd에 대한 결과를 나타낸다. 락토바실러스 아길리스 asd는 제 2 복제물을 발현하는 동일한 기본 균주보다 현저하게 높은 역가를 초래하였다. 도 11c는 gdh에 대한 결과를 보여준다. 이 경우, 클로스트리디움 gdh(Csy_gdh)는 대장균 gdh의 두 번째 복제물을 발현하는 동일한 기본 균주와 유의미하게 다르지 않았지만, 부모 균주(thrABC)보다 더 잘 수행된 균주를 괴롭혔다.
도 12는 asd, gdh 및 ltaE 라이브러리 변이체의 발현에 사용되는 플라스미드를 구축하는 데 사용된 조절 요소(pMB038 프로모터(SEQ ID NO: 237) 및 thrL 터미네이터(SEQ ID NO: 238) 및 골격(p15A)(SEQ ID NO: 239)의 디자인을 나타낸다.
도 13은 pMB038 프로모터(SEQ ID NO: 237)와 터미네이터(SEQ ID NO: 238); 대조군 플라스미드) 사이에 복제된 라이브러리 변이체가 없는 p15A 빈 벡터(원형화된 p15A 플라스미드(SEQ ID NO: 239)로 형질전환된 야생형 대장균 K12 W3110 및 부모, 대조군 균주-트레오닌 기본 균주 THR02(W3110 pMB085thrABCㅿtdh)와 비교하여 L-트레오닌의 개선된 역가(mg/L)를 나타낸다. asd_13(SEQ ID NO: 108) 및 asd_18(SEQ ID NO: 118)을 발현하는 균주는 층이 개선되었지만 대조군 균주와 유의미한 차이는 없었다. 7개의 gdh 변이체: gdh_1(SEQ ID NO: 136) gdh_8(SEQ ID NO: 150), gdh_14(SEQ ID NO: 162), gdh_16(SEQ ID NO: 166), gdh_18(SEQ ID NO: 170), gdh_20(SEQ ID NO: 174) 및 gdh_22(SEQ ID NO: 178)는 모두 스튜던트의 평균 수단의 T 비교에 의해 결정된 현저하게 더 높은 L-트레오닌 역가를 초래하였다. 회색 원과 라벨은 대조군 균주보다 유의하게 실행되는 샘플을 나타낸다.
도 14는 pMB038 프로모터(SEQ ID NO: 237)와 터미네이터(SEQ ID NO: 238); 대조군 플라스미드) 사이에 복제된 라이브러리 변이체가 없는 p15A 빈 벡터(원형화된 p15A 플라스미드(SEQ ID NO: 239)로 형질전환된 야생형 대장균 K12 W3110 및 부모, 대조군 균주-트레오닌 기본 균주 THR02(W3110 pMB085thrABCㅿtdh)와 비교하여 트레오닌 알돌라제(ltaE) 라이브러리 변이체를 발현하는 균주로부터 생성되는 L-트레오닌의 개선된 역가(mg/L)를 나타낸다. ltaE_6(SEQ ID NO: 196), ltaE_11(SEQ ID NO: 206), ltaE_18(SEQ ID NO: 220), ltaE_20(SEQ ID NO: 224), lta_24(SEQ ID NO: 232) 모두는 평균의 스튜던트 T 비교에 의해 결정된 현저하게 더 높은 L-트레오닌 역가를 초래하였다. 회색 원과 레이블은 대조군 균주보다 유의하게 실행된 샘플을 나타낸다.
도 15는 개별적으로 발현될 때 각각 역가를 개선시킨 단일 asd, gdh 또는 ltaE 라이브러리 변이체와 Csy_gdh, gapAv5 또는 gapAv7의 조합을 발현하는 균주로부터 생성되는 개선된 트레오닌 역가를 나타낸다. W3110을 제외한 모든 균주는 pMB085-thrABC tdh 결실 배경에 있다. 이들 실험에서, 가장 관련성 있는 대조군은 빈 p15A 대조군 플라스미드(각각 7000349886, 7000349887 및 7000349885; Csy_gdh+p15A(-), gapAv5+p15A(-) 및 gapAv7+p15A(-))로 형질전환된 부모 균주(Csy_gdh, gapAv5 및 gapAv7)이다.
도 16은 NNK 라이브러리로부터 외인성 gapA 대립 유전자를 발현하는 C. 글루 타미쿰에 의한 리신의 생산을 위한 2개의 플레이트 모델에서의 라이브러리 성능을 도시한다. 각 모델의 평균 성능이 도시된다. 대부분의 구성 요소(회색 원)는 부모(검은색 다이아몬드)와 같거나 그보다 더 나쁘게 실행된다. 특정 gapA 대립 유전자는 두 플레이트 모델(검은색 원)에서 리신의 높은 역가를 초래한다.
다음의 용어는 당해 기술 분야에서 통상의 지식을 가진 자에 의해 잘 이해되는 것으로 생각되지만, 다음 정의는 본 발명에 개시된 주제의 설명을 용이하게 하기 위해 제시된다.
용어 하나("a" 또는 "an")는 그 실체 중 하나 이상을 의미하며, 즉 복수의 지시대상을 의미할 수 있다. 이와 같이, 용어 "하나", "하나 이상" 및 "적어도 하나"라는 본 발명에서 상호 교환적으로 사용된다. 또한, 부정관사에 의한 "한 요소"에 대한 언급은, 내용이 분명하게는 요소의 하나 및 단지 하나가 존재하는 것을 요구하지 않는 한, 하나 이상의 요소가 존재하는 가능성을 배제하지 않는다.
문맥 상 달리 요구되지 않는 한, 본 명세서 및 청구 범위 전체에서, "포함하다" 및 "포함하는"과 같은 단어 "포함하다" 및 그 변형은 "포함하나 이에 제한되지 않는" 개방적이고 포괄적인 의미로 해석되어야 한다.
본 명세서 전체에서 "한 실시태양" 또는 "일 실시태양"에 대한 언급은 실시 예와 관련하여 설명된 특정 특징, 구조 또는 특성이 본 발명의 적어도 하나의 실시태양에 포함될 수 있음을 의미한다. 따라서, 본 명세서 전체의 여러 곳에서 "한 실시태양에서" 또는 "일 실시태양에서"라는 문구가 모두 동일한 실시태양을 지칭할 필요는 없다. 명확성을 위해, 별도의 실시태양과 관련하여 설명된 본 발명의 특정 특징들은 또한 단일 실시태양에서 조합하여 제공될 수 있다는 것이 이해된다. 반대로, 간결하게, 단일 실시태양과 관련하여 설명된 본 발명의 다양한 특징들은 또한 개별적으로 또는 임의의 적절한 하위 조합으로 제공될 수 있다.
본 발명에 사용된 용어 "세포 생물", "미세유기체"또는 "미생물"은 광범위하게 이해되어야 한다. 이 용어들은 상호 교환적으로 사용될 수 있고, 두 원핵생물 영역인 박테리아와 고세균뿐만 아니라 특정 진핵생물 균류 및 원생 생물을 포함하나 이에 제한되지 않을 수 있다. 일부 실시태양에서, 본 발명은 본 발명에 제공된 목록/표 및 도면의 "미세유기체" 또는 "세포유기체" 또는 "미생물"을 의미한다. 이런 특성화는 표와 도면의 확인된 분류학적 속과 확인된 분류학적 종뿐만 아니라 상기 표 또는 도면의 임의의 유기체의 다양한 신규하고 새로운 확인된 또는 디자인된 균주를 의미할 수 있다. 동일한 특성화는 실시예에서와 같이, 명세서의 다른 부분에서 이런 용어의 인용에 대해서도 마찬가지이다.
용어 "원핵 생물"은 당업계에 공지되어 있으며 핵 또는 다른 세포 기관을 함유하지 않는 세포를 의미한다. 원핵생물은 일반적으로 두 영역, 박테리아와 고세균의 하나로 분류된다. 고세균과 박테리아 영역의 유기체 사이의 명확한 차이는 16S 리보솜 RNA에서 뉴클레오타이드 염기 서열의 근본적인 차이에 기초한다.
용어 "고세균"은 전형적으로 특이한 환경에서 발견되고 세포벽에서 리보솜 단백질의 수 및 뮤라민산의 부족을 포함하는 몇몇 기준에 의해 나머지 원핵 생물과 구별되는 멘도시쿠테스(Mendosicutes) 문의 유기체의 범주를 의미한다. ssrRNA 분석에 기초하여, 고세균은 두 계통발생학적으로 다른 그룹으로 구성된다: 크렌고세균(Crenarchaeota) 및 유리고세균(Euryarchaeota). 생리학을 기초로, 고세균은 세 가지 유형으로 구성될 수 있다: 메테인 생성균(methanogens)(메테인을 생성하는 원핵 생물); 고염성 세균(extreme halophiles)(매우 높은 농도의 염(NaCl)에서 사는 원핵 생물; 및 고온성(초고온성) 세균(extreme(hyper) thermophilus)(초고온에서 사는 원핵 생물). 박테리아와 구별되는 통일된 고세균의 특징(즉, 세포벽, 에스터-연결 막 지질 등에 뮤레인 없음)이외에, 이런 원핵 생물은 이들의 특정한 서식 환경에 적응시키는 특이한 구조 또는 생화학적 특성을 나타낸다. 크렌고세균은 주로 초고온성 황 의존성 원핵 생물로 이루어지며 유리고세균은 메테인 생성균과 고염성 세균을 함유한다.
"박테리아" 또는 "진정세균(eubacteria)"는 원핵 생물의 영역을 의미한다. 박테리아는 다음과 같이 적어도 11개의 구별된 그룹을 포함한다: (1) 그람 양성 (그람+) 박테리아, 2개위 주요 세부구분이 존재한다: (1) 높은 G+C 그룹(액티노마이세테스, 마이코박테리아, 마이르코콕커스, 기타) (2) 낮은 G+C 그룹(바실러스, 클로스트리디아, 락토바실러스, 스타필로콕키, 스트렙토콕키, 마이코플라스마스); (2) 프로테오박테리아, 예를 들어, 보라색 광합성 + 비 광합성 그람 음성 박테리아 (대부분의 "일반적인" 그람 음성 박테리아 포함); (3) 사이아노박테리아, 예를 들면, 산소성 광영양생물; (4) 스피로체테스 및 관련 종; (5) 플랭크토마이세스; (6) 박테로이데스, 플라보박테리아; (7) 클라마이디아; (8) 녹색 황 박테리아; (9) 녹색 비 황 박테리아(또한 혐기성 광영양식물); (10) 방사성 저항성 마이크로콕키 및 동족; (11) 써모토가(Thermotoga) 및 써모시포 써모필레스(Thermosipho thermophiles).
"진핵 생물"은 세포가 막 내에 둘러싸인 핵 및 다른 소기관을 함유하는 임의의 유기체이다. 진핵 생물은 분류군(Eukarya 또는 Eukaryota)에 속한다. 진핵 생물 세포를 원핵 생물(박테리아와 고세균)와 구분시키는 정의하는 특징은 막으로 둘러싸인 유전자 물질, 특히 유전자 물질을 함유하고 핵막에 의해 둘러싸인 핵을 가진다는 것이다.
용어 "유전자 변형된 숙주 세포", "유전자 변형된 미생물", "재조합 미생물", "재조합 숙주 세포" 및 "재조합 균주"는 본 발명에서 상호 교환적으로 사용될 수 있고 유전자 변형된 미생물을 의미할 수 있다. 따라서, 이 용어는 유전자 변경, 변형 또는 조작되어, 숙주 세포가 유도된 자연 발생 미생물과 비교하여 변경, 변형 또는 상이한 유전자형 및/또는 표현형을 나타내는(예를 들어, 유전자 변형이 미생물의 핵산 서열 암호화에 영향을 미칠 때) 미생물(예를 들어, 박테리아, 효모 세포, 곰팡이 세포 등)을 포함한다. 이 용어는 문제의 특정 재조합 미생물뿐만 아니라 이런 미생물의 자손 또는 잠재적 자손을 의미하는 것으로 이해된다.
용어 "야생형 미생물"은 자연에서 발생하는 세포, 즉 유전자 변형되지 않은 세포를 기술할 수 있다.
용어 "유전자 조작된"은 (예를 들어, 핵산의 삽입 또는 결실에 의한) 미생물의 게놈의 임의적 조작을 의미할 수 있다.
용어 "대조군" 또는 "대조군 숙주 세포"는 유전자 변형 또는 실험적 치료의 효과를 측정하기 위한 적절한 비교기 숙주 세포를 의미한다. 일부 실시태양에서, 대조군 숙주 세포는 야생형 세포이다. 다른 실시태양에서, 대조군 숙주 세포는 치료 숙주 세포를 분화시키는 유전자 변형(들)을 제외하고, 유전자 변형된 숙주 세포와 유전적으로 동일하다. 일부 실시태양에서, 본 발명은 대조군 숙주 세포(예를 들어, 균주 개량 프로그램의 기초로 사용된 S1 균주)로서의 부모 균주의 사용을 교시한다.
본 발명에 사용된 용어 "대립 유전자(들)"은 유전자의 하나 이상의 대안 형태의 임의의 것을 의미할 수 있으며, 이의 모두 대립 유전자는 적어도 하나의 형질 또는 특성과 관련된다. 이배체 세포에서, 소정의 유전자의 2개의 대립 유전자는 한 쌍의 상동성 염색체에서 상응하는 유전자좌를 점유할 수 있다. 본 발명의 실시태양은, QTL, 즉 하나 이상의 유전자 또는 조절 서열을 포함할 수 있는 게놈 영역에 관한 것이기 때문에, 일부 경우에 대신 "일배체형(haplotype)"(즉, 염색체 분절의 대립 유전자)을 지칭하는 것이 더 정확하나, 이러한 경우에, "대립 유전자"라는 용어는 "유전자형"이라는 용어를 포함하는 것으로 이해되어야 한다.
본 발명에 사용된 용어 "유전자좌"(복수 유전자좌)는 예를 들어 유전자 또는 유전자 마커가 발견되는 염색체 상의 특정 장소 또는 장소들 또는 위치를 의미할 수 있다.
본 발명에 사용된 용어 "유전적으로 연결된"은 교차를 통해 분리하기가 어려워 번식 동안 높은 비율로 공동유전되는 2개 이상의 형질을 의미할 수 있다.
본 발명에 사용된 바와 같이 "재조합" 또는 "재조합 사건"은 염색체 교차 또는 독립된 분류를 의미할 수 있다. 용어 "재조합"은 재조합 사건의 결과로서 발생하는 새로운 유전자 구성을 갖는 유기체를 의미할 수 있다.
본 발명에 사용된 바와 같이 용어 "표현형"은 개체의 유전적 구성(즉, 유전자형)과 환경 사이의 상호작용으로부터 기인하는 개별 세포, 세포 배양, 유기체 또는 유기체의 그룹의 관찰 가능한 특성을 의미할 수 있다.
본 발명에 사용된 바와 같이, 핵산 서열 또는 단백질 서열을 기술할 때 용어 "키메라" 또는 "재조합체"는 적어도 2개의 이종 폴리뉴클레오타이드 또는 2개의 이종 폴리펩티드를 단일 거대분자 속에 연결하거나 적어도 하나의 천연 핵산 또는 단백질 서열의 하나 이상의 요소를 재배열할 수 있는 핵산 또는 단백질 서열을 의미할 수 있다. 예를 들어, 용어 "재조합체"는 예를 들어, 화학적 합성 또는 유전 공학 기술에 의한 핵산의 분리된 단편의 조작에 의해 서열의 두 개의 분리된 단편의 인공적 조합을 의미할 수 있다.
본 발명에 사용된 바와 같이 "합성 뉴클레오타이드 서열"또는 "합성 폴리뉴클레오타이드 서열"은 자연에서 발생하는 것으로 알려지지 않았거나 자연 발생적이지 않은 뉴클레오타이드 서열일 수 있다. 일반적으로, 이런 합성 뉴클레오타이드 서열은 임의의 다른 자연 발생 뉴클레오타이드 서열과 비교할 때 적어도 하나의 뉴클레오타이드 차이를 포함할 것이다.
본 발명에 사용된 용어 "핵산"은 임의의 길이의 중합체 형태의 리보뉴클레오타이드 또는 데옥시리보뉴클레오타이드 또는 이의 유사체를 의미할 수 있다. 이 용어는 분자의 1차 구조를 의미할 수 있으며, 따라서 이중 나선 및 단일 가닥의 DNA뿐 아니라 이중 및 단일 가닥의 RNA를 포함한다. 또한, 메틸화 및/또는 캡핑된 핵산과 같은 변형된 핵산, 변형된 염기를 함유하는 핵산, 골격 변형 등과 같은 변형 핵산을 포함할 수 있다. 용어 "핵산" 및 "뉴클레오타이드 서열"은 상화 교환적으로 사용될 수 있다.
본 발명에 사용된 용어 "유전자"는 생물학적 기능과 관련된 DNA의 임의의 단편을 의미할 수 있다. 따라서, 유전자는 암호화 서열 및/또는 그의 발현에 요구되는 조절 서열을 포함할 수 있으나, 이에 제한되지 않는다. 유전자는 또한, 예를 들어, 다른 단백질에 대한 인식 서열을 형성하는 비 발현 DNA 단편을 포함할 수 있다. 유전자는 관심 공급원으로부터의 클로닝 또는 공지되거나 예측된 서열 정보로부터의 합성을 포함하는 다양한 공급원으로부터 얻을 수 있고, 원하는 파라미터를 갖도록 디자인된 서열을 포함할 수 있다.
본 발명에 사용된 용어 "상동 기관(homologous)"또는 "상동체 (homologue)"또는 "오르쏘로그(ortholog)"는 당업계에 공지되어 있고 공통 조상 또는 가족 구성원을 공유하고 서열 동일성의 정도에 기초하여 결정되는 관련 서열을 의미할 수 있다. 용어 "상동성", "상동 기관", "실질적으로 유사" 및 "상응하게 실질적으로"는 본 발명에서 상호 교환적으로 사용될 수 있다. 이들은 하나 이상의 뉴클레오타이드 염기의 변화가 유전자 발현을 중재하거나 특정 표현형을 생성시키는 핵산 단편의 능력에 영향을 미치지 않는 핵산 단편을 의미할 수 있다. 이런 용어는 또한 초기의 변형되지 않은 단편에 비해 생성된 핵산 단편의 기능적 특성을 실질적으로 변화시키지 않는 하나 이상의 뉴클레오타이드의 결실 또는 삽입과 같은 본 발명의 핵산 단편의 변형을 의미할 수 있다. 따라서, 당업자가 알 수 있는 바와 같이, 본 발명은 특정 예시적인 서열 이상을 포함할 수 있는 것으로 이해된다. 이런 용어는 한 종, 아종, 품종, 품종 또는 균주에서 발견된 유전자 및 다른 종, 아종, 품종, 품종 또는 균주에서 상응하는 또는 동등한 유전자 사이의 관계를 기술한다. 본 발명을 위해서, 상동성 서열이 비교될 수 있다. "상동 서열" 또는 "상동체" 또는 "오르쏘로그"는 기능적으로 관련이 있다고 생각되고, 믿거나 알려질 수 있다. 기능적 관계는 (a) 서열 동일성 및/또는 (b) 동일하거나 유사한 생물학적 기능을 포함하나 이에 제한되지 않는 다수의 방식 중 임의의 하나로 표시될 수 있다. 바람직하게는, (a) 및 (b) 모두가 표시된다. 상동성은 Current Protocols in Molecular Biology(F.M. Ausubel et al., eds., 1987) Supplement 30, 섹션 7.718, 표 6.71에서 논의된 바와 같은 당해 분야에서 용이하게 이용 가능한 소프트웨어 프로그램을 사용하여 결정될 수 있다. 일부 정렬 프로그램은 맥벡터(MacVector)(Oxford Molecular Ltd, Oxford, U.K.), ALIGN 플러스(Plus)(Scientific and Educational Software, Pennsylvania) 및 AlignX(Vector NTI, Invitrogen, Carlsbad, CA)이다. 다른 정렬 프로그램은 기본 매개변수를 사용하여 시퀀처(Sequencher)(Gene Codes, Ann Arbor, Michigan)이다.
본 발명에 사용된 용어 "변이체 효소" 또는 "변이체"는 변이체가 발현되는 유기체에서 천연 효소와 비교하여 상이한 아미노산 서열을 갖나, 천연 효소에 의해 촉매화된 것과 동일 또는 유사하게 반응을 촉매화하는 능력을 갖는 효소를 의미한다.
본 발명에 사용된 용어 "내인성" 또는 "내인성 유전자"는 숙주 세포 게놈 내에서 자연적으로 발견되는 위치에서 자연 발생 유전자를 의미한다. 본 발명과 관련하여, 이종 프로모터를 내인성 유전자에 작동 가능하게 연결시키는 것은 이 유전자가 자연적으로 존재하는 위치에서 기존 유전자 앞에 이종성 프로모터 서열을 유전적으로 삽입하는 것을 의미한다. 본 발명에 기재된 내인성 유전자는 본 발명의 방법 중 어느 하나에 따라 돌연변이된 자연 발생 유전자의 대립 유전자를 포함할 수 있다.
본 발명에 사용된 용어 "외인성"는 용어 "이종성(heterologous)"과 상호 교환적으로 사용되고, 자연 공급원 이외의 일부 공급원으로부터 유도하는 물질을 의미한다. 예를 들어, 용어 "외인성 단백질" 또는 "외인성 유전자"는 비 자연 공급원 또는 위치의 단백질 또는 유전자 및 생물학적 시스템에 공급된 단배질 또는 유전자를 의미한다.
본 발명에 사용된 용어 "뉴클레오타이드 변화"는 당업계에서 잘 알려진 바와 같이, 예를 들어 뉴클레오타이드 치환, 결실 및/또는 삽입을 의미할 수 있다. 예를 들어 돌연변이는 침묵 치환, 추가 또는 결실을 생성하나 암호화된 단백질의 특성 또는 활성 또는 단백질이 어떻게 만들어지는지를 변형하지 않는 변경을 포함한다.
본 발명에서 사용된 용어 "단백질 변형"은 당업계에 잘 알려진 바와 같이, 예를 들어 아미노산 치환, 아미노산 변형, 결실 및 또는 삽입을 의미할 수 있다.
본 발명에 사용된 용어 핵산 또는 폴리펩타이드의 "적어도 일부" 또는 "단편"은 전장 분자를 포함하는 전장 분자의 이런 서열 또는 임의의 더 큰 단편의 최소 크기 특성을 갖는 부분을 의미할 수 있다. 본 발명의 폴리뉴클레오타이드 단편은 유전자 조절 요소의 생물학적 활성 부분을 암호화할 수 있다. 유전자 조절 요소의 생물학적 활성 부분은 유전자 조절 요소를 포함하는 본 발명의 폴리뉴클레오타이드 중 하나의 일부를 분리하고 본 발명에 기재된 바와 같은 활성을 평가함으로써 제조될 수 있다. 유사하게, 폴리펩타이드의 일부는 전장 폴리펩타이드까지 이르는 4개 아미노산, 5개 아미노산, 6개 아미노산, 7개 아미노산 등일 수 있다. 사용될 부분의 길이는 특정 용도에 따라 다를 수 있다. 하이브리드화 프로브로서 유용한 핵산의 일부는 12개 뉴클레오타이드 정도로 짧을 수 있으며; 일부 실시태양에서, 이것은 20개 뉴클레오타이드이다. 에피토프로서 유용한 폴리펩티드의 일부는 4개의 아미노산 정도로 짧을 수 있다. 전장 폴리펩타이드의 기능을 수행하는 폴리펩타이드의 일부는 일반적으로 4개 이상의 아미노산보다 길 수 있다.
변이체 폴리뉴클레오타이드는 또한 DNA 셔플링과 같은 돌연변이 및 재조합 절차로부터 유도될 수 있는 서열을 포함한다. 그러한 DNA 셔플링을 위한 전략은 당업계에 공지되어있다. 예를 들어, Stemmer(1994) PNAS 91:10747-10751; Stemmer(1994) Nature 370:389-391; Crameri et al.(1997) Nature Biotech. 15:436-438; Moore et al.(1997) J. Mol. Biol. 272:336-347; Zhang et al.(1997) PNAS 94:4504-4509; Crameri et al.(1998) Nature 391:288-291; 및 미국 특허 제5,605,793호 및 제5,837,458호 참조.
본 발명에 개시된 폴리뉴클레오타이드의 PCR 증폭을 위해, 임의의 관심 유기체로부터 추출된 cDNA 또는 게놈 DNA로부터의 상응하는 DNA 서열을 증폭시키기 위한 PCR 반응에 사용하기 위해 올리고뉴클레오타이드 프라이머가 디자인될 수 있다. PCR 프라이머 및 PCR 클로닝을 디자인하기 위한 방법은 당업계에 일반적으로 공지되어 있으며, Sambrook et al.(2001) Molecular Cloning: A Laboratory Manual (3rd ed., Cold Spring Harbor Laboratory Press, Plainview, New York). See also Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, eds. (1999) PCR Methods Manual (Academic Press, New York)에 개시된다. PCR의 공지된 방법은 쌍을 이룬 프라이머, 네스티드 프라이머, 단일 특이적 프라이머, 축퇴성 프라이머, 유전자 특이적 프라이머, 벡터 특이적 프라이머, 부분적 불일치 프라이머 등을 사용하는 방법을 포함할 수 있으나 이에 제한되지 않는다.
본 발명에 사용된 용어 "프라이머"는 DNA 중합효소를 부착시키는 증폭 표적에 대한 어닐링을 행할 수 있어, 프라이머 연장 생성물의 합성이 유도되는 조건하에 놓일 때, 즉, 뉴클레오타이드 및 DNA 중합효소와 같은 중합화제의 존재하에서 및 적절한 온도 및 pH에서 DNA 합성의 개시점으로서 작용하는 올리고뉴클레오타이드를 의미할 수 있다. (증폭) 프라이머는 증폭 효율을 최대화하기 위해 바람직하게는 단일 가닥이다. 바람직하게는, 프라이머는 올리고데옥시리보뉴클레오타이드이다. 프라이머는 폴리머화제의 존재하에서 증량 생성물의 합성을 시작하기에 충분히 길어야한다. 프라이머의 정확한 길이는 프라이머의 온도 및 조성(A/T 대 G/C 함량)을 포함하는 많은 요소에 따라 달라질 것이다. 한 쌍의 양방향성 프라이머는 PCR 증폭과 같은 DNA 증폭 기술 분야에서 일반적으로 사용되는 것과 같은 하나의 순방향 및 역방향 프라이머로 구성된다.
본 발명에 사용된 용어 "프로모터" 또는 "프로모터 폴리뉴클레오타이드"는 암호화 서열 또는 기능성 RNA의 발현을 제어할 수있는 DNA 서열을 의미한다. 프로모터 서열은 근위 및 더 원위 상류 요소로 구성되고, 후자의 요소는 종종 인핸서로 불릴 수 있다. 따라서, "인핸서"는 프로모터 활성을 자극할 수 있는 DNA 서열일 수 있으며, 프로모터의 선천적인 요소 또는 프로모터의 수준 또는 조직 특이성을 향상시키기 위해 삽입된 이종성 요소일 수 있다. 프로모터는 천연 유전자로부터 완전히 유도되거나 자연계에서 발견되는 다른 프로모터로부터 유도된 상이한 요소로 구성되거나 심지어 합성 DNA 단편을 포함할 수 있다. 상이한 프로모터가 상이한 조직 또는 세포 유형, 또는 상이한 발달 단계 또는 상이한 환경 조건에 대한 반응으로 유전자의 발현을 지시할 수 있음은 당업자에게 이해된다. 또한, 대부분의 경우에, 조절 서열의 정확한 경계가 완전히 정의되지 않았기 때문에, 일부 변이체의 DNA 단편은 동일한 프로모터 활성을 가질 수 있다는 것이 추가로 인식된다.
본 발명에서 사용된 용어 "재조합 구조체", "발현 구조체", "키메라 구조체", "구조체" 및 "재조합 DNA 구조체"는 본 발명에서 상호 교환적으로 사용될 수 있다. 재조합 구조체는 천연에서 함께 발견되지 않는 조절 및 암호화 서열과 같은 핵산 단편의 인위적인 조합을 포함한다. 예를 들어, 키메라 구조체는 상이한 공급원으로부터 유도된 조절 서열 및 암호화 서열, 또는 동일한 공급원으로부터 유도되지만 자연계에서 발견되는 것과 상이한 방식으로 배열된 조절 서열 및 암호화 서열을 포함할 수 있다. 일부 경우에, 키메라 구조체는 복수의 조절(예를 들어, 프로모터) 및 암호화 서열(예를 들어, gapA/수소전달 효소/gdh, asd, dapB 및/또는 ddh 유전자)을 포함하는 재조합 구조체일 수 있다. 복수의 암호화 서열을 포함하는 키메라 구조체에서의 각각의 암호화 서열은 별개의 조절 서열에 의해 제어되거나 기능적으로 연결될 수 있다. 이러한 구조체는 그 자체로 사용되거나 벡터와 함께 사용될 수 있다. 벡터가 사용되는 경우 벡터의 선택은 당업자에게 주지된 바와 같이 숙주 세포를 형질 전환하는데 사용될 방법에 의존할 수 있다. 예를 들어, 플라스미드 벡터가 사용될 수 있다. 당업자는 본 발명의 분리된 핵산 단편을 포함하는 숙주 세포를 성공적으로 형질전환, 선별 및 증식시키기 위해 벡터 상에 존재해야 하는 유전자 요소를 잘 알고 있다. 당업자는 또한 상이한 독립적인 형질전환 사건이 발현의 상이한 수준 및 패턴을 유도한다는 것을 인식할 것이며(Jones et al., (1985) EMBO J. 4 : 2411-2418; De Almeida et al., (1989) Mol. Gen Genetics 218 : 78-86), 따라서 다수의 사건은 원하는 발현 수준 및 패턴을 나타내는 라인을 수득하기 위해 선별돼야한다. 이러한 선별은 다른 것들 중에서, DNA의 서던 분석, mRNA 발현의 노던 분석, 단백질 발현의 면역 블로팅 분석 또는 표현형 분석에 의해 실행될 수 있다. 벡터는 자율적으로 복제하거나 숙주 세포의 염색체에 통합될 수 있는 플라스미드, 바이러스, 박테리오파지, 프로-바이러스, 파지미드, 트랜스포존, 인공 염색체 등일 수 있다. 벡터는 또한 자율적으로 복제하지 않는 네이키드 RNA 폴리뉴클레오타이드, 네이키드 DNA 폴리뉴클레오타이드, 동일한 가닥 내의 DNA 및 RNA 모두로 구성된 폴리뉴클레오타이드, 폴리-리신-컨쥬게이드된 DNA 또는 RNA, 펩타이드-컨쥬게이드된 DNA 또는 RNA, 리포좀-컨쥬게이드된 DNA 등일 수 있다. 본 발명에 사용된 용어 "발현"은 기능적 최종 산물, 예를 들어 mRNA 또는 단백질(전구체 또는 성숙)의 생산을 의미한다.
"작동 가능하게 연결된" 또는 "기능적으로 연결된"은 추가 폴리뉴클레오타이드(예를 들어, gapA/수소전달 효소/gdh, asd, dapB 및/또는 ddh 유전자)의 전사를 초래하는 추가의 올리고뉴클레오타이드 또는 폴리뉴클레오타이드(예를 들어, gapA/수소전달 효소/gdh, asd, dapB 및/또는 ddh 유전자)에 의한 본 발명에 따른 프로모터 폴리뉴클레오타이드의 순차적 배열을 의미할 수 있다. 다시 말하면, "작동 가능하게 연결된" 또는 "기능적으로 연결된"은 프로모터가 이 프로모터에 인접한 또는 하류인 또는 3' 유전자(예를 들어, gapA/수소전달 효소/gdh, asd, dapB 및/또는 ddh 유전자)의 전사를 제어한다는 것을 의미할 수 있다.
본 발명에서 사용된 용어 "관심 생성물" 또는 "생체분자"는 원료로부터 미생물에 의해 생성된 임의의 생성물을 의미한다. 일부 경우에, 관심 생성물은 소분자, 효소, 펩타이드, 아미노산, 유기산, 합성 화합물, 연료, 알코올 등일 수 있다. 예를 들어, 관심 생성물 또는 생체분자는 임의의 1차 또는 2차 세포외 대사산물일 수 있다. 1차 대사산물은 특히 에탄올, 시트르산, 락트산, 글루탐산, 글루탐산염, 리신, 트레오닌, 트립토판 및 다른 아미노산, 비타민, 폴리사카라이드 등일 수 있다. 2차 대사산물은 특히 페니실린과 같은 항생물질 또는 사이클로스포린 A와 같은 면역 억제제, 지베렐린과 같은 식물 호르몬, 로바스타틴과 같은 스타틴 약물, 그리세오풀빈과 같은 살균제 등일 수 있다. 관심 생성물 또는 생체분자는 또한 카탈라아제, 아밀라아제, 펙티나아제, 글루코오스 아이소머라제, 셀룰라아제, 헤미셀룰라아제, 리파아제, 락타아제, 스트렙토 키나아제 및 여러 다른 것을 포함하는 미생물 효소와 같은 미생물에 의해 생성된 임의의 세포내 성분일 수 있다. 세포내 성분은 또한 인슐린, B형 간염 백신, 인터페론, 과립구 콜로니-자극 인자, 스트렙토키나아제 및 기타와 같은 재조합 단백질을 포함할 수 있다.
용어 "탄소원"은 일반적으로 세포 성장을 위한 탄소원으로 사용되기에 적합한 물질을 의미할 수 있다. 탄소원은 바이오매스 가수분해물, 전분, 수크로오스, 셀룰로오스, 헤미셀룰로오스, 자일로오스 및 리그닌뿐만 아니라 이들 기질의 단량체 성분을 포함할 수 있으나 이에 제한되지 않는다. 탄소원은 폴리머, 탄수화물, 산, 알코올, 알데하이드, 케톤, 아미노산, 펩타이드 등을 포함하나 이에 제한되지 않는 다양한 형태의 다양한 유기 화합물을 포함할 수 있다. 이들은, 예를 들어, 글루코오스, 덱스트로스(D-글루코오스), 말토오스, 올리고사카라이드, 폴리사카라이드, 포화 또는 불포화 지방산, 숙시네이트, 락테이트, 아세테이트, 에탄올 등, 또는 이의 혼합물과 같은 다양한 모노사카라이드를 포함할 수 있다. 광합성 유기체는 광합성의 산물로서 탄소원을 추가로 생산할 수 있다. 일부 실시태양에서, 탄소원은 바이오매스 가수분해물 및 글루코오스로부터 선택될 수 있다.
용어 "공급원료"는 미생물 또는 발효 공정에 공급되는 원료 또는 원료의 혼합물로서 다른 생성물이 제조될 수 있는 것으로 정의될 수 있다. 예를 들어, 바이오매스 또는 바이오매스에서 유도된 탄소 화합물과 같은 탄소 공급원은 발효 공정에서 관심 생성물(예를 들어, 소분자, 펩타이드, 합성 화합물, 연료, 알코올 등)을 생산하는 미생물의 공급원료일 수 있다. 그러나, 공급원료는 탄소 공급원 이외의 영양분을 함 유할 수 있다.
용어 "체적 생산성" 또는 "생산 속도"는 단위 시간당 매질의 부피당 형성된 생성물의 양으로 정의될 수 있다. 체적 생산성은 시간당 리터 당 그램(g/L/h)으로 보고될 수 있다.
용어 "비 생산성"은 생성물의 형성 속도로 정의될 수 있다. 발효 과정이 아닌 미생물의 고유 파라미터로서 생산성을 기술하기 위해서, 생산성은 본 발명에서 시간당 세포 건조 중량의 그래당 그램 생성물(g/g CDW/h)의 비 생산성으로서 더 정의될 수 있다. 소정의 미생물에 대한 OD600에 대한 CDW의 관계를 사용하여, 비 생산성은 시간당 600nm(OD)(g/L/h/OD)에서 배양액의 광학 밀도당 배양 배지당 그램 생성물로 표현될 수 있다.
용어 "수율"은 원료의 단위 중량당 수득된 생성물의 양으로 정의될 수 있고 g 기질당 g 생성물(g/g)로 표현될 수 있다. 수율은 이론적 수율의 백분율로 표현될 수 있다. "이론적 수율"은 생성물을 제조하는데 사용된 신진대사 경로의 화학양론에 따라 결정된 소정량의 기질당 생성될 수 있는 최대 생성물로 정의된다.
용어 "역가(titre 또는 titer)"는 용액의 강도 또는 용액 속의 물질의 농도로 정의될 수 있다. 예를 들어, 발효액에서 관심 생성물(예를 들어, 소분자, 펩타이드, 합성 화합물, 연료, 알코올 등)의 역가는 발효액 1 리터당 용액 속 관심 제품의 g(g/L)로 기술될 수 있다.
용어 "총 역가"는 용액 속의 관심 생성물, 적용 가능한 경우 기체상의 관심 생성물, 공정으로부터 제거되고 공정에서 최초 부피 또는 공정에서 작동 부피에 따라 회수된 임의의 관심 생성물을 포함하나 이에 제한되지 않는 공정에서 생산된 모든 관심 생성물의 합으로 정의될 수 있다.
본 발명에 사용된 용어 "HTP 유전 디자인 라이브러리" 또는 "라이브러리"는 본 발명에 따른 유전자 교란의 집합을 의미한다. 일부 실시태양에서, 본 발명의 라이브러리는 i) 데이터베이스 또는 다른 컴퓨터 파일에서 서열 정보의 집합, ii) 상기한 일련의 유전자 요소를 암호화하는 유전자 구조체의 집합, 또는 iii) 상기 유전자 요소를 포함하는 숙주 세포 균주로서 입증될 수 있다.
유전자 디자인 및
HTP
미생물 공학 플랫폼에서
NADPH를
증가시키기 위해 유전자 다양성 풀 생성
일부 실시태양에 있어서, 본 발명의 방법은 유전자 디자인으로서 특징화된다. 본 발명에 사용된 용어 유전자 디자인은 새로운 우수한 숙주 세포를 디자인하고 생성하기 위해 특정 유전자, 유전자의 일부, 프로모터, 종결 코돈, 5'UTR, 3'UTR 또는 다른 DNA 서열의 가장 최적의 변이체의 확인 및 선택을 통한 숙주 유기체 게놈의 재구성 또는 변형을 의미한다.
일부 실시태양에서, 본 발명의 유전자 디자인 방법의 제 1 단계는 새로운 숙주 게놈이 재구성될 수 있는 복수의 서열 변형을 갖는 초기 유전자 다양성 풀 집단을 얻는 것이다.
현존하는 야생형 균주로부터의 다양성 풀 사용하기
일부 실시태양에서, 본 발명은 소정의 야생형 집단의 미생물 중에서 존재하는 서열 다양성을 확인하는 방법을 교시한다. 따라서, 다양성 풀은 분석을 위해 사용된 소정의 수 n개의 야생형 미생물일 수 있으며, 상기 미생물의 게놈은 "다양성 풀"을 나타낸다.
일부 실시태양에서, 다양성 풀은 상기 야생형 미생물 중 자연적 유전자 변이에 존재하는 현존하는 다양성의 결과일 수 있다. 이 변이는 소정의 숙주 세포의 균주 변이체로부터 얻을 수 있고 미생물이 완전히 다른 종인 결과일 수도 있다. 유전자 변이는 자연 발생 여부와 상관없이 균주의 유전자 서열에서 어떠한 차이도 포함할 수 있다. 양태에서, 본 발명은 신규한 트레오닌 알돌라제를 유도하기 위해 독점적인 미생물 라이브러리를 사용한다. 알 수 있는 바와 같이, 본 출원은 이 트레오닌 알돌라제 라이브러리를 이용하여 이 귀중한 아미노산의 균주 생산을 최적화하는 방법을 교시한다.
현존하는 산업용 균주
변이체로부터의
다양성 풀 사용하기
본 발명의 다른 실시태양에서, 다양성 풀은 전통적인 균주 개량 과정 동안 생성된 균주 변이체(예를 들어, 무작위 돌연변이를 통해 생성되고 수년 동안 개량된 수율을 위해 선택된 하나 이상의 숙주 유기체 균주)이다. 따라서, 일부 실시태양에서, 다양성 풀 또는 숙주 유기체는 역사적 생산 균주의 집합을 포함할 수 있다.
특정 양태에서, 다양성 풀은 특정 시점(S1Gen1)에서 "기준선" 유전자 서열을 갖는 본래의 부모 균주(S1) 및 상기 S1 균주로부터 유도/성장되고 S1의 기준선 게놈과 관련하여 다른 게놈(S2- n Gen2 - n )을 갖는 임의의 수의 후속 자손 균주(S2- n 로 일반화될 수 있는 S2, S3, S4, S5, 등)일 수 있다.
돌연변이유발을 통해 다양성 풀 만들기
일부 실시태양에서, 세포의 소정의 다양성 집단에서 관심 돌연변이는 돌연변이유발 화학물질 또는 방사선을 포함하는 돌연변이 균주를 위한 임의의 수단에 의해 인위적으로 생성될 수 있다. 용어 "돌연변이유발"은 본 발명에서 세포질 핵산 물질에서 하나 이상의 유전자 변형을 유도하는 방법을 의미하기 위해 사용된다.
용어 "유전자 변형"은 DNA의 임의의 변경을 말한다. 대표적인 유전자 변형은 뉴클레오타이드 삽입, 결실, 치환 및 이들의 조합을 포함하며, 단일 염기만큼 작거나 수만 염기만큼 클 수 있다. 따라서, 용어 "유전자 변형"은 뉴클레오타이드 서열의 역전 및 염색체의 영역을 포함하는 DNA의 위치 또는 배향이 변경되는 다른 염색체 재배열을 포함한다. 염색체 재배열은 염색체 내 재배치 또는 염색체 간 재배치를 포함할 수 있다.
한 실시태양에서, 현재 청구된 주제에 사용된 돌연변이유발 방법은 실질적으로 무작위라서 유전자 돌연변이가 돌연변이유발될 핵산 물질 내의 임의의 이용 가능한 뉴클레오타이드 위치에서 발생할 수 있다. 달리 말하면, 한 실시태양에서, 돌연변이유발은 특정 뉴클레오타이드 서열에서 발생의 우선성성 또는 증가 빈도를 나타내지 않는다.
본 발명의 방법은 자외선, X-레이 방사선, 감마선 방사선, N-에틸-N-나이트로소우레아(ENU), 메틸나이트로우레아(MNU), 프로카바진(PRC), 트라이에틸렌 멜라민(TMS), 아크릴아마이드 모노머(AA), 클로람부실(CHL), 멜팔란(MLP), 사이클로포스파미드(CPP), 다이에틸 설페이트(DES), 에틸 메테인 설포네이트(EMS), 메틸 메테인 설포네이트(MMS), 6-머캡토퓨린(6-MP), 마이토마이신-C(MMC), N-메틸-N'-나이트로-N-나이트로소구아니딘(MNNG), 3H2O 및 우레탄(UR)(예를 들어, Rinchik, 1991; Marker et al., 1997; and Russell, 1990 참조). 추가적인 돌연변이유발 인자는 http://www.iephb.nw.ru/~spirov/hazard/mutagen_lst.html에 기재된 것을 포함하여 당업자에게 주지되어 있다.
용어 "돌연변이유발"은 또한 세포 기능을 변경(예를 들어, 표적화된 돌연변이에 의해) 또는 세포 기능을 조절하여 돌연변이유발의 속도, 품질 또는 범위를 향상시키는 방법을 포함한다. 예를 들어, 세포는 DNA 수리, 돌연변이원 대사, 돌연변이원 감수성, 게놈 안정성 또는 이들의 조합에서 기능장애 또는 결핍이 되도록 변형되거나 조절될 수 있다. 따라서 정상적으로 게놈 안정성을 유지하는 유전자 기능의 파괴는 돌연변이유발을 향상시키는데 사용될 수 있다. 파괴의 대표 표적은 DNA 리가아제 I(Bentley et al, 2002) 및 카제인 키나아제 I(미국 특허 제6,060,296 호)를 포함하나 이에 제한되지 않는다.
일부 실시태양에서, 부위-특이적 돌연변이유발(예를 들어, 변형기 부위 유도 돌연변이유발 키트(Clontech)와 같은 상업적으로 구입할 수 있는 키트를 사용한 프라이머-유도 돌연변이유발)를 사용하여 핵산 서열 전체에 걸쳐 순서대로 다수의 변화를 일으킨다 본 발명의 절단 효소를 암호화하는 핵산을 생성한다.
하나 이상의 돌연변이유발 인자에 노출시 유전자 돌연변이의 빈도는 치료의 투여량 및/또는 반복을 변화시킴으로써 조절될 수 있으며, 특정 용도에 맞게 조절될 수 있다.
따라서, 일부 실시태양에서, 본 발명에 사용된 "돌연변이유발"은 본 발명에 기술된 기술의 임의의 것에 의한 오류 경향성 PCR 돌연변이유발, 올리고뉴클레오타이드 유도 돌연변이유발, 부위 유발성 돌연변이유발 및 반복적인 서열 재조합을 포함하는 돌연변이를 유도하기 위한 기술 분야에 공지된 모든 기술을 포함한다.
NADPH를
증가시키는 유전자 디자인의 개요
본 발명은 생체 분자 또는 관심 생성물의 생산을 증가시킬 수 있는 미생물(예를 들어, 박테리아)을 생성하는 방법을 제공한다. 일반적으로, 본 발명에 제공된 바와 같은 임의의 생체 분자를 생산하는 데 사용하기 위한 미생물을 생성하는 방법은 하나 이상의 표적 유전자를 상기 숙주 미생물 내로 도입하여 숙주 미생물을 유전적으로 변형시켜 상기 미생물의 게놈 조작된 균주를 생성하는 단계, 생체 분자 또는 관심 생성물을 생산하기에 적합한 조건하에서 상기 조작된 균주를 배양하는 단계, 및 상기 조작된 균주가 증가된 양의 생체 분자 또는 관심 생성물을 생산하는 경우 상기 조작된 균주를 선택하는 단계를 수반할 수 있다. 증가된 양은 숙주 미생물의 야생형 균주와 비교될 수 있다. 증가된 양은 표적 유전자 라이브러리의 구성원을 함유하지 않는 숙주 미생물의 균주와 비교될 수 있다. 표적 유전자는 벡터 내의 단일 표적 유전자, 또는 동일한 벡터 상의 다중 표적 유전자를 포함할 수 있다.
본 발명의 실시태양 중 하나의 예시적인 워크플로우는 표적 유전자를 식별하고, 표적 유전자에 대한 핵산(예를 들어, DNA)을 획득 또는 합성하고, 상기 획득되거나 합성된 표적 유전자를 적합한 벡터로 복제하는 것을 수반한다. 당업계에 공지되고/되거나 본 발명에 제공된 임의의 방법을 사용하여 표적 유전자 또는 표적 유전자를 적합한 벡터 속에서 조립 또는 복제할 수 있다. 벡터는 당업계에 공지되고/되거나 이용될 숙주 미생물과 양립할 수 있는 본 발명에서 제공된 임의의 벡터일 수 있다. 표적 유전자(들)를 포함하는 벡터가 조립되면, 숙주 미생물 내로 도입될 수 있다. 벡터의 도입은 당업계에 공지되고/되거나 본 발명에 제공된 임의의 방법을 사용할 수 있다. 숙주 미생물은 본 발명에 제공된 임의의 숙주 미생물일 수 있다. 일단 숙주 미생물에 도입되면, 유전자 변형된 숙주가 선택될 수 있고 표적 유전자(들)의 삽입이 평가될 수 있다. 표적 유전자(들)는 숙주 미생물 게놈의 특정 위치에 삽입되도록 조작될 수 있다. 일부 경우에, 표적 유전자(들)는 숙주 미생물 내에서 의도하지 않은 경로/과정을 방해하지 않으면서 표적 유전자(들)의 발현을 촉진하는 게놈의 중성 부위에 삽입된다. 일부 경우에, 표적 유전자(들)는 숙주 미생물 내의 특정 유전자(들)를 대체한다. 특정 유전자는 숙주 미생물에 정상적으로 존재하는 상동성 표적 유전자일 수 있다. 예를 들어, 중성 통합 부위와 같은 통합 부위는 다양한 부위가 테스트될 수 있도록 실험적으로 결정될 수 있고 숙주 세포에 해를 끼치지 않으면서 통합된 표적 유전자(들)의 발현을 허용하는 부위가 선택될 수 있다. 원하는 부위(예를 들어, 중성 부위)로의 통합은 표적 유전자(들)를 원하는 통합 부위(예를 들어, 상동성 암)와 상동인 서열의 부분을 포함하는 벡터로 복제하고 이어서 숙주에서 재조합 이벤트를 수행함으로써 촉진될 수 있다. 표적 유전자(들)는 상동성 서열의 부분들 사이에 삽입될 수 있다. 특정 실시태양에서, 벡터는 원하는 통합 부위와 상동성인 약 2kb의 서열을 포함한다. 원하는 부위와 상동 성인 서열은 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA), 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및/또는 메소-다이아미노피멜레이트 탈수소 효소(ddh) 유전자의 측면에 있을 수 있어서 서열의 제 1 부분이 유전자 삽입체의 상류(즉, 5')이고 서열의 제 2 부분이 유전자 삽입체의 하류(즉, 3')이다. 다른 실시태양에서, 벡터는 원하는 통합 부위와 상동성인 약 4kb의 서열을 포함한다. 이 실시태양에서, 벡터는 gapA, gdh, asd, dapB 및/또는 ddh 유전자 삽입체에 대한 원하는 통합 부위 상류(즉, 5')에 상동성인 약 2 kb의 서열 및 gapA, gdh, asd, dapB 및/또는 ddh 유전자 삽입체에 대한 원하는 통합 부위 하류(즉, 3')에 상동성인 약 2 kb의 서열을 포함한다. 일부 실시태양에서, 통합은 단일 크로스 오버 통합 및 벡터 백본에 존재하는 마커 상의 역 선택에 의해 촉진되는 플라스미드 백본의 후속 루프 아웃에 의해 수행된다. 일부 실시태양에서, 표적 유전자는 당업계에 공지되고/되거나 본 발명에 제공된 임의의 gapA 유전자이다. 다른 실시태양에서, 표적 유전자는 당업계에 공지되고/되거나 본 발명에 제공된 임의의 니코틴아미드뉴클레오타이드 수소전달 효소 유전자이다. 또 다른 실시태양에서, 표적 유전자는 당업계에 공지되고/되거나 본 발명에 제공된 임의의 gdh, asd, dapB 및/또는 ddh 유전자이다. 또 다른 실시태양에서, 표적 유전자는 당업계에 공지되고/되거나 본 발명에 제공된 임의의 thrA, thrB, thrC 및/또는 ltaE 유전자이다. 또 다른 실시태양에서, 표적 유전자는 당업계에 공지되고/되거나 본 발명에 제공된 임의의 pyc 유전자이다.
삽입의 평가는, 예를 들어, 유전자 변형 미생물의 게놈 또는 이의 일부의 증폭 및/또는 서열화와 같은 당업계에 공지된 임의의 방법을 사용하여 수행될 수 있다. 일부 경우에, 본 발명에 제공된 방법은 또한 본 발명에 기재된 바와 같은 역 선택을 통해 선택 마커의 제거 또는 루핑 아웃을 수반한다. 루핑 아웃은 본 발명에 제공된 임의의 방법을 사용하여 수행될 수 있다.
표적 유전자(들)의 삽입 및 선택 마커의 선택적인 제거의 평가 후, 유전자 변형된 균주는 생체 분자 또는 관심 생성물을 생산하는 능력에 대해 평가될 수 있다. 평가 전에 선택적인 단계는 균주를 확장할 수 있다. 확장은 확장에 적합한 성장 배지에서 다중-웰 플레이트에서 플레이트 상에서 또는 월에서 유전자 변형된 균주를 배양하는 것을 수반할 수 있다. 평가 단계는 생체 분자 또는 관심 생성물을 생성하기 위한 실제 조건을 모방하도록 디자인된 성장 배지/조건을 포함하는 다중-웰 플레이트에서 플레이트 또는 웰에서 유전자 변형된 균주의 배양을 수반할 수 있다. 일부 경우에, 이 단계에서 성장 배지는 글루코오스의 대사 처리로부터 유도된 생체 분자 또는 관심 생성물의 생산에 적합하다. 유전자 변형된 균주가 평가 단계로부터 결정된 바와 같이 원하는 생체 분자 또는 관심 생성물의 원하는 또는 임계 생산률 또는 수율을 갖거나 생성하는 것을 예측되는 경우, 균주는 선택되어 저온 저장될 수 있다. 예측은 균주의 배양 동안 다양한 시점에서 형성된 관심 생성물 및 바이오매스의 양을 측정하고 상기 측정을 사용하여 상기 균주가 확장 또는 더 큰 규모 조건(예를 들어, 발효 조건)하에서 어떻게 수행될지 예측하는 것에 기초될 수 있다. 한 실시태양에서, 예측은 평가 방법 동안 균주의 성능의 선형 회귀 분석에 기초한다.
일부 경우에, 생체 분자 또는 관심 생성물의 원하는 또는 임계 생산률 또는 수율을 갖거나 생성시키는 것으로 예측된 유전자 변형된 균주는 생물 분자 또는 생성물을 생산하기 위한 조건(예를 들어, 발효 조건)하에서 더 큰 배양액으로 옮겨 지거나 더 큰 배양액에서 성장된다. 이 단계는 선택된 균주가 생체 분자 또는 관심 생성물의 생산을 위한 실제 조건하에서 예측된 대로 수행될 수 있는지를 결정하기 위해 사용될 수 있다. 일부 경우에, 본 발명에 제공된 것과 같은 표적 유전자의 라이브러리로부터 각각의 표적 유전자의 도입 및 평가를 위해 본 발명에 제공된 단계는 생체 분자 또는 관심 생성물의 원하는 또는 임계 수율 및/또는 생산률을 생성하는 하나 이상의 유전자 변형 미생물 균주를 선택하기 위해 라이브러리로부터의 각각의 표적 유전자에 대해 반복된다.
일부 실시태양에서, 생체 분자 또는 관심 생성물은 미생물에 의한 글루코오스 및 이의 대사 과정으로부터 유도되어 본 발명에 제공된 방법은 균주 또는 균주들에 의한 글루코오스의 대사 처리로부터 유도된 증가된 양의 생체 분자 또는 관심 생성물을 생산하는 미생물 균주 또는 미생물 균주들의 생성을 수반한다. 특정 실시태양에서, 본 발명에 제공된 방법은 리신 생합성과 관련된 하나 이상의 표적 유전자의 도입을 수반한다. 다른 실시태양에서, 본 발명에 제공된 방법은 숙주 세포에서 NADPH 생산에 관여하는 하나 이상의 표적 유전자의 도입을 수반한다. 또 다른 실시태양에서, 본 발명에 제공된 방법은 숙주 세포에 의한 NADPH 이용률을 감소시키는 데 관련된 하나 이상의 표적 유전자의 도입을 수반한다. 일부 실시태양에서, 표적 유전자는 gapA 유전자이어서 gapA 유전자는 본 발명에 제공된 방법에서 숙주 미생물 내로 도입된다. gapA 유전자는 숙주 미생물에서 이종 유전자일 수 있다.
다른 실시태양에서, 표적 유전자는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자이어서 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자가 본 발명에 제공된 방법에서 숙주 미생물 내로 도입된다.
많은 유기체에서, 트라이카복실산(TCA) 사이클 중간체는 피루베이트로부터 직접 재생될 수 있다. 예를 들어, 대장균이 아닌 일부 박테리아에서 발견되는 피루 베이트 카복실라제(pyc)는 카복시비오틴을 사용하는 피루베이트의 카복실화에 의한 옥살로아세테이트의 형성을 매개한다.
다른 실시태양에서, 표적 유전자는 피루베이트 카복실라제 유전자이어서 피루베이트 카복실라제(pyc) 유전자가 본 발명에 제공된 방법에서 숙주 미생물 내로 도입된다. pyc 유전자는 숙주 미생물에 대해 이종일 수 있다. 특정 실시태양에서, pyc 유전자는 미국 특허 번호 6,171,833 및 미국 특허 번호 6,171,833에 개시된 서열로부터 선택된다. 한 실시태양에서, pyc 유전자는 R. etli로부터 유래된다. 한 실시태양에서, pyc 유전자는 코리네박테리움으로부터 유래된다. 한 실시태양에서, 표적 유기체는 대장균이다. 한 실시태양에서, 표적 유기체는 코리네박테리움 종이다. 한 실시태양에서, pyc의 이종 변이체는 내인성 pyc가 없는 숙주 세포에서 발현된다. 한 실시태양에서, pyc의 이종 변이체는 내인성 pyc를 갖는 숙주 세포에서 발현된다. 한 실시태양에서, 내인성 pyc의 발현은 pyc에 작동 가능하게 연결된 강한 프로모터를 포함하도록 pyc를 포함하는 유전자 좌를 유전자 변형함으로써 증가된다. 일부 실시태양에서, pyc의 발현은 프로모터 래더로부터 프로모터를 선택함으로써 조절된다. 한 실시태양에서, 천연 PYC의 발현은 천연 pyc 유전자에 작동 가능하게 연결된 프로모터 요소를 삽입함으로써 증가된다. 한 실시태양에서, 천연 PYC의 발현은 천연 pyc 유전자에 작동 가능하게 연결된 프로모터 래더로부터 여러 프로모터 요소 각각을 삽입함으로써 조정된다. 한 실시태양에서, PYC의 발현은 이종 pyc 유전자의 과발현에 의해 증가된다. 한 실시태양에서, 이종 pyc 유전자는 C. 글루 타미쿰 pyc 유전자이다. 한 실시태양에서, C. 글루타미쿰 pyc는 강력한 프로모터에 작동 가능하게 연결된다. 한 실시태양에서, C. 글루타미쿰 pyc는 프로모터 래더로부터 여러 프로모터 요소 각각에 작동 가능하게 연결되고, PYC의 발현은 프로모터 요소의 선택에 의해 조정되어 원하는 생성물, 예를 들어 트레오닌의 최고량을 생성한다.
또 다른 실시태양에서, 표적 유전자는 gdh, asd, dapB 또는 ddh 유전자의 하나 이상이어서 gdh, asd, dapB 또는 ddh 유전자가 본 발명에 제공된 방법에서 숙주 미생물 내로 도입된다. gdh, asd, dapB 또는 ddh 유전자 중 하나 이상은 숙주 미생물에서 이종 유전자일 수 있다. 특정 실시태양에서, 4개의 유전자 gdh, asd, dapB 및 ddh가 모두 본 발명에 제공된 방법으로 숙주 미생물 내로 도입된다.
특정 실시태양에서, gapA 유전자 및 니코틴아미드 뉴클레오타이드 수소전달 효소유전자 둘 다는 본 발명에 제공된 방법에서 숙주 미생물 내로 도입된다.
다른 실시태양에서, gapA 유전자 및 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자가 본 발명에 제공된 방법에서 숙주 미생물 내로 도입된다. 또 다른 실시태양에서, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자 및 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자가 본 발명에 제공된 방법에서 숙주 미생물 내로 도입된다.
또 다른 실시태양에서, gapA, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자가 본 발명에 제공된 방법에서 숙주 미생물 내로 동시에 도입된다.
한 실시태양에서, gapA 유전자, 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및/또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자의 숙주 미생물 내로의 도입이 숙주 미생물에서 NADPH의 양을 증가시킨다. 특정 양태에서, NADPH의 생산은 숙주 미생물에서 증가된다. 다른 양태에서, NADPH의 이용은 숙주 미생물에서 감소된다. 특정 실시태양에서, 숙주 미생물에서 증가된 양의 NADPH는 생체 분자 또는 관심 생성물의 합성을 증가시키는 역할을 한다. 본 발명에 제공된 방법에 의해 생성된 생체 분자 또는 관심 생성물은 글루코오스로부터 생산된 임의의 상업적 생성물일 수 있다. 일부 경우에, 생체 분자 또는 관심 생성물은 소분자, 아미노산, 유기산 또는 알코올이다. 아미노산은 티로신, 페닐알라닌, 트립토판, 아스파르트산, 아스파라긴, 트레오닌, 아이소소류신, 메티오닌 또는 리신일 수 있다. 유기산은 숙시네이트, 락 테이트 또는 피루베이트일 수 있다. 알코올은 에탄올 또는 아이소부탄올일 수 있다. 특정 실시태양에서, 생체 분자 또는 관심 생성물은 아미노산이다. 특정 양태에서, 아미노산은 리신이다. 특정 양태에서, 리신은 L-리신이다. 특정 양태에서, 아미노산은 트레오닌이다. 특정 양태에서, 트레오닌은 L-트레오닌이다.
한 실시태양에서, 숙주 균주는 thrLABC 레귤론(예를 들어, 대장균 K-12 균주 W3110의 thrLABC 레귤론(SEQ ID NO: 76))을 삽입함으로써 변형된 박테리아 균주이다. 한 실시태양에서, 숙주 균주는 thrABC 레귤론(예를 들어, thrL 리더 서열의 삭제에 의해 변형된 대장균 K-12 균주 W3110의 thrLABC 레귤론(SEQ ID NO: 77))을 삽입함으로써 변형된 박테리아 균주이다. 한 실시태양에서, 숙주 균주는 L-트레오닌 3-탈수소 효소(tdh) 또는 이의 상동체(들)를 암호화하는 박테리아 게놈의 영역의 결실에 의해 변형된 박테리아 균주이다.
NADPH를
증가시키기 위해 라이브러리를 이용하는 미생물 유전자 조작
한 실시태양에서, 개시된 미생물 게놈 조작 방법은 gapA 유전자, 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및/또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자 및/또는 라이브러리를 이용한다. gapA 유전자는 NAD를 보조 인자로 사용하는 능력에 기초하여 선택될 수 있다. 특정 실시태양에서, gapA의 조효소 특이성이 넓어진다. 따라서, 일부 양태에서, gapA는 NAD 및 NADH에 대한 이중 특이성을 갖는다. 일부 양태에서, gapA는 NADH를 NAD보다 우선적으로 사용한다. 다른 양태에서, gapA는 NAD 및 NADH에 대해 동일한 선호도를 갖는다. 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 NADH를 NADPH로 전환시키는 능력에 기초하여 선택될 수 있다. gdh, asd, dapB 또는 ddh는 NADPH를 보조 인자로 사용하는 능력에 기초하여 선택될 수 있다. 특정 실시태양에서, gdh, asd, dapB 및/또는 ddh의 조효소 특이성이 넓어진 다. 따라서, 일부 양태에서, gdh, asd, dapB 및/또는 ddh는 NADPH 및 NADP에 대해 이중 특이성을 갖는다. 일부 양태에서, gdh, asd, dapB 및/또는 ddh는 NADP보다 NADPH를 더 우선적으로 사용한다. 다른 양태에서, gdh, asd, dapB 및/또는 ddh는 NADPH 및 NADP에 대해 동일한 선호도를 갖는다. TA 유전자는 트레오닌을 보다 천천히 대사하거나 트레오닌을 생산하는 능력에 기초하여 선택될 수 있다. 특정 실시태양에서, TA의 기질 특이성이 넓어진다. 따라서, 일부 양태에서, TA는 글리신 및 세린에 대한 이중 특이성을 갖는다. 일부 양태에서, TA는 글리신보다 세린을 우선적으로 사용한다. 다른 양태에서, TA는 세린 및 글리신에 대해 동일한 선호도를 갖는다. pyc는 피루베이트를 옥살로아세테이트로 전환시키는 능력에 기초하여 를 선택될 수 있다.
일부 경우에, 미생물은 gapA 라이브러리, 니코틴아마이드 뉴클레오타이드 수소전달 효소 라이브러리, gdh, asd, dapB 및/또는 ddh, 및/또는 TA 라이브러리 및/또는 pyc 라이브러리 또는 이런 라이브러리의 임의의 조합을 이용하여 조작된다. 일부 실시태양에서, 라이브러리는 복수의 키메릭 구조체 삽입체를 함유하여서 라이브러리 내의 각 삽입체가 gapA 유전자, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자 및/또는 TA 유전자 및/또는 pyc 유전자를 포함한다. 조작 후, 미생물은 최종 결과, 예를 들어, 본 발명에 제공된 바와 같은 글루코오스로부터 생성물의 생산에 대해 효율적으로 선별되거나 평가될 수 있다. 본 발명에 제공된 라이브러리를 이용하여 특정 게놈 변경을 정의한 다음 변이를 갖는 숙주 미생물 게놈을 테스팅/선별하는 이런 공정은 효율적이고 반복적인 방식으로 구현될 수 있고 숙주 세포에서의 발현이 원하는 또는 임계 수준의 생체 분자 또는 글루코오스 형태의 관심 생성물을 생산하는 gapA 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및/또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자의 특정 조합을 확인하는 데 사용될 수 있다.
특정 실시태양에서, 본 발명에 제공된 방법에 사용하기 위해 본 발명에 제공된 바와 같은 각각의 gapA 유전자 또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자는 본 발명에 제공된 천연 프로모터 또는 프로모터 폴리뉴클레오타이드 중 임의의 것의 제어하에 있거나 기능적으로 연결된다. "프로모터 폴리뉴클레오타이드" 또는 "프로모터" 또는 "프로모터 활성을 갖는 폴리뉴클레오타이드"는 폴리뉴클레오타이드, 바람직하게는 데옥시리보폴리뉴클레오타이드 또는 핵산, 바람직하게는 데옥시리보핵산 (DNA)을 의미할 수 있으며, 이는 전사될 폴리뉴클레오타이드에 기능적으로 연결된 경우 코딩 폴리뉴클레오타이드(예를 들어, gapA 유전자 또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자)의 전사 개시점 및 빈도를 결정하며, 이에 의해 제어된 폴리뉴클레오타이드의 발현 강도에 영향을 줄 수 있다. 일부 실시태양에서, gapA 유전자 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및/또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자를 포함하는 라이브러리에서 각각의 gapA 유전자 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및/또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자는 똑같은 또는 동일한 프로모터의 제어하에 있다. 다른 실시태양에서, 글루코오스 gapA 유전자 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및/또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자를 포함하는 라이브러리에서 각각의 gapA 유전자 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및/또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자는 별개의 또는 상이한 프로모터의 제어하에 있다. 또 다른 실시태양에서, 표적 유전자를 포함하는 키메라 구조체의 라이브러리에서 키메라 구조체의 각 표적 유전자는 똑같은 또는 동일한 프로모터의 제어하에 있다. 추가의 실시태양에서, 표적 유전자를 포함하는 키메라 구조체의 라이브러리에서 키메라 구조체의 각 표적 유전자는 별개의 또는 상이한 프로모터의 제어하에 있다.
프로모터
래더
일부 실시태양에서, 본 발명은 숙주 미생물에서 하나 이상의 효소의 발현을 조절하고 전체 숙주 균주 생산성에 유리한 효과를 생성하도록 최적의 발현 특성을 갖는 프로모터를 선택하는 방법을 교시한다.
프로모터는 유전자가 전사되는 속도를 조절하고 다양한 방식으로 전사에 영향을 미칠 수 있다. 예를 들어, 구조성 프로모터는 내부 또는 외부 세포 조건에 관계없이 일정한 비율로 관련 유전자의 전사를 지시하지만, 조절 가능한 프로모터는 내부 및/또는 외부 세포, 예를 들어, 성장 속도, 온도, 특정 환경 화학물질에 대한 반응 등에 따라 유전자가 전사되는 속도를 증가 또는 감소시킨다. 프로모터는 정상적인 세포 컨텍스트로부터 격리될 수 있으며 사실상 모든 유전자의 발현을 조절하도록 조작되어 세포 성장, 생산 수율 및/또는 기타 관심 표현형의 효과적인 변형을 가능하게 한다.
일부 실시태양에서, 본 발명은 하류 유전자 디자인 방법에서 사용하기 위한 프로모터 래더 라이브러리를 생산하는 방법을 교시한다. 예를 들어, 일부 실시태양에서, 본 발명은 하나 이상의 프로모터를 확인하고 및/또는 다양한 발현 강도 또는 우수한 조절 특성을 나타내는 숙주 세포 내 하나 이상의 프로모터의 변이체를 생성하는 방법을 교시한다. 이들 확인된 및/또는 생성된 프로모터의 특정 조합은 프로모터 래더로서 함께 그룹화될 수 있으며, 이는 보다 상세히 후술된다.
일부 실시태양에서, 본 발명은 프로모터 래더의 사용을 교시한다. 일부 실시태양에서, 본 발명의 프로모터 래더는 연속 범위의 발현 프로파일을 나타내는 프로모터를 포함한다. 예를 들어, 일부 실시태양에서, 프로모터 래더는 자극, 또는 구성성 발현을 통해 다양한 발현 강도를 나타내는 자연, 고유 또는 야생형 프로모터를 확인함으로써 생성된다. 이러한 확인된 프로모터는 프로모터 래더로서 함께 그룹화될 수 있다.
다른 실시태양에서, 본 발명은 상이한 조건에 걸쳐 다양한 발현 프로파일을 나타내는 프로모터 래더의 생성을 교시한다. 예를 들어, 일부 실시태양에서, 본 발명은 발효의 상이한 단계에 전체에서 퍼진 발현 피크를 갖는 프로모터의 래더를 생성하는 것을 교시한다. 다른 실시태양에서, 본 발명은 특정 자극에 반응하여 상이한 발현 피크 동역학을 갖는 프로모터의 래더를 생성하는 것을 교시한다. 당업자는 본 발명의 조절 프로모터 래더가 임의의 하나 이상의 조절 프로파일을 나타낼 수 있다는 것을 인식할 것이다.
일부 실시태양에서, 본 발명의 프로모터 래더는 연속적인 범위의 반응에 걸쳐 예측 가능한 방식으로 유전자 발현을 교란시키도록 디자인되었다. 일부 실시태양에서, 프로모터 래더의 연속 특성은 균주 개량 프로그램에 추가의 예측력을 제공한다. 예를 들어, 일부 실시태양에서, 선택된 대사 경로의 스와핑 프로모터 또는 종결 서열은 가장 최적의 발현 비율 또는 프로파일을 확인하는 숙주 세포 성능 곡선을 생성할 수 있다; 부적절한 환경에서 불필요한 과발현이나 잘못된 발현을 피하면서 표적 유전자가 더 이상 특정 반응이나 유전자 캐스케이드에 대한 제한 요소가 되지 않는 균주를 생산한다. 일부 실시태양에서, 프로모터 래더는 원하는 프로파일을 나타내는 자연, 고유 또는 야생형 프로모터를 확인함으로써 생성된다. 다른 실시태양에서, 프로모터 래더는 자연 발생 프로모터를 돌연변이시켜 다수의 돌연변이 프로모터 서열을 유도함으로써 생성된다. 이들 돌연변이된 프로모터의 각각은 표적 유전자 발현에 대한 효과에 대해 테스트된다. 일부 실시태양에서, 편집된 프로모터는 다양한 조건에 걸쳐 발현 활성에 대해 테스트되어 각 프로모터 변이체의 활성이 문서화/특징화/주석처리되고 데이터베이스에 저장된다. 생성된 편집된 프로모터 변이체는 뒤이어 그 발현의 강도에 기초하여 배열된 프로모터 래더로 조직화된다(예를 들어, 상부 근처의 고도로 발현된 변이체 및 하부 근처의 약화된 발현에 의해, 따라서 "래더"라는 용어를 유도한다).
일부 실시태양에서, 본 발명은 확인된 자연 발생 프로모터 및 돌연변이된 변이체 프로모터의 조합인 프로모터 래더를 교시한다.
일부 실시태양에서, 본 발명은 하기 기준을 모두 만족하는: 1) 구조성 프로모터의 래더를 나타내며; 2) 이상적으로 100개 염기쌍 미만의 짧은 DNA 서열에 의해 암호화될 수 있는 자연, 고유 또는 야생형 프로모터를 확인하는 방법을 교시한다. 일부 실시태양에서, 본 발명의 구조성 프로모터는 두 개의 선택된 성장 조건 (전형적으로, 산업용 재배 동안 경험된 조건들 간에 비교됨)에 걸쳐 일정한 유전자 발현을 나타낸다. 일부 실시태양에서, 본 발명의 프로모터는 ~60 염기쌍 코어 프로모터 및 26-40 염기쌍 길이의 5' UTR로 구성될 것이다.
일부 실시태양에서, 상기 확인된 자연 발생 프로모터 서열 중 하나 이상이 유전자 편집을 위해 선택된다. 일부 실시태양에서, 자연 프로모터는 상기 임의의 돌연변이 방법을 통해 편집된다. 다른 실시태양에서, 본 발명의 프로모터는 원하는 서열을 갖는 새로운 프로모터 변이체를 합성함으로써 편집된다.
다음 출원의 전체 발명은 참조로 본 발명에 포함된다: U.S. Application No. 15/396,230 (U.S. Pub. No. US 2017/0159045 A1); PCT/US2016/065465 (WO 2017/100377 A1); U.S. App. No. 15/140,296 (US 2017/0316353 A1); PCT/US2017/029725 (WO 2017/189784 A1); PCT/US2016/065464 (WO 2017/100376 A2); U.S. Prov. App. No. 62/431,409; U.S. Prov. App. No. 62/264,232; 및 U.S. Prov. App. No. 62/368,786.
본 발명의 프로모터의 비 제한적인 리스트가 하기 표 1에 제공된다. 프로모터 서열의 각각은 이종 프로모터 또는 이종 프로 프로모터 뉴클레오타이드로 불릴 수 있다.
SEQ ID No. |
프로모터 짧은
명칭 |
프로모터 명칭 |
59 | P1 | Pcg0007_lib_39 |
60 | P2 | Pcg0007 |
61 | P3 | Pcg1860 |
62 | P4 | Pcg0755 |
63 | P5 | Pcg0007_265 |
64 | P6 | Pcg3381 |
65 | P7 | Pcg0007_119 |
66 | P8 | Pcg3121 |
일부 실시태양에서, 본 발명의 프로모터는 상기 표로부터의 프로모터와 적어도 100%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 또는 75% 서열 동일성을 나타낸다.
일부 경우에, 프로모터 래더는 gapA 라이브러리 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 라이브러리, 및/또는 gdh, asd, dapB 및 ddh, 및/또는 TA 라이브러리 및/또는 pyc 라이브러리 또는 이들 라이브러리의 임의의 조합으로부터 선택된 유전자의 앞에서 이용될 수 있다. 일부 실시태양에서, 프로모터 래더의 이용은 gapA 라이브러리 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 라이브러리, 및/또는 gdh, asd, dapB 및 ddh, 및/또는 TA 라이브러리 및/또는 pyc 라이브러리 또는 이들 라이브러리의 임의의 조합으로부터 선택된 유전자의 발현을 조절하는 것을 포함한다. 일부 실시태양에서, 프로모터 래더의 이용은 gapA 라이브러리 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 라이브러리, 및/또는 gdh, asd, dapB 및 ddh, 및/또는 TA 라이브러리 및/또는 pyc 라이브러리 또는 이들 라이브러리의 임의의 조합으로부터 선택된 유전자의 발현을 미세 조절하는 것을 포함한다. 조작 후, 미생물은 최종 결과, 예를 들어, 본 발명에 제공된 바와 같은 글루코오스로부터 생성물의 생산에 대해 효율적으로 선별되거나 평가될 수 있다. 본 발명에 제공된 프로모터 래더를 이용하여 유전자가 특정 발현 수준을 얻는 숙주를 생성한 다음 변이를 갖는 숙주 미생물 게놈을 테스팅/선별하는 것은 효율적이고 반복적인 방식으로 구현될 수 있고 gapA 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및/또는 gdh, asd, dapB 및 ddh로부터 선택된 하나 이상의 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자의 특정 조합을 확인하는 데 사용될 수 있어서, 숙주 세포에서의 발현이 원하는 또는 임계 수준의 생체 분자 또는 글루코오스 형태의 관심 생성물을 생산한다.
글리세르알데하이드
-3-
포스페이트
탈수소 효소 라이브러리
특정 실시태양에서, 본 발명에 제공된 방법에 사용하기 위한 gapA 유전자의 라이브러리가 본 발명에 제공된다. gapA 유전자의 라이브러리는 하나 이상의 gapA 유전자를 포함할 수 있다. 라이브러리의 각 gapA 유전자는 gapA 유전자의 천연 형태 또는 돌연변이 형태일 수 있다. 돌연변이된 형태는 삽입, 결실, 단일 뉴클레오타이드 다형성(SNP) 또는 전위로부터 선택된 하나 이상의 돌연변이를 포함할 수 있다. 라이브러리의 각 gapA 유전자는 gapA 유전자일 수 있다. gapA 유전자는 당업계에 공지된 원핵 세포(즉, 박테리아 및/또는 고세균)로부터의 임의의 gapA 유전자일 수 있다. gapA 유전자는 당업계에 공지된 진핵 세포(예를 들어, 진균)로부터의 임의의 gapA 유전자일 수 있다. gapA는 NAD- 및/또는 NADH-의존적 GAPDH 활성을 포함하는 임의의 단백질로 간주될 수 있다. 예를 들어, 본 발명에 사용하기 위한 gapA는 글리세르알데하이드-3-포스페이트를 글리세레이트-1,3-비스포스페이트로 전환시키는 임의의 효소일 수 있다. 숙주 세포는 본 발명에 제공된 임의의 숙주 세포일 수 있다. 일부 실시태양에서, gapA 유전자의 라이브러리는 마이코박테리움(예를 들어, Mycobacterium smegmatis)), 스트렙토마이세스(예를 들어, Streptomyces coelicolor), 자이모모나스(예를 들어, Zymomonas mobilis), 시네코시스티스(예를 들어, Synechocystis sp . PCC6803), 비피도박테리움(예를 들어, Bifidobacterium longum), 에스케리키아(예를 들어, Escherichia coli), 바실러스(예를 들어, Bacillus subtilis), 코리네박테리움(예를 들어, Corynebacterium glutamicum), 사카로마이세스(예를 들어, S. cerevisiae) 또는 이의 조합의 임의의 균주/종/하부종으로부터의 gapA 유전자를 포함한다.
일부 실시태양에서, 본 발명의 gapA 효소는 본 발명에 제공된 gapA 효소와 적어도 100%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 또는 75% 서열 동일성을 나타낸다.
라이브러리 내의 각각의 gapA 유전자는 기능적으로 연결되거나 이의 천연 프로모터 또는 돌연변이된 형태의 천연 프로모터의 제어하에 연결될 수 있다. 라이브러리 내의 각각의 gapA 유전자는 본 발명에 제공된 임의의 프로모터에 기능적으로 연결되거나 제어될 수 있다. gapA 유전자 라이브러리 내의 각각의 gapA 유전자는 키메라 구조체에 존재할 수 있어서, 유전자는 숙주 세포의 게놈에 존재하는 서열과 하나 이상의 조절 서열 및/또는 서열에 의해 측면에 위치될 수 있다. 숙주 세포에 존재하는 서열과 상동성인 서열은 상보적 서열을 포함하는 숙주 세포 게놈의 부위 또는 유전자좌 내로의 gapA 유전자의 통합을 촉진할 수 있다. 통합은 재결합 이벤트를 통해 이루어질 수 있다. 조절 서열은 예를 들어 숙주 세포의 유전자 기계에 의해 사용되는 프로모터, 시작, 정지, 신호, 분비 및/또는 종결 서열과 같은 당업계에 공지되거나 본 발명에 제공된 임의의 조절 서열일 수 있다.
니코틴아마이드
뉴클레오타이드
수소전달 효소 라이브러리
특정 실시태양에서, 본 발명에 제공된 방법에 사용하기 위한 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자의 라이브러리가 본 발명에 제공된다. 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자의 라이브러리는 하나 이상의 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자를 포함할 수 있다. 라이브러리의 각 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 수소전달 효소 유전자의 천연 형태 또는 돌연변이 형태일 수 있다. 돌연변이된 형태는 삽입, 결실, 단일 뉴클레오타이드 다형성(SNP) 또는 전위로부터 선택된 하나 이상의 돌연변이를 포함할 수 있다. 라이브러리의 각 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 수소전달 효소 유전자일 수 있다. 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 당업계에 공지된 원핵 세포(즉, 박테리아 및/또는 고세균)로부터의 임의의 수소전달 효소 유전자일 수 있다. 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 당업계에 공지된 진핵 세포(예를 들어, 진균)로부터의 임의의 수소전달 효소 유전자일 수 있다. 니코틴아마이드 뉴클레오타이드 수소전달 효소는 NAD를 NADPH로 전환시키는 임의의 효소일 수 있다. 숙주 세포는 본 발명에 제공된 임의의 숙주 세포일 수 있다. 일부 실시태양에서, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자의 라이브러리는 마이코박테리움(예를 들어, Mycobacterium smegmatis)), 스트렙토마이세스(예를 들어, Streptomyces coelicolor), 자이모모나스(예를 들어, Zymomonas mobilis), 시네코시스티스(예를 들어, Synechocystis sp . PCC6803), 비피도박테리움(예를 들어, Bifidobacterium longum), 에스케리키아(예를 들어, Escherichia coli), 바실러스(예를 들어, Bacillus subtilis), 코리네박테리움(예를 들어, Corynebacterium glutamicum), 사카로마이세스(예를 들어, S. cerevisiae) 또는 이의 조합의 임의의 균주/종/하부종으로부터의 수소전달 효소 유전자를 포함한다.
일부 실시태양에서, 본 발명의 니코틴아마이드 뉴클레오타이드 수소전달 효소는 본 발명에 제공된 수소전달 효소와 적어도 100%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 또는 75% 서열 동일성을 나타낸다.
라이브러리 내의 각각의 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 기능적으로 연결되거나 이의 천연 프로모터 또는 돌연변이된 형태의 천연 프로모터의 제어하에 연결될 수 있다. 라이브러리 내의 각각의 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 본 발명에 제공된 임의의 프로모터에 기능적으로 연결되거나 제어될 수 있다. 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자 라이브러리 내의 각각의 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 키메라 구조체에 존재할 수 있어서, 유전자는 숙주 세포의 게놈에 존재하는 서열과 하나 이상의 조절 서열 및/또는 서열에 의해 측면에 위치될 수 있다. 숙주 세포에 존재하는 서열과 상동성인 서열은 상보적 서열을 포함하는 숙주 세포 게놈의 부위 또는 유전자좌 내로의 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자의 통합을 촉진할 수 있다. 통합은 재결합 이벤트를 통해 이루어질 수 있다. 조절 서열은 예를 들어 숙주 세포의 유전자 기계에 의해 사용되는 프로모터, 시작, 정지, 신호, 분비 및/또는 종결 서열과 같은 당업계에 공지되거나 본 발명에 제공된 임의의 조절 서열일 수 있다.
gdh
,
asd
,
dapB
및/또는
ddh
라이브러리
특정 실시태양에서, 본 발명에 제공된 방법에 사용하기 위한 gdh, asd, dapB 및/또는 ddh 유전자의 라이브러리가 본 발명에 제공된다. gdh, asd, dapB 및/또는 ddh 유전자의 라이브러리는 하나 이상의 gdh, asd, dapB 및/또는 ddh 유전자를 포함할 수 있다. 라이브러리의 각 gdh, asd, dapB 및/또는 ddh 유전자는 각각 gdh, asd, dapB 및/또는 ddh 유전자의 천연 형태 또는 돌연변이 형태일 수 있다. 돌연변이된 형태는 삽입, 결실, 단일 뉴클레오타이드 다형성(SNP) 또는 전위로부터 선택된 하나 이상의 돌연변이를 포함할 수 있다. 라이브러리의 각 gdh, asd, dapB 및/또는 ddh 유전자는 각각 gdh, asd, dapB 및/또는 ddh 유전자일 수 있다. gdh, asd, dapB 및/또는 ddh 유전자는 당업계에 공지된 원핵 세포(즉, 박테리아 및/또는 고세균)로부터의 각각 임의의 gdh, asd, dapB 및/또는 ddh 유전자일 수 있다. gdh, asd, dapB 및/또는 ddh 유전자는 당업계에 공지된 진핵 세포(예를 들어, 진균)로부터의 임의의 gdh, asd, dapB 및/또는 ddh 유전자일 수 있다. gdh는 NADPH- 및/또는 NADH-의존적 글루타메이트 탈수소 효소 활성을 포함하는 임의의 단백질로 간주될 수 있다. 예를 들어, 본 발명에 사용하기 위한 gdh는 옥살로아세테이트를 아스파르테이트로 전환시키는 임의의 효소일 수 있다. asd는 NADPH- 및/또는 NADH-의존적 다이하이드로피콜리네이트 환원 효소 활성을 포함하는 임의의 단백질로 간주될 수 있다. 예를 들어, 본 발명에 사용하기 위한 asd는 아스파르틸 포스페이트를 아스파르테이트 세미알데하이드로 전환시키는 임의의 효소일 수 있다. dapB는 NADPH- 및/또는 NADH-의존적 다이하이드로피콜리네이트 환원 효소 활성을 포함하는 임의의 단백질로 간주될 수 있다. 예를 들어, 본 발명에 사용하기 위한 dapB는 다이하이드로피콜리네이트를 테트라하이드로피콜리네이트로 전환시키는 임의의 효소일 수 있다. ddh는 NADPH- 및/또는 NADH-의존적 메소-다이아미노피멜레이트 탈수소 효소 활성을 포함하는 임의의 단백질로 간주될 수 있다. 예를 들어, 본 발명에 사용하기 위한 ddh는 테트라하이드로피콜리네이트를 메소-다이아미노피멜레이트로 직접 전환에 촉매작용을 미치는 촉매화하는 임의의 효소일 수 있다.
숙주 세포는 본 발명에 제공된 임의의 숙주 세포일 수 있다. 일부 실시태양에서, asd, dapB 또는 ddh 유전자의 라이브러리는 마이코박테리움(예를 들어, Mycobacterium smegmatis)), 스트렙토마이세스(예를 들어, Streptomyces coelicolor), 자이모모나스(예를 들어, Zymomonas mobilis), 시네코시스티스(예를 들어, Synechocystis sp . PCC6803), 비피도박테리움(예를 들어, Bifidobacterium longum), 에스케리키아(예를 들어, Escherichia coli), 바실러스(예를 들어, Bacillus subtilis), 코리네박테리움(예를 들어, Corynebacterium glutamicum), 사카로마이세스(예를 들어, S. cerevisiae) 또는 이의 조합의 임의의 균주/종/하부종으로부터의 asd, dapB 또는 ddh 유전자를 포함한다.
일부 실시태양에서, 본 발명의 asd, dapB 또는 ddh 효소는 본 발명에 제공된 asd, dapB 또는 ddh 효소와 적어도 100%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 또는 75% 서열 동일성을 나타낸다.
라이브러리 내의 각각의 asd, dapB 또는 ddh 유전자는 기능적으로 연결되거나 이의 천연 프로모터 또는 돌연변이된 형태의 천연 프로모터의 제어하에 연결될 수 있다. 라이브러리 내의 각각의 asd, dapB 또는 ddh 유전자는 본 발명에 제공된 임의의 프로모터에 기능적으로 연결되거나 제어될 수 있다. asd, dapB 또는 ddh 유전자 라이브러리 내의 각각의 asd, dapB 또는 ddh 유전자는 키메라 구조체에 존재할 수 있어서, 유전자는 숙주 세포의 게놈에 존재하는 서열과 하나 이상의 조절 서열 및/또는 서열에 의해 측면에 위치될 수 있다. 숙주 세포에 존재하는 서열과 상동성인 서열은 상보적 서열을 포함하는 숙주 세포 게놈의 부위 또는 유전자좌 내로의 asd, dapB 또는 ddh 유전자의 통합을 촉진할 수 있다. 통합은 재결합 이벤트를 통해 이루어질 수 있다. 조절 서열은 예를 들어 숙주 세포의 유전자 기계에 의해 사용되는 프로모터, 시작, 정지, 신호, 분비 및/또는 종결 서열과 같은 당업계에 공지되거나 본 발명에 제공된 임의의 조절 서열일 수 있다.
TA
라이브러리
특정 실시태양에서, 본 발명에 제공된 방법에 사용하기 위한 TA 유전자의 라이브러리가 본 발명에 제공된다. TA 유전자의 라이브러리는 하나 이상의 TA 유전자를 포함할 수 있다. 라이브러리의 각 TA 유전자는 TA 유전자의 천연 형태 또는 돌연변이 형태일 수 있다. 돌연변이된 형태는 삽입, 결실, 단일 뉴클레오타이드 다형성(SNP) 또는 전위로부터 선택된 하나 이상의 돌연변이를 포함할 수 있다. 라이브러리의 각 TA 유전자는 TA 유전자일 수 있다. TA 유전자는 당업계에 공지된 원핵 세포(즉, 박테리아 및/또는 고세균)로부터의 임의의 수소전달 효소 유전자일 수 있다. TA 유전자는 당업계에 공지된 진핵 세포(예를 들어, 진균)로부터의 임의의 TA 유전자일 수 있다. TA 유전자는 트레오닌 알돌라제 활성을 포함하는 임의의 단백질로 간주될 수 있다. 예를 들어, 본 발명에 사용하기 위한 TA는 트레오닌을 아세트알데하이드 및 글리신으로 전환시키는 임의의 효소일 수 있다. 한 실시태양에서, TA 유전자는 내인성 TA보다 느린 속도로 트레오닌을 아세트알데하이드 및 글리신으로 전환시킨다. 한 실시태양에서, TA 유전자는 아세트알데하이드 및 글리신을 트레오닌으로 전환시킨다.
숙주 세포는 본 발명에 제공된 임의의 숙주 세포일 수 있다. 일부 실시태양에서, TA 유전자의 라이브러리는 마이코박테리움(예를 들어, Mycobacterium smegmatis)), 스트렙토마이세스(예를 들어, Streptomyces coelicolor), 자이모모나스(예를 들어, Zymomonas mobilis), 시네코시스티스(예를 들어, Synechocystis sp . PCC6803), 비피도박테리움(예를 들어, Bifidobacterium longum), 에스케리키아(예를 들어, Escherichia coli), 바실러스(예를 들어, Bacillus subtilis), 코리네박테리움(예를 들어, Corynebacterium glutamicum), 사카로마이세스(예를 들어, S. cerevisiae) 또는 이의 조합의 임의의 균주/종/하부종으로부터의 TA 유전자를 포함한다.
일부 실시태양에서, 본 발명의 TA 효소는 본 발명에 제공된 TA 효소와 적어도 100%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 또는 75% 서열 동일성을 나타낸다.
라이브러리 내의 각각의 TA 유전자는 기능적으로 연결되거나 이의 천연 프로모터 또는 돌연변이된 형태의 천연 프로모터의 제어하에 연결될 수 있다. 라이브러리 내의 각각의 TA 유전자는 본 발명에 제공된 임의의 프로모터에 기능적으로 연결되거나 제어될 수 있다. TA 유전자 라이브러리 내의 각각의 TA 유전자는 키메라 구조체에 존재할 수 있어서, 유전자는 숙주 세포의 게놈에 존재하는 서열과 하나 이상의 조절 서열 및/또는 서열에 의해 측면에 위치될 수 있다. 숙주 세포에 존재하는 서열과 상동성인 서열은 상보적 서열을 포함하는 숙주 세포 게놈의 부위 또는 유전자좌 내로의 TA 유전자의 통합을 촉진할 수 있다. 통합은 재결합 이벤트를 통해 이루어질 수 있다. 조절 서열은 예를 들어 숙주 세포의 유전자 기계에 의해 사용되는 프로모터, 시작, 정지, 신호, 분비 및/또는 종결 서열과 같은 당업계에 공지되거나 본 발명에 제공된 임의의 조절 서열일 수 있다.
pyc
라이브러리
특정 실시태양에서, 본 발명에 제공된 방법에 사용하기 위한 pyc 유전자의 라이브러리가 본 발명에 제공된다. pyc 유전자의 라이브러리는 하나 이상의 pyc 유전자를 포함할 수 있다. 라이브러리의 각 pyc 유전자는 pyc 유전자의 천연 형태 또는 돌연변이 형태일 수 있다. 돌연변이된 형태는 삽입, 결실, 단일 뉴클레오타이드 다형성(SNP) 또는 전위로부터 선택된 하나 이상의 돌연변이를 포함할 수 있다. 라이브러리의 각 pyc 유전자는 pyc 유전자일 수 있다. pyc 유전자는 당업계에 공지된 원핵 세포(즉, 박테리아 및/또는 고세균)로부터의 임의의 수소전달 효소 유전자일 수 있다. pyc 유전자는 당업계에 공지된 진핵 세포(예를 들어, 진균)로부터의 임의의 pyc 유전자일 수 있다. pyc 유전자는 피루베이트 카복실라제 활성을 포함하는 임의의 단백질로 간주될 수 있다. 예를 들어, 본 발명에 사용하기 위한 pyc는 피루베이트를 옥살로아세테이트로 전환시키는 임의의 효소일 수 있다.
숙주 세포는 본 발명에 제공된 임의의 숙주 세포일 수 있다. 일부 실시태양에서, pyc 유전자의 라이브러리는 마이코박테리움(예를 들어, Mycobacterium smegmatis)), 스트렙토마이세스(예를 들어, Streptomyces coelicolor), 자이모모나스(예를 들어, Zymomonas mobilis), 시네코시스티스(예를 들어, Synechocystis sp . PCC6803), 비피도박테리움(예를 들어, Bifidobacterium longum), 에스케리키아(예를 들어, Escherichia coli), 바실러스(예를 들어, Bacillus subtilis), 코리네박테리움(예를 들어, Corynebacterium glutamicum), 사카로마이세스(예를 들어, S. cerevisiae) 또는 이의 조합의 임의의 균주/종/하부종으로부터의 pyc 유전자를 포함한다.
일부 실시태양에서, 본 발명의 pyc 효소는 본 발명에 제공된 pyc 효소와 적어도 100%, 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 또는 75% 서열 동일성을 나타낸다.
라이브러리 내의 각각의 pyc 유전자는 기능적으로 연결되거나 이의 천연 프로모터 또는 돌연변이된 형태의 천연 프로모터의 제어하에 연결될 수 있다. 라이브러리 내의 각각의 pyc 유전자는 본 발명에 제공된 임의의 프로모터에 기능적으로 연결되거나 제어될 수 있다. pyc 유전자 라이브러리 내의 각각의 pyc 유전자는 키메라 구조체에 존재할 수 있어서, 유전자는 숙주 세포의 게놈에 존재하는 서열과 하나 이상의 조절 서열 및/또는 서열에 의해 측면에 위치될 수 있다. 숙주 세포에 존재하는 서열과 상동성인 서열은 상보적 서열을 포함하는 숙주 세포 게놈의 부위 또는 유전자좌 내로의 pyc 유전자의 통합을 촉진할 수 있다. 통합은 재결합 이벤트를 통해 이루어질 수 있다. 조절 서열은 예를 들어 숙주 세포의 유전자 기계에 의해 사용되는 프로모터, 시작, 정지, 신호, 분비 및/또는 종결 서열과 같은 당업계에 공지되거나 본 발명에 제공된 임의의 조절 서열일 수 있다.
gapA
유전자의 돌연변이 형태의 생성
본 발명에 제공된 바와 같이, 본 발명에 제공된 방법에 사용하기 위한 gapA 유전자는 이것이 유래된 유전자의 돌연변이 형태일 수 있다. 돌연변이된 유전자는 당업계에 공지되거나 본 발명에 제공된 임의의 방식으로 돌연변이될 수 있다.
일부 실시태양에서, 본 발명은 게놈 DNA의 선택된 부분을 도입, 결실 또는 대체함으로써 세포 집단을 돌연변이 시키는 것을 교시한다. 따라서, 일부 실시태양에서, 본 발명은 돌연변이를 특정 유전자좌(예를 들어, gapA)로 표적화하는 방법을 교시한다. 다른 실시태양에서, 본 발명은 표적 DNA 영역을 선택적으로 편집하기 위해 ZFN, TALENS 또는 CRISPR과 같은 유전자 편집 기술의 사용을 교시한다. 세포 집단의 돌연변이 후, 표적화된 돌연변이는 세포로부터 단리될 수 있고 이어서 gapA 유전자의 라이브러리를 생성하는 데 사용될 수 있다.
일부 실시태양에서, 본 발명은 숙주 유기체 외부에서 선택된 DNA 영역(예를 들어, gapA 유전자)을 돌연변이 시키는 것을 교시한다. 예를 들어, 일부 실시태양에서, 본 발명은 천연 gapA 유전자를 돌연변이 시키는 것을 교시한다.
일부 실시태양에서, DNA의 선택된 영역은 자연 변이체의 유전자 셔플링 또는 합성 올리고체, 플라스미드-플라스미드 재조합, 바이러스 플라스미드 재조합, 바이러스-바이러스 재조합에 의한 셔플링을 통해 시험관 내에서 생성된다. 다른 실시태양에서, 게놈 영역은 에러-유발 PCR(error-prone PCR) 또는 위치-지정 돌연변이를 통해 생성된다.
일부 실시태양에서, gapA 유전자를 함유하는 선택된 유전자 영역에서의 돌연변이 생성은 "재조립 PCR"에 의해 달성된다. 간략하게, 올리고뉴클레오타이드 프라이머(올리고)는 관심 핵산 서열(예를 들어, gapA 유전자)의 단편의 PCR 증폭을 위해 합성되어, 올리고뉴클레오타이드의 서열은 두 단편의 교차점과 겹쳐진다. 겹쳐진 영역은 전형적으로 약 10 내지 100개 뉴클레오타이드 길이이다. 단편의 각각은 이런 프라이머 세트로 증폭된다. 그런 다음 PCR 제품은 재조립 프로토콜에 따라 "재조립"된다. 요약하면, 어셈블리 프로토콜에서, PCR 생성물은 먼저, 예를 들어, 겔 전기영동 또는 크기 배제 크로마토그래피에 의해 프라이머로부터 정제된다. 정제된 생성물은 함께 혼합되고 추가 프라이머가 없이 중합 효소 및 데옥시뉴클레오시드 트라이포스페이트(dNTP's) 및 적절한 버퍼 염의 존재하에서 약 1-10 사이클의 변성, 재어닐링 및 확장이 실시된다("셀프-프라이밍"). 유전자에 인접한 프라이머로 후속 PCR이 사용되어 완전히 재조합되고 뒤섞인 유전자의 수율을 증폭시킨다.
본 발명의 일부 실시태양에서, 위에서 논의한 것과 같은 돌연변이된 gapA DNA 영역이 돌연변이체 서열에 대해 농축되어 다중 돌연변이체 스펙트럼, 즉 돌연변이의 가능한 조합이 보다 효율적으로 표본 추출된다. 일부 실시태양에서, 돌연변이된 서열은 재조립 반응 이전에 시험관 내에서 친화성-정제 물질을 증폭시키는 바람직한 단계 의해 mutS 단백질 친화성 매트릭스를 통해 확인된다(Wagner et al., Nucleic Acids Res. 23(19):3944-3948 (1995); Su et al., Proc. Natl. Acad. Sci. (U.S.A.), 83:5057-5061(1986)). 그런 후에 이 증폭된 물질은 조립 또는 재조립 PCR 반응에 투입된다.
일부 실시태양에서, 돌연변이된 gapA DNA 영역은 자연적으로 발견된다.
니코틴아마이드
뉴클레오타이드
수소전달 효소 유전자의 돌연변이 형태의 생성
본 발명에 제공된 바와 같이, 본 발명에 제공된 방법에 사용하기 위한 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 이것이 유래된 유전자의 돌연변이 형태일 수 있다. 돌연변이된 유전자는 당업계에 공지되거나 본 발명에 제공된 임의의 방식으로 돌연변이될 수 있다.
일부 실시태양에서, 본 발명은 게놈 DNA의 선택된 부분을 도입, 결실 또는 대체함으로써 세포 집단을 돌연변이 시키는 것을 교시한다. 따라서, 일부 실시태양에서, 본 발명은 돌연변이를 특정 유전자좌(예를 들어, 니코틴아마이드 뉴클레오타이드 수소전달 효소)로 표적화하는 방법을 교시한다. 다른 실시태양에서, 본 발명은 표적 DNA 영역을 선택적으로 편집하기 위해 ZFN, TALENS 또는 CRISPR과 같은 유전자 편집 기술의 사용을 교시한다. 세포 집단의 돌연변이 후, 표적화된 돌연변이는 세포로부터 단리될 수 있고 이어서 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자의 라이브러리를 생성하는 데 사용될 수 있다.
일부 실시태양에서, 본 발명은 숙주 유기체 외부에서 선택된 DNA 영역(예를 들어, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자)을 돌연변이 시키는 것을 교시한다. 예를 들어, 일부 실시태양에서, 본 발명은 천연 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자를 돌연변이 시키는 것을 교시한다.
일부 실시태양에서, DNA의 선택된 영역은 자연 변이체의 유전자 셔플링 또는 합성 올리고체, 플라스미드-플라스미드 재조합, 바이러스 플라스미드 재조합, 바이러스-바이러스 재조합에 의한 셔플링을 통해 시험관 내에서 생성된다. 다른 실시태양에서, 게놈 영역은 에러-유발 PCR(error-prone PCR) 또는 위치-지정 돌연변이를 통해 생성된다.
특정 실시태양에서, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자를 함유하는 선택된 유전자 영역에서의 돌연변이 생성은 "재조립 PCR"에 의해 달성된다.
일부 실시태양에서, 위에서 논의한 것과 같은 돌연변이된 니코틴아마이드 뉴클레오타이드 수소전달 효소 DNA 영역이 돌연변이체 서열에 대해 농축되어 다중 돌연변이체 스펙트럼, 즉 돌연변이의 가능한 조합이 보다 효율적으로 표본 추출된다. 일부 실시태양에서, 돌연변이된 서열은 재조립 반응 이전에 시험관 내에서 친화성-정제 물질을 증폭시키는 바람직한 단계 의해 mutS 단백질 친화성 매트릭스를 통해 확인된다. 그런 후에 이 증폭된 물질은 조립 또는 재조립 PCR 반응에 투입된다.
일부 실시태양에서, 돌연변이된 니코틴아마이드 뉴클레오타이드 수소전달 효소 DNA 영역은 자연적으로 발견된다.
gdh
,
asd
,
dapB
, 및/또는
ddh
유전자의 돌연변이 형태의 생성
본 발명에 제공된 바와 같이, 본 발명에 제공된 방법에 사용하기 위한 gdh, asd, dapB, 또는 ddh 유전자는 이것이 유래된 유전자의 돌연변이 형태일 수 있다. 돌연변이된 유전자는 당업계에 공지되거나 본 발명에 제공된 임의의 방식으로 돌연변이될 수 있다.
일부 실시태양에서, 본 발명은 게놈 DNA의 선택된 부분을 도입, 결실 또는 대체함으로써 세포 집단을 돌연변이 시키는 것을 교시한다. 따라서, 일부 실시태양에서, 본 발명은 돌연변이를 특정 유전자좌(예를 들어, gdh, asd, dapB, 또는 ddh)로 표적화하는 방법을 교시한다. 다른 실시태양에서, 본 발명은 표적 DNA 영역을 선택적으로 편집하기 위해 ZFN, TALENS 또는 CRISPR과 같은 유전자 편집 기술의 사용을 교시한다. 세포 집단의 돌연변이 후, 표적화된 돌연변이는 세포로부터 단리될 수 있고 이어서 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자의 라이브러리를 생성하는 데 사용될 수 있다.
일부 실시태양에서, 본 발명은 숙주 유기체 외부에서 선택된 DNA 영역(예를 들어, gdh, asd, dapB, 또는 ddh 유전자)을 돌연변이 시키는 것을 교시한다. 예를 들어, 일부 실시태양에서, 본 발명은 천연 gdh, asd, dapB, 또는 ddh 유전자를 돌연변이 시키는 것을 교시한다.
일부 실시태양에서, DNA의 선택된 영역은 자연 변이체의 유전자 셔플링 또는 합성 올리고체, 플라스미드-플라스미드 재조합, 바이러스 플라스미드 재조합, 바이러스-바이러스 재조합에 의한 셔플링을 통해 시험관 내에서 생성된다. 다른 실시태양에서, 게놈 영역은 에러-유발 PCR(error-prone PCR) 또는 위치-지정 돌연변이를 통해 생성된다.
특정 실시태양에서, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자를 함유하는 선택된 유전자 영역에서의 돌연변이 생성은 "재조립 PCR"에 의해 달성된다.
일부 실시태양에서, 위에서 논의한 것과 같은 돌연변이된 gdh, asd, dapB, 및/또는 ddh DNA 영역이 돌연변이체 서열에 대해 농축되어 다중 돌연변이체 스펙트럼, 즉 돌연변이의 가능한 조합이 보다 효율적으로 표본 추출된다. 일부 실시태양에서, 돌연변이된 서열은 재조립 반응 이전에 시험관 내에서 친화성-정제 물질을 증폭시키는 바람직한 단계 의해 mutS 단백질 친화성 매트릭스를 통해 확인된다. 그런 후에 이 증폭된 물질은 조립 또는 재조립 PCR 반응에 투입된다.
일부 실시태양에서, 돌연변이된 또는 변이체 gdh, asd, dapB 및/또는 ddh DNA 영역은 자연적으로 발견된다. 특정 실시태양에서, C. 글루타미쿰 ddh의 자연 발생 변이체는 A. 오리스(A. oris), H. 아키아온(H. archaeon), 코프로바실러스(coprobacillus), M. 하 운디네시아(M. harundinacea), M. 마이크로누시포르미스(M. micronuciformis), A. 데니트리피칸스(A. denitrificans), M. 루테우스(M. luteus), B. 페시움(B. faecium) 및 카노박테리움(carnobacterium)을 포함하나 이에 제한되지 않는 박테리아에서 발견된다. 특정 실시태양에서, C. 글루타미쿰 asd의 자연 발생 변이체는 M. 잔나스키(M. jannaschii), S. 유시타투스(S. usitatus), N. 이너몽골리쿠스(N. innermongolicus), C. 아우랑티쿠스(C. aurantiacus), L. 아길리스(L. agilis), B. 풀루럼(B. pullorum), B. 박테리움(B. bacterium), M. 한수푸스(M. hansupus) 및 P. 사비내(P. sabinae)를 포함하나 이에 제한되지 않는 박테리아에서 발견된다. 일부 실시태양에서, C. 글루타미쿰 gdh의 자연 발생 변이체는 C. 심비오섬(C. symbiosum)을 포함하나 이에 제한되지 않는 박테리아에서 발견된다. 일부 실시태양에서, 대장균을 포함하나 이에 제한되지 않는 박테리아에서 C. 글루타미쿰 dapB의 자연 변이체가 발견된다. 특정 실시태양에서, C. 글루타미쿰 gdh, asd, dapB 및/또는 ddh의 자연 발생 변이체는 유기체(예를 들어, 박테리아)에서 게놈 전체 상동성 검색을 수행함으로써 발견된다.
TA
유전자의 돌연변이 형태의 생성
본 발명에 제공된 바와 같이, 본 발명에 제공된 방법에 사용하기 위한 TA 유전자는 이것이 유래된 유전자의 돌연변이 형태일 수 있다. 돌연변이된 유전자는 당업계에 공지되거나 본 발명에 제공된 임의의 방식으로 돌연변이될 수 있다.
일부 실시태양에서, 본 발명은 게놈 DNA의 선택된 부분을 도입, 결실 또는 대체함으로써 세포 집단을 돌연변이 시키는 것을 교시한다. 따라서, 일부 실시태양에서, 본 발명은 돌연변이를 특정 유전자좌(예를 들어, TA)로 표적화하는 방법을 교시한다. 다른 실시태양에서, 본 발명은 표적 DNA 영역을 선택적으로 편집하기 위해 ZFN, TALENS 또는 CRISPR과 같은 유전자 편집 기술의 사용을 교시한다. 세포 집단의 돌연변이 후, 표적화된 돌연변이는 세포로부터 단리될 수 있고 이어서 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자의 라이브러리를 생성하는 데 사용될 수 있다.
일부 실시태양에서, 본 발명은 숙주 유기체 외부에서 선택된 DNA 영역(예를 들어, TA 유전자)을 돌연변이 시키는 것을 교시한다. 예를 들어, 일부 실시태양에서, 본 발명은 천연 TA 유전자를 돌연변이 시키는 것을 교시한다.
일부 실시태양에서, DNA의 선택된 영역은 자연 변이체의 유전자 셔플링 또는 합성 올리고체, 플라스미드-플라스미드 재조합, 바이러스 플라스미드 재조합, 바이러스-바이러스 재조합에 의한 셔플링을 통해 시험관 내에서 생성된다. 다른 실시태양에서, 게놈 영역은 에러-유발 PCR(error-prone PCR) 또는 위치-지정 돌연변이를 통해 생성된다.
특정 실시태양에서, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자를 함유하는 선택된 유전자 영역에서의 돌연변이 생성은 "재조립 PCR"에 의해 달성된다.
일부 실시태양에서, 위에서 논의한 것과 같은 돌연변이된 TA DNA 영역이 돌연변이체 서열에 대해 농축되어 다중 돌연변이체 스펙트럼, 즉 돌연변이의 가능한 조합이 보다 효율적으로 표본 추출된다. 일부 실시태양에서, 돌연변이된 서열은 재조립 반응 이전에 시험관 내에서 친화성-정제 물질을 증폭시키는 바람직한 단계 의해 mutS 단백질 친화성 매트릭스를 통해 확인된다. 그런 후에 이 증폭된 물질은 조립 또는 재조립 PCR 반응에 투입된다.
일부 실시태양에서, 돌연변이된 또는 변이체 TA DNA 영역은 자연적으로 발견된다. 특정 실시태양에서, C. 글루타미쿰 pyc의 자연 발생 변이체는 A. 오리스(A. oris), H. 아키아온(H. archaeon), 코프로바실러스(coprobacillus), M. 하운디네시아(M. harundinacea), M. 마이크로누시포르미스(M. micronuciformis), A. 데니트리피칸스(A. denitrificans), M. 루테우스(M. luteus), B. 페시움(B. faecium) 및 카노박테리움(carnobacterium)을 포함하나 이에 제한되지 않는 박테리아에서 발견된다. 특정 실시태양에서, C. 글루타미쿰 TA의 천연 발생 변이체는 유기체(예를 들어, 박테리아)에서 게놈 전체 상동성 검색을 수행함으로써 발견된다.
pyc
유전자의 돌연변이 형태의 생성
본 발명에 제공된 바와 같이, 본 발명에 제공된 방법에 사용하기 위한 pyc 유전자는 이것이 유래된 유전자의 돌연변이 형태일 수 있다. 돌연변이된 유전자는 당업계에 공지되거나 본 발명에 제공된 임의의 방식으로 돌연변이될 수 있다.
일부 실시태양에서, 본 발명은 게놈 DNA의 선택된 부분을 도입, 결실 또는 대체함으로써 세포 집단을 돌연변이 시키는 것을 교시한다. 따라서, 일부 실시태양에서, 본 발명은 돌연변이를 특정 유전자좌(예를 들어, pyc)로 표적화하는 방법을 교시한다. 다른 실시태양에서, 본 발명은 표적 DNA 영역을 선택적으로 편집하기 위해 ZFN, TALENS 또는 CRISPR과 같은 유전자 편집 기술의 사용을 교시한다. 세포 집단의 돌연변이 후, 표적화된 돌연변이는 세포로부터 단리될 수 있고 이어서 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자의 라이브러리를 생성하는 데 사용될 수 있다.
일부 실시태양에서, 본 발명은 숙주 유기체 외부에서 선택된 DNA 영역(예를 들어, pyc 유전자)을 돌연변이 시키는 것을 교시한다. 예를 들어, 일부 실시태양에서, 본 발명은 천연 pyc 유전자를 돌연변이 시키는 것을 교시한다.
일부 실시태양에서, DNA의 선택된 영역은 자연 변이체의 유전자 셔플링 또는 합성 올리고체, 플라스미드-플라스미드 재조합, 바이러스 플라스미드 재조합, 바이러스-바이러스 재조합에 의한 셔플링을 통해 시험관 내에서 생성된다. 다른 실시태양에서, 게놈 영역은 에러-유발 PCR(error-prone PCR) 또는 위치-지정 돌연변이를 통해 생성된다.
일부 실시태양에서, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자를 함유하는 선택된 유전자 영역에서의 돌연변이 생성은 "재조립 PCR"에 의해 달성된다.
일부 실시태양에서, 위에서 논의한 것과 같은 돌연변이된 pyc DNA 영역이 돌연변이체 서열에 대해 농축되어 다중 돌연변이체 스펙트럼, 즉 돌연변이의 가능한 조합이 보다 효율적으로 표본 추출된다. 일부 실시태양에서, 돌연변이된 서열은 재조립 반응 이전에 시험관 내에서 친화성-정제 물질을 증폭시키는 바람직한 단계 의해 mutS 단백질 친화성 매트릭스를 통해 확인된다. 그런 후에 이 증폭된 물질은 조립 또는 재조립 PCR 반응에 투입된다.
일부 실시태양에서, 돌연변이된 또는 변이체 pyc DNA 영역은 자연적으로 발견된다. 특정 실시태양에서, C. 글루타미쿰 pyc의 자연 발생 변이체는 A. 오리스(A. oris), H. 아키아온(H. archaeon), 코프로바실러스(coprobacillus), M. 하운디네시아(M. harundinacea), M. 마이크로누시포르미스(M. micronuciformis), A. 데니트리피칸스(A. denitrificans), M. 루테우스(M. luteus), B. 페시움(B. faecium) 및 카노박테리움(carnobacterium)을 포함하나 이에 제한되지 않는 박테리아에서 발견된다. 특정 실시태양에서, C. 글루타미쿰 pyc의 천연 발생 변이체는 유기체(예를 들어, 박테리아)에서 게놈 전체 상동성 검색을 수행함으로써 발견된다.
gapA
유전자를 포함하는 라이브러리의 생성
일부 실시태양에서, 본 발명은 숙주 유기체의 gapA 유전자를 포함하는 DNA 절편을 삽입 및/또는 교체 및/또는 결실하는 것을 교시한다. 일부 양태에서, 본 발명에 교시된 방법은 숙주 유기체의 게놈 속에 포함될 수 있는 관심 올리고뉴클레오타이드(즉, gapA 절편)를 제조하는 것을 포함한다. 일부 실시태양에서, gapA DNA 절편은 공지된 주형으로부터의 복제 또는 절단, 돌연변이 또는 DNA 합성을 포함하여 당업계에 공지된 임의의 방법을 통해 얻을 수 있다. 일부 실시태양에서, 본 발명은 DNA 서열(예를 들어, GeneArt™, GeneMaker™, GenScript™, Anagen™, Blue Heron™, Entelechon™, GeNOsys, Inc., 또는 Qiagen™)을 생산하기 위한 구입가능한 유전자 합성 생성물과 양립 가능하다.
일부 실시태양에서, gapA DNA 절편은 숙주 유기체의 선택된 DNA 영역에 글루코오스 gapA DNA 절편을 포함시키도록(예를 들어, 유용한 GAPDH 활성을 첨가하여) 디자인된다. 특정 실시태양에서, 선택된 DNA 영역은 중성 통합 부위이다. 다른 실시태양에서, gapA DNA 절편은 숙주 유기체의 DNA로부터 천연 gapA 유전자를 제거하도록(예를 들어, 천연 GAPDH 활성을 제거하도록) 디자인된다.
일부 실시태양에서, 본 발명의 방법에서 사용된 gapA 유전자는 당업계에 공지된 효소적 또는 화학적 합성 방법 중 임의의 방법을 사용하여 올리고뉴클레오타이드로서 여러 단계로 합성될 수 있다. 올리고뉴클레오타이드는 제어된 공극 유리(CPG), 폴리스티렌 비드 또는 CPG를 함유할 수 있는 열가소성 폴리머로 구성된 막과 같은 고체 지지체 상에서 합성될 수 있다. 올리고뉴클레오타이드는 미세유체역학(Tian et al., Mol. BioSyst., 5, 714-722 (2009)) 또는 둘 다의 조합을 제공하는 공지된 기술(Jacobsen et al., 미국 특허 출원 제2011/0172127호 참조)을 사용하여 병렬 마이크로스케일로 어레이 상에서 합성될 수 있다.
어레이 상에 또는 미세유체역학을 통한 합성은 더욱 낮은 시약 사용을 통해 비용을 감소시킴으로써 통상적인 고체 지지체 합성에 비해 이점을 제공한다. 유전자 합성에 필요한 규모는 작아서, 어레이 또는 미세유체역학을 통해 합성된 올리고뉴클레오타이드 생성물의 규모가 허용가능하다. 그러나, 합성된 올리고뉴클레오타이드는 고체 지지체 합성을 사용할 때보다 품질이 떨어진다(이하의 Tian 참조; 또한 Staehler et al., U.S. Pat. App. No. 2010/0216648 참조).
1980년대에 처음으로 기술되었기 때문에 종래의 4단계 포스포아미다이트 화학에서 많은 발전이 이루어져왔다(예를 들어, Sierzchala, et al. J. Am. Chem . Soc., 125, 13427-13441 (2003) using peroxy deprotection; Hayakawa et al., U.S. Pat. No. 6,040,439 for alternative protecting groups; Azhayev et al, Tetrahedron 57, 4977-4986 (2001) for universal supports; Kozlov et al., Nucleosides, Nucleotides, and Nucleic Acids, 24 (5-7), 1037-1041 (2005) for improved synthesis of longer oligonucleotides through the use of large-pore CPG; and Damha et al., NAR, 18, 3813-3821 (1990) for improved derivatization 참조)
합성 유형에 관계없이, 생성된 올리고뉴클레오타이드는 더욱 긴 올리고뉴클레오타이드(즉, gapA 유전자)를 위한 더 작은 빌딩 블록을 형성할 수 있다. 일부 실시태양에서, 더 작은 올리고뉴클레오타이드는 폴리머라제 연쇄 조립(PCA), 리가아제 연쇄 반응(LCR) 및 열역학적으로 균형 잡힌 인사이드-아웃 합성(TBIO)과 같은 당업계에 공지된 프로토콜을 사용하여 함께 결합될 수 있다(Czar et al. Trends in Biotechnology, 27, 63-71 (2009) 참조). PCA에서, 원하는 긴 제품의 전체 길이에 걸쳐있는 올리고뉴클레오타이드는 어닐링되고 여러 사이클(일반적으로 약 55 사이클)에서 연장되어 전장 생성물을 최종적으로 얻는다. LCR은 리가아제 효소를 사용하여 제 3 올리고뉴클레오타이드에 모두 어닐링되는 두 올리고뉴클레오타이드에 연결시킨다. TBIO 합성은 목적 생성물의 중심에서 시작하여 유전자의 5' 말단에서 포워드 가닥과 상동성이고 유전자의 3' 말단에서 리버스 가닥과 상동성인 중첩 올리고뉴클레오타이드를 사용함으로써 점진적으로 양방향으로 연장된다.
더 큰 이중 가닥 DNA 단편을 합성하는 다른 방법은 상위-가닥 PCR(TSP)을 통해 더 작은 올리고뉴클레오타이드를 조합하는 것이다. 이 방법에서, 복수의 올리고뉴클레오타이드는 원하는 생성물의 전체 길이에 걸쳐 있고 인접한 올리고뉴클레오타이드(들)에 중첩 영역을 포함한다. 증폭은 범용 포워드 및 리버스 프라이머로 수행될 수 있으며, 증폭의 다중 사이클을 통해 전장 이중 가닥 DNA 생성물이 형성된다. 이런 생성물은 선택적인 오류 보정 및 원하는 이중 가닥 DNA 단편 최종 생성물을 생성하는 추가 증폭을 진행될 수 있다.
TSP의 한 방법에서, 전장의 원하는 생성물을 형성하도록 결합되어질 더 작은 올리고뉴클레오타이드의 세트는 40-200개 염기 길이이고 적어도 약 15-20개 염기만큼 서로 중첩된다. 실제적인 목적을 위해, 중첩 영역은 올리고뉴클레오타이드의 특정 어닐링을 보장할 만큼 충분히 길어야 하고 사용된 반응 온도에서 어닐링하기에 충분한 높은 용융 온도(Tm)를 가져야 한다. 중첩은 소정의 올리고뉴클레오타이드가 인접한 올리고뉴클레오타이드에 의해 완전히 중첩되는 지점까지 연장될 수 있다. 중첩의 양은 최종 생성물의 품질에 영향을 미치지 않는 것으로 보인다. 어셈블리의 첫 번째 및 마지막 올리고뉴클레오타이드 빌딩 블록은 포워드 및 리버스 증폭 프라이머에 대한 결합 위치를 포함해야 한다. 한 실시태양에서, 첫 번째 및 마지막 올리고뉴클레오타이드의 최종 말단 서열은 보편적 프라이머의 사용을 허용하도록 상보성의 동일한 서열을 포함한다.
니코틴아마이드
뉴클레오타이드
수소전달 효소 유전자를 포함하는 라이브러리의 생성
일부 실시태양에서, 본 발명은 숙주 유기체의 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자를 포함하는 DNA 절편을 삽입 및/또는 교체 및/또는 결실하는 것을 교시한다. 일부 양태에서, 본 발명에 교시된 방법은 숙주 유기체의 게놈 속에 포함될 수 있는 관심 올리고뉴클레오타이드(즉, 니코틴아마이드 뉴클레오타이드 수소전달 효소 절편)를 제조하는 것을 포함한다. 일부 실시태양에서, 본 발명의 니코틴아마이드 뉴클레오타이드 수소전달 효소 DNA 절편은 공지된 주형으로부터의 복제 또는 절단, 돌연변이 또는 DNA 합성을 포함하여 당업계에 공지된 임의의 방법을 통해 얻을 수 있다. 일부 실시태양에서, 본 발명은 DNA 서열(예를 들어, GeneArt™, GeneMaker™, GenScript™, Anagen™, Blue Heron™, Entelechon™, GeNOsys, Inc., 또는 Qiagen™)을 생산하기 위한 구입가능한 유전자 합성 생성물과 양립 가능하다.
일부 실시태양에서, 니코틴아마이드 뉴클레오타이드 수소전달 효소 DNA 절편은 숙주 유기체의 선택된 DNA 영역에 니코틴아마이드 뉴클레오타이드 수소전달 효소 DNA 절편을 포함시키도록(예를 들어, 유용한 수소전달 효소 활성을 첨가하여) 디자인된다. 특정 실시태양에서, 선택된 DNA 영역은 중성 통합 부위이다. 다른 실시태양에서, 니코틴아마이드 뉴클레오타이드 수소전달 효소 DNA 절편은 숙주 유기체의 DNA로부터 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자를 제거하도록(예를 들어, 천연 수소전달 효소 활성을 제거하도록) 디자인된다.
일부 실시태양에서, 본 발명의 방법에서 사용된 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자는 당업계에 공지된 효소적 또는 화학적 합성 방법 중 임의의 방법을 사용하여 올리고뉴클레오타이드로서 여러 단계로 합성될 수 있다. 올리고뉴클레오타이드는 제어된 공극 유리(CPG), 폴리스티렌 비드 또는 CPG를 함유할 수 있는 열가소성 폴리머로 구성된 막과 같은 고체 지지체 상에서 합성될 수 있다. 올리고뉴클레오타이드는 미세유체역학 또는 둘 다의 조합을 제공하는 공지된 기술을 사용하여 병렬 마이크로스케일로 어레이 상에서 합성될 수 있다.
어레이 상에 또는 미세유체역학을 통한 합성은 더욱 낮은 시약 사용을 통해 비용을 감소시킴으로써 통상적인 고체 지지체 합성에 비해 이점을 제공한다. 유전자 합성에 필요한 규모는 작아서, 어레이 또는 미세유체역학을 통해 합성된 올리고뉴클레오타이드 생성물의 규모가 허용 가능하다. 그러나, 합성된 올리고뉴클레오타이드는 고체 지지체 합성을 사용할 때보다 품질이 떨어진다.
1980년대에 처음으로 기술되었기 때문에 종래의 4단계 포스포아미다이트 화학에서 많은 발전이 이루어져왔다(예를 들어, Sierzchala, et al. J. Am. Chem . Soc., 125, 13427-13441 (2003) using peroxy deprotection; Hayakawa et al., U.S. Pat. No. 6,040,439 for alternative protecting groups; Azhayev et al, Tetrahedron 57, 4977-4986 (2001) for universal supports; Kozlov et al., Nucleosides, Nucleotides, and Nucleic Acids, 24 (5-7), 1037-1041 (2005) for improved synthesis of longer oligonucleotides through the use of large-pore CPG; and Damha et al., NAR , 18, 3813-3821 (1990) for improved derivatization 참조)
합성 유형에 관계없이, 생성된 올리고뉴클레오타이드는 더욱 긴 올리고뉴클레오타이드(즉, 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자)를 위한 더 작은 빌딩 블록을 형성할 수 있다. 일부 실시태양에서, 더 작은 올리고뉴클레오타이드는 폴리머라제 연쇄 조립(PCA), 리가아제 연쇄 반응(LCR) 및 열역학적으로 균형 잡힌 인사이드-아웃 합성(TBIO)과 같은 당업계에 공지된 프로토콜을 사용하여 함께 결합될 수 있다.
더 큰 이중 가닥 DNA 단편을 합성하는 다른 방법은 상위-가닥 PCR(TSP)을 통해 더 작은 올리고뉴클레오타이드를 조합하는 것이다. TSP의 한 방법에서, 전장의 원하는 생성물을 형성하도록 결합되어질 더 작은 올리고뉴클레오타이드의 세트는 40-200개 염기 길이이고 적어도 약 15-20개 염기만큼 서로 중첩된다. 실제적인 목적을 위해, 중첩 영역은 올리고뉴클레오타이드의 특정 어닐링을 보장할 만큼 충분히 길어야 하고 사용된 반응 온도에서 어닐링하기에 충분한 높은 용융 온도(Tm)를 가져야 한다. 중첩은 소정의 올리고뉴클레오타이드가 인접한 올리고뉴클레오타이드에 의해 완전히 중첩되는 지점까지 연장될 수 있다. 중첩의 양은 최종 생성물의 품질에 영향을 미치지 않는 것으로 보인다. 어셈블리의 첫 번째 및 마지막 올리고뉴클레오타이드 빌딩 블록은 포워드 및 리버스 증폭 프라이머에 대한 결합 위치를 포함해야 한다. 한 실시태양에서, 첫 번째 및 마지막 올리고뉴클레오타이드의 최종 말단 서열은 보편적 프라이머의 사용을 허용하도록 상보성의 동일한 서열을 포함한다.
피루베이트
카복실라제
변형
피루베이트 카복실라제는 피루베이트 카복실라제를 암호화하는 뉴클레오타이드 서열을 포함하는 핵산 단편을 함유하는 발현 벡터로부터 숙주 세포에서 발현될 수 있다. 대안적으로, 피루베이트 카복실라제를 암호화하는 뉴클레오타이드 서열을 포함하는 핵산 단편은 숙주의 염색체에 통합될 수 있다. 숙주 세포에 대해 이종성 또는 내인성이든 핵산 서열은, 예를 들어, 상동성 재조합을 사용하여 박테리아 염색체에 도입될 수 있다. 먼저, 관심 유전자 및 약물 내성 마커를 암호화하는 유전자는 관심 유전자가 삽입될 염색체의 영역과 상동성인 DNA 조각을 함유하는 플라스미드에 삽입된다. 다음으로, 이 재조합 DNA가 박테리아에 도입되고, 관심 유전자 및 약물 내성 마커를 함유하는 DNA 단편이 원하는 위치에서 염색체로 재조합된 클론이 선택된다. 유전자 및 약물 내성 마커는 임의의 클로닝 벡터로부터 제조된 선형화된 DNA 조각으로서 또는 박테리아 숙주에서 복제할 수 없는 특수한 재조합 자살 벡터의 일부로서 형질 전환을 통해 박테리아에 도입될 수 있다. 선형화된 DNA의 경우, recD- 숙주가 사용되어 원하는 재조합체가 수득되는 빈도를 증가시킬 수 있다. 이어서, 클론은 삽입 영역에 걸쳐 DNA를 증폭시키는 PCR 및 프라이머를 사용하여 확인된다. 비 재조합 클론의 PCR 생성물은 크기가 더 작고 삽입 이벤트가 발생하는 염색체 영역만을 포함하는 반면, 재조합 클론의 PCR 생성물은 크기가 더 크고 염색체 영역 + 삽입된 유전자 및 약물 내성의 영역을 함유할 것이다.
한 바람직한 실시태양에서, 숙주 세포, 바람직하게는 대장균, C. 글루타미쿰, B. 플라범 또는 B. 락토페르멘텀은 피루베이트 카복실라제 유전자, 바람직하게는 R. 에틸리 또는 P. 플루오레센스로부터 단리된 유전자, 더욱 바람직하게는 R. 에틸리로부터 단리된 pyc 유전자를 포함하는 핵산 단편으로 형질 전환되어, 유전자가 숙주 세포에서 전사되고 발현되어 필적할만한 야생형 세포와 비교하여, 옥살로아세테이트의 생산을 증가시키고, 결과적으로 관심 하류 대사산물의 생산을 증가시킨다.
본 발명의 대사적으로 조작된 세포는 피루베이트 카복실라제를 과발현한다. 다른 방식으로 말하면, 대사적으로 조작된 세포는 필적할만한 야생형 세포에서 발현된 피루베이트 카복실라제의 수준보다 높은 수준으로 피루베이트 카복실라제를 발현한다. 이러한 비교는 당업자에 의해 임의의 여러 방식으로 이루어질 수 있으며 필적할만한 성장 조건하에서 수행된다. 예를 들어, 피루베이트 카복실라제 활성은 페인 및 모리스의 방법을 사용하여 정량화되고 비교될 수 있다(J. Gen. Microbiol., 59, 97-101 (1969)). 피루베이트 카복실라제를 과발현하는 대사적으로 조작된 세포는 이 분석에서 야생형 세포보다 더 큰 활성을 생성할 것이다. 추가로, 또는 대안적으로, 피루베이트 카복실라제의 양은 세포로부터 단백질 추출물을 제조하고, 이를 SDS-PAGE에 적용하여, 이를 웨스턴 블롯으로 옮긴 다음, 웨스턴 블롯 상에서 바이오티닐화된 단백질을 가시화하기 위해, 예를 들어, 피어스 케미칼 컴퍼니(Rockford, Ill.), 시그마 케미칼 컴퍼니(St. Louis, Mo.) 또는 베링거 만하임(Indianapolis, Ind.)으로부터 구입한 검출 키트를 사용하여 바이오티닐화된 피루베이트 카복실라제 단백질을 검출함으로써 정량화하고 비교될 수 있다. 일부 적합한 숙주 세포에서, 조작되지 않은 야생형 세포에서 피루베이트 카복실라제 발현은 검출 가능한 수준 미만일 수 있다.
gdh
,
asd
,
dapB
및/또는
ddh
유전자를 포함하는 라이브러리의 생성
일부 실시태양에서, 본 발명은 숙주 유기체의 gdh, asd, dapB 또는 ddh 유전자를 포함하는 DNA 절편을 삽입 및/또는 교체 및/또는 결실하는 것을 교시한다. 일부 양태에서, 본 발명에 교시된 방법은 숙주 유기체의 게놈 속에 포함될 수 있는 관심 올리고뉴클레오타이드(즉, gdh, asd, dapB 및/또는 ddh 절편)를 제조하는 것을 포함한다. 일부 실시태양에서, 본 발명의 gdh, asd, dapB 및/또는 ddh DNA 절편은 공지된 주형으로부터의 복제 또는 절단, 돌연변이 또는 DNA 합성을 포함하여 당업계에 공지된 임의의 방법을 통해 얻을 수 있다. 일부 실시태양에서, 본 발명은 DNA 서열(예를 들어, GeneArt™, GeneMaker™, GenScript™, Anagen™, Blue Heron™, Entelechon™, GeNOsys, Inc., 또는 Qiagen™)을 생산하기 위한 구입가능한 유전자 합성 생성물과 양립 가능하다.
일부 실시태양에서, gdh, asd, dapB 및/또는 ddh DNA 절편은 숙주 유기체의 선택된 DNA 영역에 하나 이상의 글루코오스 gdh, asd, dapB 및/또는 ddh DNA 절편을 포함시키도록(예를 들어, 하나 이상의 유용한 글루타메이트 탈수소 효소, 아스파르테이트 세미데하이드 탈수소 효소, 다이하이드로피콜리네이트 환원 효소 및/또는 meso-다이아미노피멜레이트 탈수소 효소 활성을 첨가하여) 디자인된다. 특정 실시태양에서, 선택된 DNA 영역은 중성 통합 부위이다. 다른 실시태양에서, gdh, asd, dapB 및/또는 ddh DNA 절편은 숙주 유기체의 DNA로부터 하나 이상의 천연 gdh, asd, dapB 및/또는 ddh 유전자를 제거하도록(예를 들어, 천연 글루타메이트 탈수소 효소, 아스파르테이트 세미알데하이드 탈수소 효소, 다이하이드로피콜리네이트 환원 효소 및/또는 meso-다이아미노피멜레이트 탈수소 효소 활성을 제거하도록) 디자인된다.
일부 실시태양에서, 본 발명의 방법에서 사용된 gdh, asd, dapB 및/또는 ddh 유전자는 당업계에 공지된 효소적 또는 화학적 합성 방법 중 임의의 방법을 사용하여 올리고뉴클레오타이드로서 여러 단계로 합성될 수 있다. 올리고뉴클레오타이드는 제어된 공극 유리(CPG), 폴리스티렌 비드 또는 CPG를 함유할 수 있는 열가소성 폴리머로 구성된 막과 같은 고체 지지체 상에서 합성될 수 있다. 올리고뉴클레오타이드는 미세유체역학 또는 둘 다의 조합을 제공하는 공지된 기술을 사용하여 병렬 마이크로스케일로 어레이 상에서 합성될 수 있다.
어레이 상에 또는 미세유체역학을 통한 합성은 더욱 낮은 시약 사용을 통해 비용을 감소시킴으로써 통상적인 고체 지지체 합성에 비해 이점을 제공한다. 유전자 합성에 필요한 규모는 작아서, 어레이 또는 미세유체역학을 통해 합성된 올리고뉴클레오타이드 생성물의 규모가 허용 가능하다. 그러나, 합성된 올리고뉴클레오타이드는 고체 지지체 합성을 사용할 때보다 품질이 떨어진다.
1980년대에 처음으로 기술되었기 때문에 종래의 4단계 포스포아미다이트 화학에서 많은 발전이 이루어져왔다(예를 들어, Sierzchala, et al. J. Am. Chem . Soc., 125, 13427-13441 (2003) using peroxy deprotection; Hayakawa et al., U.S. Pat. No. 6,040,439 for alternative protecting groups; Azhayev et al, Tetrahedron 57, 4977-4986 (2001) for universal supports; Kozlov et al., Nucleosides, Nucleotides, and Nucleic Acids, 24 (5-7), 1037-1041 (2005) for improved synthesis of longer oligonucleotides through the use of large-pore CPG; and Damha et al., NAR , 18, 3813-3821 (1990) for improved derivatization 참조)
합성 유형에 관계없이, 생성된 올리고뉴클레오타이드는 더욱 긴 올리고뉴클레오타이드(즉, gdh, asd, dapB 및/또는 ddh 유전자)를 위한 더 작은 빌딩 블록을 형성할 수 있다. 일부 실시태양에서, 더 작은 올리고뉴클레오타이드는 폴리머라제 연쇄 조립(PCA), 리가아제 연쇄 반응(LCR) 및 열역학적으로 균형 잡힌 인사이드-아웃 합성(TBIO)과 같은 당업계에 공지된 프로토콜을 사용하여 함께 결합될 수 있다.
더 큰 이중 가닥 DNA 단편을 합성하는 다른 방법은 상위-가닥 PCR(TSP)을 통해 더 작은 올리고뉴클레오타이드를 조합하는 것이다. TSP의 한 방법에서, 전장의 원하는 생성물을 형성하도록 결합되어질 더 작은 올리고뉴클레오타이드의 세트는 40-200개 염기 길이이고 적어도 약 15-20개 염기만큼 서로 중첩된다. 실제적인 목적을 위해, 중첩 영역은 올리고뉴클레오타이드의 특정 어닐링을 보장할 만큼 충분히 길어야 하고 사용된 반응 온도에서 어닐링하기에 충분한 높은 용융 온도(Tm)를 가져야 한다. 중첩은 소정의 올리고뉴클레오타이드가 인접한 올리고뉴클레오타이드에 의해 완전히 중첩되는 지점까지 연장될 수 있다. 중첩의 양은 최종 생성물의 품질에 영향을 미치지 않는 것으로 보인다. 어셈블리의 첫 번째 및 마지막 올리고뉴클레오타이드 빌딩 블록은 포워드 및 리버스 증폭 프라이머에 대한 결합 위치를 포함해야 한다. 한 실시태양에서, 첫 번째 및 마지막 올리고뉴클레오타이드의 최종 말단 서열은 보편적 프라이머의 사용을 허용하도록 상보성의 동일한 서열을 포함한다.
트레오닌
알돌라제
(
TA
) 유전자를 포함하는 라이브러리의 생성
일부 실시태양에서, 본 발명은 숙주 유기체의 TA 유전자를 포함하는 DNA 절편을 삽입 및/또는 교체 및/또는 결실하는 것을 교시한다. 일부 양태에서, 본 발명에 교시된 방법은 숙주 유기체의 게놈 속에 포함될 수 있는 관심 올리고뉴클레오타이드(즉, TA 절편)를 제조하는 것을 포함한다. 일부 실시태양에서, 본 발명의 TA DNA 절편은 공지된 주형으로부터의 복제 또는 절단, 돌연변이 또는 DNA 합성을 포함하여 당업계에 공지된 임의의 방법을 통해 얻을 수 있다. 일부 실시태양에서, 본 발명은 DNA 서열(예를 들어, GeneArt™, GeneMaker™, GenScript™, Anagen™, Blue Heron™, Entelechon™, GeNOsys, Inc., 또는 Qiagen™)을 생산하기 위한 구입가능한 유전자 합성 생성물과 양립 가능하다.
일부 실시태양에서, TA DNA 절편은 숙주 유기체의 선택된 DNA 영역에 하나 이상의 TA DNA 절편을 포함시키도록(예를 들어, 트레오닌 알돌라제 활성을 갖는 하나 이상의 유용한 유전자를 첨가하여) 디자인된다. 특정 실시태양에서, 선택된 DNA 영역은 중성 통합 부위이다. 다른 실시태양에서, TA DNA 절편은 숙주 유기체의 DNA로부터 하나 이상의 천연 TA 유전자를 제거하도록(예를 들어, 트레오닌 알돌라제 활성을 가진 하나 이상의 유전자를 제거하도록) 디자인된다.
일부 실시태양에서, 본 발명의 방법에서 사용된 TA 유전자는 당업계에 공지된 효소적 또는 화학적 합성 방법 중 임의의 방법을 사용하여 올리고뉴클레오타이드로서 여러 단계로 합성될 수 있다. 올리고뉴클레오타이드는 제어된 공극 유리(CPG), 폴리스티렌 비드 또는 CPG를 함유할 수 있는 열가소성 폴리머로 구성된 막과 같은 고체 지지체 상에서 합성될 수 있다. 올리고뉴클레오타이드는 미세유체역학 또는 둘 다의 조합을 제공하는 공지된 기술을 사용하여 병렬 마이크로스케일로 어레이 상에서 합성될 수 있다.
어레이 상에 또는 미세유체역학을 통한 합성은 더욱 낮은 시약 사용을 통해 비용을 감소시킴으로써 통상적인 고체 지지체 합성에 비해 이점을 제공한다. 유전자 합성에 필요한 규모는 작아서, 어레이 또는 미세유체역학을 통해 합성된 올리고뉴클레오타이드 생성물의 규모가 허용 가능하다. 그러나, 합성된 올리고뉴클레오타이드는 고체 지지체 합성을 사용할 때보다 품질이 떨어진다.
1980년대에 처음으로 기술되었기 때문에 종래의 4단계 포스포아미다이트 화학에서 많은 발전이 이루어져왔다(예를 들어, Sierzchala, et al. J. Am. Chem . Soc., 125, 13427-13441 (2003) using peroxy deprotection; Hayakawa et al., U.S. Pat. No. 6,040,439 for alternative protecting groups; Azhayev et al, Tetrahedron 57, 4977-4986 (2001) for universal supports; Kozlov et al., Nucleosides, Nucleotides, and Nucleic Acids, 24 (5-7), 1037-1041 (2005) for improved synthesis of longer oligonucleotides through the use of large-pore CPG; and Damha et al., NAR , 18, 3813-3821 (1990) for improved derivatization 참조)
합성 유형에 관계없이, 생성된 올리고뉴클레오타이드는 더욱 긴 올리고뉴클레오타이드(즉, TA 유전자)를 위한 더 작은 빌딩 블록을 형성할 수 있다. 일부 실시태양에서, 더 작은 올리고뉴클레오타이드는 폴리머라제 연쇄 조립(PCA), 리가아제 연쇄 반응(LCR) 및 열역학적으로 균형 잡힌 인사이드-아웃 합성(TBIO)과 같은 당업계에 공지된 프로토콜을 사용하여 함께 결합될 수 있다.
더 큰 이중 가닥 DNA 단편을 합성하는 다른 방법은 상위-가닥 PCR(TSP)을 통해 더 작은 올리고뉴클레오타이드를 조합하는 것이다. TSP의 한 방법에서, 전장의 원하는 생성물을 형성하도록 결합되어질 더 작은 올리고뉴클레오타이드의 세트는 40-200개 염기 길이이고 적어도 약 15-20개 염기만큼 서로 중첩된다. 실제적인 목적을 위해, 중첩 영역은 올리고뉴클레오타이드의 특정 어닐링을 보장할 만큼 충분히 길어야 하고 사용된 반응 온도에서 어닐링하기에 충분한 높은 용융 온도(Tm)를 가져야 한다. 중첩은 소정의 올리고뉴클레오타이드가 인접한 올리고뉴클레오타이드에 의해 완전히 중첩되는 지점까지 연장될 수 있다. 중첩의 양은 최종 생성물의 품질에 영향을 미치지 않는 것으로 보인다. 어셈블리의 첫 번째 및 마지막 올리고뉴클레오타이드 빌딩 블록은 포워드 및 리버스 증폭 프라이머에 대한 결합 위치를 포함해야 한다. 한 실시태양에서, 첫 번째 및 마지막 올리고뉴클레오타이드의 최종 말단 서열은 보편적 프라이머의 사용을 허용하도록 상보성의 동일한 서열을 포함한다.
pyc
유전자를 포함하는 라이브러리의 생성
일부 실시태양에서, 본 발명은 숙주 유기체의 pyc 유전자를 포함하는 DNA 절편을 삽입 및/또는 교체 및/또는 결실하는 것을 교시한다. 일부 양태에서, 본 발명에 교시된 방법은 숙주 유기체의 게놈 속에 포함될 수 있는 관심 올리고뉴클레오타이드(즉, pyc 절편)를 제조하는 것을 포함한다. 일부 실시태양에서, 본 발명의 pyc DNA 절편은 공지된 주형으로부터의 복제 또는 절단, 돌연변이 또는 DNA 합성을 포함하여 당업계에 공지된 임의의 방법을 통해 얻을 수 있다. 일부 실시태양에서, 본 발명은 DNA 서열(예를 들어, GeneArt™, GeneMaker™, GenScript™, Anagen™, Blue Heron™, Entelechon™, GeNOsys, Inc., 또는 Qiagen™)을 생산하기 위한 구입가능한 유전자 합성 생성물과 양립 가능하다.
일부 실시태양에서, pyc DNA 절편은 숙주 유기체의 선택된 DNA 영역에 하나 이상의 pyc DNA 절편을 포함시키도록(예를 들어, 트레오닌 알돌라제 활성을 갖는 하나 이상의 유용한 유전자를 첨가하여) 디자인된다. 특정 실시태양에서, 선택된 DNA 영역은 중성 통합 부위이다. 다른 실시태양에서, pyc DNA 절편은 숙주 유기체의 DNA로부터 하나 이상의 천연 pyc 유전자를 제거하도록(예를 들어, 피루베이트 카복실레이트 활성을 갖는 하나 이상의 천연 유전자를 제거하도록) 디자인된다.
일부 실시태양에서, 본 발명의 방법에서 사용된 pyc 유전자는 당업계에 공지된 효소적 또는 화학적 합성 방법 중 임의의 방법을 사용하여 올리고뉴클레오타이드로서 여러 단계로 합성될 수 있다. 올리고뉴클레오타이드는 제어된 공극 유리(CPG), 폴리스티렌 비드 또는 CPG를 함유할 수 있는 열가소성 폴리머로 구성된 막과 같은 고체 지지체 상에서 합성될 수 있다. 올리고뉴클레오타이드는 미세유체역학 또는 둘 다의 조합을 제공하는 공지된 기술을 사용하여 병렬 마이크로스케일로 어레이 상에서 합성될 수 있다.
어레이 상에 또는 미세유체역학을 통한 합성은 더욱 낮은 시약 사용을 통해 비용을 감소시킴으로써 통상적인 고체 지지체 합성에 비해 이점을 제공한다. 유전자 합성에 필요한 규모는 작아서, 어레이 또는 미세유체역학을 통해 합성된 올리고뉴클레오타이드 생성물의 규모가 허용 가능하다. 그러나, 합성된 올리고뉴클레오타이드는 고체 지지체 합성을 사용할 때보다 품질이 떨어진다.
1980년대에 처음으로 기술되었기 때문에 종래의 4단계 포스포아미다이트 화학에서 많은 발전이 이루어져 왔다(예를 들어, Sierzchala, et al. J. Am. Chem . Soc., 125, 13427-13441 (2003) using peroxy deprotection; Hayakawa et al., U.S. Pat. No. 6,040,439 for alternative protecting groups; Azhayev et al, Tetrahedron 57, 4977-4986 (2001) for universal supports; Kozlov et al., Nucleosides, Nucleotides, and Nucleic Acids, 24 (5-7), 1037-1041 (2005) for improved synthesis of longer oligonucleotides through the use of large-pore CPG; and Damha et al., NAR , 18, 3813-3821 (1990) for improved derivatization 참조)
합성 유형에 관계없이, 생성된 올리고뉴클레오타이드는 더욱 긴 올리고뉴클레오타이드(즉, pyc 유전자)를 위한 더 작은 빌딩 블록을 형성할 수 있다. 일부 실시태양에서, 더 작은 올리고뉴클레오타이드는 폴리머라제 연쇄 조립(PCA), 리가아제 연쇄 반응(LCR) 및 열역학적으로 균형 잡힌 인사이드-아웃 합성(TBIO)과 같은 당업계에 공지된 프로토콜을 사용하여 함께 결합될 수 있다.
더 큰 이중 가닥 DNA 단편을 합성하는 다른 방법은 상위-가닥 PCR(TSP)을 통해 더 작은 올리고뉴클레오타이드를 조합하는 것이다. TSP의 한 방법에서, 전장의 원하는 생성물을 형성하도록 결합되어질 더 작은 올리고뉴클레오타이드의 세트는 40-200개 염기 길이이고 적어도 약 15-20개 염기만큼 서로 중첩된다. 실제적인 목적을 위해, 중첩 영역은 올리고뉴클레오타이드의 특정 어닐링을 보장할 만큼 충분히 길어야 하고 사용된 반응 온도에서 어닐링하기에 충분한 높은 용융 온도(Tm)를 가져야 한다. 중첩은 소정의 올리고뉴클레오타이드가 인접한 올리고뉴클레오타이드에 의해 완전히 중첩되는 지점까지 연장될 수 있다. 중첩의 양은 최종 생성물의 품질에 영향을 미치지 않는 것으로 보인다. 어셈블리의 첫 번째 및 마지막 올리고뉴클레오타이드 빌딩 블록은 포워드 및 리버스 증폭 프라이머에 대한 결합 위치를 포함해야 한다. 한 실시태양에서, 첫 번째 및 마지막 올리고뉴클레오타이드의 최종 말단 서열은 보편적 프라이머의 사용을 허용하도록 상보성의 동일한 서열을 포함한다.
플라스미드 조립/복제
일부 실시태양에서, 본 발명은 숙주 유기체의 게놈에 원하는 gapA 유전자, 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소, 및/또는 gdh, asd, dapB 및/또는 ddh 유전자, 및/또는 TA 유전자, 및/또는 pyc 유전자 DNA 부분을 삽입할 수 있는 벡터를 제조하는 방법을 교시한다. 일부 실시태양에서, 본 발명은 삽입 DNA(예를 들어, gapA 유전자, 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소, 및/또는 gdh, asd, dapB 및/또는 ddh 유전자, 및/또는 TA 유전자, 및/또는 pyc 유전자), 상동성 암 및 적어도 하나의 선택 마커를 포함하는 벡터를 복제하는 방법을 교시한다(도 6 참조).
일부 실시태양에서, 본 발명은 숙주 유기체로의 형질전환에 적합한 임의의 벡터와 양립가능하다. 일부 실시태양에서, 본 발명은 숙주 세포와 양립가능한 셔틀 벡터의 사용을 교시한다. 한 실시태양에서, 본 발명에 제공된 방법에서 사용하기 위한 셔틀 벡터는 대장균 및/또는 코리네박테리움 숙주 세포와 양립가능한 셔틀 벡터이다. 본 발명에 제공된 방법에서 사용하기 위한 셔틀 벡터는 본 발명에 기술된 바와 같은 선택 및/또는 역-선택을 위한 마커를 포함할 수 있다. 표지는 당업계에 공지된 및/또는 본 발명에 제공된 임의의 마커일 수 있다. 셔틀 벡터는 당업계에 공지된 바와 같은 상기 셔틀 벡터의 어셈블리에 유용한 임의의 조절 서열(들) 및/또는 서열을 추가로 포함할 수 있다. 셔틀 벡터는 예를 들어 대장균 또는 C. 글루 타미쿰과 같은 본 발명에 제공된 바와 같은 숙주 세포에서 증식에 필요할 수 있는 임의의 복제 기점을 추가로 포함할 수 있다. 조절 서열은 숙주 세포의 유전자 기구에 의해 사용된 프로모터, 개시, 중지, 신호, 분비 및/또는 종결 서열과 같은 당업계에 공지되거나 본 발명에 제공되는 임의의 조절 서열일 수 있다. 특정 예에서, 표적 DNA는 상업용 벡터(예를 들어, DNA2.0 맞춤형 또는 GATEWAY® 벡터)와 같은 임의의 저장소 또는 카탈로그 생성물로부터 얻을 수 있는 벡터, 구조체 또는 플라스미드에 삽입될 수 있다.
일부 실시태양에서, 본 발명의 조립/복제 방법은 다음 조립 전략: i) II형 통상적인 복제, ii) II형 S-매개 또는 "골든 게이트" 복제(예를 들어, Engler, C., R. Kandzia, and S. Marillonnet. 2008 "A one pot, one step, precision cloning method with high-throughput capability". PLos One 3:e3647; Kotera, I., and T. Nagai. 2008 "A high-throughput and single-tube recombination of crude PCR products using a DNA polymerase inhibitor and type IIS restriction enzyme." J Biotechnol 137:1-7.; Weber, E., R. Gruetzner, S. Werner, C. Engler, and S. Marillonnet. 2011 Assembly of Designer TAL Effectors by Golden Gate Cloning. PloS One 6:e19722 참조), iii) GATEWAY® 재조합, iv) TOPO® 복제, 엑소뉴클레아제 매개 어셈블리(Aslanidis and de Jong 1990. "Ligation-independent cloning of PCR products (LIC-PCR)." Nucleic Acids Research, Vol. 18, No. 20 6069), v) 상동성 재조합, vi) 비 상동성 말단 결합, 또는 이의 조합의 적어도 하나를 사용할 수 있다. 모듈형 IIS 기반 조립 전략은 PCT 공개공보 WO 2011/154147에 개시되며, 그 내용은 본 발명에 참고로 포함된다.
일부 실시태양에서, 본 발명은 하나 이상의 선별 마커를 갖는 벡터의 클로닝을 교시한다. 다양한 선택 마커 유전자는 선택적 압력하에서 원핵생물 세포(예를 들어, 암피실린, 카나마이신, 테트라사이클린, 클로람페니콜, 제오신, 스펙티노마이신/스트렙토마이신) 또는 진핵생물 세포(예컨대, 제네티신, 네오마이신, 하이그로마이신, 푸로마이신, 블라스티시딘, 제오신)에서 선택을 위한 항생제 저항을 암호화하는 것이 당업계에 주지되어 있다. 다른 마커 시스템은 성공적으로 형질유도된 숙주 세포에서 발현된 녹색 또는 적색 형광 단백질과 같은 X-gal 또는 형광 리포터(fluorescent reporter)의 존재하에서 양성 클론을 선택하기 위해 박테리아에서 사용된 주지된 청색/백색 선별 시스템과 같은 원하거나 원하지 않는 세포의 선별 및 확인을 허용한다. 대다수가 원핵생물 시스템에서만 기능하는 선택 마커의 또 다른 부류는 생산자 세포를 죽이는 독성 유전자 생성물을 발현하는 "사멸 유전자"라고도하는 역 선택가능한 마커 유전자에 관한 것이다. 이러한 유전자의 예는 sacB, rpsL (strA), tetAR, pheS, thyA, gata-1 또는 ccdB를 포함하며, 그 기능은 (Reyrat et al. 1998 "Counterselectable Markers: Untapped Tools for Bacterial Genetics and Pathogenesis." Infect Immun. 66(9): 4011-4017)에 설명된다.
일부 실시태양에서, 표적 DNA 절편이 복제되는 벡터는 프로모터 폴리뉴클레오타이드를 포함한다. 프로모터 폴리뉴클레오타이드는 숙주 미생물에서 gapA, 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소, 및/또는 gdh, asd, dapB 및/또는 ddh, 및/또는 TA 및/또는 pyc를 과발현 또는 과발현하는데 사용될 수 있다.
일부 실시태양에서, 이종 gapA 유전자 및/또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 및/또는 하나 이상의 gdh, asd, dapB 및 ddh 유전자, 및/또는 TA 유전자, 및/또는 pyc 유전자를 포함하는 각각의 생성된 균주는 본 발명의 하나 이상의 기준(예를 들어, 생체 분자 또는 관심 생성물의 생산성) 하에서 배양되고 분석된다. 각각의 분석된 숙주 균주로부터의 데이터는 특정 gapA 유전자, 또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 또는 gdh, asd, dapB 및/또는 ddh 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자 또는 gapA/니코틴아마이드 뉴클레오타이드 수소전달 효소/gdh, asd, dapB 및/또는 ddh 유전자/TA/pyc 조합과 연관/상관되거나 추후 사용을 위해 기록된다. 따라서, 본 발명은 gapA 유전자, 또는 니코틴아마이드 뉴클레오타이드 수소전달 효소 유전자, 또는 gdh, asd, dapB 및/또는 ddh 유전자 및/또는 TA 유전자, 및/또는 pyc 유전자 또는 gapA/니코틴아마이드 뉴클레오타이드 수소전달 효소/gdh, asd, dapB 및/또는 ddh/TA/pyc 유전자 조합의 효과 또는 임의의 수의 관심 유전적 또는 표현형적 특성을 식별하는 크고 높은 주석이 달린 유전자 다양성 라이브러리/저장소의 생성을 가능하게 한다.
일부 실시태양에서, 다양성 풀 내의 균주는 "표준 균주"를 참조하여 결정된다. 일부 실시태양에서, 표준 균주는 야생형 균주이다. 다른 실시태양에서, 표준 균주는 임의의 게놈 조작을 받기 전에 원래의 산업용 균주이다. 표준 균주는 실무자에 의해 정의될 수 있으며 원래의 야생형 균주 또는 원래의 산업용 균주일 필요는 없다. 기본 균주는 단순히 "기본", "표준" 또는 원래의 유전자 배경으로 간주 될 수 있는 것의 대표이며, 이로 인해 상기 표준 균주로부터 유도되거나 개발된 후속 균주는 비교될 것이다.
염두에 두어야 할 개념은 부모 균주 및 기준 균주의 차이점이다. 부모 균주는 돌연변이유발의 현재 라운드에 사용된 배경이다. 기준 균주는 특히 플레이트 간의 비교를 용이하게 하기 위해 모든 플레이트에서 사용되는 대조군 균주이며 일반적으로 위에 언급된 "기본 균주"이다. 그러나 기본 균주(예를 들어, 야생형 또는 산업용 균주는 전체 성능을 벤치 마크하는 데 사용된다)는 소정의 라운드의 균주 개량에서 돌연변이유발 표적이라는 의미에서 반드시 "기본"이 아니기 때문에, 보다 설명적인 용어는 "기준 균주"이다.
요약하면, 기본/기준 균주는 제조된 균주의 성능을 벤치 마크하는 데 사용되는 반면, 부모 균주는 관련 유전자 배경에서 특이적 유전자 변화의 성능을 벤치 마크하는 데 사용된다.
일부 실시태양에서, 본 발명은 시작 및/또는 정지 코돈 변이체에 의해 gapA 유전자 및/또는 니코틴아미드 뉴클레오타이드 수소전달 효소, 및/또는 gdh, asd, dapB 및/또는 ddh 유전자, 및/또는 TA 유전자 및/또는 pyc 유전자를 복제하기 위한 벡터의 사용을 교시하며 복제된 유전자가 시작 및/또는 정지 코돈 변이체를 이용한다. 예를 들어, 에스. 크레비시애(S. cerevisiae) 및 포유동물에 대한 전형적인 정지 코돈은 각각 UAA 및 UGA이다. 단핵구 식물의 전형적인 정지 코돈은 TGA(UGA)인 반면, 곤충과 대장균은 보통 TAA(UAA)를 정지 코돈으로 사용한다(Dalphin et al.(1996) Nucl. Acids Res. 24: 216-218).
코돈 최적화
한 실시태양에서, 제공된 본 발명의 방법은 숙주 유기체에 의해 발현된 하나 이상의 유전자를 최적화하는 코돈을 포함한다. 다양한 숙주에서 발현을 향상시키기 위해 코돈을 최적화하는 방법은 당해 분야에 공지되어 있고, 문헌에 기술된다(그 전체가 본 발명에 참조로 포함된 미국 특허출원 공개공보 제2007/0292918호 참조). 특정 원핵 또는 진핵 숙주(Murray et al. (1989) Nucl. Acids Res.17 : 477-508 참조)에 의해 선호되는 코돈을 함유하는 최적화된 암호화 서열은, 예를 들어, 번역 속도를 증가시키거나 또는 최적화되지 않은 서열로부터 생산된 전사체와 비교할 때, 더 긴 반감기와 같은 바람직한 특성을 갖는 재조합 RNA 전사체를 생성하도록 제조된다.
일부 실시태양에서, 본 발명에 제공된 gapA 유전자/니코틴아미드 뉴클레오타이드 수소전달 효소/gdh, asd, dapB 및/또는 ddh 유전자/TA 유전자/pyc 유전자 또는 폴리뉴클레오타이드는, 예를 들어, 대장균 및/또는 C. 글루타미쿰과 같이 본 발명에 제공된 숙주 세포에서 번역을 위해 최적화된 분자 코돈을 포함한다. 유전자 또는 폴리펩타이드는 단리, 합성 또는 재조합 핵산일 수 있다. 코돈 최적화 gapA 유전자/니코틴아미드 뉴클레오타이드 수소전달 효소/gdh, asd, dapB 및/또는 ddh 유전자/TA 유전자/pyc 유전자 또는 폴리뉴클레오타이드는 SEQ ID NO: 1-50, 67-74, 79-231, 및 232로부터 선택될 수 있다. 본 발명에 제공된 코돈 최적화 gapA 유전자/니코틴아미드 뉴클레오타이드 수소전달 효소/gdh, asd, dapB 및/또는 ddh 유전자/TA 유전자/pyc 유전자 또는 폴리뉴클레오타이드는, 예를 들어, GenScript's OptimumGeneTM 유전자 디지인 시스템 또는 DNA2.0 GeneGPS® 발현 최적화 기술과 같은 코돈 최적화 폴리뉴클레오타이드를 생성하기 위한 당업계에 공지된 방법을 사용하여 생성될 수 있다.
단백질 발현은 전사, mRNA 프로세싱 및 안정성 및 번역 개시에 영향을 미치는 인자를 포함하는 다수의 인자에 의해 지배된다. 따라서 최적화는 임의의 특정 유전자의 많은 서열 특징의 임의의 것을 처리할 수 있다. 특정 예로서, 드문 코돈 유도 번역 일시 중지는 감소된 단백질 발현을 초래할 수 있다. 드문 코돈 유도 번역 일시 중지는 숙주 유기체에서 거의 사용되지 않는 관심 폴리뉴클레오타이드에서 코돈의 존재를 포함하며 이용가능한 tRNA 풀에서의 희소성 때문에 단백질 번역에 부정적인 영향을 미칠 수 있다.
대안적인 번역 개시는 또한 감소된 이종 단백질 발현을 초래할 수 있다. 대안적인 번역 개시는 의도하지 않게 리보솜 결합 부위(RBS)로서 기능할 수 있는 모티프를 함유하는 합성 폴리뉴클레오타이드 서열을 포함할 수 있다. 이런 위치는 유전자 내부 위치로부터 잘린 단백질의 번역을 시작할 수 있다. 정제 과정에서 제거하기 어려울 수 있는 절단된 단백질을 생산할 가능성을 줄이는 한 가지 방법은 최적화된 폴리뉴클레오타이드 서열로부터 추정된 내부 RBS 서열을 제거하는 것을 포함한다.
반복체-유도된 폴리머라제의 슬리파지(slippage)는 감소된 이종 단백질 발현을 초래할 수 있다. 반복체-유도된 폴리머라제의 슬리파지는 프레임변이 돌연변이를 초래할 수 있는 DNA 폴리머라제의 슬리파지 또는 스터터링(stuttering)을 유발하는 것으로 밝혀진 뉴클레오타이드 서열 반복을 필요로 한다. 이러한 반복체는 또한 RNA 폴리머라제의 슬리파지를 유발할 수 있다. 높은 G+C 함량 편향을 갖는 유기체에서, G 또는 C 뉴클레오타이드 반복체로 구성된 더 높은 등급의 반복체가 존재할 수 있다. 따라서, RNA 폴리머라제의 슬리파지를 유도하는 가능성을 줄이는 한 가지 방법은 G 또는 C 뉴클레오타이드의 연장된 반복체를 변경하는 것을 포함한다.
2차 구조를 간섭하면 또한 감소된 이종 단백질 발현을 초래할 수 있다. 2차 구조는 RBS 서열 또는 개시 코돈을 격리할 수 있고 단백질 발현의 감소와 상관관계가있다. 스템루프 구조는 또한 전사 일시 중지 및 약화에 관여할 수 있다. 최적화 된 폴리뉴클레오타이드 서열은 RBS 내에 최소 2차 구조 및 뉴클레오타이드 서열의 유전자 암호화 영역을 함유하여 개량된 전사 및 번역을 가능하게 한다.
예를 들어, 최적화 공정은 숙주에 의해 발현되는 원하는 아미노산 서열을 확인함으로써 시작될 수 있다. 아미노산 서열로부터 후보 폴리뉴클레오타이드 또는 DNA 서열이 디자인될 수 있다. 합성 DNA 서열의 디자인 동안, 코돈 사용의 빈도는 숙주 발현 유기체의 코돈 사용과 비교될 수 있고 드문 숙주 코돈은 합성 서열로부터 제거될 수 있다. 또한, 합성 후보 DNA 서열은 바람직하지 않은 효소 제한 부위를 제거하고 원하는 신호 서열, 링커 또는 비번역 영역을 추가 또는 제거하기 위해 변형될 수 있다. 합성 DNA 서열은 G/C 반복체 및 스템-루프 구조와 같이 번역 과정을 방해할 수 있는 2차 구조의 존재에 대해 분석될 수 있다.
숙주 세포의 형질전환
일부 실시태양에서, 본 발명의 벡터는 형질전환, 형질감염, 형질도입, 바이러스 감염, 유전자 총 또는 Ti 매개 유전자 전달을 포함하는 임의의 다양한 기술을 사용하여 숙주 세포에 도입될 수 있다(Davis, L., Dibner, M., Battey, I. 1986 "Basic Methods in Molecular Biology"). 형질전환의 다른 방법은 예를 들어, 아세트산 리튬 형질전환 및 전기천공을 포함한다. 예를 들어, Gietz et al., Nucleic Acids Res. 27:69-74 (1992); Ito et al., J. Bacterol. 153:163-168 (1983); and Becker and Guarente, Methods in Enzymology 194:182-187 (1991) 참조. 일부 실시태양에서, 형질전환된 숙주 세포는 재조합 숙주 균주로 불린다.
일부 실시태양에서, 본 발명은 본 발명의 96-웰 플레이트 로봇 플랫폼 및 액체 처리 기계를 사용하는 세포의 고 처리량 형질전환을 교시한다.
일부 실시태양에서, 본 발명은 상기한 바와 같이 하나 이상의 선택 마커로 형질전환된 세포를 선별하는 것을 교시한다. 이런 한 실시태양에서, 카나마이신 내성 마커(KanR)를 포함하는 벡터로 형질전환된 세포는 유효량의 카나마이신 항생제를 함유하는 배지 상에 덮인다. 카나마이신-레이스(kanamycin-laced) 배지에서 볼 수 있는 콜로니 형성 단위는 벡터 카세트를 게놈에 통합시킨 것으로 추정된다. 원하는 서열의 삽입은 PCR, 제한 효소 분석 및/또는 관련 삽입 위치의 서열화를 통해 확인될 수 있다.
선택된 서열의
루핑
아웃
일부 실시태양에서, 본 발명은 숙주 유기체로부터 DNA의 선택된 영역을 루핑 아웃하는 방법을 교시한다. 루핑 아웃 방법은 Nakashima et al. 2014 "Bacterial Cellular Engineering by Genome Editing and Gene Silencing." Int. J. Mol. Sci. 15(2), 2773-2793에 기술될 수 있다. 일부 실시태양에서, 본 발명은 양성 형질전환 체로부터 선택 마커를 루핑 아웃하는 것을 교시한다. 루핑 아웃 결실 기술은 당해 분야에 공지되어 있으며 (Tear et al. 2014 "Excision of Unstable Artificial Gene-Specific inverted Repeats Mediates Scar-Free Gene Deletions in Escherichia coli." Appl. Biochem. Biotech. 175:1858-1867)에 기술된다. 본 발명에서 제공된 방법에 사용된 루핑 아웃 방법은 단일-교차 상동성 재조합 또는 이중-교차 상동성 재조합을 사용하여 수행될 수 있다. 특정 실시태양에서, 본 발명에 기술된 바와 같이 선택된 영역을 루핑하는 것은 본 발명에 기술된 바와 같이 단일-교차 상동성 재조합을 사용하는 것을 수반할 수 있다.
먼저, 루프 아웃 벡터가 (예를 들어 상동성 재조합, CRISPR 또는 다른 유전자 편집 기술을 통해) 숙주 유기체의 게놈 내의 선택된 표적 영역 내로 삽입된다. 한 실시태양에서, 단일-교차 상동성 재조합이 도 6에 도시된 바와 같은 원형 플라스미드 또는 벡터를 루프-인시키기 위해 원형 플라스미드 또는 벡터와 숙주 세포 게놈 사이에 사용된다. 삽입된 벡터는 현존하는 또는 숙주 서열 근처에 도입된 직접 반복체인 서열을 갖도록 디자인되어, 직접 반복체가 루핑 및 결실이 예정된 DNA의 영역에 인접하게 된다. 일단 삽입되면, 루프 아웃 플라스미드 또는 벡터는 선택 영역의 결실을 위해 역 선택될 수 있다(예를 들어, 도 7 참조; 선택 유전자에 대한 내성의 결핍).
숙주 미생물
본 발명에 개시된 게놈 조작 방법은 산업용 미생물 세포 배양물로 예시되지만, 원하는 형질이 유전자 돌연변이 집단에서 확인될 수 있는 임의의 유기체에 적용 가능하다.
따라서, 본 발명에 사용된 용어 "미생물"은 광범위하게 해석되어야 한다. 미생물은 두 가지 원핵생물 영역인 박테리아와 고세균뿐만 아니라 특정 진핵생물 균류와 원생 생물을 포함한다. 그러나, 특정 양태에서, 곤충, 식물 및 동물과 같은 "보다 높은" 진핵생물이 본 발명에 교시된 방법에서 이용될 수 있다.
적합한 숙주 세포는 박테리아 세포, 조류 세포, 식물 세포, 균류 세포, 곤충 세포 및 포유류 세포를 포함하나 이에 제한되지 않는다. 한 예시적인 실시태양에서, 적합한 숙주 세포는 대장균(예를 들어, 매사추세츠주, 입스위치의 뉴잉글랜드 바이오랩스(New England BioLabs)로부터 구입가능한 SHuffle™ competent E. coli)을 포함한다.
본 발명의 다른 적합한 숙주 유기체는 코리네박테리움 속의 미생물을 포함한다. 일부 실시태양에서, 바람직한 코리네박테리움 균주/종은 기탁된 유형 균주가 DSM44549인 C. 에피센스(C. efficiens), 기탁된 유형 균주가 ATCC13032인 C. 글루타미쿰(C. glutamicum) 및 기탁된 유형 균주가 ATCC6871인 C. 암모니아게네스(C. ammoniagenes)를 포함한다. 일부 실시태양에서, 본 발명의 바람직한 숙주는 C. 글루타미쿰이다. 일부 실시태양에서, 본 발명은 시겔라 플렉네리, 시겔라 디센테리에, 시겔라 보이디 및 시겔라 소네이를 포함하는 시겔라의 숙주 세포를 교시한다.
특히 코리네박테리움 글루타미쿰 종의 코리네박테리움 속의 적합한 숙주 균주는 특히 공지된 야생형 균주이다: 코리네박테리움 글루타미쿰 ATCC13032, 코리네박테리움 아세토글루타미쿰 ATCC15806, 코리네박테리움 아세토아시도필럼 ATCC13870, 코리네박테리움 멜라세콜라 ATCC17965, 코리네박테리움 써모아미노게 네스 FERM BP-1539, 브레비박테리움 플라붐 ATCC14067, 브레비박테리움 락토페르멘툼 ATCC13869 및 브레비박테리움 다이바리카툼 ATCC14020; 및 예를 들어, L-리신 생산 균주로부터 제조된 L-아미노산 생산 돌연변이체 또는 균주: 코리네박테리움 글루타미쿰 FERM-P 1709, 브레비박테리움 플라붐 FERM P-1708, 브레비박테리움 락토페르멘툼 FERM P 1712, 코리네박테리움 글루타미쿰 FERM-P 6463, 코리네박테리움 글루타미쿰 FERM-P 6464, 코리네박테리움 글루타미쿰 DM58-1, 코리네박테리움 글루타미쿰 DG52-5, 코리네박테리움 글루타미쿰 DSM5714 및 코리네박테리움 글루타미 쿰 DSM12866.
용어 "마이크로콕쿠스 글루타미쿠스"는 C. 글루타미쿰에도 사용되어왔다. C. 에피시엔스 종의 일부 대표는 또한 예를 들어, 균주 FERM BP-1539와 같은 종래 기술에서 C. 써모아미노게네스로 불려왔다.
일부 실시태양에서, 본 발명의 숙주 세포는 진핵생물 세포이다. 적합한 진핵생물 숙주 세포는 곰팡이 세포, 조류 세포, 곤충 세포, 동물 세포 및 식물 세포를 포함하나 이에 제한되지 않는다. 적합한 균류 숙주 세포는 아스코미코타(Ascomycota), 담자균(Basidiomycota), 신생 균주(Deuteromycota), 접합체 진균 (Zygomycota), 진균 무균(Fungi imperfecti)을 포함하나 이에 제한되지 않는다. 특정 바람직한 숙주 세포는 효모 세포 및 사상 균류 세포를 포함한다. 적합한 사상 균류 숙주 세포는 예를 들어 유마이코티나(Eumycotina) 및 오마이코타(Oomycota) 세분의 임의의 섬유상 형태를 포함한다(예를 들어, 참조로 본 발명에 포함된 Hawksworth et al., In Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK 참조). 사상 균류는 키틴, 셀룰로오스 및 다른 복합 다당류로 구성된 세포벽을 갖는 식물성 균사체를 특징으로 한다. 사상 균류 숙주 세포는 효모와 형태학적으로 구별된다.
특정 예시적이고 비 제한적인 실시태양에서, 사상 균류 숙주 세포는 아칠라(Achlya), 아크레모늄(Acremonium), 아스퍼길루스(Aspergillus), 아우레오바시듐(Aureobasidium), 브제르칸데라(Bjerkandera), 세리포리오프시스(Ceriporiopsis), 세팔로스포리움(Cephalosporium), 크리소스포리움(Chrysosporium), 코칠리오볼루스(Cochliobolus), 코리나스쿠스(Corynascus), 크리포넥트리아(Cryphonectria), 크립토콕쿠스(Cryptococcus), 코프리누스(Coprinus), 코리오루스(Coriolus), 디플로디아(Diplodia), 엔도디스(Endothis), 프사리움(Fusarium), 지베렐라(Gibberella), 글리오클라디움(Gliocladium), 휴미콜라(Humicola), 하이포크레아(Hypocrea), 마이셀리오프토라(Myceliophthora)(예를 들어, Myceliophthora thermophila), 무코르(Mucor), 네우로스포라(Neurospora), 페니실리움(Penicillium), 포도스포라(Podospora), 필레비아(Phlebia), 피로마이세스(Piromyces), 피리쿨라리아(Pyricularia), 리히조무코르(Rhizomucor), 리히조푸스(Rhizopus), 스키조필룸(Schizophyllum), 스키탈리듐(Scytalidium), 스포로트리츔(Sporotrichum), 탈라로마이세스(Talaromyces), 써모아스쿠스(Thermoascus), 티에라비아(Thielavia), 트라마테스(Tramates), 폴리포클라듐(Tolypocladium), 트라이코데마(Trichoderma), 베르티실리움(Verticillium), 볼바리엘라(Volvariella), 또는 텔레오모르프(teleomorphs), 또는 아나모르프(anamorphs), 이의 동의어 또는 분류학적 동등물의 종의 세포일 수 있다.
적합한 효모 숙주 세포는 칸디다(Candida), 한세누라(Hansenula), 사카로마이세스(Saccharomyces), 스키조사카로마이세스(Schizosaccharomyces,), 피키아(Pichia), 클루베로마이세스(Kluyveromyces) 및 야로비아(Yarrowia)를 포함하나 이에 제한되지 않는다. 일부 실시태양에서, 효모 세포는 한세누라 폴리모르파(Hansenula polymorpha), 사카로마이세스 세레비시애(Saccharomyces cerevisiae), 사카로마이세스 칼스베르젠시스(Saccaromyces carlsbergensis), 사카로마이세스 다이아스타티쿠스(Saccharomyces diastaticus), 사카로마이세스 노르벤시스(Saccharomyces norbensis), 사카로마이세스 클루이베리(Saccharomyces kluyveri), 스키조사카로마이세스 폼베(Schizosaccharomyces pombe), 피치아 파스토리스(Pichia pastoris), 피치아 핀란디카(Pichia finlandica), 피치아 트레할로필라(Pichia trehalophila), 피치아 코다매(Pichia kodamae), 피치아 멤브라네파시엔스(Pichia membranaefaciens), 피치아 오프니티애(Pichia opuntiae), 피치아 써모톨레란스(Pichia thermotolerans), 피치아 살릭타리아(Pichia salictaria), 피치아 쿠에르쿰(Pichia quercuum), 피치아 피제페리(Pichia pijperi), 피치아 스티피티스(Pichia stipitis), 피치아 메타놀리카(Pichia methanolica), 피치아 안구스타(Pichia angusta), 클루이베로마이세스 락티스(Kluyveromyces lactis), 칸디다 일비칸스(Candida albicans), 또는 야로비아 리폴리티카(Yarrowia lipolytica)를 포함하나 이에 제한되지 않는다.
특정 실시태양에서, 숙주 세포는 클라미도모나스(Chlamydomonas)(예를 들어, C. 레인하르티(C. Reinhardtii)) 및 포름디움(Phormidium)과 같은 조류(P. sp. ATCC29409)이다.
다른 실시태양에서, 숙주 세포는 원핵생물 세포이다. 적합한 원핵생물 세포는 그람 양성, 그람 음성 및 그람 가변 박테리아 세포를 포함한다. 상기 숙주 세포는 아그로박테리움(Agrobacterium), 알리시로바실러스(Alicyclobacillus), 아나베아나(Anabaena), 아나시스티스(Anacystis), 아시네토박터(Acinetobacter), 아시도써무스(Acidothermus), 아르쓰로박터(Arthrobacter), 아조박터(Azobacter), 바실러스(Bacillus), 비피도박테리움(Bifidobacterium), 브레비박테리움(Brevibacterium), 부티리비브리오(Butyrivibrio), 부케네라(Buchnera), 캠프스트리스(Campestris), 캠필로박터(Camplyobacter), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 크로마티움(Chromatium), 코프로콕쿠스(Coprococcus), 에스체리치아(Escherichia), 엔테로콕쿠스(Enterococcus), 엔테로박터(Enterobacter), 에르위니아(Erwinia), 푸소박테리움(Fusobacterium), 파에칼리박테리움(Faecalibacterium), 프란시셀라(Francisella), 플라보박테리움(Flavobacterium), 게오바실루스(Geobacillus), 해모필루스(Haemophilus), 헬리코박터(Helicobacter), 클레브시엘라(Klebsiella), 락토바실루스(Lactobacillus), 락토콕커스(Lactococcus), 일로박터(Ilyobacter), 마이크로콕쿠스(Micrococcus), 마이크로박테리움(Microbacterium), 메소르히조비움(Mesorhizobium), 메틸로박테리움(Methylobacterium), 마이코박테리움(Mycobacterium), 네이세리아(Neisseria), 판도에아(Pantoea), 수도모나스(Pseudomonas), 프로클로로콕쿠스(Prochlorococcus), 로도박터(Rhodobacter), 로도수도모나스(Rhodopseudomonas), 로세부리아(Roseburia), 로도스피릴룸(Rhodospirillum), 로도콕쿠스(Rhodococcus), 세네데스무스(Scenedesmus), 스트렙토마이세스(Streptomyces), 스트렙토콕쿠스(Streptococcus), 시네콕쿠스(Synecoccus), 사카로모노스포라(Saccharomonospora), 사카로폴리스포라(Saccharopolyspora), 스타필로콕쿠스(Staphylococcus), 세라티아(Serratia), 살모넬라(Salmonella), 시겔라(Shigella), 써모아나에로박테리움(Thermoanaerobacterium), 트로페리마(Tropheryma), 툴라렌시스(Tularensis), 테메쿨라(Temecula), 써모시네코콕쿠스(Thermosynechococcus), 써모콕쿠스(Thermococcus), 우레아플라즈마(Ureaplasma), 잔토모나스(Xanthomonas), 자일렐라(Xylella), 예르시니아(Yersinia) 및 지모모나스(Zymomonas)의 종일 수 있으나 이에 제한되지 않는다. 일부 실시태양에서, 숙주 세포는 코리네박테리움 글루타미쿰이다.
일부 실시태양에서, 숙주 균주는 박테리아 숙주 균주이다. 일부 실시태양에서, 박테리아 숙주 균주는 산업용 균주이다. 수많은 박테리아 산업용 균주가 알려져 있고 본 발명에 기술된 방법 및 조성물에 적합하다.
일부 실시태양에서, 박테리아 숙주 세포는 아그로박테리움 종(예를 들어, A. radiobacter, A. rhizogenes, A. rubi), 아테로박터 종(예를 들어, A. aurescens, A. citreus, A. globformis, A. hydrocarboglutamicus, A. mysorens, A. nicotianae, A. paraffineus, A. protophonniae, A. roseoparaffinus, A. sulfureus, A. ureafaciens), 바실루스 종(예를 들어, B. thuringiensis, B. anthracis, B. megaterium, B. subtilis, B. lentus, B. circulars, B. pumilus, B. lautus, B. coagulans, B. brevis, B. firmus, B. alkaophius, B. licheniformis, B. clausii, B. stearothermophilus, B. halodurans 및 B. amyloliquefaciens)이다. 특정 실시태양에서, 숙주 세포는 B. 서브틸리스, B. 푸밀루스, B. 리체니포르미스, B. 메가테륨, B. 클라우실, B. 스테아로써모필루스, 및B. 아밀로리퀴에파시엔스를 포함하나 이에 제한되지 않는 산업용 바실루스일 것이다. 일부 실시태양에서, 숙주 세포는 산업용 클로스트리디움 종(예를 들어, C. acetobutylicum, C. tetani E88, C. lituseburense, C. saccharobutylicum, C. perfringens, C. beijerinckii)일 것이다. 일부 실시태양에서, 숙주 세포는 산업용 코리네박테리움 종(예를 들어, C. glutamicum, C. acetoacidophilum)일 것이다. 일부 실시태양에서, 숙주 세포는 산업용 에스체리아치아 종(예를 들어, E. coli)일 것이다. 일부 실시태양에서, 숙주 세포는 산업용 에르위니아 종(예를 들어, E. uredovora, E. carotovora, E. ananas, E. herbicola, E. punctata, E. terreus)일 것이다. 일부 실시태양에서, 숙주 세포는 산업용 판토에아 종(예를 들어, P. citrea, P. agglomerans)일 것이다. 일부 실시태양에서, 숙주 세포는 산업용 수도모나스 종(예를 들어, P. putida, P. aeruginosa, P. mevalonii)일 것이다. 일부 실시태양에서, 숙주 세포는 산업용 스트렙토콕쿠스 종(예를 들어, S. ambofaciens, S. achromogenes, S. avermitilis, S. coelicolor, S. aureofaciens, S. aureus, S. fungicidicus, S. griseus, S. lividans)일 것이다. 일부 실시태양에서, 숙주 세포는 자이모모나스 종(예를 들어, Z. mobilis, Z. lipolytica) 등일 것이다.
다양한 실시태양에서, 원핵생물 및 진핵생물 균주 모두를 포함하는 본 발명의 실시에 사용될 수 있는 균주는 American Type Culture Collection(ATCC), Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH(DSM), Centraalbureau Voor Schimmelcultures(CBS), 및 Agricultural Research Service Patent Culture Collection, Northern Regional Research Center(NRRL)와 같은 여러 배양 컬렉션으로부터 대중에게 쉽게 접근될 수 있다.
일부 실시태양에서, 본 발명의 방법은 다세포 유기체에도 적용 가능하다. 예를 들어, 플랫폼은 작물의 성능을 개량시키는데 사용될 수 있다. 유기체는 그라미니애(Gramineae), 페투코이데애(Fetucoideae), 포아코이데애(Poacoideae), 아그로스티스(Agrostis), 필레움(Phleum), 닥틸리스(Dactylis), 소르검(Sorgum), 세타리아(Setaria), 제아(Zea), 오리자(Oryza), 트라이티쿰(Triticum), 세칼레(Secale), 아베나(Avena), 호르데움(Hordeum), 삭카룸(Saccharum), 포아(Poa), 페스투카(Festuca), 스테노타프룸(Stenotaphrum), 사이노돈(Cynodon), 코익스(Coix), 올리레애(Olyreae), 파레애(Phareae), 콤포시태(Compositae) 또는 레구미노새(Leguminosae)와 같은 복수의 식물을 포함할 수 있다. 예를 들어, 식물은 옥수수, 쌀, 콩, 면화, 밀, 호밀, 귀리, 보리, 완두콩, 콩, 렌즈콩, 땅콩, 참마콩, 동부, 벨벳콩, 클로버, 알팔파, 자주개자리, 루핀, 살갈퀴, 등나무, 완두콩, 사탕수수, 수수, 해바라기, 카놀라 등일 수 있다. 마찬가지로, 유기체는 비-인간 포유류, 어류, 곤충 등과 같은 복수의 동물을 포함할 수 있다.
대장균 숙주 세포
전술한 바와 같이, 대장균 숙주 세포는 본 발명의 실시태양에서 사용될 수 있다.
예를 들어, 대장균 종의 적합한 숙주 균주는 장독소성 대장균(ETEC), 장병원성 대장균(EPEC), 장내습성 대장균(EIEC), 장출혈성 대장균(EHEC), 요로병원성 대장균(UPEC), 베로톡신생성 대장균, 대장균 O157:H7, 대장균 O104:H4, 대장균 O121, 대장균 O104:H21, 대장균 K1 및 대장균 NC101을 포함한다. 일부 실시태양에서, 본 발명은 대장균 K12, 대장균 B 및 대장균 C의 게놈 조작을 교시한다.
일부 실시태양에서, 본 발명은 대장균 균주 NCTC 12757, NCTC 12779, NCTC 12790, NCTC 12796, NCTC 12811, ATCC 11229, ATCC 25922, ATCC 8739, DSM 30083, BC 5849, BC 8265, BC 8267, BC 8268, BC 8270, BC 8271, BC 8272, BC 8273, BC 8276, BC 8277, BC 8278, BC 8279, BC 8312, BC 8317, BC 8319, BC 8320, BC 8321, BC 8322, BC 8326, BC 8327, BC 8331, BC 8335, BC 8338, BC 8341, BC 8344, BC 8345, BC 8346, BC 8347, BC 8348, BC 8863, 및 BC 8864의 게놈 조작을 교시한다.
일부 실시태양에서, 본 발명은 균주 BC 4734 (O26:H11), BC 4735 (O157:H-), BC 4736, BC 4737 (n.d.), BC 4738 (O157:H7), BC 4945 (O26:H-), BC 4946 (O157:H7), BC 4947 (O111:H-), BC 4948 (O157:H), BC 4949 (O5), BC 5579 (O157:H7), BC 5580 (O157:H7), BC 5582 (O3:H), BC 5643 (O2:H5), BC 5644 (O128), BC 5645 (O55:H-), BC 5646 (O69:H-), BC 5647 (O101:H9), BC 5648 (O103:H2), BC 5850 (O22:H8), BC 5851 (O55:H-), BC 5852 (O48:H21), BC 5853 (O26:H11), BC 5854 (O157:H7), BC 5855 (O157:H-), BC 5856 (O26:H-), BC 5857 (O103:H2), BC 5858 (O26:H11), BC 7832, BC 7833 (O raw form:H-), BC 7834 (ONT:H-), BC 7835 (O103:H2), BC 7836 (O57:H-), BC 7837 (ONT:H-), BC 7838, BC 7839 (O128:H2), BC 7840 (O157:H-), BC 7841 (O23:H-), BC 7842 (O157:H-), BC 7843, BC 7844 (O157:H-), BC 7845 (O103:H2), BC 7846 (O26:H11), BC 7847 (O145:H-), BC 7848 (O157:H-), BC 7849 (O156:H47), BC 7850, BC 7851 (O157:H-), BC 7852 (O157:H-), BC 7853 (O5:H-), BC 7854 (O157:H7), BC 7855 (O157:H7), BC 7856 (O26:H-), BC 7857, BC 7858, BC 7859 (ONT:H-), BC 7860 (O129:H-), BC 7861, BC 7862 (O103:H2), BC 7863, BC 7864 (O raw form:H-), BC 7865, BC 7866 (O26:H-), BC 7867 (O raw form:H-), BC 7868, BC 7869 (ONT:H-), BC 7870 (O113:H-), BC 7871 (ONT:H-), BC 7872 (ONT:H-), BC 7873, BC 7874 (O raw form:H-), BC 7875 (O157:H-), BC 7876 (O111:H-), BC 7877 (O146:H21), BC 7878 (O145:H-), BC 7879 (O22:H8), BC 7880 (O raw form:H-), BC 7881 (O145:H-), BC 8275 (O157:H7), BC 8318 (O55:K-:H-), BC 8325 (O157:H7), 및 BC 8332 (ONT), BC 8333와 같은 베로톡신생성 대장균(VTEC)을 교시한다.
일부 실시태양에서, 본 발명은 균주 BC 8246 (O152:K-:H-), BC 8247 (O124:K(72):H3), BC 8248 (O124), BC 8249 (O112), BC 8250 (O136:K(78):H-), BC 8251 (O124:H-), BC 8252 (O144:K-:H-), BC 8253 (O143:K:H-), BC 8254 (O143), BC 8255 (O112), BC 8256 (O28a.e), BC 8257 (O124:H-), BC 8258 (O143), BC 8259 (O167:K-:H5), BC 8260 (O128a.c.:H35), BC 8261 (O164), BC 8262 (O164:K-:H-), BC 8263 (O164), 및 BC 8264 (O124)와 같은 장침입성 대장균(EIEC)을 교시한다.
일부 실시태양에서, 본 발명은 균주 BC 5581 (O78:H11), BC 5583 (O2:K1), BC 8221 (O118), BC 8222 (O148:H-), BC 8223 (O111), BC 8224 (O110:H-), BC 8225 (O148), BC 8226 (O118), BC 8227 (O25:H42), BC 8229 (O6), BC 8231 (O153:H45), BC 8232 (O9), BC 8233 (O148), BC 8234 (O128), BC 8235 (O118), BC 8237 (O111), BC 8238 (O110:H17), BC 8240 (O148), BC 8241 (O6H16), BC 8243 (O153), BC 8244 (O15:H-), BC 8245 (O20), BC 8269 (O125a.c:H-), BC 8313 (O6:H6), BC 8315 (O153:H-), BC 8329, BC 8334 (O118:H12), 및 BC 8339와 같은 장독소성 대장균(ETEC)을 교시한다.
일부 실시태양에서, 본 발명은 균주 BC 7567 (O86), BC 7568 (O128), BC 7571 (O114), BC 7572 (O119), BC 7573 (O125), BC 7574 (O124), BC 7576 (O127a), BC 7577 (O126), BC 7578 (O142), BC 7579 (O26), BC 7580 (OK26), BC 7581 (O142), BC 7582 (O55), BC 7583 (O158), BC 7584 (O-), BC 7585 (O-), BC 7586 (O-), BC 8330, BC 8550 (O26), BC 8551 (O55), BC 8552 (O158), BC 8553 (O26), BC 8554 (O158), BC 8555 (O86), BC 8556 (O128), BC 8557 (OK26), BC 8558 (O55), BC 8560 (O158), BC 8561 (O158), BC 8562 (O114), BC 8563 (O86), BC 8564 (O128), BC 8565 (O158), BC 8566 (O158), BC 8567 (O158), BC 8568 (O111), BC 8569 (O128), BC 8570 (O114), BC 8571 (O128), BC 8572 (O128), BC 8573 (O158), BC 8574 (O158), BC 8575 (O158), BC 8576 (O158), BC 8577 (O158), BC 8578 (O158), BC 8581 (O158), BC 8583 (O128), BC 8584 (O158), BC 8585 (O128), BC 8586 (O158), BC 8588 (O26), BC 8589 (O86), BC 8590 (O127), BC 8591 (O128), BC 8592 (O114), BC 8593 (O114), BC 8594 (O114), BC 8595 (O125), BC 8596 (O158), BC 8597 (O26), BC 8598 (O26), BC 8599 (O158), BC 8605 (O158), BC 8606 (O158), BC 8607 (O158), BC 8608 (O128), BC 8609 (O55), BC 8610 (O114), BC 8615 (O158), BC 8616 (O128), BC 8617 (O26), BC 8618 (O86), BC 8619, BC 8620, BC 8621, BC 8622, BC 8623, BC 8624 (O158), 및 BC 8625 (O158)과 같은 장병원성 대장균(EPEC)을 교시한다.
세포 발효 및 배양물
본 발명에 기술된 바와 같이 유전자 조작된 것들을 포함하는 본 발명의 미생물은 임의의 바람직한 생합성 반응 또는 선택을 위해 적절하게 변형된 통상적인 영양 배지에서 배양될 수 있다. 일부 실시태양에서, 본 발명은 프로모터를 활성화시키기 위해 배지를 유도하는 배양을 교시한다. 일부 실시태양에서, 본 발명은 형질전환체(예를 들어, 항생제)의 선택 제제 또는 억제 조건(예를 들어, 높은 에탄올 조건)하에 성장하기에 적합한 유기체의 선택 제제를 포함하는 선택 제제를 갖는 배지를 교시한다. 일부 실시태양에서, 본 발명은 세포 성장을 위해 최적화된 배지에서 세포 배양물을 성장시키는 것을 교시한다. 다른 실시태양에서, 본 발명은, 예를 들어, 글루코오스의 신진대사 처리로부터 유래된 관심 생성물 또는 생분자와 같이 생산 수율에 최적화된 배지에서 세포 배양물을 성장시키는 것을 교시한다. 일부 실시태양에서, 본 발명은 세포 성장을 유도할 수 있는 배지에서 배양 물을 배양하는 것을 교시하며 최종 생성물 생산을 위한 필수 전구체(예를 들어, 에탄올 생산을 위한 높은 수준의 당)를 포함한다.
본 발명에 제공된 방법에 의해 생성된 생체 분자 또는 관심 생성물은 글루코스로부터 생성된 임의의 상업적 생성물일 수 있다. 일부 경우에, 생체 분자 또는 관심 생성물은 소분자, 아미노산, 유기산 또는 알코올이다. 아미노산은 제한 없이 티로신, 페닐알라닌, 트립토판, 아스파르트산, 아스파라긴, 트레오닌, 이소류신, 메티오닌 또는 리신일 수 있다. 특정 실시태양에서, 아미노산은 리신이다. 특정 양태에서, 리신은 L-리신이다. 유기산은 제한 없이 숙시네이트, 락테이트 또는 피루베이트일 수 있다. 알코올은, 제한 없이, 에탄올 또는 아이소부탄올일 수 있다.
온도, pH 등과 같은 배양 조건은 발현을 위해 선택된 숙주 세포와 함께 사용하기에 적합한 것들이며, 당업자에게 명백할 것이다. 언급한 바와 같이, 박테리아, 식물, 동물(포유류 포함) 및 고세균 기원 세포를 포함하는 많은 세포의 배양 및 생산에 대한 많은 참고 자료가 이용될 수 있다. 예를 들어, Sambrook, Ausubel (all supra), as well as Berger, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 Academic Press, Inc., San Diego, CA; and Freshney (1994) Culture of Animal Cells, a Manual of Basic Technique, third edition, Wiley-Liss, New York and the references cited therein; Doyle and Griffiths (1997) Mammalian Cell Culture: Essential Techniques John Wiley and Sons, NY; Humason (1979) Animal Tissue Techniques, fourth edition W.H. Freeman and Company; and Ricciardelle et al., (1989) In Vitro Cell Dev. Biol. 25:1016-1024, all of which are incorporated herein by reference. For plant cell culture and regeneration, Payne et al. (1992) Plant Cell and Tissue Culture in Liquid Systems John Wiley & Sons, Inc. New York, N.Y.; Gamborg and Phillips (eds) (1995) Plant Cell, Tissue and Organ Culture; Fundamental Methods Springer Lab Manual, Springer-Verlag (Berlin Heidelberg N.Y.); Jones, ed. (1984) Plant Gene Transfer and Expression Protocols, Humana Press, Totowa, N.J. and Plant Molecular Biology (1993) R. R. D. Croy, Ed. Bios Scientific Publishers, Oxford, U.K. ISBN 0 12 198370 6 참조하고, 이의 전문은 참조로 본 발명에 포함된다. 일반적으로 세포 배양 배지는 Atlas and Parks (eds.) The Handbook of Microbiological Media (1993) CRC Press, Boca Raton, Fla에서 설명되며, 이는 참조로 본 발명에 포함된다. 세포 배양에 대한 추가 정보는 Life Science Research Cell Culture Catalogue from Sigma-Aldrich, Inc (St Louis, Mo.) ("Sigma-LSRCCC") 및, 예를 들어, The Plant Culture Catalogue and supplement also from Sigma-Aldrich, Inc (St Louis, Mo.) ("Sigma-PCCS")와 같은 구입가능한 상업용 논문에서 발견되며, 이의 전부는 참조로 본 발명에 포함된다.
사용될 배양 배지 또는 발효 배지는 적절한 방식으로 각각의 균주의 요구를 충족시켜야한다. 다양한 유기체에 대한 배양 배지에 대한 설명은 American Bacteriology Society (Washington D.C., USA, 1981)의 "General Bacteriology Methods for Manual"에 제공된다. 용어 배양 배지 및 발효 배지는 서로 교환 가능하다.
일부 실시태양에서, 본 발명은 생산된 미생물이 원하는 유기-화학적 화합물을 생산하기 위한, 예를 들어 WO 05/021772에 기술된 바와 같이 연속적으로 또는 배치 공정(배치 배양) 또는 페드 배치(fed-batch) 또는 반복된 페드 배치에서 불연속적으로 배양될 수 있음을 교시한다. 알려진 배양 방법에 관한 일반적인 내용은 Chmiel(Bioprozeβtechnik. 1: Einfuhrung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991))에 의한 교과서 또는 Storhas(Bioreaktoren and periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994))에 의한 교과서에서 이용할 수 있다.
일부 실시태양에서, 본 발명의 세포는 배치 또는 연속 발효 조건하에 성장된다. 고전적인 배치 발효는 폐쇄된 시스템이며, 배지의 조성물은 발효의 시작시에 설정되고 발효 동안 인공적인 변형을 겪지 않는다. 배치 시스템의 변형은 본 발명에서 사용되는 페드 배치 발효이다. 이 변형에서, 기질은 발효가 진행됨에 따라 증분으로 첨가된다. 페드 배치 시스템은 이화생성물 억제가 세포의 신진대사를 억제 할 가능성이 있고 배지에 제한된 양의 기질을 갖는 것이 바람직한 경우에 유용하다. 배치 및 페드 배치 발효는 일반적이고 당업계에 일반적으로 주지되어 있다. 연속 발효는 정의된 발효 배지가 생물 반응기에 연속적으로 첨가되고 동일한 양의 조건 배지가 원하는 단백질의 가공 및 수확을 위해 동시에 제거되는 시스템이다. 일부 실시태양에서, 연속 발효는 일반적으로 세포가 주로 대수기 성장하는 일정한 고밀도로 배양물을 유지시킨다. 일부 실시태양에서, 연속 발효는 일반적으로 정지기 또는 늦은 대수기/정지기 성장시에 배양물을 유지시킨다. 연속 발효 시스템은 정지기 성장 조건을 유지하기 위해 노력한다.
연속 발효 공정을 위한 영양소 및 성장 인자를 조절하는 방법뿐만 아니라 생성물 형성의 속도를 최대화하기 위한 기술은 산업용 미생물학 분야에 잘 알려져 있다.
예를 들어, 본 발명의 배양물에 대한 탄소원의 비 제한적인 목록은 당 및 수화물, 예를 들어 글루코오스, 수크로오스, 락토오스, 프룩토오스, 말토오스, 당밀, 사탕무 또는 사탕수수 가공에 의한 수크로오스-함유 용액, 전분, 전분 가수분해물 및 셀룰로오스; 오일 및 지방, 예를 들어, 대두유, 해바라기유, 땅콩유 및 코코넛 지방; 지방산, 예를 들어 팔미트산, 스테아르산 및 리놀레산; 알코올, 예를 들어 글리세롤, 메탄올 및 에탄올; 및 유기산, 예를 들어 아세트산 또는 젖산을 포함한다.
본 발명의 배양물을 위한 질소 공급원의 비 제한적인 목록은 펩톤, 효모 추출물, 고기 추출물, 맥아 추출물, 옥수수 침지액, 콩가루 및 우레아와 같은 유기 질소 함유 화합물; 또는 황산 암모늄, 염화 암모늄, 인산 암모늄, 탄산 암모늄 및 질산 암모늄과 같은 무기 화합물을 포함한다. 질소원은 개별적으로 또는 혼합물로서 사용될 수 있다.
본 발명의 배양물을 위한 가능한 인 공급원의 비 제한적인 목록은 인산, 인산 이수소 칼륨 또는 인산 수소 이칼륨 또는 상응하는 나트륨 함유 염을 포함한다. 배양 배지는 추가로 성장에 필수적인, 나트륨, 칼륨, 마그네슘, 칼슘 및 철과 같은 금속의 염화물 또는 황산염 형태의 염을 포함한다. 마지막으로, 아미노산, 예를 들어 호모 세린 및 비타민, 예를 들어 티아민, 바이오틴 또는 판토텐산과 같은 필수 성장 인자가 상기 언급된 물질에 추가로 사용될 수 있다.
일부 실시태양에서, 배양물의 pH는 수산화 나트륨, 수산화 칼륨, 암모니아 또는 수성 암모니아; 또는 인산 또는 황산과 같은 산성 화합물을 포함하나 이에 제한되지 않는 임의의 산 또는 염기, 또는 완충 염에 의해 적절한 방식으로 조절될 수 있다. 일부 실시태양에서, pH는 일반적으로 6.0 내지 8.5, 바람직하게는 6.5 내지 8의 값으로 조절된다.
일부 실시태양에서, 본 발명의 배양물은 소포제, 예를 들어 지방산 폴리글리콜 에스터를 포함할 수 있다. 일부 실시태양에서, 본 발명의 배양물은 예를 들어 항생제와 같은 적합한 선택 물질을 첨가함으로써 배양물의 플라스미드를 안정화시키도록 변형된다.
일부 실시태양에서, 배양은 호기성 조건하에 수행된다. 이러한 조건을 유지하기 위해, 예를 들어 공기와 같은 산소 또는 산소 함유 기체 혼합물이 배양물 내로 도입된다. 과산화수소가 풍부한 액체를 사용하는 것도 가능하다. 발효는, 적절한 경우에, 상승된 압력, 예를 들어 0.03 내지 0.2 MPa의 상승된 압력에서 수행된다. 배양의 온도는 통상 20℃ 내지 45℃, 바람직하게는 25℃ 내지 40℃, 특히 바람직하게는 30℃ 내지 37℃이다. 배치 또는 페드 배치 공정에서, 배양은 바람직하게는 회수하고자 하는 관심의 목적하는 생성물(예를 들어, 유기-화학적 화합물)의 양이 형성될 때까지 계속된다. 이 목표는 일반적으로 10시간 내지 160시간 이내에 달성될 수 있다. 연속 공정에서, 더 긴 배양 시간이 가능하다. 미생물의 활성은 발효 배지 및/또는 상기 미생물의 세포에서 관심 생성물의 농축(축적)을 초래한다.
일부 실시태양에서, 배양은 혐기성 조건하에 수행된다.
선별
일부 실시태양에서, 본 발명은 고 처리량 초기 선별을 교시한다. 다른 실시태양에서, 본 발명은 또한 성능 데이터의 견고한 탱크-기반 검증을 교시한다.
일부 실시태양에서, 고 처리량 선별 공정은 생물 반응기에서의 균주의 성능을 예측하도록 디자인된다. 상기한 바와 같이, 배양 조건은 생물체에 적합하고 생물 반응기 조건을 반영하도록 선택된다. 개별 콜로니를 집어 96웰 플레이트로 옮기고 적당한 시간 동안 배양한다. 이어서 세포를 종자 배양 또는 생산 배양을 위해 새로운 96웰 플레이트로 옮긴다. 배양액은 다양한 시간 동안 배양되어, 다중 측정이 실행될 수 있다. 다중 측정은 생성물, 바이 매스 또는 생물 반응기에서 균주의 성능을 예측하는 다른 특성의 측정을 포함할 수 있다. 고 처리량의 배양 결과는 생물 반응기 성능을 예측하는데 사용된다.
일부 실시태양에서, 탱크-기반 성능 검증은 고 처리량 선별에 의해 분리된 균주의 성능을 확인하기 위해 사용된다. 발효 공정/조건은 상업용 반응기 조건을 모사하도록 디자인된다. 생산성 또는 수율과 같은 관련 균주 성능 특성에 대한 벤치 스케일 발효 반응기를 사용하여 후보 균주를 선별한다.
생성물 회수 및 정량화
관심 생성물의 생산을 위한 선별 방법은 당업자에게 공지되어 있으며 본 명세서 전반에 걸쳐 논의된다. 이러한 방법은 본 발명의 균주를 선별할 때 사용될 수 있다. 본 발명에 제공된 방법에 의해 생성된 생체 분자 또는 관심 생성물은 글루코스로부터 생성된 임의의 상업적 생성물일 수 있다. 일부 경우에, 생체 분자 또는 관심 생성물은 아미노산, 유기산 또는 알코올이다. 아미노산은 제한 없이 티로신, 페닐알라닌, 트립토판, 아스파르트산, 아스파라긴, 트레오닌, 이소류신, 메티오닌 또는 리신일 수 있다. 특정 실시태양에서, 아미노산은 리신이다. 특정 양태에서, 리신은 L-리신이다. 유기산은 제한 없이 숙시네이트, 락테이트 또는 피루베이트일 수 있다. 알코올은, 제한 없이, 에탄올 또는 아이소부탄올일 수 있다.
일부 실시태양에서, 본 발명은 비 분비된 세포내 생성물을 생산하도록 디자인된 균주를 개량시키는 방법을 교시한다. 예를 들어, 본 발명은 세포내 효소, 오일, 약제 또는 다른 가치있는 작은 분자 또는 펩타이드를 생성하는 세포 배양물의 견고성, 수율, 효율 또는 전반적인 바람직함을 개선시키는 방법을 교시한다. 비 분비된 세포내 생성물의 회수 또는 분리는 용해 및 본 발명에 기술된 것을 포함하여 당해 분야에 주지된 회수 기술에 의해 달성될 수 있다.
예를 들어, 일부 실시태양에서, 본 발명의 세포는 원심 분리, 여과, 침전 또는 다른 방법에 의해 수확될 수 있다. 이어서, 수확된 세포는 동결-해동 사이클링, 초음파 처리, 기계적 파쇄 또는 세포 용해제의 사용, 또는 당업자에게 공지된 다른 방법을 포함하는 임의의 편리한 방법으로 파괴된다.
관심의 생성된 생성물, 예를 들면, 폴리펩타이드는 당업계에 공지된 다수의 방법 중 임의의 방법에 의해 회수/분리될 수 있으며 임의로 정제될 수 있다. 예를 들어, 생성물 폴리 펩타이드는 원심 분리, 여과, 추출, 분무 건조, 증발, 크로마토 그래피(예를 들어, 이온 교환, 친화성, 소수성 상호작용, 크로마토포커싱 및 크기 배제) 또는 침전을 포함하나 이에 제한되지 않는 통상적인 절차에 의해 영양 배지로부터 분리될 수 있다. 최종적으로, 고성능 액체 크로마토 그래피(HPLC)가 최종 정제 단계에서 사용될 수 있다. (예를 들어, Purification of intracellular protein as described in Parry et al., 2001, Biochem. J.353:117, and Hong et al., 2007, Appl. Microbiol. Biotechnol. 73:1331, 참조, 모두는 참조로 본 발명에 포함된다).
상기한 참조문헌 이외에, 다양한 정제 방법은, 예를 들어, Sandana (1997) Bioseparation of Proteins, Academic Press, Inc.; Bollag et al. (1996) Protein Methods, 2nd Edition, Wiley-Liss, NY; Walker (1996) The Protein Protocols HandbookHumana Press, NJ; Harris and Angal (1990) Protein Purification Applications: A Practical Approach, IRL Press at Oxford, Oxford, England; Harris and Angal Protein Purification Methods: A Practical Approach, IRL Press at Oxford, Oxford, England; Scopes (1993) Protein Purification: Principles and Practice 3rd Edition, Springer Verlag, NY; Janson and Ryden (1998) Protein Purification: Principles, High Resolution Methods and Applications, Second Edition, Wiley-VCH, NY; and Walker (1998) Protein Protocols on CD-ROM, Humana Press, NJ에 개시된 것들을 포함하여 당업계에 주지되어 있으며, 이의 전부는 본 발명에 참조로 포함된다.
일부 실시태양에서, 본 발명은 분비된 생성물을 생산하도록 디자인된 균주를 개량시키는 방법을 교시한다. 예를 들어, 본 발명은 귀중한 작은 분자 또는 펩타이드를 생산하는 세포 배양물의 견고성, 수율, 효율 또는 전반적인 바람직함을 개선시키는 방법을 교시한다.
일부 실시태양에서, 면역학적 방법을 사용하여 본 발명의 세포에 의해 생산된 분비된 또는 분비되지 않은 생성물을 검출 및/또는 정제하는데 사용될 수 있다. 한 예시적 접근법에서, 통상적인 방법을 사용하여 생성물 분자(예를 들어, 인슐린 폴리펩타이드 또는 이의 면역원성 단편에 대해)에 대해 생성된 항체는 비드 상에 고정화되고, 엔도글루카나아제가 결합되고 침전되는 조건하에 세포 배양 배지와 혼합된다. 일부 실시태양에서, 본 발명은 효소-결합 면역흡착 분석법(ELISA)의 사용을 교시한다.
다른 관련 실시태양에서, 면역크로마토그래피가 미국 특허 제5,002,303호, 미국 특허 제5,591,645호, 미국 특허 제4,855,240호, 미국 특허 제4,435,504호, 미국 특허 제4,980,298호 및 Se-Hwan Paek, et al., "Development of rapid One-Step Immunochromatographic assay, Methods", 22, 53-60, 2000에 개시된 바와 같이 사용되며, 이의 각각은 참조로 본 발명에 포함된다. 일반적인 면역크로마토그래피는 2개의 항체를 사용하여 표본을 검출한다. 제 1 항체는 시험 용액 중에 또는 시험 용액을 떨어뜨린 다공성 막으로 제조된 대략 직사각형 형태의 시험편의 말단 부분에 존재한다. 이 항체는 라텍스 입자 또는 금 콜로이드 입자(이 항체는 이하에서 표지 항체로 불릴 것이다)로 표지한다. 떨어뜨린 시험 용액이 검출될 표본을 포함하는 경우, 표지된 항체는 표본을 인식하여 표본과 결합한다. 표본과 표지된 항체의 복합체는 모세관 현상에 의해 여과지로 만들어지고 표지된 항체를 포함하는 말단의 반대편 말단에 부착된 흡수체를 향하여 흐른다. 이 흐름 동안, 표본과 표지 항체의 복합체가 다공질 막의 중간에 존재하는 제 2 항체(이하에서 태핑 항체로 불릴 것이다)에 의해 인식되어 포획되고, 그 결과, 복합체는 가시광 신호로서 다공성 막 상의 검출부 상에 나타내고 검출된다.
일부 실시태양에서, 본 발명의 선별 방법은 측광 검출 기술(흡수, 형광)에 기초한다. 예를 들어, 일부 실시태양에서, 검출은 항체에 결합된 GFP와 같은 형광 단 검출기의 존재에 기초할 수 있다. 다른 실시태양에서, 측광 검출은 세포 배양 물로부터의 원하는 생성물 상의 축적에 기초할 수 있다. 일부 실시태양에서, 생성물은 배양물의 UV 또는 상기 배양물로부터의 추출물을 통해 검출될 수 있다.
일부 실시태양에서, 생성물 회수 방법은 각각의 후보 gapA/수소절달 효소/gdh, asd, dapB 및/또는 ddh 유전자의 성능에 대한 효과의 정량적 측정을 가능하게 한다. 일부 실시태양에서, 생성물 회수 방법은 각각의 후보 gapA/수소절달 효소/gdh, asd, dapB 및/또는 ddh 유전자 조합의 성능에 대한 효과의 정량적 측정을 가능하게 하여, 각각의 비교 및 최적 조합에 대한 선택을 가능하게 한다.
본 발명의 방법 및 유기체를 통해 생성되고 회수된 생성물의 비 제한적인 목록은 표 2에 제공된다.
폴리케타이드 | |||
피크로마이신 | 에리트로마이신 A | 클라리트로마이신 | 아지트로마이신 |
아버멕틴 | 이버멕틴 | 스피노사드 | 젤다나마이신 |
맥베신 | 암포테리신 | 나이스타틴 | 피마리신 |
모넨신 | 독시사이클린 | 불라타신 | 스쿠아모신 |
몰비자린 | 우바리신 | 아노나신 | 타크롤리무스 |
시롤리무스 | 라디시콜 | 로바스타틴 | 디스코더몰리드 |
아플라톡신 | 우스닌산 | 안트라마이신 | |
카테킨 | |||
에피카테킨 | 에피갈로카테킨 | 에피카테킨 갈레이트 | 에피갈로카테킨 갈레이트 |
에피아프젤레친 | 피세티니돌 | 구이보우리티니돌 | 메스퀴톨 |
로빈에티니돌 | |||
테르펜 | |||
프레놀 | 아이소발레르산 | 게라니올 | 테르피네올 |
리모넨 | 마이르센 | 리날로울 | 피넨 |
휴뮬렌 | 파네센 | 파네솔 | 카페스톨 |
카올 | 셈브렌 | 탁사다이엔 | 레티놀 |
레티날 | 피톨 | 제라닐파네솔 | 스쿠알렌 |
라노스테롤 | 사이클로아테놀 | 콜레스테롤 | 페루지카다이올 |
테트라프레닐커쿠멘 |
리코펜 | 감마-카로틴 | 알파-및 베타-카로틴 |
3-옥소-α-이온올 | 7,8-다이하이드로이오논 | 메가스티그만-3,9-다이올 | 3-옥소-7,8-다이하이드로-α-이온올 |
지방산 | |||
미리스톨레산 | 팔미톨레산 | 사피엔산 | 올레산 |
엘라이드산 | 바센산 | 리놀레산 | 리노에라이드산 |
α-리놀렌산 | 아라키돈산 | 에이코사펜타엔산 | 에루크산 |
도코사헥사엔산 | 카프릴산 | 카프르산 | 라우르산 |
미리스트산 | 팔미트산 | 스테아르산 | 아라키드산 |
베헨산 | 리그노세르산 | 세로산 | |
아미노산 또는 이의 유도체 | |||
S-아데노실 메티오닌 | 아이소류신 | 류신 | 발린 |
메티오닌 | 트레오닌 | 리신 | 글루타메이트 |
트립토판 | 티로신 | L-리신 | 페닐알라닌 |
코리스메이트 경로 화합물 | |||
인돌 | 코리스메이트 | 시키메이트 | 살리실산 |
2,3-다이하이드록시벤조산 | 파라-아미노벤조에이트 | 비타민 k | 엽산 |
알칼로이드 | |||
에페드린 | 호모하링토닌 | 갈란타민 | 빈카민 |
퀴니딘 | 모르핀 | 첼에르트린 | 피페린 |
카페인 | 니코틴 | 테오브로민 | 퀴닌 |
당업자는 본 발명의 방법이 관심 있는 임의의 바람직한 생체분자 생성물을 생성하는 숙주 세포와 양립 가능하다는 것을 인식할 것이다.
선택 기준 및 목표
이형 gapA/니코틴아마이드 뉴클레오타이드 수소전달 효소/트레오닌 알돌라제/피루베이트 카복실라제/gdh, asd, dapB 및/또는 ddh를 발현하는 숙주 세포의 특정 균주의 선택은 특정 목표에 기초할 수 있다. 본 발명은 임의의 프로그램 목표를 충족시키도록 조정될 수 있다. 예를 들어, 일부 실시태양에서, 프로그램 목표는 즉각적인 시간 제한 없이 반응의 단일 배치 수율을 최대화하는 것일 수 있다. 다른 실시태양에서, 프로그램 목표는 특정 생성물을 생산하거나 특정 비율의 생성물을 생산하기 위해 생합성 수율을 재조정하는 것일 수 있다. 일부 실시태양에서, 프로그램 목표는 수율, 역가, 생산성, 부산물 제거, 공정 이상현상에 대한 내성, 최적 성장 온도 및 성장율과 같은 성능 특성을 개선하는 것일 수 있다. 일부 실시태양에서, 프로그램 목표는 미생물에 의해 생성된 관심 생성물의 부피 생산성, 비 생산성, 수율 또는 역가에 의해 측정된 바와 같이 개량된 숙주 성능이다.
다른 실시태양에서, 프로그램 목표는 투입량 당 최종 생성물 수율(예를 들어, 수크로오스의 파운드당 생산된 총 에탄올의 양)의 관점에서 상업적 균주의 합성 효율을 최적화하는 것일 수 있다. 다른 실시태양에서, 프로그램 목표는 예를 들어 배치 완료율 또는 연속 배양 시스템에서의 수율로 측정된 합성 속도를 최적화하는 것일 수 있다. 한 실시태양에서, 프로그램 목표는 생체 분자 또는 관심 생성물의 최종 생성물 수율 및/또는 생성률을 최적화는 것이다. 본 발명에 제공된 방법에 의해 생성된 생체 분자 또는 관심 생성물은 글루코스로부터 생성된 임의의 상업적 생성물일 수 있다. 일부 경우에, 생체 분자 또는 관심 생성물은 소분자, 아미노산, 유기산 또는 알코올이다. 아미노산은 제한 없이 티로신, 페닐알라닌, 트립토판, 아스파르트산, 아스파라긴, 트레오닌, 이소류신, 메티오닌 또는 리신일 수 있다. 특정 실시태양에서, 아미노산은 리신이다. 특정 양태에서, 리신은 L-리신이다. 유기산은 제한 없이 숙시네이트, 락테이트 또는 피루베이트일 수 있다. 알코올은, 제한 없이, 에탄올 또는 아이소부탄올일 수 있다.
당업자는 특정 프로젝트 목표를 달성하기 위해 어떻게 균주 선택 기준을 맞춤하는지를 인식할 것이다. 예를 들어, 반응 포화시 균주의 단일 배치 최대 수율의 선택은 높은 단일 배치 수율을 가진 균주를 확인하는데 적절할 수 있다. 다양한 온도 및 조건에서 수율의 일관성에 기반한 선택은 견고성 및 신뢰성이 증가된 균주를 확인하는데 적절할 수 있다.
일부 실시태양에서, 초기 단계 및 탱크-기반 검증에 대한 선택 기준은 동일할 것이다. 다른 실시태양에서, 탱크-기반 선택은 추가 및/또는 상이한 선택 기준하에서 작동할 수 있다.
서열화
일부 실시태양에서, 본 발명은 본 발명에 기재된 유기체의 전체-게놈 서열화를 교시한다. 다른 실시태양에서, 본 발명은 또한 본 발명의 방법에 대한 품질 조절제로서의 플라스미드, PCR 생성물 및 다른 올리고의 서열화를 교시한다. 크고 작은 프로젝트를 위한 서열화 방법은 당업자에게 주지되어 있다.
일부 실시태양에서, 핵산을 서열화하는 임의의 고 처리량 기술이 본 발명의 방법에 사용될 수 있다. 일부 실시태양에서, 본 발명은 전체 게놈 서열화를 교시한다. 다른 실시태양에서, 본 발명은 유전자 변이를 확인하기위한 앰플리콘 서열화 울트라 딥 서열화를 교시한다. 일부 실시태양에서, 본 발명은 또한 태그맨테이션 (tagmentation)을 포함하는 신규한 라이브러리 제조 방법을 교시한다(WO/2016/073690 참조). DNA 서열화 기술은 표지된 터미네이터 또는 프라이머를 사용하는 고전적인 다이데옥시 서열화 반응(생거 방법) 및 슬라브 또는 모세관에서의 겔 분리; 가역적으로 종결된 표지된 뉴클레오타이드를 사용하는 합성에 의한 서열화, 열서열화; 454 서열화; 표지된 올리고뉴클레오타이드 프로브의 라이브러리에 대한 대립유전자 특이적 혼성화; 결찰이 뒤따르는 표지된 클론의 라이브러리에 대한 대립유전자 특이적 혼성화를 사용하는 합성에 의한 서열화; 중합 단계 동안 표지된 뉴클레오타이드의 혼입의 실시간 모니터링; 폴로니 서열화; 및 SOLiD 서열화를 포함한다.
본 발명의 한 양태에서, 연속적으로 서열화되는 고체 표면상의 개별 분자를 공간적으로 분리하는 단계를 포함하는 서열화의 고 처리량 방법이 사용된다. 이런 고체 표면은 비다공성 표면(솔렉사 서열화, 예를 들어, Bentley et al, Nature, 456: 53-59 (2008) or Complete Genomics sequencing, e.g. Drmanac et al, Science, 327: 78-81 (2010)), 비드-또는 입자 결합 주형을 포함할 수 있는 웰의 어레이(454 서열화, 예를 들어, Margulies et al, Nature, 437: 376-380 (2005) or Ion Torrent sequencing, U.S. patent publication 2010/0137143 or 2010/0304982), 미세가공된 막(SMRT 서열화, 예를 들어, Eid et al, Science, 323: 133-138 (2009)) 또는 비드 어레이(폴로니 서열화 또는 SOLiD 서열화, 예를 들어, Kim et al, Science, 316: 1481-1414 (2007))를 포함할 수 있다.
다른 실시태양에서, 본 발명의 방법은 분리된 분자가 고체 표면상에서 공간적으로 분리되기 전 또는 후에 분리된 분자를 증폭시키는 단계를 포함한다. 사전 증폭은 에멀젼 PCR, 또는 롤링 써클 증폭과 같은 에멀젼-기초 증폭을 포함할 수 있다. 또한 벤틀레이 등(상기) 및 제조사 지시(예를 들어, TruSeq™ Sample Preparation Kit and Data Sheet, Illumina, Inc., San Diego, Calif., 2010); 및 추가로 참조로 포함된 다음 참조문헌: 미국 특허 제6,090,592호; 제6,300,070호; 제7,115,400호; 및 EP0972081B1에 기술된 바와 같이 개별 주형 분자가 고체 표면상에서 공간적으로 분리된 후, 브리지 PCR에 의해 평행하게 증촉되어 분리된 클론 집단 또는 클러스터를 형성한 후, 서열화되는 솔렉사-기초 서열화가 교시된다.
한 실시태양에서, 고체 표면상에 배치되고 증폭된 개개의 분자는 cm2당 적어도 105 클러스터의 밀도; 또는 cm2당 적어도 5x105의 밀도; 또는 cm2당 적어도 106 클러스터의 밀도로 클러스터를 형성한다. 한 실시태양에서, 상대적으로 높은 에러율을 갖는 서열화 화학 반응이 사용된다. 이런 실시태양에서, 이런 화학 반응에 의해 생산된 평균 품질 점수는 서열 판독 길이의 단조 감소 함수이다. 한 실시태양에서, 이런 감소는 서열 판독의 0.5%가 1-75 위치에서 적어도 하나의 오차를 가지며; 서열 판독의 1%가 76-100 위치에서 적어도 하나의 오차를 가지며; 서열 판독의 2%가 101-125 위치에서 적어도 하나의 오차를 갖는 것에 상응한다.
서열
변이체
일부 실시태양에서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다. 일부 실시태양에서, 변형된 GAPDH는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300의 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다. 일부 실시태양에서, gdh 효소의 변이체는 SEQ ID NO: 42 또는 44의 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다. 일부 실시태양에서, asd의 변이체 효소는 SEQ ID NO: 30 또는 40의 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다. 일부 실시태양에서, dapB의 변이체 효소는 SEQ ID NO: 46 또는 48의 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다. 일부 실시태양에서, ddh의 변이체 효소는 SEQ ID NO: 4의 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다.
일부 실시태양에서, gdh의 변이체 효소는 SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182의 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다. 일부 실시태양에서, asd의 변이체 효소는 SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130의 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다. 일부 실시태양에서, 트레오닌 알돌라제의 변이체 효소는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 및 232의 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다.
일부 실시태양에서, 다중-카피 복제 플라스미드는 SEQ ID NO: 77의 thrABC 오퍼론 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 서열을 포함한다. 일부 실시태양에서, gapA의 재조합 단백질 단편은 SEQ ID NO: 233, 234, 235, 236 및 298로 이루어진 그룹으로부터 선택된 아미노산 서열에 대해 적어도 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 100% 서열 동일성을 공유하는 아미노산 서열을 포함한다.
실시예
하기 실시예는 본 발명의 다양한 실시태양을 설명하기 위해 제공되며 어떠한 방식으로든 본 발명을 제한하려는 것은 아니다. 청구항의 범위에 의해 정의된 바와 같이, 본 발명의 취지 내에 포함되는 변경 및 다른 용도는 당업자에 의해 인식될 것이다.
이들 실시예는 NADPH의 이용 가능성에 의해 제한되는 숙주 세포에서 관심 생성물의 생산을 증가시키는 방법을 입증한다. 본 발명의 교시된 방법은 대사 경로에서 NADPH의 이용 가능성에 의존하는 임의의 관심 생성물의 생산을 증가시키기 위해 이용될 수 있다. 예를 들어, 본 발명은 L-리신 또는 L-트레오닌과 같은 아미노산의 생산을 증가시키는 방법을 제공하며, 이는 두 가지 관심 생성물이며, 생산은 세포에서 NADPH의 이용 가능성에 의해 제한된다.
NADPH는 박테리아에서 L-리신 및 L-트레오닌 생산의 제한 인자인 것으로 알려져있다. 따라서, 이들 실시예는 숙주 세포에서의 NADPH 이용 가능성에 대한 한계를 극복하기 위한 6가지 전략을 예시하며, 이는 L-리신 또는 L-트레오닌 생산을 증가시킨다. 이들 전략은 다음과 같다: (1) 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖는다; (2) NADH로부터 NADPH를 생성하는 숙주 세포에서 수소전달 효소를 발현시킨다; (3) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신, 트레오닌, 아이소류신 및 메티오닌에 대한 전구체인 아스파르테이트 세미알데하이드(ASA)의 합성을 재프로그래밍한다; (4) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 dapB 및/또는 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍한다; (5) 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 ltA의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍한다; 및 (6) 이종 피루베이트 카복실레이트(Pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시킨다. 한 실시태양에서, 표적 유기체는 대장균이다. 한 실시태양에서, 표적 유기체는 코리네박테리움 종이다.
아래에서 단지 독자를 돕기 위해 내용의 간략한 표가 제공된다. 이런 표의 내용의 어떤 것도 본 출원의 실시예 또는 설명의 범위를 제한하지 않는다.
실시예 # | 제목 | 간략한 설명 |
1 | 글리세롤 알데히드 3-포스페이트 탈수소 효소(GAPDH)-리신의 조효소 특이성 확대 | NADP를 포함하도록 gapA의 조효소 특이성을 확대시켜 달성한 C. 글루 타미쿰에서 리신 생산성 개선에 대해 설명한다. |
2 | 대장균 K-12 균주의 트레오닌 생성 염기 균주 W3110의 제작 | 트레오닌 생산에 적합한 대장균 기본 균주 제작에 대해 설명하며, 이는 실시예 3 및 5-7에 사용된다. |
3 | 글리세롤 알데히드 3-포스페이트 탈수소 효소(GAPDH)-트레오닌의 조효소 특이성 확대 | NADP를 포함하도록 gapA의 조효소 특이성을 확대시켜 달성한 대장균에서 트레오닌 생산성 개선에 대해 설명한다. |
4 | NADH에 대한 보조 인자 특이성이 있는 변이체 효소를 이용하여 리신 합성을 위한 DAP 경로 재프로그래밍 | gdh, asd, dapB 및 ddh를 다른 박테리아의 상동체로 대체하여 달성한 C. 글루타미쿰에서 리신 생산성 개선에 대해 설명한다. |
5 | NADH에 대한 보조 인자 특이성이 있는 변이체 효소를 이용하여 트레오닌 생합성 경로 재프로그래밍 |
환경 시료에서 개발된 인-하우스 군유전체학 라이브러리에서 계산된 다른 박테리아의 상동체로 gdh 및 asd를 대체하여 달성한 대장균에서 트레오닌 생산성 개선에 대해 설명한다. |
6 | 다른 기질 선호도 및 효소 동역학을 가진 변형 트레오닌 알돌라제 효소를 활용하여 트레오닌 역가 개선 | 트레오닌 알돌라제 유전자를 환경 시료에서 개발된 인-하우스 군유전체학 라이브러리로부터 컴퓨터로 확인된 유전자 또는 크로노박테리아 사카자카이 트레오닌 알돌라제로 대체함으로써 달성된 대장균에서의 트레오닌 생산성의 개선을 설명한다. |
7 | 대장균에서 L-트레오닌 생산을 증가시키기 위해 변형 또는 변이 gap A, gdh, asd 및 ltaE 효소의 조합 발현 | 대장균에서 트레오닌 생산을 크게 개선하기 위해 gapA, gdh/asd 및 TA 전략을 조합하는 것을 설명한다. |
8 | NADH로부터 NADPH를 생성하는 수소전달 효소 발현 | NADP를 NADPH로 전환할 수 있는 수소전달 효소를 발현시켜 C. 글루타미쿰에서 리신 생산성을 개선시키는 방법을 설명한다. |
9 | 피루베이트 카복실라제 발현 | 피루베이트 카복실라제의 발현에 의한 리신 또는 트레오닌 생산의 개선을 설명한다. |
10 | L-리신 또는 L-트레오닌 생산을 증가시키기 위해 C.글루타미컴 또는 대장균에서 변형된 gapA, 트랜스 하이드로게나 제 및 변형된 gdh, asd, dapB 및 ddh 효소의 조합 발현 |
실시예 1 내지 9에서 탐구된 전략의 조합에 의해 C.글루타미쿰 또는 대장균에서 리신 또는 트레오닌 생산에서의 추가 개선을 설명한다. |
11 | 신규 글리세르알데하이드 3 포스페이트 탈수소 효소(GAPDH) 대립 유전자의 확인 | 무작위 돌연변이 유발은 새로운 gapA 대립 유전자를 식별하는 데 사용된다. |
실시예
1: 글리세르알데하이드 3-
포스페이트
탈수소 효소(
GAPDH
)-리신
의
조효소
특이성 확대
글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)는 중심 탄소 대사 경로에 관여하는 효소이다. GAPDH의 가장 일반적인 형태는 지금까지 연구된 모든 유기체에서 발견되는 NAD-의존성 효소 gapA이다. 이 효소는 gapA 유전자에 의해 암호화되어 글리세르알데하이드-3-포스페이트를 글리세레이트-1,3-비스포스페이트로 전환시킨다. C. 글루타미쿰으로부터의 gapA 효소의 아미노산 서열은 다음과 같다:
MTIRVGINGFGRIGRNFFRAILERSDDLEVVAVNDLTDNKTLSTLLKFDSIMGRLGQEVEYDDDSITVGGKRIAVYAERDPKNLDWAAHNVDIVIESTGFFTDANAAKAHIEAGAKKVIISAPASNEDATFVYGVNHESYDPENHNVISGASCTTNCLAPMAKVLNDKFGIENGLMTTVHAYTGDQRLHDAPHRDLRRARAAAVNIVPTSTGAAKAVALVLPELKGKLDGYALRVPVITGSATDLTFNTKSEVTVESINAAIKEAAVGEFGETLAYSEEPLVSTDIVHDSHGSIFDAGLTKVSGNTVKVVSWYDNEWGYTCQLLRLTELVASKL (SEQ ID NO:58).
도 1에 도시된 바와 같이, gapA 효소는 NAD를 조효소로 사용하여 글리세르알데하이드-3-포스페이트를 글리세레이트-1,3-비스포스페이트로 전환시킨다. 이 과정에서 NAD가 NADH로 변환된다. 도 1에 도시된 바와 같이, 해당 경로는 생합성 경로로 공급되어 박테리아에서 L-리신 생산을 초래한다. 그러나, 상기 논의된 바와 같이, C. 글루타미쿰에 의한 L-리신의 생명공학 생산에서 결정적인 인자는 NADPH의 충분한 공급이다. 따라서, C. 글루타미쿰에서 NADPH 생산을 증가시키면 L-리신 생산이 증가할 것이다. 이 목표를 달성하는 한 가지 방법은 C. 글루타미쿰 gapA의 조효소 특이성을 변경하여 변형된 효소가 NADP를 보조 인자로 사용하여 더 많은 양의 NADPH가 세포에서 생성되도록 하는 것이다. 따라서, 이 실험의 목적은 NADP를 포함하도록 gapA의 조효소 특이성을 넓혀 C. 글루타미쿰에서 리신 생산성을 개선하는 것이었다.
이전 연구는 C. 글루타미쿰 gapA에서 D35G, L36T, T37K 및 P192S 돌연변이가 효소의 변경된 조효소 특이성(NAD에서 NADP로)을 초래한다는 것을 보여 주었다 (Bomareddy R.R. et al. (2014), Metab . Eng., 25:30-37). 본 발명자들은 C. 글루타미쿰의 몇 가지 균주를 생성하였으며, 각각은 하기 표 4에 나타낸 바와 같이 상기 돌연변이 중 하나 이상을 보유하는 gapA 효소를 발현한다.
균주를 천연 gapA를 갖는 기준 균주와 비교하여 L-리신을 생산하는 능력에 대해 테스트하였다. 본 발명자들은 T37K 돌연변이가 단독으로 또는 L36T 돌연변이와 조합하여, C. 글루타미쿰 gapA의 조효소 특이성을 확대시켜, 변형된 효소가 NAD 및 NADP 둘 다에 대한 선호도를 나타냄을 발견하였고 C. 글루타미쿰에서 변형된 효소의 발현은 리신의 생산성을 상당히 개선시켰다(도 2). C. 글루타미쿰 gapA 돌연변이 균주(T37K 및 L36T/T37K)의 구성은 하기에 기재되어 있다.
gapA 유전자는 시판되는 올리고를 사용하는 주형으로서 C.글루타미쿰(ATCC 13032)의 염색체 DNA를 사용하여 PCR에 의해 증폭시켰다. PCR 단편을 코리네박테 리움 클로닝 벡터에 조립하고 표준 부위-지정 돌연변이 유발 기술을 사용하여 돌연변이시켰다. 벡터는 정확하게 조립된 클론을 확인하고 코리네박테리움 형질전환을 위한 벡터 DNA를 증폭시키기 위해 표준 열충격 형질전환 기술을 사용하여 대장균으로 처음에 형질전환시켰다.
확인된 클론을 전기천공을 통해 C. 글루타미쿰 숙주 세포로 형질전환시켰다. 각각의 형질전환에 대해, DNA의 μg당 콜로니 형성 단위(CFU)의 수를 삽입체 크기의 함수로 측정하였다. 코리네박테리움 게놈 통합은 또한 상동성 암 길이의 함수로 분석되었으며, 그 결과는 더 짧은 암은 더 낮은 효율을 가졌다는 것을 나타내었다.
삽입 카세트의 성공적인 통합을 갖는 것으로 확인된 코리네박테리움의 배양 물을 카나마이신-함유 배지에서 배양하여 카나마이신 내성 선택 유전자의 루프 아웃에 대항하기 위해 선택하였다.
루프 아웃 이벤트를 추가로 확인하기 위해, 카나마이신 내성을 나타내는 콜로니를 배양하고 시퀀싱을 통해 분석하였다.
상기 과정에 의해 2개의 상이한 리신 생성 백그라운드 균주 Parent_2 및 Parent_1에서 몇몇 돌연변이 균주가 생성되었다. 표 4는 각 부모 균주에 도입된 특정 돌연변이를 설명한다.
gapA 돌연변이 | ||
돌연변이 명칭 | 돌연변이 | 서열 변화 |
gapAv1 | D35G | GTC→GCC |
gapAv2 | L36T | GAG→GGT |
gapAv3 | T37K | GGT→CTT |
gapAv4 | P192S | AGG→GGA |
gapAv5 | D35G L36T | GAGGTC→GGTGCC |
gapAv6 | D35G T37K | GGTGAGGTC→CTTGAGGCC |
gapAv7 | L36T T37K | GGTGAG→CTTGGT |
gapAv8 | D35G L36T T37K | GGTGAGGTC→CTTGGTGCC |
gapAv9 | D35G L36T T37K P192S | GGTGAGGTC→CTTGGTGCC; CCT→AGC |
각각의 새롭게 생성된 균주 및 이의 부모 균주를 생성물 역가 성능을 평가하도록 디자인된 소규모 배양물(예를 들어, 96웰 플레이트)에서 리신 수율에 대해 테스트하였다. 소규모 배양은 산업용 규모의 배양 배지를 사용하여 수행하였다. 생성물 역가는 표준 비색 분석법으로 탄소 배출(즉, 단일 배치 수율을 나타냄)시 광학적으로 측정되었다. 간단히, 농축 분석 혼합물을 제조하고 발효 샘플에 첨가하여서 시약의 최종 농도는 160 mM 인산 나트륨 완충액, 0.2 mM Amplex Red, 0.2 U/mL 호오스래디쉬 퍼옥시다아제 및 0.005U/mL 리신 옥시다제이었다. 반응을 종점으로 진행시키고 560nm 파장에서 Tecan M1000 플레이트 분광 광도계를 사용하여 광학 밀도를 측정하였다. 실험 결과는 도 2에 요약된다.
NADP에 대한 변형된 조효소 특이성을 부여하는 특정 돌연변이를 갖는 GAPDH의 도입은 리신의 생산성을 상당히 개선시켰다(도 2). 균주 7000182994 및 7000184348은 각각 T37K를 포함하며 각 부모 Parent_1 및 Parent_2보다 성능이 우수하다. 균주 7000182999 및 7000184352는 각각 T37K 및 L36T를 포함하며 각 부모 Parent_1 및 Parent_2보다 성능이 우수하다. 균주 7000182997 및 7000184349는 각각 P192S를 함유한다. 균주 7000182998 및 7000184347는 각각 L36T를 함유한다.
실시예
2: 대장균 K-12 균주의 트레오닌 생산 기본 균주 W3110의 제작
리신(메티오닌, 아이소류신 및 글리신뿐만 아니라)과 마찬가지로, 트레오닌 합성 경로를 향한 초기 단계는 옥살로아세테이트의 아스파르테이트로의 전환을 포함하며, 글루타메이트 탈수소 효소(gdh)에 의해 2-옥소글루타레이트로부터 재생되는 글루타메이트를 사용한다. 아스파르테이트는 아스파르테이트 세미알데하이드 탈수소 효소(asd)에 의해 아스파르틸 포스페이트를 아스파르테이트 세미알데하이드(ASA)로 후속 환원시키면서 아스파르틸 포스페이트로 전환한다. 이들 단계는 리신, 트레오닌, 아이소류신 및 메티오닌 생합성에 공통적이다. 트레오닌 형성은 아스파르틸 포스페이트를 ASA로 asd 전환하는 것 이상의 3가지 추가 단계를 필요로 한다: (1) 이작용성 아스파토키나제/호모세린 탈수소 효소(thrA)에 의한 ASA의 호모세린으로의 전환, (2) 호모세린 키나아제(thrB)에 의한 호모세린에서 L-호모세린 포스페이트로의 전환 및 마지막으로, (3) 신타아제(thrC)에 의한 L-호모세린 포스페이트의 트레오닌으로의 전환. 이 마지막 3 단계는 NADP/NADH와 독립적으로 작동한다
먼저 야생형 대장균 K-12 균주 W3110을 사용하여 트레오닌 생산 기본 균주를 생성하였다. 이 트레오닌 기본 균주는 2 단계로 생성하였다: 첫째, 본 발명자들은 다음으로 구성된 천연 대장균, thrLABC 레귤론(SEQ ID NO: 76)을 과발현하였다: thrL(트레오닌 및 아이소류신 코돈이 풍부한 리더 서열, 이어서 오페론에서 효소-암호화 유전자의 전사를 방지하도록 작용하는 기능적 전사 종결자); thrA (이작용성 아스파토키나제/호모세린 탈수소 효소 1); thrB(호모세린 키나아제) 및 thrC(트레오닌 신타아제). 이 폴리뉴클레오타이드는 상업적으로 공급되는 올리고뉴클레오타이드를 사용하여 W3110 게놈 DNA로부터 PCR에 의해 증폭하였다. thrLABC 오페론을 합성 프로모터 pMB085(도 8a; SEQ ID NO: 75)의 제어하에 다중-카피 복제 플라스미드(변형된 pUC19 벡터; SEQ ID NO: 78)에 삽입하였다. 발현의 약화를 완화시키기 위해, 이 플라스미드의 변이체를 제작하였으며, 여기서 thrL 리더 서열이 제거되었다(도 8b; SEQ ID NO: 77). 둘째, L-트레오닌의 2-아미노-3-케토 부티레이트로의 산화에 촉매작용함으로써 트레오닌 생산에 대항하여 작용하는 효소인 L-트레오닌 3-탈수소 효소(tdh)를 암호화하는 대장균 W3110 염색체의 영역을 삭제하였다.
생성된 W3110 트레오닌 염기 균주 W3110 pMB085thrLABCㅿtdh(THR01; 7000336113) 및 W3110 pMB085thrABCㅿtdh(THR02; 7000341282)에서 트레오닌 생산을 평가하기 위해, 각각의 균주 및 이의 부모(W3110; 7000284155)를 생성물 역가 성능을 평가하도록 디자인된 소규모 배양물(예를 들어, 96 웰 플레이트)에서 트레오닌 수율로 테스트하였다. 소규모(300ul) 배양물을 TPM1 배지에서 성장시켰다. TPM1 배지는 리터당: 글루코오스, 50g; 효모 추출물, 2g; MgSO4.7H2O, 2g; KH2PO4, 4g; (NH4)2SO4, 14g; 베타인, 1g; L-메티오닌, 0.149g; L-리신, 0.164g; 미량 금속 용액, 5ml 및 CaCO3, 30g을 함유한다. 미량 금속 용액은 리터당: FeSO4.7H2O, 10g; CaCl2, 1.35g; ZnSO4.7H2O, 2.25g; MnSO4.4H2O, 0.5g; CuSO4.5H2O, 1g; (NH4) 6Mo7O24.4H2O, 0.106g; Na2B4O7.10H2O, 0.23g; 35% HCl, 10ml을 함유한다. 4N KOH를 첨가하여 최종 pH를 7.2로 조정하였다. 클로람페니콜(35μg/ml), 카나마이신(40μg/ml) 및 암피실린 (50μg/ml)을 필요할 때 배지에 첨가하였다. 배양물을 1000rpm에서 일정한 교반과 함께 가습(80% 습도) INFORS HT Multitron Pro 인큐베이터 진탕기에서 37℃에서 약 36시간 동안 성장시켰다.
펩타이드 및 단백질 가수 분해물 아미노산에 대한 AccQ·Tag(Waters Corp.) 프리컬럼 유도체화 및 분석 기술을 사용하여 무세포 배지의 샘플에서 트레오닌 역가를 측정하였다. Waters AccQ·Fluor Reagent를 사용하여 샘플에 존재하는 아미노산을 유도체화하였다. 이어서, 이들 유도체를 역상 HPLC에 의해 분리하고 형광 검출에 의해 정량하였다. 660nm 파장에서 Tecan M1000 플레이트 분광 광도계를 사용하여 광학 밀도(OD)를 측정함으로써 각각의 샘플에 대한 바이오매스 추정치를 결정하고, 표준 색도 분석에 의해 최종 글루코오스 농도를 결정하였다. 간략하게, 농축 된 분석 혼합물을 다음과 같이 최종 농도의 시약으로 제조하였다: 175 mM 인산 나트륨 완충액, pH 7.0; 0.2mM 앰플렉스 레드(Chemodex CDX-A0022); 아스퍼길루스 니거(Sigma G7141)의 16 U/mL 글루코오스 산화 효소 및 0.2 U/mL의 호오스래디쉬 과산화 효소(VWR 0417-25000). 실온에서 30분 동안 암실에서 반응을 진행시키고 560nm 파장에서 Tecan M1000 플레이트 분광 광도계를 사용하여 광학 밀도를 측정하였다. 상기 배양 조건 및 측정을 사용하여 역가를 계산하고 하기 실시예에 기재된 균주의 수율 및 생산성을 추정하였다.
실시예
3:
글리세르알데하이드
3-
포스페이트
탈수소 효소(
GAPDH
)-트레오닌의 조효소
특이성 확대
실시예 2에 기술된 기본 균주는 다음 실시예 실험에 대해 사용하였다.
글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)는 중심 탄소 대사 경로에 관여하는 효소이다. GAPDH의 가장 일반적인 형태는 지금까지 연구된 모든 유기체에서 발견되는 NAD-의존성 효소 gapA이다. 이 효소는 gapA 유전자에 의해 암호화되어 글리세르알데하이드-3-포스페이트를 글리세레이트-1,3-비스포스페이트로 전환시킨다.
도 9에 도시된 바와 같이, gapA 효소는 NAD를 조효소로 사용하여 글리세르알데하이드-3-포스페이트를 글리세레이트-1,3-비스포스페이트로 전환시킨다. 이 과정에서 NAD가 NADH로 변환된다. 도 9 및 도 10a-c에 도시된 바와 같이, 해당 경로는 생합성 경로로 공급되어 박테리아에서 L-트로오닌 생산을 초래한다. 그러나, 상기 논의된 바와 같이, 대장균에 의한 L-트레오닌의 생명공학 생산에서 결정적인 인자는 NADPH의 충분한 공급이다. 따라서, 대장균에서 NADPH 생산을 증가시키면 L-트레오닌 생산이 증가할 것이다. 이 목표를 달성하는 한 가지 방법은 C. 글루타미쿰 gapA의 조효소 특이성을 변경하여 변형된 효소가 NADP를 보조 인자로 사용하여 더 많은 양의 NADPH가 세포에서 생성되도록 하는 것이다. 따라서, 이 실험의 목적은 NADP를 포함하도록 gapA의 조효소 특이성을 넓혀 대장균에서 트레오닌 생산성을 개선하는 것이었다.
이전 연구는 C. 글루타미쿰 gapA에서 D35G, L36T, T37K 및 P192S 돌연변이가 효소의 변경된 조효소 특이성(NAD에서 NADP로)을 초래한다는 것을 보여 주었다 (Bomareddy R.R. et al. (2014), Metab . Eng., 25:30-37). C. 글루타미쿰으로부터의 gapA 효소의 아미노산 서열은 다음과 같다:
MTIRVGINGFGRIGRNFFRAILERSDDLEVVAVNDLTDNKTLSTLLKFDSIMGRLGQEVEYDDDSITVGGKRIAVYAERDPKNLDWAAHNVDIVIESTGFFTDANAAKAHIEAGAKKVIISAPASNEDATFVYGVNHESYDPENHNVISGASCTTNCLAPMAKVLNDKFGIENGLMTTVHAYTGDQRLHDAPHRDLRRARAAAVNIVPTSTGAAKAVALVLPELKGKLDGYALRVPVITGSATDLTFNTKSEVTVESINAAIKEAAVGEFGETLAYSEEPLVSTDIVHDSHGSIFDAGLTKVSGNTVKVVSWYDNEWGYTCQLLRLTELVASKL ( SEQ ID NO:58 ).
여기서, 본 발명자는 하기 표 5에 나타낸 바와 같이 상기 돌연변이 중 하나를 보유하는 이종(C. 글루타미쿰) gapA 효소의 각 변이체: gapAv5(SEQ ID NO:69), gapAv7(SEQ ID NO:71) 또는 gapAv8(SEQ ID NO:73)를 발현하는 대장균의 여러 균주를 생성하였다.
gapA 효소 | ||||
유전자 | 원료 | 돌연변이(들) | 폴리뉴클레오타이드 Seq . | 단백질 Seq . |
gapA | E. coli | 없음 (야생형) |
SEQ ID NO: 68 | SEQ ID NO: 67 |
gapAv5 | C. glutamicum | D35GL36T | SEQ ID NO: 70 | SEQ ID NO: 69 |
gapAv7 | C. glutamicum | L36TT37K | SEQ ID NO: 72 | SEQ ID NO: 71 |
gapAv8 | C. glutamicum | D35GL36TT37K | SEQ ID NO: 74 | SEQ ID NO: 73 |
균주는 천연 대장균 gapA(SEQ ID NO:67)를 갖는 기준 균주 (W3110thrABCㅿtdh)에 비해 L-트레오닌을 생산하는 능력에 대해 테스트되었다. 본 발명자는 모든 세 가지 변이체 - gapAv5(SEQ ID NO:69), gapAv7(SEQ ID NO:71) 및 gapAv8(SEQ ID NO:73)의 발현이 모두 독립적으로 트레오닌 역가를 크게 개선시켰음을 발견하였다(도 11a). 대장균 gapA 돌연변이 균주의 구성은 다음과 같다.
gapA 변이체(gapAv5(SEQ ID NO:69), gapAv7(SEQ ID NO:71) 또는 gapAv8(SEQ ID NO:73))는 상업적으로 공급되는 올리고를 사용하여 코리네박테리움 클로닝 벡터로부터 PCR에 의해 증폭되었다. 천연 대장균 gapA는 W3110 게놈 DNA로부터 증폭되었다. PCR 단편을 대장균 클로닝 벡터-변형된 pUC19 벡터(SEQ ID NO: 70, 72 및 74로 제공된 폴리뉴클레오타이드 서열을 암호화함)로 조립하고, 정확하게 조립된 클론을 확인하고, 대장균 W3110 트레오닌 염기 균주 THR01 및 THR02로의 형질 전환을 위해 벡터 DNA를 증폭시키기 위해 표준 열 충격 변환 기술을 사용하여 NEB 10-베타 대장균 세포로 처음에 형질전환시켰다.
새로 생성된 각각의 균주 및 이의 부모 균주를 상기한 바와 같이 소규모 배양물(예를 들어, 96 웰 플레이트)에서 트레오닌 생산에 대해 테스트하였다.
NADP에 대해 변경된 조효소 특이성을 부여하는 특정 돌연변이를 갖는 GAPDH의 도입은 트레오닌 역가를 상당히 개선시켰다(도 11a). 균주 7000342726(gapAv5), 7000342720(gapAv7) 및 7000342727(gapAv8)은 모두 부모 균주(7000341282)보다 성능이 우수하고 부모는 대장균 gapA(7000342723)의 두 번째 복제물을 발현한다.
균주 ID | 역가 | STDEV | |
7000342726 | gapAv5 | 19.04 | 8.33 |
7000342720 | gapAv7 | 15.47 | 9.45 |
7000342727 | gapAv8 | 8.73 | 4.18 |
7000342723 | Ec_gapA | 0.79 | 1.37 |
7000341282 | thrABC | 0.79 | 1.37 |
7000284155 | W3110 | 0 | 0 |
실시예 4: NADH에 대한 보조 인자 특이성을 갖는 변이체 효소를 이용하여 리신 합성을 위한 DAP -경로 재프로그래밍
박테리아에서 L-리신 생산을 초래하는 생합성 경로는 다이아미노피멜레이트(DAP)-경로(도 1)로 알려져 있다. DAP 경로를 향한 초기 단계는 글루타메이트 탈수소 효소(gdh)에 의해 2-옥소글루타레이트로부터 재생되는 글루타메이트를 사용하는 옥살로아세테이트의 아스파르테이트로의 전환을 포함한다. 아스파르테이트는 아스파르틸 포스페이트로 전환되고, 아스파르틸 포스페이트는 아스파르테이트 세미알데하이드 탈수소 효소(asd)에 의해 아스파르테이트 세미알데하이드(ASA)로 후속 환원된다. 이들 단계는 리신, 트레오닌, 아이소류신 및 메티오닌 생합성에 공통적이다. 리신 생합성을 향한 첫 번째 단계는 ASA를 다이하이드로피콜리네이트(DHDP)로 전환시키는 것이며, 이는 다이하이드로피콜리네이트 합성 효소에 의해 촉매작용을 받는다. 이어서 DHDP는 다이하이드로피콜리네이트 환원 효소(dapB)에 의해 테트라하이드로피콜리네이트(THDPA)로 환원된다. 코리네박테리움 글루타미쿰을 포함한 몇몇 박테리아는 효소 메소-다이아미노피멜레이트 탈수소 효소(ddh)를 보유하며, 이는 THDPA를 메소-다이아미노피멜레이트(mDAP) 로의 직접 전환에 촉매작용 한 다음, 다이아미노피멜레이트 디카복실라제에 의해 L-리신으로 전환된다.
도 1에 도시된 바와 같이, 천연 C. 글루타미쿰 효소 gdh, asd, dapB 및 ddh 각각은 그들의 각각의 작용에 대해 조효소로서 NADPH를 필요로 한다. 그러나, NADPH는 C. 글루타미쿰에서 산업적 규모로 글루코오스로부터 L-리신을 생산하는 데 있어서 제한적인 인자 중 하나이다(Becker et al. (2005), Appl . Environ. Microbiol., 71(12):8587-8596). 따라서, C. 글루타미쿰에서 NADPH 생산을 증가시키면 L-리신 생산이 증가할 것이다. 이 목표를 달성하는 한 가지 방법은 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 C. 글루타미쿰 효소 gdh, asd, dapB 및 ddh의 자연 발생 상동체를 이용함으로써 NADPH의 이용을 감소시키는 것이다. 따라서, 이 실험의 목적은 NADPH와 함께 NADH를 포함하도록 gdh, asd, dapB 및 ddh의 조효소 의존성을 넓히는 것이었다.
C. 글루타미쿰 효소 gdh 및 dapB는 각각 보조 인자로서 NADPH보다 NADH를 더욱 효과적으로 사용하는 클로스트리디움 심비오섬(Lilley K.S. et al. (1991), Biochim Biophys Acta, 1080(3):191-197) 및 대장균(Reddy S.G. et al. (1995), Biochemistry, 34(11):3492-3501)에 알려진 상동체를 갖는다. C. 글루타미쿰 효소 asd 및 ddh에 대해서는 이러한 상동체가 알려져 있지 않다. 이와 같이, 박테리아에서 게놈 전체 상동성 검색을 수행하여 C. 글루타미쿰 효소, asd 및 ddh의 아미노산 서열 변이체를 발견하였다. 상동성 검색은 asd 및 ddh에 대해 각각 9개의 변이체를 생성하였다. 변이체 및 이들의 서열의 소스는 표 7에 요약되어있다. gdh, asd, dapB 및 ddh에 대한 DNA 서열은 C. 글루타미쿰에 코돈 최적화되어있다.
경로 상동체 | ||||
종 | 상동체 | 코드 | 단백질 서열 | DNA 서열 |
A. oris | ddh | ddh_Aor | SEQ ID NO:2 | SEQ ID NO:1 |
C. glutamicum | ddh | ddh_Cgl | SEQ ID NO:4 | SEQ ID NO:3 |
H. archaeon | ddh | ddh_Har | SEQ ID NO:6 | SEQ ID NO:5 |
coprobacillus | ddh | ddh_Cop | SEQ ID NO:8 | SEQ ID NO:7 |
M. harundinacea | ddh | ddh_Mha | SEQ ID NO:10 | SEQ ID NO:9 |
M. micronuciformis | ddh | ddh_Mmi | SEQ ID NO:12 | SEQ ID NO:11 |
A. denitrificans | ddh | ddh_Ade | SEQ ID NO:14 | SEQ ID NO:13 |
M. luteus | ddh | ddh_Mlu | SEQ ID NO:16 | SEQ ID NO:15 |
B. faecium | ddh | ddh_Bfae | SEQ ID NO:18 | SEQ ID NO:17 |
carnobacterium | ddh | ddh_Car | SEQ ID NO:20 | SEQ ID NO:19 |
M. jannaschii | asd | asd_Mja | SEQ ID NO:22 | SEQ ID NO:21 |
S. usitatus | asd | asd_Sus | SEQ ID NO:24 | SEQ ID NO:23 |
N. innermongolicus | asd | asd_Nin | SEQ ID NO:26 | SEQ ID NO:25 |
C. aurantiacus | asd | asd_Cau | SEQ ID NO:28 | SEQ ID NO:27 |
L. agilis | asd | asd_Lag | SEQ ID NO:30 | SEQ ID NO:29 |
B. pullorum | asd | asd_Bpu | SEQ ID NO:32 | SEQ ID NO:31 |
B. bacterium | asd | asd_Bba | SEQ ID NO:34 | SEQ ID NO:33 |
M. hansupus | asd | asd_Mha | SEQ ID NO:36 | SEQ ID NO:35 |
P. sabinae | asd | asd_Psa | SEQ ID NO:38 | SEQ ID NO:37 |
C. glutamicum | asd | asd_Cgl | SEQ ID NO:40 | SEQ ID NO:39 |
C. glutamicum | gdh | gdh_Cgl | SEQ ID NO:42 | SEQ ID NO:41 |
C. symbiosum | gdh | gdh_Csy | SEQ ID NO:44 | SEQ ID NO:43 |
C. glutamicum | dapB | dapB_Cgl | SEQ ID NO:46 | SEQ ID NO:45 |
E. coli | dapB | dapB_Eco | SEQ ID NO:48 | SEQ ID NO:47 |
C. glutamicum | aspK | aspK10 | SEQ ID NO:50 | SEQ ID NO:49 |
C. 글루타미쿰 gdh 및 dapB의 공지된 상동체뿐만 아니라 C. 글루타미쿰 asd 및 ddh의 9개의 변이체는 C. 글루타미쿰에서의 발현을 위해 코돈 최적화되었다. 도 4에서, 2가지 버전의 gdh 및 dapB 각각의 하나의 복제물 및 10가지 버전의 asd 및 ddh의 각각의 복제물은 카나마이신 내성 마커 유전자를 함유하는 플라스미드에 다양한 조합으로 복제되었다. 이 실시예에서 테스트된 효소의 조합은 표 7에 요약되어있다.
각각의 asd-gdh-dapB-ddh 조합을 플라스미드(SEQ ID NO: 51)로 복제하였다. 도 4는 하나의 예시적인 asd-gdh-dapB-ddh 테스트 조합에 대한 카세트 배열을 도시한다. 조절 서열은 SEQ ID NOs: 52-57이었다. 각 테스트 조합의 최종 카세트는 다음과 같이 5'에서 3'까지 표시될 수 있다.
dapB 및 ddh 대립 유전자의 역 보체 배향은 발현 카세트 배열의 결과이며, 상기 대립 유전자에 대한 침묵을 유발하려는 의도를 나타내는 것이 아님에 유의한다.
경로 상동체 | |||
플라스미드 조합 (개별 플라스미드는 SEQ ID NO: 51의 골격 서열 및 상기에 명시되고 도 4에 나타낸 바와 같이 과발현 프로모터 중 각각의 위치에 삽입된 유전자의 콤보로 구성된다. 유전자는 표 7에서 발견된 바와 같이 이들의 유전자 코드에 의해 참조된다. " RC "는 도 4에 따른 유전자의 역 보체 배치를 나타낸다.) | |||
asd 대립 유전자 | gdh 대립 유전자 | dapB 대립 유전자 | ddh 대립 유전자 |
asd_Bpu (SEQ ID NO:31) |
gdh_Cgl (SEQ ID NO:41) |
RCdapB_Cgl (SEQ ID NO:45) |
RCddh_Cgl (SEQ ID NO:3) |
asd_Bpu(SEQ ID NO:31) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Cgl (SEQ ID NO:3) |
asd_Cau(SEQ ID NO:27) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Cgl (SEQ ID NO:3) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Ade (SEQ ID NO:13) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Aor (SEQ ID NO:1) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Bfae (SEQ ID NO:17) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Car (SEQ ID NO:19) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Cgl (SEQ ID NO:3) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Cop (SEQ ID NO:7) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Har (SEQ ID NO:5) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Mha (SEQ ID NO:9) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Mlu (SEQ ID NO:15) |
asd_Cgl(SEQ ID NO:39) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Mmi (SEQ ID NO:11) |
asd_Lag(SEQ ID NO:29) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Cgl (SEQ ID NO:3) |
asd_Nin(SEQ ID NO:25) | gdh_Cgl (SEQ ID NO:41) |
RCdapB_Cgl (SEQ ID NO:45) |
RCddh_Cgl (SEQ ID NO:3) |
asd_Nin(SEQ ID NO:25) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Cgl (SEQ ID NO:3) |
asd_Psa(SEQ ID NO:37) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Cgl (SEQ ID NO:3) |
asd_Sus(SEQ ID NO:23) | gdh_Csy (SEQ ID NO:43) |
RCdapB_eco (SEQ ID NO:47) |
RCddh_Cgl (SEQ ID NO:3) |
정확하게 조립된 클론을 확인하고 코리네박테리움 형질전환을 위해 벡터 DNA를 증폭시키기 위해 각각의 플라스미드를 표준 열 충격 변형 기술을 사용하여 대장균으로 형질전환시켰다.
검증된 클론을 전기 천공법을 통해 C. 글루타미쿰 숙주 세포로 형질 전환시켰다. 각각의 형질 전환에 대해, DNA 1㎍ 당 콜로니 형성 단위(CFU)의 수를 삽입체 크기의 함수로서 결정하였다. 코리네박테리움 게놈 통합은 상동성 암 길이의 함수로서 분석되었고, 결과는 더 짧은 암이 더 낮은 효율을 가짐을 보여주었다.
삽입 카세트의 성공적인 통합을 갖는 것으로 확인된 코리네박테리움의 배양 물은 카나마이신-내성 선택 유전자의 루프 아웃에 대항하기 위해 카나마이신-함유 배지에서 배양되었다.
루프 아웃 이벤트를 추가로 확인하기 위해, 카나마이신 내성을 나타내는 콜로니를 배양하고 시퀀싱을 통해 분석하였다.
C. 글루타미쿰에서 4가지 효소 모두가 동시에 발현되었다.
각각의 효소의 이종 버전을 함유하는 재조합 균주는 3 개의 상이한 모 균주로부터 제조되었고, 이들 모두는 유전적으로 별개의 리신 생산자 균주이다. 각각의 새롭게 생성된 균주 및 이의 부모 균주를 생성물 역가 성능을 평가하도록 디자인된 소규모 배양물(예를 들어, 96웰 플레이트)에서 리신 수율에 대해 테스트하였다. 소규모 배양은 산업용 규모의 배양 배지를 사용하여 수행하였다. 생성물 역가는 표준 비색 분석법으로 탄소 배출(즉, 단일 배치 수율을 나타냄)시 광학적으로 측정되었다. 간단히, 농축 분석 혼합물을 제조하고 발효 샘플에 첨가하여서 시약의 최종 농도는 160 mM 인산 나트륨 완충액, 0.2 mM Amplex Red, 0.2 U/mL 호오스래디쉬 퍼옥시다아제 및 0.005U/mL 리신 옥시다제이었다. 반응을 종점으로 진행시키고 560nm 파장에서 Tecan M1000 플레이트 분광 광도계를 사용하여 광학 밀도를 측정하였다. 실험 결과는 표 9 및 도 5a와 5b에 요약된다.
각각 C. 글루타미쿰 ddh에 대한 천연 효소 및 gdh, asd 및 dapB에 대한 동일한 3개의 이종 효소(NADH를 사용하는 클로스트리움 심비오섬 gdh 및 대장균 dapB의 공지된 버전 및 락토바실러스 아길리스로부터의 asdd의 변이체)를 함유하는 2개의 C. 글루타미쿰 재조합 균주, 7000186960 및 7000186992는 각각의 부모 Parent_3 및 Parent_4에 비해 L-리신의 생산성이 상당히 개선되었음을 보여 주었다(도 5a). 상이한 효소의 조합의 효과에 대한 데이터가 표 9에 제시되어 있고, 부모와 비교하여 유의미한 개선을 초래하는 효소 조합이 굵게 강조되어 있다.
상동체 조합에 대한 데이터 | ||||||||||
균주 ZID | parent_strain_zid | 플라스미드 조합 (부모와 유의하게 다른 성능을 가진 콤보는 굵게 표시됨) | 평균 prod_pred_lys |
표준
오차 prod_pred_lys |
하위 95% prod_pred_lys | 상위 95% prod_pred_lys | 평균 yield_pred | 표준 오차 yield_pred | 하위 95% yield_pred | 상위 95% yield_pred |
Parent_5 | N/A | parent | 3.98959 | 0.10425 | 3.7796 | 4.1996 | 55.19853 | 0.24793 | 54.7072 | 55.6898 |
7000186924 | Parent_5 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Mlu | 3.39671 | 0.10425 | 3.1867 | 3.6067 | 55.77395 | 0.23192 | 55.3144 | 56.2335 |
7000186925 | Parent_5 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Aor | 3.46936 | 0.09324 | 3.2816 | 3.6572 | 56.28839 | 0.20744 | 55.8773 | 56.6994 |
7000186926 | Parent_5 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Mha | 3.61019 | 0.09324 | 3.4224 | 3.798 | 55.70273 | 0.20744 | 55.2917 | 56.1138 |
7000186929 | Parent_5 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Ade | 4.3899 | 0.12038 | 4.1475 | 4.6324 | 55.24996 | 0.23192 | 54.7904 | 55.7095 |
7000186930 | Parent_5 | asd_Bpugdh_CsyRCdapB_ecoRCddh_Cgl | 3.9191 | 0.10425 | 3.7091 | 4.1291 | 55.21564 | 0.20744 | 54.8046 | 55.6267 |
7000186935 | Parent_5 | asd_Ningdh_CglRCdapB_CglRCddh_Cgl | 3.08749 | 0.10425 | 2.8775 | 3.2975 | 55.85527 | 0.23192 | 55.3957 | 56.3148 |
7000186937 | Parent_5 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Cop | 3.13201 | 0.12038 | 2.8896 | 3.3745 | 56.32266 | 0.20744 | 55.9116 | 56.7337 |
7000186940 | Parent_5 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Cgl | 3.37994 | 0.10425 | 3.17 | 3.5899 | 56.52587 | 0.23192 | 56.0663 | 56.9854 |
7000186941 | Parent_5 | asd_Susgdh_CsyRCdapB_ecoRCddh_Cgl | 2.27348 | 0.09324 | 2.0857 | 2.4613 | 54.40485 | 0.20744 | 53.9938 | 54.8159 |
7000186943 | Parent_5 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Car | 3.85216 | 0.10425 | 3.6422 | 4.0621 | 56.28212 | 0.23192 | 55.8226 | 56.7417 |
7000186945 | Parent_5 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Mmi | 3.33 | 0.09324 | 3.1422 | 3.5178 | 55.76764 | 0.20744 | 55.3566 | 56.1787 |
7000186946 | Parent_5 | asd_Bpugdh_CglRCdapB_CglRCddh_Cgl | 3.86864 | 0.09324 | 3.6808 | 4.0564 | 55.55222 | 0.20744 | 55.1412 | 55.9633 |
7000186947 | Parent_5 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Bfae | 3.58812 | 0.10425 | 3.3781 | 3.7981 | 56.31604 | 0.23192 | 55.8565 | 56.7756 |
Parent_4 | N/A | parent | 3.21086 | 0.08147 | 3.0498 | 3.3719 | 55.01169 | 0.21589 | 54.585 | 55.4384 |
7000186980 | Parent_4 | asd_Psagdh_CsyRCdapB_ecoRCddh_Cgl | 4.14564 | 0.07287 | 4.0016 | 4.2897 | 55.71775 | 0.1931 | 55.3361 | 56.0994 |
7000186982 | Parent_4 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Mmi | 2.73655 | 0.07287 | 2.5925 | 2.8806 | 55.96255 | 0.1931 | 55.5809 | 56.3442 |
7000186983 | Parent_4 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Ade | 3.04197 | 0.07287 | 2.898 | 3.186 | 55.04775 | 0.20354 | 54.6454 | 55.4501 |
7000186984 | Parent_4 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Mha | 3.0087 | 0.07287 | 2.8647 | 3.1527 | 55.49415 | 0.1931 | 55.1125 | 55.8758 |
7000186990 | Parent_4 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Har | 3.08588 | 0.06652 | 2.9544 | 3.2173 | 55.67801 | 0.18411 | 55.3141 | 56.0419 |
7000186992 | Parent_4 | asd_Laggdh_CsyRCdapB_ecoRCddh_Cgl | 4.47068 | 0.07287 | 4.3267 | 4.6147 | 55.76648 | 0.1931 | 55.3848 | 56.1482 |
7000186993 | Parent_4 | asd_Ningdh_CglRCdapB_CglRCddh_Cgl | 3.11677 | 0.07287 | 2.9728 | 3.2608 | 55.54902 | 0.1931 | 55.1674 | 55.9307 |
7000186994 | Parent_4 | asd_Caugdh_CsyRCdapB_ecoRCddh_Cgl | 3.05097 | 0.07287 | 2.907 | 3.195 | 55.34768 | 0.1931 | 54.966 | 55.7294 |
7000186995 | Parent_4 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Cop | 3.06227 | 0.07287 | 2.9183 | 3.2063 | 55.73684 | 0.1931 | 55.3552 | 56.1185 |
7000186997 | Parent_4 | asd_Ningdh_CsyRCdapB_ecoRCddh_Cgl | 3.2248 | 0.07287 | 3.0808 | 3.3688 | 55.07264 | 0.1931 | 54.691 | 55.4543 |
7000186998 | Parent_4 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Cgl | 3.14364 | 0.06652 | 3.0122 | 3.2751 | 56.02742 | 0.17627 | 55.679 | 56.3758 |
7000187001 | Parent_4 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Car | 3.44828 | 0.07287 | 3.3043 | 3.5923 | 55.90289 | 0.1931 | 55.5212 | 56.2846 |
7000187003 | Parent_4 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Mlu | 3.00001 | 0.07287 | 2.856 | 3.144 | 54.89024 | 0.1931 | 54.5086 | 55.2719 |
7000187004 | Parent_4 | asd_Bpugdh_CglRCdapB_CglRCddh_Cgl | 3.41613 | 0.07287 | 3.2721 | 3.5601 | 56.35596 | 0.1931 | 55.9743 | 56.7376 |
7000187005 | Parent_4 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Bfae | 2.98817 | 0.07287 | 2.8442 | 3.1322 | 55.46868 | 0.1931 | 55.087 | 55.8504 |
Parent_3 | N/A | parent | 3.99663 | 0.10864 | 3.7817 | 4.2115 | 55.35538 | 0.20109 | 54.9579 | 55.7529 |
7000186950 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Mha | 3.66355 | 0.0909 | 3.4838 | 3.8434 | 55.40642 | 0.17986 | 55.0509 | 55.762 |
7000186951 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Aor | 3.27925 | 0.08298 | 3.1151 | 3.4434 | 55.67602 | 0.17986 | 55.3205 | 56.0315 |
7000186952 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Mmi | 3.44824 | 0.0909 | 3.2684 | 3.628 | 55.65879 | 0.17986 | 55.3033 | 56.0143 |
7000186955 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Ade | 3.58453 | 0.0909 | 3.4047 | 3.7643 | 55.80398 | 0.17986 | 55.4485 | 56.1595 |
7000186958 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Har | 3.31468 | 0.0909 | 3.1349 | 3.4945 | 55.38588 | 0.17986 | 55.0304 | 55.7414 |
7000186960 | Parent_3 | asd_Laggdh_CsyRCdapB_ecoRCddh_Cgl | 4.67526 | 0.0909 | 4.4955 | 4.8551 | 55.26038 | 0.17986 | 54.9049 | 55.6159 |
7000186961 | Parent_3 | asd_Ningdh_CglRCdapB_CglRCddh_Cgl | 3.93776 | 0.0909 | 3.758 | 4.1176 | 55.35629 | 0.17986 | 55.0008 | 55.7118 |
7000186962 | Parent_3 | asd_Caugdh_CsyRCdapB_ecoRCddh_Cgl | 3.4915 | 0.08298 | 3.3274 | 3.6556 | 55.3 | 0.17149 | 54.961 | 55.639 |
7000186963 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Cgl | 3.34698 | 0.0909 | 3.1672 | 3.5268 | 56.16317 | 0.17986 | 55.8076 | 56.5187 |
7000186965 | Parent_3 | asd_Ningdh_CsyRCdapB_ecoRCddh_Cgl | 3.63562 | 0.10864 | 3.4207 | 3.8505 | 54.98718 | 0.17986 | 54.6317 | 55.3427 |
7000186966 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Cop | 3.17575 | 0.11734 | 2.9436 | 3.4079 | 55.9921 | 0.17986 | 55.6366 | 56.3476 |
7000186969 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Car | 3.42914 | 0.0909 | 3.2493 | 3.6089 | 55.79205 | 0.17986 | 55.4365 | 56.1476 |
7000186971 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Mlu | 3.59553 | 0.0909 | 3.4157 | 3.7753 | 55.0482 | 0.17986 | 54.6927 | 55.4037 |
7000186972 | Parent_3 | asd_Bpugdh_CglRCdapB_CglRCddh_Cgl | 3.88679 | 0.10162 | 3.6858 | 4.0878 | 55.59951 | 0.17986 | 55.244 | 55.955 |
7000186973 | Parent_3 | asd_Cglgdh_CsyRCdapB_ecoRCddh_Bfae | 4.46987 | 0.11734 | 4.2377 | 4.702 | 55.46628 | 0.17986 | 55.1108 | 55.8218 |
4-유전자 카세트의 2가지 버전을 코리네박테리움 글루타미쿰 Parent_6에 도입하고 리신의 생산을 모니터링 하였다. 4개의 유전자는 NADPH 대신에 대안적인 보조 인자 NADH의 사용에 기초하여 선택되었다. 4-유전자 카세트 v1(균주 263254)은 C. 글루타미쿰(SEQ ID NO: 39)의 아스파르테이트-세미-알데하이드 탈수소 효소(asd), 클로스트리디움 심비오섬(SEQ ID NO: 43)의 글루타메이트 탈수소 효소(gdh), 대장균(SEQ ID NO: 47)의 4-하이드록시-테트라하이드로다이피콜리네이트 환원 효소(dapB), 및 C. 글루타미쿰(SEQ ID NO: 3)의 메소-다이아미노피멜레이트 D-탈수소 효소(ddh)를 함유한다. 따라서 4-유전자 카세트 v1(균주 263254)은 C. 글루타미쿰(SEQ ID NO: 40)의 아스파르테이트-세미-알데하이드 탈수소 효소(asd), 클로스트리디움 심비오섬(SEQ ID NO: 44)의 글루타메이트 탈수소 효소(gdh), 대장균(SEQ ID NO: 48)의 4-하이드록시-테트라하이드로다이피콜리네이트 환원 효소(dapB), 및 C. 글루타미쿰(SEQ ID NO: 4)의 메소-다이아미노피멜레이트 D-탈수소 효소(ddh)를 암호화한다.
4-유전자 카세트 v2(균주 263264)는 락토바실루스 아길리스(SEQ ID NO: 29)의 아스파르테이트-세미-알데하이드 탈수소 효소(asd), 클로스트리디움 심비오섬(SEQ ID NO: 43)의 글루타메이트 탈수소 효소(gdh), 대장균(SEQ ID NO: 47)의 4-하이드록시-테트라하이드로다이피콜리네이트 환원 효소(dapB), 및 C. 글루타미쿰(SEQ ID NO: 3)의 메소-다이아미노피멜레이트 D-탈수소 효소(ddh)를 함유한다. 따라서 4-유전자 카세트 v2(균주 263264)는 락토바실루스 아길리스(SEQ ID NO: 30)의 아스파르테이트-세미-알데하이드 탈수소 효소(asd), 클로스트리디움 심비오섬(SEQ ID NO: 44)의 글루타메이트 탈수소 효소(gdh), 대장균(SEQ ID NO: 48)의 4-하이드록시-테트라하이드로다이피콜리네이트 환원 효소(dapB), 및 C. 글루타미쿰(SEQ ID NO: 4)의 메소-다이아미노피멜레이트 D-탈수소 효소(ddh)를 암호화한다.
4-유전자 카세트는 플레이트 모델 9에서 리신 생산을 상당히 개선시켰다. 데이터는 표 10에 요약되어 있다.
유전자 카세트 | 균주 | 역가 mM (95% CI) | % 부모에 대한 개선 |
없음 | Parent_6 | 6.45 +/- 0.9 | n/a |
카세트 v1 | 263254 | 12.41 +/- 0.9 | 92.4 |
카세트 v2 | 263264 | 9.33 +/- 1.1 | 44.7 |
실시예
5:
NADH에
대한 보조 인자 특이성을 갖는
변이체
효소를 이용하여 트레오닌 생합성 경로를 재프로그래밍
실시예 2에 기재된 기본 균주를 하기 실시예 실험에 사용하였다.
박테리아에서 L-트레오닌 생산을 유도하는 생합성 경로는 thrABC 경로로 알려져 있다(도 9). 리신(및 메티오닌, 아이소류신 및 글리신)과 마찬가지로, 트레오닌 합성 경로를 향한 초기 단계는 옥살로아세테이트의 아스파르테이트로의 전환을 포함하며, 글루타메이트 탈수소 효소(gdh)에 의해 2-옥소글루타레이트로부터 재생되는 글루타메이트를 사용한다. 아스파르테이트는 아스파르테이트 세미알데하이드 탈수소 효소(asd)에 의해 아스파르틸 포스페이트를 아스파르테이트 세미알데하이드(ASA)로 후속 환원시키면서 아스파르틸 포스페이트로 전환된다. 이들 단계는 리신, 트레오닌, 아이소류신 및 메티오닌 생합성에 공통적이다. 트레오닌 형성은 아스파르틸 포스페이트를 ASA로 asd 전환하는 것 이상의 3가지 추가 단계 - 이작용성 아스파토키나제/호모세린 탈수소 효소(thrA)에 의한 ASA의 호모세린으로의 전환, 호모세린 키나아제(thrB)에 의한 호모세린에서 L-호모세린 포스페이트로의 전환 및 마지막으로, (3) 신타아제(thrC)에 의한 L-호모세린 포스페이트의 트레오닌으로의 전환을 필요로 한다. 이 마지막 3 단계는 NADP/NADH와 독립적으로 작동하고 이 경로에서 임의의 잠재적 병목은 thrABC 오페론의 과발현에 의해 트레오닌 염기 균주에서 위험이 제거된다.
도 9에 도시된 바와 같이, 각각의 천연 대장균 효소 gdh 및 asd는 이들의 각각의 작용에 대한 조효소로서 NADPH를 필요로 한다. 그러나 NADPH는 대장균에서 산업적 규모로 글루코오스로부터 L-트레오닌을 생산하는 데 있어서 제한적인 요인 중 하나이다(Becker et al. (2005), Appl . Environ. Microbiol ., 71(12):8587-8596). 따라서 대장균에서 NADPH 생산이 증가하면 L-트레오닌 생산이 증가해야 한다. 이 목표를 달성하는 한 가지 방법은 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 대장균 효소 gdh 및 asd의 자연 발생 상동체를 이용함으로써 NADPH의 이용을 감소시키는 것이다. 따라서, 이 실험의 목적은 gdh 및 asd의 조효소 의존성을 NADPH와 함께 NADH를 포함하도록 넓히는 것이었다.
대장균 효소 gdh는 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 클로스트리디움 심비오섬(Lilley K.S. et al. (1991), Biochim Biophys Acta, 1080(3):191-197)에서 공지된 상동체를 갖는다. 대장균 asd에 대해서는 그러한 상동체가 알려져 있지 않다. 우리는 더 강한 NADH 선호도 및 NADH 선호도를 갖는 asd의 신규한 상동성을 갖는 추가 gdh 상동체를 식별할 수 있는지 조사하기 위해, 환경 샘플로부터 개발된 인-하우스 군유전체학 라이브러리의 게놈 전체 상동성 검색을 수행하였다. 검색은 락토바실러스 아길리스 asd(asd_lag; SEQ ID 30) 및 클로스트리디알레스 gdh(gdh_csy; SEQ ID : 44)의 단백질 서열을 사용한 상기 라이브러리의 BlastP 분석으로 구성되었다. 상동성 검색은 수백 개의 서열을 검색하였지만, 추가의 여과 및 선별 기준을 적용하여 각 효소에 대한 24개의 서열의 라이브러리에 도달하였다. 각각의 효소에 대한 대략 12개의 서열을 쿼리 서열과 <70%의 동일성을 갖는 여과된 결과 서브 세트로부터 선택하였다. 쿼리 서열과 >70%의 동일성을 갖는 서열의 서브 세트로부터 대략 12개의 서열을 선택하였다.
파트 형태 | 파트 명칭 | SEQ ID |
프로모터 | pMB085 | 75 |
삽입체 (유전자) |
thrLABC | 76 |
삽입체 (유전자) |
thrABC | 77 |
백본 | pUC1벡터 | 78 |
효소 상동체 라이브러리 | ||||
종 |
대장균
유전자 |
Gene ID | 단백질 서열 | DNA 서열 |
Lactobacillus agilis | asd | asd_Lag | SEQ ID NO: 80 | SEQ ID NO: 79 |
E. coli | asd | asd_Ec | SEQ ID NO: 82 | SEQ ID NO: 81 |
알려지지 않음 | asd | asd_1 | SEQ ID NO: 84 | SEQ ID NO: 83 |
알려지지 않음 | asd | asd_2 | SEQ ID NO: 86 | SEQ ID NO: 85 |
알려지지 않음 | asd | asd_3 | SEQ ID NO: 88 | SEQ ID NO: 87 |
알려지지 않음 | asd | asd_4 | SEQ ID NO: 90 | SEQ ID NO: 89 |
알려지지 않음 | asd | asd_5 | SEQ ID NO: 92 | SEQ ID NO: 91 |
알려지지 않음 | asd | asd_6 | SEQ ID NO: 94 | SEQ ID NO: 93 |
알려지지 않음 | asd | asd_7 | SEQ ID NO: 96 | SEQ ID NO: 95 |
알려지지 않음 | asd | asd_8 | SEQ ID NO: 98 | SEQ ID NO: 97 |
알려지지 않음 | asd | asd_9 | SEQ ID NO: 100 | SEQ ID NO: 99 |
알려지지 않음 | asd | asd_10 | SEQ ID NO: 102 | SEQ ID NO: 101 |
알려지지 않음 | asd | asd_11 | SEQ ID NO: 104 | SEQ ID NO: 103 |
알려지지 않음 | asd | asd_12 | SEQ ID NO: 106 | SEQ ID NO: 105 |
알려지지 않음 | asd | asd_13 | SEQ ID NO: 108 | SEQ ID NO: 107 |
알려지지 않음 | asd | asd_14 | SEQ ID NO: 110 | SEQ ID NO: 109 |
알려지지 않음 | asd | asd_15 | SEQ ID NO: 112 | SEQ ID NO: 111 |
알려지지 않음 | asd | asd_16 | SEQ ID NO: 114 | SEQ ID NO: 113 |
알려지지 않음 | asd | asd_17 | SEQ ID NO: 116 | SEQ ID NO: 115 |
알려지지 않음 | asd | asd_18 | SEQ ID NO: 118 | SEQ ID NO: 117 |
알려지지 않음 | asd | asd_19 | SEQ ID NO: 120 | SEQ ID NO: 119 |
알려지지 않음 | asd | asd_20 | SEQ ID NO: 122 | SEQ ID NO: 121 |
알려지지 않음 | asd | asd_21 | SEQ ID NO: 124 | SEQ ID NO: 123 |
알려지지 않음 | asd | asd_22 | SEQ ID NO: 126 | SEQ ID NO: 125 |
알려지지 않음 | asd | asd_23 | SEQ ID NO: 128 | SEQ ID NO: 127 |
알려지지 않음 | asd | asd_24 | SEQ ID NO: 130 | SEQ ID NO: 129 |
Clostridiales | gdh | gdh_Csy | SEQ ID NO: 132 | SEQ ID NO: 131 |
E. coli | gdh | gdh_Ec | SEQ ID NO: 134 | SEQ ID NO: 133 |
알려지지 않음 | gdh | gdh_1 | SEQ ID NO: 136 | SEQ ID NO: 135 |
알려지지 않음 | gdh | gdh_2 | SEQ ID NO: 138 | SEQ ID NO: 137 |
알려지지 않음 | gdh | gdh_3 | SEQ ID NO: 140 | SEQ ID NO: 139 |
알려지지 않음 | gdh | gdh_4 | SEQ ID NO: 142 | SEQ ID NO: 141 |
알려지지 않음 | gdh | gdh_5 | SEQ ID NO: 144 | SEQ ID NO: 143 |
알려지지 않음 | gdh | gdh_6 | SEQ ID NO: 146 | SEQ ID NO: 145 |
알려지지 않음 | gdh | gdh_7 | SEQ ID NO: 148 | SEQ ID NO: 147 |
알려지지 않음 | gdh | gdh_8 | SEQ ID NO: 150 | SEQ ID NO: 149 |
알려지지 않음 | gdh | gdh_9 | SEQ ID NO: 152 | SEQ ID NO: 151 |
알려지지 않음 | gdh | gdh_10 | SEQ ID NO: 154 | SEQ ID NO: 153 |
알려지지 않음 | gdh | gdh_11 | SEQ ID NO: 156 | SEQ ID NO: 155 |
알려지지 않음 | gdh | gdh_12 | SEQ ID NO: 158 | SEQ ID NO: 157 |
알려지지 않음 | gdh | gdh_13 | SEQ ID NO: 160 | SEQ ID NO: 159 |
알려지지 않음 | gdh | gdh_14 | SEQ ID NO: 162 | SEQ ID NO: 161 |
알려지지 않음 | gdh | gdh_15 | SEQ ID NO: 164 | SEQ ID NO: 163 |
알려지지 않음 | gdh | gdh_16 | SEQ ID NO: 166 | SEQ ID NO: 165 |
알려지지 않음 | gdh | gdh_17 | SEQ ID NO: 168 | SEQ ID NO: 167 |
알려지지 않음 | gdh | gdh_18 | SEQ ID NO: 170 | SEQ ID NO: 169 |
알려지지 않음 | gdh | gdh_19 | SEQ ID NO: 172 | SEQ ID NO: 171 |
알려지지 않음 | gdh | gdh_20 | SEQ ID NO: 174 | SEQ ID NO: 173 |
알려지지 않음 | gdh | gdh_21 | SEQ ID NO: 176 | SEQ ID NO: 175 |
알려지지 않음 | gdh | gdh_22 | SEQ ID NO: 178 | SEQ ID NO: 177 |
알려지지 않음 | gdh | gdh_23 | SEQ ID NO: 180 | SEQ ID NO: 179 |
알려지지 않음 | gdh | gdh_24 | SEQ ID NO: 182 | SEQ ID NO: 181 |
대장균 gdh(Clostridiales gdh; SEQ ID NO: 134) 및 락토바실러스 아길리스(SEQ ID NO: 80) 뿐만 아니라 24가지 효소 변이체의 공지된 상동체의 오픈 리딩 프레임(ORFs)은 상업적으로 공급된 올리고를 사용하여 PCR에 의해 증폭되고 도 12에 도시도니 바와 같이 조절 서열, 프로모터 pMB038(SEQ ID NO: 237) 및 전사 종결 자(SEQ ID NO: 238)를 함유하는 다중-카피 플라스미드 p15A 기반 서열(SEQ ID NO: 239)로 복제하였다. asd 버전 26 및 gdh 버전 26 각각은 p15A에 기초한 다중-카피 플라스미드 골격에 다양한 조합으로 바이-시스트로닉 카세트로서 복제되었다(SEQ ID NO: 239).
정확하게 조립된 클론을 확인하고 트레오닌 염기 균주의 형질 전환을 위한 벡터 DNA를 증폭시키기 위해 표준 열 충격 형질 전환 기술을 사용하여 각 플라스미드를 초기에 대장균으로 형질전환시켰다(THR01-02).
검증된 클론을 전기 천공을 통해 대장균 염기 균주 세포로 형질전환시켰다. 새로 생성된 각각의 균주 및 이의 부모 균주를 상기한 바와 같이 소규모 배양에서 트레오닌 수율에 대해 테스트하였다. 실험 결과는 표 13에 제시되어 있다. 대립 유전자 asd_13 (SEQ ID NO: 108) 및 asd_18 (SEQ ID NO: 118)은 더 우수하지만 대조군과 유의하게 다르지 않았다. 대립 유전자 gdh_1 (SEQ ID NO: 136), ghd_8 (SEQ ID NO: 150), gdh_14 (SEQ ID NO: 162), gdh_16 (SEQ ID NO: 166), gdh_18 (SEQ ID NO: 170) gdh_20 (SEQ ID NO: 174) 및 gdh_22 (SEQ ID NO: 178)는 각각 W3110 및 대조군 균주에 비해 트레오닌을 증가시켰다(도 13). 모든 균주가 성공적으로 구축되고 테스트 된 것은 아니다. 성장이 불량하거나 성장하지 않은 복제 샘플 및 통계적 특이치는 도 13에 나타내지 않지만, 표 13에 제시되어 있다.
균주 # | ID | 역가 | STDEV |
7000340960 | asd_1 | 0.00 | 0.00 |
7000340968 | asd_4 | 0.00 | 0.00 |
7000340961 | asd_5 | 0.00 | 0.00 |
7000340977 | asd_6 | 0.79 | 1.37 |
7000340972 | asd_8 | 0.00 | 0.00 |
7000340950 | asd_9 | 0.00 | 0.00 |
7000340979 | asd_10 | 0.00 | 0.00 |
7000340945 | asd_11 | 0.00 | 0.00 |
7000340949 | asd_12 | 0.00 | 0.00 |
7000340981 | asd_13 | 7.14 | 3.57 |
7000340980 | asd_14 | 0.00 | 0.00 |
7000340955 | asd_15 | 0.00 | 0.00 |
7000340940 | asd_16 | 0.00 | 0.00 |
7000340967 | asd_17 | 0.00 | 0.00 |
7000340970 | asd_18 | 7.54 | 2.48 |
7000340975 | asd_20 | 0.00 | 0.00 |
7000340978 | asd_22 | 0.00 | 0.00 |
7000340987 | gdh_1 | 28.96 | 5.37 |
7000340951 | gdh_3 | 0.00 | 0.00 |
7000340958 | gdh_4 | 0.00 | 0.00 |
7000340959 | gdh_5 | 1.59 | 2.75 |
7000340941 | gdh_6 | 0.00 | 0.00 |
7000340957 | gdh_7 | 0.00 | 0.00 |
7000340962 | gdh_8 | 6.74 | 8.77 |
7000340952 | gdh_14 | 14.28 | 2.06 |
7000340948 | gdh_16 | 8.73 | 15.12 |
7000340966 | gdh_18 | 10.31 | 9.24 |
7000340983 | gdh_19 | 0.00 | 0.00 |
7000340971 | gdh_20 | 11.50 | 6.77 |
7000340936 | gdh_21 | 0.00 | 0.00 |
7000340939 | gdh_22 | 3.97 | 6.87 |
7000340964 | gdh_23 | 0.00 | 0.00 |
7000340944 | gdh_24 | 0.00 | 0.00 |
7000347664 | thrABC p15A 대조군 |
2.38 | 2.26 |
7000284155 | W3110 | 0.00 | 0.00 |
실시예
6: 상이한 기질 선호도 및 효소 동역학을 갖는
변이체
트레오닌 알 도라제 효소를 이용하여 트레오닌 역가 개선
실시예 2에 기재된 염기 균주를 하기 실시예 실험에 사용하였다.
이 실시예는 이종 트레오닌 알돌라제 유전자를 사용하여 박테리아 숙주 세포에서 L-트레오닌 생산을 증가시키는 방법을 설명한다. 대장균에서, 트레오닌 알돌라제(ltaE)는 L-트레오닌을 아세트알데하이드 및 글리신으로 전환시킴으로써 트레오닌의 축적과 반대로 작용한다. 그러나, 다양한 기질 특이성 및 효소 동역학은 트레오닌 알돌라제 효소(TA)의 광범위한 분류학적 패밀리 내에 존재한다. 이 실시예는 상이한 기질 선호도 또는 효소 동역학을 갖는 이종 TA로 천연 1taE 유전자를 첨가하거나 대체할 수 있게 함으로써, 트레오닌의 수율을 개선시키기 위해 TA 중에서 발견된 다양한 기질 선호도를 이용하는 전략을 예시한다. 그러나, 이 실시예는 전술한 실시예들과 마찬가지로 예시적인 것이며 어떠한 방식으로도 본 발명의 범위를 제한하는 것으로 해석되어서는 안 된다.
알돌라제는 도너 성분(친핵성)의 억셉터 성분에 가역적인 알돌 첨가를 촉진한다. 대장균 트레오닌 알돌라제(ltaE)는 L-알로-트레오닌 및 L-트레오닌의 글리신 및 아세트알데하이드로의 절단에 촉매작용을 미친다(도 10a). 대장균에서, ltaE는 L-트레오닌을 글리신으로 전환시킴으로써 트레오닌 축적에 반대하여 작용한다. 그러나, 다양한 기질 특이성은 트레오닌 알돌라제 유전자(TA)의 광범위한 분류 학적 패밀리 내에 존재한다. L-트레오닌의 형성에 유리한 기질 선호도(예를 들어, 세린, 알라닌) 및 동역학을 갖는 TA가 기술되었다(Fesko et al., 2015).
트레오닌 생산을 선호하는 기질 선호도 또는 효소 역학으로 대장균의 상동체를 확인할 수 있는지 여부를 조사하기 위해, 환경 샘플로부터 개발된 인-하우스 군유전체학 라이브러리의 게놈 전체 상동성 검색을 수행하였다. 검색은 글리신에 대해 보고된 선호도를 갖는 효소인 크로노박터 사카자카이 트레오닌 알도라제(Csa_ltaE; SEQ ID NO: 183)의 단백질 서열을 사용한 상기 라이브러리의 BlastP 분석으로 구성되었다(Fesko et al., 2015). ltaE 검색은 수백 개의 서열을 검색했지만, 24개의 서열 라이브러리에 도달하기 위해 추가의 필터링 및 선택 기준이 적용되었다. 쿼리 서열과 <70% 동일성을 갖는 결과의 필터링된 서브 세트로부터 약 12개의 서열이 선택되었다. 쿼리 서열과 >70%의 동일성을 갖는 서열의 서브 세트로부터 대략 12개의 서열이 선택되었다.
크로노박터 사카자카이 트레오닌 알돌라제의 오픈 리딩 프레임(ORF)을 대장균(SEQ ID NO: 183)에 대해 코돈-최적화하고 gBlock 유전자 단편(IDT)으로서 합성하였다. 24 ltaE 변이체는 상업적으로 공급되는 올리고를 사용하여 PCR에 의해 증폭시키고 도 12에 도시된 바와 같이 프로모터 pMB038(SEQ ID NO: 237) 및 천연 대장균 thrL 전사 종결자(SEQ ID NO: 238)를 함유하는 다중-카피 플라스미드 p15A 기반 서열(SEQ ID NO: 239)로 복제하였다.
정확하게 조립된 클론을 확인하고, 대장균 트레오닌 염기 균주로의 형질 전환을 위해 벡터 DNA를 증폭시키기 위해 표준 열 충격 변환 기술을 사용하여 각각의 플라스미드를 초기에 화학적으로 유능한 NEB 10-베타 대장균 세포로 형질전환시켰다.
검증된 클론을 전기 천공을 통해 대장균 염기 균주 세포로 형질 전환시켰다. 새로 생성된 각각의 균주 및 그의 부모 균주를 상기한 바와 같이 소규모 배양에서 트레오닌 수율에 대해 테스트하였다. 실험 결과는 표 14에 제공되어 있다. 대립 유전자 ltaE_6 (SEQ ID NO: 196), ltaE_11 (SEQ ID NO: 206), ltaE_18 (SEQ ID NO: 220), ltaE_20 (SEQ ID NO: 224), lta_24 (SEQ ID NO: 232), 및 각각의 증가된 트레오닌 역가를 thrABC + p15A 빈 벡터 대조군 (대조 플라스미드) 및 W3310 균주와 비교하였다(도 14).
균주 # | ID | 역가 | STDEV |
7000342684 | ltaE_3 | 0.00 | 0.00 |
7000342681 | ltaE_4 | 0.00 | 0.00 |
7000342698 | ltaE_6 | 8.33 | 7.24 |
7000342707 | ltaE_11 | 31.34 | 24.31 |
7000342713 | ltaE_13 | 0.00 | 0.00 |
7000342668 | ltaE_14 | 0.00 | 0.00 |
7000342685 | ltaE_15 | 0.79 | 1.37 |
7000342682 | ltaE_16 | 0.00 | 0.00 |
7000342678 | ltaE_17 | 1.19 | 2.06 |
7000342675 | ltaE_18 | 17.85 | 9.29 |
7000342694 | ltaE_19 | 0.00 | 0.00 |
7000342695 | ltaE_20 | 11.50 | 2.99 |
7000342690 | ltaE_21 | 1.98 | 3.44 |
7000342710 | ltaE_22 | 0.00 | 0.00 |
7000342715 | ltaE_24 | 10.71 | 18.55 |
7000347664 | thrABC p15A 대조군 |
2.38 | 2.26 |
7000284155 | W3110 | 0.00 | 0.00 |
실시예
7 : L-트레오닌 생산을 증가시키기 위해 대장균에서 변형 또는
변이
체 gapA, gdh, asd 및 ltaE 효소의 조합 발현
실시예 2에 기재된 염기 균주는 하기 실시예 실험에 사용되었다.
상기 전략 중 하나 이상을 조합하여 NADPH 생성을 추가로 증가시켜서 대장균에서 L-트레오닌 수율을 증가시킬 수 있다. gapA, gsd, asd, ltaE의 다양한 조합은 실시예 2에 기재된 대장균 thrABCㅿtdh 배경에 도입되었다. 일부 경우에, 이들 조합은 thrABC 오페론의 폴리시스트로닉 첨가 하류로서 pMB085-thrABC를 함유하는 동일한 변형된 pUC19 벡터 내로 복제되고 상기한 바와 같이 상업적으로 공급되는 올리고 뉴클레오타이드를 사용하여 pAB085 프로모터에 의해 구동되었다. 다수의 유전자가 함께 첨가될 때, 다음의 리보좀 결합 부위(RBS) 링커가 포함되었다: RBS1(agctggtggaatat(SEQ ID NO: 306); thrC 후), RBS2(aggaggttgt (SEQ ID NO: 307); 유전자 1과 2 사이) 및 RBS3(tgacacctattg (SEQ ID NO: 308); 유전자 2와 3 사이). 이들 링커 서열은 올리고뉴클레오타이드 테일에 포함되었고 유전자의 PCR 증폭 동안 도입되었다. gapA, gsd, asd, ltaE의 조합이 thrABC 역가를 갖는 폴리시트로닉 오페론으로 발현될 때, 15mg/L 이상의 트레오닌이 특정 조합에 대해 관찰되었다(도 11a-c) 및 표 15.
균주 # | ID | 역가 | STDEV |
7000284155 | W3110 | 0.00 | 0.00 |
7000334740 | tdh_del | 0.00 | 0.00 |
7000336113 | thrLABC | 0.00 | 0.00 |
7000341282 | thrABC | 0.79 | 1.37 |
7000342722 | Ec_asd | 3.17 | 3.64 |
7000342724 | Ec_gdh | 15.07 | 8.10 |
7000342725 | Ec_ltaE | 0.00 | 0.00 |
7000342723 | Ec_gapA | 0.79 | 1.37 |
7000342735 | Ec_asd+Ec_gdh | 0.00 | 0.00 |
7000342736 | Ec_gapA+Ec_gdh | 16.66 | 6.73 |
7000342719 | Lag_asd | 8.33 | 4.29 |
7000342721 | Csy_gdh | 15.87 | 4.81 |
7000342728 | Lag_asd+Csy_gdh | 0.00 | 0.00 |
7000342737 | Lag_asd+Csy_gdh+Csa_ltaE | 13.09 | 10.10 |
7000342742 | Lag_asd+Csy_gdh+Csa_ltaE | 14.28 | 2.06 |
7000342726 | gapAv5 | 19.04 | 8.33 |
7000342720 | gapAv7 | 15.47 | 9.45 |
7000342727 | gapAv8 | 8.73 | 4.18 |
7000342731 | gapAv5+Csy_gdh | 0.00 | 0.00 |
7000342729 | gapAv5+Csy_gdh+Csa_ltaE | 4.76 | 8.24 |
7000342730 | gapAv5+Csy_gdh+Lag_asd | 0.00 | 0.00 |
7000342733 | gapAv7+Csy_gdh | 10.31 | 6.87 |
7000342732 | gapAv7+Csy_gdh+Csa_ltaE | 1.98 | 3.44 |
7000342734 | gapAv8+Csy_gdh | 1.19 | 2.06 |
pUC19 플라스미드에서 폴리시스트로닉적으로 발현된 상기 유전자 조합 이외에, 본 발명자는 또한 상기 균주 중 3개(7000342721, 7000342726 및 7000342720; Csy_gdh(SEQ ID NO: 44), gapAv5(SEQ ID NO: 69) 및 gapAv7(SEQ ID NO: 71), 각각)을 asd, gdh 및 ltaE의 개별 라이브러리 변이체(위에서 기술되고 테스트) 또는 빈 p15A 벡터 대조군(예를 들어, Csy_gdh + p15A (-))을 발현하는 p15A 플라스미드(SEQ ID NO: 239)로 변형시켰다. 이들 균주의 요약 및 이들의 성능(트레오닌 역가)은 표 16에 제공되어 있다. W3110을 제외한 모든 균주는 pMB085-thrABC tdh 결실 배경에 있다. 이들 실험에서, 가장 관련성 있는 대조군은 빈 p15A 대조군 플라스미드(7000349886, 7000349887 및 7000349885; 각각 Csy_gdh + p15A(-), gapAv5 + p15A(-) 및 gapAv7 + p15A(-)로 형질전환된 부모 균주 (Csy_gdh, gapAv5 및 gapAv7)이다. Csy_gdh, gapAv5 또는 gapAv7과 asd, gdh 또는 ltaE 변이체의 특정 조합은 트레오닌 역가를 향상시켰다. asd, gdh 또는 ltaE 라이브러리 변이체를 발현하는 다수의 균주에 대해 하나 이상의 생물학적 복제물이 관련 대조군 균주보다 우수하게 수행되었다(도 15). 본 발명자는 개선된 트레오닌 역가를 초래한 개별적인 생물학적 복제물이 이들 조합으로 인한 개선을 나타내는 것으로 생각한다. 높은 변동성(트레오닌 생성에 실패한 다수의 반복 실험으로 인한 큰 표준 편차)은 균주가 두 개의 플라스미드를 유지하고 있을 때 플라스미드 불안정성 또는 높은 돌연변이율의 결과일 가능성이 있지만 이러한 유전자의 염색체 통합에 의해 완화될 수 있다. 추가적인 p15A 플라스미드의 유지 및 클로람페니칼에서의 성장은 또한 부모에 비해 2개의 플라스미드(예를 들어, 부모에 비해 -p15A(-) 플라스미드)를 유지하는 균주에서 관찰되는 역가가 더 낮아졌다.
균주 # | 균주 표현형 | 역가 | STDEV |
7000284155 | W3110 | 0.00 | 0.00 |
7000341282 | pMB085-thrABC | 21.44 | 14.44 |
7000342721 | Csy_gdh | 29.78 | 26.34 |
7000349838 | Csy_gdh+asd_13 | 8.74 | 8.94 |
7000349878 | Csy_gdh+asd_18 | 11.51 | 19.94 |
7000349840 | Csy_gdh+gdh_08 | 16.28 | 28.20 |
7000349847 | Csy_gdh+gdh_14 | 0.00 | 0.00 |
7000349850 | Csy_gdh+gdh_16 | 19.26 | 20.92 |
7000349851 | Csy_gdh+gdh_18 | 0.00 | 0.00 |
7000349881 | Csy_gdh+gdh_20 | 0.00 | 0.00 |
7000349855 | Csy_gdh+gdh_22 | 25.02 | 31.15 |
7000349853 | Csy_gdh+ltaE_06 | 0.00 | 0.00 |
7000349867 | Csy_gdh+ltaE_11 | 0.00 | 0.00 |
7000349849 | Csy_gdh+ltaE_18 | 0.00 | 0.00 |
7000349844 | Csy_gdh+ltaE_20 | 16.68 | 28.89 |
7000349869 | Csy_gdh+ltaE_24 | 0.00 | 0.00 |
7000349886 | Csy_gdh+p15A(-) | 8.74 | 21.40 |
7000342726 | gapAv5 | 29.78 | 2.06 |
7000349870 | gapAv5+asd_13 | 0.00 | 0.00 |
7000349880 | gapAv5+asd_18 | 7.15 | 9.45 |
7000349864 | gapAv5+gdh_08 | 0.00 | 0.00 |
7000349857 | gapAv5+gdh_14 | 19.85 | 34.39 |
7000349876 | gapAv5+gdh_16 | 16.68 | 26.85 |
7000349872 | gapAv5+gdh_18 | 0.00 | 0.00 |
7000349884 | gapAv5+gdh_20 | 0.00 | 0.00 |
7000349862 | gapAv5+gdh_22 | 17.87 | 30.95 |
7000349874 | gapAv5+ltaE_06 | 0.00 | 0.00 |
7000349863 | gapAv5+ltaE_11 | 0.79 | 1.38 |
7000349866 | gapAv5+ltaE_18 | 0.00 | 0.00 |
7000349861 | gapAv5+ltaE_20 | 6.35 | 11.00 |
7000349871 | gapAv5+ltaE_24 | 8.74 | 15.13 |
7000349887 | gapAv5+p15A(-) | 0.79 | 1.95 |
7000342720 | gapAv7 | 36.13 | 1.82 |
7000349835 | gapAv7+asd_13 | 0.79 | 1.38 |
7000349848 | gapAv7+asd_18 | 10.72 | 13.74 |
7000349877 | gapAv7+gdh_08 | 0.00 | 0.00 |
7000349833 | gapAv7+gdh_14 | 7.45 | 8.72 |
7000349875 | gapAv7+gdh_16 | 6.35 | 7.28 |
7000349879 | gapAv7+gdh_18 | 0.00 | 0.00 |
7000349846 | gapAv7+gdh_20 | 0.00 | 0.00 |
7000349842 | gapAv7+gdh_22 | 21.44 | 29.92 |
7000349873 | gapAv7+ltaE_06 | 0.00 | 0.00 |
7000349839 | gapAv7+ltaE_11 | 0.00 | 0.00 |
7000349883 | gapAv7+ltaE_18 | 0.00 | 0.00 |
7000349837 | gapAv7+ltaE_20 | 0.00 | 0.00 |
7000349843 | gapAv7+ltaE_24 | 0.00 | 0.00 |
7000349885 | gapAv7+p15A(-) | 1.59 | 3.89 |
실시예
8:
NADH로부터
NADPH를
생성하기 위해 수소전달 효소 발현
C. 글루타미쿰에서 L-리신의 생명공학 생산에 중요한 요소는 충분한 NADPH의 공급이다. 도 1에 도시된 바와 같이, 막-통합 니코틴아마이드 뉴클레오타이드 수소전달 효소는 NADH의 산화를 통해 NADP+의 환원을 유도하여 NADH로부터 NADPH를 생성할 수 있다. 따라서 수소전달 효소의 발현은 C. 글루타미쿰에서 세포 NADPH 생성 및 L-리신 생성을 증가시키는 효과적인 전략이다.
실시예
9:
피루베이트
카복실라제
발현
피루베이트 카복실레이트는 산업 발효에서 성장 동안 또는 리신 및 글루탐산 생산 동안 생합성을 위해 소비된 옥살로아세테이트를 보충하는 중요한 무응집 효소이다.
피루베이트 카복실라제 유전자는 리조븀 에틀리(Rhizobium etli)(Dunn, F. F., et al., J. Bacteriol . 178:5960-5970 (1996), 바실러스 스테아로모필러스(Bacillus stearothermophilus)Kondo, H., et al., Gene 191:47-50 (1997), 바실러스 서브틸리스(Bacillus subtillis)(Genbank accession no. Z97025), 마이코박테리움 튜버쿨로시스(Mycobacterium tuberculosis)(Genbank accession no. Z83018), 메타노박테리움 써모오토트로피쿰(Methanobacterium thermoautotrophicum)(Mukhopadhyay, B., J. Biol . Chem . 273:5155-5166(1998)으로부터 복제되고 서열 분석되었다. 피루베이트 카복실라제 활성은 브레비박테리움 락토퍼멘텀(Brevibacterium lactofermentum)(Tosaka, O., et al., Agric . Biol . Chem . 43:1513-1519 (1979)) 및 코리네박테리움 글루타미쿰(Peters-Wendisch, P. G., et al., Microbiology 143:1095-1103 (1997)에서 이전에 측정되었다.
연구는 아스파르테이트 아미노산 패밀리의 수율 및 생산성은 보충 경로를 통한 탄소 흐름에 결정적으로 의존한다는 것을 밝혔다(Vallino, J. J., & Stephanopoulos, G., Biotechnol . Bioeng . 41:633-646 (1993)). 대사 산물 균형에 기초하여, 리신 생산 속도는 보충 경로를 통한 옥살로아세테이트 합성 속도 이하인 것을 알 수 있다
C. 글루타미쿰의 피루베이트 카복실라제 유전자는 돌연변이체 또는 변이체로 대체될 수 있으며, 바람직하게는 피루베이트 카복실라제는 C. 글루타미쿰 기본 균주에서 이의 발현보다 2 내지 20배 더 높게 발현된다.
대장균은 내인성 피루베이트 카복실라제 유전자가 없는 것으로 생각된다. 이종 피루베이트 카복실라제가 제공될 수 있다. C. 글루타미쿰 또는 다른 미생물로부터의 이종 피루베이트 카복실라제 유전자는, 예를 들어, 실시예 2에 기술된 기본 균주와 같은 임의의 대장균 균주로 도입될 수 있다. 일부 응용분야에서, 내인성 또는 이종 피루베이트 카복실라제의 발현 수준의 정확한 조절 또는 미세 조정은 최적이 아닌 결과가 돌연변이체 또는 변이체 pyc 유전자의 발현 수준 또는 활성 수준에 의한 불충분한 피루베이트 카복실라제 활성 또는 과도한 피루베이트 카복실라제 활성에 의해 달성될 수 있다는 점에서 바람직할 수 있다. 이러한 경우, 프로모터 래더는 발현을 조절하거나 미세 조정하는 데 사용될 수 있다. 다양한 pyc 변이체 또는 돌연변이체와 조합하여 다양한 강도의 프로모터 요소를 테스트함으로써, 최적의 유전자 활성을 초래하는 프로모터 및 pyc 유전자의 조합이 결정될 수 있어, L-트레오닌과 같은 원하는 화합물의 생산이 증가된다.
실시예
10: L-리신 또는 L-트레오닌 생산을 증가시키기 위해 C.
글루타미
쿰 또는 대장균에서 변형된
gapA
, 수소전달 효소 및 변형된
gdh
,
asd
,
dapB
및 ddh 효소의 조합 발현
상기 전략 중 하나 이상을 NADPH 생산을 추가로 증가시키고 따라서 C. 글루타미쿰 또는 대장균에서 L-리신 또는 L-트레오닌의 수율을 증가시키기 위해 조합하여 사용할 수 있다.
실시예
11: 신규
글리세르알데하이드
3-
포스페이트
탈수소 효소(
GAPDH
) 대립 유전자의 확인
gapAv9 (D35G, L36T, T37K, P192S)(SEQ ID NO: 303)를 시작 서열로 사용하여 gapA 유전자의 NNK 라이브러리를 생성하였다. 각각의 돌연변이 유발된 유전자는 내인성 gapA 대립 유전자를 갖는 C. 글루타미쿰에서 천연 gapA 프로모터의 조절하에 중성 통합 유전자좌(cg1504 내지 cg1505 사이)에서 gapA의 제 2 복제물로서 개별적으로 도입되었다. 리신 역가를 개선하는 대립 유전자를 확인하기 위해 1200개 이상의 gapA 구성요소를 2개의 상이한 플레이트 분석에서 스크리닝하였다. 특정 구성요소는 부모 균주(블랙 마름모꼴)와 비교하여 리신(검은색 원)의 발현이 증가된 것으로 나타났다(도 14).
몇몇 절단된 gapA 서열은 리신 발현을 증가시켰다. 천연 gapA 서열에 밑줄이 표시된다. 나머지 아미노산은 프레임-시프트 돌연변이의 인공물이다.
균주 | 서열 | SEQ ID NO |
331829 | MTIRVGINGFGRIGRNFFRAILERSDDLEVVAVNGTKDNKTLSTLLKFDSIMGRLGQEVEYDDDSINEGLRQHRQGCFLVRQRVGLHLPAPASDRARSFQAL* | 233 |
331831 | MTIRVGINGFGRIGRNFFRAILERSDDLEVVAVNGTKDNKTLSTLLKFDSIMGTKDNKTLSTLLKFDSISR* | 234 |
331897 | MTIRVGINGFGRIGRNFFRAILERSDDLEVVAVNGTKDNKTLSTLLKFDSIMGRLGQEVEYDDDSITVGGKRIAVYAERDPKNLDWAATTLTS* | 235 |
331904 | MTIRVGINGFGRIGRNFFVAGAKKVIISRCKRG* | 236 |
돌연변이 | 균주 | 플레이트 모델 | 역가 mM (95% CI) |
부모 역가 mM (95% CI) | % 부모에 대한 개선 |
L224S | 331772 | #2 | 34.1+/-5.4 | 31+/-0.36 | 10 |
H110D | 331828 | #1 | 27.7+/-2.2 | 23.3+/-0.5 | 18.9 |
Trunc (102 aa) SEQ ID NO: 233 | 331829 | #1 | 26.4+/-1.5 | 23.3+/-0.5 | 13.3 |
Trunc (71 aa) SEQ ID NO: 234 | 331831 | #1 | 26.8+/-2.3 | 23.3+/-0.5 | 15 |
Trunc (93 aa) SEQ ID NO: 235 | 331897 | #1 | 29.3+/-3.8 | 23.3+/-0.5 | 25.8 |
Trunc (33 aa) SEQ ID NO: 236 | 331904 | #1 | 29.6+/-1 | 23.3+/-0.5 | 27 |
K37P | 331009 | #2 | 29.3+/-4.8 | 27.3+/-0.24 | 7.3 |
Y140G | 331005 | #1 | 21.6+/-0.5 | 19.7+/-0.3 | 9.6 |
SEQ
ID 식별자를 갖는 본 발명의 서열
본 발명의 번호를 매긴
실시태양
첨부된 조항에도 불구하고, 본 발명은 다음의 번호가 매겨진 실시태양을 설명한다.
NADPH를
사용하여 생산된 화합물의 생산 개선
1. NADPH를 사용하여 생산된 화합물을 생산하는 숙주 세포의 능력을 향상시키는 방법으로서, 세포의 이용 가능한 NADPH를 변경하는 단계를 포함하는 방법.
2. 조항 1에 있어서, 이용 가능한 NADPH는 세포에서 변형된 글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)를 발현시킴으로써 변경되며, 여기서 변형된 GAPDH는 이의 조효소 특이성이 확장되도록 변형되는 방법.
3. 조항 2에 있어서, 변형된 GAPDH는 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대해 증가된 특이성을 갖는 방법.
4. 조항 3에 있어서, 자연 발생 GAPDH는 gapA인 방법.
5. 조항 4에 있어서, gapA는 SEQ ID NO: 58의 아미노산 서열을 갖는 방법.
6. 조항 2-5 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 서열과 적어도 70%의 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
7. 조항 2-5 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
8. 조항 2-7 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 37에 해당하는 위치에 아미노산 치환을 포함하는 방법.
9. 조항 2-8 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 36 및 37에 해당하는 위치에서 아미노산 치환을 포함하는 방법.
10. 조항 8 또는 9에 있어서, SEQ ID NO: 58의 아미노산 37에 해당하는 변형된 GAPDH 위치의 잔기는 리신인 방법.
11. 조항 9에 있어서, SEQ ID NO: 58의 아미노산 36에 해당하는 변형된 GAPDH의 위치의 잔기는 트레오닌이고, SEQ ID NO: 58의 아미노산 37에 해당하는 변형된 GAPDH의 위치의 잔기는 리신인 방법.
12. 조항 2-11 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 192에 해당하는 위치에 아미노산 치환을 포함하는 방법.
13. 조항 12에 있어서, SEQ ID NO: 58의 아미노산 192에 해당하는 변형된 GAPDH 위치의 잔기는 세린인 방법.
14. 조항 2-58 중 어느 한 항에 있어서, SEQ ID NO: 58의 아미노산 224에 해당하는 변형된 GAPDH 위치의 잔기는 세린인 방법.
15. 조항 2-14 중 어느 한 항에 있어서, SEQ ID NO: 58의 아미노산 110에 해당하는 변형된 GAPDH의 위치의 잔기는 아스파르트산인 방법.
16. 조항 2-15 중 어느 한 항에 있어서, SEQ ID NO: 58의 아미노산 140에 해당하는 변형된 GAPDH의 위치의 잔기는 글리신인 방법.
17. 조항 2-5 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 69, 71, 73, 303, 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열과 동일한 아미노산 서열을 포함하는 방법.
18. 조항 1-17 중 어느 한 항에 있어서, 화합물은 표 2로부터 선택되는 방법.
19. 조항 18에 있어서, 화합물은 리신인 방법.
20. 조항 18에 있어서, 화합물은 트레오닌인 방법.
21. 조항 1-20 중 어느 한 항에 있어서, 숙주 세포는 원핵 세포인 방법.
22. 조항 21에 있어서, 숙주 세포는 아그로박테리움(Agrobacterium), 알리시로바실러스(Alicyclobacillus), 아나베아나(Anabaena), 아나시스티스(Anacystis), 아시네토박터(Acinetobacter), 아시도써무스(Acidothermus), 아르쓰로박터(Arthrobacter), 아조박터(Azobacter), 바실러스(Bacillus), 비피도박테리움(Bifidobacterium), 브레비박테리움(Brevibacterium), 부티리비브리오(Butyrivibrio), 부케네라(Buchnera), 캠프스트리스(Campestris), 캠필로박터(Camplyobacter), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 크로마티움(Chromatium), 코프로콕쿠스(Coprococcus), 에스체리치아(Escherichia), 엔테로콕쿠스(Enterococcus), 엔테로박터(Enterobacter), 에르위니아(Erwinia), 푸소박테리움(Fusobacterium), 파에칼리박테리움(Faecalibacterium), 프란시셀라(Francisella), 플라보박테리움(Flavobacterium), 게오바실루스(Geobacillus), 해모필루스(Haemophilus), 헬리코박터(Helicobacter), 클레브시엘라(Klebsiella), 락토바실루스(Lactobacillus), 락토콕커스(Lactococcus), 일로박터(Ilyobacter), 마이크로콕쿠스(Micrococcus), 마이크로박테리움(Microbacterium), 메소르히조비움(Mesorhizobium), 메틸로박테리움(Methylobacterium), 마이코박테리움(Mycobacterium), 네이세리아(Neisseria), 판도에아(Pantoea), 수도모나스(Pseudomonas), 프로클로로콕쿠스(Prochlorococcus), 로도박터(Rhodobacter), 로도수도모나스(Rhodopseudomonas), 로세부리아(Roseburia), 로도스피릴룸(Rhodospirillum), 로도콕쿠스(Rhodococcus), 세네데스무스(Scenedesmus), 스트렙토마이세스(Streptomyces), 스트렙토콕쿠스(Streptococcus), 시네콕쿠스(Synecoccus), 사카로모노스포라(Saccharomonospora), 사카로폴리스포라(Saccharopolyspora), 스타필로콕쿠스(Staphylococcus), 세라티아(Serratia), 살모넬라(Salmonella), 시겔라(Shigella), 써모아나에로박테리움(Thermoanaerobacterium), 트로페리마(Tropheryma), 툴라렌시스(Tularensis), 테메쿨라(Temecula), 써모시네코콕쿠스(Thermosynechococcus), 써모콕쿠스(Thermococcus), 우레아플라즈마(Ureaplasma), 잔토모나스(Xanthomonas), 자일렐라(Xylella), 예르시니아(Yersinia) 및 지모모나스(Zymomonas)로 이루어진 그룹으로부터 선택된 속으로부터인 방법.
23. 조항 22에 있어서, 숙주 세포는 코리네박테리움 글루타미쿰인 방법.
24. 조항 22에 있어서, 숙주 세포는 대장균인 방법.
25. 조항 1-20 중 어느 한 항에 있어서, 숙주 세포는 진핵 세포인 방법.
26. 조항 25에 있어서, 숙주 세포는 아칠라(Achlya), 아크레모늄(Acremonium), 아스퍼길루스(Aspergillus), 아우레오바시듐(Aureobasidium), 브제르칸데라(Bjerkandera), 세리포리오프시스(Ceriporiopsis), 세팔로스포리움(Cephalosporium), 크리소스포리움(Chrysosporium), 코칠리오볼루스(Cochliobolus), 코리나스쿠스(Corynascus), 크리포넥트리아(Cryphonectria), 크립토콕쿠스(Cryptococcus), 코프리누스(Coprinus), 코리오루스(Coriolus), 디플로디아(Diplodia), 엔도디스(Endothis), 프사리움(Fusarium), 지베렐라(Gibberella), 글리오클라디움(Gliocladium), 휴미콜라(Humicola), 하이포크레아(Hypocrea), 마이셀리오프토라(Myceliophthora)(예를 들어, Myceliophthora thermophila), 무코르(Mucor), 네우로스포라(Neurospora), 페니실리움(Penicillium), 포도스포라(Podospora), 필레비아(Phlebia), 피로마이세스(Piromyces), 피리쿨라리아(Pyricularia), 리히조무코르(Rhizomucor), 리히조푸스(Rhizopus), 스키조필룸(Schizophyllum), 스키탈리듐(Scytalidium), 스포로트리츔(Sporotrichum), 탈라로마이세스(Talaromyces), 써모아스쿠스(Thermoascus), 티에라비아(Thielavia), 트라마테스(Tramates), 폴리포클라듐(Tolypocladium), 트라이코데마(Trichoderma), 베르티실리움(Verticillium), 및 볼바리엘라(Volvariella)로 이루어진 그룹으로부터 선택된 속으로부터인 방법.
변형된
GAPDH를
포함하는 숙주 세포
27. 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형 된 GAPDH를 포함하는 숙주 세포로서, 여기서 숙주 세포는 변형된 GAPDH가 없는 상대 숙주 세포에 비해 NADPH를 사용하여 생산된 화합물의 생산을 개선시키는 숙주 세포.
28. 조항 27에 있어서, 이용 가능한 NADPH는 세포에서 변형된 글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)를 발현시킴으로써 변경되며, 여기서 변형된 GAPDH는 이의 조효소 특이성이 확장되도록 변형되는 숙주 세포.
29. 조항 27 또는 28에 있어서, 변형된 GAPDH는 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대해 증가된 특이성을 갖는 숙주 세포.
30. 조항 29에 있어서, 자연 발생 GAPDH는 gapA인 숙주 세포.
31. 조항 30에 있어서, gapA는 SEQ ID NO: 58의 아미노산 서열을 갖는 숙주 세포.
32. 조항 27-31 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 서열과 적어도 70%의 서열 동일성을 공유하는 아미노산 서열을 포함하는 숙주 세포.
33. 조항 27-31 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 숙주 세포.
34. 조항 27-33 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 37에 해당하는 위치에 아미노산 치환을 포함하는 숙주 세포.
35. 조항 27-34 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 36 및 37에 해당하는 위치에서 아미노산 치환을 포함하는 숙주 세포.
36. 조항 34 또는 35에 있어서, SEQ ID NO: 58의 아미노산 37에 해당하는 변형된 GAPDH 위치의 잔기는 리신인 숙주 세포.
37. 조항 35에 있어서, SEQ ID NO: 58의 아미노산 36에 해당하는 변형된 GAPDH의 위치의 잔기는 트레오닌이고, SEQ ID NO: 58의 아미노산 37에 해당하는 변형된 GAPDH의 위치의 잔기는 리신인 숙주 세포.
38. 조항 27-37 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 192에 해당하는 위치에 아미노산 치환을 포함하는 숙주 세포.
39. 조항 38에 있어서, SEQ ID NO: 58의 아미노산 192에 해당하는 변형된 GAPDH 위치의 잔기는 세린인 숙주 세포.
40. 조항 27-39 중 어느 한 항에 있어서, SEQ ID NO: 58의 아미노산 224에 해당하는 변형된 GAPDH 위치의 잔기는 세린인 숙주 세포.
41. 조항 27-40 중 어느 한 항에 있어서, SEQ ID NO: 58의 아미노산 110에 해당하는 변형된 GAPDH의 위치의 잔기는 아스파르트산인 숙주 세포.
42. 조항 27-41 중 어느 한 항에 있어서, SEQ ID NO: 58의 아미노산 140에 해당하는 변형된 GAPDH의 위치의 잔기는 글리신인 숙주 세포.
43. 조항 27-31 중 어느 한 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 69, 71, 73, 303, 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열과 동일한 아미노산 서열을 포함하는 숙주 세포.
44. 조항 27-43 중 어느 한 항에 있어서, 화합물은 표 2로부터 선택되는 숙주 세포.
45. 조항 44에 있어서, 화합물은 리신인 숙주 세포.
46. 조항 44에 있어서, 화합물은 트레오닌인 숙주 세포.
47. 조항 27-46 중 어느 한 항에 있어서, 숙주 세포는 원핵 세포인 숙주 세포.
48. 조항 47에 있어서, 숙주 세포는 아그로박테리움(Agrobacterium), 알리시로바실러스(Alicyclobacillus), 아나베아나(Anabaena), 아나시스티스(Anacystis), 아시네토박터(Acinetobacter), 아시도써무스(Acidothermus), 아르쓰로박터(Arthrobacter), 아조박터(Azobacter), 바실러스(Bacillus), 비피도박테리움(Bifidobacterium), 브레비박테리움(Brevibacterium), 부티리비브리오(Butyrivibrio), 부케네라(Buchnera), 캠프스트리스(Campestris), 캠필로박터(Camplyobacter), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 크로마티움(Chromatium), 코프로콕쿠스(Coprococcus), 에스체리치아(Escherichia), 엔테로콕쿠스(Enterococcus), 엔테로박터(Enterobacter), 에르위니아(Erwinia), 푸소박테리움(Fusobacterium), 파에칼리박테리움(Faecalibacterium), 프란시셀라(Francisella), 플라보박테리움(Flavobacterium), 게오바실루스(Geobacillus), 해모필루스(Haemophilus), 헬리코박터(Helicobacter), 클레브시엘라(Klebsiella), 락토바실루스(Lactobacillus), 락토콕커스(Lactococcus), 일로박터(Ilyobacter), 마이크로콕쿠스(Micrococcus), 마이크로박테리움(Microbacterium), 메소르히조비움(Mesorhizobium), 메틸로박테리움(Methylobacterium), 마이코박테리움(Mycobacterium), 네이세리아(Neisseria), 판도에아(Pantoea), 수도모나스(Pseudomonas), 프로클로로콕쿠스(Prochlorococcus), 로도박터(Rhodobacter), 로도수도모나스(Rhodopseudomonas), 로세부리아(Roseburia), 로도스피릴룸(Rhodospirillum), 로도콕쿠스(Rhodococcus), 세네데스무스(Scenedesmus), 스트렙토마이세스(Streptomyces), 스트렙토콕쿠스(Streptococcus), 시네콕쿠스(Synecoccus), 사카로모노스포라(Saccharomonospora), 사카로폴리스포라(Saccharopolyspora), 스타필로콕쿠스(Staphylococcus), 세라티아(Serratia), 살모넬라(Salmonella), 시겔라(Shigella), 써모아나에로박테리움(Thermoanaerobacterium), 트로페리마(Tropheryma), 툴라렌시스(Tularensis), 테메쿨라(Temecula), 써모시네코콕쿠스(Thermosynechococcus), 써모콕쿠스(Thermococcus), 우레아플라즈마(Ureaplasma), 잔토모나스(Xanthomonas), 자일렐라(Xylella), 예르시니아(Yersinia) 및 지모모나스(Zymomonas)로 이루어진 그룹으로부터 선택된 속으로부터인 숙주 세포.
49. 조항 48에 있어서, 숙주 세포는 코리네박테리움 글루타미쿰인 숙주 세포.
50. 조항 48에 있어서, 숙주 세포는 대장균인 숙주 세포.
51. 조항 27-46 중 어느 한 항에 있어서, 숙주 세포는 진핵 세포인 숙주 세포.
52. 조항 51에 있어서, 숙주 세포는 아칠라(Achlya), 아크레모늄(Acremonium), 아스퍼길루스(Aspergillus), 아우레오바시듐(Aureobasidium), 브제르칸데라(Bjerkandera), 세리포리오프시스(Ceriporiopsis), 세팔로스포리움(Cephalosporium), 크리소스포리움(Chrysosporium), 코칠리오볼루스(Cochliobolus), 코리나스쿠스(Corynascus), 크리포넥트리아(Cryphonectria), 크립토콕쿠스(Cryptococcus), 코프리누스(Coprinus), 코리오루스(Coriolus), 디플로디아(Diplodia), 엔도디스(Endothis), 프사리움(Fusarium), 지베렐라(Gibberella), 글리오클라디움(Gliocladium), 휴미콜라(Humicola), 하이포크레아(Hypocrea), 마이셀리오프토라(Myceliophthora)(예를 들어, Myceliophthora thermophila), 무코르(Mucor), 네우로스포라(Neurospora), 페니실리움(Penicillium), 포도스포라(Podospora), 필레비아(Phlebia), 피로마이세스(Piromyces), 피리쿨라리아(Pyricularia), 리히조무코르(Rhizomucor), 리히조푸스(Rhizopus), 스키조필룸(Schizophyllum), 스키탈리듐(Scytalidium), 스포로트리츔(Sporotrichum), 탈라로마이세스(Talaromyces), 써모아스쿠스(Thermoascus), 티에라비아(Thielavia), 트라마테스(Tramates), 폴리포클라듐(Tolypocladium), 트라이코데마(Trichoderma), 베르티실리움(Verticillium), 및 볼바리엘라(Volvariella)로 이루어진 그룹으로부터 선택된 속으로부터인 숙주 세포.
코리네박테리움
종에서 L-리신
을
생산하는 방법
53. 코리네박테리움 종 균주를 배양하는 단계 및 배양된 코리네박테리움 종 균주 또는 배양액으로부터 L-리신을 회수하는 단계를 포함하여 L-리신을 생산하는 방법으로서, 여기서 코리네박테리움 종 균주는 조효소로서 NADP를 사용하는 변형된 GAPDH를 발현하며, 여기서 코리네박테리움 종 균주는 L-리신의 개선된 생산성을 갖는 방법.
GAPDH의
조효소 특이성을 확장시키는 방법
54. GAPDH를 변형시켜 변형된 GAPDH가 조효소 NADP 및 NAD에 대해 이중 특이성을 갖게 하는 단계를 포함하여 GAPDH의 조효소 특이성을 확장시키는 방법.
55. 조항 54에 있어서, 변형된 GAPDH는 NAD에 비해 조효소 NADP에 대한 증가된 특이성을 갖는 방법.
56. 조항 54 또는 55에 있어서, 변형된 GAPDH는 NAD보다 NADP를 더 효과적으로 사용하는 방법.
NADPH를
사용하여 생산된 화합물의 생산 효율을
개선시키는
방법
57. 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법으로서, 여기서 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내는 방법.
58. 조항 57에 있어서, 화합물은 표 2로부터 선택되는 방법.
59. 조항 57 또는 58에 있어서, 변이체 효소는 NADPH보다 NADH를 더욱 효과적으로 사용하는 방법.
60. 조항 57-59 중 어느 한 항에 있어서, 상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 42 또는 44의 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
61. 조항 57-60 중 어느 한 항에 있어서, 상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 30 또는 40의 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
62. 조항 57-61 중 어느 한 항에 있어서, 상기 방법은 dapB의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 46 또는 48의 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
63. 조항 57-62 중 어느 한 항에 있어서, 상기 방법은 ddh의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 4의 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
64. 조항 57-63 중 어느 한 항에 있어서, 상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
65. 조항 57-63 중 어느 한 항에 있어서, 상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
66. 조항 57-63 중 어느 한 항에 있어서, 상기 방법은 gdh의 변이체 효소를 발현시키는 단계, asd의 변이체 효소를 발현시키는 단계, dapB의 변이체 효소를 발현시키는 단계 및 ddh의 변이체 효소를 발현하는 단계를 포함하는 방법.
67. 조항 57-66 중 어느 한 항에 있어서, 화합물은 표 2로부터 선택되는 방법.
68. 조항 68에 있어서, 상기 화합물은 리신인 방법.
69. 조항 68에 있어서, 화합물은 트레오닌인 방법.
70. 조항 57-69 중 어느 한 항에 있어서, 숙주 세포는 원핵 세포인 방법.
71. 조항 70에 있어서, 숙주 세포는 아그로박테리움(Agrobacterium), 알리시로바실러스(Alicyclobacillus), 아나베아나(Anabaena), 아나시스티스(Anacystis), 아시네토박터(Acinetobacter), 아시도써무스(Acidothermus), 아르쓰로박터(Arthrobacter), 아조박터(Azobacter), 바실러스(Bacillus), 비피도박테리움(Bifidobacterium), 브레비박테리움(Brevibacterium), 부티리비브리오(Butyrivibrio), 부케네라(Buchnera), 캠프스트리스(Campestris), 캠필로박터(Camplyobacter), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 크로마티움(Chromatium), 코프로콕쿠스(Coprococcus), 에스체리치아(Escherichia), 엔테로콕쿠스(Enterococcus), 엔테로박터(Enterobacter), 에르위니아(Erwinia), 푸소박테리움(Fusobacterium), 파에칼리박테리움(Faecalibacterium), 프란시셀라(Francisella), 플라보박테리움(Flavobacterium), 게오바실루스(Geobacillus), 해모필루스(Haemophilus), 헬리코박터(Helicobacter), 클레브시엘라(Klebsiella), 락토바실루스(Lactobacillus), 락토콕커스(Lactococcus), 일로박터(Ilyobacter), 마이크로콕쿠스(Micrococcus), 마이크로박테리움(Microbacterium), 메소르히조비움(Mesorhizobium), 메틸로박테리움(Methylobacterium), 마이코박테리움(Mycobacterium), 네이세리아(Neisseria), 판도에아(Pantoea), 수도모나스(Pseudomonas), 프로클로로콕쿠스(Prochlorococcus), 로도박터(Rhodobacter), 로도수도모나스(Rhodopseudomonas), 로세부리아(Roseburia), 로도스피릴룸(Rhodospirillum), 로도콕쿠스(Rhodococcus), 세네데스무스(Scenedesmus), 스트렙토마이세스(Streptomyces), 스트렙토콕쿠스(Streptococcus), 시네콕쿠스(Synecoccus), 사카로모노스포라(Saccharomonospora), 사카로폴리스포라(Saccharopolyspora), 스타필로콕쿠스(Staphylococcus), 세라티아(Serratia), 살모넬라(Salmonella), 시겔라(Shigella), 써모아나에로박테리움(Thermoanaerobacterium), 트로페리마(Tropheryma), 툴라렌시스(Tularensis), 테메쿨라(Temecula), 써모시네코콕쿠스(Thermosynechococcus), 써모콕쿠스(Thermococcus), 우레아플라즈마(Ureaplasma), 잔토모나스(Xanthomonas), 자일렐라(Xylella), 예르시니아(Yersinia) 및 지모모나스(Zymomonas)로 이루어진 그룹으로부터 선택된 속으로부터인 방법.
72. 조항 71에 있어서, 숙주 세포는 코리네박테리움 글루타미쿰인 방법.
73. 조항 71에 있어서, 숙주 세포는 대장균인 방법.
74. 조항 57-69 중 어느 한 항에 있어서, 숙주 세포는 진핵 세포인 방법.
75. 조항 74에 있어서, 숙주 세포는 아칠라(Achlya), 아크레모늄(Acremonium), 아스퍼길루스(Aspergillus), 아우레오바시듐(Aureobasidium), 브제르칸데라(Bjerkandera), 세리포리오프시스(Ceriporiopsis), 세팔로스포리움(Cephalosporium), 크리소스포리움(Chrysosporium), 코칠리오볼루스(Cochliobolus), 코리나스쿠스(Corynascus), 크리포넥트리아(Cryphonectria), 크립토콕쿠스(Cryptococcus), 코프리누스(Coprinus), 코리오루스(Coriolus), 디플로디아(Diplodia), 엔도디스(Endothis), 프사리움(Fusarium), 지베렐라(Gibberella), 글리오클라디움(Gliocladium), 휴미콜라(Humicola), 하이포크레아(Hypocrea), 마이셀리오프토라(Myceliophthora)(예를 들어, Myceliophthora thermophila), 무코르(Mucor), 네우로스포라(Neurospora), 페니실리움(Penicillium), 포도스포라(Podospora), 필레비아(Phlebia), 피로마이세스(Piromyces), 피리쿨라리아(Pyricularia), 리히조무코르(Rhizomucor), 리히조푸스(Rhizopus), 스키조필룸(Schizophyllum), 스키탈리듐(Scytalidium), 스포로트리츔(Sporotrichum), 탈라로마이세스(Talaromyces), 써모아스쿠스(Thermoascus), 티에라비아(Thielavia), 트라마테스(Tramates), 폴리포클라듐(Tolypocladium), 트라이코데마(Trichoderma), 베르티실리움(Verticillium), 및 볼바리엘라(Volvariella)로 이루어진 그룹으로부터 선택된 속으로부터인 방법.
gdh
,
asd
,
dapB
또는
ddh의
변이체를
포함하는 숙주 세포
76. 하나 이상의 효소 gdh, asd, dapB 및 ddh의 변이체를 포함하고, 여기서 변이체는 조효소 NADH 및 NADPH에 대해 이중 특이성을 나타내는 숙주 세포.
새로운
니코틴아마이드
뉴클레오타이드
수소전달 효소를 사용하는 방법
77. 숙주 세포에서 신규 니코틴아마이드 뉴클레오타이드 수소전달 효소를 발현시키는 단계를 포함하여, 숙주 세포에 의해 NADPH를 사용하여 생성된 화합물의 생산 효율을 개선시키는 방법.
전략에 의한 L-리신 생산 효율을
개선시키는
방법
78. 둘 이상의 다음 단계를 포함하여 숙주 세포에 의해 L-리신 생산 효율을 개선시키는 방법:
(1) 내인성 GAPDH를 변형시켜 변형된 GAPDH가 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대해 증가된 특이성을 갖게 하는 단계;
(2) 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현하는 단계로서, 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내는 단계; 및
(3) 숙주 세포에서 신규한 니코틴아마이드 뉴클레오타이드 수소전달 효소를 발현시키는 단계.
gdh
및/또는
asd를
사용하는 방법
79. 숙주 세포에서 효소 글루타메이트 탈수소 효소(gdh) 및 아스파르테이트 세미알데하이드 탈수소 효소(asd)의 하나 또는 둘 다의 변이체 효소를 발현시키는 단계를 포함하여 숙주 세포에 의해 NADPH를 사용하여 생산된 화합물의 생산 효율을 개선시키는 방법으로서, 여기서 변이체 효소는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내는 방법.
80. 조항 79에 있어서, 변이체 효소는 NADPH보다 NADH를 더욱 효과적으로 사용하는 방법.
81. 조항 79 또는 80에 있어서, 상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
82. 조항 81에 있어서, gdh의 변이체 효소는 SEQ ID NO: 144, 150, 162, 166, 170, 174, 및 178로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
83. 조항 79-82 중 어느 한 항에 있어서, 상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
84. 조항 83에 있어서, asd의 변이체 효소는 SEQ ID NO: 108 및 118로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
트레오닌
알돌라제에
의한 L-트레오닌 생산의 효율을
개선시키는
방법
85. 숙주 세포에서 트레오닌 알돌라제의 변이체 효소를 발현시키는 단계를 포함하여 숙주 세포에 의한 L-트레오닌 생산 효율을 개선시키는 방법으로서, 여기서 변이체 효소는 대장균 트레오닌 알돌라제(ltaE)와 상이한 기질 선호도 또는 효소 동역학을 나타내는 방법.
86. 조항 85에 있어서, 변이체 효소는 글리신 생산보다 트레오닌 생산에 유리한 방법.
87. 조항 85 또는 86에 있어서, 상기 방법은 트레오닌 알돌라제의 변이체 효소를 발현시키는 단계를 포함하며, 여기서 변이체 효소는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 및 232로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
88. 조항 87에 있어서, 변이체 효소는 SEQ ID NO:196, 206, 220, 224 및 232로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
89. 조항 85-88 중 어느 한 항에 있어서, 숙주 세포는 원핵 세포인 방법.
90. 조항 89에 있어서, 숙주 세포는 아그로박테리움(Agrobacterium), 알리시로바실러스(Alicyclobacillus), 아나베아나(Anabaena), 아나시스티스(Anacystis), 아시네토박터(Acinetobacter), 아시도써무스(Acidothermus), 아르쓰로박터(Arthrobacter), 아조박터(Azobacter), 바실러스(Bacillus), 비피도박테리움(Bifidobacterium), 브레비박테리움(Brevibacterium), 부티리비브리오(Butyrivibrio), 부케네라(Buchnera), 캠프스트리스(Campestris), 캠필로박터(Camplyobacter), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 크로마티움(Chromatium), 코프로콕쿠스(Coprococcus), 에스체리치아(Escherichia), 엔테로콕쿠스(Enterococcus), 엔테로박터(Enterobacter), 에르위니아(Erwinia), 푸소박테리움(Fusobacterium), 파에칼리박테리움(Faecalibacterium), 프란시셀라(Francisella), 플라보박테리움(Flavobacterium), 게오바실루스(Geobacillus), 해모필루스(Haemophilus), 헬리코박터(Helicobacter), 클레브시엘라(Klebsiella), 락토바실루스(Lactobacillus), 락토콕커스(Lactococcus), 일로박터(Ilyobacter), 마이크로콕쿠스(Micrococcus), 마이크로박테리움(Microbacterium), 메소르히조비움(Mesorhizobium), 메틸로박테리움(Methylobacterium), 마이코박테리움(Mycobacterium), 네이세리아(Neisseria), 판도에아(Pantoea), 수도모나스(Pseudomonas), 프로클로로콕쿠스(Prochlorococcus), 로도박터(Rhodobacter), 로도수도모나스(Rhodopseudomonas), 로세부리아(Roseburia), 로도스피릴룸(Rhodospirillum), 로도콕쿠스(Rhodococcus), 세네데스무스(Scenedesmus), 스트렙토마이세스(Streptomyces), 스트렙토콕쿠스(Streptococcus), 시네콕쿠스(Synecoccus), 사카로모노스포라(Saccharomonospora), 사카로폴리스포라(Saccharopolyspora), 스타필로콕쿠스(Staphylococcus), 세라티아(Serratia), 살모넬라(Salmonella), 시겔라(Shigella), 써모아나에로박테리움(Thermoanaerobacterium), 트로페리마(Tropheryma), 툴라렌시스(Tularensis), 테메쿨라(Temecula), 써모시네코콕쿠스(Thermosynechococcus), 써모콕쿠스(Thermococcus), 우레아플라즈마(Ureaplasma), 잔토모나스(Xanthomonas), 자일렐라(Xylella), 예르시니아(Yersinia) 및 지모모나스(Zymomonas)로 이루어진 그룹으로부터 선택된 속으로부터인 방법.
91. 조항 90에 있어서, 숙주 세포는 코리네박테리움 글루타미쿰인 방법.
92. 조항 90에 있어서, 숙주 세포는 대장균인 방법.
93. 조항 85-88 중 어느 한 항에 있어서, 숙주 세포는 진핵 세포인 방법.
94. 조항 93에 있어서, 숙주 세포는 아칠라(Achlya), 아크레모늄(Acremonium), 아스퍼길루스(Aspergillus), 아우레오바시듐(Aureobasidium), 브제르칸데라(Bjerkandera), 세리포리오프시스(Ceriporiopsis), 세팔로스포리움(Cephalosporium), 크리소스포리움(Chrysosporium), 코칠리오볼루스(Cochliobolus), 코리나스쿠스(Corynascus), 크리포넥트리아(Cryphonectria), 크립토콕쿠스(Cryptococcus), 코프리누스(Coprinus), 코리오루스(Coriolus), 디플로디아(Diplodia), 엔도디스(Endothis), 프사리움(Fusarium), 지베렐라(Gibberella), 글리오클라디움(Gliocladium), 휴미콜라(Humicola), 하이포크레아(Hypocrea), 마이셀리오프토라(Myceliophthora)(예를 들어, Myceliophthora thermophila), 무코르(Mucor), 네우로스포라(Neurospora), 페니실리움(Penicillium), 포도스포라(Podospora), 필레비아(Phlebia), 피로마이세스(Piromyces), 피리쿨라리아(Pyricularia), 리히조무코르(Rhizomucor), 리히조푸스(Rhizopus), 스키조필룸(Schizophyllum), 스키탈리듐(Scytalidium), 스포로트리츔(Sporotrichum), 탈라로마이세스(Talaromyces), 써모아스쿠스(Thermoascus), 티에라비아(Thielavia), 트라마테스(Tramates), 폴리포클라듐(Tolypocladium), 트라이코데마(Trichoderma), 베르티실리움(Verticillium), 및 볼바리엘라(Volvariella)로 이루어진 그룹으로부터 선택된 속으로부터인 방법.
변이체
효소에 의한 L-트레오닌 생산의 효율을
개선시키는
방법
95. 숙주 세포에서 효소 글리세르알데하이드 3-포스페이트 탈수소 효소(gapA), 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 트레오닌 알돌라제(ltaE) 및 피루베이트 카복실라제(pyc)의 하나 이상의 변이체 효소를 발현시키는 단계를 포함하여 숙주 세포에 의한 L-트레오닌 생산을 증가시키는 방법.
96. 조항 95에 있어서, gdh의 변이체 효소 또는 asd의 변이체 효소는 조효소 NADH 및 NADPH에 대해 이중 특이성을 나타내는 방법.
97. 조항 95에 있어서, gapA의 변이체 효소, gdh의 변이체 효소 또는 asd의 변이체 효소는 NADPH보다 NADH를 더욱 효과적으로 사용하는 방법.
98. 조항 95-97 중 어느 한 항에 있어서, 트레오닌 알돌라제의 변이체 효소는 글리신 생산보다 트레오닌 생산에 유리한 방법.
99. 조항 95-98 중 어느 한 항에 있어서, 상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
100. 조항 99에 있어서, gdh의 변이체 효소는 SEQ ID NO: 144, 150, 162, 166, 170, 174, 및 178로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
101. 조항 95-100 중 어느 한 항에 있어서, 상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
102. 조항 101에 있어서, asd의 변이체 효소는 SEQ ID NO: 108 및 118로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
103. 조항 95-102 중 어느 한 항에 있어서, 상기 방법은 트레오닌 알돌라제의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 및 232로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
104. 조항 103에 있어서, 트레오닌 알돌라제의 변이체 효소는 SEQ ID NO: 196, 206, 220, 224 및 232로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
105. 조항 94-104 중 어느 한 항에 있어서, 상기 방법은 gapA의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 gapA의 변이체 효소는 SEQ ID NO: 69, 71, 73, 303, 294, 296, 233, 234, 235, 236, 298, 및 300로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
106. 조항 95-105 중 어느 한 항에 있어서, 상기 방법은 gapA의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 gapA의 변이체 효소는 SEQ ID NO: 58의 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
107. 조항 95-105 중 어느 한 항에 있어서, 상기 방법은 gapA의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 gapA의 변이체 효소는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300의 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법.
108. 조항 106 또는 107에 있어서, gapA의 변이체 효소는 SEQ ID NO: 58의 아미노산 37에 해당하는 위치에 아미노산 치환을 포함하는 방법.
109. 조항 106 또는 107에 있어서, gapA의 변이체 효소는 SEQ ID NO: 58의 아미노산 36 및 37에 해당하는 위치에서 아미노산 치환을 포함하는 방법.
110. 조항 108 또는 109에 있어서, SEQ ID NO: 58의 아미노산 37에 해당하는 gapA의 변이체 효소의 위치의 잔기는 리신인 방법.
111. 조항 109에 있어서, SEQ ID NO: 58의 아미노산 36에 해당하는 gapA의 변이체 효소의 위치의 잔기는 트레오닌이고, SEQ ID NO: 58의 아미노산 37에 해당하는 gapA의 변이체 효소의 위치의 잔기는 리신인 방법.
112. 조항 106-111 중 어느 한 항에 있어서, gapA의 변이체 효소는 SEQ ID NO: 58의 아미노산 192에 해당하는 위치에 아미노산 치환을 포함하는 방법.
113. 조항 112에 있어서, SEQ ID NO: 58의 아미노산 192에 해당하는 gapA의 변이체 효소의 위치의 잔기는 세린인 방법.
114. 조항 106-113 중 어느 한 항에 있어서, SEQ ID NO: 58의 아미노산 224에 해당하는 gapA의 변이체 효소의 위치의 잔기는 세린인 방법.
115. 조항 106-114 중 어느 한 항에 있어서, SEQ ID NO: 58의 아미노산 110에 해당하는 gapA의 변이체 효소의 위치의 잔기는 아스파르트산인 방법.
116. 조항 106-115 중 어느 한 항에 있어서, SEQ ID NO: 58의 아미노산 140에 해당하는 gapA의 변이체 효소의 위치의 잔기는 글리신인 방법.
117. 조항 95-105 중 어느 한 항에 있어서, 상기 방법은 gapA의 변이체 효소를 발현시키는 단계를 포함하며, 여기서 gapA의 변이체 효소는 SEQ ID NO: 69, 71, 73, 303, 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열과 동일한 아미노산 서열을 포함하는 방법.
트레오닌 기본 균주
118. 각각 하나 이상의 합성 프로모터에 작동 가능하게 연결된 thrA 유전자, thrB 유전자 및 thrC 유전자를 포함하는 다중-카피 복제 플라스미드를 포함하는 숙주 세포.
119. 조항 118에 있어서, 숙주 세포는 tdh 결실(Δtdh) 세포인 숙주 세포.
120. 조항 118 또는 119에 있어서, 다중-카피 복제 플라스미드는 SEQ ID NO: 77의 thrABC 오페론 서열과 적어도 70% 동일한 서열을 포함하는 숙주 세포.
트레오닌
알돌라제
및
피루베이트
카복실라제를
포함하는 전략에 의해 화합물 생산의 효율을 개선시키는 방법
121. 다음 단계 중 둘 이상을 포함하여 숙주 세포에 의해 화합물의 생산 효율을 개선시키는 방법: (1) 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하는 단계; (2) NADH로부터 NADPH를 생성하는 숙주 세포에서 수소전달 효소를 발현시키는 단계; (3) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하는 단계; (4) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하는 단계; (5) 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하는 단계; 및 (6) 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시키는 단계.
122. 조항 122에 있어서, 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하는 단계는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 gapA의 변이체 효소를 발현시키는 단계를 포함하는 방법.
123. 조항 121 또는 122에 있어서, 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하는 단계는 다음 단계 중 하나 이상을 포함하는 방법:
i) SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 gdh의 변이체 효소를 발현시키는 단계;
ii) SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 asd의 변이체 효소를 발현시키는 단계;
iii) SEQ ID NO: 46 및 48로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 dapB의 변이체 효소를 발현시키는 단계; 및
iv) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 및 20으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 ddh의 변이체 효소를 발현시키는 단계.
124. 조항 121-123 중 어느 한 항에 있어서, 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하는 단계는 다음 단계 중 하나 이상을 포함하는 방법:
i) SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 gdh의 변이체 효소를 발현시키는 단계; 및
ii) SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 asd의 변이체 효소를 발현시키는 단계.
125. 조항 121-124 중 어느 한 항에 있어서, 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하는 단계는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 및 232로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 ltA의 변이체 효소를 발현시키는 단계를 포함하는 방법.
126. 조항 121-125 중 어느 한 항에 있어서, 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시키는 단계는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 및 289로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 pyc의 변이체 효소를 발현시키는 단계를 포함하는 방법.
새로운
gapA
변이체
-
폴리뉴클레오타이드
127. 절단된 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA) 유전자를 암호화하는 인공 폴리뉴클레오타이드로서, 여기서 폴리뉴클레오타이드는 SEQ ID NO: 290, 291, 292, 및 293으로 이루어진 그룹으로부터 선택된 폴리뉴클레오타이드 서열과 적어도 85%, 90%, 95% 또는 99% 동일한 서열을 포함하는 인공 폴리뉴클레오타이드.
128. 조항 127에 있어서, 폴리뉴클레오타이드는 SEQ ID NO: 290, 291, 292 및 293으로 이루어진 그룹으로부터 선택된 폴리뉴클레오타이드 서열을 포함하는 인공 폴리뉴클레오타이드.
129. 프로모터에 작동 가능하게 연결된 조항 127 또는 128의 인공 폴리뉴클레오타이드를 포함하는 벡터.
새로운
gapA
변이체
- 단백질
130. 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 재조합 단백질 단편으로서, 여기서 재조합 단백질 단편은 SEQ ID NO: 233, 234, 235, 236, 및 298로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70%, 80%, 90% 또는 95% 동일한 서열을 포함하는 재조합 단백질 단편.
131. 조항 130에 있어서, 재조합 단백질 단편은 SEQ ID NO: 233, 234, 235, 236, 및 298로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 재조합 단백질 단편.
132. 조항 130 또는 131에 있어서, 재조합 단백질 단편은 gapA 활성이 결여되는 재조합 단백질 단편.
133. 조항 130-133 중 어느 한 항에 있어서, 재조합 단백질 단편은 숙주 세포가 gapA 활성을 갖는 다른 단백질을 포함할 때 숙주 세포에 의해 표 2로부터 선택된 화합물의 생산성을 증가시키는 재조합 단백질 단편.
다른
실시태양
134. NADPH를 사용하여 생산된 화합물을 생산하는 미생물 세포의 능력을 향상시키는 방법으로서, 세포의 이용 가능한 NADPH를 변경하는 단계를 포함하는 방법.
135. 제 134 항에 있어서, 이용 가능한 NADPH는 세포에서 변형된 글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)를 발현시킴으로써 변경되며, 여기서 변형된 GAPDH는 이의 조효소 특이성이 확장되도록 변형되는 방법.
136. 제 134 항에 있어서, 세포의 이용 가능한 NADPH는 미생물 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현시킴으로써 변경되며, 여기서 변이체 효소는 조효소 NADH 및 NADPH에 대해 이중 특이성을 나타내는 방법.
137. 제 135 항에 있어서, 변형된 GAPDH는 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대해 증가된 특이성을 갖는 방법.
138. 제 134 항 내지 제 137 항 중 어느 한 항에 있어서, 미생물 세포는 박테리아 세포인 방법.
139. 제 138 항에 있어서, 박테리아 세포는 코리네박테리움 종, 에스케리키아 종, 바실러스 종 또는 게오바실루스 종으로 이루어진 그룹으로부터 선택된 박테리아로부터인 방법.
140. 제 138 항에 있어서, 박테리아는 코리네박테리움 글루타미쿰 또는 대장균인 방법.
141. 제 134 항 내지 제 137 항 중 어느 한 항에 있어서, 미생물 세포는 효모 세포인 방법.
142. 제 141 항에 있어서, 효모 세포는 사카로마이세스 종으로부터의 세포인 방법.
143. 제 137 항에 있어서, 자연 발생 GAPDH는 gapA인 방법.
144. 제 143 항에 있어서, gapA는 SEQ ID NO: 58의 아미노산 서열을 갖는 방법.
145. 제 134 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법.
146. 제 134 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법.
147. 제 145 항 또는 제 146 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 37에 해당하는 위치에 아미노산 치환을 포함하는 방법.
148. 제 147 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 36 및 37에 해당하는 위치에 아미노산 치환을 포함하는 방법.
149. 제 147 항에 있어서, SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신으로 치환되는 방법.
150. 제 148 항에 있어서, SEQ ID NO: 58의 아미노산 36에 해당하는 위치의 류신은 트레오닌으로 치환되고, SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신에 의해 치환되는 방법.
151. 제 135 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58의 아미노산 192에 해당하는 위치에 아미노산 치환을 포함하는 방법.
152. 제 135 항에 있어서, SEQ ID NO: 58의 아미노산 172에 해당하는 위치의 프롤린은 세린으로 치환되는 방법.
153. 제 135 항에 있어서, SEQ ID NO: 58의 아미노산 224에 해당하는 위치의 류신은 세린으로 치환되는 방법.
154. 제 135 항에 있어서, SEQ ID NO: 58의 아미노산 110에 해당하는 위치의 히스티딘은 아스파르트산으로 치환되는 방법.
155. 제 135 항에 있어서, SEQ ID NO: 58의 아미노산 140에 해당하는 위치의 티로신은 글리신으로 치환되는 방법.
156. 제 146 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 69, 71, 73, 303, 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택되는 방법.
157. 제 134 항 내지 제 137 항 중 어느 한 항에 있어서, 화합물은 표 2로부터 선택되는 방법.
158. 제 157 항에 있어서, 화합물은 L-리신 또는 L-트레오닌인 방법.
159. 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 미생물 세포로서, 미생물 세포는 변형된 GAPDH가 결여된 상대 미생물 세포에 비해 NADPH를 사용하여 생산된 화합물의 생산을 개선시키는 미생물 세포.
160. 제 159 항에 있어서, 변형된 GAPDH는 자연적으로 존재하는 GAPDH에 비해 NADP에 대한 증가된 특이성을 갖는 미생물 세포.
161. 제 160 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58과 적어도 70% 동일한 아미노산 서열을 포함하는 미생물 세포.
162. 제 160 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 미생물 세포.
163. 제 160 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 58과 적어도 70% 동일한 아미노산 서열을 포함하고 변형된 GAPDH는 SEQ ID NO: 58의 위치 36, 37 또는 둘 다의 아미노산에 대한 치환을 포함하는 미생물 세포.
164. 제 160 항에 있어서, 변형된 GAPDH는 SEQ ID NO: 69, 71, 73, 303, 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택되는 미생물 세포.
165. 제 159 항에 있어서, 화합물은 표 2로부터 선택되는 미생물 세포.
166. 제 165 항에 있어서, 화합물은 L-리신 또는 L-트레오닌인 미생물 세포.
167. 제 159 항에 있어서, 미생물 세포는 박테리아로부터인 미생물 세포.
168. 제 167 항에 있어서, 박테리아는 코리네박테리움 종, 에스케리키아 종, 바실러스 종 또는 게오바실루스 종인 미생물 세포.
169. 제 168 항에 있어서, 박테리아는 코리네박테리움 글루타미쿰 또는 대장균인 미생물 세포.
170. 제 165 항에 있어서, 미생물 세포는 효모 세포인 미생물 세포.
171, GAPDH를 변형시켜 변형된 GAPDH가 조효소 NADP 및 NAD에 대해 이중 특이성을 갖게 하는 단계를 포함하여 GAPDH의 조효소 특이성을 확장시키는 방법.
172. 제 171 항에 있어서, 변형된 GAPDH는 NAD에 비해 조효소 NADP에 대한 증가된 특이성을 갖는 방법.
173. 제 172 항에 있어서, 변형된 GAPDH는 NAD보다 NADP를 더 효과적으로 사용하는 방법.
174. 제 136 항에 있어서, 상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 42 또는 44의 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법.
175. 제 136 항에 있어서, 상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 30 또는 40의 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법.
176. 제 136 항에 있어서, 상기 방법은 dapB의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 46 또는 48의 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법.
177. 제 136 항에 있어서, 상기 방법은 ddh의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 ddh 효소는 SEQ ID NO: 4의 아미노산 서열을 포함하는 방법.
178. 제 136 항에 있어서, 상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법.
179. 제 136 항에 있어서, 상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 변이체 효소는 SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법.
180. 제 136 항에 있어서, 모든 4개 효소의 변이체는 미생물 세포에서 동시에 발현되는 방법.
181. 하나 이상의 효소 gdh, asd, dapB 및 ddh의 변이체를 포함하는 미생물 세포로서, 여기서 변이체는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내는 미생물 세포.
182. 제 178 항에 있어서, gdh의 변이체 효소는 SEQ ID NO: 144, 150, 162, 166, 170, 174, 178로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
183. 제 179 항에 있어서, asd의 변이체 효소는 SEQ ID NO: 108 및 118로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
184. 제 134 항 내지 제 137 항 중 어느 한 항에 있어서, 미생물 세포에서 트레오닌 알돌라제의 변이체 효소를 발현시키는 단계를 더 포함하는 방법으로서, 트레오닌 알돌라제의 변이체 효소는 대장균 트레오닌 알돌라제(ltaE)와 상이한 기질 선호도 또는 효소 동역학을 나타내는 방법.
185. 제 184 항에 있어서, 변이체 트레오닌 알돌라제는 글리신 생산보다 트레오닌 생산에 유리한 방법.
186. 제 184 항에 있어서, 변이체 트레오닌 알돌라제는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 및 232로 이루어진 그룹으로부터 선택된 아미노산과 적어도 70% 동일한 아미노산 서열을 포함하는 방법.
187. 제 186 항에 있어서, 변이체 트레오닌 알돌라제는 SEQ ID NO: 196, 206, 220, 224 및 232로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법.
188. 제 184 항에 있어서, 화합물은 L-트레오닌인 방법.
189. 제 140 항에 있어서, 박테리아는 대장균이고 상기 방법은 대장균 세포에서 pyc를 발현시키는 단계를 더 포함하는 방법.
190. 제 189 항에 있어서, 상기 방법은 pyc의 변이체 효소를 발현시키는 단계를 포함하고, 여기서 pyc의 변이체 효소는 SEQ ID NO: 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 및 289로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법.
191. 각각 하나 이상의 합성 프로모터에 작동 가능하게 연결된 thrA 유전자, thrB 유전자 및 thrC 유전자를 포함하는 다중-카피 복제 플라스미드를 포함하는 미생물 세포.
192. 제 191 항에 있어서, 미생물 세포는 tdh 결실(Δtdh) 세포인 미생물 세포.
193. 제 191 항에 있어서, 다중-카피 복제 플라스미드는 SEQ ID NO: 77의 thrABC 오페론 서열과 적어도 70% 동일한 서열을 포함하는 미생물 세포.
194. 다음 단계 중 둘 이상을 포함하여 미생물 세포에 의해 화합물의 생산 효율을 개선시키는 방법: (1) 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하는 단계; (2) NADH로부터 NADPH를 생성하는 박테리아에서 수소전달 효소를 발현시키는 단계; (3) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하는 단계; (4) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하는 단계; (5) 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하는 단계; 및 (6) 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시키는 단계.
195. 제 194 항에 있어서, 화합물은 표 2로부터 선택되는 방법.
196. 제 195 항에 있어서, 화합물은 L-트레오닌인 방법.
197. 제 194 내지 제 196 항 중 어느 한 항에 있어서, 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하는 단계는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 gapA의 변이체 효소를 발현시키는 단계를 포함하는 방법.
198. 제 194 항 내지 제 196 항 중 어느 한 항에 있어서, 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하는 단계는 다음 단계 중 하나 이상을 포함하는 방법:
i) SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 gdh의 변이체 효소를 발현시키는 단계;
ii) SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 asd의 변이체 효소를 발현시키는 단계;
iii) SEQ ID NO: 46 및 48로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 dapB의 변이체 효소를 발현시키는 단계; 및
iv) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 및 20으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 ddh의 변이체 효소를 발현시키는 단계.
199. 제 194 항 내지 제 196 항 중 어느 한 항에 있어서, 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하는 단계는 다음 단계 중 하나 이상을 포함하는 방법:
i) SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 gdh의 변이체 효소를 발현시키는 단계; 및
ii) SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 asd의 변이체 효소를 발현시키는 단계.
200. 제 194 항 내지 제 196 항 중 어느 한 항에 있어서, 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하는 단계는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 및 232로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 ltA의 변이체 효소를 발현시키는 단계를 포함하는 방법.
201. 제 194 항 내지 제 196 항 중 어느 한 항에 있어서, 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시키는 단계는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 및 289로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 pyc의 변이체 효소를 발현시키는 단계를 포함하는 방법.
202. 절단된 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA) 유전자를 암호화하는 인공 폴리뉴클레오타이드로서, 여기서 폴리뉴클레오타이드는 SEQ ID NO: 290, 291, 292, 및 293으로 이루어진 그룹으로부터 선택된 폴리뉴클레오타이드 서열과 적어도 70% 동일한 서열을 포함하는 인공 폴리뉴클레오타이드.
203. 제 202 항에 있어서, 폴리뉴클레오타이드는 SEQ ID NO: 290, 291, 292 및 293으로 이루어진 그룹으로부터 선택된 폴리뉴클레오타이드 서열을 포함하는 인공 폴리뉴클레오타이드.
204. 프로모터에 작동 가능하게 연결된 제 202 항 또는 제 203 항의 인공 폴리뉴클레오타이드를 포함하는 벡터.
205. 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 재조합 단백질 단편으로서, 여기서 재조합 단백질 단편은 SEQ ID NO: 233, 234, 235, 236, 및 298로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 서열을 포함하는 재조합 단백질 단편.
206. 제 205 항에 있어서, 재조합 단백질 단편은 SEQ ID NO: 233, 234, 235, 236, 및 298로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 재조합 단백질 단편.
207. 제 205 항 또는 제 206 항에 있어서, 재조합 단백질 단편은 gapA 활성이 결여되는 재조합 단백질 단편.
208. 제 207 항에 있어서, 재조합 단백질 단편은 미생물 세포가 gapA 활성을 갖는 다른 단백질을 포함할 때 미생물 세포에 의해 표 2로부터 선택된 화합물의 생산성을 증가시키는 재조합 단백질 단편.
209. 제 159 항 내지 제 169 항 중 어느 한 항에 있어서, 미생물 세포는 변이체 트레오닌 알돌라제, pyc 단백질 또는 둘 다를 더 포함하는 미생물 세포.
본 발명에 인용된 모든 참고문헌, 기사, 간행물, 특허, 특허 간행물 및 특허 출원은 모든 목적을 위해 그 전문이 참조로 포함된다.
그러나 본 발명에 언급된 모든 참고문헌, 기사, 출판물, 특허, 특허 간행물 및 특허 출원은 세계 어느 나라에서든 유효한 선행 기술을 구성하거나 보통의 일반 지식의 일부를 구성한다는 인정 또는 어떠한 형태의 제안으로 간주되어서는 안 된다. 특히, 다음의 출원은 그 전문이 본 발명에 참조로 포함된다: 2016년 12월 30일에 출원된 미국 출원 제15/396,230호; 2016년 12월 7일에 출원된 국제 출원 번호 PCT/US2016/065465; 2016년 4월 27일에 출원된 미국 출원 제15/140,296호; 2016년 7월 29일에 출원된 미국 가출원 제62/368,786호; 및 2015년 12월7일에 출원된 미국 가출원 제62/264,232호.
SEQUENCE LISTING
<110> Zymergen Inc.
Manchester, Shawn
<120> GENOMIC ENGINEERING OF BIOSYNTHETIC PATHWAYS LEADING TO INCREASED
NADPH
<130> ZYMR-011/01WO 327574-2057
<150> US 62/508,589
<151> 2017-05-19
<160> 308
<170> PatentIn version 3.5
<210> 1
<211> 969
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from A. Oris
<400> 1
atgattcgcg ttgcgatcaa tggatatggc aacctgggac ggggtgtcga acaagcgatt 60
acgaagaacg cggacatgga agtcgcggtc gtgtttacgc gccgcgaccc agctacggtg 120
actacccagg gcgcccccgt cgcccatgtt gatgacatgg ccgcttgggc cgataaagtg 180
gatgtctgtc ttaactgcgg cggatcagcg accgacttga ttgaacaaac gcccgctgcg 240
gcagctcttt tcaacaccgt agattcgttc gatacgcatg cccggattcc tgagcatttc 300
gccgcggtgg acgccgcagc gaaggcatca ggccatgtgg cgttgatttc agcgggctgg 360
gacccaggac ttttttccat gctccgggtc ctcggcgaag cagtcctccc agacggtgct 420
accacgacct tctggggccc cggagtttcg cagggtcatt cagacgctct gcgtcgcatc 480
gacggtgtgg tagatgcgaa acaatacact cggccagtcg aggcaacggt ggctgccgtc 540
aaggcaggag atgatgttga gctcactacg cgctcaatgc acactcgtga ctgctatgta 600
gttgcggagg aaggcgcaga tcttgcccgg atcgagcggg agatcgttga gatgcccaat 660
tacttcgctg attacgatac taccgttact ttcattactg ccgaggaact tgccgcggag 720
cacgcgggta ttccgcatgg aggatcggta attcggcgtg gccataccag cgaaggagtg 780
gccgaaaccg tgtcgtttga gctgcaattg ggctctaacc ccgaatttac gggatcagtc 840
ctggttgcta cggcgcgtgc tgtcgcacgg cttgctgccc ggggcgaaac tggtgcccgg 900
acggtttttg acgttactct tgccgacttg tctccgacta gccccgagga gctccgtgct 960
cactacctg 969
<210> 2
<211> 323
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from A. Oris
<400> 2
Met Ile Arg Val Ala Ile Asn Gly Tyr Gly Asn Leu Gly Arg Gly Val
1 5 10 15
Glu Gln Ala Ile Thr Lys Asn Ala Asp Met Glu Val Ala Val Val Phe
20 25 30
Thr Arg Arg Asp Pro Ala Thr Val Thr Thr Gln Gly Ala Pro Val Ala
35 40 45
His Val Asp Asp Met Ala Ala Trp Ala Asp Lys Val Asp Val Cys Leu
50 55 60
Asn Cys Gly Gly Ser Ala Thr Asp Leu Ile Glu Gln Thr Pro Ala Ala
65 70 75 80
Ala Ala Leu Phe Asn Thr Val Asp Ser Phe Asp Thr His Ala Arg Ile
85 90 95
Pro Glu His Phe Ala Ala Val Asp Ala Ala Ala Lys Ala Ser Gly His
100 105 110
Val Ala Leu Ile Ser Ala Gly Trp Asp Pro Gly Leu Phe Ser Met Leu
115 120 125
Arg Val Leu Gly Glu Ala Val Leu Pro Asp Gly Ala Thr Thr Thr Phe
130 135 140
Trp Gly Pro Gly Val Ser Gln Gly His Ser Asp Ala Leu Arg Arg Ile
145 150 155 160
Asp Gly Val Val Asp Ala Lys Gln Tyr Thr Arg Pro Val Glu Ala Thr
165 170 175
Val Ala Ala Val Lys Ala Gly Asp Asp Val Glu Leu Thr Thr Arg Ser
180 185 190
Met His Thr Arg Asp Cys Tyr Val Val Ala Glu Glu Gly Ala Asp Leu
195 200 205
Ala Arg Ile Glu Arg Glu Ile Val Glu Met Pro Asn Tyr Phe Ala Asp
210 215 220
Tyr Asp Thr Thr Val Thr Phe Ile Thr Ala Glu Glu Leu Ala Ala Glu
225 230 235 240
His Ala Gly Ile Pro His Gly Gly Ser Val Ile Arg Arg Gly His Thr
245 250 255
Ser Glu Gly Val Ala Glu Thr Val Ser Phe Glu Leu Gln Leu Gly Ser
260 265 270
Asn Pro Glu Phe Thr Gly Ser Val Leu Val Ala Thr Ala Arg Ala Val
275 280 285
Ala Arg Leu Ala Ala Arg Gly Glu Thr Gly Ala Arg Thr Val Phe Asp
290 295 300
Val Thr Leu Ala Asp Leu Ser Pro Thr Ser Pro Glu Glu Leu Arg Ala
305 310 315 320
His Tyr Leu
<210> 3
<211> 960
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from C. glutamicum
<400> 3
atgacgaaca tccgtgtagc aatcgtcgga tacggtaatc tgggacgcag cgtagaaaaa 60
ctcatcgcca agcaaccaga catggatctt gttggaattt tctcgcgccg ggcgactctc 120
gatacgaaga cccccgtctt cgatgtggcg gacgttgata aacatgccga tgatgtcgat 180
gtactctttt tgtgcatggg atctgcaacg gatatcccgg agcaagcccc caagttcgct 240
caatttgcct gtacggtgga cacgtacgat aatcatcgtg atatcccccg gcatcgccaa 300
gttatgaatg aagctgcaac cgcagcaggc aatgtagcgt tggtttctac gggctgggac 360
ccaggcatgt tttcgattaa tcgtgtttat gccgctgctg ttttggccga gcaccagcaa 420
cacacgtttt ggggtccagg acttagccag ggccatagcg atgcccttcg ccgcatcccg 480
ggtgttcaaa aggctgttca gtacacgttg ccttctgaag atgcgcttga aaaagcacgg 540
cgcggcgagg ccggagattt gaccggcaag caaacgcata aacgccagtg cttcgttgtg 600
gccgacgcgg ccgaccatga gcgcatcgag aacgatattc ggactatgcc cgattacttc 660
gtaggctatg aggtggaagt caatttcatc gatgaagcaa ccttcgactc tgaacatacg 720
ggtatgcccc acggcggtca cgtgatcacg actggcgaca ctggcggttt taaccacacc 780
gttgagtata ttctcaagct ggaccgtaat cccgacttca ctgcgtcctc tcaaatcgcg 840
ttcggccgtg cagcgcaccg catgaaacaa caaggccaat caggtgcctt taccgttctg 900
gaagttgccc catatttgtt gagcccggaa aacttggacg acttgattgc ccgggatgtg 960
<210> 4
<211> 320
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from C. glutamicum
<400> 4
Met Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly Asn Leu Gly Arg
1 5 10 15
Ser Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met Asp Leu Val Gly
20 25 30
Ile Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr Pro Val Phe Asp
35 40 45
Val Ala Asp Val Asp Lys His Ala Asp Asp Val Asp Val Leu Phe Leu
50 55 60
Cys Met Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala Pro Lys Phe Ala
65 70 75 80
Gln Phe Ala Cys Thr Val Asp Thr Tyr Asp Asn His Arg Asp Ile Pro
85 90 95
Arg His Arg Gln Val Met Asn Glu Ala Ala Thr Ala Ala Gly Asn Val
100 105 110
Ala Leu Val Ser Thr Gly Trp Asp Pro Gly Met Phe Ser Ile Asn Arg
115 120 125
Val Tyr Ala Ala Ala Val Leu Ala Glu His Gln Gln His Thr Phe Trp
130 135 140
Gly Pro Gly Leu Ser Gln Gly His Ser Asp Ala Leu Arg Arg Ile Pro
145 150 155 160
Gly Val Gln Lys Ala Val Gln Tyr Thr Leu Pro Ser Glu Asp Ala Leu
165 170 175
Glu Lys Ala Arg Arg Gly Glu Ala Gly Asp Leu Thr Gly Lys Gln Thr
180 185 190
His Lys Arg Gln Cys Phe Val Val Ala Asp Ala Ala Asp His Glu Arg
195 200 205
Ile Glu Asn Asp Ile Arg Thr Met Pro Asp Tyr Phe Val Gly Tyr Glu
210 215 220
Val Glu Val Asn Phe Ile Asp Glu Ala Thr Phe Asp Ser Glu His Thr
225 230 235 240
Gly Met Pro His Gly Gly His Val Ile Thr Thr Gly Asp Thr Gly Gly
245 250 255
Phe Asn His Thr Val Glu Tyr Ile Leu Lys Leu Asp Arg Asn Pro Asp
260 265 270
Phe Thr Ala Ser Ser Gln Ile Ala Phe Gly Arg Ala Ala His Arg Met
275 280 285
Lys Gln Gln Gly Gln Ser Gly Ala Phe Thr Val Leu Glu Val Ala Pro
290 295 300
Tyr Leu Leu Ser Pro Glu Asn Leu Asp Asp Leu Ile Ala Arg Asp Val
305 310 315 320
<210> 5
<211> 993
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from H. archaeon
<400> 5
atgaaaaaaa tcaacgtcgg aattattggt tacggtaacg tcggacgggg tgtgaagcaa 60
gctctcgaga aaaacgcaga catgaaactg gtcgctatcc tgactcgtcg cccagagcgg 120
gtacggaagg aaatcaaaga cgtgcatgtt ttccggactg atgaatcgtt gccgaaatcc 180
tttgaaatcg acgtggcggt cttgtgtggt ggatccaaga aagacatgcc aatccaaggt 240
ccaaaatttg cggccaaata caacaccgtt gatagcttcg acacccatgc cgacatccct 300
agctatttca agaaaatgga ttcaatcgct aaaaaacatg gtaatgtgtc tatcatctca 360
gcgggatggg atcccggtat tttcagcctg gagcgtgtcc ttggcggcgc ttttctgccg 420
gaatctaagc ggtatacgtt ttggggcaag ggtgtgtctc tcggtcactc tgatgctgct 480
cgccgcgtga aaggtgtctc tgatgctatt caatacacca ttccgattga gaaggctatt 540
caacgcatcc gtgcgggaga tgcgccagac tttagcaaaa cggaaatgca caagcgcgtt 600
gtttacgttg tccctgaaga gggtgccgac cttaagaaaa tccggaagga aattaccgag 660
atgccaaagt attttgaagg atatgatacg gaggtcattt ttatcactga gaaagaaatg 720
aaaaaacact ccacgtttcc ccacggcggc tttgtcttca ctagcggtgt aacgggagat 780
tctaaccgtc aaatcctcga atataaatgc cagctcgaga acaatagcga gttcactgcg 840
tctgtccttg tagcgtgcgc acgcgctgcg tatcgtctga atgagaaagg ctaccgtggt 900
gcttttacct ttttggactt tcccttgtcg tttcttatcg agtcggagtt tagcgcgtgc 960
ttcgaaagcc gcgcccggcg caatccctct cct 993
<210> 6
<211> 331
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from H. archaeon
<400> 6
Met Lys Lys Ile Asn Val Gly Ile Ile Gly Tyr Gly Asn Val Gly Arg
1 5 10 15
Gly Val Lys Gln Ala Leu Glu Lys Asn Ala Asp Met Lys Leu Val Ala
20 25 30
Ile Leu Thr Arg Arg Pro Glu Arg Val Arg Lys Glu Ile Lys Asp Val
35 40 45
His Val Phe Arg Thr Asp Glu Ser Leu Pro Lys Ser Phe Glu Ile Asp
50 55 60
Val Ala Val Leu Cys Gly Gly Ser Lys Lys Asp Met Pro Ile Gln Gly
65 70 75 80
Pro Lys Phe Ala Ala Lys Tyr Asn Thr Val Asp Ser Phe Asp Thr His
85 90 95
Ala Asp Ile Pro Ser Tyr Phe Lys Lys Met Asp Ser Ile Ala Lys Lys
100 105 110
His Gly Asn Val Ser Ile Ile Ser Ala Gly Trp Asp Pro Gly Ile Phe
115 120 125
Ser Leu Glu Arg Val Leu Gly Gly Ala Phe Leu Pro Glu Ser Lys Arg
130 135 140
Tyr Thr Phe Trp Gly Lys Gly Val Ser Leu Gly His Ser Asp Ala Ala
145 150 155 160
Arg Arg Val Lys Gly Val Ser Asp Ala Ile Gln Tyr Thr Ile Pro Ile
165 170 175
Glu Lys Ala Ile Gln Arg Ile Arg Ala Gly Asp Ala Pro Asp Phe Ser
180 185 190
Lys Thr Glu Met His Lys Arg Val Val Tyr Val Val Pro Glu Glu Gly
195 200 205
Ala Asp Leu Lys Lys Ile Arg Lys Glu Ile Thr Glu Met Pro Lys Tyr
210 215 220
Phe Glu Gly Tyr Asp Thr Glu Val Ile Phe Ile Thr Glu Lys Glu Met
225 230 235 240
Lys Lys His Ser Thr Phe Pro His Gly Gly Phe Val Phe Thr Ser Gly
245 250 255
Val Thr Gly Asp Ser Asn Arg Gln Ile Leu Glu Tyr Lys Cys Gln Leu
260 265 270
Glu Asn Asn Ser Glu Phe Thr Ala Ser Val Leu Val Ala Cys Ala Arg
275 280 285
Ala Ala Tyr Arg Leu Asn Glu Lys Gly Tyr Arg Gly Ala Phe Thr Phe
290 295 300
Leu Asp Phe Pro Leu Ser Phe Leu Ile Glu Ser Glu Phe Ser Ala Cys
305 310 315 320
Phe Glu Ser Arg Ala Arg Arg Asn Pro Ser Pro
325 330
<210> 7
<211> 978
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from Coprobacillus sp.
<400> 7
atgatcaaaa tcggcatcgt gggctacgga aacctgggac gtggtgtgga atgcgcggtc 60
catcattcgc aggatatgga attggcggga gttttcacgc ggcgcaatcc ggagacggtt 120
aaaactcaca ccgacgttcc tgtgtatgat atggagaaac tgtacgacat gcagggcgac 180
attgatgtcc tcgtgctgtg cggaggctcc gctaatgatc tgccgaagca gacggttgag 240
ttggcacagt atttcaatgt tgtagactct ttcgatactc atgccaaaat ccccgagcat 300
ttctctaatg ttaatcaaag cagcgagaaa ggtaaacata tttcgattat ttcagtaggc 360
tgggatcctg gattgttctc cctcaatcgg ctgtatggac aagcaattct gccgaatgga 420
aacgactaca ctttttgggg taaaggagtt tcacagggac attctgatgc gatccggcgt 480
atcgcaggcg ttaaagacgc gcgccagtac acgatccccg tggacgccgc gttggagagc 540
gttcgcaatg gagaaaatcc gaccctcacc actcgggaga agcacactcg ggagtgtttc 600
gttgtcgctg aagacggcgc tgaccttaaa gtgatcgaag aaacgatcaa gaccatgcca 660
aactattttg ctgactatga cacgactgtt catttcatct cggaggaaga gctgatgcgg 720
gatcatcaag gaattccgca tggtggcgtc gtacttcgca gcggaaccac gggctttgac 780
tatgagaaca agcacgtaat cgaatacaaa ctcactctgg attcgaaccc cgagttcacc 840
tcctctgttc tcgttgcata tgctcgggcc gcttatcgta tgcaccaaga gggccaatgc 900
ggttgtaaaa ctgtatttga tattgccccg gcataccttc acgttgaatc cggagaggaa 960
ttgcgtaaga aactcttg 978
<210> 8
<211> 326
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from Coprobacillus sp.
<400> 8
Met Ile Lys Ile Gly Ile Val Gly Tyr Gly Asn Leu Gly Arg Gly Val
1 5 10 15
Glu Cys Ala Val His His Ser Gln Asp Met Glu Leu Ala Gly Val Phe
20 25 30
Thr Arg Arg Asn Pro Glu Thr Val Lys Thr His Thr Asp Val Pro Val
35 40 45
Tyr Asp Met Glu Lys Leu Tyr Asp Met Gln Gly Asp Ile Asp Val Leu
50 55 60
Val Leu Cys Gly Gly Ser Ala Asn Asp Leu Pro Lys Gln Thr Val Glu
65 70 75 80
Leu Ala Gln Tyr Phe Asn Val Val Asp Ser Phe Asp Thr His Ala Lys
85 90 95
Ile Pro Glu His Phe Ser Asn Val Asn Gln Ser Ser Glu Lys Gly Lys
100 105 110
His Ile Ser Ile Ile Ser Val Gly Trp Asp Pro Gly Leu Phe Ser Leu
115 120 125
Asn Arg Leu Tyr Gly Gln Ala Ile Leu Pro Asn Gly Asn Asp Tyr Thr
130 135 140
Phe Trp Gly Lys Gly Val Ser Gln Gly His Ser Asp Ala Ile Arg Arg
145 150 155 160
Ile Ala Gly Val Lys Asp Ala Arg Gln Tyr Thr Ile Pro Val Asp Ala
165 170 175
Ala Leu Glu Ser Val Arg Asn Gly Glu Asn Pro Thr Leu Thr Thr Arg
180 185 190
Glu Lys His Thr Arg Glu Cys Phe Val Val Ala Glu Asp Gly Ala Asp
195 200 205
Leu Lys Val Ile Glu Glu Thr Ile Lys Thr Met Pro Asn Tyr Phe Ala
210 215 220
Asp Tyr Asp Thr Thr Val His Phe Ile Ser Glu Glu Glu Leu Met Arg
225 230 235 240
Asp His Gln Gly Ile Pro His Gly Gly Val Val Leu Arg Ser Gly Thr
245 250 255
Thr Gly Phe Asp Tyr Glu Asn Lys His Val Ile Glu Tyr Lys Leu Thr
260 265 270
Leu Asp Ser Asn Pro Glu Phe Thr Ser Ser Val Leu Val Ala Tyr Ala
275 280 285
Arg Ala Ala Tyr Arg Met His Gln Glu Gly Gln Cys Gly Cys Lys Thr
290 295 300
Val Phe Asp Ile Ala Pro Ala Tyr Leu His Val Glu Ser Gly Glu Glu
305 310 315 320
Leu Arg Lys Lys Leu Leu
325
<210> 9
<211> 981
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from M. harundinacea
<400> 9
atggaaaagc tccgcattgg catcgtagga tacggaaatg ttggccgggc tgtggagctg 60
tctcttcgcc aaaacccgga tatgatggcc gcagtcgtct tgacccgccg tgacccccgt 120
ggtattcgga cgctcacgcc cggtttgatg gcctcttcga ttgaggaggc tgaacggtac 180
gcttcagagg tcgacgtggc cgtactctgt ggcggtagcg ctacggacct tccagttcaa 240
ggaccggcta tggcgtcaat tttcaacact gtagattcct acgacaatca tccgcgcatc 300
ccagaatact ttgcagcagt agattctgcg gcacgccgtg gccgtcggac cgcaatcgtg 360
agcaccggtt gggatcccgg tctgttctcg ttgatccgcc tgcttgagga ggccgttttg 420
cccgaaggca ctgattatac gttttggggc cctggagtgt cccaaggaca ttctgacgct 480
gtacggcggg tcgaaggagt gcgtgatgcg cgccaatata ctatccctat cgaggacacc 540
gtggctcgcg tgcgttccgg cgaggcaccc tccctcagca cccgggaacg ccatcttcgt 600
cgttgctacg tggtggccga agagggagcc gaccccggtg agatccgtga gaaaattcgg 660
tcaatgccta attattttgc agattatgat accaaggtct cgtttatttc gcaggaagag 720
atggaacgca gccacaaccg gatgccacat ggtggtttcg ttatgcgtgc gggaaagacc 780
gccgacggaa cgggtcacgt ccttgagttc cgtcttaaat tggactctaa ccccgctttc 840
accgcatccg tgttgttggc ttatgcacgt gcagcatatc ggctgcacca agaaggcgca 900
attggcgcac ggaccgtatt tgatgtaccg ccagcgcatc tgtctcctaa aacgccagag 960
gagattcgtc gttccatgct t 981
<210> 10
<211> 327
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from M. harundinacea
<400> 10
Met Glu Lys Leu Arg Ile Gly Ile Val Gly Tyr Gly Asn Val Gly Arg
1 5 10 15
Ala Val Glu Leu Ser Leu Arg Gln Asn Pro Asp Met Met Ala Ala Val
20 25 30
Val Leu Thr Arg Arg Asp Pro Arg Gly Ile Arg Thr Leu Thr Pro Gly
35 40 45
Leu Met Ala Ser Ser Ile Glu Glu Ala Glu Arg Tyr Ala Ser Glu Val
50 55 60
Asp Val Ala Val Leu Cys Gly Gly Ser Ala Thr Asp Leu Pro Val Gln
65 70 75 80
Gly Pro Ala Met Ala Ser Ile Phe Asn Thr Val Asp Ser Tyr Asp Asn
85 90 95
His Pro Arg Ile Pro Glu Tyr Phe Ala Ala Val Asp Ser Ala Ala Arg
100 105 110
Arg Gly Arg Arg Thr Ala Ile Val Ser Thr Gly Trp Asp Pro Gly Leu
115 120 125
Phe Ser Leu Ile Arg Leu Leu Glu Glu Ala Val Leu Pro Glu Gly Thr
130 135 140
Asp Tyr Thr Phe Trp Gly Pro Gly Val Ser Gln Gly His Ser Asp Ala
145 150 155 160
Val Arg Arg Val Glu Gly Val Arg Asp Ala Arg Gln Tyr Thr Ile Pro
165 170 175
Ile Glu Asp Thr Val Ala Arg Val Arg Ser Gly Glu Ala Pro Ser Leu
180 185 190
Ser Thr Arg Glu Arg His Leu Arg Arg Cys Tyr Val Val Ala Glu Glu
195 200 205
Gly Ala Asp Pro Gly Glu Ile Arg Glu Lys Ile Arg Ser Met Pro Asn
210 215 220
Tyr Phe Ala Asp Tyr Asp Thr Lys Val Ser Phe Ile Ser Gln Glu Glu
225 230 235 240
Met Glu Arg Ser His Asn Arg Met Pro His Gly Gly Phe Val Met Arg
245 250 255
Ala Gly Lys Thr Ala Asp Gly Thr Gly His Val Leu Glu Phe Arg Leu
260 265 270
Lys Leu Asp Ser Asn Pro Ala Phe Thr Ala Ser Val Leu Leu Ala Tyr
275 280 285
Ala Arg Ala Ala Tyr Arg Leu His Gln Glu Gly Ala Ile Gly Ala Arg
290 295 300
Thr Val Phe Asp Val Pro Pro Ala His Leu Ser Pro Lys Thr Pro Glu
305 310 315 320
Glu Ile Arg Arg Ser Met Leu
325
<210> 11
<211> 972
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from M. micronuciformis
<400> 11
atggacaaaa ttcgcattgg tatcgtggga tacggcaacc tgggtcgggg agcggaggct 60
tcggtcaagc tccagccgga tatggagctg atcggtgttt tctctcggcg gaagggaatt 120
aagactgtgt cgggagtgcc tgcatatact atggacgaga tgctcaactt taagggtaaa 180
atcgatgtta tgattttgtg tggaggatcg gcaacggacc tgatcgaaca gacccctgcg 240
gtggcagccc actttacctg tattgactcc tttgatactc accctcggat taccgaacac 300
tttaataacg tagataaagc ggctaaagca gcaggtaccg ccgccctgat ttcatgtggt 360
tgggacccag gaatgttttc tcttcaacgt gttttcgcgg aagcaatttt gccccaaggc 420
aagtcttata cgttctgggg ccggggagtg tctcagggcc attcggacgc cattcggcgg 480
atcgatggag tcgtcgacgc gcggcagtat actgtaccaa aagataaata cctgaatgcc 540
atccgtaatg gtgaaatgcc cgaggtcact ggacaggagg cgcatctgcg tgactgctac 600
gttgtcgctg cggagggcgc agataaagct cggatcgaga acgaaattaa gaccatgaaa 660
aactattttg tgggatacga aaccgtagta cacttcattt cacaggagga actggaccgg 720
gatcacaagg gcattccgca cggtggtttc gtacttcgca gcggcgagtc gacccccggt 780
accaaacatg tggtggaata tcgcctccag ttggattcca acccggagtt tactggttct 840
gtgcttacgg cgtatgctcg cggccttaac cgcttggcta agcataaagc caccggagct 900
ttcacggtgt tcgatattcc tcccgcgtgg attagcgtac attctgacga ggagctgcgg 960
gcacactcac tg 972
<210> 12
<211> 324
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from M. micronuciformis
<400> 12
Met Asp Lys Ile Arg Ile Gly Ile Val Gly Tyr Gly Asn Leu Gly Arg
1 5 10 15
Gly Ala Glu Ala Ser Val Lys Leu Gln Pro Asp Met Glu Leu Ile Gly
20 25 30
Val Phe Ser Arg Arg Lys Gly Ile Lys Thr Val Ser Gly Val Pro Ala
35 40 45
Tyr Thr Met Asp Glu Met Leu Asn Phe Lys Gly Lys Ile Asp Val Met
50 55 60
Ile Leu Cys Gly Gly Ser Ala Thr Asp Leu Ile Glu Gln Thr Pro Ala
65 70 75 80
Val Ala Ala His Phe Thr Cys Ile Asp Ser Phe Asp Thr His Pro Arg
85 90 95
Ile Thr Glu His Phe Asn Asn Val Asp Lys Ala Ala Lys Ala Ala Gly
100 105 110
Thr Ala Ala Leu Ile Ser Cys Gly Trp Asp Pro Gly Met Phe Ser Leu
115 120 125
Gln Arg Val Phe Ala Glu Ala Ile Leu Pro Gln Gly Lys Ser Tyr Thr
130 135 140
Phe Trp Gly Arg Gly Val Ser Gln Gly His Ser Asp Ala Ile Arg Arg
145 150 155 160
Ile Asp Gly Val Val Asp Ala Arg Gln Tyr Thr Val Pro Lys Asp Lys
165 170 175
Tyr Leu Asn Ala Ile Arg Asn Gly Glu Met Pro Glu Val Thr Gly Gln
180 185 190
Glu Ala His Leu Arg Asp Cys Tyr Val Val Ala Ala Glu Gly Ala Asp
195 200 205
Lys Ala Arg Ile Glu Asn Glu Ile Lys Thr Met Lys Asn Tyr Phe Val
210 215 220
Gly Tyr Glu Thr Val Val His Phe Ile Ser Gln Glu Glu Leu Asp Arg
225 230 235 240
Asp His Lys Gly Ile Pro His Gly Gly Phe Val Leu Arg Ser Gly Glu
245 250 255
Ser Thr Pro Gly Thr Lys His Val Val Glu Tyr Arg Leu Gln Leu Asp
260 265 270
Ser Asn Pro Glu Phe Thr Gly Ser Val Leu Thr Ala Tyr Ala Arg Gly
275 280 285
Leu Asn Arg Leu Ala Lys His Lys Ala Thr Gly Ala Phe Thr Val Phe
290 295 300
Asp Ile Pro Pro Ala Trp Ile Ser Val His Ser Asp Glu Glu Leu Arg
305 310 315 320
Ala His Ser Leu
<210> 13
<211> 1002
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from A. denitrificans
<400> 13
atgggtcttg ataacaatgc acgcacggcc atccgtatcg gtatcgttgg atacggcaac 60
cttggacgtg gtgtggaagc ggcagtcgcc cgcaattcgg atatggcagt tgccggaatt 120
tacacgcggc gtgaccctgc ccaaattgaa cccatgggcg cgggagtgcc agtgcacgcc 180
atggactcgc tccctggtca taaaggttcg attgatgttc tggtactttg cggaggctca 240
aaagatgatc tgccgcgcca atcccccgag ttggccgctc actttagcct ggttgattcc 300
tttgacaccc atgctcggat cccagagcac ttcgctgcgg ttgacgcggc ggcgcaagca 360
ggacgtacga cggcactgat ttctgcaggt tgggacccgg gaatgttttc catcaatcgg 420
gtaatgggcg aggccctctt gccggatggc gccacctata cgttctgggg caagggactc 480
tcccagggcc actctgatgc ggtgcgtcgg gttccgggcg tagctggcgg tgtgcagtat 540
actatccccg tggacgaagc ggtagctcag gtacggtccg gtttgcgtcc tgccctcacc 600
acgcgggaaa aacaccggcg cgaatgcttc gttgtactcg aagcgggagc agacgcctcg 660
gccgtgcgta agacgattgt tacgatgccc cattattttg atgagtatga caccactgta 720
cactttatcg gcgccgagga attggctcgg gaacacggcg ccatgccgca cggcggattt 780
gtcatccgct caggtaatac ctctcaggaa aacaaacagg taatcgagta tcgtctccaa 840
ctcgactcta accctgaatt taccagctct gtcctcgtcg catatgcacg tgccgtacat 900
cgtatgcaac aggccggtca gtggggctgc aagacggtat ttgatgttgc gccaggcctg 960
ctgtctccgc gctcggcggc cgaactccgc gctcaacttc tt 1002
<210> 14
<211> 334
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from A. denitrificans
<400> 14
Met Gly Leu Asp Asn Asn Ala Arg Thr Ala Ile Arg Ile Gly Ile Val
1 5 10 15
Gly Tyr Gly Asn Leu Gly Arg Gly Val Glu Ala Ala Val Ala Arg Asn
20 25 30
Ser Asp Met Ala Val Ala Gly Ile Tyr Thr Arg Arg Asp Pro Ala Gln
35 40 45
Ile Glu Pro Met Gly Ala Gly Val Pro Val His Ala Met Asp Ser Leu
50 55 60
Pro Gly His Lys Gly Ser Ile Asp Val Leu Val Leu Cys Gly Gly Ser
65 70 75 80
Lys Asp Asp Leu Pro Arg Gln Ser Pro Glu Leu Ala Ala His Phe Ser
85 90 95
Leu Val Asp Ser Phe Asp Thr His Ala Arg Ile Pro Glu His Phe Ala
100 105 110
Ala Val Asp Ala Ala Ala Gln Ala Gly Arg Thr Thr Ala Leu Ile Ser
115 120 125
Ala Gly Trp Asp Pro Gly Met Phe Ser Ile Asn Arg Val Met Gly Glu
130 135 140
Ala Leu Leu Pro Asp Gly Ala Thr Tyr Thr Phe Trp Gly Lys Gly Leu
145 150 155 160
Ser Gln Gly His Ser Asp Ala Val Arg Arg Val Pro Gly Val Ala Gly
165 170 175
Gly Val Gln Tyr Thr Ile Pro Val Asp Glu Ala Val Ala Gln Val Arg
180 185 190
Ser Gly Leu Arg Pro Ala Leu Thr Thr Arg Glu Lys His Arg Arg Glu
195 200 205
Cys Phe Val Val Leu Glu Ala Gly Ala Asp Ala Ser Ala Val Arg Lys
210 215 220
Thr Ile Val Thr Met Pro His Tyr Phe Asp Glu Tyr Asp Thr Thr Val
225 230 235 240
His Phe Ile Gly Ala Glu Glu Leu Ala Arg Glu His Gly Ala Met Pro
245 250 255
His Gly Gly Phe Val Ile Arg Ser Gly Asn Thr Ser Gln Glu Asn Lys
260 265 270
Gln Val Ile Glu Tyr Arg Leu Gln Leu Asp Ser Asn Pro Glu Phe Thr
275 280 285
Ser Ser Val Leu Val Ala Tyr Ala Arg Ala Val His Arg Met Gln Gln
290 295 300
Ala Gly Gln Trp Gly Cys Lys Thr Val Phe Asp Val Ala Pro Gly Leu
305 310 315 320
Leu Ser Pro Arg Ser Ala Ala Glu Leu Arg Ala Gln Leu Leu
325 330
<210> 15
<211> 957
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from M. luteus
<400> 15
atgaccattc gcgcgggaat tgtaggatat ggaaacctgg gtcgctctgt agaaaaactt 60
gttaaactgc agccggacat ggaacttgtt ggcatttttt cccggcggac tggactcgac 120
acggataccc cagtacttcc tgcggaacgt gcggccgagc acgcgggtga gattgatgtg 180
ctttttctgt gccttggaag cgcgactgat attccagagc aagcggccgg ttacgcacgc 240
cacttcacga ccgttgatac gtatgataac catcaactga tcccacggca tcggtctgaa 300
atggatgctg cggcccggga gggcggccac gtagcgatga tctcaactgg atgggaccca 360
ggactttttt ctgtcaatcg ggtccttgga gccgcccttt ttccgcagcc ccagcaaaat 420
actttttggg gcaagggcct ctcacaaggt cactcggatg cagtgcggcg ggtgccgggt 480
gtacggcgtg gcgttcagta cactattccg tcagaggaag cgattgcaga ggcccgggct 540
ggtcgcggtg cagagattac tggtgcgtcg gctcatgttc gggagtgtta cgtcgttgca 600
gacgaggcag atcatgctgc tatcactgag gcgatcacca ccatgccgga ttactttgcc 660
ccctatgaga cgaccgtaca ctttatttcg gaggaagaat ttgagcggga tcatcagggt 720
atgccacacg gaggccacgt tgtcacgtct ggtgacttgg gaggctctcg ctctgcggta 780
gaatttgtcc tcgaactcga atctaatcct gactttaccg cagcagccca ggtagcctat 840
ggccgggccg ccgctcgcct taaggcccag ggtgagactg gcgctcgtac ggtacttgag 900
gtcgctccct atcttctgtc accgacgggt ttggatgagc tgattcgccg cgacgtg 957
<210> 16
<211> 319
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from M. luteus
<400> 16
Met Thr Ile Arg Ala Gly Ile Val Gly Tyr Gly Asn Leu Gly Arg Ser
1 5 10 15
Val Glu Lys Leu Val Lys Leu Gln Pro Asp Met Glu Leu Val Gly Ile
20 25 30
Phe Ser Arg Arg Thr Gly Leu Asp Thr Asp Thr Pro Val Leu Pro Ala
35 40 45
Glu Arg Ala Ala Glu His Ala Gly Glu Ile Asp Val Leu Phe Leu Cys
50 55 60
Leu Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala Ala Gly Tyr Ala Arg
65 70 75 80
His Phe Thr Thr Val Asp Thr Tyr Asp Asn His Gln Leu Ile Pro Arg
85 90 95
His Arg Ser Glu Met Asp Ala Ala Ala Arg Glu Gly Gly His Val Ala
100 105 110
Met Ile Ser Thr Gly Trp Asp Pro Gly Leu Phe Ser Val Asn Arg Val
115 120 125
Leu Gly Ala Ala Leu Phe Pro Gln Pro Gln Gln Asn Thr Phe Trp Gly
130 135 140
Lys Gly Leu Ser Gln Gly His Ser Asp Ala Val Arg Arg Val Pro Gly
145 150 155 160
Val Arg Arg Gly Val Gln Tyr Thr Ile Pro Ser Glu Glu Ala Ile Ala
165 170 175
Glu Ala Arg Ala Gly Arg Gly Ala Glu Ile Thr Gly Ala Ser Ala His
180 185 190
Val Arg Glu Cys Tyr Val Val Ala Asp Glu Ala Asp His Ala Ala Ile
195 200 205
Thr Glu Ala Ile Thr Thr Met Pro Asp Tyr Phe Ala Pro Tyr Glu Thr
210 215 220
Thr Val His Phe Ile Ser Glu Glu Glu Phe Glu Arg Asp His Gln Gly
225 230 235 240
Met Pro His Gly Gly His Val Val Thr Ser Gly Asp Leu Gly Gly Ser
245 250 255
Arg Ser Ala Val Glu Phe Val Leu Glu Leu Glu Ser Asn Pro Asp Phe
260 265 270
Thr Ala Ala Ala Gln Val Ala Tyr Gly Arg Ala Ala Ala Arg Leu Lys
275 280 285
Ala Gln Gly Glu Thr Gly Ala Arg Thr Val Leu Glu Val Ala Pro Tyr
290 295 300
Leu Leu Ser Pro Thr Gly Leu Asp Glu Leu Ile Arg Arg Asp Val
305 310 315
<210> 17
<211> 981
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from B. faecium
<400> 17
atgaccgttc atcgtattgg catcgtagga tatggaaacc tcggacgtgg agtagagatc 60
gcgaccagct tgcaggaaga catgcaactc gttggtgtct tcacgcgccg cgacccttca 120
acggtaagca ccgttcatgc tcagacgcca gtacgctcaa tcgacgccct tgaggagatg 180
caagacgaaa ttgatgtgct cgttctttgt ggtggatcac gtaccgacct tcctgaacag 240
acgccccagt tggctgaacg gtttactgtg gttgattcgt ttgacaccca cgcgcggatt 300
cctgagcatt tcgccaaagt tgatgcagcg gcgcgcgctg ctggaaccac cgccctgatt 360
tccactggct gggatccagg cttgttttcg atcaatcgtg tatatggcga agcaatcctt 420
gcgactggaa ctacctacac cttttggggt cggggacttt cccagggcca ctccgatgct 480
gtacggcggg tcgatggcgt agctgctgcc gtacagtaca ctgtaccgag ccaagaagcg 540
attgctcggg tgcgggccgg cgaacagccc acgctgtcga cgcgggaaaa acacacccgg 600
gaatgtttcg tcgttttgga ggatggcgcg gatgctgaga ctgtccgcga ggagatcgta 660
accatgcccc actattttga accttatgac actaccgtaa ccttcctgtc tgcagaggaa 720
ctggcgcgcg atcaccaggg catgccgcac ggcggttttg tgattcggtc aggagagtca 780
agcccaggca ctacccagac tattgaatac cggcttcagg aagactctaa cccggaattt 840
actgcgtcgg tccttgtcgc atatactcgt gctgccgccc ggctcgcagc cgccggcgaa 900
catggtgcta agactccttt cgacgttgcc ccgggccttc tgtccccgaa gtcgcccgaa 960
cagctgcgcg ccgagctcct g 981
<210> 18
<211> 327
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from B. faecium
<400> 18
Met Thr Val His Arg Ile Gly Ile Val Gly Tyr Gly Asn Leu Gly Arg
1 5 10 15
Gly Val Glu Ile Ala Thr Ser Leu Gln Glu Asp Met Gln Leu Val Gly
20 25 30
Val Phe Thr Arg Arg Asp Pro Ser Thr Val Ser Thr Val His Ala Gln
35 40 45
Thr Pro Val Arg Ser Ile Asp Ala Leu Glu Glu Met Gln Asp Glu Ile
50 55 60
Asp Val Leu Val Leu Cys Gly Gly Ser Arg Thr Asp Leu Pro Glu Gln
65 70 75 80
Thr Pro Gln Leu Ala Glu Arg Phe Thr Val Val Asp Ser Phe Asp Thr
85 90 95
His Ala Arg Ile Pro Glu His Phe Ala Lys Val Asp Ala Ala Ala Arg
100 105 110
Ala Ala Gly Thr Thr Ala Leu Ile Ser Thr Gly Trp Asp Pro Gly Leu
115 120 125
Phe Ser Ile Asn Arg Val Tyr Gly Glu Ala Ile Leu Ala Thr Gly Thr
130 135 140
Thr Tyr Thr Phe Trp Gly Arg Gly Leu Ser Gln Gly His Ser Asp Ala
145 150 155 160
Val Arg Arg Val Asp Gly Val Ala Ala Ala Val Gln Tyr Thr Val Pro
165 170 175
Ser Gln Glu Ala Ile Ala Arg Val Arg Ala Gly Glu Gln Pro Thr Leu
180 185 190
Ser Thr Arg Glu Lys His Thr Arg Glu Cys Phe Val Val Leu Glu Asp
195 200 205
Gly Ala Asp Ala Glu Thr Val Arg Glu Glu Ile Val Thr Met Pro His
210 215 220
Tyr Phe Glu Pro Tyr Asp Thr Thr Val Thr Phe Leu Ser Ala Glu Glu
225 230 235 240
Leu Ala Arg Asp His Gln Gly Met Pro His Gly Gly Phe Val Ile Arg
245 250 255
Ser Gly Glu Ser Ser Pro Gly Thr Thr Gln Thr Ile Glu Tyr Arg Leu
260 265 270
Gln Glu Asp Ser Asn Pro Glu Phe Thr Ala Ser Val Leu Val Ala Tyr
275 280 285
Thr Arg Ala Ala Ala Arg Leu Ala Ala Ala Gly Glu His Gly Ala Lys
290 295 300
Thr Pro Phe Asp Val Ala Pro Gly Leu Leu Ser Pro Lys Ser Pro Glu
305 310 315 320
Gln Leu Arg Ala Glu Leu Leu
325
<210> 19
<211> 975
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized ddh from Carnobacterium sp.
<400> 19
atgactaaca agattcggat tggtcttgtg ggttacggta acatcggaaa gggcgtcgaa 60
ttggcgctgg aagagtttcc tgacatggaa ggcattgcgg tcttcactcg tcggaatccc 120
gaagatctcg attcaaagct caaagctatc tctttggacc acattcttga ttaccaggaa 180
gatctggacg ttttgatcct ttgcggcgga agcgccaccg atttgcctgg tcagggtcct 240
gctcttgcaa agcatttctc tacgattgac tcctacgata atcacaatca aattcctgaa 300
tatttcgaaa ctatggacca atctgcaaag gcaggcaaga acatttcaat tatctcggtc 360
ggctgggatc cgggactgtt ctcactgaat cgggccgttt tcgagtccat ccttccggcg 420
ggagagactt acactttttg gggcaaagga ctgtcccagg gccactccga cgccattcgt 480
cggattgatg gcgtcaagtt tggcgttcaa tacaccattc ccgtcgaaac cgcactggag 540
gaagtacggt ctggatcgaa tccgaccctt tccactcggg agaagcacaa acgtgtgtgc 600
tacgttgtag cggaagcggg ctccgaccag aatttgattg aggaaacgat taaaaccatg 660
ccggactact tcgagccgta cgacacgacc gtccatttca tcgacgagaa aacgttcaag 720
gaggagcatc agaaaatgcc acatggtggc ttcgtgatcc gtactgcaac ttcagctacg 780
ggcaacaagc agaaagctga gttccagctc gaattggagt ccaatgcaga attcacttct 840
tcaatcctcg ttgcgtacgc tcgtgccgcc tacaagttta agaaagatgg caagtctggc 900
gctctttcgg tgctggatgt ccctccggca tacctgtctc caaagtcggc agcgcagctc 960
cgcaaggagc tcctg 975
<210> 20
<211> 325
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized ddh from Carnobacterium sp.
<400> 20
Met Thr Asn Lys Ile Arg Ile Gly Leu Val Gly Tyr Gly Asn Ile Gly
1 5 10 15
Lys Gly Val Glu Leu Ala Leu Glu Glu Phe Pro Asp Met Glu Gly Ile
20 25 30
Ala Val Phe Thr Arg Arg Asn Pro Glu Asp Leu Asp Ser Lys Leu Lys
35 40 45
Ala Ile Ser Leu Asp His Ile Leu Asp Tyr Gln Glu Asp Leu Asp Val
50 55 60
Leu Ile Leu Cys Gly Gly Ser Ala Thr Asp Leu Pro Gly Gln Gly Pro
65 70 75 80
Ala Leu Ala Lys His Phe Ser Thr Ile Asp Ser Tyr Asp Asn His Asn
85 90 95
Gln Ile Pro Glu Tyr Phe Glu Thr Met Asp Gln Ser Ala Lys Ala Gly
100 105 110
Lys Asn Ile Ser Ile Ile Ser Val Gly Trp Asp Pro Gly Leu Phe Ser
115 120 125
Leu Asn Arg Ala Val Phe Glu Ser Ile Leu Pro Ala Gly Glu Thr Tyr
130 135 140
Thr Phe Trp Gly Lys Gly Leu Ser Gln Gly His Ser Asp Ala Ile Arg
145 150 155 160
Arg Ile Asp Gly Val Lys Phe Gly Val Gln Tyr Thr Ile Pro Val Glu
165 170 175
Thr Ala Leu Glu Glu Val Arg Ser Gly Ser Asn Pro Thr Leu Ser Thr
180 185 190
Arg Glu Lys His Lys Arg Val Cys Tyr Val Val Ala Glu Ala Gly Ser
195 200 205
Asp Gln Asn Leu Ile Glu Glu Thr Ile Lys Thr Met Pro Asp Tyr Phe
210 215 220
Glu Pro Tyr Asp Thr Thr Val His Phe Ile Asp Glu Lys Thr Phe Lys
225 230 235 240
Glu Glu His Gln Lys Met Pro His Gly Gly Phe Val Ile Arg Thr Ala
245 250 255
Thr Ser Ala Thr Gly Asn Lys Gln Lys Ala Glu Phe Gln Leu Glu Leu
260 265 270
Glu Ser Asn Ala Glu Phe Thr Ser Ser Ile Leu Val Ala Tyr Ala Arg
275 280 285
Ala Ala Tyr Lys Phe Lys Lys Asp Gly Lys Ser Gly Ala Leu Ser Val
290 295 300
Leu Asp Val Pro Pro Ala Tyr Leu Ser Pro Lys Ser Ala Ala Gln Leu
305 310 315 320
Arg Lys Glu Leu Leu
325
<210> 21
<211> 1062
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from M. jannaschii
<400> 21
atgtccaagg gagaaaaaat gaagatcaag gttggcgtat tgggtgctac cggatcggtt 60
ggccaacgct ttgtgcagct gcttgcagac caccccatgt tcgaattgac tgctctggca 120
gcaagcgaac ggtccgcggg taaaaaatac aaagatgctt gttactggtt tcaagatcgg 180
gacattccag aaaatattaa ggatatggtt gtaattccga cggatccgaa gcacgaagaa 240
ttcgaagacg ttgatattgt ttttagcgcg ctgccctcgg atctggctaa aaaattcgaa 300
cccgaattcg cgaaagaagg aaagctgatc ttcagcaacg catcagccta tcgtatggag 360
gaagatgtgc cgcttgtaat tccagaggta aacgctgatc acctcgaatt gattgaaatt 420
cagcgcgaga agcggggttg ggacggagcc attatcacta acccaaactg ttcaaccatt 480
tgcgccgtaa tcacccttaa gccaattatg gacaaattcg gtcttgaagc ggtgtttatc 540
gctaccatgc aggctgtatc gggcgcagga tacaacggtg tcccgagcat ggctattctg 600
gataacttga ttccctttat taagaatgag gaggagaaga tgcagactga atcgcttaag 660
ttgctgggca cgcttaagga tggaaaagtg gaactcgcta acttcaaaat cagcgcatca 720
tgcaatcgtg tggctgtgat cgacggccac accgaatcga tcttcgtgaa gaccaaggag 780
ggtgcggaac ctgaggaaat taaagaagtg atggacaaat ttgatcctct taaagacctt 840
aaccttccga cgtatgccaa accaatcgta attcgcgaag agatcgatcg cccacagcca 900
cgtcttgacc gcaatgaggg taatggcatg tctattgtcg ttggtcgtat ccgtaaagat 960
ccgatttttg atgttaagta caccgccctg gaacataaca ctatccgtgg cgccgcgggc 1020
gcatcagtgt tgaatgcgga gtatttcgta aagaaataca tc 1062
<210> 22
<211> 354
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from M. jannaschii
<400> 22
Met Ser Lys Gly Glu Lys Met Lys Ile Lys Val Gly Val Leu Gly Ala
1 5 10 15
Thr Gly Ser Val Gly Gln Arg Phe Val Gln Leu Leu Ala Asp His Pro
20 25 30
Met Phe Glu Leu Thr Ala Leu Ala Ala Ser Glu Arg Ser Ala Gly Lys
35 40 45
Lys Tyr Lys Asp Ala Cys Tyr Trp Phe Gln Asp Arg Asp Ile Pro Glu
50 55 60
Asn Ile Lys Asp Met Val Val Ile Pro Thr Asp Pro Lys His Glu Glu
65 70 75 80
Phe Glu Asp Val Asp Ile Val Phe Ser Ala Leu Pro Ser Asp Leu Ala
85 90 95
Lys Lys Phe Glu Pro Glu Phe Ala Lys Glu Gly Lys Leu Ile Phe Ser
100 105 110
Asn Ala Ser Ala Tyr Arg Met Glu Glu Asp Val Pro Leu Val Ile Pro
115 120 125
Glu Val Asn Ala Asp His Leu Glu Leu Ile Glu Ile Gln Arg Glu Lys
130 135 140
Arg Gly Trp Asp Gly Ala Ile Ile Thr Asn Pro Asn Cys Ser Thr Ile
145 150 155 160
Cys Ala Val Ile Thr Leu Lys Pro Ile Met Asp Lys Phe Gly Leu Glu
165 170 175
Ala Val Phe Ile Ala Thr Met Gln Ala Val Ser Gly Ala Gly Tyr Asn
180 185 190
Gly Val Pro Ser Met Ala Ile Leu Asp Asn Leu Ile Pro Phe Ile Lys
195 200 205
Asn Glu Glu Glu Lys Met Gln Thr Glu Ser Leu Lys Leu Leu Gly Thr
210 215 220
Leu Lys Asp Gly Lys Val Glu Leu Ala Asn Phe Lys Ile Ser Ala Ser
225 230 235 240
Cys Asn Arg Val Ala Val Ile Asp Gly His Thr Glu Ser Ile Phe Val
245 250 255
Lys Thr Lys Glu Gly Ala Glu Pro Glu Glu Ile Lys Glu Val Met Asp
260 265 270
Lys Phe Asp Pro Leu Lys Asp Leu Asn Leu Pro Thr Tyr Ala Lys Pro
275 280 285
Ile Val Ile Arg Glu Glu Ile Asp Arg Pro Gln Pro Arg Leu Asp Arg
290 295 300
Asn Glu Gly Asn Gly Met Ser Ile Val Val Gly Arg Ile Arg Lys Asp
305 310 315 320
Pro Ile Phe Asp Val Lys Tyr Thr Ala Leu Glu His Asn Thr Ile Arg
325 330 335
Gly Ala Ala Gly Ala Ser Val Leu Asn Ala Glu Tyr Phe Val Lys Lys
340 345 350
Tyr Ile
<210> 23
<211> 1047
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from S. usitatus
<400> 23
atgcagacgc ggatcgaggt aggaattctt ggagcgactg gtatggtcgg tcagcacttt 60
atcaaatttt tgcaaggcca cccttggttc gatctcaagt ggctgggtgc ttcagaccgc 120
tccgccggta aacagtacaa agacgcgatg acctggcatc ttgctggagg aaccccagat 180
tcagtcgctg gtctcaccgt cgaagaatgc aaacccggca atgccccccg tctgcttttc 240
agcgctatgg acgctggagt tgcgaccgat attgaacgtg cgtttgcgca ggcgggtcat 300
gtggttgtct cgaatagccg caaccaccgg atggagcaag acgttccttt gatggtgcct 360
gagattaacc cagatcatct gaagctggta ccgggacaac aacgcgcgcg gggatggaaa 420
ggacagattg tcacgaaccc gaattgctct acgatcggtc tggtgatggg tctcggtcca 480
atgaaacagt tcggcattac gaagatcctt gttaccacga tgcaggctat ttcaggcgca 540
ggatacccag gagtagcatc catggatatt atgggtaacg ttgtccccta catcggctct 600
gaagaggaaa agatggagat ggaaactcaa aaaattatgg gtgatttcgc gggcgatcgc 660
atcgtgccgc ttgcagcaaa ggtctcggcc cactgcaatc gggtaggcgt tgttgacggc 720
catacggaaa ctgtgtcagt cgaattctct atgaaaccaa cggaggcaga tttgcgccat 780
gcgatcgaat cctttactgc agtgccccag gaacgcaagc tcccgagcgc accaggacgt 840
ccggttatct atatgaagga agccaaccgg ccccaacctc gtaaggatgc tgaacgggag 900
cgtggcatgg cagcgtttgt tggtcgcctc cgggcatgcc cggtactgga ttataaattt 960
gtggtcctgt cccacaatac gattcgcggc gcagcaggcg cagcagtctt gaatgccgaa 1020
ctcatgcact cagagggaat gttggat 1047
<210> 24
<211> 349
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from S. usitatus
<400> 24
Met Gln Thr Arg Ile Glu Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln His Phe Ile Lys Phe Leu Gln Gly His Pro Trp Phe Asp Leu
20 25 30
Lys Trp Leu Gly Ala Ser Asp Arg Ser Ala Gly Lys Gln Tyr Lys Asp
35 40 45
Ala Met Thr Trp His Leu Ala Gly Gly Thr Pro Asp Ser Val Ala Gly
50 55 60
Leu Thr Val Glu Glu Cys Lys Pro Gly Asn Ala Pro Arg Leu Leu Phe
65 70 75 80
Ser Ala Met Asp Ala Gly Val Ala Thr Asp Ile Glu Arg Ala Phe Ala
85 90 95
Gln Ala Gly His Val Val Val Ser Asn Ser Arg Asn His Arg Met Glu
100 105 110
Gln Asp Val Pro Leu Met Val Pro Glu Ile Asn Pro Asp His Leu Lys
115 120 125
Leu Val Pro Gly Gln Gln Arg Ala Arg Gly Trp Lys Gly Gln Ile Val
130 135 140
Thr Asn Pro Asn Cys Ser Thr Ile Gly Leu Val Met Gly Leu Gly Pro
145 150 155 160
Met Lys Gln Phe Gly Ile Thr Lys Ile Leu Val Thr Thr Met Gln Ala
165 170 175
Ile Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Met Asp Ile Met Gly
180 185 190
Asn Val Val Pro Tyr Ile Gly Ser Glu Glu Glu Lys Met Glu Met Glu
195 200 205
Thr Gln Lys Ile Met Gly Asp Phe Ala Gly Asp Arg Ile Val Pro Leu
210 215 220
Ala Ala Lys Val Ser Ala His Cys Asn Arg Val Gly Val Val Asp Gly
225 230 235 240
His Thr Glu Thr Val Ser Val Glu Phe Ser Met Lys Pro Thr Glu Ala
245 250 255
Asp Leu Arg His Ala Ile Glu Ser Phe Thr Ala Val Pro Gln Glu Arg
260 265 270
Lys Leu Pro Ser Ala Pro Gly Arg Pro Val Ile Tyr Met Lys Glu Ala
275 280 285
Asn Arg Pro Gln Pro Arg Lys Asp Ala Glu Arg Glu Arg Gly Met Ala
290 295 300
Ala Phe Val Gly Arg Leu Arg Ala Cys Pro Val Leu Asp Tyr Lys Phe
305 310 315 320
Val Val Leu Ser His Asn Thr Ile Arg Gly Ala Ala Gly Ala Ala Val
325 330 335
Leu Asn Ala Glu Leu Met His Ser Glu Gly Met Leu Asp
340 345
<210> 25
<211> 1032
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from N. innermongolicus
<400> 25
atggcagtgc gggtaggtgt attgggcgct acgggagcag tgggtcaacg gcttatccag 60
ctcctcgagc ctcaccctga attcgaaatt gctgctctca ccgcgtcgga gtcttccgct 120
ggtaaaactt atcgtcaggc ggcgaaatgg cgcgtagact ccccaatccc tgacgacgtc 180
gcagagatga ccgtaagcgc aacggatccc gatgaggttc cggatgacgt agatttgctg 240
ttcagcagct tgccgtcaag cgtcggcgaa caggtagagc ccgctttttg cgaagccgga 300
tacgtgatgt cgtccaattc ttctaatgct cgtatggcgg atgacgtccc acttgttatc 360
ccagaggtaa atgctgaaca tattgatctt cttgaggtcc aacgcgatga acgtggatgg 420
gatggcgcga tggtaaaaaa ccctaattgt tcaactatta cctttgtccc aactcttgcg 480
gcccttgagc agtttggcct ggaggaagtc cacgttgcaa cgctgcaagc ggtgtccggt 540
gcaggttatg atggagtctc ctccatggag atcattgaca atgcaattcc ttatattgga 600
tcggaagaag agaaactgga aacggaatct cgtaagctcc tgggagaatt tgacggcgct 660
gaactgtcgc ataactcagt tgaagtcgca gcttcgtgca accgtatccc gaccattgac 720
ggacacttgg agaacgtgtg ggttgagacc gaagacgacc ttacgcccga agatgccgcg 780
gatgcaatgc gcgcgtatcc atcgttggag cttcgttcat ctccggacca gctgattcat 840
gtctttgatg aaccagaccg cccgcaaccg cggatggacc ggactttggg agacggaatg 900
gcaatcgcgg ctggtggttt gcgtgaatcg actttcgacc ttcaatacaa ttgcttggct 960
cataacacca tccggggtgc agcgggagcc tcggttctga acggagagct gttgttggac 1020
caaggttata tt 1032
<210> 26
<211> 344
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from N. innermongolicus
<400> 26
Met Ala Val Arg Val Gly Val Leu Gly Ala Thr Gly Ala Val Gly Gln
1 5 10 15
Arg Leu Ile Gln Leu Leu Glu Pro His Pro Glu Phe Glu Ile Ala Ala
20 25 30
Leu Thr Ala Ser Glu Ser Ser Ala Gly Lys Thr Tyr Arg Gln Ala Ala
35 40 45
Lys Trp Arg Val Asp Ser Pro Ile Pro Asp Asp Val Ala Glu Met Thr
50 55 60
Val Ser Ala Thr Asp Pro Asp Glu Val Pro Asp Asp Val Asp Leu Leu
65 70 75 80
Phe Ser Ser Leu Pro Ser Ser Val Gly Glu Gln Val Glu Pro Ala Phe
85 90 95
Cys Glu Ala Gly Tyr Val Met Ser Ser Asn Ser Ser Asn Ala Arg Met
100 105 110
Ala Asp Asp Val Pro Leu Val Ile Pro Glu Val Asn Ala Glu His Ile
115 120 125
Asp Leu Leu Glu Val Gln Arg Asp Glu Arg Gly Trp Asp Gly Ala Met
130 135 140
Val Lys Asn Pro Asn Cys Ser Thr Ile Thr Phe Val Pro Thr Leu Ala
145 150 155 160
Ala Leu Glu Gln Phe Gly Leu Glu Glu Val His Val Ala Thr Leu Gln
165 170 175
Ala Val Ser Gly Ala Gly Tyr Asp Gly Val Ser Ser Met Glu Ile Ile
180 185 190
Asp Asn Ala Ile Pro Tyr Ile Gly Ser Glu Glu Glu Lys Leu Glu Thr
195 200 205
Glu Ser Arg Lys Leu Leu Gly Glu Phe Asp Gly Ala Glu Leu Ser His
210 215 220
Asn Ser Val Glu Val Ala Ala Ser Cys Asn Arg Ile Pro Thr Ile Asp
225 230 235 240
Gly His Leu Glu Asn Val Trp Val Glu Thr Glu Asp Asp Leu Thr Pro
245 250 255
Glu Asp Ala Ala Asp Ala Met Arg Ala Tyr Pro Ser Leu Glu Leu Arg
260 265 270
Ser Ser Pro Asp Gln Leu Ile His Val Phe Asp Glu Pro Asp Arg Pro
275 280 285
Gln Pro Arg Met Asp Arg Thr Leu Gly Asp Gly Met Ala Ile Ala Ala
290 295 300
Gly Gly Leu Arg Glu Ser Thr Phe Asp Leu Gln Tyr Asn Cys Leu Ala
305 310 315 320
His Asn Thr Ile Arg Gly Ala Ala Gly Ala Ser Val Leu Asn Gly Glu
325 330 335
Leu Leu Leu Asp Gln Gly Tyr Ile
340
<210> 27
<211> 1047
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from C. aurantiacus
<400> 27
atggccacta ttccagtcgc cgttctgggt gccacgggtg ccgtgggtca acggttcatt 60
cagttgcttg agggtcaccc gctttttcag gtagttgccc tgactggcag cgagcgttcc 120
gctggtaaaa aataccacga ggtgtgtcgt tgggttttgg atactcctat gcccgcagcg 180
gttgcaaacc tgacggtact ggatgcagac gcagacctcc ccgcacagct cgtgttctcc 240
gcgctcccgt ctaccgtcgc cggcccgatc gaacaacgtc ttgctgctgc tggtcatatc 300
gtgtgctcca acgcttcgaa ccatcgtatg gagccagatg tgccactcat tattcccgaa 360
gtcaacccgg accatcttgc cttgattccc gttcaacgcc gccgccgtgg ttggtccggt 420
gctattgtta ccaacccaaa ctgcacttcc acgccggcga cgatggtgtt gcgccctttg 480
ctcgatacct ttggagtccg gcgcatgctt ttggtgtcaa tgcaagccct ctctggagcc 540
ggctacccag gtgtgccctc atacgatgta gttgataacg tgatccccta catcggtgga 600
gaagaaccaa aactcgagat tgagccgcag aaaatgctgg gacgtctgga aggagaaacg 660
attgttccag caggcttcac gacttccgca cactgcaatc gggtccctgt gctcgaaggc 720
cacctggttt gtctctcgat cgagcttgaa cggaaagccg accctgccga gatcgcgacg 780
gtgctcagca atttccgtgc actccctcag gaattgcggc tgccgactgc gccagagcag 840
cctatcattg tacgtcacga acccgaccgt cctcaaccgc gccgcgaccg tgatgctgga 900
cggggaatgg ccaccgtagt aggtcgcatt cggccctgca gcctttttga cattaagttg 960
atcgcattgt cacataacac catccggggc gccgccggag cgagcatcct gaacgccgag 1020
cttatgcatg cccaaggttg gctggcg 1047
<210> 28
<211> 349
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from C. aurantiacus
<400> 28
Met Ala Thr Ile Pro Val Ala Val Leu Gly Ala Thr Gly Ala Val Gly
1 5 10 15
Gln Arg Phe Ile Gln Leu Leu Glu Gly His Pro Leu Phe Gln Val Val
20 25 30
Ala Leu Thr Gly Ser Glu Arg Ser Ala Gly Lys Lys Tyr His Glu Val
35 40 45
Cys Arg Trp Val Leu Asp Thr Pro Met Pro Ala Ala Val Ala Asn Leu
50 55 60
Thr Val Leu Asp Ala Asp Ala Asp Leu Pro Ala Gln Leu Val Phe Ser
65 70 75 80
Ala Leu Pro Ser Thr Val Ala Gly Pro Ile Glu Gln Arg Leu Ala Ala
85 90 95
Ala Gly His Ile Val Cys Ser Asn Ala Ser Asn His Arg Met Glu Pro
100 105 110
Asp Val Pro Leu Ile Ile Pro Glu Val Asn Pro Asp His Leu Ala Leu
115 120 125
Ile Pro Val Gln Arg Arg Arg Arg Gly Trp Ser Gly Ala Ile Val Thr
130 135 140
Asn Pro Asn Cys Thr Ser Thr Pro Ala Thr Met Val Leu Arg Pro Leu
145 150 155 160
Leu Asp Thr Phe Gly Val Arg Arg Met Leu Leu Val Ser Met Gln Ala
165 170 175
Leu Ser Gly Ala Gly Tyr Pro Gly Val Pro Ser Tyr Asp Val Val Asp
180 185 190
Asn Val Ile Pro Tyr Ile Gly Gly Glu Glu Pro Lys Leu Glu Ile Glu
195 200 205
Pro Gln Lys Met Leu Gly Arg Leu Glu Gly Glu Thr Ile Val Pro Ala
210 215 220
Gly Phe Thr Thr Ser Ala His Cys Asn Arg Val Pro Val Leu Glu Gly
225 230 235 240
His Leu Val Cys Leu Ser Ile Glu Leu Glu Arg Lys Ala Asp Pro Ala
245 250 255
Glu Ile Ala Thr Val Leu Ser Asn Phe Arg Ala Leu Pro Gln Glu Leu
260 265 270
Arg Leu Pro Thr Ala Pro Glu Gln Pro Ile Ile Val Arg His Glu Pro
275 280 285
Asp Arg Pro Gln Pro Arg Arg Asp Arg Asp Ala Gly Arg Gly Met Ala
290 295 300
Thr Val Val Gly Arg Ile Arg Pro Cys Ser Leu Phe Asp Ile Lys Leu
305 310 315 320
Ile Ala Leu Ser His Asn Thr Ile Arg Gly Ala Ala Gly Ala Ser Ile
325 330 335
Leu Asn Ala Glu Leu Met His Ala Gln Gly Trp Leu Ala
340 345
<210> 29
<211> 1089
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from L. agilis
<400> 29
atggatgaaa aactccgtgc cggtgttctg ggcgccacgg gtatggtagg acagcggttc 60
gtagcgatgt tggagaatca cccgtggttc gaagtaacca ctcttgcagc ttcgccgcgc 120
tcagcaggta aaacgtacgc acaggctgtg gatggccggt ggaaaatgga aactcccatt 180
ccagaggccg tcaaggatct caagattctt gatgtatcgg aagttgagaa agtcgcagct 240
caagtcgatt ttgtgttttc cgcagtttct atgtccaaag acaagattaa agcgattgaa 300
gaagcctacg cgaaaaccga aactccggta gtatcgaaca attcggcgca ccgttggacc 360
ccagatgttc ctatggtcgt gcccgaaatt aacccggagc atttcaaggt aattgattac 420
cagcggaaac ggctcggcac gaagcgcggc ttcattgccg ttaagccgaa ctgttctatc 480
cagagctacg ccccggctct cagcgcatgg ttgaaattcg aaccgtacga ggtaatcgct 540
tcaacttatc aggctatctc gggagctggt aagaacttcg acgactggcc ggagatgaag 600
ggaaacatca tcccttttat ttctggcgag gaggaaaaat cagagaagga gcccctcaag 660
atctggggac aacttgacga agctaaggga gagatcgtcc cagccactag ccctgttatt 720
acgagccaat gtattcgggt cccgatcctt tacggacaca ccgcgaccgt ctttgttaaa 780
ttcaagcaga acccaacgaa agaggaactg gtagctgctt tggaatcata tcagggactg 840
cctcaatcct tgaatttgcc gtctacccct aagcaattta ttcagtatct cagcgaagac 900
gaccgtccgc aggttgcgaa ggacgttaac tttgagaatg gtatgggtat ctctattggc 960
cgccttcgta aagattcggt ttacgattgg aagttcgtag gactctcgca caacaccgcg 1020
cgtggcgccg caggaggcgg cgtcctttcg gccgaattgc tgacggctca gggctatatt 1080
accaaaaag 1089
<210> 30
<211> 363
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from L. agilis
<400> 30
Met Asp Glu Lys Leu Arg Ala Gly Val Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Val Ala Met Leu Glu Asn His Pro Trp Phe Glu Val
20 25 30
Thr Thr Leu Ala Ala Ser Pro Arg Ser Ala Gly Lys Thr Tyr Ala Gln
35 40 45
Ala Val Asp Gly Arg Trp Lys Met Glu Thr Pro Ile Pro Glu Ala Val
50 55 60
Lys Asp Leu Lys Ile Leu Asp Val Ser Glu Val Glu Lys Val Ala Ala
65 70 75 80
Gln Val Asp Phe Val Phe Ser Ala Val Ser Met Ser Lys Asp Lys Ile
85 90 95
Lys Ala Ile Glu Glu Ala Tyr Ala Lys Thr Glu Thr Pro Val Val Ser
100 105 110
Asn Asn Ser Ala His Arg Trp Thr Pro Asp Val Pro Met Val Val Pro
115 120 125
Glu Ile Asn Pro Glu His Phe Lys Val Ile Asp Tyr Gln Arg Lys Arg
130 135 140
Leu Gly Thr Lys Arg Gly Phe Ile Ala Val Lys Pro Asn Cys Ser Ile
145 150 155 160
Gln Ser Tyr Ala Pro Ala Leu Ser Ala Trp Leu Lys Phe Glu Pro Tyr
165 170 175
Glu Val Ile Ala Ser Thr Tyr Gln Ala Ile Ser Gly Ala Gly Lys Asn
180 185 190
Phe Asp Asp Trp Pro Glu Met Lys Gly Asn Ile Ile Pro Phe Ile Ser
195 200 205
Gly Glu Glu Glu Lys Ser Glu Lys Glu Pro Leu Lys Ile Trp Gly Gln
210 215 220
Leu Asp Glu Ala Lys Gly Glu Ile Val Pro Ala Thr Ser Pro Val Ile
225 230 235 240
Thr Ser Gln Cys Ile Arg Val Pro Ile Leu Tyr Gly His Thr Ala Thr
245 250 255
Val Phe Val Lys Phe Lys Gln Asn Pro Thr Lys Glu Glu Leu Val Ala
260 265 270
Ala Leu Glu Ser Tyr Gln Gly Leu Pro Gln Ser Leu Asn Leu Pro Ser
275 280 285
Thr Pro Lys Gln Phe Ile Gln Tyr Leu Ser Glu Asp Asp Arg Pro Gln
290 295 300
Val Ala Lys Asp Val Asn Phe Glu Asn Gly Met Gly Ile Ser Ile Gly
305 310 315 320
Arg Leu Arg Lys Asp Ser Val Tyr Asp Trp Lys Phe Val Gly Leu Ser
325 330 335
His Asn Thr Ala Arg Gly Ala Ala Gly Gly Gly Val Leu Ser Ala Glu
340 345 350
Leu Leu Thr Ala Gln Gly Tyr Ile Thr Lys Lys
355 360
<210> 31
<211> 1092
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from B. pullorum
<400> 31
atgtccgaga aactgaaggt aggaattatt ggagcgaccg gcatggtggg tcagcggttc 60
gtgactctgt tggataatca cccatggttt gaggtcacca ccttggctgc ctcagcacac 120
tcggccggaa aaacctacga gcaggccgtt ggtggccggt ggaagatgga gacgcctatg 180
ccggcggcgg tgaaggacat gattgtccgg gatgccaagg atgtggagag cgtggctgca 240
gacgtggact tcgtgttctc tgcagtgaac atgccgaagg acgagatccg tgccttggag 300
gagcgctacg ccaagacgga gactcccgtt gtatcaaaca actcggccca ccgttggacg 360
ccagacgtac ccatggtagt ccccgagatt aatcccgaac attatgaagt aatcaagtac 420
cagcgggctc gtcttggtac tacgcgtggc ttcatcgccg tgaaaccaaa ctgctccatc 480
caggcatata cgccggcact cgccgcgtgg cgggagttcg aaccgcgtga agtcgtggta 540
tctacttacc aagcgatttc tggtgctggt aagactttcg cggactggcc agaaatggaa 600
ggcaatatca tccctttcat tagcggtgaa gaggagaagt ccgagcggga accactgcgg 660
gtatttggcc acgtcgatga gagcaagggt cagattgtcc cctttgatgg tccactccgt 720
atcacgtcgc agtgtatccg tgtacccgta ttgaatggtc acactgctac tgtttttatc 780
aacttcggca aaaaaccatc taaggatgaa ctcatcgacc gtcttgtgaa ctacacgtcg 840
gaggcgagcc gtcttggtct ccctcacgct cccaaacagt tcatccaata tctgactgag 900
gatgatcgtc cgcaggtacg tttggacgtt gattacgagg gcggtatggg agtttccatc 960
ggtcgcctgc gcgaggacac gctcttcgac ttcaaattcg tgggactcgc tcataacacg 1020
ctgcgtggag ccgcaggtgg agcacttgaa tccgcagaaa tgttgaaagc actcggatat 1080
atttcggcga aa 1092
<210> 32
<211> 364
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from B. pullorum
<400> 32
Met Ser Glu Lys Leu Lys Val Gly Ile Ile Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Val Thr Leu Leu Asp Asn His Pro Trp Phe Glu Val
20 25 30
Thr Thr Leu Ala Ala Ser Ala His Ser Ala Gly Lys Thr Tyr Glu Gln
35 40 45
Ala Val Gly Gly Arg Trp Lys Met Glu Thr Pro Met Pro Ala Ala Val
50 55 60
Lys Asp Met Ile Val Arg Asp Ala Lys Asp Val Glu Ser Val Ala Ala
65 70 75 80
Asp Val Asp Phe Val Phe Ser Ala Val Asn Met Pro Lys Asp Glu Ile
85 90 95
Arg Ala Leu Glu Glu Arg Tyr Ala Lys Thr Glu Thr Pro Val Val Ser
100 105 110
Asn Asn Ser Ala His Arg Trp Thr Pro Asp Val Pro Met Val Val Pro
115 120 125
Glu Ile Asn Pro Glu His Tyr Glu Val Ile Lys Tyr Gln Arg Ala Arg
130 135 140
Leu Gly Thr Thr Arg Gly Phe Ile Ala Val Lys Pro Asn Cys Ser Ile
145 150 155 160
Gln Ala Tyr Thr Pro Ala Leu Ala Ala Trp Arg Glu Phe Glu Pro Arg
165 170 175
Glu Val Val Val Ser Thr Tyr Gln Ala Ile Ser Gly Ala Gly Lys Thr
180 185 190
Phe Ala Asp Trp Pro Glu Met Glu Gly Asn Ile Ile Pro Phe Ile Ser
195 200 205
Gly Glu Glu Glu Lys Ser Glu Arg Glu Pro Leu Arg Val Phe Gly His
210 215 220
Val Asp Glu Ser Lys Gly Gln Ile Val Pro Phe Asp Gly Pro Leu Arg
225 230 235 240
Ile Thr Ser Gln Cys Ile Arg Val Pro Val Leu Asn Gly His Thr Ala
245 250 255
Thr Val Phe Ile Asn Phe Gly Lys Lys Pro Ser Lys Asp Glu Leu Ile
260 265 270
Asp Arg Leu Val Asn Tyr Thr Ser Glu Ala Ser Arg Leu Gly Leu Pro
275 280 285
His Ala Pro Lys Gln Phe Ile Gln Tyr Leu Thr Glu Asp Asp Arg Pro
290 295 300
Gln Val Arg Leu Asp Val Asp Tyr Glu Gly Gly Met Gly Val Ser Ile
305 310 315 320
Gly Arg Leu Arg Glu Asp Thr Leu Phe Asp Phe Lys Phe Val Gly Leu
325 330 335
Ala His Asn Thr Leu Arg Gly Ala Ala Gly Gly Ala Leu Glu Ser Ala
340 345 350
Glu Met Leu Lys Ala Leu Gly Tyr Ile Ser Ala Lys
355 360
<210> 33
<211> 1059
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from B. bacterium
<400> 33
atgaagcaat tcaatgtggg aattttggga gcaacgggtg cagttggcca gaaattcatc 60
aatctcctcc agggtcatcc ttggttcacg attacggctc tcggagcatc cgaacgttcc 120
gcgggaaaat cctacgctga agcagttaat tggattgaag ccgttgagtt gcctgacgca 180
attgcctcta tgacggtcac tgattgctct cccgcaagca tgaaaggcgt tgatttcgtg 240
ttttctggtt tggacgcgtc tgtagcgacc gaacttgagg gcgatctcgc tcgggctggt 300
attcccgtga tctcaaatgc taagaactat cgcactcacc cgcatgtccc ccttctggta 360
ccagaggtga acgcgaccca caccgagatg attaaggcac aagattttga tccttccggc 420
cgtggcttta tcgtaacgaa tccaaattgt gtcgcggttc ctctcgtgat ggcgctcaag 480
cctctcatgg acgcgtacgg tatccaggca gtcgccctca cgactatgca atcggtgtct 540
ggtgctggtt accccggagt cgcctctttg gacatcctgg gaaatgtgat cccatttatt 600
tccggcgagg agccgaaaat cgccgcggag cctatgaaat tgttgggccg gctgggagga 660
gaccaaaccg tcaccgaggc ccgtttccct attgacgcta ccgcaactcg tgtgcctacc 720
atcgagggac atcttttgag cgtgaagatt aagttcgaac aaaagccagc gtctgctgac 780
gaaattaagg ctgtgctccg taactggaag cacgaggttt caggtttgga tcttccgtct 840
tctccgcgta ctgcgctcaa agtttacgat gacgatcggt ttccacaacc acgcaaaaac 900
gcttacaacg agaacggaat gcaagtcggc gtgggtcgtg tgcgtatgct cgagtttttt 960
gacgcgggtc ttgttgcatt gggccataat acgtgtcggg gtgcggctgg cgtagctatc 1020
ttgaacgctg agctgctggt aaaacagggt ttcatccaa 1059
<210> 34
<211> 353
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from B. bacterium
<400> 34
Met Lys Gln Phe Asn Val Gly Ile Leu Gly Ala Thr Gly Ala Val Gly
1 5 10 15
Gln Lys Phe Ile Asn Leu Leu Gln Gly His Pro Trp Phe Thr Ile Thr
20 25 30
Ala Leu Gly Ala Ser Glu Arg Ser Ala Gly Lys Ser Tyr Ala Glu Ala
35 40 45
Val Asn Trp Ile Glu Ala Val Glu Leu Pro Asp Ala Ile Ala Ser Met
50 55 60
Thr Val Thr Asp Cys Ser Pro Ala Ser Met Lys Gly Val Asp Phe Val
65 70 75 80
Phe Ser Gly Leu Asp Ala Ser Val Ala Thr Glu Leu Glu Gly Asp Leu
85 90 95
Ala Arg Ala Gly Ile Pro Val Ile Ser Asn Ala Lys Asn Tyr Arg Thr
100 105 110
His Pro His Val Pro Leu Leu Val Pro Glu Val Asn Ala Thr His Thr
115 120 125
Glu Met Ile Lys Ala Gln Asp Phe Asp Pro Ser Gly Arg Gly Phe Ile
130 135 140
Val Thr Asn Pro Asn Cys Val Ala Val Pro Leu Val Met Ala Leu Lys
145 150 155 160
Pro Leu Met Asp Ala Tyr Gly Ile Gln Ala Val Ala Leu Thr Thr Met
165 170 175
Gln Ser Val Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Asp Ile
180 185 190
Leu Gly Asn Val Ile Pro Phe Ile Ser Gly Glu Glu Pro Lys Ile Ala
195 200 205
Ala Glu Pro Met Lys Leu Leu Gly Arg Leu Gly Gly Asp Gln Thr Val
210 215 220
Thr Glu Ala Arg Phe Pro Ile Asp Ala Thr Ala Thr Arg Val Pro Thr
225 230 235 240
Ile Glu Gly His Leu Leu Ser Val Lys Ile Lys Phe Glu Gln Lys Pro
245 250 255
Ala Ser Ala Asp Glu Ile Lys Ala Val Leu Arg Asn Trp Lys His Glu
260 265 270
Val Ser Gly Leu Asp Leu Pro Ser Ser Pro Arg Thr Ala Leu Lys Val
275 280 285
Tyr Asp Asp Asp Arg Phe Pro Gln Pro Arg Lys Asn Ala Tyr Asn Glu
290 295 300
Asn Gly Met Gln Val Gly Val Gly Arg Val Arg Met Leu Glu Phe Phe
305 310 315 320
Asp Ala Gly Leu Val Ala Leu Gly His Asn Thr Cys Arg Gly Ala Ala
325 330 335
Gly Val Ala Ile Leu Asn Ala Glu Leu Leu Val Lys Gln Gly Phe Ile
340 345 350
Gln
<210> 35
<211> 1086
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from M. hansupus
<400> 35
atggctcgtt tgcgtgctgc gttgatcggc gcgacgggac tcgccggtca acagttcatt 60
gcggccctca aagaccaccc ttttattgaa ttgactggac tggcagcgtc gccacggtcg 120
gcgggcaaaa cgtacgctga agccctcaag actgcatcag gtatgactgc atggttcgta 180
ccagaacccc tgccagccgg cattgctggt atgaaagttg ttgcgggaga cgccctcgag 240
gcgaaagatt atgaccttgt tttctctgct gtagaagcgg acgtagcccg cgagcttgag 300
ccaaaactgg cgaaagacat tccagtattt tcggctgcta gcgcgttccg ctacgaagat 360
gacgtaccac tgcttatccc ccccgttaac gccgcacacg cgcctctgat tcgtgaacag 420
cagcgtcgtc gtggttggaa aggttatgtt gttccaatcc caaattgcac gaccaccggc 480
cttgcggtta cgctcgcgcc tcttgtcgag cggtttggag tcaaggctgt cttgatgacc 540
tcacttcaag caatgagcgg agcgggacgg tctcctggcg tgatcggcat ggacattctt 600
gataacgtga ttccgtatat ccccaaagag gaacataaag tagaagtgga gactaagaaa 660
attcttggtg ctcttcgtcc tggtggcgaa ggccttacgc cccacgatat ccgcgtctca 720
tgcacctgca ctcgggtcgc ggtcatggaa ggccatactg aatcagtttt tgtttctctg 780
gaaaaaaaag ctactgttgc agaggttacc caagcgttgc gtgaatggca gggcgcggaa 840
cttgcacgga aattgccgtc cgccgcaccg cgttggattg aagtgcttga tgaccccttc 900
cgcccacaac cgcgtcttga ccgggacacg cacggtggaa tggctaccac ggtgggtcgg 960
attcgtgagg acggtgtttt ggagaacgga tttaagtacg ttttggtttc tcacaacact 1020
aaaatgggag ctgctcgcgg cgcgattttg gtagcagaac tgcttcgggc tcaaggcttg 1080
cttgga 1086
<210> 36
<211> 362
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from M. hansupus
<400> 36
Met Ala Arg Leu Arg Ala Ala Leu Ile Gly Ala Thr Gly Leu Ala Gly
1 5 10 15
Gln Gln Phe Ile Ala Ala Leu Lys Asp His Pro Phe Ile Glu Leu Thr
20 25 30
Gly Leu Ala Ala Ser Pro Arg Ser Ala Gly Lys Thr Tyr Ala Glu Ala
35 40 45
Leu Lys Thr Ala Ser Gly Met Thr Ala Trp Phe Val Pro Glu Pro Leu
50 55 60
Pro Ala Gly Ile Ala Gly Met Lys Val Val Ala Gly Asp Ala Leu Glu
65 70 75 80
Ala Lys Asp Tyr Asp Leu Val Phe Ser Ala Val Glu Ala Asp Val Ala
85 90 95
Arg Glu Leu Glu Pro Lys Leu Ala Lys Asp Ile Pro Val Phe Ser Ala
100 105 110
Ala Ser Ala Phe Arg Tyr Glu Asp Asp Val Pro Leu Leu Ile Pro Pro
115 120 125
Val Asn Ala Ala His Ala Pro Leu Ile Arg Glu Gln Gln Arg Arg Arg
130 135 140
Gly Trp Lys Gly Tyr Val Val Pro Ile Pro Asn Cys Thr Thr Thr Gly
145 150 155 160
Leu Ala Val Thr Leu Ala Pro Leu Val Glu Arg Phe Gly Val Lys Ala
165 170 175
Val Leu Met Thr Ser Leu Gln Ala Met Ser Gly Ala Gly Arg Ser Pro
180 185 190
Gly Val Ile Gly Met Asp Ile Leu Asp Asn Val Ile Pro Tyr Ile Pro
195 200 205
Lys Glu Glu His Lys Val Glu Val Glu Thr Lys Lys Ile Leu Gly Ala
210 215 220
Leu Arg Pro Gly Gly Glu Gly Leu Thr Pro His Asp Ile Arg Val Ser
225 230 235 240
Cys Thr Cys Thr Arg Val Ala Val Met Glu Gly His Thr Glu Ser Val
245 250 255
Phe Val Ser Leu Glu Lys Lys Ala Thr Val Ala Glu Val Thr Gln Ala
260 265 270
Leu Arg Glu Trp Gln Gly Ala Glu Leu Ala Arg Lys Leu Pro Ser Ala
275 280 285
Ala Pro Arg Trp Ile Glu Val Leu Asp Asp Pro Phe Arg Pro Gln Pro
290 295 300
Arg Leu Asp Arg Asp Thr His Gly Gly Met Ala Thr Thr Val Gly Arg
305 310 315 320
Ile Arg Glu Asp Gly Val Leu Glu Asn Gly Phe Lys Tyr Val Leu Val
325 330 335
Ser His Asn Thr Lys Met Gly Ala Ala Arg Gly Ala Ile Leu Val Ala
340 345 350
Glu Leu Leu Arg Ala Gln Gly Leu Leu Gly
355 360
<210> 37
<211> 1083
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from P. sabinae
<400> 37
atgacggaga aattgcgtgc tggcatcgtc ggcggaactg gaatggtcgg ccagcgcttt 60
attgcgcttc ttgagaatca cccttggttt caggtaaccg ctattgccgc tagcgccaac 120
tctgcgggta aaacgtatga ggaatccgta aaaggccggt ggaagctctc tacgccaatg 180
cctgaaagcg tcaagcacat tccagtgcag gacgcgtcac gtgtcgagga agtagccgca 240
ggcgtggatt tgatcttttg cgcggtcgat atgaaaaaga atgaaatcca ggcactcgag 300
gaagcctatg ccaaagcggg tgtccccgtc atcagcaaca actccgcaca tcggtggact 360
ccagacgttc cgatggtcgt tccagaaatc aacccagaac acctggaggt cattgcagct 420
cagcggaaac gcctgggaac cgaaactggc ttcattgcgg taaagcctaa ttgcagcatc 480
cagtcttatg ttccaatgct gaacgcactt cggggcttta agcctactca agttgtcgca 540
tccacttatc aggcgatttc tggtgccggt aaaacgttca cggattggcc cgaaatgctg 600
gacaacgtaa tcccttacat tggaggtgag gaggaaaaaa gcgaacaaga gccgcttcgc 660
atttggggta ctgtagagga tggccaaatt gttaaagcct ccgcacccca tattacgacg 720
caatgcatcc gggtaccagt gactgacggt cacctggcca ctgttttcgt tagcttcgag 780
aataaaccct caaaggaaga cattctcgaa tcctggaaaa attacaaggg tcggccgcaa 840
gagcttgaac ttccgtcagc acccaaacaa ttcatcactt acttcgaaga ggaaaatcgg 900
ccacagacca acctcgaccg cgacatcgaa aatggaatgg gcatttccgc tggccgcctc 960
cgggaggata gcctttatga ctttaaattc gttggactct cacataacac tctgcgcgga 1020
gctgctggtg gtgcggtact gatcgcagag ttgctcaagg cagagggcta cattactaag 1080
cgc 1083
<210> 38
<211> 361
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from P. sabinae
<400> 38
Met Thr Glu Lys Leu Arg Ala Gly Ile Val Gly Gly Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Ile Ala Leu Leu Glu Asn His Pro Trp Phe Gln Val
20 25 30
Thr Ala Ile Ala Ala Ser Ala Asn Ser Ala Gly Lys Thr Tyr Glu Glu
35 40 45
Ser Val Lys Gly Arg Trp Lys Leu Ser Thr Pro Met Pro Glu Ser Val
50 55 60
Lys His Ile Pro Val Gln Asp Ala Ser Arg Val Glu Glu Val Ala Ala
65 70 75 80
Gly Val Asp Leu Ile Phe Cys Ala Val Asp Met Lys Lys Asn Glu Ile
85 90 95
Gln Ala Leu Glu Glu Ala Tyr Ala Lys Ala Gly Val Pro Val Ile Ser
100 105 110
Asn Asn Ser Ala His Arg Trp Thr Pro Asp Val Pro Met Val Val Pro
115 120 125
Glu Ile Asn Pro Glu His Leu Glu Val Ile Ala Ala Gln Arg Lys Arg
130 135 140
Leu Gly Thr Glu Thr Gly Phe Ile Ala Val Lys Pro Asn Cys Ser Ile
145 150 155 160
Gln Ser Tyr Val Pro Met Leu Asn Ala Leu Arg Gly Phe Lys Pro Thr
165 170 175
Gln Val Val Ala Ser Thr Tyr Gln Ala Ile Ser Gly Ala Gly Lys Thr
180 185 190
Phe Thr Asp Trp Pro Glu Met Leu Asp Asn Val Ile Pro Tyr Ile Gly
195 200 205
Gly Glu Glu Glu Lys Ser Glu Gln Glu Pro Leu Arg Ile Trp Gly Thr
210 215 220
Val Glu Asp Gly Gln Ile Val Lys Ala Ser Ala Pro His Ile Thr Thr
225 230 235 240
Gln Cys Ile Arg Val Pro Val Thr Asp Gly His Leu Ala Thr Val Phe
245 250 255
Val Ser Phe Glu Asn Lys Pro Ser Lys Glu Asp Ile Leu Glu Ser Trp
260 265 270
Lys Asn Tyr Lys Gly Arg Pro Gln Glu Leu Glu Leu Pro Ser Ala Pro
275 280 285
Lys Gln Phe Ile Thr Tyr Phe Glu Glu Glu Asn Arg Pro Gln Thr Asn
290 295 300
Leu Asp Arg Asp Ile Glu Asn Gly Met Gly Ile Ser Ala Gly Arg Leu
305 310 315 320
Arg Glu Asp Ser Leu Tyr Asp Phe Lys Phe Val Gly Leu Ser His Asn
325 330 335
Thr Leu Arg Gly Ala Ala Gly Gly Ala Val Leu Ile Ala Glu Leu Leu
340 345 350
Lys Ala Glu Gly Tyr Ile Thr Lys Arg
355 360
<210> 39
<211> 1032
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized asd from C. glutamicum
<400> 39
atgaccacta tcgcggtcgt tggagcaacg ggacaagtag gacaggtgat gcggacgctt 60
ctggaagaac gtaattttcc tgccgatacg gtccggttct ttgcgtcgcc gcggagcgcc 120
ggtcggaaga tcgagttccg gggtaccgaa attgaggtag aggacatcac ccaagcgacc 180
gaggagtctc tcaaagatat tgatgtagca cttttttctg caggcggtac cgcgtcgaag 240
caatatgctc ctctgttcgc ggctgcgggt gcgacggtgg tggacaattc ttcggcctgg 300
cggaaagatg atgaagtacc gttgattgtc tctgaagtaa atccttcgga caaagattct 360
ctcgtgaagg gtatcattgc gaaccctaac tgtaccacca tggctgcaat gcctgtactg 420
aaaccacttc atgatgccgc aggtcttgta aagcttcatg tctcctcgta tcaagcggta 480
tccggtagcg gtctcgcagg cgtcgaaacc ctcgcaaaac aggtcgctgc tgttggtgac 540
cataacgtcg agttcgtcca cgacggtcag gccgccgacg caggagatgt tggcccatac 600
gtcagcccca tcgcttataa tgttttgccc ttcgcaggta acctggttga cgacggaacc 660
tttgagaccg acgaggagca aaaactgcgc aatgaaagcc gtaagatcct cggactgccg 720
gacttgaaag tttccggtac gtgtgtacgt gttcccgtgt ttactggaca taccttgact 780
atccatgctg agttcgataa agcaattacc gtggaccaag ctcaggagat cctcggagca 840
gcgtcgggag taaagttggt agacgtaccg actcctctgg cggctgcggg tattgatgag 900
tcgcttgtag gacgcattcg ccaagactcg acggtggatg acaaccgcgg actcgttctc 960
gtggtatctg gcgacaatct tcggaagggc gcggctttga ataccatcca gatcgccgag 1020
cttctggtaa ag 1032
<210> 40
<211> 344
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized asd from C. glutamicum
<400> 40
Met Thr Thr Ile Ala Val Val Gly Ala Thr Gly Gln Val Gly Gln Val
1 5 10 15
Met Arg Thr Leu Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg
20 25 30
Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly
35 40 45
Thr Glu Ile Glu Val Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu
50 55 60
Lys Asp Ile Asp Val Ala Leu Phe Ser Ala Gly Gly Thr Ala Ser Lys
65 70 75 80
Gln Tyr Ala Pro Leu Phe Ala Ala Ala Gly Ala Thr Val Val Asp Asn
85 90 95
Ser Ser Ala Trp Arg Lys Asp Asp Glu Val Pro Leu Ile Val Ser Glu
100 105 110
Val Asn Pro Ser Asp Lys Asp Ser Leu Val Lys Gly Ile Ile Ala Asn
115 120 125
Pro Asn Cys Thr Thr Met Ala Ala Met Pro Val Leu Lys Pro Leu His
130 135 140
Asp Ala Ala Gly Leu Val Lys Leu His Val Ser Ser Tyr Gln Ala Val
145 150 155 160
Ser Gly Ser Gly Leu Ala Gly Val Glu Thr Leu Ala Lys Gln Val Ala
165 170 175
Ala Val Gly Asp His Asn Val Glu Phe Val His Asp Gly Gln Ala Ala
180 185 190
Asp Ala Gly Asp Val Gly Pro Tyr Val Ser Pro Ile Ala Tyr Asn Val
195 200 205
Leu Pro Phe Ala Gly Asn Leu Val Asp Asp Gly Thr Phe Glu Thr Asp
210 215 220
Glu Glu Gln Lys Leu Arg Asn Glu Ser Arg Lys Ile Leu Gly Leu Pro
225 230 235 240
Asp Leu Lys Val Ser Gly Thr Cys Val Arg Val Pro Val Phe Thr Gly
245 250 255
His Thr Leu Thr Ile His Ala Glu Phe Asp Lys Ala Ile Thr Val Asp
260 265 270
Gln Ala Gln Glu Ile Leu Gly Ala Ala Ser Gly Val Lys Leu Val Asp
275 280 285
Val Pro Thr Pro Leu Ala Ala Ala Gly Ile Asp Glu Ser Leu Val Gly
290 295 300
Arg Ile Arg Gln Asp Ser Thr Val Asp Asp Asn Arg Gly Leu Val Leu
305 310 315 320
Val Val Ser Gly Asp Asn Leu Arg Lys Gly Ala Ala Leu Asn Thr Ile
325 330 335
Gln Ile Ala Glu Leu Leu Val Lys
340
<210> 41
<211> 1341
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized gdh from C. glutamicum
<400> 41
atgactgtag atgaacaggt ttctaactac tacgacatgc ttctcaaacg taatgctgga 60
gagcccgaat ttcatcaggc ggttgctgaa gtgcttgaat ccctcaagat tgttcttgaa 120
aaagatccgc actacgcgga ctatggcctc atccagcggc tgtgtgaacc tgaacgtcaa 180
ctgatcttcc gtgtgccgtg ggtagatgat cagggacaag tgcacgtcaa ccgcggtttt 240
cgtgtacagt ttaattcggc gctcggtccc tacaaaggcg gattgcgttt ccaccctagc 300
gtcaatcttg gcatcgtcaa gtttttgggt ttcgaacaaa tttttaagaa ttcccttacc 360
ggactgccta tcggaggcgg aaagggcggt tcggattttg accctaaagg caagagcgat 420
ctcgaaatca tgcggttttg tcagtctttt atgaccgaac tgcatcgtca catcggcgaa 480
tatcgcgatg tcccggcggg tgatatcggc gtgggtggtc gtgagatcgg atacctcttt 540
ggtcattatc gtcggatggc gaatcagcac gaatcgggag tccttaccgg caaaggtctg 600
acttggggcg gcagcctggt tcggaccgaa gccacgggat acggttgtgt ctatttcgta 660
tcggagatga tcaaagcaaa aggcgagtca atctcgggac agaagattat cgtatccgga 720
tcgggaaatg ttgctaccta tgccattgag aaagctcaag agctgggcgc gacggtgatc 780
ggcttctcgg attcctcagg ctgggtgcat actccgaatg gtgtggacgt ggctaaactt 840
cgcgaaatca aggaagtacg tcgcgcacgc gtaagcgttt atgccgatga agtggaggga 900
gcaacctacc ataccgatgg atccatctgg gatcttaagt gtgacatcgc acttccttgc 960
gctacgcaaa atgaactgaa cggagagaat gcgaaaacgc tggccgataa tggttgccgc 1020
ttcgtcgcgg agggcgctaa catgccgagc accccggagg ccgtcgaagt ttttcgggag 1080
cgcgacatcc ggttcggccc cggcaaagcg gctaatgctg gcggagtggc aacgtcagcg 1140
ttggagatgc agcagaacgc atcccgggac tcatggagct tcgaatacac cgacgaacgc 1200
ctccaggtca ttatgaagaa catttttaag acgtgtgcgg aaaccgcagc cgagtatggc 1260
cacgagaacg attacgtcgt cggagcaaac attgcaggat ttaagaaagt tgctgatgcg 1320
atgctcgccc aaggtgtgat c 1341
<210> 42
<211> 447
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized gdh from C. glutamicum
<400> 42
Met Thr Val Asp Glu Gln Val Ser Asn Tyr Tyr Asp Met Leu Leu Lys
1 5 10 15
Arg Asn Ala Gly Glu Pro Glu Phe His Gln Ala Val Ala Glu Val Leu
20 25 30
Glu Ser Leu Lys Ile Val Leu Glu Lys Asp Pro His Tyr Ala Asp Tyr
35 40 45
Gly Leu Ile Gln Arg Leu Cys Glu Pro Glu Arg Gln Leu Ile Phe Arg
50 55 60
Val Pro Trp Val Asp Asp Gln Gly Gln Val His Val Asn Arg Gly Phe
65 70 75 80
Arg Val Gln Phe Asn Ser Ala Leu Gly Pro Tyr Lys Gly Gly Leu Arg
85 90 95
Phe His Pro Ser Val Asn Leu Gly Ile Val Lys Phe Leu Gly Phe Glu
100 105 110
Gln Ile Phe Lys Asn Ser Leu Thr Gly Leu Pro Ile Gly Gly Gly Lys
115 120 125
Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys Ser Asp Leu Glu Ile Met
130 135 140
Arg Phe Cys Gln Ser Phe Met Thr Glu Leu His Arg His Ile Gly Glu
145 150 155 160
Tyr Arg Asp Val Pro Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Ile
165 170 175
Gly Tyr Leu Phe Gly His Tyr Arg Arg Met Ala Asn Gln His Glu Ser
180 185 190
Gly Val Leu Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Leu Val Arg
195 200 205
Thr Glu Ala Thr Gly Tyr Gly Cys Val Tyr Phe Val Ser Glu Met Ile
210 215 220
Lys Ala Lys Gly Glu Ser Ile Ser Gly Gln Lys Ile Ile Val Ser Gly
225 230 235 240
Ser Gly Asn Val Ala Thr Tyr Ala Ile Glu Lys Ala Gln Glu Leu Gly
245 250 255
Ala Thr Val Ile Gly Phe Ser Asp Ser Ser Gly Trp Val His Thr Pro
260 265 270
Asn Gly Val Asp Val Ala Lys Leu Arg Glu Ile Lys Glu Val Arg Arg
275 280 285
Ala Arg Val Ser Val Tyr Ala Asp Glu Val Glu Gly Ala Thr Tyr His
290 295 300
Thr Asp Gly Ser Ile Trp Asp Leu Lys Cys Asp Ile Ala Leu Pro Cys
305 310 315 320
Ala Thr Gln Asn Glu Leu Asn Gly Glu Asn Ala Lys Thr Leu Ala Asp
325 330 335
Asn Gly Cys Arg Phe Val Ala Glu Gly Ala Asn Met Pro Ser Thr Pro
340 345 350
Glu Ala Val Glu Val Phe Arg Glu Arg Asp Ile Arg Phe Gly Pro Gly
355 360 365
Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Ala Leu Glu Met Gln
370 375 380
Gln Asn Ala Ser Arg Asp Ser Trp Ser Phe Glu Tyr Thr Asp Glu Arg
385 390 395 400
Leu Gln Val Ile Met Lys Asn Ile Phe Lys Thr Cys Ala Glu Thr Ala
405 410 415
Ala Glu Tyr Gly His Glu Asn Asp Tyr Val Val Gly Ala Asn Ile Ala
420 425 430
Gly Phe Lys Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile
435 440 445
<210> 43
<211> 1350
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized gdh from C. symbiosum
<400> 43
atgtccaagt acgttgaccg cgtcattgct gaagtcgaga aaaagtacgc cgacgaaccg 60
gaattcgttc aaaccgttga agaggtactc tcttcactcg gcccagtagt cgacgcacac 120
cccgagtatg aagaggttgc gctcttggag cgtatggtca ttccagaacg tgtcattgag 180
tttcgcgtcc cgtgggagga tgacaatggt aaagtacatg tgaatactgg ttaccgcgtc 240
caatttaatg gcgcgatcgg cccttataaa ggtggcttgc gcttcgcccc ttcggtcaac 300
ctttccatta tgaaatttct cggcttcgag caagcattca aagattccct gaccacgctt 360
cctatgggag gagcaaaagg cggttcagac ttcgacccaa acggaaaatc cgatcgcgaa 420
gtaatgcgct tctgccaggc gttcatgact gagttgtatc ggcatattgg tcccgatatc 480
gacgtgcctg ctggtgactt gggcgttggt gcgcgtgaaa ttggttacat gtacggacaa 540
taccggaaga tcgtcggcgg attctacaat ggcgtcctga ccggtaaagc ccggtcattc 600
ggtggaagct tggtccggcc cgaagcaact ggttacggat cggtgtatta tgtggaggct 660
gtgatgaaac atgaaaatga cacgcttgta ggtaaaactg ttgcactggc aggttttggt 720
aacgttgcat ggggtgcagc taagaagctc gcggagttgg gtgcgaaagc agtaactttg 780
tctggcccgg atggctatat ctacgacccc gagggtatca ctaccgagga aaagatcaat 840
tacatgcttg aaatgcgggc gtctggacgt aacaaggtac aggattacgc agacaagttt 900
ggagtgcaat tctttccggg tgaaaagcct tggggccaaa aagttgacat tattatgcct 960
tgtgcaactc agaatgatgt tgacctggaa caggctaaaa agatcgtggc gaacaacgtg 1020
aagtactaca tcgaagtagc caacatgcct actactaatg aagcattgcg gtttcttatg 1080
cagcaaccta acatggtagt cgcccccagc aaggctgtga acgcaggtgg agtactggta 1140
tcgggtttcg agatgtcaca aaattccgaa cgtctgtcat ggaccgccga agaagtcgat 1200
agcaaactgc atcaggtgat gactgacatt catgacggtt cagccgccgc agctgaacgc 1260
tacggacttg gttacaatct tgtcgcaggt gctaatatcg taggttttca gaagatcgcc 1320
gatgccatga tggctcaagg aatcgcttgg 1350
<210> 44
<211> 450
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized gdh from C. symbiosum
<400> 44
Met Ser Lys Tyr Val Asp Arg Val Ile Ala Glu Val Glu Lys Lys Tyr
1 5 10 15
Ala Asp Glu Pro Glu Phe Val Gln Thr Val Glu Glu Val Leu Ser Ser
20 25 30
Leu Gly Pro Val Val Asp Ala His Pro Glu Tyr Glu Glu Val Ala Leu
35 40 45
Leu Glu Arg Met Val Ile Pro Glu Arg Val Ile Glu Phe Arg Val Pro
50 55 60
Trp Glu Asp Asp Asn Gly Lys Val His Val Asn Thr Gly Tyr Arg Val
65 70 75 80
Gln Phe Asn Gly Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe Ala
85 90 95
Pro Ser Val Asn Leu Ser Ile Met Lys Phe Leu Gly Phe Glu Gln Ala
100 105 110
Phe Lys Asp Ser Leu Thr Thr Leu Pro Met Gly Gly Ala Lys Gly Gly
115 120 125
Ser Asp Phe Asp Pro Asn Gly Lys Ser Asp Arg Glu Val Met Arg Phe
130 135 140
Cys Gln Ala Phe Met Thr Glu Leu Tyr Arg His Ile Gly Pro Asp Ile
145 150 155 160
Asp Val Pro Ala Gly Asp Leu Gly Val Gly Ala Arg Glu Ile Gly Tyr
165 170 175
Met Tyr Gly Gln Tyr Arg Lys Ile Val Gly Gly Phe Tyr Asn Gly Val
180 185 190
Leu Thr Gly Lys Ala Arg Ser Phe Gly Gly Ser Leu Val Arg Pro Glu
195 200 205
Ala Thr Gly Tyr Gly Ser Val Tyr Tyr Val Glu Ala Val Met Lys His
210 215 220
Glu Asn Asp Thr Leu Val Gly Lys Thr Val Ala Leu Ala Gly Phe Gly
225 230 235 240
Asn Val Ala Trp Gly Ala Ala Lys Lys Leu Ala Glu Leu Gly Ala Lys
245 250 255
Ala Val Thr Leu Ser Gly Pro Asp Gly Tyr Ile Tyr Asp Pro Glu Gly
260 265 270
Ile Thr Thr Glu Glu Lys Ile Asn Tyr Met Leu Glu Met Arg Ala Ser
275 280 285
Gly Arg Asn Lys Val Gln Asp Tyr Ala Asp Lys Phe Gly Val Gln Phe
290 295 300
Phe Pro Gly Glu Lys Pro Trp Gly Gln Lys Val Asp Ile Ile Met Pro
305 310 315 320
Cys Ala Thr Gln Asn Asp Val Asp Leu Glu Gln Ala Lys Lys Ile Val
325 330 335
Ala Asn Asn Val Lys Tyr Tyr Ile Glu Val Ala Asn Met Pro Thr Thr
340 345 350
Asn Glu Ala Leu Arg Phe Leu Met Gln Gln Pro Asn Met Val Val Ala
355 360 365
Pro Ser Lys Ala Val Asn Ala Gly Gly Val Leu Val Ser Gly Phe Glu
370 375 380
Met Ser Gln Asn Ser Glu Arg Leu Ser Trp Thr Ala Glu Glu Val Asp
385 390 395 400
Ser Lys Leu His Gln Val Met Thr Asp Ile His Asp Gly Ser Ala Ala
405 410 415
Ala Ala Glu Arg Tyr Gly Leu Gly Tyr Asn Leu Val Ala Gly Ala Asn
420 425 430
Ile Val Gly Phe Gln Lys Ile Ala Asp Ala Met Met Ala Gln Gly Ile
435 440 445
Ala Trp
450
<210> 45
<211> 744
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized dapB from C. glutamicum
<400> 45
atgggcatta aagttggagt gctgggagct aagggccggg taggtcagac gatcgtggca 60
gcagtgaacg aatcagacga tctcgagttg gtagcagaaa tcggtgtgga tgacgatctg 120
tctctgctcg tagacaacgg cgcggaggtc gttgttgact tcactacgcc taatgcggtg 180
atgggaaact tggagttctg tatcaacaac ggaatctccg cagtagtagg aaccaccgga 240
tttgatgatg cacgcctcga acaagtacgg gactggctgg aaggtaagga caacgtcgga 300
gtcttgattg cccctaactt tgcgatttca gcagtgctta ccatggtgtt ctctaaacag 360
gcggcgcgct ttttcgaatc cgcagaagtt atcgaacttc accacccgaa taaacttgac 420
gccccttctg gcactgcgat tcatactgct caaggtattg cagcggctcg taaagaggca 480
ggtatggatg cacagcccga tgcaactgag caagcccttg agggtagccg tggcgcgtct 540
gttgatggta ttccggtaca tgccgttcgc atgtcaggca tggtcgcaca tgaacaagta 600
atctttggca cgcaaggcca aacgcttact attaaacaag atagctacga tcgtaactct 660
ttcgcgccgg gtgttttggt tggagtccgc aatatcgcac agcatcccgg attggtggtt 720
ggccttgagc attaccttgg attg 744
<210> 46
<211> 248
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized dapB from C. glutamicum
<400> 46
Met Gly Ile Lys Val Gly Val Leu Gly Ala Lys Gly Arg Val Gly Gln
1 5 10 15
Thr Ile Val Ala Ala Val Asn Glu Ser Asp Asp Leu Glu Leu Val Ala
20 25 30
Glu Ile Gly Val Asp Asp Asp Leu Ser Leu Leu Val Asp Asn Gly Ala
35 40 45
Glu Val Val Val Asp Phe Thr Thr Pro Asn Ala Val Met Gly Asn Leu
50 55 60
Glu Phe Cys Ile Asn Asn Gly Ile Ser Ala Val Val Gly Thr Thr Gly
65 70 75 80
Phe Asp Asp Ala Arg Leu Glu Gln Val Arg Asp Trp Leu Glu Gly Lys
85 90 95
Asp Asn Val Gly Val Leu Ile Ala Pro Asn Phe Ala Ile Ser Ala Val
100 105 110
Leu Thr Met Val Phe Ser Lys Gln Ala Ala Arg Phe Phe Glu Ser Ala
115 120 125
Glu Val Ile Glu Leu His His Pro Asn Lys Leu Asp Ala Pro Ser Gly
130 135 140
Thr Ala Ile His Thr Ala Gln Gly Ile Ala Ala Ala Arg Lys Glu Ala
145 150 155 160
Gly Met Asp Ala Gln Pro Asp Ala Thr Glu Gln Ala Leu Glu Gly Ser
165 170 175
Arg Gly Ala Ser Val Asp Gly Ile Pro Val His Ala Val Arg Met Ser
180 185 190
Gly Met Val Ala His Glu Gln Val Ile Phe Gly Thr Gln Gly Gln Thr
195 200 205
Leu Thr Ile Lys Gln Asp Ser Tyr Asp Arg Asn Ser Phe Ala Pro Gly
210 215 220
Val Leu Val Gly Val Arg Asn Ile Ala Gln His Pro Gly Leu Val Val
225 230 235 240
Gly Leu Glu His Tyr Leu Gly Leu
245
<210> 47
<211> 819
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized dapB from E. coli
<400> 47
atgcacgacg caaacattcg ggtcgccatt gcgggagctg gaggacgtat gggacgccag 60
ctcatccagg cggcgcttgc cctcgaaggc gtgcaattgg gagcagctct ggaacgcgag 120
ggctcttcac tcttgggctc tgatgccggc gagctggctg gtgccggcaa aacgggcgta 180
acggtccagt cttctctcga cgccgtaaag gatgattttg atgtgtttat tgactttacg 240
cgcccggagg gaactctgaa ccatctggca ttctgccggc agcatggtaa gggcatggtt 300
atcggaacca ccggatttga tgaggctgga aaacaggcga ttcgggatgc cgctgccgat 360
attgctatcg tattcgcagc aaacttcagc gtaggcgtta acgttatgct caaactgctg 420
gagaaggcag ctaaggtgat gggtgactat acggacattg agattattga agctcatcat 480
cgtcacaaag tagacgctcc ttcaggaacc gcgctggcaa tgggcgaagc aattgctcat 540
gcgttggaca aagacctcaa agactgcgcg gtgtattcac gggagggaca tactggtgaa 600
cgtgttcctg gtacgattgg ttttgccacc gtccgtgcag gcgacattgt gggagaacat 660
acggccatgt tcgcagacat cggtgaacgt cttgagatca cccacaaggc tagctcgcgg 720
atgacgttcg caaacggagc ggttcggtcc gccctgtggc tgtctggcaa agaatctgga 780
ctcttcgaca tgcgggacgt gttggacctt aacaatttg 819
<210> 48
<211> 273
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized dapB from E. coli
<400> 48
Met His Asp Ala Asn Ile Arg Val Ala Ile Ala Gly Ala Gly Gly Arg
1 5 10 15
Met Gly Arg Gln Leu Ile Gln Ala Ala Leu Ala Leu Glu Gly Val Gln
20 25 30
Leu Gly Ala Ala Leu Glu Arg Glu Gly Ser Ser Leu Leu Gly Ser Asp
35 40 45
Ala Gly Glu Leu Ala Gly Ala Gly Lys Thr Gly Val Thr Val Gln Ser
50 55 60
Ser Leu Asp Ala Val Lys Asp Asp Phe Asp Val Phe Ile Asp Phe Thr
65 70 75 80
Arg Pro Glu Gly Thr Leu Asn His Leu Ala Phe Cys Arg Gln His Gly
85 90 95
Lys Gly Met Val Ile Gly Thr Thr Gly Phe Asp Glu Ala Gly Lys Gln
100 105 110
Ala Ile Arg Asp Ala Ala Ala Asp Ile Ala Ile Val Phe Ala Ala Asn
115 120 125
Phe Ser Val Gly Val Asn Val Met Leu Lys Leu Leu Glu Lys Ala Ala
130 135 140
Lys Val Met Gly Asp Tyr Thr Asp Ile Glu Ile Ile Glu Ala His His
145 150 155 160
Arg His Lys Val Asp Ala Pro Ser Gly Thr Ala Leu Ala Met Gly Glu
165 170 175
Ala Ile Ala His Ala Leu Asp Lys Asp Leu Lys Asp Cys Ala Val Tyr
180 185 190
Ser Arg Glu Gly His Thr Gly Glu Arg Val Pro Gly Thr Ile Gly Phe
195 200 205
Ala Thr Val Arg Ala Gly Asp Ile Val Gly Glu His Thr Ala Met Phe
210 215 220
Ala Asp Ile Gly Glu Arg Leu Glu Ile Thr His Lys Ala Ser Ser Arg
225 230 235 240
Met Thr Phe Ala Asn Gly Ala Val Arg Ser Ala Leu Trp Leu Ser Gly
245 250 255
Lys Glu Ser Gly Leu Phe Asp Met Arg Asp Val Leu Asp Leu Asn Asn
260 265 270
Leu
<210> 49
<211> 1266
<212> DNA
<213> Artificial Sequence
<220>
<223> codon optimized aspK from C. glutamicum
<400> 49
atggccctgg tcgtacagaa atatggcggt tcctcgcttg agagtgcgga acgcattaga 60
aacgtcgctg aacggatcgt tgccaccaag aaggctggaa atgatgtcgt ggttgtctgc 120
tccgcaatgg gagacaccac ggatgaactt ctagaacttg cagcggcagt gaatcccgtt 180
ccgccagctc gtgaaatgga tatgctcctg actgctggtg agcgtatttc taacgctctc 240
gtcgccatgg ctattgagtc ccttggcgca gaagctcaat ctttcactgg ctctcaggct 300
ggtgtgctca ccaccgagcg ccacggaaac gcacgcattg ttgacgtcac accgggtcgt 360
gtgcgtgaag cactcgatga gggcaagatc tgcattgttg ctggttttca gggtgttaat 420
aaagaaaccc gcgatgtcac cacgttgggt cgtggtggtt ctgacaccac tgcagttgcg 480
ttggcagctg ctttgaacgc tgatgtgtgt gagatttact cggacgttga cggtgtgtat 540
accgctgacc cgcgcatcgt tcctaatgca cagaagctgg aaaagctcag cttcgaagaa 600
atgctggaac ttgctgctgt tggctccaag attttggtgc tgcgcagtgt tgaatacgct 660
cgtgcattca atgtgccact tcgcgtacgc tcgtcttata gtaatgatcc cggcactttg 720
attgccggct ctatggagga tattcctgtg gaagaagcag tccttaccgg tgtcgcaacc 780
gacaagtccg aagccaaagt aaccgttctg ggtatttccg ataagccagg cgagactgcc 840
aaggttttcc gtgcgttggc tgatgcagaa atcaacattg acatggttct gcagaacgtc 900
ttctctgtgg aagacggcac caccgacatc acgttcacct gccctcgcgc tgacggacgc 960
cgtgcgatgg agatcttgaa gaagcttcag gttcagggca actggaccaa tgtgctttac 1020
gacgaccagg tcggcaaagt ctccctcgtg ggtgctggca tgaagtctca cccaggtgtt 1080
accgcagagt tcatggaagc tctgcgcgat gtcaacgtga acatcgaatt gatttccacc 1140
tctgagatcc gcatttccgt gctgatccgt gaagatgatc tggatgctgc tgcacgtgca 1200
ttgcatgagc agttccagct gggcggcgaa gacgaagccg tcgtttatgc aggcaccgga 1260
cgctaa 1266
<210> 50
<211> 421
<212> PRT
<213> Artificial Sequence
<220>
<223> codon optimized aspK from C. glutamicum
<400> 50
Met Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala
1 5 10 15
Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala
20 25 30
Gly Asn Asp Val Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp
35 40 45
Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg
50 55 60
Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu
65 70 75 80
Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr
85 90 95
Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg
100 105 110
Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly
115 120 125
Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg
130 135 140
Asp Val Thr Thr Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala
145 150 155 160
Leu Ala Ala Ala Leu Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val
165 170 175
Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys
180 185 190
Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly
195 200 205
Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn
210 215 220
Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu
225 230 235 240
Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr
245 250 255
Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile
260 265 270
Ser Asp Lys Pro Gly Glu Thr Ala Lys Val Phe Arg Ala Leu Ala Asp
275 280 285
Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Phe Ser Val Glu
290 295 300
Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ala Asp Gly Arg
305 310 315 320
Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr
325 330 335
Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala
340 345 350
Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu
355 360 365
Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg
370 375 380
Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala
385 390 395 400
Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr
405 410 415
Ala Gly Thr Gly Arg
420
<210> 51
<211> 9972
<212> DNA
<213> Artificial Sequence
<220>
<223> Plasmid Backbone Sequence
<400> 51
gtctgctcac aaatctcagc gaccgcattg atgaaggaaa tcttggtggc caagaacgca 60
ttcgcggaaa ctttcaccag ctcagcggta gcaagatcag tgaccaaaaa cggcgtatca 120
gcagcaatcg cggtggcgta aacctcccga gcgatcgcct ctgctgtcgc cacctcacgc 180
acacccacca cgatgcggtc cggagtgatg gtgtctttga ccgcgtagcc ctcacgcaag 240
aactccggat tccacgcgat ctccacgtgc gaaccaggct tgaccagaga atcagcaagc 300
tcctgcaact gctcagcggt accaaccgga accgtagact tgccgaaaat aatgtgctcg 360
ccctcaagca gcggcaccaa atcctcaaca acctgacgaa catacgtcag atccgccgca 420
taagtaccct tctgctgagg agtacccacg cccaagaaat gcacctgcgc gaaagccgca 480
gcctccgcat aaccagtagt gaagttcagg cgaccatttt ccagattgcg ctccaaaacc 540
tcaggcaaac ccggctcaaa aaatgggacc ttgctgtcct tcaacgacgc aatctttacc 600
tcatcgacat cgacaccaag aacctcatgg ccaagctcag ccatgcaggc cgcgtgcgta 660
gcgccaaggt aacccgtacc aatcactgtc atccgcatgt agggtgattc ctttcaatga 720
agagtggact ggagattatc tcaacacgtt ttgatacagc ccgcgaccgg aacacatgat 780
tgcttacttg ttggggaaat tcaggtacgc cttcgaagga gtaggaccac gctgcccctg 840
atacttcgaa ccaagcttgc cggaaccata cggagtctcc gcaggggaac tcatctggaa 900
caaagccaac tgccccacct tcatacccgg ccacaacgtg atcggcagat tagccacatt 960
ggacaactcc aacgtgatgt aaccgctaaa accaggatca atgaaaccag cagtagagtg 1020
cgtcaacagt ccaagacgac caagagacga cttgccctcc aaacgaccag ccagatgcgc 1080
aggcaaagtg aacttttcca gcgtggacgc cagcacaaac tcacccggat gcagcacaaa 1140
gccctcgccg tcctcaacct caacaaggct ggtcagctca tcctgattca acttagggtc 1200
aatgtgggtg tacttagagt tattgaaaac ccggaagtag cggtccatgc ggacatcgac 1260
actcgacggc tgaatcagct cagcgtcgaa aggttcaatt cccaagtcgc ctgcgtcaat 1320
tgatttacga atgtcacgat ctgaaagaag cacgtcaacc agtgtagcgt tcagcgttca 1380
gggttgggcc acgggttgct gcgatgaggt tcctggggcg cgtggtgctg tcgctgattt 1440
ttatcgtgct agccttattc tcggccctta attaagcgcc accttttaca ctgccggtgt 1500
agttcaatgg tagaactcct gcttcccaag caggcggcgc gggttcgatt cccgtcaccg 1560
gctccaaata agcccctgac ctctcaatac gcaatgaagg tcaagggctt aattctatgg 1620
aaactacaaa aagtacccac ttaaatacac gctttaaatc ccctcacgat gcgatcatca 1680
gcccttttac atttttagaa aaagctttgc agttttccat cgcagccgaa aaccgctcca 1740
gtgcgaaatt gcacactaca tcacaccgaa cactcgacga catctttaat tttcaacata 1800
tccccacccc cagaaattat tcaccactta cacttcacat actcaccaat gcataaccca 1860
aaaagcgtta gatgaaactc cccacccgaa tccacaagaa ctcgggtgcc ctcagtttca 1920
cataccccta agcgcaacac tgtgcgagct ttccgccagt aggccaagca ccctttcgat 1980
taaccccgac aaacttttaa ggcaagccta aattaggtaa accttaaaca gtcgccattg 2040
aagaaattga tgccgtttct cgcgttgtgt gtggtactac gtggggacct aagcgtgtat 2100
tatggaaacg tctgtatcgg ataagtagcg aggagtgttc gttaaaaatg gccctggtcg 2160
tacagaaata tggcggttcc tcgcttgaga gtgcggaacg cattagaaac gtcgctgaac 2220
ggatcgttgc caccaagaag gctggaaatg atgtcgtggt tgtctgctcc gcaatgggag 2280
acaccacgga tgaacttcta gaacttgcag cggcagtgaa tcccgttccg ccagctcgtg 2340
aaatggatat gctcctgact gctggtgagc gtatttctaa cgctctcgtc gccatggcta 2400
ttgagtccct tggcgcagaa gctcaatctt tcactggctc tcaggctggt gtgctcacca 2460
ccgagcgcca cggaaacgca cgcattgttg acgtcacacc gggtcgtgtg cgtgaagcac 2520
tcgatgaggg caagatctgc attgttgctg gttttcaggg tgttaataaa gaaacccgcg 2580
atgtcaccac gttgggtcgt ggtggttctg acaccactgc agttgcgttg gcagctgctt 2640
tgaacgctga tgtgtgtgag atttactcgg acgttgacgg tgtgtatacc gctgacccgc 2700
gcatcgttcc taatgcacag aagctggaaa agctcagctt cgaagaaatg ctggaacttg 2760
ctgctgttgg ctccaagatt ttggtgctgc gcagtgttga atacgctcgt gcattcaatg 2820
tgccacttcg cgtacgctcg tcttatagta atgatcccgg cactttgatt gccggctcta 2880
tggaggatat tcctgtggaa gaagcagtcc ttaccggtgt cgcaaccgac aagtccgaag 2940
ccaaagtaac cgttctgggt atttccgata agccaggcga gactgccaag gttttccgtg 3000
cgttggctga tgcagaaatc aacattgaca tggttctgca gaacgtctcc tctgtggaag 3060
acggcaccac cgacatcttg ttcacctgcc ctcgcgctga cggacgccgt gcgatggaga 3120
tcttgaagaa gcttcaggtt cagggcaact ggaccaatgt gctttacgac gaccaggtcg 3180
gcaaagtctc cctcgtgggt gctggcatga agtctcaccc aggtgttacc gcagagttca 3240
tggaagctct gcgcgatgtc aacgtgaaca tcgaattgat ttccacctct gagatccgca 3300
tttccgtgct gatccgtgaa gatgatctgg atgctgctgc acgtgcattg catgagcagt 3360
tccagctggg cggcgaagac gaagccgtcg tttatgcagg caccggacgc taatagagtt 3420
ttaaaggagt agttttacaa tgtccaaggg agaaaaaatg aagatcaagg ttggcgtatt 3480
gggtgctacc ggatcggttg gccaacgctt tgtgcagctg cttgcagacc accccatgtt 3540
cgaattgact gctctggcag caagcgaacg gtccgcgggt aaaaaataca aagatgcttg 3600
ttactggttt caagatcggg acattccaga aaatattaag gatatggttg taattccgac 3660
ggatccgaag cacgaagaat tcgaagacgt tgatattgtt tttagcgcgc tgccctcgga 3720
tctggctaaa aaattcgaac ccgaattcgc gaaagaagga aagctgatct tcagcaacgc 3780
atcagcctat cgtatggagg aagatgtgcc gcttgtaatt ccagaggtaa acgctgatca 3840
cctcgaattg attgaaattc agcgcgagaa gcggggttgg gacggagcca ttatcactaa 3900
cccaaactgt tcaaccattt gcgccgtaat cacccttaag ccaattatgg acaaattcgg 3960
tcttgaagcg gtgtttatcg ctaccatgca ggctgtatcg ggcgcaggat acaacggtgt 4020
cccgagcatg gctattctgg ataacttgat tccctttatt aagaatgagg aggagaagat 4080
gcagactgaa tcgcttaagt tgctgggcac gcttaaggat ggaaaagtgg aactcgctaa 4140
cttcaaaatc agcgcatcat gcaatcgtgt ggctgtgatc gacggccaca ccgaatcgat 4200
cttcgtgaag accaaggagg gtgcggaacc tgaggaaatt aaagaagtga tggacaaatt 4260
tgatcctctt aaagacctta accttccgac gtatgccaaa ccaatcgtaa ttcgcgaaga 4320
gatcgatcgc ccacagccac gtcttgaccg caatgagggt aatggcatgt ctattgtcgt 4380
tggtcgtatc cgtaaagatc cgatttttga tgttaagtac accgccctgg aacataacac 4440
tatccgtggc gccgcgggcg catcagtgtt gaatgcggag tatttcgtaa agaaatacat 4500
ctaggcattt ttagtacgtg caataaccac tctggttttt ccagggtggt tttttgatgc 4560
cctttttgga gtcttcaact gcttagcttt gacctgcaca aatagttgca aattgtccca 4620
catacacata aagtagcttg cgtatttaaa attatgaacc taaggggttt agcaatgact 4680
gtagatgaac aggtttctaa ctactacgac atgcttctca aacgtaatgc tggagagccc 4740
gaatttcatc aggcggttgc tgaagtgctt gaatccctca agattgttct tgaaaaagat 4800
ccgcactacg cggactatgg cctcatccag cggctgtgtg aacctgaacg tcaactgatc 4860
ttccgtgtgc cgtgggtaga tgatcaggga caagtgcacg tcaaccgcgg ttttcgtgta 4920
cagtttaatt cggcgctcgg tccctacaaa ggcggattgc gtttccaccc tagcgtcaat 4980
cttggcatcg tcaagttttt gggtttcgaa caaattttta agaattccct taccggactg 5040
cctatcggag gcggaaaggg cggttcggat tttgacccta aaggcaagag cgatctcgaa 5100
atcatgcggt tttgtcagtc ttttatgacc gaactgcatc gtcacatcgg cgaatatcgc 5160
gatgtcccgg cgggtgatat cggcgtgggt ggtcgtgaga tcggatacct ctttggtcat 5220
tatcgtcgga tggcgaatca gcacgaatcg ggagtcctta ccggcaaagg tctgacttgg 5280
ggcggcagcc tggttcggac cgaagccacg ggatacggtt gtgtctattt cgtatcggag 5340
atgatcaaag caaaaggcga gtcaatctcg ggacagaaga ttatcgtatc cggatcggga 5400
aatgttgcta cctatgccat tgagaaagct caagagctgg gcgcgacggt gatcggcttc 5460
tcggattcct caggctgggt gcatactccg aatggtgtgg acgtggctaa acttcgcgaa 5520
atcaaggaag tacgtcgcgc acgcgtaagc gtttatgccg atgaagtgga gggagcaacc 5580
taccataccg atggatccat ctgggatctt aagtgtgaca tcgcacttcc ttgcgctacg 5640
caaaatgaac tgaacggaga gaatgcgaaa acgctggccg ataatggttg ccgcttcgtc 5700
gcggagggcg ctaacatgcc gagcaccccg gaggccgtcg aagtttttcg ggagcgcgac 5760
atccggttcg gccccggcaa agcggctaat gctggcggag tggcaacgtc agcgttggag 5820
atgcagcaga acgcatcccg ggactcatgg agcttcgaat acaccgacga acgcctccag 5880
gtcattatga agaacatttt taagacgtgt gcggaaaccg cagccgagta tggccacgag 5940
aacgattacg tcgtcggagc aaacattgca ggatttaaga aagttgctga tgcgatgctc 6000
gcccaaggtg tgatctaggc ttttcgacgt ctcctccggc gaaacccaaa aaaggaaccc 6060
tcacagttcg tgagggttcc ttttactatt gtctacaatc caaggtaatg ctcaaggcca 6120
accaccaatc cgggatgctg tgcgatattg cggactccaa ccaaaacacc cggcgcgaaa 6180
gagttacgat cgtagctatc ttgtttaata gtaagcgttt ggccttgcgt gccaaagatt 6240
acttgttcat gtgcgaccat gcctgacatg cgaacggcat gtaccggaat accatcaaca 6300
gacgcgccac ggctaccctc aagggcttgc tcagttgcat cgggctgtgc atccatacct 6360
gcctctttac gagccgctgc aataccttga gcagtatgaa tcgcagtgcc agaaggggcg 6420
tcaagtttat tcgggtggtg aagttcgata acttctgcgg attcgaaaaa gcgcgccgcc 6480
tgtttagaga acaccatggt aagcactgct gaaatcgcaa agttaggggc aatcaagact 6540
ccgacgttgt ccttaccttc cagccagtcc cgtacttgtt cgaggcgtgc atcatcaaat 6600
ccggtggttc ctactactgc ggagattccg ttgttgatac agaactccaa gtttcccatc 6660
accgcattag gcgtagtgaa gtcaacaacg acctccgcgc cgttgtctac gagcagagac 6720
agatcgtcat ccacaccgat ttctgctacc aactcgagat cgtctgattc gttcactgct 6780
gccacgatcg tctgacctac ccggccctta gctcccagca ctccaacttt aatgcccatt 6840
gtaaaactac tcctttaaaa ctctacacat cccgggcaat caagtcgtcc aagttttccg 6900
ggctcaacaa atatggggca acttccagaa cggtaaaggc acctgattgg ccttgttgtt 6960
tcatgcggtg cgctgcacgg ccgaacgcga tttgagagga cgcagtgaag tcgggattac 7020
ggtccagctt gagaatatac tcaacggtgt ggttaaaacc gccagtgtcg ccagtcgtga 7080
tcacgtgacc gccgtggggc atacccgtat gttcagagtc gaaggttgct tcatcgatga 7140
aattgacttc cacctcatag cctacgaagt aatcgggcat agtccgaata tcgttctcga 7200
tgcgctcatg gtcggccgcg tcggccacaa cgaagcactg gcgtttatgc gtttgcttgc 7260
cggtcaaatc tccggcctcg ccgcgccgtg ctttttcaag cgcatcttca gaaggcaacg 7320
tgtactgaac agccttttga acacccggga tgcggcgaag ggcatcgcta tggccctggc 7380
taagtcctgg accccaaaac gtgtgttgct ggtgctcggc caaaacagca gcggcataaa 7440
cacgattaat cgaaaacatg cctgggtccc agcccgtaga aaccaacgct acattgcctg 7500
ctgcggttgc agcttcattc ataacttggc gatgccgggg gatatcacga tgattatcgt 7560
acgtgtccac cgtacaggca aattgagcga acttgggggc ttgctccggg atatccgttg 7620
cagatcccat gcacaaaaag agtacatcga catcatcggc atgtttatca acgtccgcca 7680
catcgaagac gggggtcttc gtatcgagag tcgcccggcg cgagaaaatt ccaacaagat 7740
ccatgtctgg ttgcttggcg atgagttttt ctacgctgcg tcccagatta ccgtatccga 7800
cgattgctac acggatgttc gtcattttta acgaacactc ctcgctactt atccgataca 7860
gacgtttcca taatacacgc ttaggtcccc acgtagtacc acacacaacg cgagaaacgg 7920
caagaatttt aaaaacaaac aaccttcaac gcgctaacaa gcatcttccc actctcgtta 7980
ccggagtttc tcacatgtct cacaagtttt cccgccgcgc tttcgcagta ctgaccgctg 8040
ccgcgatttc cacttccgct ttcgcaacca ctgctccgtc tgcgattgca gaaccagttt 8100
ccatagtcac caccgcagac gattctagcg tcgcaacttc agaaaactcc cttgactggg 8160
gtttcaagtc ttcctggcgc acctatgtca ccggaccttg gactggtgga accgttgacg 8220
caactggcgg tgcaactgtc aacgaagatg gaacctacaa cttcaccctc ggaactggct 8280
ccacttacga catcgacacc gagaagggcc agctgaacta cgaaggaact gttgccttcg 8340
ccagtgacgc tcacggcttc aacatcacct tgtccaaccc gcagatcacc gtcgagggcg 8400
acactgcaac tttgagcgcc gagctgtctg acaatgccgc tccagaagag acctccacta 8460
ctcgcgttga tgtcgctgag ttcgagctga ctgctcctgc ggtttcagaa accgatgcaa 8520
acaccactta cacttggatc gatgtttccg gcactttcct agaatccctg ccgcctgaag 8580
aattgagccg ttacgcaggc caggaagcgg atgcgctgag cttctccatc accgtggaca 8640
aggcttcaga gaacccttcc gatgatgttg ctaccggatc ttcctccagc ttcctctcca 8700
ccatcttgaa cttccttcag cagctggcga gcccactact caagctcttc ggttcgcttt 8760
cttcctaaat aatcagtaat gccccaccag atctggtggg gcattttgtt ttaggagcag 8820
accacgtttg gtgaaggatc gtaaaccgtg gtgacggttt ctctggtgat ttcgttgcca 8880
gaaagatcgc tgatgattcg ggtgtcggag gtggtaaatc ctggtgcacc ggttgatggc 8940
acacaatctg aacccgatac tcgaactgtg ttgggctggg tggtggacca acgtccgttg 9000
ttgatggatt ccacggaggt ggtgtccaca cccatgatgc gcacggtcac gtttgaggcg 9060
tcggcagagg tgctgatcat gacggggtat ggggagttgt tgcggaattg aaggtcgatg 9120
gcaccatcga aaatagtagc ttcacgtccg gctgggtagc gggaaatgta gtagctgtgc 9180
ggggtgtgcg tgatgtcttc cagacctgcg aagtagtacg cgttgtacaa ggtggtggcg 9240
aactgactga tgccaccgcc gactgcggtg tcggaacgac cattcaaaat gatgccggaa 9300
tcaacaaagc cttgggctgc gccacgtggg ccggtgtagt tgttgaggga gaacgtatcg 9360
ccaggtgaaa cgactgcgcc gtcgaccatt tgcgcggtga ggcggatgtt tgttccggag 9420
gcagcagaga agccgccggt ggtgaactcg cccatgacct cattgaaggt agcgttttgg 9480
gcgtcggtgg cggtgaatgt tgctggggtg tcctcataga cagcgtcgat ggtgcggggg 9540
ccatcgccgg tgaggttgtt gggcagatcg gccagggttt cttcccagtt gattccgtgt 9600
ccggtgactt ctggggtgac tacgcgggag cctgaggaga aactgatttg agcgttggtg 9660
ggctcgatct ctgtttcttt gaggccttcg gccagcattg ctgtggctgc ttctgcattg 9720
atgtcgacgc ggatggtgcc gttttcttct gggaaactca ccacttcacc catgcgctcg 9780
acggggatgg tgccttcaat tccgtcatcg cctcggacga cgaaggggct agatacggct 9840
ttagctccgg cgccttctgc aagttcatcg atggtgtctt ggctgatcgc agcgggaaca 9900
acgtatggct cggcttctac gccctctggg ttgagccagt tttctgtgac tgcttgttcc 9960
aaaacggtgc gg 9972
<210> 52
<211> 97
<212> DNA
<213> Artificial Sequence
<220>
<223> Promoter Sequence
<400> 52
tgccgtttct cgcgttgtgt gtggtactac gtggggacct aagcgtgtat tatggaaacg 60
tctgtatcgg ataagtagcg aggagtgttc gttaaaa 97
<210> 53
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Promoter Sequence
<400> 53
tagagtttta aaggagtagt tttaca 26
<210> 54
<211> 173
<212> DNA
<213> Artificial Sequence
<220>
<223> Promoter Sequence
<400> 54
taggcatttt tagtacgtgc aataaccact ctggtttttc cagggtggtt ttttgatgcc 60
ctttttggag tcttcaactg cttagctttg acctgcacaa atagttgcaa attgtcccac 120
atacacataa agtagcttgc gtatttaaaa ttatgaacct aaggggttta gca 173
<210> 55
<211> 80
<212> DNA
<213> Artificial Sequence
<220>
<223> Promoter Sequence
<400> 55
taggcttttc gacgtctcct ccggcgaaac ccaaaaaagg aaccctcaca gttcgtgagg 60
gttcctttta ctattgtcta 80
<210> 56
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Promoter Sequence
<400> 56
tgtaaaacta ctcctttaaa actcta 26
<210> 57
<211> 97
<212> DNA
<213> Artificial Sequence
<220>
<223> Promoter Sequence
<400> 57
ttttaacgaa cactcctcgc tacttatccg atacagacgt ttccataata cacgcttagg 60
tccccacgta gtaccacaca caacgcgaga aacggca 97
<210> 58
<211> 334
<212> PRT
<213> Corynebacterium glutamicum
<400> 58
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Asp Leu Thr Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala His Asn Val Asp Ile Val Ile Glu
85 90 95
Ser Thr Gly Phe Phe Thr Asp Ala Asn Ala Ala Lys Ala His Ile Glu
100 105 110
Ala Gly Ala Lys Lys Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp
115 120 125
Ala Thr Phe Val Tyr Gly Val Asn His Glu Ser Tyr Asp Pro Glu Asn
130 135 140
His Asn Val Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro
145 150 155 160
Met Ala Lys Val Leu Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met
165 170 175
Thr Thr Val His Ala Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Pro
180 185 190
His Arg Asp Leu Arg Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro
195 200 205
Thr Ser Thr Gly Ala Ala Lys Ala Val Ala Leu Val Leu Pro Glu Leu
210 215 220
Lys Gly Lys Leu Asp Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly
225 230 235 240
Ser Ala Thr Asp Leu Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu
245 250 255
Ser Ile Asn Ala Ala Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu
260 265 270
Thr Leu Ala Tyr Ser Glu Glu Pro Leu Val Ser Thr Asp Ile Val His
275 280 285
Asp Ser His Gly Ser Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly
290 295 300
Asn Thr Val Lys Val Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr
305 310 315 320
Cys Gln Leu Leu Arg Leu Thr Glu Leu Val Ala Ser Lys Leu
325 330
<210> 59
<211> 97
<212> DNA
<213> Artificial Sequence
<220>
<223> Expression promoter P1 derived from Pcg0007_lib_39
<400> 59
tgccgtttct cgcgttgtgt gtggtactac gtggggacct aagcgtgtat tatggaaacg 60
tctgtatcgg ataagtagcg aggagtgttc gttaaaa 97
<210> 60
<211> 97
<212> DNA
<213> Artificial Sequence
<220>
<223> Expression promoter P2 derived from Pcg0007
<400> 60
tgccgtttct cgcgttgtgt gtggtactac gtggggacct aagcgtgtaa gatggaaacg 60
tctgtatcgg ataagtagcg aggagtgttc gttaaaa 97
<210> 61
<211> 93
<212> DNA
<213> Artificial Sequence
<220>
<223> Expression promoter P3 derived from Pcg1860
<400> 61
cttagctttg acctgcacaa atagttgcaa attgtcccac atacacataa agtagcttgc 60
gtatttaaaa ttatgaacct aaggggttta gca 93
<210> 62
<211> 98
<212> DNA
<213> Artificial Sequence
<220>
<223> Expression promoter P4 derived from Pcg0755
<400> 62
aataaattta taccacacag tctattgcaa tagaccaagc tgttcagtag ggtgcatggg 60
agaagaattt cctaataaaa actcttaagg acctccaa 98
<210> 63
<211> 97
<212> DNA
<213> Artificial Sequence
<220>
<223> Expression promoter P5 derived from Pcg0007_265
<400> 63
tgccgtttct cgcgttgtgt gtggtactac gtggggacct aagcgtgtac gctggaaacg 60
tctgtatcgg ataagtagcg aggagtgttc gttaaaa 97
<210> 64
<211> 86
<212> DNA
<213> Artificial Sequence
<220>
<223> Expression promoter P6 derived from Pcg3381
<400> 64
cgccggataa atgaattgat tattttaggc tcccagggat taagtctagg gtggaatgca 60
gaaatatttc ctacggaagg tccgtt 86
<210> 65
<211> 97
<212> DNA
<213> Artificial Sequence
<220>
<223> Expression promoter P7 derived from Pcg0007_119
<400> 65
tgccgtttct cgcgttgtgt gtggtactac gtggggacct aagcgtgttg catggaaacg 60
tctgtatcgg ataagtagcg aggagtgttc gttaaaa 97
<210> 66
<211> 87
<212> DNA
<213> Artificial Sequence
<220>
<223> Expression promoter P8 derived from Pcg312
<400> 66
gtggctaaaa cttttggaaa cttaagttac ctttaatcgg aaacttattg aattcgggtg 60
aggcaactgc aactctggac ttaaagc 87
<210> 67
<211> 331
<212> PRT
<213> Escherichia coli
<400> 67
Met Thr Ile Lys Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Ile
1 5 10 15
Val Phe Arg Ala Ala Gln Lys Arg Ser Asp Ile Glu Ile Val Ala Ile
20 25 30
Asn Asp Leu Leu Asp Ala Asp Tyr Met Ala Tyr Met Leu Lys Tyr Asp
35 40 45
Ser Thr His Gly Arg Phe Asp Gly Thr Val Glu Val Lys Asp Gly His
50 55 60
Leu Ile Val Asn Gly Lys Lys Ile Arg Val Thr Ala Glu Arg Asp Pro
65 70 75 80
Ala Asn Leu Lys Trp Asp Glu Val Gly Val Asp Val Val Ala Glu Ala
85 90 95
Thr Gly Leu Phe Leu Thr Asp Glu Thr Ala Arg Lys His Ile Thr Ala
100 105 110
Gly Ala Lys Lys Val Val Met Thr Gly Pro Ser Lys Asp Asn Thr Pro
115 120 125
Met Phe Val Lys Gly Ala Asn Phe Asp Lys Tyr Ala Gly Gln Asp Ile
130 135 140
Val Ser Asn Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro Leu Ala Lys
145 150 155 160
Val Ile Asn Asp Asn Phe Gly Ile Ile Glu Gly Leu Met Thr Thr Val
165 170 175
His Ala Thr Thr Ala Thr Gln Lys Thr Val Asp Gly Pro Ser His Lys
180 185 190
Asp Trp Arg Gly Gly Arg Gly Ala Ser Gln Asn Ile Ile Pro Ser Ser
195 200 205
Thr Gly Ala Ala Lys Ala Val Gly Lys Val Leu Pro Glu Leu Asn Gly
210 215 220
Lys Leu Thr Gly Met Ala Phe Arg Val Pro Thr Pro Asn Val Ser Val
225 230 235 240
Val Asp Leu Thr Val Arg Leu Glu Lys Ala Ala Thr Tyr Glu Gln Ile
245 250 255
Lys Ala Ala Val Lys Ala Ala Ala Glu Gly Glu Met Lys Gly Val Leu
260 265 270
Gly Tyr Thr Glu Asp Asp Val Val Ser Thr Asp Phe Asn Gly Glu Val
275 280 285
Cys Thr Ser Val Phe Asp Ala Lys Ala Gly Ile Ala Leu Asn Asp Asn
290 295 300
Phe Val Lys Leu Val Ser Trp Tyr Asp Asn Glu Thr Gly Tyr Ser Asn
305 310 315 320
Lys Val Leu Asp Leu Ile Ala His Ile Ser Lys
325 330
<210> 68
<211> 996
<212> DNA
<213> Escherichia coli
<400> 68
atgactatca aagtaggtat caacggtttt ggccgtatcg gtcgcattgt tttccgtgct 60
gctcagaaac gttctgacat cgagatcgtt gcaatcaacg acctgttaga cgctgattac 120
atggcataca tgctgaaata tgactccact cacggccgtt tcgacggtac cgttgaagtg 180
aaagacggtc atctgatcgt taacggtaaa aaaatccgtg ttaccgctga acgtgatccg 240
gctaacctga aatgggacga agttggtgtt gacgttgtcg ctgaagcaac tggtctgttc 300
ctgactgacg aaactgctcg taaacacatc accgctggtg cgaagaaagt ggttatgact 360
ggtccgtcta aagacaacac tccgatgttc gttaaaggcg ctaacttcga caaatatgct 420
ggccaggaca tcgtttccaa cgcttcctgc accaccaact gcctggctcc gctggctaaa 480
gttatcaacg ataacttcgg catcatcgaa ggtctgatga ccaccgttca cgctactacc 540
gctactcaga aaaccgttga tggcccgtct cacaaagact ggcgcggcgg ccgcggcgct 600
tcccagaaca tcatcccgtc ctctaccggt gctgctaaag ctgtaggtaa agtactgcca 660
gaactgaatg gcaaactgac tggtatggcg ttccgcgttc cgaccccgaa cgtatctgta 720
gttgacctga ccgttcgtct ggaaaaagct gcaacttacg agcagatcaa agctgccgtt 780
aaagctgctg ctgaaggcga aatgaaaggc gttctgggct acaccgaaga tgacgtagta 840
tctaccgatt tcaacggcga agtttgcact tccgtgttcg atgctaaagc tggtatcgct 900
ctgaacgaca acttcgtgaa actggtatcc tggtacgaca acgaaaccgg ttactccaac 960
aaagttctgg acctgatcgc tcacatctcc aaataa 996
<210> 69
<211> 334
<212> PRT
<213> Artificial Sequence
<220>
<223> D35G L36T mutated gapAv5 from C. glutamicum
<400> 69
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Thr Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala His Asn Val Asp Ile Val Ile Glu
85 90 95
Ser Thr Gly Phe Phe Thr Asp Ala Asn Ala Ala Lys Ala His Ile Glu
100 105 110
Ala Gly Ala Lys Lys Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp
115 120 125
Ala Thr Phe Val Tyr Gly Val Asn His Glu Ser Tyr Asp Pro Glu Asn
130 135 140
His Asn Val Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro
145 150 155 160
Met Ala Lys Val Leu Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met
165 170 175
Thr Thr Val His Ala Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Pro
180 185 190
His Arg Asp Leu Arg Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro
195 200 205
Thr Ser Thr Gly Ala Ala Lys Ala Val Ala Leu Val Leu Pro Glu Leu
210 215 220
Lys Gly Lys Leu Asp Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly
225 230 235 240
Ser Ala Thr Asp Leu Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu
245 250 255
Ser Ile Asn Ala Ala Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu
260 265 270
Thr Leu Ala Tyr Ser Glu Glu Pro Leu Val Ser Thr Asp Ile Val His
275 280 285
Asp Ser His Gly Ser Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly
290 295 300
Asn Thr Val Lys Val Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr
305 310 315 320
Cys Gln Leu Leu Arg Leu Thr Glu Leu Val Ala Ser Lys Leu
325 330
<210> 70
<211> 1005
<212> DNA
<213> Artificial Sequence
<220>
<223> D35G L36T mutated gapAv5 from C. glutamicum
<400> 70
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcaccac cgacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcac cgttggtggc aagcgcatcg ctgtttacgc agagcgcgat 240
ccaaagaacc tggactgggc tgcacacaac gttgacatcg tgatcgagtc caccggcttc 300
ttcaccgatg caaacgcggc taaggctcac atcgaagcag gtgccaagaa ggtcatcatc 360
tccgcaccag caagcaacga agacgcaacc ttcgtttacg gtgtgaacca cgagtcctac 420
gatcctgaga accacaacgt gatctccggc gcatcttgca ccaccaactg cctcgcacca 480
atggcaaagg tcctgaacga caagttcggc atcgagaacg gtctcatgac caccgttcac 540
gcatacaccg gcgaccagcg cctgcacgat gcacctcacc gcgacctgcg tcgtgcacgt 600
gcagcagcag tcaacatcgt tcctacctcc accggtgcag ctaaggctgt tgctctggtt 660
ctcccagagc tcaagggcaa gcttgacggc tacgcacttc gcgttccagt tatcaccggt 720
tccgcaaccg acctgacctt caacaccaag tctgaggtca ccgttgagtc catcaacgct 780
gcaatcaagg aagctgcagt cggcgagttc ggcgagaccc tggcttactc cgaagagcca 840
ctggtttcca ccgacatcgt ccacgattcc cacggctcca tcttcgacgc tggcctgacc 900
aaggtctccg gcaacaccgt caaggttgtt tcctggtacg acaacgagtg gggctacacc 960
tgccagctcc tgcgtctgac cgagctcgta gcttccaagc tctaa 1005
<210> 71
<211> 334
<212> PRT
<213> Artificial Sequence
<220>
<223> L36T T37K mutated gapAv7 from C. glutamicum
<400> 71
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Asp Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala His Asn Val Asp Ile Val Ile Glu
85 90 95
Ser Thr Gly Phe Phe Thr Asp Ala Asn Ala Ala Lys Ala His Ile Glu
100 105 110
Ala Gly Ala Lys Lys Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp
115 120 125
Ala Thr Phe Val Tyr Gly Val Asn His Glu Ser Tyr Asp Pro Glu Asn
130 135 140
His Asn Val Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro
145 150 155 160
Met Ala Lys Val Leu Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met
165 170 175
Thr Thr Val His Ala Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Pro
180 185 190
His Arg Asp Leu Arg Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro
195 200 205
Thr Ser Thr Gly Ala Ala Lys Ala Val Ala Leu Val Leu Pro Glu Leu
210 215 220
Lys Gly Lys Leu Asp Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly
225 230 235 240
Ser Ala Thr Asp Leu Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu
245 250 255
Ser Ile Asn Ala Ala Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu
260 265 270
Thr Leu Ala Tyr Ser Glu Glu Pro Leu Val Ser Thr Asp Ile Val His
275 280 285
Asp Ser His Gly Ser Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly
290 295 300
Asn Thr Val Lys Val Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr
305 310 315 320
Cys Gln Leu Leu Arg Leu Thr Glu Leu Val Ala Ser Lys Leu
325 330
<210> 72
<211> 1005
<212> DNA
<213> Artificial Sequence
<220>
<223> L36T T37K mutated gapAv7 from C. glutamicum
<400> 72
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acgacaccaa ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcac cgttggtggc aagcgcatcg ctgtttacgc agagcgcgat 240
ccaaagaacc tggactgggc tgcacacaac gttgacatcg tgatcgagtc caccggcttc 300
ttcaccgatg caaacgcggc taaggctcac atcgaagcag gtgccaagaa ggtcatcatc 360
tccgcaccag caagcaacga agacgcaacc ttcgtttacg gtgtgaacca cgagtcctac 420
gatcctgaga accacaacgt gatctccggc gcatcttgca ccaccaactg cctcgcacca 480
atggcaaagg tcctgaacga caagttcggc atcgagaacg gtctcatgac caccgttcac 540
gcatacaccg gcgaccagcg cctgcacgat gcacctcacc gcgacctgcg tcgtgcacgt 600
gcagcagcag tcaacatcgt tcctacctcc accggtgcag ctaaggctgt tgctctggtt 660
ctcccagagc tcaagggcaa gcttgacggc tacgcacttc gcgttccagt tatcaccggt 720
tccgcaaccg acctgacctt caacaccaag tctgaggtca ccgttgagtc catcaacgct 780
gcaatcaagg aagctgcagt cggcgagttc ggcgagaccc tggcttactc cgaagagcca 840
ctggtttcca ccgacatcgt ccacgattcc cacggctcca tcttcgacgc tggcctgacc 900
aaggtctccg gcaacaccgt caaggttgtt tcctggtacg acaacgagtg gggctacacc 960
tgccagctcc tgcgtctgac cgagctcgta gcttccaagc tctaa 1005
<210> 73
<211> 334
<212> PRT
<213> Artificial Sequence
<220>
<223> D35G L36T T37K mutated gapAv8 from C. glutamicum
<400> 73
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala His Asn Val Asp Ile Val Ile Glu
85 90 95
Ser Thr Gly Phe Phe Thr Asp Ala Asn Ala Ala Lys Ala His Ile Glu
100 105 110
Ala Gly Ala Lys Lys Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp
115 120 125
Ala Thr Phe Val Tyr Gly Val Asn His Glu Ser Tyr Asp Pro Glu Asn
130 135 140
His Asn Val Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro
145 150 155 160
Met Ala Lys Val Leu Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met
165 170 175
Thr Thr Val His Ala Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Pro
180 185 190
His Arg Asp Leu Arg Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro
195 200 205
Thr Ser Thr Gly Ala Ala Lys Ala Val Ala Leu Val Leu Pro Glu Leu
210 215 220
Lys Gly Lys Leu Asp Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly
225 230 235 240
Ser Ala Thr Asp Leu Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu
245 250 255
Ser Ile Asn Ala Ala Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu
260 265 270
Thr Leu Ala Tyr Ser Glu Glu Pro Leu Val Ser Thr Asp Ile Val His
275 280 285
Asp Ser His Gly Ser Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly
290 295 300
Asn Thr Val Lys Val Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr
305 310 315 320
Cys Gln Leu Leu Arg Leu Thr Glu Leu Val Ala Ser Lys Leu
325 330
<210> 74
<211> 1005
<212> DNA
<213> Artificial Sequence
<220>
<223> D35G L36T T37K mutated gapAv8 from C. glutamicum
<400> 74
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcaccaa ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcac cgttggtggc aagcgcatcg ctgtttacgc agagcgcgat 240
ccaaagaacc tggactgggc tgcacacaac gttgacatcg tgatcgagtc caccggcttc 300
ttcaccgatg caaacgcggc taaggctcac atcgaagcag gtgccaagaa ggtcatcatc 360
tccgcaccag caagcaacga agacgcaacc ttcgtttacg gtgtgaacca cgagtcctac 420
gatcctgaga accacaacgt gatctccggc gcatcttgca ccaccaactg cctcgcacca 480
atggcaaagg tcctgaacga caagttcggc atcgagaacg gtctcatgac caccgttcac 540
gcatacaccg gcgaccagcg cctgcacgat gcacctcacc gcgacctgcg tcgtgcacgt 600
gcagcagcag tcaacatcgt tcctacctcc accggtgcag ctaaggctgt tgctctggtt 660
ctcccagagc tcaagggcaa gcttgacggc tacgcacttc gcgttccagt tatcaccggt 720
tccgcaaccg acctgacctt caacaccaag tctgaggtca ccgttgagtc catcaacgct 780
gcaatcaagg aagctgcagt cggcgagttc ggcgagaccc tggcttactc cgaagagcca 840
ctggtttcca ccgacatcgt ccacgattcc cacggctcca tcttcgacgc tggcctgacc 900
aaggtctccg gcaacaccgt caaggttgtt tcctggtacg acaacgagtg gggctacacc 960
tgccagctcc tgcgtctgac cgagctcgta gcttccaagc tctaa 1005
<210> 75
<211> 63
<212> DNA
<213> Artificial Sequence
<220>
<223> pMB085 promoter
<400> 75
accgtgcgtg tttacaattt tacctctggc ggtgataatg gttgcatgta ctaaggaggt 60
tgt 63
<210> 76
<211> 5118
<212> DNA
<213> Escherichia coli
<400> 76
ggcttttaga gcaacgagac acggcaatgt tgcaccgttt gctgcatgat attgaaaaaa 60
atatcaccaa ataaaaaacg ccttagtaag tatttttcag cttttcattc tgactgcaac 120
gggcaatatg tctctgtgtg gattaaaaaa agagtgtctg atagcagctt ctgaactggt 180
tacctgccgt gagtaaatta aaattttatt gacttaggtc actaaatact ttaaccaata 240
taggcatagc gcacagacag ataaaaatta cagagtacac aacatccatg aaacgcatta 300
gcaccaccat taccaccacc atcaccatta ccacaggtaa cggtgcgggc tgacgcgtac 360
aggaaacaca gaaaaaagcc cgcacctgac agtgcgggct ttttttttcg accaaaggta 420
acgaggtaac aaccatgcga gtgttgaagt tcggcggtac atcagtggca aatgcagaac 480
gttttctgcg tgttgccgat attctggaaa gcaatgccag gcaggggcag gtggccaccg 540
tcctctctgc ccccgccaaa atcaccaacc acctggtggc gatgattgaa aaaaccatta 600
gcggccagga tgctttaccc aatatcagcg atgccgaacg tatttttgcc gaacttttga 660
cgggactcgc cgccgcccag ccggggttcc cgctggcgca attgaaaact ttcgtcgatc 720
aggaatttgc ccaaataaaa catgtcctgc atggcattag tttgttgggg cagtgcccgg 780
atagcatcaa cgctgcgctg atttgccgtg gcgagaaaat gtcgatcgcc attatggccg 840
gcgtattaga agcgcgcggt cacaacgtta ctgttatcga tccggtcgaa aaactgctgg 900
cagtggggca ttacctcgaa tctaccgtcg atattgctga gtccacccgc cgtattgcgg 960
caagccgcat tccggctgat cacatggtgc tgatggcagg tttcaccgcc ggtaatgaaa 1020
aaggcgaact ggtggtgctt ggacgcaacg gttccgacta ctctgctgcg gtgctggctg 1080
cctgtttacg cgccgattgt tgcgagattt ggacggacgt tgacggggtc tatacctgcg 1140
acccgcgtca ggtgcccgat gcgaggttgt tgaagtcgat gtcctaccag gaagcgatgg 1200
agctttccta cttcggcgct aaagttcttc acccccgcac cattaccccc atcgcccagt 1260
tccagatccc ttgcctgatt aaaaataccg gaaatcctca agcaccaggt acgctcattg 1320
gtgccagccg tgatgaagac gaattaccgg tcaagggcat ttccaatctg aataacatgg 1380
caatgttcag cgtttctggt ccggggatga aagggatggt cggcatggcg gcgcgcgtct 1440
ttgcagcgat gtcacgcgcc cgtatttccg tggtgctgat tacgcaatca tcttccgaat 1500
acagcatcag tttctgcgtt ccacaaagcg actgtgtgcg agctgaacgg gcaatgcagg 1560
aagagttcta cctggaactg aaagaaggct tactggagcc gctggcagtg acggaacggc 1620
tggccattat ctcggtggta ggtgatggta tgcgcacctt gcgtgggatc tcggcgaaat 1680
tctttgccgc actggcccgc gccaatatca acattgtcgc cattgctcag ggatcttctg 1740
aacgctcaat ctctgtcgtg gtaaataacg atgatgcgac cactggcgtg cgcgttactc 1800
atcagatgct gttcaatacc gatcaggtta tcgaagtgtt tgtgattggc gtcggtggcg 1860
ttggcggtgc gctgctggag caactgaagc gtcagcaaag ctggctgaag aataaacata 1920
tcgacttacg tgtctgcggt gttgccaact cgaaggctct gctcaccaat gtacatggcc 1980
ttaatctgga aaactggcag gaagaactgg cgcaagccaa agagccgttt aatctcgggc 2040
gcttaattcg cctcgtgaaa gaatatcatc tgctgaaccc ggtcattgtt gactgcactt 2100
ccagccaggc agtggcggat caatatgccg acttcctgcg cgaaggtttc cacgttgtca 2160
cgccgaacaa aaaggccaac acctcgtcga tggattacta ccatcagttg cgttatgcgg 2220
cggaaaaatc gcggcgtaaa ttcctctatg acaccaacgt tggggctgga ttaccggtta 2280
ttgagaacct gcaaaatctg ctcaatgcag gtgatgaatt gatgaagttc tccggcattc 2340
tttctggttc gctttcttat atcttcggca agttagacga aggcatgagt ttctccgagg 2400
cgaccacgct ggcgcgggaa atgggttata ccgaaccgga cccgcgagat gatctttctg 2460
gtatggatgt ggcgcgtaaa ctattgattc tcgctcgtga aacgggacgt gaactggagc 2520
tggcggatat tgaaattgaa cctgtgctgc ccgcagagtt taacgccgag ggtgatgttg 2580
ccgcttttat ggcgaatctg tcacaactcg acgatctctt tgccgcgcgc gtggcgaagg 2640
cccgtgatga aggaaaagtt ttgcgctatg ttggcaatat tgatgaagat ggcgtctgcc 2700
gcgtgaagat tgccgaagtg gatggtaatg atccgctgtt caaagtgaaa aatggcgaaa 2760
acgccctggc cttctatagc cactattatc agccgctgcc gttggtactg cgcggatatg 2820
gtgcgggcaa tgacgttaca gctgccggtg tctttgctga tctgctacgt accctctcat 2880
ggaagttagg agtctgacat ggttaaagtt tatgccccgg cttccagtgc caatatgagc 2940
gtcgggtttg atgtgctcgg ggcggcggtg acacctgttg atggtgcatt gctcggagat 3000
gtagtcacgg ttgaggcggc agagacattc agtctcaaca acctcggacg ctttgccgat 3060
aagctgccgt cagaaccacg ggaaaatatc gtttatcagt gctgggagcg tttttgccag 3120
gaactgggta agcaaattcc agtggcgatg accctggaaa agaatatgcc gatcggttcg 3180
ggcttaggct ccagtgcctg ttcggtggtc gcggcgctga tggcgatgaa tgaacactgc 3240
ggcaagccgc ttaatgacac tcgtttgctg gctttgatgg gcgagctgga aggccgtatc 3300
tccggcagca ttcattacga caacgtggca ccgtgttttc tcggtggtat gcagttgatg 3360
atcgaagaaa acgacatcat cagccagcaa gtgccagggt ttgatgagtg gctgtgggtg 3420
ctggcgtatc cggggattaa agtctcgacg gcagaagcca gggctatttt accggcgcag 3480
tatcgccgcc aggattgcat tgcgcacggg cgacatctgg caggcttcat tcacgcctgc 3540
tattcccgtc agcctgagct tgccgcgaag ctgatgaaag atgttatcgc tgaaccctac 3600
cgtgaacggt tactgccagg cttccggcag gcgcggcagg cggtcgcgga aatcggcgcg 3660
gtagcgagcg gtatctccgg ctccggcccg accttgttcg ctctgtgtga caagccggaa 3720
accgcccagc gcgttgccga ctggttgggt aagaactacc tgcaaaatca ggaaggtttt 3780
gttcatattt gccggctgga tacggcgggc gcacgagtac tggaaaacta aatgaaactc 3840
tacaatctga aagatcacaa cgagcaggtc agctttgcgc aagccgtaac ccaggggttg 3900
ggcaaaaatc aggggctgtt ttttccgcac gacctgccgg aattcagcct gactgaaatt 3960
gatgagatgc tgaagctgga ttttgtcacc cgcagtgcga agatcctctc ggcgtttatt 4020
ggtgatgaaa tcccacagga aatcctggaa gagcgcgtgc gcgcggcgtt tgccttcccg 4080
gctccggtcg ccaatgttga aagcgatgtc ggttgtctgg aattgttcca cgggccaacg 4140
ctggcattta aagatttcgg cggtcgcttt atggcacaaa tgctgaccca tattgcgggt 4200
gataagccag tgaccattct gaccgcgacc tccggtgata ccggagcggc agtggctcat 4260
gctttctacg gtttaccgaa tgtgaaagtg gttatcctct atccacgagg caaaatcagt 4320
ccactgcaag aaaaactgtt ctgtacattg ggcggcaata tcgaaactgt tgccatcgac 4380
ggcgatttcg atgcctgtca ggcgctggtg aagcaggcgt ttgatgatga agaactgaaa 4440
gtggcgctag ggttaaactc ggctaactcg attaacatca gccgtttgct ggcgcagatt 4500
tgctactact ttgaagctgt tgcgcagctg ccgcaggaga cgcgcaacca gctggttgtc 4560
tcggtgccaa gcggaaactt cggcgatttg acggcgggtc tgctggcgaa gtcactcggt 4620
ctgccggtga aacgttttat tgctgcgacc aacgtgaacg ataccgtgcc acgtttcctg 4680
cacgacggtc agtggtcacc caaagcgact caggcgacgt tatccaacgc gatggacgtg 4740
agtcagccga acaactggcc gcgtgtggaa gagttgttcc gccgcaaaat ctggcaactg 4800
aaagagctgg gttatgcagc cgtggatgat gaaaccacgc aacagacaat gcgtgagtta 4860
aaagaactgg gctacacttc ggagccgcac gctgccgtag cttatcgtgc gctgcgtgat 4920
cagttgaatc caggcgaata tggcttgttc ctcggcaccg cgcatccggc gaaatttaaa 4980
gagagcgtgg aagcgattct cggtgaaacg ttggatctgc caaaagagct ggcagaacgt 5040
gctgatttac ccttgctttc acataatctg cccgccgatt ttgctgcgtt gcgtaaattg 5100
atgatgaatc atcagtaa 5118
<210> 77
<211> 4684
<212> DNA
<213> Escherichia coli
<400> 77
atgcgagtgt tgaagttcgg cggtacatca gtggcaaatg cagaacgttt tctgcgtgtt 60
gccgatattc tggaaagcaa tgccaggcag gggcaggtgg ccaccgtcct ctctgccccc 120
gccaaaatca ccaaccacct ggtggcgatg attgaaaaaa ccattagcgg ccaggatgct 180
ttacccaata tcagcgatgc cgaacgtatt tttgccgaac ttttgacggg actcgccgcc 240
gcccagccgg ggttcccgct ggcgcaattg aaaactttcg tcgatcagga atttgcccaa 300
ataaaacatg tcctgcatgg cattagtttg ttggggcagt gcccggatag catcaacgct 360
gcgctgattt gccgtggcga gaaaatgtcg atcgccatta tggccggcgt attagaagcg 420
cgcggtcaca acgttactgt tatcgatccg gtcgaaaaac tgctggcagt ggggcattac 480
ctcgaatcta ccgtcgatat tgctgagtcc acccgccgta ttgcggcaag ccgcattccg 540
gctgatcaca tggtgctgat ggcaggtttc accgccggta atgaaaaagg cgaactggtg 600
gtgcttggac gcaacggttc cgactactct gctgcggtgc tggctgcctg tttacgcgcc 660
gattgttgcg agatttggac ggacgttgac ggggtctata cctgcgaccc gcgtcaggtg 720
cccgatgcga ggttgttgaa gtcgatgtcc taccaggaag cgatggagct ttcctacttc 780
ggcgctaaag ttcttcaccc ccgcaccatt acccccatcg cccagttcca gatcccttgc 840
ctgattaaaa ataccggaaa tcctcaagca ccaggtacgc tcattggtgc cagccgtgat 900
gaagacgaat taccggtcaa gggcatttcc aatctgaata acatggcaat gttcagcgtt 960
tctggtccgg ggatgaaagg gatggtcggc atggcggcgc gcgtctttgc agcgatgtca 1020
cgcgcccgta tttccgtggt gctgattacg caatcatctt ccgaatacag catcagtttc 1080
tgcgttccac aaagcgactg tgtgcgagct gaacgggcaa tgcaggaaga gttctacctg 1140
gaactgaaag aaggcttact ggagccgctg gcagtgacgg aacggctggc cattatctcg 1200
gtggtaggtg atggtatgcg caccttgcgt gggatctcgg cgaaattctt tgccgcactg 1260
gcccgcgcca atatcaacat tgtcgccatt gctcagggat cttctgaacg ctcaatctct 1320
gtcgtggtaa ataacgatga tgcgaccact ggcgtgcgcg ttactcatca gatgctgttc 1380
aataccgatc aggttatcga agtgtttgtg attggcgtcg gtggcgttgg cggtgcgctg 1440
ctggagcaac tgaagcgtca gcaaagctgg ctgaagaata aacatatcga cttacgtgtc 1500
tgcggtgttg ccaactcgaa ggctctgctc accaatgtac atggccttaa tctggaaaac 1560
tggcaggaag aactggcgca agccaaagag ccgtttaatc tcgggcgctt aattcgcctc 1620
gtgaaagaat atcatctgct gaacccggtc attgttgact gcacttccag ccaggcagtg 1680
gcggatcaat atgccgactt cctgcgcgaa ggtttccacg ttgtcacgcc gaacaaaaag 1740
gccaacacct cgtcgatgga ttactaccat cagttgcgtt atgcggcgga aaaatcgcgg 1800
cgtaaattcc tctatgacac caacgttggg gctggattac cggttattga gaacctgcaa 1860
aatctgctca atgcaggtga tgaattgatg aagttctccg gcattctttc tggttcgctt 1920
tcttatatct tcggcaagtt agacgaaggc atgagtttct ccgaggcgac cacgctggcg 1980
cgggaaatgg gttataccga accggacccg cgagatgatc tttctggtat ggatgtggcg 2040
cgtaaactat tgattctcgc tcgtgaaacg ggacgtgaac tggagctggc ggatattgaa 2100
attgaacctg tgctgcccgc agagtttaac gccgagggtg atgttgccgc ttttatggcg 2160
aatctgtcac aactcgacga tctctttgcc gcgcgcgtgg cgaaggcccg tgatgaagga 2220
aaagttttgc gctatgttgg caatattgat gaagatggcg tctgccgcgt gaagattgcc 2280
gaagtggatg gtaatgatcc gctgttcaaa gtgaaaaatg gcgaaaacgc cctggccttc 2340
tatagccact attatcagcc gctgccgttg gtactgcgcg gatatggtgc gggcaatgac 2400
gttacagctg ccggtgtctt tgctgatctg ctacgtaccc tctcatggaa gttaggagtc 2460
tgacatggtt aaagtttatg ccccggcttc cagtgccaat atgagcgtcg ggtttgatgt 2520
gctcggggcg gcggtgacac ctgttgatgg tgcattgctc ggagatgtag tcacggttga 2580
ggcggcagag acattcagtc tcaacaacct cggacgcttt gccgataagc tgccgtcaga 2640
accacgggaa aatatcgttt atcagtgctg ggagcgtttt tgccaggaac tgggtaagca 2700
aattccagtg gcgatgaccc tggaaaagaa tatgccgatc ggttcgggct taggctccag 2760
tgcctgttcg gtggtcgcgg cgctgatggc gatgaatgaa cactgcggca agccgcttaa 2820
tgacactcgt ttgctggctt tgatgggcga gctggaaggc cgtatctccg gcagcattca 2880
ttacgacaac gtggcaccgt gttttctcgg tggtatgcag ttgatgatcg aagaaaacga 2940
catcatcagc cagcaagtgc cagggtttga tgagtggctg tgggtgctgg cgtatccggg 3000
gattaaagtc tcgacggcag aagccagggc tattttaccg gcgcagtatc gccgccagga 3060
ttgcattgcg cacgggcgac atctggcagg cttcattcac gcctgctatt cccgtcagcc 3120
tgagcttgcc gcgaagctga tgaaagatgt tatcgctgaa ccctaccgtg aacggttact 3180
gccaggcttc cggcaggcgc ggcaggcggt cgcggaaatc ggcgcggtag cgagcggtat 3240
ctccggctcc ggcccgacct tgttcgctct gtgtgacaag ccggaaaccg cccagcgcgt 3300
tgccgactgg ttgggtaaga actacctgca aaatcaggaa ggttttgttc atatttgccg 3360
gctggatacg gcgggcgcac gagtactgga aaactaaatg aaactctaca atctgaaaga 3420
tcacaacgag caggtcagct ttgcgcaagc cgtaacccag gggttgggca aaaatcaggg 3480
gctgtttttt ccgcacgacc tgccggaatt cagcctgact gaaattgatg agatgctgaa 3540
gctggatttt gtcacccgca gtgcgaagat cctctcggcg tttattggtg atgaaatccc 3600
acaggaaatc ctggaagagc gcgtgcgcgc ggcgtttgcc ttcccggctc cggtcgccaa 3660
tgttgaaagc gatgtcggtt gtctggaatt gttccacggg ccaacgctgg catttaaaga 3720
tttcggcggt cgctttatgg cacaaatgct gacccatatt gcgggtgata agccagtgac 3780
cattctgacc gcgacctccg gtgataccgg agcggcagtg gctcatgctt tctacggttt 3840
accgaatgtg aaagtggtta tcctctatcc acgaggcaaa atcagtccac tgcaagaaaa 3900
actgttctgt acattgggcg gcaatatcga aactgttgcc atcgacggcg atttcgatgc 3960
ctgtcaggcg ctggtgaagc aggcgtttga tgatgaagaa ctgaaagtgg cgctagggtt 4020
aaactcggct aactcgatta acatcagccg tttgctggcg cagatttgct actactttga 4080
agctgttgcg cagctgccgc aggagacgcg caaccagctg gttgtctcgg tgccaagcgg 4140
aaacttcggc gatttgacgg cgggtctgct ggcgaagtca ctcggtctgc cggtgaaacg 4200
ttttattgct gcgaccaacg tgaacgatac cgtgccacgt ttcctgcacg acggtcagtg 4260
gtcacccaaa gcgactcagg cgacgttatc caacgcgatg gacgtgagtc agccgaacaa 4320
ctggccgcgt gtggaagagt tgttccgccg caaaatctgg caactgaaag agctgggtta 4380
tgcagccgtg gatgatgaaa ccacgcaaca gacaatgcgt gagttaaaag aactgggcta 4440
cacttcggag ccgcacgctg ccgtagctta tcgtgcgctg cgtgatcagt tgaatccagg 4500
cgaatatggc ttgttcctcg gcaccgcgca tccggcgaaa tttaaagaga gcgtggaagc 4560
gattctcggt gaaacgttgg atctgccaaa agagctggca gaacgtgctg atttaccctt 4620
gctttcacat aatctgcccg ccgattttgc tgcgttgcgt aaattgatga tgaatcatca 4680
gtaa 4684
<210> 78
<211> 2815
<212> DNA
<213> Artificial Sequence
<220>
<223> pUC19 vector backbone
<220>
<221> misc_feature
<222> (340)..(340)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (342)..(342)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (345)..(346)
<223> n is a, c, g, or t
<400> 78
aatctattca ttatctcaat caggccgggt ttgcttttat gcagcccggc ttttttatga 60
agaaattatg gagaaaaatg acagggaaaa aggagaaatt ctcaataaat gcggtaactt 120
agagattagg attgcggaga ataacaaccg ccgttactgg ccgtcgtttt acaacgtcgt 180
gactgggaaa accctggcgt tacccaactt aatcgccttg cagcacatcc ccctttcgcc 240
agctggcgta atagcgaaga ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg 300
aatggcgaat ggcgcctgat gcggtatttt chttsymrgn bnchnngcms sayhhtrrkb 360
tbtgtcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct cagtacaatc 420
tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc tgacgcgccc 480
tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt ctccgggagc 540
tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgagacgaaa gggcctcgtg 600
atacgcctat ttttataggt taatgtcatg ataataatgg tttcttagac gtcaggtggc 660
acttttcggg gaaatgtgcg cggaacccct atttgtttat ttttctaaat acattcaaat 720
atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatattg aaaaaggaag 780
agtatgagta ttcaacattt ccgtgtcgcc cttattccct tttttgcggc attttgcctt 840
cctgtttttg ctcacccaga aacgctggtg aaagtaaaag atgctgaaga tcagttgggt 900
gcacgagtgg gttacatcga actggatctc aacagcggta agatccttga gagttttcgc 960
cccgaagaac gttttccaat gatgagcact tttaaagttc tgctatgtgg cgcggtatta 1020
tcccgtattg acgccgggca agagcaactc ggtcgccgca tacactattc tcagaatgac 1080
ttggttgagt actcaccagt cacagaaaag catcttacgg atggcatgac agtaagagaa 1140
ttatgcagtg ctgccataac catgagtgat aacactgcgg ccaacttact tctgacaacg 1200
atcggaggac cgaaggagct aaccgctttt ttgcacaaca tgggggatca tgtaactcgc 1260
cttgatcgtt gggaaccgga gctgaatgaa gccataccaa acgacgagcg tgacaccacg 1320
atgcctgtag caatggcaac aacgttgcgc aaactattaa ctggcgaact acttactcta 1380
gcttcccggc aacaattaat agactggatg gaggcggata aagttgcagg accacttctg 1440
cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg tgagcgtggg 1500
tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat cgtagttatc 1560
tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc tgagataggt 1620
gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat actttagatt 1680
gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc 1740
atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag 1800
atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa 1860
aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg 1920
aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt gtagccgtag 1980
ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg 2040
ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga 2100
tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc 2160
ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc 2220
acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga 2280
gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt 2340
cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg 2400
aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac 2460
atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga 2520
gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg 2580
gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc 2640
tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt 2700
tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt 2760
ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga ttacg 2815
<210> 79
<211> 1089
<212> DNA
<213> Lactobacillus agilis
<400> 79
atggatgaaa aactccgtgc cggtgttctg ggcgccacgg gtatggtagg acagcggttc 60
gtagcgatgt tggagaatca cccgtggttc gaagtaacca ctcttgcagc ttcgccgcgc 120
tcagcaggta aaacgtacgc acaggctgtg gatggccggt ggaaaatgga aactcccatt 180
ccagaggccg tcaaggatct caagattctt gatgtatcgg aagttgagaa agtcgcagct 240
caagtcgatt ttgtgttttc cgcagtttct atgtccaaag acaagattaa agcgattgaa 300
gaagcctacg cgaaaaccga aactccggta gtatcgaaca attcggcgca ccgttggacc 360
ccagatgttc ctatggtcgt gcccgaaatt aacccggagc atttcaaggt aattgattac 420
cagcggaaac ggctcggcac gaagcgcggc ttcattgccg ttaagccgaa ctgttctatc 480
cagagctacg ccccggctct cagcgcatgg ttgaaattcg aaccgtacga ggtaatcgct 540
tcaacttatc aggctatctc gggagctggt aagaacttcg acgactggcc ggagatgaag 600
ggaaacatca tcccttttat ttctggcgag gaggaaaaat cagagaagga gcccctcaag 660
atctggggac aacttgacga agctaaggga gagatcgtcc cagccactag ccctgttatt 720
acgagccaat gtattcgggt cccgatcctt tacggacaca ccgcgaccgt ctttgttaaa 780
ttcaagcaga acccaacgaa agaggaactg gtagctgctt tggaatcata tcagggactg 840
cctcaatcct tgaatttgcc gtctacccct aagcaattta ttcagtatct cagcgaagac 900
gaccgtccgc aggttgcgaa ggacgttaac tttgagaatg gtatgggtat ctctattggc 960
cgccttcgta aagattcggt ttacgattgg aagttcgtag gactctcgca caacaccgcg 1020
cgtggcgccg caggaggcgg cgtcctttcg gccgaattgc tgacggctca gggctatatt 1080
accaaaaag 1089
<210> 80
<211> 363
<212> PRT
<213> Lactobacillus agilis
<400> 80
Met Asp Glu Lys Leu Arg Ala Gly Val Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Val Ala Met Leu Glu Asn His Pro Trp Phe Glu Val
20 25 30
Thr Thr Leu Ala Ala Ser Pro Arg Ser Ala Gly Lys Thr Tyr Ala Gln
35 40 45
Ala Val Asp Gly Arg Trp Lys Met Glu Thr Pro Ile Pro Glu Ala Val
50 55 60
Lys Asp Leu Lys Ile Leu Asp Val Ser Glu Val Glu Lys Val Ala Ala
65 70 75 80
Gln Val Asp Phe Val Phe Ser Ala Val Ser Met Ser Lys Asp Lys Ile
85 90 95
Lys Ala Ile Glu Glu Ala Tyr Ala Lys Thr Glu Thr Pro Val Val Ser
100 105 110
Asn Asn Ser Ala His Arg Trp Thr Pro Asp Val Pro Met Val Val Pro
115 120 125
Glu Ile Asn Pro Glu His Phe Lys Val Ile Asp Tyr Gln Arg Lys Arg
130 135 140
Leu Gly Thr Lys Arg Gly Phe Ile Ala Val Lys Pro Asn Cys Ser Ile
145 150 155 160
Gln Ser Tyr Ala Pro Ala Leu Ser Ala Trp Leu Lys Phe Glu Pro Tyr
165 170 175
Glu Val Ile Ala Ser Thr Tyr Gln Ala Ile Ser Gly Ala Gly Lys Asn
180 185 190
Phe Asp Asp Trp Pro Glu Met Lys Gly Asn Ile Ile Pro Phe Ile Ser
195 200 205
Gly Glu Glu Glu Lys Ser Glu Lys Glu Pro Leu Lys Ile Trp Gly Gln
210 215 220
Leu Asp Glu Ala Lys Gly Glu Ile Val Pro Ala Thr Ser Pro Val Ile
225 230 235 240
Thr Ser Gln Cys Ile Arg Val Pro Ile Leu Tyr Gly His Thr Ala Thr
245 250 255
Val Phe Val Lys Phe Lys Gln Asn Pro Thr Lys Glu Glu Leu Val Ala
260 265 270
Ala Leu Glu Ser Tyr Gln Gly Leu Pro Gln Ser Leu Asn Leu Pro Ser
275 280 285
Thr Pro Lys Gln Phe Ile Gln Tyr Leu Ser Glu Asp Asp Arg Pro Gln
290 295 300
Val Ala Lys Asp Val Asn Phe Glu Asn Gly Met Gly Ile Ser Ile Gly
305 310 315 320
Arg Leu Arg Lys Asp Ser Val Tyr Asp Trp Lys Phe Val Gly Leu Ser
325 330 335
His Asn Thr Ala Arg Gly Ala Ala Gly Gly Gly Val Leu Ser Ala Glu
340 345 350
Leu Leu Thr Ala Gln Gly Tyr Ile Thr Lys Lys
355 360
<210> 81
<211> 1104
<212> DNA
<213> Escherichia coli
<400> 81
atgaaaaatg ttggttttat cggctggcgc ggtatggtcg gctccgttct catgcaacgc 60
atggttgaag agcgcgactt cgacgccatt cgccctgtct tcttttctac ttctcagctt 120
ggccaggctg cgccgtcttt tggcggaacc actggcacac ttcaggatgc ctttgatctg 180
gaggcgctaa aggccctcga tatcattgtg acctgtcagg gcggcgatta taccaacgaa 240
atctatccaa agcttcgtga aagcggatgg caaggttact ggattgacgc agcatcgtct 300
ctgcgcatga aagatgacgc catcatcatt cttgaccccg tcaatcagga cgtcattacc 360
gacggattaa ataatggcat caggactttt gttggcggta actgtaccgt aagcctgatg 420
ttgatgtcgt tgggtggttt attcgccaat gatcttgttg attgggtgtc cgttgcaacc 480
taccaggccg cttccggcgg tggtgcgcga catatgcgtg agttattaac ccagatgggc 540
catctgtatg gccatgtggc agatgaactc gcgaccccgt cctctgctat tctcgatatc 600
gaacgcaaag tcacaacctt aacccgtagc ggtgagctgc cggtggataa ctttggcgtg 660
ccgctggcgg gtagcctgat tccgtggatc gacaaacagc tcgataacgg tcagagccgc 720
gaagagtgga aagggcaggc ggaaaccaac aagatcctca acacatcttc cgtaattccg 780
gtagatggtt tatgtgtgcg tgtcggggca ttgcgctgcc acagccaggc attcactatt 840
aaattgaaaa aagatgtgtc tattccgacc gtggaagaac tgctggctgc gcacaatccg 900
tgggcgaaag tcgttccgaa cgatcgggaa atcactatgc gtgagctaac cccagctgcc 960
gttaccggca cgctgaccac gccggtaggc cgcctgcgta agctgaatat gggaccagag 1020
ttcctgtcag cctttaccgt gggcgaccag ctgctgtggg gggccgcgga gccgctgcgt 1080
cggatgcttc gtcaactggc gtaa 1104
<210> 82
<211> 367
<212> PRT
<213> Escherichia coli
<400> 82
Met Lys Asn Val Gly Phe Ile Gly Trp Arg Gly Met Val Gly Ser Val
1 5 10 15
Leu Met Gln Arg Met Val Glu Glu Arg Asp Phe Asp Ala Ile Arg Pro
20 25 30
Val Phe Phe Ser Thr Ser Gln Leu Gly Gln Ala Ala Pro Ser Phe Gly
35 40 45
Gly Thr Thr Gly Thr Leu Gln Asp Ala Phe Asp Leu Glu Ala Leu Lys
50 55 60
Ala Leu Asp Ile Ile Val Thr Cys Gln Gly Gly Asp Tyr Thr Asn Glu
65 70 75 80
Ile Tyr Pro Lys Leu Arg Glu Ser Gly Trp Gln Gly Tyr Trp Ile Asp
85 90 95
Ala Ala Ser Ser Leu Arg Met Lys Asp Asp Ala Ile Ile Ile Leu Asp
100 105 110
Pro Val Asn Gln Asp Val Ile Thr Asp Gly Leu Asn Asn Gly Ile Arg
115 120 125
Thr Phe Val Gly Gly Asn Cys Thr Val Ser Leu Met Leu Met Ser Leu
130 135 140
Gly Gly Leu Phe Ala Asn Asp Leu Val Asp Trp Val Ser Val Ala Thr
145 150 155 160
Tyr Gln Ala Ala Ser Gly Gly Gly Ala Arg His Met Arg Glu Leu Leu
165 170 175
Thr Gln Met Gly His Leu Tyr Gly His Val Ala Asp Glu Leu Ala Thr
180 185 190
Pro Ser Ser Ala Ile Leu Asp Ile Glu Arg Lys Val Thr Thr Leu Thr
195 200 205
Arg Ser Gly Glu Leu Pro Val Asp Asn Phe Gly Val Pro Leu Ala Gly
210 215 220
Ser Leu Ile Pro Trp Ile Asp Lys Gln Leu Asp Asn Gly Gln Ser Arg
225 230 235 240
Glu Glu Trp Lys Gly Gln Ala Glu Thr Asn Lys Ile Leu Asn Thr Ser
245 250 255
Ser Val Ile Pro Val Asp Gly Leu Cys Val Arg Val Gly Ala Leu Arg
260 265 270
Cys His Ser Gln Ala Phe Thr Ile Lys Leu Lys Lys Asp Val Ser Ile
275 280 285
Pro Thr Val Glu Glu Leu Leu Ala Ala His Asn Pro Trp Ala Lys Val
290 295 300
Val Pro Asn Asp Arg Glu Ile Thr Met Arg Glu Leu Thr Pro Ala Ala
305 310 315 320
Val Thr Gly Thr Leu Thr Thr Pro Val Gly Arg Leu Arg Lys Leu Asn
325 330 335
Met Gly Pro Glu Phe Leu Ser Ala Phe Thr Val Gly Asp Gln Leu Leu
340 345 350
Trp Gly Ala Ala Glu Pro Leu Arg Arg Met Leu Arg Gln Leu Ala
355 360 365
<210> 83
<211> 1059
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_1 sequence from unknown bacterial species from
environmental sample
<400> 83
atgaaaccga tcgaggtggg cctgctcggc gcgacaggga tggtcggaca gcagttcgtg 60
cgccagctgc gcgcgcaccc ctggttccgg ctcacgtggc tcggagcgag cgatcgttcc 120
gccggccggc ggtacggcga tctctcgtgg cggctttccg atccgatgcc cgacgccgta 180
cgggatctca ccgtcgagtc gtgtcggccc ggaagcgcgc cgcgggtgct gttctcggcg 240
ctggatgccg cggccgccga cgagatcgaa gcggtcttcg cccaggccgg ccacgtcgtc 300
gtcagcaacg cccgatccca ccgcatgcgc cccgacgtcc cgctgctcgt gccggaaatc 360
aacccggatc atctgggtct tctcgccgtg cagcggcgga aggcgggcct ctcgggcacg 420
ccaagcagcg gcgcaatcgt cacgaacccg aactgctcaa ccgtgtttct cgctatggcg 480
ctcggcgcgc tgcgtccgct tcgcccggcg cgtgcgatcg tgaccacact gcaggccgcc 540
tccggcgcgg gctatccggg cgtgccctct ctcgatctgc tcggcaatgt catccctttc 600
atttctgggg aggaggaaaa gatcgagacc gagacgcgca agatcctcgg ccagctccgc 660
ggcgatgcca tcaccccgca cccgattgcg cttagcgcgc aggtgaaccg cgtaccggtc 720
gtgaacggcc acaccgaggc ggtctcggtg gcgttcgacg aggctccgcc gcgggatgcg 780
gtcctggaag cgctcacgcg attcaccggg ctcccgcagc agcaacagtt gcccagcgct 840
cccgcgaatc ctttgatcta tatgtccgag acggatcgtc cgcagcctcg tctcgacgtg 900
gagcgcgatg gcggcatgac ggtgtgtgtg gggcgcctcc gcgcctgtcc agtgctgcac 960
tggaagttcg tcctgctggg ccacaacacg attagaggcg ccgcgggtgc ggccgttctg 1020
aacgccgagc tgatggtagc cggcggatgg ctggattga 1059
<210> 84
<211> 352
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_1 sequence from unknown bacterial species from
environmental sample
<400> 84
Met Lys Pro Ile Glu Val Gly Leu Leu Gly Ala Thr Gly Met Val Gly
1 5 10 15
Gln Gln Phe Val Arg Gln Leu Arg Ala His Pro Trp Phe Arg Leu Thr
20 25 30
Trp Leu Gly Ala Ser Asp Arg Ser Ala Gly Arg Arg Tyr Gly Asp Leu
35 40 45
Ser Trp Arg Leu Ser Asp Pro Met Pro Asp Ala Val Arg Asp Leu Thr
50 55 60
Val Glu Ser Cys Arg Pro Gly Ser Ala Pro Arg Val Leu Phe Ser Ala
65 70 75 80
Leu Asp Ala Ala Ala Ala Asp Glu Ile Glu Ala Val Phe Ala Gln Ala
85 90 95
Gly His Val Val Val Ser Asn Ala Arg Ser His Arg Met Arg Pro Asp
100 105 110
Val Pro Leu Leu Val Pro Glu Ile Asn Pro Asp His Leu Gly Leu Leu
115 120 125
Ala Val Gln Arg Arg Lys Ala Gly Leu Ser Gly Thr Pro Ser Ser Gly
130 135 140
Ala Ile Val Thr Asn Pro Asn Cys Ser Thr Val Phe Leu Ala Met Ala
145 150 155 160
Leu Gly Ala Leu Arg Pro Leu Arg Pro Ala Arg Ala Ile Val Thr Thr
165 170 175
Leu Gln Ala Ala Ser Gly Ala Gly Tyr Pro Gly Val Pro Ser Leu Asp
180 185 190
Leu Leu Gly Asn Val Ile Pro Phe Ile Ser Gly Glu Glu Glu Lys Ile
195 200 205
Glu Thr Glu Thr Arg Lys Ile Leu Gly Gln Leu Arg Gly Asp Ala Ile
210 215 220
Thr Pro His Pro Ile Ala Leu Ser Ala Gln Val Asn Arg Val Pro Val
225 230 235 240
Val Asn Gly His Thr Glu Ala Val Ser Val Ala Phe Asp Glu Ala Pro
245 250 255
Pro Arg Asp Ala Val Leu Glu Ala Leu Thr Arg Phe Thr Gly Leu Pro
260 265 270
Gln Gln Gln Gln Leu Pro Ser Ala Pro Ala Asn Pro Leu Ile Tyr Met
275 280 285
Ser Glu Thr Asp Arg Pro Gln Pro Arg Leu Asp Val Glu Arg Asp Gly
290 295 300
Gly Met Thr Val Cys Val Gly Arg Leu Arg Ala Cys Pro Val Leu His
305 310 315 320
Trp Lys Phe Val Leu Leu Gly His Asn Thr Ile Arg Gly Ala Ala Gly
325 330 335
Ala Ala Val Leu Asn Ala Glu Leu Met Val Ala Gly Gly Trp Leu Asp
340 345 350
<210> 85
<211> 1179
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_2 sequence from unknown bacterial species from
environmental sample
<400> 85
atggctcaga tagcggagtt gacgcgagac gcggagggcg cggccgccgt cgcggggggc 60
aagttgcggg tggcattgct gggcgcgacc gggatggtcg gccagcagtt catacgcgtg 120
ctcagaaatc atccctggtt cgagatcgcc gtcctcgcgg cgtccgagtc ctcggcgggc 180
aagacgtacc gcgaggcgtt gcgcggccgc tgggcgatgg agttcgccgt gccggaagag 240
ttggccgggg tcaaagtcct ggacgtgcaa tcggtggacg agatcgccgc gcaggcggac 300
gtggccttct gcgcgctcaa cctcgaaaag gaggccgtcc gcgcgctcga agacgcctac 360
gcgcgcaggg gcgtgtgggt gacctcgaac aactccgcct tccggcaaga ccccctcgtg 420
ccgatggtca tcccggcggc caacgcgcac cacctcggcg tcgtcccgca ccagcgccgc 480
gcgcgcggct acgacacggg cgcgatcatc gtcaagagca actgctcgat ccagagttac 540
gtcatcgcgc tcgaaccgct cagggatttc ggcgttacgc gaatcaacgt cttcagcgcg 600
caggccatct cgggcgcggg caagactttc aagacctggc ccgagatgcg cgacaacctc 660
atcccacaca tcggcggcga ggaggagaag tccgagaccg agcccctgaa gatttggggc 720
gaggcgacga gcgacggcat cgtgccggcg aacggcccga agattcgcgc gcgttgcgtg 780
cgcgtcggag tcgccgacgg ccacaccgcc caggtcaccg tcgctttcaa ggccgtcccc 840
acggccgcgc agattctgga gcgctgggag cggcacaggg gccgcgccgc cgacctgccc 900
tcggccccgc gccgcctcat acactaccgc ccggagaagg atcgcccaca gcccgcgctc 960
gacgtgatga ccgagaacgg catggccgtc accgtcggcc acctacgggt cgagccggat 1020
gaagccacgg cctccttcac cgccctcgca cacaacgcca tcctcggcgc ggcgggcggc 1080
gcggtctggg cgaccgaggc ggccctggcc cgcgggctcc tctaccgccg catcgccccg 1140
caacgaaaga ccaggcccca gacggcgaag gcgctctga 1179
<210> 86
<211> 392
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_2 sequence from unknown bacterial species from
environmental sample
<400> 86
Met Ala Gln Ile Ala Glu Leu Thr Arg Asp Ala Glu Gly Ala Ala Ala
1 5 10 15
Val Ala Gly Gly Lys Leu Arg Val Ala Leu Leu Gly Ala Thr Gly Met
20 25 30
Val Gly Gln Gln Phe Ile Arg Val Leu Arg Asn His Pro Trp Phe Glu
35 40 45
Ile Ala Val Leu Ala Ala Ser Glu Ser Ser Ala Gly Lys Thr Tyr Arg
50 55 60
Glu Ala Leu Arg Gly Arg Trp Ala Met Glu Phe Ala Val Pro Glu Glu
65 70 75 80
Leu Ala Gly Val Lys Val Leu Asp Val Gln Ser Val Asp Glu Ile Ala
85 90 95
Ala Gln Ala Asp Val Ala Phe Cys Ala Leu Asn Leu Glu Lys Glu Ala
100 105 110
Val Arg Ala Leu Glu Asp Ala Tyr Ala Arg Arg Gly Val Trp Val Thr
115 120 125
Ser Asn Asn Ser Ala Phe Arg Gln Asp Pro Leu Val Pro Met Val Ile
130 135 140
Pro Ala Ala Asn Ala His His Leu Gly Val Val Pro His Gln Arg Arg
145 150 155 160
Ala Arg Gly Tyr Asp Thr Gly Ala Ile Ile Val Lys Ser Asn Cys Ser
165 170 175
Ile Gln Ser Tyr Val Ile Ala Leu Glu Pro Leu Arg Asp Phe Gly Val
180 185 190
Thr Arg Ile Asn Val Phe Ser Ala Gln Ala Ile Ser Gly Ala Gly Lys
195 200 205
Thr Phe Lys Thr Trp Pro Glu Met Arg Asp Asn Leu Ile Pro His Ile
210 215 220
Gly Gly Glu Glu Glu Lys Ser Glu Thr Glu Pro Leu Lys Ile Trp Gly
225 230 235 240
Glu Ala Thr Ser Asp Gly Ile Val Pro Ala Asn Gly Pro Lys Ile Arg
245 250 255
Ala Arg Cys Val Arg Val Gly Val Ala Asp Gly His Thr Ala Gln Val
260 265 270
Thr Val Ala Phe Lys Ala Val Pro Thr Ala Ala Gln Ile Leu Glu Arg
275 280 285
Trp Glu Arg His Arg Gly Arg Ala Ala Asp Leu Pro Ser Ala Pro Arg
290 295 300
Arg Leu Ile His Tyr Arg Pro Glu Lys Asp Arg Pro Gln Pro Ala Leu
305 310 315 320
Asp Val Met Thr Glu Asn Gly Met Ala Val Thr Val Gly His Leu Arg
325 330 335
Val Glu Pro Asp Glu Ala Thr Ala Ser Phe Thr Ala Leu Ala His Asn
340 345 350
Ala Ile Leu Gly Ala Ala Gly Gly Ala Val Trp Ala Thr Glu Ala Ala
355 360 365
Leu Ala Arg Gly Leu Leu Tyr Arg Arg Ile Ala Pro Gln Arg Lys Thr
370 375 380
Arg Pro Gln Thr Ala Lys Ala Leu
385 390
<210> 87
<211> 1245
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_3 sequence from unknown bacterial species from
environmental sample
<400> 87
atgtattatg gatttgaagt aatcatcccg ctccggctaa aactggcggg taacatcaac 60
aaaggcggaa acaacgaggt agtaatggct catatagaag aaatcgctcg tcttgaggcc 120
gggagcgccc gactctcagg cggaaagttg aaggtcgctg tgctgggcgc aaccgggatg 180
gtgggccaac agttaataag acttctatcg gatcatccct ggtttgaagt tgttgtggtt 240
gccgcctcaa ctaattctga aggtagctct tattcggaag ctgtccgggg tcgttggaca 300
atggcagctc gcatcccgga tgaaattgcc gcaatgaacg tttgggacgt tcagtcggtg 360
gacgagatag cggctcaagt tgatatcgcg ttctgcgcaa tcaaccttga taaggaaggt 420
gtgttgaagt tggaacacgc atacgcagct gcgggagtat gggttacttc caacaattcg 480
gcgtaccggc cggacccgtt cgtgcctatg gtgattcccg ccgtcaatcc gcatcacctg 540
gacttgatcc cccaccagcg ccaaacaaag ggctatcgaa ccggcgcgct tatagtaaag 600
agcaattgct ctattcagag ttatgtaatc gcactggacc cgctccggga attcggcatc 660
gaaaacgtaa gtatccacag cgaacaggcg atctccggcg cgggtaagac gtttgagact 720
tttccggata ttgagcgcaa cctgattcca ctaattaacg gcgaagaaaa gaagtcagag 780
gtcgagccgc tgaagatctg gggccagctc gaggctggag gaattgtgcc agcaacagga 840
ccacgcatta gggcgaagtg cgttagagta ggtgtcctcc atggacatac agcttatgcg 900
acagtgagat tccgagacac tccaactgtg gcccagatcc tggaacgatg ggagaactac 960
aaatcaccga accaacttcc atcgtcgcct cggaaattga ttcactactt gccagaaccc 1020
gaccggcccc agccacgtct ggatgtgatg acggagaacg gcatggcagt aagtatcgga 1080
caattgaaga ttgacagcga taagtctgtt tcctttaccg gcctttctca taatctgatc 1140
ctgggagctg ctggtggtgc cgtacttgcc accgaagcag ccgttgccag ggaacttgtc 1200
tatcgcagaa tcttatctcg ccaggagata ccgcagccgg catag 1245
<210> 88
<211> 414
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_3 sequence from unknown bacterial species from
environmental sample
<400> 88
Met Tyr Tyr Gly Phe Glu Val Ile Ile Pro Leu Arg Leu Lys Leu Ala
1 5 10 15
Gly Asn Ile Asn Lys Gly Gly Asn Asn Glu Val Val Met Ala His Ile
20 25 30
Glu Glu Ile Ala Arg Leu Glu Ala Gly Ser Ala Arg Leu Ser Gly Gly
35 40 45
Lys Leu Lys Val Ala Val Leu Gly Ala Thr Gly Met Val Gly Gln Gln
50 55 60
Leu Ile Arg Leu Leu Ser Asp His Pro Trp Phe Glu Val Val Val Val
65 70 75 80
Ala Ala Ser Thr Asn Ser Glu Gly Ser Ser Tyr Ser Glu Ala Val Arg
85 90 95
Gly Arg Trp Thr Met Ala Ala Arg Ile Pro Asp Glu Ile Ala Ala Met
100 105 110
Asn Val Trp Asp Val Gln Ser Val Asp Glu Ile Ala Ala Gln Val Asp
115 120 125
Ile Ala Phe Cys Ala Ile Asn Leu Asp Lys Glu Gly Val Leu Lys Leu
130 135 140
Glu His Ala Tyr Ala Ala Ala Gly Val Trp Val Thr Ser Asn Asn Ser
145 150 155 160
Ala Tyr Arg Pro Asp Pro Phe Val Pro Met Val Ile Pro Ala Val Asn
165 170 175
Pro His His Leu Asp Leu Ile Pro His Gln Arg Gln Thr Lys Gly Tyr
180 185 190
Arg Thr Gly Ala Leu Ile Val Lys Ser Asn Cys Ser Ile Gln Ser Tyr
195 200 205
Val Ile Ala Leu Asp Pro Leu Arg Glu Phe Gly Ile Glu Asn Val Ser
210 215 220
Ile His Ser Glu Gln Ala Ile Ser Gly Ala Gly Lys Thr Phe Glu Thr
225 230 235 240
Phe Pro Asp Ile Glu Arg Asn Leu Ile Pro Leu Ile Asn Gly Glu Glu
245 250 255
Lys Lys Ser Glu Val Glu Pro Leu Lys Ile Trp Gly Gln Leu Glu Ala
260 265 270
Gly Gly Ile Val Pro Ala Thr Gly Pro Arg Ile Arg Ala Lys Cys Val
275 280 285
Arg Val Gly Val Leu His Gly His Thr Ala Tyr Ala Thr Val Arg Phe
290 295 300
Arg Asp Thr Pro Thr Val Ala Gln Ile Leu Glu Arg Trp Glu Asn Tyr
305 310 315 320
Lys Ser Pro Asn Gln Leu Pro Ser Ser Pro Arg Lys Leu Ile His Tyr
325 330 335
Leu Pro Glu Pro Asp Arg Pro Gln Pro Arg Leu Asp Val Met Thr Glu
340 345 350
Asn Gly Met Ala Val Ser Ile Gly Gln Leu Lys Ile Asp Ser Asp Lys
355 360 365
Ser Val Ser Phe Thr Gly Leu Ser His Asn Leu Ile Leu Gly Ala Ala
370 375 380
Gly Gly Ala Val Leu Ala Thr Glu Ala Ala Val Ala Arg Glu Leu Val
385 390 395 400
Tyr Arg Arg Ile Leu Ser Arg Gln Glu Ile Pro Gln Pro Ala
405 410
<210> 89
<211> 1089
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_4 sequence from unknown bacterial species from
environmental sample
<400> 89
atgagctcct ctcgcatccc ggtccttata ctcggtgcga ccggcatggt cggacagaga 60
ttcgtctccc tcttgagcga tcatccctgg tttcaaatag ctggtgttgc ggcgtccccg 120
aattcggcag gggttcctta ccgcgaagcc gttcgtggca gatggctcct tgagtctgac 180
attccagata gtgtgggtgg tctcacggtg taccgtgtag aggaagatgc cgaattcctt 240
tcgaagttgg gccaggtggc tttttgtgcg ctcgatctac cgaaggaacg ggtccaggct 300
atcgagtgtg attatgcgcg tcggggcgtg gctgttatat cgaacaattc tgcacaccgt 360
cttacgagtg acgtgccggt cttaatgcca gagataaatc ctgatcacag tgagattata 420
actcagcaaa gaaaaaaccg agggtggtca tgcgggctta tcgcggtgaa gccaaactgc 480
tcaatccagt cttatgtccc agtccttgcc gccctttctg agctcaaggt cgagcgagta 540
tcagtcacga cgctgcaagc agtctccggc gccggaaaga ccctaaacag ctggccagag 600
atggtcgaca atgtgattcc tttcattcgt ggcgaagaag aaaagagcga gattgaacct 660
ctcaaagttc tcggtaccgt aaccgaggct ggaatcgcac cgagacggga cctcaagatc 720
tctgcaactt gtattcgagt cccggtctct gacgggcata tggccagtct caccttttcg 780
ctcggcgtat cggcctcagc gggggagatt gttgagcgat taaaggcttt caaaccaaga 840
tctaaaggct tagaactccc ctcgtcgccg gaactgtttc ttgcatattc gtccgatgac 900
gaccggccgc agactcgtct tgatcgggac actgaaagag gaatgggagt ttcagttgga 960
cgtctccgag aagattctgt tctggggtgg aagtgtgttg cactttcgca caatacggtt 1020
cgcggggctg ccggcggtgc cgtactgatg gcagagcttc ttcataagca gggctatatc 1080
aaaggctaa 1089
<210> 90
<211> 362
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_4 sequence from unknown bacterial species from
environmental sample
<400> 90
Met Ser Ser Ser Arg Ile Pro Val Leu Ile Leu Gly Ala Thr Gly Met
1 5 10 15
Val Gly Gln Arg Phe Val Ser Leu Leu Ser Asp His Pro Trp Phe Gln
20 25 30
Ile Ala Gly Val Ala Ala Ser Pro Asn Ser Ala Gly Val Pro Tyr Arg
35 40 45
Glu Ala Val Arg Gly Arg Trp Leu Leu Glu Ser Asp Ile Pro Asp Ser
50 55 60
Val Gly Gly Leu Thr Val Tyr Arg Val Glu Glu Asp Ala Glu Phe Leu
65 70 75 80
Ser Lys Leu Gly Gln Val Ala Phe Cys Ala Leu Asp Leu Pro Lys Glu
85 90 95
Arg Val Gln Ala Ile Glu Cys Asp Tyr Ala Arg Arg Gly Val Ala Val
100 105 110
Ile Ser Asn Asn Ser Ala His Arg Leu Thr Ser Asp Val Pro Val Leu
115 120 125
Met Pro Glu Ile Asn Pro Asp His Ser Glu Ile Ile Thr Gln Gln Arg
130 135 140
Lys Asn Arg Gly Trp Ser Cys Gly Leu Ile Ala Val Lys Pro Asn Cys
145 150 155 160
Ser Ile Gln Ser Tyr Val Pro Val Leu Ala Ala Leu Ser Glu Leu Lys
165 170 175
Val Glu Arg Val Ser Val Thr Thr Leu Gln Ala Val Ser Gly Ala Gly
180 185 190
Lys Thr Leu Asn Ser Trp Pro Glu Met Val Asp Asn Val Ile Pro Phe
195 200 205
Ile Arg Gly Glu Glu Glu Lys Ser Glu Ile Glu Pro Leu Lys Val Leu
210 215 220
Gly Thr Val Thr Glu Ala Gly Ile Ala Pro Arg Arg Asp Leu Lys Ile
225 230 235 240
Ser Ala Thr Cys Ile Arg Val Pro Val Ser Asp Gly His Met Ala Ser
245 250 255
Leu Thr Phe Ser Leu Gly Val Ser Ala Ser Ala Gly Glu Ile Val Glu
260 265 270
Arg Leu Lys Ala Phe Lys Pro Arg Ser Lys Gly Leu Glu Leu Pro Ser
275 280 285
Ser Pro Glu Leu Phe Leu Ala Tyr Ser Ser Asp Asp Asp Arg Pro Gln
290 295 300
Thr Arg Leu Asp Arg Asp Thr Glu Arg Gly Met Gly Val Ser Val Gly
305 310 315 320
Arg Leu Arg Glu Asp Ser Val Leu Gly Trp Lys Cys Val Ala Leu Ser
325 330 335
His Asn Thr Val Arg Gly Ala Ala Gly Gly Ala Val Leu Met Ala Glu
340 345 350
Leu Leu His Lys Gln Gly Tyr Ile Lys Gly
355 360
<210> 91
<211> 1086
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_5 sequence from unknown bacterial species from
environmental sample
<400> 91
atggcaaaca agctcaaggt aggcgtcctc ggcgcgaccg gcatggtcgg ccagaggttc 60
gtatcgctgc tcgcggacca tccgtggttc gaggtctctg cggtcgctgc aagcgcatcg 120
agcgcaggca aatcgtacgc agacgcagtc tcggggcgct ggacgctcga gacgcccgtc 180
ccgacagccg ttgcaaaaca gacggtcagc gacgcgtcgc agattcaaaa gatcgcggac 240
gcctgcgact tcgtcgtgtg cgcggtcgat atggacaaag cggcgaccgc gaagctcgaa 300
gaagactacg cgcgtgcgga gacgccggtc gtttcgaaca actcggcgca tcgttggacg 360
ccagacgtcc cgatgatgat ccccgagatc aactcgcacc acaccgacgt gatcgaagcg 420
caacgcaagc gcctcggcac gaagcgcggc ttcatcgcgg tgaaaccgaa ctgttcgatc 480
caatcgtacg tccctgcgat ccatccgctc gcggcattca agcccacgaa gatcgcggtc 540
tgcacgtatc aagcgatcag cggtgcgggc aaaacgttcc agtcatggcc cgacatgatc 600
gacaacgtca tccccttcat caaaggtgaa gaggaaaaga gcgagaagga accgctcaag 660
gtgtggggca cggtgaaggg cggagaaatt gtcgccgctc catcgccgac gatcacggcg 720
caatgcattc gcgtgcccgt cagtgacggt cacatggccg cggtgttcgt cgcgttcgag 780
cgcaagccaa cgcgcgagca aatcctctct gcgtggaaag agttcacggg taagccgcag 840
caagcgaagc tgccgagcgc gccaacgccg ttcctcaatt acttcgagga cgacacgcgc 900
ccgcagacca aactcgatcg cgacaacggt gacggccaag ccatctcgat cggtcgtctg 960
cgcgaagacg cgatgttcga ttggaagttc gtcgcgcttt cacacaacac cgtccgcggt 1020
gccgcaggtg gcgctgtact cactgccgag ttcctcaaac atgaaggttt cctggcagcg 1080
aagtag 1086
<210> 92
<211> 361
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_5 sequence from unknown bacterial species from
environmental sample
<400> 92
Met Ala Asn Lys Leu Lys Val Gly Val Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Val Ser Leu Leu Ala Asp His Pro Trp Phe Glu Val
20 25 30
Ser Ala Val Ala Ala Ser Ala Ser Ser Ala Gly Lys Ser Tyr Ala Asp
35 40 45
Ala Val Ser Gly Arg Trp Thr Leu Glu Thr Pro Val Pro Thr Ala Val
50 55 60
Ala Lys Gln Thr Val Ser Asp Ala Ser Gln Ile Gln Lys Ile Ala Asp
65 70 75 80
Ala Cys Asp Phe Val Val Cys Ala Val Asp Met Asp Lys Ala Ala Thr
85 90 95
Ala Lys Leu Glu Glu Asp Tyr Ala Arg Ala Glu Thr Pro Val Val Ser
100 105 110
Asn Asn Ser Ala His Arg Trp Thr Pro Asp Val Pro Met Met Ile Pro
115 120 125
Glu Ile Asn Ser His His Thr Asp Val Ile Glu Ala Gln Arg Lys Arg
130 135 140
Leu Gly Thr Lys Arg Gly Phe Ile Ala Val Lys Pro Asn Cys Ser Ile
145 150 155 160
Gln Ser Tyr Val Pro Ala Ile His Pro Leu Ala Ala Phe Lys Pro Thr
165 170 175
Lys Ile Ala Val Cys Thr Tyr Gln Ala Ile Ser Gly Ala Gly Lys Thr
180 185 190
Phe Gln Ser Trp Pro Asp Met Ile Asp Asn Val Ile Pro Phe Ile Lys
195 200 205
Gly Glu Glu Glu Lys Ser Glu Lys Glu Pro Leu Lys Val Trp Gly Thr
210 215 220
Val Lys Gly Gly Glu Ile Val Ala Ala Pro Ser Pro Thr Ile Thr Ala
225 230 235 240
Gln Cys Ile Arg Val Pro Val Ser Asp Gly His Met Ala Ala Val Phe
245 250 255
Val Ala Phe Glu Arg Lys Pro Thr Arg Glu Gln Ile Leu Ser Ala Trp
260 265 270
Lys Glu Phe Thr Gly Lys Pro Gln Gln Ala Lys Leu Pro Ser Ala Pro
275 280 285
Thr Pro Phe Leu Asn Tyr Phe Glu Asp Asp Thr Arg Pro Gln Thr Lys
290 295 300
Leu Asp Arg Asp Asn Gly Asp Gly Gln Ala Ile Ser Ile Gly Arg Leu
305 310 315 320
Arg Glu Asp Ala Met Phe Asp Trp Lys Phe Val Ala Leu Ser His Asn
325 330 335
Thr Val Arg Gly Ala Ala Gly Gly Ala Val Leu Thr Ala Glu Phe Leu
340 345 350
Lys His Glu Gly Phe Leu Ala Ala Lys
355 360
<210> 93
<211> 1089
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_6 sequence from unknown bacterial species from
environmental sample
<400> 93
atgacagctc acgatctcaa ggttgccgtg ctcggcgcga ccggcatggt cggacagcgg 60
ttcgtctctc tcctcgacgg ccatccctgg ttccaggtga cggtcgtggc cgcgagcgcc 120
cgatcggccg ggcggcccta cggcgatgcg gtcgccggcc gctggtcgct ctcgaaaccg 180
gtcccggccc ggatcgcgga acgggtcgtg cgggacgcct cgaacatcgc cgccatcgcg 240
gacgaggtgg acctcgtctt ctgcgcggtc gatctatcga aggaggagac gcgcgccctc 300
gaggacgggt atgcccggcg cgagacgccg gtcatctcga acaactccgc gcaccgcggc 360
accccggacg tcccgatgat gatcccggag gtcaacccgg agcacgccga gatcatcgcg 420
gcgcagcggc ggcgtctcgg cacccgacgc ggcttcgtgg cggtgaagcc gaactgctcg 480
ctccagtctt acctgcccgc gctccatccg ctccgcgatc tcggcctcga gaaggtcatg 540
gtggcgacct accaggccat ctcgggggcc ggcaagacct tcgcgtcctg gccggagatg 600
accgacaacg tcatcccctt catcaagggc gaggaggaga agagcgagca ggagccgctc 660
aagatctggg gtcgcgtgga cggcgaccgg atcgctccgg cccgcgagcc gatcatctcc 720
gcgcaatgca tccgcgtccc ggtgaccgat ggacacctgg cggcggtctc tctgtcgctg 780
gctcgcaagc agacgcccga ggcgatcatc cggcgctggc gcgaatacga gggcaagccg 840
cagcgcctcg gattgccgag cgccccgcgt ccgttcctgg tctatcacga cgacgactcg 900
agaccgcaga cccggctcga ccgcgacgcc ggcaatggaa tggcgatcag catgggccgg 960
ctccgccccg atccgctgtt cgactatcgc ttcgtcgcgc tgtcgcacaa cacggtgcgc 1020
ggcgccgccg gcggcggggt actcacggcc gagctgctcg tcgcggacgg ctacatcgag 1080
cgcaagtag 1089
<210> 94
<211> 362
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_6 sequence from unknown bacterial species from
environmental sample
<400> 94
Met Thr Ala His Asp Leu Lys Val Ala Val Leu Gly Ala Thr Gly Met
1 5 10 15
Val Gly Gln Arg Phe Val Ser Leu Leu Asp Gly His Pro Trp Phe Gln
20 25 30
Val Thr Val Val Ala Ala Ser Ala Arg Ser Ala Gly Arg Pro Tyr Gly
35 40 45
Asp Ala Val Ala Gly Arg Trp Ser Leu Ser Lys Pro Val Pro Ala Arg
50 55 60
Ile Ala Glu Arg Val Val Arg Asp Ala Ser Asn Ile Ala Ala Ile Ala
65 70 75 80
Asp Glu Val Asp Leu Val Phe Cys Ala Val Asp Leu Ser Lys Glu Glu
85 90 95
Thr Arg Ala Leu Glu Asp Gly Tyr Ala Arg Arg Glu Thr Pro Val Ile
100 105 110
Ser Asn Asn Ser Ala His Arg Gly Thr Pro Asp Val Pro Met Met Ile
115 120 125
Pro Glu Val Asn Pro Glu His Ala Glu Ile Ile Ala Ala Gln Arg Arg
130 135 140
Arg Leu Gly Thr Arg Arg Gly Phe Val Ala Val Lys Pro Asn Cys Ser
145 150 155 160
Leu Gln Ser Tyr Leu Pro Ala Leu His Pro Leu Arg Asp Leu Gly Leu
165 170 175
Glu Lys Val Met Val Ala Thr Tyr Gln Ala Ile Ser Gly Ala Gly Lys
180 185 190
Thr Phe Ala Ser Trp Pro Glu Met Thr Asp Asn Val Ile Pro Phe Ile
195 200 205
Lys Gly Glu Glu Glu Lys Ser Glu Gln Glu Pro Leu Lys Ile Trp Gly
210 215 220
Arg Val Asp Gly Asp Arg Ile Ala Pro Ala Arg Glu Pro Ile Ile Ser
225 230 235 240
Ala Gln Cys Ile Arg Val Pro Val Thr Asp Gly His Leu Ala Ala Val
245 250 255
Ser Leu Ser Leu Ala Arg Lys Gln Thr Pro Glu Ala Ile Ile Arg Arg
260 265 270
Trp Arg Glu Tyr Glu Gly Lys Pro Gln Arg Leu Gly Leu Pro Ser Ala
275 280 285
Pro Arg Pro Phe Leu Val Tyr His Asp Asp Asp Ser Arg Pro Gln Thr
290 295 300
Arg Leu Asp Arg Asp Ala Gly Asn Gly Met Ala Ile Ser Met Gly Arg
305 310 315 320
Leu Arg Pro Asp Pro Leu Phe Asp Tyr Arg Phe Val Ala Leu Ser His
325 330 335
Asn Thr Val Arg Gly Ala Ala Gly Gly Gly Val Leu Thr Ala Glu Leu
340 345 350
Leu Val Ala Asp Gly Tyr Ile Glu Arg Lys
355 360
<210> 95
<211> 1059
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_7 sequence from unknown bacterial species from
environmental sample
<400> 95
gtgaagcaac gcgtcgggat cctcggagcg acggggctcg tcgggcagcg gctcgtccgc 60
atgctcgagg gccatccgct cttcgaagtg agcgcactgg ctgcctccga ccgctccgag 120
ggacggcctt acgcggacgc gtgcccgtgg cggctcgccg accccatgcc cgaatcggtc 180
gcgggcttgc ggctggcccc ctgctcgccg ccgctcgact gcgacttcgt catcgcgagc 240
ctgccgtccg aggtcgccct cgaggccgag acggccttcg ccgcggccgg ctacccggtc 300
gtcagcaact cctcggccct ccgcatggcc gaggacgtac cgctcgtcgt ccccgaggtc 360
aaccccgacc acacggccct gctggccgag cagcgacgcc ggcgcggctg ggatcgtggc 420
ttcgtcctcg cgaacccgaa ctgctcgacg atcgcgctcg cgctcgcgct cgccccgctc 480
gaacgccgct tcggcctcga ggccgtcgtc gtgacgacga tgcaggcgat ctcgggcgcc 540
ggatacccgg gcgtctcggc cgtcgacatc gccgacaacg tcctgcccca catcgcgggc 600
gaggaggaga agctcgagac cgagccgctc aagatcttcg ggcgcttcac cggcgccggg 660
atcgagccgg cgagctttgc cgtcagcggc caatgccacc gcgtcgccgt ccaggacggc 720
cacctcgaag cggtccgcgt caagctcgcg cggcgcgcct cggtcgcgga ggtcgtcgag 780
gccctcgaaa ccttccgggg cctgccgcag gagctgcgcc tgccgacggc gcccgagcgc 840
cccgtcgtcg tccggcgtga aacggaccgg cctcagcccc gcctcgaccg cgacgccgag 900
ggcggcatgg ccacggtcgt cggccggatc gccgccgacc gcgtcctcga cttcaagctc 960
acgctcctcg gccacaacac gatccggggc gccgcgggcg gggcgctcct caacgccgaa 1020
ctgctcgacg cccagggcct gctcgggccc cgcgcgtga 1059
<210> 96
<211> 352
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_7 sequence from unknown bacterial species from
environmental sample
<400> 96
Val Lys Gln Arg Val Gly Ile Leu Gly Ala Thr Gly Leu Val Gly Gln
1 5 10 15
Arg Leu Val Arg Met Leu Glu Gly His Pro Leu Phe Glu Val Ser Ala
20 25 30
Leu Ala Ala Ser Asp Arg Ser Glu Gly Arg Pro Tyr Ala Asp Ala Cys
35 40 45
Pro Trp Arg Leu Ala Asp Pro Met Pro Glu Ser Val Ala Gly Leu Arg
50 55 60
Leu Ala Pro Cys Ser Pro Pro Leu Asp Cys Asp Phe Val Ile Ala Ser
65 70 75 80
Leu Pro Ser Glu Val Ala Leu Glu Ala Glu Thr Ala Phe Ala Ala Ala
85 90 95
Gly Tyr Pro Val Val Ser Asn Ser Ser Ala Leu Arg Met Ala Glu Asp
100 105 110
Val Pro Leu Val Val Pro Glu Val Asn Pro Asp His Thr Ala Leu Leu
115 120 125
Ala Glu Gln Arg Arg Arg Arg Gly Trp Asp Arg Gly Phe Val Leu Ala
130 135 140
Asn Pro Asn Cys Ser Thr Ile Ala Leu Ala Leu Ala Leu Ala Pro Leu
145 150 155 160
Glu Arg Arg Phe Gly Leu Glu Ala Val Val Val Thr Thr Met Gln Ala
165 170 175
Ile Ser Gly Ala Gly Tyr Pro Gly Val Ser Ala Val Asp Ile Ala Asp
180 185 190
Asn Val Leu Pro His Ile Ala Gly Glu Glu Glu Lys Leu Glu Thr Glu
195 200 205
Pro Leu Lys Ile Phe Gly Arg Phe Thr Gly Ala Gly Ile Glu Pro Ala
210 215 220
Ser Phe Ala Val Ser Gly Gln Cys His Arg Val Ala Val Gln Asp Gly
225 230 235 240
His Leu Glu Ala Val Arg Val Lys Leu Ala Arg Arg Ala Ser Val Ala
245 250 255
Glu Val Val Glu Ala Leu Glu Thr Phe Arg Gly Leu Pro Gln Glu Leu
260 265 270
Arg Leu Pro Thr Ala Pro Glu Arg Pro Val Val Val Arg Arg Glu Thr
275 280 285
Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Glu Gly Gly Met Ala
290 295 300
Thr Val Val Gly Arg Ile Ala Ala Asp Arg Val Leu Asp Phe Lys Leu
305 310 315 320
Thr Leu Leu Gly His Asn Thr Ile Arg Gly Ala Ala Gly Gly Ala Leu
325 330 335
Leu Asn Ala Glu Leu Leu Asp Ala Gln Gly Leu Leu Gly Pro Arg Ala
340 345 350
<210> 97
<211> 1146
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_8 sequence from unknown bacterial species from
environmental sample
<400> 97
atgaacaaga aattccgagt cggcattctc ggggcaaccg gcatggtcgg tcagcgattc 60
gtccaactgc tggagaatca tccgcttttt gaaatcacgg cgctggcggc gtctggtcgt 120
tcgcaaggaa agacttacgc cgaagcctgc acctggcgtt tgcccggcga attgccggat 180
ggcgtgaaac agatcgtcgt gcagccgccc gcgccgccac tcgactgcga tttcgttttc 240
tccagtttgc cgggcgaggt cgcggctgat gccgagctta agttcgcacg aatggatttt 300
ccagtgatca gtaattcttc atcgcatcgc atggcgccgg atgttccgtt gctgattccg 360
gaagtcaatc ctgaacacgt cgaactgatc gacgcgcagc gcattaaccg cgaatacaat 420
cgcgggttca tcgtcacaaa tcccaactgc tcagcgatcg cggttgtgtt ggcactggcg 480
ccgttgcatg caaagtttgg cgtgagcgag tgcgtcgtga ccacgatgca agccctctcg 540
ggcgccggtt atccaggtgt tgcttctctc gacgccattg acaacgtaat tccattcatc 600
ggcggcgagg acgagaaggt cgagatcgaa accaaaaagc tcctcggcgt cgtgagccag 660
ggcacaatcg cggacgctaa cctgaaagtc agcgcgcaat gtaaccgcgt gaatgtgacc 720
gacggtcaca tggcttcgat tcgggtgaaa ctggcgcagc cggcatccac cagcgaagtt 780
atcgacgtgc tcgcatcgtt caccgccgag ccccaaaagc tgaaacttca ctcagcgccg 840
gcgaaaccac tcatcgtccg cgacgaaatt gatcggccac agcctcgact tgatcgtgat 900
gcgggaaatg gaatgagcgt taccgtgggg cgactcgcga aagataacgt tttggattat 960
cgcttcgtgg cgctgggtca taacacgatt cgcggcgccg cgggggcggc gattctgaat 1020
gcagagttgc tggtggcgaa aggatactcg cgtgactacg cgccgccaag atggcggcga 1080
accgcaggca gggatgcctg cgctcccatc cattccgtaa tcactcgttt caactcgtcc 1140
aactga 1146
<210> 98
<211> 381
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_8 sequence from unknown bacterial species from
environmental sample
<400> 98
Met Asn Lys Lys Phe Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Val Gln Leu Leu Glu Asn His Pro Leu Phe Glu Ile
20 25 30
Thr Ala Leu Ala Ala Ser Gly Arg Ser Gln Gly Lys Thr Tyr Ala Glu
35 40 45
Ala Cys Thr Trp Arg Leu Pro Gly Glu Leu Pro Asp Gly Val Lys Gln
50 55 60
Ile Val Val Gln Pro Pro Ala Pro Pro Leu Asp Cys Asp Phe Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Glu Val Ala Ala Asp Ala Glu Leu Lys Phe Ala
85 90 95
Arg Met Asp Phe Pro Val Ile Ser Asn Ser Ser Ser His Arg Met Ala
100 105 110
Pro Asp Val Pro Leu Leu Ile Pro Glu Val Asn Pro Glu His Val Glu
115 120 125
Leu Ile Asp Ala Gln Arg Ile Asn Arg Glu Tyr Asn Arg Gly Phe Ile
130 135 140
Val Thr Asn Pro Asn Cys Ser Ala Ile Ala Val Val Leu Ala Leu Ala
145 150 155 160
Pro Leu His Ala Lys Phe Gly Val Ser Glu Cys Val Val Thr Thr Met
165 170 175
Gln Ala Leu Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Asp Ala
180 185 190
Ile Asp Asn Val Ile Pro Phe Ile Gly Gly Glu Asp Glu Lys Val Glu
195 200 205
Ile Glu Thr Lys Lys Leu Leu Gly Val Val Ser Gln Gly Thr Ile Ala
210 215 220
Asp Ala Asn Leu Lys Val Ser Ala Gln Cys Asn Arg Val Asn Val Thr
225 230 235 240
Asp Gly His Met Ala Ser Ile Arg Val Lys Leu Ala Gln Pro Ala Ser
245 250 255
Thr Ser Glu Val Ile Asp Val Leu Ala Ser Phe Thr Ala Glu Pro Gln
260 265 270
Lys Leu Lys Leu His Ser Ala Pro Ala Lys Pro Leu Ile Val Arg Asp
275 280 285
Glu Ile Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly Asn Gly
290 295 300
Met Ser Val Thr Val Gly Arg Leu Ala Lys Asp Asn Val Leu Asp Tyr
305 310 315 320
Arg Phe Val Ala Leu Gly His Asn Thr Ile Arg Gly Ala Ala Gly Ala
325 330 335
Ala Ile Leu Asn Ala Glu Leu Leu Val Ala Lys Gly Tyr Ser Arg Asp
340 345 350
Tyr Ala Pro Pro Arg Trp Arg Arg Thr Ala Gly Arg Asp Ala Cys Ala
355 360 365
Pro Ile His Ser Val Ile Thr Arg Phe Asn Ser Ser Asn
370 375 380
<210> 99
<211> 1128
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_9 sequence from unknown bacterial species from
environmental sample
<400> 99
atgctcgcag ttgaaaccga aactactgaa ggtcccagct tacaaggtcg gaagaatcgc 60
gtcggaattt taggcgcgac gggaacggtt ggtcagcgct tcattcaact tctggagcac 120
catccgcaat tcgaggtgac ggcgctggcc gcctcggatc gctcgcaggg acggcgatac 180
gcggatgcct gcacctggcg tctgccgggc gcgatgccgg aatcggtacg cgcgctgatg 240
gtggaagccc cggcgccgcc gcttgactgc gatttggttt tctcaagcct gccgtcccag 300
attgcccgcg atgctgaggt tgccttcgcg agagccggct atcccgtcat cagcaactcg 360
tccgcctgcc gcatggatga cgacgtgccg cttttgatcc cggaggtaaa tgccgagcat 420
ctcgggattc tcgatcacca acggaagctg cgccgttttc cggggaacgg tttcattgtt 480
accaatccaa attgtgcggc aattgtattg gcgccggtgc tggccgcgct acatgaacgt 540
ttccaagtcg tttcggtcat tgccactacc atgcaggcga tctccggcgc tggttatccc 600
ggcgtggcct cccttgatat tgtcgataat ctgattcctt ttatcgacgg cgaagaggac 660
aagattgaag cggagactct gaagattctc ggccgactag atacggaaag aattgagccc 720
gcaagaatcc ttattagtgc gcagtgccat cgtgtcaatg tcattgatgg ccacacggta 780
gcggcgcggc tgaagctggc gcgccaacca cagcttgatg aagtgcgcga tgtcctgcgg 840
tcattcagat cgttgccgca agaactgcgc cttcactcag ctccggaaaa accaattgtg 900
gtgcatgacg aggttgaccg gccgcagccg cggctcgatc gcgatgcggg caacggcatg 960
agtattactg tcggtcgcct ggcgggcgat cgcgtcttgg actttcgctt ggtggcgctc 1020
ggtcataaca cgattcgcgg agccgcgggc gcggccatct tgaatgctga attgttattg 1080
gcgaaaggac atttttccaa gacttcggat agggcgatgg ccgcttag 1128
<210> 100
<211> 375
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_9 sequence from unknown bacterial species from
environmental sample
<400> 100
Met Leu Ala Val Glu Thr Glu Thr Thr Glu Gly Pro Ser Leu Gln Gly
1 5 10 15
Arg Lys Asn Arg Val Gly Ile Leu Gly Ala Thr Gly Thr Val Gly Gln
20 25 30
Arg Phe Ile Gln Leu Leu Glu His His Pro Gln Phe Glu Val Thr Ala
35 40 45
Leu Ala Ala Ser Asp Arg Ser Gln Gly Arg Arg Tyr Ala Asp Ala Cys
50 55 60
Thr Trp Arg Leu Pro Gly Ala Met Pro Glu Ser Val Arg Ala Leu Met
65 70 75 80
Val Glu Ala Pro Ala Pro Pro Leu Asp Cys Asp Leu Val Phe Ser Ser
85 90 95
Leu Pro Ser Gln Ile Ala Arg Asp Ala Glu Val Ala Phe Ala Arg Ala
100 105 110
Gly Tyr Pro Val Ile Ser Asn Ser Ser Ala Cys Arg Met Asp Asp Asp
115 120 125
Val Pro Leu Leu Ile Pro Glu Val Asn Ala Glu His Leu Gly Ile Leu
130 135 140
Asp His Gln Arg Lys Leu Arg Arg Phe Pro Gly Asn Gly Phe Ile Val
145 150 155 160
Thr Asn Pro Asn Cys Ala Ala Ile Val Leu Ala Pro Val Leu Ala Ala
165 170 175
Leu His Glu Arg Phe Gln Val Val Ser Val Ile Ala Thr Thr Met Gln
180 185 190
Ala Ile Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Asp Ile Val
195 200 205
Asp Asn Leu Ile Pro Phe Ile Asp Gly Glu Glu Asp Lys Ile Glu Ala
210 215 220
Glu Thr Leu Lys Ile Leu Gly Arg Leu Asp Thr Glu Arg Ile Glu Pro
225 230 235 240
Ala Arg Ile Leu Ile Ser Ala Gln Cys His Arg Val Asn Val Ile Asp
245 250 255
Gly His Thr Val Ala Ala Arg Leu Lys Leu Ala Arg Gln Pro Gln Leu
260 265 270
Asp Glu Val Arg Asp Val Leu Arg Ser Phe Arg Ser Leu Pro Gln Glu
275 280 285
Leu Arg Leu His Ser Ala Pro Glu Lys Pro Ile Val Val His Asp Glu
290 295 300
Val Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly Asn Gly Met
305 310 315 320
Ser Ile Thr Val Gly Arg Leu Ala Gly Asp Arg Val Leu Asp Phe Arg
325 330 335
Leu Val Ala Leu Gly His Asn Thr Ile Arg Gly Ala Ala Gly Ala Ala
340 345 350
Ile Leu Asn Ala Glu Leu Leu Leu Ala Lys Gly His Phe Ser Lys Thr
355 360 365
Ser Asp Arg Ala Met Ala Ala
370 375
<210> 101
<211> 1065
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_10 sequence from unknown bacterial species from
environmental sample
<400> 101
atgaaaaaga aataccgtgt cggaatctta ggcgcgacgg ggacggtcgg gcagcggttc 60
attcaactgc tcgaaggcca cccgcagttc gaggtgacgg cgctcgcggc ctcggaccgc 120
tcgcaggggc ggccttacgc cgaggcgtgc gcgtggcgtc tgccgggcga gatgccggag 180
gccgtgcgct caatcgaggt ccgaacgccc gcgccgccgc tcgactgcga ccttgtcttt 240
tcgagcctcc ccggcgagat ggcgcgcgag gcggaagaat ctttcgcggg cgccggctac 300
gccgtcgtca gcaactcttc ggcgctcagg atggacgagg acgtgccgct actgataccg 360
gaggtcaacc acgagcacct cgcgctgctc gacgcgcaac gcgagcggcg cggctacgaa 420
agaggcttcg tcgtcaccaa cccgaactgc tcgaccgtcg tcgtcgcgct cgcgctcgcg 480
ccgctgcacg cgaggttcgg cgtcgaggcg gtcgcggccg tcaccatgca ggccatttcc 540
ggcgcgggct accccggcgt cgcctcgctc gacatcgccg acaacgtcct gccccacatc 600
tccggcgagg aggaaaaaat agagagcgag accggcaaga tactcggccg cctagcgggc 660
gggggcgcgt cggcgcgcgt cgagcgcgcg cagttccccg tcagcgcgca gtgccaccgc 720
gtcggcgtaa cggacggaca cacggcggcc gtccgcatca aactctcacg ccccgccgaa 780
cccggtgagc tgcgcgaggc cttcgccgcc tacacttcgc tgccgcagga gttgaaactc 840
cacaacgcgc ccgaacgccc cgtcgtcttc cgcgacgaag acgaccgccc gcagcccaaa 900
ctcgaccgcg acgccggagg cgggatgagc gtcaccgtcg gccgcctccg gcgcgaccgc 960
gtgatggact accgcttcgt cgccctcggc cacaacaccg tccgcggcgc ggccggcgcg 1020
gccatcctca acgccgaact gctcgccgcc accggacgac tgtaa 1065
<210> 102
<211> 354
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_10 sequence from unknown bacterial species from
environmental sample
<400> 102
Met Lys Lys Lys Tyr Arg Val Gly Ile Leu Gly Ala Thr Gly Thr Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Gly His Pro Gln Phe Glu Val
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Arg Pro Tyr Ala Glu
35 40 45
Ala Cys Ala Trp Arg Leu Pro Gly Glu Met Pro Glu Ala Val Arg Ser
50 55 60
Ile Glu Val Arg Thr Pro Ala Pro Pro Leu Asp Cys Asp Leu Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Glu Met Ala Arg Glu Ala Glu Glu Ser Phe Ala
85 90 95
Gly Ala Gly Tyr Ala Val Val Ser Asn Ser Ser Ala Leu Arg Met Asp
100 105 110
Glu Asp Val Pro Leu Leu Ile Pro Glu Val Asn His Glu His Leu Ala
115 120 125
Leu Leu Asp Ala Gln Arg Glu Arg Arg Gly Tyr Glu Arg Gly Phe Val
130 135 140
Val Thr Asn Pro Asn Cys Ser Thr Val Val Val Ala Leu Ala Leu Ala
145 150 155 160
Pro Leu His Ala Arg Phe Gly Val Glu Ala Val Ala Ala Val Thr Met
165 170 175
Gln Ala Ile Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Asp Ile
180 185 190
Ala Asp Asn Val Leu Pro His Ile Ser Gly Glu Glu Glu Lys Ile Glu
195 200 205
Ser Glu Thr Gly Lys Ile Leu Gly Arg Leu Ala Gly Gly Gly Ala Ser
210 215 220
Ala Arg Val Glu Arg Ala Gln Phe Pro Val Ser Ala Gln Cys His Arg
225 230 235 240
Val Gly Val Thr Asp Gly His Thr Ala Ala Val Arg Ile Lys Leu Ser
245 250 255
Arg Pro Ala Glu Pro Gly Glu Leu Arg Glu Ala Phe Ala Ala Tyr Thr
260 265 270
Ser Leu Pro Gln Glu Leu Lys Leu His Asn Ala Pro Glu Arg Pro Val
275 280 285
Val Phe Arg Asp Glu Asp Asp Arg Pro Gln Pro Lys Leu Asp Arg Asp
290 295 300
Ala Gly Gly Gly Met Ser Val Thr Val Gly Arg Leu Arg Arg Asp Arg
305 310 315 320
Val Met Asp Tyr Arg Phe Val Ala Leu Gly His Asn Thr Val Arg Gly
325 330 335
Ala Ala Gly Ala Ala Ile Leu Asn Ala Glu Leu Leu Ala Ala Thr Gly
340 345 350
Arg Leu
<210> 103
<211> 1071
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_11 sequence from unknown bacterial species from
environmental sample
<400> 103
atgactaaaa agtttcgtgt cggcattctt ggagcgacgg gcgtcgttgg ccagcgcttt 60
attcaattgc tcgaaggcca tccgcaattt gagatcgcgg ctctcgcagc atctgatcga 120
tcgcaggaca aaactttcgc cgaggcgtgc aagtggcgac tgccgggcga catgcctgag 180
cacgtgagag agattgtcgt tcagccgccg gcccccccgc ttgattgcga ctttgttttt 240
tccagtttgc ctaccgacat cgcgactgac gccgaaacac aattcgcgct cgcgggctat 300
ccggtgatca gcaattcatc ttcgcatcgc atgggcgctg acattccttt gttgattccg 360
gaagtgaatt cggatcacat tgcgcttatc gacgtgcagc gaaagaaccg tggctacgag 420
cgcggcttta tcgtcactaa tccaaactgt tccgcgattg ccattgtgat ggcgctcgca 480
ccgcttcatg aaaaattcgg aatcacgtcg tgcgtcgcga ccactatgca ggcgctttcc 540
ggcgccggct atccgggcgt agcgtcgctc gacgcgacgg acaatgtgat cccgtttatt 600
ggcggtgaag aagagaagat cgaagccgag actttaaagt tgctcgggga agtgggcgac 660
ggcgtcatcg acgatgccaa aatgtccgtg agtgcccagt gtaaccgcgt gaatgttacc 720
gacggacatc tcgcgtcgat tcgcgtgaag ctttcgcaat cagcatcact agaccaaata 780
aaagaaacac tgtcttcatt tagggccgta ccgcaggagt tgaaactgca ttcggcgccg 840
gtccggccgg tcatcgttcg cgacgaagtt gatcgccccc agccgcgttt ggatcgggac 900
gcggaaaatg ggatgagcgt cactgtgggc cgaattatgc cggacaacgt gctcgacttc 960
cggtttgtgg cgctcggcca caatacgatc cgtggcgcgg ccggcgcggc gattttgaat 1020
gctgagttgc tggtggcccg aggatatttg agtcagaacc acctgcgata g 1071
<210> 104
<211> 356
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_11 sequence from unknown bacterial species from
environmental sample
<400> 104
Met Thr Lys Lys Phe Arg Val Gly Ile Leu Gly Ala Thr Gly Val Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Gly His Pro Gln Phe Glu Ile
20 25 30
Ala Ala Leu Ala Ala Ser Asp Arg Ser Gln Asp Lys Thr Phe Ala Glu
35 40 45
Ala Cys Lys Trp Arg Leu Pro Gly Asp Met Pro Glu His Val Arg Glu
50 55 60
Ile Val Val Gln Pro Pro Ala Pro Pro Leu Asp Cys Asp Phe Val Phe
65 70 75 80
Ser Ser Leu Pro Thr Asp Ile Ala Thr Asp Ala Glu Thr Gln Phe Ala
85 90 95
Leu Ala Gly Tyr Pro Val Ile Ser Asn Ser Ser Ser His Arg Met Gly
100 105 110
Ala Asp Ile Pro Leu Leu Ile Pro Glu Val Asn Ser Asp His Ile Ala
115 120 125
Leu Ile Asp Val Gln Arg Lys Asn Arg Gly Tyr Glu Arg Gly Phe Ile
130 135 140
Val Thr Asn Pro Asn Cys Ser Ala Ile Ala Ile Val Met Ala Leu Ala
145 150 155 160
Pro Leu His Glu Lys Phe Gly Ile Thr Ser Cys Val Ala Thr Thr Met
165 170 175
Gln Ala Leu Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Asp Ala
180 185 190
Thr Asp Asn Val Ile Pro Phe Ile Gly Gly Glu Glu Glu Lys Ile Glu
195 200 205
Ala Glu Thr Leu Lys Leu Leu Gly Glu Val Gly Asp Gly Val Ile Asp
210 215 220
Asp Ala Lys Met Ser Val Ser Ala Gln Cys Asn Arg Val Asn Val Thr
225 230 235 240
Asp Gly His Leu Ala Ser Ile Arg Val Lys Leu Ser Gln Ser Ala Ser
245 250 255
Leu Asp Gln Ile Lys Glu Thr Leu Ser Ser Phe Arg Ala Val Pro Gln
260 265 270
Glu Leu Lys Leu His Ser Ala Pro Val Arg Pro Val Ile Val Arg Asp
275 280 285
Glu Val Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Glu Asn Gly
290 295 300
Met Ser Val Thr Val Gly Arg Ile Met Pro Asp Asn Val Leu Asp Phe
305 310 315 320
Arg Phe Val Ala Leu Gly His Asn Thr Ile Arg Gly Ala Ala Gly Ala
325 330 335
Ala Ile Leu Asn Ala Glu Leu Leu Val Ala Arg Gly Tyr Leu Ser Gln
340 345 350
Asn His Leu Arg
355
<210> 105
<211> 1053
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_12 sequence from unknown bacterial species from
environmental sample
<400> 105
atgtccaaaa aattccgagt gggtatcctg ggagcaaccg gcgttgtcgg tcagcgtttt 60
attcaattac tcgaaaacca tccgcaattt gaagtcgcgg cgcttgcggc atctgatcgt 120
tcgcagggaa aaagttatgt caacgcctgc acctggcgtt tacccggcga gatgccggaa 180
gcggtaaaga acattattgt ccaacctcct tcaccgcccc tcaattgcga tttcgtcttt 240
tccagtttgc ccggggagat tgccaggacg gccgaagagg attttgcccg ggccggttac 300
ccggtgatca gcaattcgtc atcgcaccgc atgggattag acattccttt gctgatccca 360
gaagtgaatc ctgaccacct cgaattgatc gatgctcagc gcacaaatca cgaatacaat 420
cgtggcttca ttgtaacgaa tcccaattgt tccgcgatcg ccatcgtaat cgcgctggct 480
ccgctgcatg agaagtttgg ggtcagctcc tgcgtcgtga cgacaatgca ggccctctcc 540
ggcgccggct atcccggtgt accgtctctc gacgcaaccg acaacgtgat tccttttatc 600
ggcggcgaag atgagaaggt cgagtgcgaa acgcggaaga ttctcggcgt ggtgacgcaa 660
ggcgcagtcg ttgatgccga catgacgata agtgcgcagt gcaatcgcgt gaacgttacg 720
gatggacata tggcgtcgat tcgcgtgaag ctggcccgtt ccgccacgct ggaagagatt 780
cgcgaagcgt tggtttcctt taccgctgaa ccgcaaaggt tgaaactgca cacagccccg 840
gctaaaccca tcgtggtccg cgatgagatt gatcggcccc aaccgcgact cgatcgtgat 900
gcaggccgtg ggatgagtat tacggttggt cgcattatgc cggacagcgt gcttgattat 960
cgcttcatgg cgctcggtca caacacgatt cgcggcgcgg ccggcgcggc gattctaaat 1020
gccgagttgc tggtggcgcg aggatattta tga 1053
<210> 106
<211> 350
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_12 sequence from unknown bacterial species from
environmental sample
<400> 106
Met Ser Lys Lys Phe Arg Val Gly Ile Leu Gly Ala Thr Gly Val Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Asn His Pro Gln Phe Glu Val
20 25 30
Ala Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Ser Tyr Val Asn
35 40 45
Ala Cys Thr Trp Arg Leu Pro Gly Glu Met Pro Glu Ala Val Lys Asn
50 55 60
Ile Ile Val Gln Pro Pro Ser Pro Pro Leu Asn Cys Asp Phe Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Glu Ile Ala Arg Thr Ala Glu Glu Asp Phe Ala
85 90 95
Arg Ala Gly Tyr Pro Val Ile Ser Asn Ser Ser Ser His Arg Met Gly
100 105 110
Leu Asp Ile Pro Leu Leu Ile Pro Glu Val Asn Pro Asp His Leu Glu
115 120 125
Leu Ile Asp Ala Gln Arg Thr Asn His Glu Tyr Asn Arg Gly Phe Ile
130 135 140
Val Thr Asn Pro Asn Cys Ser Ala Ile Ala Ile Val Ile Ala Leu Ala
145 150 155 160
Pro Leu His Glu Lys Phe Gly Val Ser Ser Cys Val Val Thr Thr Met
165 170 175
Gln Ala Leu Ser Gly Ala Gly Tyr Pro Gly Val Pro Ser Leu Asp Ala
180 185 190
Thr Asp Asn Val Ile Pro Phe Ile Gly Gly Glu Asp Glu Lys Val Glu
195 200 205
Cys Glu Thr Arg Lys Ile Leu Gly Val Val Thr Gln Gly Ala Val Val
210 215 220
Asp Ala Asp Met Thr Ile Ser Ala Gln Cys Asn Arg Val Asn Val Thr
225 230 235 240
Asp Gly His Met Ala Ser Ile Arg Val Lys Leu Ala Arg Ser Ala Thr
245 250 255
Leu Glu Glu Ile Arg Glu Ala Leu Val Ser Phe Thr Ala Glu Pro Gln
260 265 270
Arg Leu Lys Leu His Thr Ala Pro Ala Lys Pro Ile Val Val Arg Asp
275 280 285
Glu Ile Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly Arg Gly
290 295 300
Met Ser Ile Thr Val Gly Arg Ile Met Pro Asp Ser Val Leu Asp Tyr
305 310 315 320
Arg Phe Met Ala Leu Gly His Asn Thr Ile Arg Gly Ala Ala Gly Ala
325 330 335
Ala Ile Leu Asn Ala Glu Leu Leu Val Ala Arg Gly Tyr Leu
340 345 350
<210> 107
<211> 1056
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_13 sequence from unknown bacterial species from
environmental sample
<400> 107
atgtccaaca aatttcgagt cggcattctc ggtgcaaccg gcatggtcgg tcaacgattc 60
gtccaactgc tggagaatca tcccgttttt gaaatcacgg cgctggcagc gtctgatcgt 120
tcgcaaggaa agacttacgc cgcagcctgc acctggcgtt tgccgggcga gatgccggct 180
cgcgtgaaac agatcgtcgt gcagccgccc gccccgccac tcgactgcga tttcgttttc 240
tccagtttgc cgggcgagat cgcgactgat gccgagccga aattcgcgcg aatggatttt 300
ccagtgatca gtaattcttc atcgcatcgc atggcgcctg atgttcctct gctgattccg 360
gaagttaatc ctgaacacgt cgaactgatc gacgcgcagc gcatcaaccg cgaatacaat 420
cgcgggttta tcgtcaccaa cccaaattgc tcggcaattg taatcgtgat ggccctcgca 480
ccgttgcacg cgaagtttgg tgttgaatcg tgcatcgtca ccacgatgca agcgctttcc 540
ggggccggct atccgggggt ggcttcgctg gacgccaccg acaatgtgat tccgttcatc 600
agcggcgagg acgaaaaggt cgagagcgaa acgcgaaaaa ttctcggcgt tgtcagccaa 660
ggtgagatca tcgatgccga catgaaagtc agcgcccagt gcaaccgcgt gaatgtgacc 720
gacggtcacc tggcttcgat tcgggtgaaa ctggcgcggc cggcatctgc gaacgaattt 780
cgcgatgcgc tcgcatcgtt caccgccgag ccccaaaagc tgaaactgca cacggcgcct 840
gcgaacccgc tactcatccg cgatgaaatc gatcggccac agccgcgcct tgatcgtgat 900
gccgaaaatg gaatgagtgt aaccgtgggg aggattgctg aagataacgt gcttgattat 960
cgcttcgtag cgctgggtca caacacgatt cgcggcgccg ccggagcggc gattctgaat 1020
gcagagttgc tggtggcgaa aggatatctc gcgtga 1056
<210> 108
<211> 351
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_13 sequence from unknown bacterial species from
environmental sample
<400> 108
Met Ser Asn Lys Phe Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Val Gln Leu Leu Glu Asn His Pro Val Phe Glu Ile
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Thr Tyr Ala Ala
35 40 45
Ala Cys Thr Trp Arg Leu Pro Gly Glu Met Pro Ala Arg Val Lys Gln
50 55 60
Ile Val Val Gln Pro Pro Ala Pro Pro Leu Asp Cys Asp Phe Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Glu Ile Ala Thr Asp Ala Glu Pro Lys Phe Ala
85 90 95
Arg Met Asp Phe Pro Val Ile Ser Asn Ser Ser Ser His Arg Met Ala
100 105 110
Pro Asp Val Pro Leu Leu Ile Pro Glu Val Asn Pro Glu His Val Glu
115 120 125
Leu Ile Asp Ala Gln Arg Ile Asn Arg Glu Tyr Asn Arg Gly Phe Ile
130 135 140
Val Thr Asn Pro Asn Cys Ser Ala Ile Val Ile Val Met Ala Leu Ala
145 150 155 160
Pro Leu His Ala Lys Phe Gly Val Glu Ser Cys Ile Val Thr Thr Met
165 170 175
Gln Ala Leu Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Asp Ala
180 185 190
Thr Asp Asn Val Ile Pro Phe Ile Ser Gly Glu Asp Glu Lys Val Glu
195 200 205
Ser Glu Thr Arg Lys Ile Leu Gly Val Val Ser Gln Gly Glu Ile Ile
210 215 220
Asp Ala Asp Met Lys Val Ser Ala Gln Cys Asn Arg Val Asn Val Thr
225 230 235 240
Asp Gly His Leu Ala Ser Ile Arg Val Lys Leu Ala Arg Pro Ala Ser
245 250 255
Ala Asn Glu Phe Arg Asp Ala Leu Ala Ser Phe Thr Ala Glu Pro Gln
260 265 270
Lys Leu Lys Leu His Thr Ala Pro Ala Asn Pro Leu Leu Ile Arg Asp
275 280 285
Glu Ile Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Glu Asn Gly
290 295 300
Met Ser Val Thr Val Gly Arg Ile Ala Glu Asp Asn Val Leu Asp Tyr
305 310 315 320
Arg Phe Val Ala Leu Gly His Asn Thr Ile Arg Gly Ala Ala Gly Ala
325 330 335
Ala Ile Leu Asn Ala Glu Leu Leu Val Ala Lys Gly Tyr Leu Ala
340 345 350
<210> 109
<211> 1092
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_14 sequence from unknown bacterial species from
environmental sample
<400> 109
atgaaggccc ctaggcctga caaacgtaaa ccaagtatga ccaataaact tcgagttgga 60
attctcggcg caacgggaat ggttgggcag cgctttatcc aacttttgga aaaccatccg 120
caatttcaga ttacggcact ggcagcgtcg gatcgttcgc aaggtaaaac gttctcagaa 180
gcttgtacct ggcgtttgcc cggagagatg ccctcgtttg ttaagtcgat gccggttcac 240
gccccaaacc ccccgctgga ctgtgaattg gtgttctcca gtctgccggg tgagatcgca 300
cgcgaaagcg aacaaagttt tgtcaacgcc ggatttcccg tcatcagcaa ctcctccgct 360
tttcggatgg acgccaacgt tcctttactg attccggaag ttaatcctga gcatctgtcg 420
ttgcttgaat tgcaacaaaa agaaagcaac ggcaagcgcg gatatattgt taccaaccca 480
aattgttcga cgatcatgtt ggcgcttgca ctcgccccgt tgcatgcgcg cttcggtgtg 540
caaaacgttg tcgccaccac cttgcaggct ttatcaggcg ccggataccc gggcgttgcg 600
tcgcttgcca ttagtgacaa cgtgttgccg tttatcgaag gcgaggagca gaagatagag 660
caggaaacgt tgaagattct cggcagcgtc gacggggaaa caattcggca cgcagcgatc 720
agcgtgagcg cgcaatgcac gcgcgtgaac gtctcagacg gccacatggc cgcggtccgc 780
gttaagctga ttgagccggc gacaaaagat gaggttatag atgcactcgc ttcgtttacc 840
gcgctgccgc aaaaactgaa tctccactcc gcgccgccgc agccaatcat cgtgcgcaat 900
gagtccgacc gtccgcagcc acggcttgat cgagatgcgg gcaaaggaat gagcattacg 960
attggacgag tggaccatga ccacgtgatg gactaccgct ttttttcttt gagtcacaac 1020
acagtccgag gcgctgccgg cgcggcaatc cttaacgctg aattgcttct ggcgatgggg 1080
aaaataagat ga 1092
<210> 110
<211> 363
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_14 sequence from unknown bacterial species from
environmental sample
<400> 110
Met Lys Ala Pro Arg Pro Asp Lys Arg Lys Pro Ser Met Thr Asn Lys
1 5 10 15
Leu Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val Gly Gln Arg Phe
20 25 30
Ile Gln Leu Leu Glu Asn His Pro Gln Phe Gln Ile Thr Ala Leu Ala
35 40 45
Ala Ser Asp Arg Ser Gln Gly Lys Thr Phe Ser Glu Ala Cys Thr Trp
50 55 60
Arg Leu Pro Gly Glu Met Pro Ser Phe Val Lys Ser Met Pro Val His
65 70 75 80
Ala Pro Asn Pro Pro Leu Asp Cys Glu Leu Val Phe Ser Ser Leu Pro
85 90 95
Gly Glu Ile Ala Arg Glu Ser Glu Gln Ser Phe Val Asn Ala Gly Phe
100 105 110
Pro Val Ile Ser Asn Ser Ser Ala Phe Arg Met Asp Ala Asn Val Pro
115 120 125
Leu Leu Ile Pro Glu Val Asn Pro Glu His Leu Ser Leu Leu Glu Leu
130 135 140
Gln Gln Lys Glu Ser Asn Gly Lys Arg Gly Tyr Ile Val Thr Asn Pro
145 150 155 160
Asn Cys Ser Thr Ile Met Leu Ala Leu Ala Leu Ala Pro Leu His Ala
165 170 175
Arg Phe Gly Val Gln Asn Val Val Ala Thr Thr Leu Gln Ala Leu Ser
180 185 190
Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Ala Ile Ser Asp Asn Val
195 200 205
Leu Pro Phe Ile Glu Gly Glu Glu Gln Lys Ile Glu Gln Glu Thr Leu
210 215 220
Lys Ile Leu Gly Ser Val Asp Gly Glu Thr Ile Arg His Ala Ala Ile
225 230 235 240
Ser Val Ser Ala Gln Cys Thr Arg Val Asn Val Ser Asp Gly His Met
245 250 255
Ala Ala Val Arg Val Lys Leu Ile Glu Pro Ala Thr Lys Asp Glu Val
260 265 270
Ile Asp Ala Leu Ala Ser Phe Thr Ala Leu Pro Gln Lys Leu Asn Leu
275 280 285
His Ser Ala Pro Pro Gln Pro Ile Ile Val Arg Asn Glu Ser Asp Arg
290 295 300
Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly Lys Gly Met Ser Ile Thr
305 310 315 320
Ile Gly Arg Val Asp His Asp His Val Met Asp Tyr Arg Phe Phe Ser
325 330 335
Leu Ser His Asn Thr Val Arg Gly Ala Ala Gly Ala Ala Ile Leu Asn
340 345 350
Ala Glu Leu Leu Leu Ala Met Gly Lys Ile Arg
355 360
<210> 111
<211> 1056
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_15 sequence from unknown bacterial species from
environmental sample
<400> 111
atgacaagta aacttcgagt tggaattctc ggtgcgacgg gaatggttgg gcagcgcttt 60
atccaacttt tggaaaacca tccgcaattt caaattacgg cactggcggc gtcagatcgt 120
tcgcaaggca aaacatttgc agaagcgtgt acctggcgtt tgcccggaga gatgccctcg 180
tttgtgaagt cgatgccggt tcacgcgcca aagccgccgc tggactgtga attggtgttt 240
tccagtctgc cgggcgaaat cgcacgcgaa agcgaacaaa gttttgtcaa cgccggattt 300
cctgtcatca gcaactcctc cgcttttcgg atggacgcca acgttccttt actgattccg 360
gaagttaatc cggagcatct gtcgttgctt gaattgcaac aaaaagaagg caacggcaag 420
cgcggttaca ttgttaccaa cccaaactgt tcgacgatca tgttggcgct ggcactcgcc 480
ccgttgcatg cgcgcttcgg tgtgcgaaac gttgtcgcca ccaccttgca ggctttatcc 540
ggggccggat tcccgggcgt tgcgtcgctt gctattagtg acaacgtgtt gccgtttatc 600
gaaggcgagg agcagaagat agagcaggag acgttgaaga ttctcggcag cgtcgacggg 660
gaaacaattc gtcacgcagc gatcagtgtg agcgcgcaat gtacgcgcgt gaacgtttca 720
gacggccata tggccgctgt gcgcgtcaag ctggataagc cggcgacaaa agatgaggtt 780
atcgatgcgc tcgcgtcgtt taccgcgctg cctcaaaaat tgaatctcca ctcggcgccg 840
ccgcagccaa tcatcgtgcg taatgagtcc gaccgcccgc agcctcggct tgatcgagat 900
gcgggcaaag gaatgagcat tacgattgga cgactggacc atgaccacgt gatggactac 960
cgcttttttt ctttgagtca caacacagtc cgaggcgctg ccggtgcggc aatccttaac 1020
gctgaattgc ttctggcgat ggggaaaata ggatga 1056
<210> 112
<211> 351
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_15 sequence from unknown bacterial species from
environmental sample
<400> 112
Met Thr Ser Lys Leu Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Asn His Pro Gln Phe Gln Ile
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Thr Phe Ala Glu
35 40 45
Ala Cys Thr Trp Arg Leu Pro Gly Glu Met Pro Ser Phe Val Lys Ser
50 55 60
Met Pro Val His Ala Pro Lys Pro Pro Leu Asp Cys Glu Leu Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Glu Ile Ala Arg Glu Ser Glu Gln Ser Phe Val
85 90 95
Asn Ala Gly Phe Pro Val Ile Ser Asn Ser Ser Ala Phe Arg Met Asp
100 105 110
Ala Asn Val Pro Leu Leu Ile Pro Glu Val Asn Pro Glu His Leu Ser
115 120 125
Leu Leu Glu Leu Gln Gln Lys Glu Gly Asn Gly Lys Arg Gly Tyr Ile
130 135 140
Val Thr Asn Pro Asn Cys Ser Thr Ile Met Leu Ala Leu Ala Leu Ala
145 150 155 160
Pro Leu His Ala Arg Phe Gly Val Arg Asn Val Val Ala Thr Thr Leu
165 170 175
Gln Ala Leu Ser Gly Ala Gly Phe Pro Gly Val Ala Ser Leu Ala Ile
180 185 190
Ser Asp Asn Val Leu Pro Phe Ile Glu Gly Glu Glu Gln Lys Ile Glu
195 200 205
Gln Glu Thr Leu Lys Ile Leu Gly Ser Val Asp Gly Glu Thr Ile Arg
210 215 220
His Ala Ala Ile Ser Val Ser Ala Gln Cys Thr Arg Val Asn Val Ser
225 230 235 240
Asp Gly His Met Ala Ala Val Arg Val Lys Leu Asp Lys Pro Ala Thr
245 250 255
Lys Asp Glu Val Ile Asp Ala Leu Ala Ser Phe Thr Ala Leu Pro Gln
260 265 270
Lys Leu Asn Leu His Ser Ala Pro Pro Gln Pro Ile Ile Val Arg Asn
275 280 285
Glu Ser Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly Lys Gly
290 295 300
Met Ser Ile Thr Ile Gly Arg Leu Asp His Asp His Val Met Asp Tyr
305 310 315 320
Arg Phe Phe Ser Leu Ser His Asn Thr Val Arg Gly Ala Ala Gly Ala
325 330 335
Ala Ile Leu Asn Ala Glu Leu Leu Leu Ala Met Gly Lys Ile Gly
340 345 350
<210> 113
<211> 1062
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_16 sequence from unknown bacterial species from
environmental sample
<400> 113
atgactgaaa aacttcgcgt aggaatactt ggcgccactg gaatggtcgg tcagcgcttc 60
attcaactgc tggagaatca tccgcagttt gaaattacgg cgctcgctgc ttcggatcgt 120
tcgcagggca aaactttcga agaagcttgc acctggcgcc tggccggtga aatgcctgcg 180
ctcgttaagt caatgcaggt tcatgcgccc aagccgccgc tcgaatgtca actggtgttc 240
tccagcttgc cgggagacat tgcgcgtgat tgcgaaggaa gttttgtagc ggccggcgtg 300
cctgtgatta gcaactcgtc tgccttccgc atggaccaga atgttcccct gctgatcccg 360
gaagtaaatc ccgagcatct gtcgctgttg gatttgcaac aaagagacag caacggaaaa 420
tccggatccg gattcatagt tactaatcca aattgttcga ccatcatgtt ggcaatgtcc 480
ctcgcgccgt tgcataaacg cttcggtgta aagagtgtcg tggcgacgac tatgcaggct 540
ttgtccggcg caggatatcc gggggttgca tcactggcca tcagtgacaa cgtcctcccg 600
tacatcgacg gcgaagagga aaagatcgaa caggagactt tgaagattct cggtcgttta 660
gacggcgggc aaatacatga tgcgccaatg aatgtcagcg ctcaatgcaa tcgagtgaat 720
gtctctgacg gccacatggc agcggttcgg gtgaagctgg agaaggaggc gacgaaggag 780
gaagtcagcg atgcgctggc gtctttcaca gcactgccac aggaacttgg tctccattca 840
gctcccgaac ggccgatcat tgttcgtaat gaacctgacc ggccccagcc gcgtttggat 900
cgggacgcgg gcaacggaat gagcgtcacg attggacgcc tgcaagaaga tcgcgtgctc 960
gactatcgct tcgtttcttt aagtcacaac accataagag gtgcggccgg cgctgctatt 1020
ctcaacgcgg aactacttat cgcctcagga ttattgttat ga 1062
<210> 114
<211> 353
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_16 sequence from unknown bacterial species from
environmental sample
<400> 114
Met Thr Glu Lys Leu Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Asn His Pro Gln Phe Glu Ile
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Thr Phe Glu Glu
35 40 45
Ala Cys Thr Trp Arg Leu Ala Gly Glu Met Pro Ala Leu Val Lys Ser
50 55 60
Met Gln Val His Ala Pro Lys Pro Pro Leu Glu Cys Gln Leu Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Asp Ile Ala Arg Asp Cys Glu Gly Ser Phe Val
85 90 95
Ala Ala Gly Val Pro Val Ile Ser Asn Ser Ser Ala Phe Arg Met Asp
100 105 110
Gln Asn Val Pro Leu Leu Ile Pro Glu Val Asn Pro Glu His Leu Ser
115 120 125
Leu Leu Asp Leu Gln Gln Arg Asp Ser Asn Gly Lys Ser Gly Ser Gly
130 135 140
Phe Ile Val Thr Asn Pro Asn Cys Ser Thr Ile Met Leu Ala Met Ser
145 150 155 160
Leu Ala Pro Leu His Lys Arg Phe Gly Val Lys Ser Val Val Ala Thr
165 170 175
Thr Met Gln Ala Leu Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu
180 185 190
Ala Ile Ser Asp Asn Val Leu Pro Tyr Ile Asp Gly Glu Glu Glu Lys
195 200 205
Ile Glu Gln Glu Thr Leu Lys Ile Leu Gly Arg Leu Asp Gly Gly Gln
210 215 220
Ile His Asp Ala Pro Met Asn Val Ser Ala Gln Cys Asn Arg Val Asn
225 230 235 240
Val Ser Asp Gly His Met Ala Ala Val Arg Val Lys Leu Glu Lys Glu
245 250 255
Ala Thr Lys Glu Glu Val Ser Asp Ala Leu Ala Ser Phe Thr Ala Leu
260 265 270
Pro Gln Glu Leu Gly Leu His Ser Ala Pro Glu Arg Pro Ile Ile Val
275 280 285
Arg Asn Glu Pro Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly
290 295 300
Asn Gly Met Ser Val Thr Ile Gly Arg Leu Gln Glu Asp Arg Val Leu
305 310 315 320
Asp Tyr Arg Phe Val Ser Leu Ser His Asn Thr Ile Arg Gly Ala Ala
325 330 335
Gly Ala Ala Ile Leu Asn Ala Glu Leu Leu Ile Ala Ser Gly Leu Leu
340 345 350
Leu
<210> 115
<211> 1056
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_17 sequence from unknown bacterial species from
environmental sample
<400> 115
atgaccaaga agtttcgcgt aggaatactc ggtgcgaccg gcatggttgg gcagcgcttt 60
atccagttgt tggaggacca tccgcaattt gagataacgg cgctggccgc gtcggatcgt 120
tcgcagggca agacttttca ggaggcatgc acctggcgtt tggccgggga aatgcccacc 180
tttgtgaaat cgatgaaggt tgcggcgccg caaccgcccc ttgattgcga gttgatcttt 240
tccagtttgc ctggtgacat cgcgcgtcgg agtgaagacg cctttgcccg ggctggtttt 300
ccagtaatta gtaattcttc agcttttcgg atggaccgcg acgtaccttt actgattccg 360
gaagtaaacc acgagcatct tgctctgctt gatgtgcaac gaaagcagcg aggcgggcaa 420
cagggataca tcgtcacgaa tccaaactgc tccacaatca tgctggccct ggcgttggcg 480
ccgctacacg caaaatttgg tgtgacgagt gtgatcgcta ctaccatgca ggcgttgtca 540
ggcgcaggtt atcccggtgt tgcttcactt gccatcagcg ataacgtttt gccattcatc 600
gacggcgagg aagaaaagat cgaacaggag acattgaaga tcctgggcaa ggtcaatggc 660
gcgagcattg aagccgcgcc aatgaatgta agcgcacaat gtcaccgcgt gaatgtttca 720
gacggccaca tggcggcggt gcgagtgaaa cttcaccagc ccgcgaccat ccatgaacta 780
agtgctgcgc tcagttcttt tagcgcactg ccgcagaagc taaagcttca ttcagcgcct 840
gagcacccga ttattgtgcg cgaagaagtg gatcgtccgc agccgcggct ggatcgggat 900
gcgggaaatg gaatgagcgt caccgtcggc cgtttacaac ccgacaacgt gtttgactac 960
cggttcgtta ctcttagcca caacaccata cgcggcgcag ctggcgctgc aattctcaat 1020
gcggaattat tgatcgctag cggaaagcta acatga 1056
<210> 116
<211> 351
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_17 sequence from unknown bacterial species from
environmental sample
<400> 116
Met Thr Lys Lys Phe Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Asp His Pro Gln Phe Glu Ile
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Thr Phe Gln Glu
35 40 45
Ala Cys Thr Trp Arg Leu Ala Gly Glu Met Pro Thr Phe Val Lys Ser
50 55 60
Met Lys Val Ala Ala Pro Gln Pro Pro Leu Asp Cys Glu Leu Ile Phe
65 70 75 80
Ser Ser Leu Pro Gly Asp Ile Ala Arg Arg Ser Glu Asp Ala Phe Ala
85 90 95
Arg Ala Gly Phe Pro Val Ile Ser Asn Ser Ser Ala Phe Arg Met Asp
100 105 110
Arg Asp Val Pro Leu Leu Ile Pro Glu Val Asn His Glu His Leu Ala
115 120 125
Leu Leu Asp Val Gln Arg Lys Gln Arg Gly Gly Gln Gln Gly Tyr Ile
130 135 140
Val Thr Asn Pro Asn Cys Ser Thr Ile Met Leu Ala Leu Ala Leu Ala
145 150 155 160
Pro Leu His Ala Lys Phe Gly Val Thr Ser Val Ile Ala Thr Thr Met
165 170 175
Gln Ala Leu Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Ala Ile
180 185 190
Ser Asp Asn Val Leu Pro Phe Ile Asp Gly Glu Glu Glu Lys Ile Glu
195 200 205
Gln Glu Thr Leu Lys Ile Leu Gly Lys Val Asn Gly Ala Ser Ile Glu
210 215 220
Ala Ala Pro Met Asn Val Ser Ala Gln Cys His Arg Val Asn Val Ser
225 230 235 240
Asp Gly His Met Ala Ala Val Arg Val Lys Leu His Gln Pro Ala Thr
245 250 255
Ile His Glu Leu Ser Ala Ala Leu Ser Ser Phe Ser Ala Leu Pro Gln
260 265 270
Lys Leu Lys Leu His Ser Ala Pro Glu His Pro Ile Ile Val Arg Glu
275 280 285
Glu Val Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly Asn Gly
290 295 300
Met Ser Val Thr Val Gly Arg Leu Gln Pro Asp Asn Val Phe Asp Tyr
305 310 315 320
Arg Phe Val Thr Leu Ser His Asn Thr Ile Arg Gly Ala Ala Gly Ala
325 330 335
Ala Ile Leu Asn Ala Glu Leu Leu Ile Ala Ser Gly Lys Leu Thr
340 345 350
<210> 117
<211> 1068
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_18 sequence from unknown bacterial species from
environmental sample
<400> 117
atgtccaaag tccaaagtca aaaaaaactt cgagtcggaa tactgggcgc gactgggatg 60
gttggtcagc gcttcattca gttactggag aaccatccgc agtttgagat aaccgcgctt 120
gctgcttcgg atcgttcaca aggaaaaact tttcaggaag catgcacgtg gcgactcgca 180
ggcgaaatgc cggcgaatgt ccgatcgatg aaagtggccg ctccagaagc gccgctcgat 240
tgcgacctcg tcttctcgag tttgccgggc gacatcgcac gaaggagcga agcatcgttc 300
gcgcgcgcag gttttccagt aattagtaat tcttcagctt ttcgtatgga ccaggatgtg 360
ccgttgctga ttccggaagt gaatcacgag catctctctt tgattgagac acaactaaga 420
aaccacaacg ggcagcaagg ttacgtggtc acaaatccaa attgctcgac aatcatgctc 480
gcgctcgcgc tggcgccact tcatgaggcc tttggtgtaa ccagtgtaat tgcaaccacg 540
atgcaggcgc tgtcaggagc gggttatccg ggagtggcat cgctcgcgat tagcgacaac 600
gttctaccgt tcattgacgg tgaagaagaa aagatcgaac aggagacacg gaagattctg 660
gggcgattta accaggacac ggttgacaac gcgccgatga acgtcagcgc ccagtgcaat 720
cgcgttaacg tttcggatgg tcacatggcg gcggtgcgag tgaaactgca agagcctgcg 780
aagctcgaag aagtgtctga agccctcgct tcgtttaccg cgctgccgca agagttgaaa 840
ctccactccg ctcctgagca gccgatcatc ttgcgacagg aaacggatcg accgcagccg 900
cgcctcgatc gtgatgcagg aaacggaatg agtgtgacta ttggtcgcct gcagccagac 960
aacgtacttg attatcggtt cgttgcgctg agtcacaaca cgattcgtgg cgctgcgggt 1020
gctgccatcc tgaatgctga acttatgatt gcaatgaaga ggttgtaa 1068
<210> 118
<211> 355
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_18 sequence from unknown bacterial species from
environmental sample
<400> 118
Met Ser Lys Val Gln Ser Gln Lys Lys Leu Arg Val Gly Ile Leu Gly
1 5 10 15
Ala Thr Gly Met Val Gly Gln Arg Phe Ile Gln Leu Leu Glu Asn His
20 25 30
Pro Gln Phe Glu Ile Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly
35 40 45
Lys Thr Phe Gln Glu Ala Cys Thr Trp Arg Leu Ala Gly Glu Met Pro
50 55 60
Ala Asn Val Arg Ser Met Lys Val Ala Ala Pro Glu Ala Pro Leu Asp
65 70 75 80
Cys Asp Leu Val Phe Ser Ser Leu Pro Gly Asp Ile Ala Arg Arg Ser
85 90 95
Glu Ala Ser Phe Ala Arg Ala Gly Phe Pro Val Ile Ser Asn Ser Ser
100 105 110
Ala Phe Arg Met Asp Gln Asp Val Pro Leu Leu Ile Pro Glu Val Asn
115 120 125
His Glu His Leu Ser Leu Ile Glu Thr Gln Leu Arg Asn His Asn Gly
130 135 140
Gln Gln Gly Tyr Val Val Thr Asn Pro Asn Cys Ser Thr Ile Met Leu
145 150 155 160
Ala Leu Ala Leu Ala Pro Leu His Glu Ala Phe Gly Val Thr Ser Val
165 170 175
Ile Ala Thr Thr Met Gln Ala Leu Ser Gly Ala Gly Tyr Pro Gly Val
180 185 190
Ala Ser Leu Ala Ile Ser Asp Asn Val Leu Pro Phe Ile Asp Gly Glu
195 200 205
Glu Glu Lys Ile Glu Gln Glu Thr Arg Lys Ile Leu Gly Arg Phe Asn
210 215 220
Gln Asp Thr Val Asp Asn Ala Pro Met Asn Val Ser Ala Gln Cys Asn
225 230 235 240
Arg Val Asn Val Ser Asp Gly His Met Ala Ala Val Arg Val Lys Leu
245 250 255
Gln Glu Pro Ala Lys Leu Glu Glu Val Ser Glu Ala Leu Ala Ser Phe
260 265 270
Thr Ala Leu Pro Gln Glu Leu Lys Leu His Ser Ala Pro Glu Gln Pro
275 280 285
Ile Ile Leu Arg Gln Glu Thr Asp Arg Pro Gln Pro Arg Leu Asp Arg
290 295 300
Asp Ala Gly Asn Gly Met Ser Val Thr Ile Gly Arg Leu Gln Pro Asp
305 310 315 320
Asn Val Leu Asp Tyr Arg Phe Val Ala Leu Ser His Asn Thr Ile Arg
325 330 335
Gly Ala Ala Gly Ala Ala Ile Leu Asn Ala Glu Leu Met Ile Ala Met
340 345 350
Lys Arg Leu
355
<210> 119
<211> 1044
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_19 sequence from unknown bacterial species from
environmental sample
<400> 119
atgactagaa aacttcgtgt gggaatactt ggcgctaccg ggatggtggg gcaacgcttt 60
attcaactgc tggagaatca tccccagttt gagatcacag cattggctgc atctgatcga 120
tcgcagggga aggcttttca ggaggcttgt acctggcgtc ttgcaggaga gatgcctgag 180
tttgtgaagt caatgccgat cgcggcgccg caacctccgc tggattgcga attagttttc 240
tcgagtttgc cgggcgacat cgcgcgtcaa agtgaaggtg cctttgccga ggcgggcttt 300
cctgtgatca gcaactcatc agcgtatcgg atggaccagc acgttccctt actaattccc 360
gaggtgaacc atcaacatct cgcgctgctc gagtcacaac agcagaaggg cttcatcgtc 420
actaacccaa actgttcgac gatcatgctg gcgttggccc tcgcgccgct acatgcgagg 480
tttcgcgtga ccagcgtcat cgccacaact ctccaggcat tatcgggcgc cggttatccc 540
ggggttccgt cgctggccat tagtgacaat gttctgccat tcatcgatgg tgaagaggaa 600
aagatcgaga aggaaacact caagattctc gggccaatcg aaaaaggaca tctcatcgac 660
gcgccgatga aggtgagcgc acagtgtcat cgggtgaatg tctctgacgg acacatggcc 720
gcagtgcgag tgaagttgga taagttgact acgattgaag aagtgagtga agcatttgct 780
tcctttagtt cgctgccaca ggaactaaaa ctgcactcag caccagagaa gccaatcgtt 840
gtgctgcaag aacccgatcg tcctcagccg cgcctcgatc gagatgccgg aaaggggatg 900
agcgttacag ttggtcgctt gcgagacgat aacgtgcttg actaccgatt cgtggcgctc 960
agccacaaca cgatcagagg cgccgcggga gctgcgattc tcaatgcgga gctgctgatt 1020
gcgagtggat acttagggaa ataa 1044
<210> 120
<211> 347
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_19 sequence from unknown bacterial species from
environmental sample
<400> 120
Met Thr Arg Lys Leu Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Asn His Pro Gln Phe Glu Ile
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Ala Phe Gln Glu
35 40 45
Ala Cys Thr Trp Arg Leu Ala Gly Glu Met Pro Glu Phe Val Lys Ser
50 55 60
Met Pro Ile Ala Ala Pro Gln Pro Pro Leu Asp Cys Glu Leu Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Asp Ile Ala Arg Gln Ser Glu Gly Ala Phe Ala
85 90 95
Glu Ala Gly Phe Pro Val Ile Ser Asn Ser Ser Ala Tyr Arg Met Asp
100 105 110
Gln His Val Pro Leu Leu Ile Pro Glu Val Asn His Gln His Leu Ala
115 120 125
Leu Leu Glu Ser Gln Gln Gln Lys Gly Phe Ile Val Thr Asn Pro Asn
130 135 140
Cys Ser Thr Ile Met Leu Ala Leu Ala Leu Ala Pro Leu His Ala Arg
145 150 155 160
Phe Arg Val Thr Ser Val Ile Ala Thr Thr Leu Gln Ala Leu Ser Gly
165 170 175
Ala Gly Tyr Pro Gly Val Pro Ser Leu Ala Ile Ser Asp Asn Val Leu
180 185 190
Pro Phe Ile Asp Gly Glu Glu Glu Lys Ile Glu Lys Glu Thr Leu Lys
195 200 205
Ile Leu Gly Pro Ile Glu Lys Gly His Leu Ile Asp Ala Pro Met Lys
210 215 220
Val Ser Ala Gln Cys His Arg Val Asn Val Ser Asp Gly His Met Ala
225 230 235 240
Ala Val Arg Val Lys Leu Asp Lys Leu Thr Thr Ile Glu Glu Val Ser
245 250 255
Glu Ala Phe Ala Ser Phe Ser Ser Leu Pro Gln Glu Leu Lys Leu His
260 265 270
Ser Ala Pro Glu Lys Pro Ile Val Val Leu Gln Glu Pro Asp Arg Pro
275 280 285
Gln Pro Arg Leu Asp Arg Asp Ala Gly Lys Gly Met Ser Val Thr Val
290 295 300
Gly Arg Leu Arg Asp Asp Asn Val Leu Asp Tyr Arg Phe Val Ala Leu
305 310 315 320
Ser His Asn Thr Ile Arg Gly Ala Ala Gly Ala Ala Ile Leu Asn Ala
325 330 335
Glu Leu Leu Ile Ala Ser Gly Tyr Leu Gly Lys
340 345
<210> 121
<211> 1056
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_20 sequence from unknown bacterial species from
environmental sample
<400> 121
atgacgagaa aacggcgagt tggaattttg ggtgcaaccg ggatggtcgg ccagcgtttt 60
attcaattgc tggagaacca tccgcaattt gaaatcaccg cgctggctgc ttcggatcgt 120
tcacaaggca aaacctttca acacgcatgc acgtggcgac tggccggcga catgcctgag 180
tttgtgaaac agatggaggt ccaggcgccg caaccgccgc tcgattgtga tctggtcttc 240
tcgagtttgc ctggcgacat cgctcgcgag agtgaaggaa ggtttgcgga tgcgggttat 300
ccggtgatca gcaactcatc tgcgtaccgg atggacgcgg acgttcctct gttaatacct 360
gaagtgaatc acgcgcatct cgatctgctc aaggttcagc gccggcaacc aaaccggcaa 420
cgcggcttca tcgtcacgaa tccaaattgt tcgacgatca tgctggcgtt ggcactcgca 480
cccttgcacg cgaattttgg cgtcacgagc gcggtggcga cgacgatgca ggctttgtcc 540
ggcgccggtt atccgggcgt cgcatcactc gccatcagcg acaacgtgtt gccgttcatc 600
gaaggtgaag aagaaaaaat cgaacaggag actttaaaga ttctgggcca actcaacggt 660
gaaaggatcg tggaggcttc catgaacgtg agcgcgcaat gtcaccgcgt gaatgtttcc 720
gacggacatc tcgctgcggt tcgcgtaaag ctaaacagac aggcgacaaa agatgagttg 780
gttgaagcgc ttgcttcgtt caagtcgctg cctcaggaat tacaacttca ctcggcgccg 840
gagcacccga tcattgttcg caatgagccc gaccgtccgc agccgcgttt ggatcgagag 900
gcgggcaacg gcatgagcgt caccatcgga cggttacagg atgacaacgt gctcgactat 960
cgctttgtcg ctctcagcca caacacaatt cgcggcgcag caggcgccgc cattctcaac 1020
gctgaactcc tcgtcgcttc gggattattg acatga 1056
<210> 122
<211> 351
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_20 sequence from unknown bacterial species from
environmental sample
<400> 122
Met Thr Arg Lys Arg Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Asn His Pro Gln Phe Glu Ile
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Thr Phe Gln His
35 40 45
Ala Cys Thr Trp Arg Leu Ala Gly Asp Met Pro Glu Phe Val Lys Gln
50 55 60
Met Glu Val Gln Ala Pro Gln Pro Pro Leu Asp Cys Asp Leu Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Asp Ile Ala Arg Glu Ser Glu Gly Arg Phe Ala
85 90 95
Asp Ala Gly Tyr Pro Val Ile Ser Asn Ser Ser Ala Tyr Arg Met Asp
100 105 110
Ala Asp Val Pro Leu Leu Ile Pro Glu Val Asn His Ala His Leu Asp
115 120 125
Leu Leu Lys Val Gln Arg Arg Gln Pro Asn Arg Gln Arg Gly Phe Ile
130 135 140
Val Thr Asn Pro Asn Cys Ser Thr Ile Met Leu Ala Leu Ala Leu Ala
145 150 155 160
Pro Leu His Ala Asn Phe Gly Val Thr Ser Ala Val Ala Thr Thr Met
165 170 175
Gln Ala Leu Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Ala Ile
180 185 190
Ser Asp Asn Val Leu Pro Phe Ile Glu Gly Glu Glu Glu Lys Ile Glu
195 200 205
Gln Glu Thr Leu Lys Ile Leu Gly Gln Leu Asn Gly Glu Arg Ile Val
210 215 220
Glu Ala Ser Met Asn Val Ser Ala Gln Cys His Arg Val Asn Val Ser
225 230 235 240
Asp Gly His Leu Ala Ala Val Arg Val Lys Leu Asn Arg Gln Ala Thr
245 250 255
Lys Asp Glu Leu Val Glu Ala Leu Ala Ser Phe Lys Ser Leu Pro Gln
260 265 270
Glu Leu Gln Leu His Ser Ala Pro Glu His Pro Ile Ile Val Arg Asn
275 280 285
Glu Pro Asp Arg Pro Gln Pro Arg Leu Asp Arg Glu Ala Gly Asn Gly
290 295 300
Met Ser Val Thr Ile Gly Arg Leu Gln Asp Asp Asn Val Leu Asp Tyr
305 310 315 320
Arg Phe Val Ala Leu Ser His Asn Thr Ile Arg Gly Ala Ala Gly Ala
325 330 335
Ala Ile Leu Asn Ala Glu Leu Leu Val Ala Ser Gly Leu Leu Thr
340 345 350
<210> 123
<211> 1053
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_21 sequence from unknown bacterial species from
environmental sample
<400> 123
atggctaaac gacgcgtagg aatattgggc gccaccggca tggtgggaca gcgattcatt 60
caactgctcg aggaccaccc gcagtttgaa atcacagcgc tggccgcatc agatcgatct 120
caaggcagga cttttgccga cgcttgtaca tggcgacttc ctggcgagat gccggcgttt 180
gtccgctcaa tgatcgtcca ggcgccggcg ccaccgctcg attgcgaatt ggtgttttcg 240
agtttgccgg gcgacattgc ccgctcgagc gaagggatgt ttgctgatgc cggttatccc 300
gtgattagca actcgtcagc cttccgcatg gatgcggatg ttcctttact gattcccgaa 360
gtcaacaact cgcatctgga tctgctcgcg gtccaacgaa acaagtccaa ccgtcaacgc 420
ggctttatcg ttacaaatcc caactgttca acgatcatgt tagcccttgc tctggcgccg 480
ctgcatttca agttcggcgt cagcaacgtc gttgccacta ctctacaggc gctctcaggc 540
gccggatatc ccggagtcgc gtcgctggca atcagtgaca atgttcttcc ttttattgac 600
ggggaggagg agaagatcga gaaagaaacg ctcaaaatcc tgggccacgt tcaaaaaggc 660
accattgcgg aagcctcgat gaatgtgagc gcccaatgcc atcgtgtcaa tgtcactgat 720
ggacatatgg cagcagtgcg ggtgaagttg aatcagttag ctaccactga agatgtcgcg 780
caaacgctgg catcgttccg tgcgttgccc caggaattgc atcttcattc cgcgccggag 840
catccaatcg ttgtgcgcaa tgaacctgat cggccgcagc cgcggcttga tcgagatgcg 900
ggaaacggaa tgagtgtaac gatcggtcga atccaacccg ataatgtact tgactaccgg 960
ttcgttgccc ttagccacaa tacaatccgc ggcgctgccg gcgccgccat tctcaatgcc 1020
gaacttctga tcgcgtccgg aatacttata tga 1053
<210> 124
<211> 350
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_21 sequence from unknown bacterial species from
environmental sample
<400> 124
Met Ala Lys Arg Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val Gly
1 5 10 15
Gln Arg Phe Ile Gln Leu Leu Glu Asp His Pro Gln Phe Glu Ile Thr
20 25 30
Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Arg Thr Phe Ala Asp Ala
35 40 45
Cys Thr Trp Arg Leu Pro Gly Glu Met Pro Ala Phe Val Arg Ser Met
50 55 60
Ile Val Gln Ala Pro Ala Pro Pro Leu Asp Cys Glu Leu Val Phe Ser
65 70 75 80
Ser Leu Pro Gly Asp Ile Ala Arg Ser Ser Glu Gly Met Phe Ala Asp
85 90 95
Ala Gly Tyr Pro Val Ile Ser Asn Ser Ser Ala Phe Arg Met Asp Ala
100 105 110
Asp Val Pro Leu Leu Ile Pro Glu Val Asn Asn Ser His Leu Asp Leu
115 120 125
Leu Ala Val Gln Arg Asn Lys Ser Asn Arg Gln Arg Gly Phe Ile Val
130 135 140
Thr Asn Pro Asn Cys Ser Thr Ile Met Leu Ala Leu Ala Leu Ala Pro
145 150 155 160
Leu His Phe Lys Phe Gly Val Ser Asn Val Val Ala Thr Thr Leu Gln
165 170 175
Ala Leu Ser Gly Ala Gly Tyr Pro Gly Val Ala Ser Leu Ala Ile Ser
180 185 190
Asp Asn Val Leu Pro Phe Ile Asp Gly Glu Glu Glu Lys Ile Glu Lys
195 200 205
Glu Thr Leu Lys Ile Leu Gly His Val Gln Lys Gly Thr Ile Ala Glu
210 215 220
Ala Ser Met Asn Val Ser Ala Gln Cys His Arg Val Asn Val Thr Asp
225 230 235 240
Gly His Met Ala Ala Val Arg Val Lys Leu Asn Gln Leu Ala Thr Thr
245 250 255
Glu Asp Val Ala Gln Thr Leu Ala Ser Phe Arg Ala Leu Pro Gln Glu
260 265 270
Leu His Leu His Ser Ala Pro Glu His Pro Ile Val Val Arg Asn Glu
275 280 285
Pro Asp Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly Asn Gly Met
290 295 300
Ser Val Thr Ile Gly Arg Ile Gln Pro Asp Asn Val Leu Asp Tyr Arg
305 310 315 320
Phe Val Ala Leu Ser His Asn Thr Ile Arg Gly Ala Ala Gly Ala Ala
325 330 335
Ile Leu Asn Ala Glu Leu Leu Ile Ala Ser Gly Ile Leu Ile
340 345 350
<210> 125
<211> 1044
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_22 sequence from unknown bacterial species from
environmental sample
<400> 125
atgactaaaa aacttcgtgt gggaatactc ggtgccacgg gcatggttgg ccagcgcttc 60
attcaactgc tggagaatca cccgcaattc gagattacag cgctggcggc ctctgatcga 120
tcgcagggca agacttttca ggaagcctgc acgtggcgtc tcgctggaga gatgccggaa 180
ttcgtgaagt caatgccgat cgcggcgccg cagccaccgc tcgattgcga actggtattt 240
tcaagtttgc ccggtgaaat cgcacgcgag agtgaaggag cttttgccgc ggcgggattt 300
ccggtcatta gtaactcttc ggcgtatcgc atggacgctg acgttccgct gctgattccc 360
gaagtgaatc atccacacct tgcgctggtc gagttgcaac agcggaaggg cttcatcgtc 420
actaatccaa actgttccac gatcatgttg gcgctggtgc tggcgccgct ccatgcaaag 480
tttcgcgtga ccagcgtagt cgcgacaact ctgcaggcac tatcgggcgc tggttatccg 540
ggagttccct cgctggccat tagtgataat gttttgccgt tcatcgacgg tgaagaggaa 600
aagattgagc aggaaacgct gaagattctt ggctcgatag aagaaggaca tatcatcgac 660
gcccccatac aggtgagtgc gcagtgtcac cgggtaaatg tttcagacgg acacatggcg 720
gcggtgcgcg tgaagctcga tcagttaact acaatcgaag aagtcagtga aacatttgct 780
tccttcacct cgctcccgca ggaactaaaa ctgcactcgg cgccggagca gcctattatt 840
gtggtgcatg aacatgatcg tcctcagccg cgcctggatc gagatgcggg aagcgggatg 900
agcgtcaccg ttggccgagt gcgcgaggat aatgtgctcg actatcgctt cgttgcgcta 960
agccacaaca cgatcagagg cgcagccggc gccgcgattc tcaatgcgga attgctaatt 1020
gcgagtggat acctccagaa gtga 1044
<210> 126
<211> 347
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_22 sequence from unknown bacterial species from
environmental sample
<400> 126
Met Thr Lys Lys Leu Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Asn His Pro Gln Phe Glu Ile
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Thr Phe Gln Glu
35 40 45
Ala Cys Thr Trp Arg Leu Ala Gly Glu Met Pro Glu Phe Val Lys Ser
50 55 60
Met Pro Ile Ala Ala Pro Gln Pro Pro Leu Asp Cys Glu Leu Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Glu Ile Ala Arg Glu Ser Glu Gly Ala Phe Ala
85 90 95
Ala Ala Gly Phe Pro Val Ile Ser Asn Ser Ser Ala Tyr Arg Met Asp
100 105 110
Ala Asp Val Pro Leu Leu Ile Pro Glu Val Asn His Pro His Leu Ala
115 120 125
Leu Val Glu Leu Gln Gln Arg Lys Gly Phe Ile Val Thr Asn Pro Asn
130 135 140
Cys Ser Thr Ile Met Leu Ala Leu Val Leu Ala Pro Leu His Ala Lys
145 150 155 160
Phe Arg Val Thr Ser Val Val Ala Thr Thr Leu Gln Ala Leu Ser Gly
165 170 175
Ala Gly Tyr Pro Gly Val Pro Ser Leu Ala Ile Ser Asp Asn Val Leu
180 185 190
Pro Phe Ile Asp Gly Glu Glu Glu Lys Ile Glu Gln Glu Thr Leu Lys
195 200 205
Ile Leu Gly Ser Ile Glu Glu Gly His Ile Ile Asp Ala Pro Ile Gln
210 215 220
Val Ser Ala Gln Cys His Arg Val Asn Val Ser Asp Gly His Met Ala
225 230 235 240
Ala Val Arg Val Lys Leu Asp Gln Leu Thr Thr Ile Glu Glu Val Ser
245 250 255
Glu Thr Phe Ala Ser Phe Thr Ser Leu Pro Gln Glu Leu Lys Leu His
260 265 270
Ser Ala Pro Glu Gln Pro Ile Ile Val Val His Glu His Asp Arg Pro
275 280 285
Gln Pro Arg Leu Asp Arg Asp Ala Gly Ser Gly Met Ser Val Thr Val
290 295 300
Gly Arg Val Arg Glu Asp Asn Val Leu Asp Tyr Arg Phe Val Ala Leu
305 310 315 320
Ser His Asn Thr Ile Arg Gly Ala Ala Gly Ala Ala Ile Leu Asn Ala
325 330 335
Glu Leu Leu Ile Ala Ser Gly Tyr Leu Gln Lys
340 345
<210> 127
<211> 1050
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_23 sequence from unknown bacterial species from
environmental sample
<400> 127
atgactaaaa aacttcgtgt gggaatactt ggcgctaccg gcatggttgg ccagcgcttc 60
attcaattgc tggaaaatca tccgcaattt gagattacag cgctggcggc ttctgatcga 120
tcgcagggca agacttttca ggaagcctgc acgtggcgtc tcgctggaga gatgcctgaa 180
ttcgtaaagt cgatgccgat cgcggcgcca cagcccccgc tcgattgcga actagtattt 240
tccagtttgc ccggtgacat cgcacgcgag agtgagggag cttttgccgc ggcgggattt 300
cccgtcatca gcaactcttc ggcttatcgc atggacgctg acgttccact gctgattccc 360
gaagtgaatc atccacacct cgcgctcctc gactcacaac gtcagcagcg gaagggcttc 420
atcgtcacta atccaaactg ttccacaatc atgttggcga tggcgctggc gccgctccat 480
gcaaagtttc gcgtgaccag cgttatcgcg acgacgctcc aggcactatc gggcgccggt 540
tatccgggcg ttccctcgct ggccatcagt gataatgttt tgccgttcat cgatggtgaa 600
gaagaaaaga tcgagcagga aacgttgaag attcttggac caatgaaaga aggacgtata 660
agcgccgcct ctatgcaggt gagcgcgcag tgtcatcggg taaatgtttc agacgggcac 720
atggcggcgg tgcgcgtgaa gctcgatgag ttaactacaa tcgaagaagt ctttgaagca 780
tttgcttcct tcaccgcgct cccgcaggaa ctaaaactgc actcggcgcc ggagcagccg 840
atcattgtgg tgcatgagcc tgatcgtcct cagccgcgac ttgatcgaga tgcaggaagc 900
ggaatgagcg tcacagttgg ccgcgtgcgt gaggataacg tgctcgacta tcgcttcgtt 960
gcgctaagcc acaacacgat cagaggcgca gccggcgcag cgattctcaa tgcggaattg 1020
ttgatcgcga aaggatattt agggcattaa 1050
<210> 128
<211> 349
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_23 sequence from unknown bacterial species from
environmental sample
<400> 128
Met Thr Lys Lys Leu Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Asn His Pro Gln Phe Glu Ile
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Thr Phe Gln Glu
35 40 45
Ala Cys Thr Trp Arg Leu Ala Gly Glu Met Pro Glu Phe Val Lys Ser
50 55 60
Met Pro Ile Ala Ala Pro Gln Pro Pro Leu Asp Cys Glu Leu Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Asp Ile Ala Arg Glu Ser Glu Gly Ala Phe Ala
85 90 95
Ala Ala Gly Phe Pro Val Ile Ser Asn Ser Ser Ala Tyr Arg Met Asp
100 105 110
Ala Asp Val Pro Leu Leu Ile Pro Glu Val Asn His Pro His Leu Ala
115 120 125
Leu Leu Asp Ser Gln Arg Gln Gln Arg Lys Gly Phe Ile Val Thr Asn
130 135 140
Pro Asn Cys Ser Thr Ile Met Leu Ala Met Ala Leu Ala Pro Leu His
145 150 155 160
Ala Lys Phe Arg Val Thr Ser Val Ile Ala Thr Thr Leu Gln Ala Leu
165 170 175
Ser Gly Ala Gly Tyr Pro Gly Val Pro Ser Leu Ala Ile Ser Asp Asn
180 185 190
Val Leu Pro Phe Ile Asp Gly Glu Glu Glu Lys Ile Glu Gln Glu Thr
195 200 205
Leu Lys Ile Leu Gly Pro Met Lys Glu Gly Arg Ile Ser Ala Ala Ser
210 215 220
Met Gln Val Ser Ala Gln Cys His Arg Val Asn Val Ser Asp Gly His
225 230 235 240
Met Ala Ala Val Arg Val Lys Leu Asp Glu Leu Thr Thr Ile Glu Glu
245 250 255
Val Phe Glu Ala Phe Ala Ser Phe Thr Ala Leu Pro Gln Glu Leu Lys
260 265 270
Leu His Ser Ala Pro Glu Gln Pro Ile Ile Val Val His Glu Pro Asp
275 280 285
Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly Ser Gly Met Ser Val
290 295 300
Thr Val Gly Arg Val Arg Glu Asp Asn Val Leu Asp Tyr Arg Phe Val
305 310 315 320
Ala Leu Ser His Asn Thr Ile Arg Gly Ala Ala Gly Ala Ala Ile Leu
325 330 335
Asn Ala Glu Leu Leu Ile Ala Lys Gly Tyr Leu Gly His
340 345
<210> 129
<211> 1050
<212> DNA
<213> Unknown
<220>
<223> Gene ID asd_24 sequence from unknown bacterial species from
environmental sample
<400> 129
atgactaaaa aacttcgtgt gggaatactt ggcgctaccg gcatggttgg ccagcgcttc 60
attcaattgc tggaaaatca tccgcaattt gagattacag cgctggcggc ttctgatcga 120
tcgcagggca agacttttca ggaagcctgc acgtggcgtc tcgctggaga gatgcctgaa 180
ttcgtaaagt cgatgccgat cgcggcgccg cagccgccgc tcgattgcga gctagtattt 240
tccagtttgc ccggtgacat cgcacgcgag agtgagggag cttttgccgc ggcgggattt 300
cccgtcatca gcaactcttc ggcttatcgc atggacgctg aggttccact gctgattccc 360
gaagtgaatc atccacacct cgcgctcctc gactcacaac gtcagcagcg gaacggcttc 420
atcgtcacta atccaaactg ttccacaatc atgttagcga tggcgctggc gccgctccat 480
gcaaagtttc gcgtgaccag cgttatcgcg acgacgctcc aggcactatc gggcgccggt 540
tatccgggcg ttccctcgct ggccatcagt gataatgttt tgccgttcat cgatggtgaa 600
gaagaaaaga tcgagcagga aacgttgaag attcttggac caatgaaaga aggacgtata 660
agcgccgcct ctatgcaggt gagcgcgcag tgtcatcggg taaatgtttc agacgggcac 720
atggcggcgg tgcgcgtgaa gctcgatgag ttaactacaa tcgaagaagt cagtgaagca 780
tttgcttcct tcaccgcgct cccgcaggaa ctaaaactgc actcggcgcc ggagcagccg 840
atcattgtgg tgcatgagcc tgatcgtcct cagccgcgac ttgatcgaga tgcaggaagc 900
ggaatgagcg tcacagttgg ccgcgtgcgt gaggataacg tgctcgacta tcgcttcgtt 960
gcgctaagcc acaacacgat cagaggcgca gccggcgcag cgattctcaa tgcggaattg 1020
ttgatcgcga aaggatattt agggcattaa 1050
<210> 130
<211> 349
<212> PRT
<213> Unknown
<220>
<223> Gene ID asd_24 sequence from unknown bacterial species from
environmental sample
<400> 130
Met Thr Lys Lys Leu Arg Val Gly Ile Leu Gly Ala Thr Gly Met Val
1 5 10 15
Gly Gln Arg Phe Ile Gln Leu Leu Glu Asn His Pro Gln Phe Glu Ile
20 25 30
Thr Ala Leu Ala Ala Ser Asp Arg Ser Gln Gly Lys Thr Phe Gln Glu
35 40 45
Ala Cys Thr Trp Arg Leu Ala Gly Glu Met Pro Glu Phe Val Lys Ser
50 55 60
Met Pro Ile Ala Ala Pro Gln Pro Pro Leu Asp Cys Glu Leu Val Phe
65 70 75 80
Ser Ser Leu Pro Gly Asp Ile Ala Arg Glu Ser Glu Gly Ala Phe Ala
85 90 95
Ala Ala Gly Phe Pro Val Ile Ser Asn Ser Ser Ala Tyr Arg Met Asp
100 105 110
Ala Glu Val Pro Leu Leu Ile Pro Glu Val Asn His Pro His Leu Ala
115 120 125
Leu Leu Asp Ser Gln Arg Gln Gln Arg Asn Gly Phe Ile Val Thr Asn
130 135 140
Pro Asn Cys Ser Thr Ile Met Leu Ala Met Ala Leu Ala Pro Leu His
145 150 155 160
Ala Lys Phe Arg Val Thr Ser Val Ile Ala Thr Thr Leu Gln Ala Leu
165 170 175
Ser Gly Ala Gly Tyr Pro Gly Val Pro Ser Leu Ala Ile Ser Asp Asn
180 185 190
Val Leu Pro Phe Ile Asp Gly Glu Glu Glu Lys Ile Glu Gln Glu Thr
195 200 205
Leu Lys Ile Leu Gly Pro Met Lys Glu Gly Arg Ile Ser Ala Ala Ser
210 215 220
Met Gln Val Ser Ala Gln Cys His Arg Val Asn Val Ser Asp Gly His
225 230 235 240
Met Ala Ala Val Arg Val Lys Leu Asp Glu Leu Thr Thr Ile Glu Glu
245 250 255
Val Ser Glu Ala Phe Ala Ser Phe Thr Ala Leu Pro Gln Glu Leu Lys
260 265 270
Leu His Ser Ala Pro Glu Gln Pro Ile Ile Val Val His Glu Pro Asp
275 280 285
Arg Pro Gln Pro Arg Leu Asp Arg Asp Ala Gly Ser Gly Met Ser Val
290 295 300
Thr Val Gly Arg Val Arg Glu Asp Asn Val Leu Asp Tyr Arg Phe Val
305 310 315 320
Ala Leu Ser His Asn Thr Ile Arg Gly Ala Ala Gly Ala Ala Ile Leu
325 330 335
Asn Ala Glu Leu Leu Ile Ala Lys Gly Tyr Leu Gly His
340 345
<210> 131
<211> 1353
<212> DNA
<213> Clostridiales sp.
<400> 131
atgtccaagt acgttgaccg cgtcattgct gaagtcgaga aaaagtacgc cgacgaaccg 60
gaattcgttc aaaccgttga agaggtactc tcttcactcg gcccagtagt cgacgcacac 120
cccgagtatg aagaggttgc gctcttggag cgtatggtca ttccagaacg tgtcattgag 180
tttcgcgtcc cgtgggagga tgacaatggt aaagtacatg tgaatactgg ttaccgcgtc 240
caatttaatg gcgcgatcgg cccttataaa ggtggcttgc gcttcgcccc ttcggtcaac 300
ctttccatta tgaaatttct cggcttcgag caagcattca aagattccct gaccacgctt 360
cctatgggag gagcaaaagg cggttcagac ttcgacccaa acggaaaatc cgatcgcgaa 420
gtaatgcgct tctgccaggc gttcatgact gagttgtatc ggcatattgg tcccgatatc 480
gacgtgcctg ctggtgactt gggcgttggt gcgcgtgaaa ttggttacat gtacggacaa 540
taccggaaga tcgtcggcgg attctacaat ggcgtcctga ccggtaaagc ccggtcattc 600
ggtggaagct tggtccggcc cgaagcaact ggttacggat cggtgtatta tgtggaggct 660
gtgatgaaac atgaaaatga cacgcttgta ggtaaaactg ttgcactggc aggttttggt 720
aacgttgcat ggggtgcagc taagaagctc gcggagttgg gtgcgaaagc agtaactttg 780
tctggcccgg atggctatat ctacgacccc gagggtatca ctaccgagga aaagatcaat 840
tacatgcttg aaatgcgggc gtctggacgt aacaaggtac aggattacgc agacaagttt 900
ggagtgcaat tctttccggg tgaaaagcct tggggccaaa aagttgacat tattatgcct 960
tgtgcaactc agaatgatgt tgacctggaa caggctaaaa agatcgtggc gaacaacgtg 1020
aagtactaca tcgaagtagc caacatgcct actactaatg aagcattgcg gtttcttatg 1080
cagcaaccta acatggtagt cgcccccagc aaggctgtga acgcaggtgg agtactggta 1140
tcgggtttcg agatgtcaca aaattccgaa cgtctgtcat ggaccgccga agaagtcgat 1200
agcaaactgc atcaggtgat gactgacatt catgacggtt cagccgccgc agctgaacgc 1260
tacggacttg gttacaatct tgtcgcaggt gctaatatcg taggttttca gaagatcgcc 1320
gatgccatga tggctcaagg aatcgcttgg tag 1353
<210> 132
<211> 450
<212> PRT
<213> Clostridiales sp.
<400> 132
Met Ser Lys Tyr Val Asp Arg Val Ile Ala Glu Val Glu Lys Lys Tyr
1 5 10 15
Ala Asp Glu Pro Glu Phe Val Gln Thr Val Glu Glu Val Leu Ser Ser
20 25 30
Leu Gly Pro Val Val Asp Ala His Pro Glu Tyr Glu Glu Val Ala Leu
35 40 45
Leu Glu Arg Met Val Ile Pro Glu Arg Val Ile Glu Phe Arg Val Pro
50 55 60
Trp Glu Asp Asp Asn Gly Lys Val His Val Asn Thr Gly Tyr Arg Val
65 70 75 80
Gln Phe Asn Gly Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe Ala
85 90 95
Pro Ser Val Asn Leu Ser Ile Met Lys Phe Leu Gly Phe Glu Gln Ala
100 105 110
Phe Lys Asp Ser Leu Thr Thr Leu Pro Met Gly Gly Ala Lys Gly Gly
115 120 125
Ser Asp Phe Asp Pro Asn Gly Lys Ser Asp Arg Glu Val Met Arg Phe
130 135 140
Cys Gln Ala Phe Met Thr Glu Leu Tyr Arg His Ile Gly Pro Asp Ile
145 150 155 160
Asp Val Pro Ala Gly Asp Leu Gly Val Gly Ala Arg Glu Ile Gly Tyr
165 170 175
Met Tyr Gly Gln Tyr Arg Lys Ile Val Gly Gly Phe Tyr Asn Gly Val
180 185 190
Leu Thr Gly Lys Ala Arg Ser Phe Gly Gly Ser Leu Val Arg Pro Glu
195 200 205
Ala Thr Gly Tyr Gly Ser Val Tyr Tyr Val Glu Ala Val Met Lys His
210 215 220
Glu Asn Asp Thr Leu Val Gly Lys Thr Val Ala Leu Ala Gly Phe Gly
225 230 235 240
Asn Val Ala Trp Gly Ala Ala Lys Lys Leu Ala Glu Leu Gly Ala Lys
245 250 255
Ala Val Thr Leu Ser Gly Pro Asp Gly Tyr Ile Tyr Asp Pro Glu Gly
260 265 270
Ile Thr Thr Glu Glu Lys Ile Asn Tyr Met Leu Glu Met Arg Ala Ser
275 280 285
Gly Arg Asn Lys Val Gln Asp Tyr Ala Asp Lys Phe Gly Val Gln Phe
290 295 300
Phe Pro Gly Glu Lys Pro Trp Gly Gln Lys Val Asp Ile Ile Met Pro
305 310 315 320
Cys Ala Thr Gln Asn Asp Val Asp Leu Glu Gln Ala Lys Lys Ile Val
325 330 335
Ala Asn Asn Val Lys Tyr Tyr Ile Glu Val Ala Asn Met Pro Thr Thr
340 345 350
Asn Glu Ala Leu Arg Phe Leu Met Gln Gln Pro Asn Met Val Val Ala
355 360 365
Pro Ser Lys Ala Val Asn Ala Gly Gly Val Leu Val Ser Gly Phe Glu
370 375 380
Met Ser Gln Asn Ser Glu Arg Leu Ser Trp Thr Ala Glu Glu Val Asp
385 390 395 400
Ser Lys Leu His Gln Val Met Thr Asp Ile His Asp Gly Ser Ala Ala
405 410 415
Ala Ala Glu Arg Tyr Gly Leu Gly Tyr Asn Leu Val Ala Gly Ala Asn
420 425 430
Ile Val Gly Phe Gln Lys Ile Ala Asp Ala Met Met Ala Gln Gly Ile
435 440 445
Ala Trp
450
<210> 133
<211> 1344
<212> DNA
<213> Escherichia coli
<400> 133
atggatcaga catattctct ggagtcattc ctcaaccatg tccaaaagcg cgacccgaat 60
caaaccgagt tcgcgcaagc cgttcgtgaa gtaatgacca cactctggcc ttttcttgaa 120
caaaatccaa aatatcgcca gatgtcatta ctggagcgtc tggttgaacc ggagcgcgtg 180
atccagtttc gcgtggtatg ggttgatgat cgcaaccaga tacaggtcaa ccgtgcatgg 240
cgtgtgcagt tcagctctgc catcggcccg tacaaaggcg gtatgcgctt ccatccgtca 300
gttaaccttt ccattctcaa attcctcggc tttgaacaaa ccttcaaaaa tgccctgact 360
actctgccga tgggcggtgg taaaggcggc agcgatttcg atccgaaagg aaaaagcgaa 420
ggtgaagtga tgcgtttttg ccaggcgctg atgactgaac tgtatcgcca cctgggcgcg 480
gataccgacg ttccggcagg tgatatcggg gttggtggtc gtgaagtcgg ctttatggcg 540
gggatgatga aaaagctctc caacaatacc gcctgcgtct tcaccggtaa gggcctttca 600
tttggcggca gtcttattcg cccggaagct accggctacg gtctggttta tttcacagaa 660
gcaatgctaa aacgccacgg tatgggtttt gaagggatgc gcgtttccgt ttctggctcc 720
ggcaacgtcg cccagtacgc tatcgaaaaa gcgatggaat ttggtgctcg tgtgatcact 780
gcgtcagact ccagcggcac tgtagttgat gaaagcggat tcacgaaaga gaaactggca 840
cgtcttatcg aaatcaaagc cagccgcgat ggtcgagtgg cagattacgc caaagaattt 900
ggtctggtct atctcgaagg ccaacagccg tggtctctac cggttgatat cgccctgcct 960
tgcgccaccc agaatgaact ggatgttgac gccgcgcatc agcttatcgc taatggcgtt 1020
aaagccgtcg ccgaaggggc aaatatgccg accaccatcg aagcgactga actgttccag 1080
caggcaggcg tactatttgc accgggtaaa gcggctaatg ctggtggcgt cgctacatcg 1140
ggcctggaaa tggcacaaaa cgctgcgcgc ctgggctgga aagccgagaa agttgacgca 1200
cgtttgcatc acatcatgct ggatatccac catgcctgtg ttgagcatgg tggtgaaggt 1260
gagcaaacca actacgtgca gggcgcgaac attgccggtt ttgtgaaggt tgccgatgcg 1320
atgctggcgc agggtgtgat ttaa 1344
<210> 134
<211> 447
<212> PRT
<213> Escherichia coli
<400> 134
Met Asp Gln Thr Tyr Ser Leu Glu Ser Phe Leu Asn His Val Gln Lys
1 5 10 15
Arg Asp Pro Asn Gln Thr Glu Phe Ala Gln Ala Val Arg Glu Val Met
20 25 30
Thr Thr Leu Trp Pro Phe Leu Glu Gln Asn Pro Lys Tyr Arg Gln Met
35 40 45
Ser Leu Leu Glu Arg Leu Val Glu Pro Glu Arg Val Ile Gln Phe Arg
50 55 60
Val Val Trp Val Asp Asp Arg Asn Gln Ile Gln Val Asn Arg Ala Trp
65 70 75 80
Arg Val Gln Phe Ser Ser Ala Ile Gly Pro Tyr Lys Gly Gly Met Arg
85 90 95
Phe His Pro Ser Val Asn Leu Ser Ile Leu Lys Phe Leu Gly Phe Glu
100 105 110
Gln Thr Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Gly Lys
115 120 125
Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys Ser Glu Gly Glu Val Met
130 135 140
Arg Phe Cys Gln Ala Leu Met Thr Glu Leu Tyr Arg His Leu Gly Ala
145 150 155 160
Asp Thr Asp Val Pro Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Val
165 170 175
Gly Phe Met Ala Gly Met Met Lys Lys Leu Ser Asn Asn Thr Ala Cys
180 185 190
Val Phe Thr Gly Lys Gly Leu Ser Phe Gly Gly Ser Leu Ile Arg Pro
195 200 205
Glu Ala Thr Gly Tyr Gly Leu Val Tyr Phe Thr Glu Ala Met Leu Lys
210 215 220
Arg His Gly Met Gly Phe Glu Gly Met Arg Val Ser Val Ser Gly Ser
225 230 235 240
Gly Asn Val Ala Gln Tyr Ala Ile Glu Lys Ala Met Glu Phe Gly Ala
245 250 255
Arg Val Ile Thr Ala Ser Asp Ser Ser Gly Thr Val Val Asp Glu Ser
260 265 270
Gly Phe Thr Lys Glu Lys Leu Ala Arg Leu Ile Glu Ile Lys Ala Ser
275 280 285
Arg Asp Gly Arg Val Ala Asp Tyr Ala Lys Glu Phe Gly Leu Val Tyr
290 295 300
Leu Glu Gly Gln Gln Pro Trp Ser Leu Pro Val Asp Ile Ala Leu Pro
305 310 315 320
Cys Ala Thr Gln Asn Glu Leu Asp Val Asp Ala Ala His Gln Leu Ile
325 330 335
Ala Asn Gly Val Lys Ala Val Ala Glu Gly Ala Asn Met Pro Thr Thr
340 345 350
Ile Glu Ala Thr Glu Leu Phe Gln Gln Ala Gly Val Leu Phe Ala Pro
355 360 365
Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met
370 375 380
Ala Gln Asn Ala Ala Arg Leu Gly Trp Lys Ala Glu Lys Val Asp Ala
385 390 395 400
Arg Leu His His Ile Met Leu Asp Ile His His Ala Cys Val Glu His
405 410 415
Gly Gly Glu Gly Glu Gln Thr Asn Tyr Val Gln Gly Ala Asn Ile Ala
420 425 430
Gly Phe Val Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile
435 440 445
<210> 135
<211> 1377
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_1 sequence from unknown bacterial species from
environmental sample
<400> 135
ttgaaatcat taaacgaaaa ttccgtcaac ggcctggccc gcataaaaag tattactgac 60
ttcgtcgtcg atctcgaaaa acgcaatccg cacgagcccg agttcaaaca ggccgtaact 120
gaagcggtca acgatctcat tccattcatc gaagccaatc cacgttatca gaaccagatg 180
attctcgagc ggctcaccga acccgatcgc gtcattactt tccgcgtttc ctggatggac 240
gatgccggga acattcgcat caatcgcggc tatcgcgtgc agaacagcaa tgcaatcggc 300
ccgtacaaag gcggcattcg ttttcacccg agcgtgaatc tcagcatcct gaaatttctc 360
gcgtttgaac aaaccctgaa aaacagtttg actggcctgc cgatgggcgg cgcgaaaggc 420
ggctccgatt tcgatcccaa aggaaaatcc gatgcggaag tcatgcgctt ctgccaggcg 480
ctgatcaccg aactctggcg tcacatcggt tccgataccg acgtaccggc aggtgacata 540
ggcgtaggag cacgcgaagt cggctacatg ttcggccaat acaaacgtct ttccaattcg 600
ttcacaggtg cgttcaccgg caagggcatc gactacggcg gcagtctcgg ccgcaccgaa 660
gccaccggtt acggcgctgt gtatatgctt gcggaagtca tgacgtacaa caaggaagac 720
ctcgcgggca aacgcgtgct cgtttccggt tcgggcaatg tggcggtata tgcggttgaa 780
aaagccatgc agatgggagc gatcgtcacc acgctctcag actccagcgg cttcgtctac 840
gacaagaatg gcttcactta cgaaaaactc gaatacatca aacagctgaa attcatcgac 900
cgcggccgca tcgaaaaata ttgcgatcat ttcgaagccg aattccacgc cggcaggaaa 960
ccctggggaa tgcctgccga tgtcgcgctg ccctgtgcaa cgcagaacga aatcacgctc 1020
gacgatgcca aaaccctcgt cgccaacggc tgcagatatc tcgtggaagg cgccaacatg 1080
cccaccacca tcgacgcgat tgcattgtta ctcgaaaaca aagtgcatta cgtccccggc 1140
aaagcagcca acgccggcgg tgtggcagtg tcaggcctcg agatgagcca gaactcgctg 1200
cgcatcggct ggaccgcacg agaggtcgat ctcaaactgc acgacatcat gcgtcacatc 1260
catcacaagt gcgtgcagca cggcaaggaa aatggtttcg tcaattattc aaaaggcgcc 1320
aacattgccg gtttcatcaa ggtggcggat gcgatgctcg cgttgggcgt tgtttag 1377
<210> 136
<211> 458
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_1 sequence from unknown bacterial species from
environmental sample
<400> 136
Leu Lys Ser Leu Asn Glu Asn Ser Val Asn Gly Leu Ala Arg Ile Lys
1 5 10 15
Ser Ile Thr Asp Phe Val Val Asp Leu Glu Lys Arg Asn Pro His Glu
20 25 30
Pro Glu Phe Lys Gln Ala Val Thr Glu Ala Val Asn Asp Leu Ile Pro
35 40 45
Phe Ile Glu Ala Asn Pro Arg Tyr Gln Asn Gln Met Ile Leu Glu Arg
50 55 60
Leu Thr Glu Pro Asp Arg Val Ile Thr Phe Arg Val Ser Trp Met Asp
65 70 75 80
Asp Ala Gly Asn Ile Arg Ile Asn Arg Gly Tyr Arg Val Gln Asn Ser
85 90 95
Asn Ala Ile Gly Pro Tyr Lys Gly Gly Ile Arg Phe His Pro Ser Val
100 105 110
Asn Leu Ser Ile Leu Lys Phe Leu Ala Phe Glu Gln Thr Leu Lys Asn
115 120 125
Ser Leu Thr Gly Leu Pro Met Gly Gly Ala Lys Gly Gly Ser Asp Phe
130 135 140
Asp Pro Lys Gly Lys Ser Asp Ala Glu Val Met Arg Phe Cys Gln Ala
145 150 155 160
Leu Ile Thr Glu Leu Trp Arg His Ile Gly Ser Asp Thr Asp Val Pro
165 170 175
Ala Gly Asp Ile Gly Val Gly Ala Arg Glu Val Gly Tyr Met Phe Gly
180 185 190
Gln Tyr Lys Arg Leu Ser Asn Ser Phe Thr Gly Ala Phe Thr Gly Lys
195 200 205
Gly Ile Asp Tyr Gly Gly Ser Leu Gly Arg Thr Glu Ala Thr Gly Tyr
210 215 220
Gly Ala Val Tyr Met Leu Ala Glu Val Met Thr Tyr Asn Lys Glu Asp
225 230 235 240
Leu Ala Gly Lys Arg Val Leu Val Ser Gly Ser Gly Asn Val Ala Val
245 250 255
Tyr Ala Val Glu Lys Ala Met Gln Met Gly Ala Ile Val Thr Thr Leu
260 265 270
Ser Asp Ser Ser Gly Phe Val Tyr Asp Lys Asn Gly Phe Thr Tyr Glu
275 280 285
Lys Leu Glu Tyr Ile Lys Gln Leu Lys Phe Ile Asp Arg Gly Arg Ile
290 295 300
Glu Lys Tyr Cys Asp His Phe Glu Ala Glu Phe His Ala Gly Arg Lys
305 310 315 320
Pro Trp Gly Met Pro Ala Asp Val Ala Leu Pro Cys Ala Thr Gln Asn
325 330 335
Glu Ile Thr Leu Asp Asp Ala Lys Thr Leu Val Ala Asn Gly Cys Arg
340 345 350
Tyr Leu Val Glu Gly Ala Asn Met Pro Thr Thr Ile Asp Ala Ile Ala
355 360 365
Leu Leu Leu Glu Asn Lys Val His Tyr Val Pro Gly Lys Ala Ala Asn
370 375 380
Ala Gly Gly Val Ala Val Ser Gly Leu Glu Met Ser Gln Asn Ser Leu
385 390 395 400
Arg Ile Gly Trp Thr Ala Arg Glu Val Asp Leu Lys Leu His Asp Ile
405 410 415
Met Arg His Ile His His Lys Cys Val Gln His Gly Lys Glu Asn Gly
420 425 430
Phe Val Asn Tyr Ser Lys Gly Ala Asn Ile Ala Gly Phe Ile Lys Val
435 440 445
Ala Asp Ala Met Leu Ala Leu Gly Val Val
450 455
<210> 137
<211> 1569
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_2 sequence from unknown bacterial species from
environmental sample
<400> 137
cagtgtcttg atgcacagga atggggccct tggtggcccc atttttgtgc ctgccgttta 60
cgggtgtggc tgtttgaagg ccagtattgc ggctgttttt gtatacactt atataaaacg 120
caccaaataa attcagaaaa acgacatatc gccctgttcc ggtgcgattg cttcttggta 180
cattcccgaa aaaccaataa gtccaaaatc ttcggtgaga tgtctaccat gatcgaatct 240
gtcgacagtt tcctcgcgcg cctgcaacag cgcgacccag gccagcctga gtttcatcag 300
gcagtggaag aagtgctgcg cacgctgtgg cccttcctgg aagccaaccc tcattacctg 360
cagtccggca tcctggagcg tatggtcgag ccggagcgtg cggtgctgtt tcgcgtgtcg 420
tgggtcgatg accagggcaa agtgcaggtc aaccgcggct accgtatcca gatgagcagc 480
gccatcggcc cgtacaaggg cggcttgcgc ttccacccct cggtcaacct cagcgtgctg 540
aaattcctgg ccttcgagca ggtcttcaag aactccctga cttcgctgcc catggggggt 600
ggcaagggcg ggtcggactt cgaccccaaa ggcaagagcg acgccgaagt gatgcgcttc 660
tgccaggcgt tcatgagcga gctgtaccgc cacatcggcg ccgactgcga cgtgccggcc 720
ggtgacatcg gcgtgggtgc ccgcgaaatc ggcttcatgt ttggccagta caagcggctt 780
gccaaccagt tcacgtcggt actgaccggc aaggggatga cctacggtgg cagcctgatt 840
cgccccgaag ccaccggcta cggttgcgtg tatttcgccg aggaaatgct caagcgccag 900
gacaagcgca tcgacggccg tcgcgtggcg gtgtcgggct cgggcaacgt tgcccagtat 960
gccgcgcgca aggtcatgga cctgggcggc aaagtgatct ccatgtcgga ctccgaaggc 1020
acgctgtatg ccgaagccgg cctgaccgat gcccagtggg aagcactgat ggcgctgaag 1080
aacgtcaagc ggggccgtat cagcgagctg gccgagcagt tcggcctgga gttccgcaag 1140
ggccagaccc cttggagcct ggcatgcgac atcgccttgc cgtgcgccac gcagaatgaa 1200
ctgggcgccg aagacgcccg taccttgctg gccaacggct gtatctgcgt ggccgaaggc 1260
gccaacatgc cgaccaccct ggaagcggtg gatatcttcc tggaagccgg catcctctat 1320
gccccgggca aagcatccaa cgccggcggt gtggccgtgt ctggcctgga gatgtcgcag 1380
aatgccatgc gcctgctgtg gactgccggc gaagtggaca gcaagctgca caacatcatg 1440
caatcgatcc accatgcttg cgtgcattat ggtgaagagg cggatggccg ggtcaattac 1500
gtgaaaggtg cgaacatcgc cggctttgtc aaagtggcgg atgcgatgtt ggctcagggc 1560
gtggtttga 1569
<210> 138
<211> 522
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_2 sequence from unknown bacterial species from
environmental sample
<400> 138
Gln Cys Leu Asp Ala Gln Glu Trp Gly Pro Trp Trp Pro His Phe Cys
1 5 10 15
Ala Cys Arg Leu Arg Val Trp Leu Phe Glu Gly Gln Tyr Cys Gly Cys
20 25 30
Phe Cys Ile His Leu Tyr Lys Thr His Gln Ile Asn Ser Glu Lys Arg
35 40 45
His Ile Ala Leu Phe Arg Cys Asp Cys Phe Leu Val His Ser Arg Lys
50 55 60
Thr Asn Lys Ser Lys Ile Phe Gly Glu Met Ser Thr Met Ile Glu Ser
65 70 75 80
Val Asp Ser Phe Leu Ala Arg Leu Gln Gln Arg Asp Pro Gly Gln Pro
85 90 95
Glu Phe His Gln Ala Val Glu Glu Val Leu Arg Thr Leu Trp Pro Phe
100 105 110
Leu Glu Ala Asn Pro His Tyr Leu Gln Ser Gly Ile Leu Glu Arg Met
115 120 125
Val Glu Pro Glu Arg Ala Val Leu Phe Arg Val Ser Trp Val Asp Asp
130 135 140
Gln Gly Lys Val Gln Val Asn Arg Gly Tyr Arg Ile Gln Met Ser Ser
145 150 155 160
Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe His Pro Ser Val Asn
165 170 175
Leu Ser Val Leu Lys Phe Leu Ala Phe Glu Gln Val Phe Lys Asn Ser
180 185 190
Leu Thr Ser Leu Pro Met Gly Gly Gly Lys Gly Gly Ser Asp Phe Asp
195 200 205
Pro Lys Gly Lys Ser Asp Ala Glu Val Met Arg Phe Cys Gln Ala Phe
210 215 220
Met Ser Glu Leu Tyr Arg His Ile Gly Ala Asp Cys Asp Val Pro Ala
225 230 235 240
Gly Asp Ile Gly Val Gly Ala Arg Glu Ile Gly Phe Met Phe Gly Gln
245 250 255
Tyr Lys Arg Leu Ala Asn Gln Phe Thr Ser Val Leu Thr Gly Lys Gly
260 265 270
Met Thr Tyr Gly Gly Ser Leu Ile Arg Pro Glu Ala Thr Gly Tyr Gly
275 280 285
Cys Val Tyr Phe Ala Glu Glu Met Leu Lys Arg Gln Asp Lys Arg Ile
290 295 300
Asp Gly Arg Arg Val Ala Val Ser Gly Ser Gly Asn Val Ala Gln Tyr
305 310 315 320
Ala Ala Arg Lys Val Met Asp Leu Gly Gly Lys Val Ile Ser Met Ser
325 330 335
Asp Ser Glu Gly Thr Leu Tyr Ala Glu Ala Gly Leu Thr Asp Ala Gln
340 345 350
Trp Glu Ala Leu Met Ala Leu Lys Asn Val Lys Arg Gly Arg Ile Ser
355 360 365
Glu Leu Ala Glu Gln Phe Gly Leu Glu Phe Arg Lys Gly Gln Thr Pro
370 375 380
Trp Ser Leu Ala Cys Asp Ile Ala Leu Pro Cys Ala Thr Gln Asn Glu
385 390 395 400
Leu Gly Ala Glu Asp Ala Arg Thr Leu Leu Ala Asn Gly Cys Ile Cys
405 410 415
Val Ala Glu Gly Ala Asn Met Pro Thr Thr Leu Glu Ala Val Asp Ile
420 425 430
Phe Leu Glu Ala Gly Ile Leu Tyr Ala Pro Gly Lys Ala Ser Asn Ala
435 440 445
Gly Gly Val Ala Val Ser Gly Leu Glu Met Ser Gln Asn Ala Met Arg
450 455 460
Leu Leu Trp Thr Ala Gly Glu Val Asp Ser Lys Leu His Asn Ile Met
465 470 475 480
Gln Ser Ile His His Ala Cys Val His Tyr Gly Glu Glu Ala Asp Gly
485 490 495
Arg Val Asn Tyr Val Lys Gly Ala Asn Ile Ala Gly Phe Val Lys Val
500 505 510
Ala Asp Ala Met Leu Ala Gln Gly Val Val
515 520
<210> 139
<211> 1353
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_3 sequence from unknown bacterial species from
environmental sample
<400> 139
atgagtggtg ccgttcagaa ggaattagac gagttcatgc acgggctaag gaagcgcaac 60
cccggtgagg aggagtttca ccaggcggtg caggaggtcg tggagtcgac tctgccttac 120
gtgctcgatc atccggagta ccgcaaagcg tccattctcg agcgcatgac cgagcccgat 180
cgcgtgatca tctttcgcgt ggcctggcag gacgacgagg gccatgtgcg cgcccaccgc 240
ggctaccgcg tgcagttcaa taacgccatc ggtccctaca aggggggatt gcggttccac 300
tcttccgtca gcctttccat tttgaagttc ttgggcttcg agcagacgtt caagaacagc 360
cttacgggcc tgcccatggg aggcggcaag ggcggatcga atttcaaccc caagggaaaa 420
tccgacggcg aagtgatgcg cttttgccag gccttcatga ccgagctgta ccggcacatc 480
ggcaaggaca ccgatgttcc ggccggcgac atcggcgtgg gtagccggga aatcagctac 540
ctcttcggcc agtacaagcg gattacgaac gaatttaccg gcgtgctgac gggcaagggg 600
ctctccttcg gaggcagcct cattcggact gaagcgacag gctacggctg cgtctatttc 660
atggaagaga tgttgaaggc caagggcgac gctctcgtcg gcaagactgt gacggtgtcg 720
ggctcgggaa acgtcgcgca gttcacggcg aaaaaactga tcgagctggg cgccaaggtg 780
ctcacgctga gcgattccga cggcttcatc cacgatcgaa acgggatcga tctggaaaag 840
ctcaactgga ttctcgatct gaagaacgta cgtcggggtc gtatcgccga ttatacgcag 900
aagtggggag gggagtatca cgaagggggc cgtccctggg tcgttccctg cgatctggcc 960
tttccctgcg ccacccaaaa cgaggtcacg ggctcggacg cccgcatcct catcgccaac 1020
ggctgcatcg gggttgcgga aggcgccaac atgccttccg acctggacgc catccacgcc 1080
tttctggagg cgagaattct ctacgccccg agcaaagcgt ccaacgcggg cggtgtcgcc 1140
gtctccggct tggagatgac ccaaaactcc cagcggctat cctggtcgtc ggaagaggtg 1200
aacgagcgcc tccacgccat catgaagagc atccacgcga gctgcgtgcg ctacggcacc 1260
gaaagagacg gctacgtgaa ctacgtcaaa ggcgcgaacc tcgcggggtt cgtgaaggtc 1320
gccgatgcga tgctcgcctt cggcgtgctg tga 1353
<210> 140
<211> 450
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_3 sequence from unknown bacterial species from
environmental sample
<400> 140
Met Ser Gly Ala Val Gln Lys Glu Leu Asp Glu Phe Met His Gly Leu
1 5 10 15
Arg Lys Arg Asn Pro Gly Glu Glu Glu Phe His Gln Ala Val Gln Glu
20 25 30
Val Val Glu Ser Thr Leu Pro Tyr Val Leu Asp His Pro Glu Tyr Arg
35 40 45
Lys Ala Ser Ile Leu Glu Arg Met Thr Glu Pro Asp Arg Val Ile Ile
50 55 60
Phe Arg Val Ala Trp Gln Asp Asp Glu Gly His Val Arg Ala His Arg
65 70 75 80
Gly Tyr Arg Val Gln Phe Asn Asn Ala Ile Gly Pro Tyr Lys Gly Gly
85 90 95
Leu Arg Phe His Ser Ser Val Ser Leu Ser Ile Leu Lys Phe Leu Gly
100 105 110
Phe Glu Gln Thr Phe Lys Asn Ser Leu Thr Gly Leu Pro Met Gly Gly
115 120 125
Gly Lys Gly Gly Ser Asn Phe Asn Pro Lys Gly Lys Ser Asp Gly Glu
130 135 140
Val Met Arg Phe Cys Gln Ala Phe Met Thr Glu Leu Tyr Arg His Ile
145 150 155 160
Gly Lys Asp Thr Asp Val Pro Ala Gly Asp Ile Gly Val Gly Ser Arg
165 170 175
Glu Ile Ser Tyr Leu Phe Gly Gln Tyr Lys Arg Ile Thr Asn Glu Phe
180 185 190
Thr Gly Val Leu Thr Gly Lys Gly Leu Ser Phe Gly Gly Ser Leu Ile
195 200 205
Arg Thr Glu Ala Thr Gly Tyr Gly Cys Val Tyr Phe Met Glu Glu Met
210 215 220
Leu Lys Ala Lys Gly Asp Ala Leu Val Gly Lys Thr Val Thr Val Ser
225 230 235 240
Gly Ser Gly Asn Val Ala Gln Phe Thr Ala Lys Lys Leu Ile Glu Leu
245 250 255
Gly Ala Lys Val Leu Thr Leu Ser Asp Ser Asp Gly Phe Ile His Asp
260 265 270
Arg Asn Gly Ile Asp Leu Glu Lys Leu Asn Trp Ile Leu Asp Leu Lys
275 280 285
Asn Val Arg Arg Gly Arg Ile Ala Asp Tyr Thr Gln Lys Trp Gly Gly
290 295 300
Glu Tyr His Glu Gly Gly Arg Pro Trp Val Val Pro Cys Asp Leu Ala
305 310 315 320
Phe Pro Cys Ala Thr Gln Asn Glu Val Thr Gly Ser Asp Ala Arg Ile
325 330 335
Leu Ile Ala Asn Gly Cys Ile Gly Val Ala Glu Gly Ala Asn Met Pro
340 345 350
Ser Asp Leu Asp Ala Ile His Ala Phe Leu Glu Ala Arg Ile Leu Tyr
355 360 365
Ala Pro Ser Lys Ala Ser Asn Ala Gly Gly Val Ala Val Ser Gly Leu
370 375 380
Glu Met Thr Gln Asn Ser Gln Arg Leu Ser Trp Ser Ser Glu Glu Val
385 390 395 400
Asn Glu Arg Leu His Ala Ile Met Lys Ser Ile His Ala Ser Cys Val
405 410 415
Arg Tyr Gly Thr Glu Arg Asp Gly Tyr Val Asn Tyr Val Lys Gly Ala
420 425 430
Asn Leu Ala Gly Phe Val Lys Val Ala Asp Ala Met Leu Ala Phe Gly
435 440 445
Val Leu
450
<210> 141
<211> 1383
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_4 sequence from unknown bacterial species from
environmental sample
<400> 141
atggcgacgc tcctcacgac ctcggaagct ctgacgcgtg acacagggaa agccgtcgat 60
cgattcatgg atggcctcgt cgcgcgcaac ccgaatcagc cggagttcca tcaggccgtt 120
cgcgaggtgt gcgagagcgt catgccactc gtcttggagc ggccggagta cgaggaggcc 180
ggaatcctcg agcgcctcac ggaaccggat cgcattctca cgttccgtgt ggcctggcag 240
gatgacgagg gtcgcgtccg tatcaatcgc gcgtatcgcg tgcagttcaa caacgccatt 300
ggtccttaca aaggcggcct ccgctttcat cccaccgtcg atctctcggt cctcaagttc 360
ctcggcttcg agcagatctt caagaacagt ctgaccggtc ttcccatggg tggcgcgaag 420
ggtggttctg atttcgatcc caaagggaag tcggataacg aggtcatgcg gttctgtcag 480
gcgatgatgt cggagctgtg tcacgacatc ggcgaagacg tcgatgtgcc ggccggcgac 540
attggtgtgg gcgctcgaga gattgggtat ctgtttggcg aatatcgtcg cctcatgcgt 600
cgcgtcgctg gtgtgctcac ggggaagggc ttgtcgtttg gcggcagctt gattcggacc 660
gaagccactg gctatggctg cgtctatttc gtcgagaaca tgttgaatca cattggtgat 720
tccctcgacg gcaagacctg tgtcgtttcc ggatcaggca acgtcgcgct ctacacggtc 780
gagaaggtga cggctctggg cgggaaggtc gtcacgctct cggactcgga cggcttcatc 840
tacgatcgcg acggcatcga tgcggagaag ctggagtggg tcaaggagct caaagaggtt 900
cgtcgcggtc gcatcagcga gtacgcggag cacttcggcg gccagttcca cgccgatgag 960
cggccgtggc atgtcgagtg tcaggcggcg tttccttctg ccacgcagaa cgagttggac 1020
aaagaggatg cggaagtgct ggtcgcgaac ggctgtctcg cggtcggcga aggcgcgaac 1080
atgccgagca cgagcgacgc aacgcgcgtg ttcctcgagg ctggaacgct cttcgcgccg 1140
ggcaaggccg cgaatgccgg tggggtcgcc gtctcaggtc tcgagcagag tcagaatgcg 1200
cagcgcctgt tctggacgcg tgacgaggtg gatcttcgtc ttcaaggcat catgaagacg 1260
atccacgaca agtgcgttga gcagggtcgc gtcgcgaatg gtcagatcaa ctacgtgcag 1320
ggcgccaatc gcgcaggttt cctcaaggtc gccgacgcga tgctcgcgca aggcgtattt 1380
tga 1383
<210> 142
<211> 460
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_4 sequence from unknown bacterial species from
environmental sample
<400> 142
Met Ala Thr Leu Leu Thr Thr Ser Glu Ala Leu Thr Arg Asp Thr Gly
1 5 10 15
Lys Ala Val Asp Arg Phe Met Asp Gly Leu Val Ala Arg Asn Pro Asn
20 25 30
Gln Pro Glu Phe His Gln Ala Val Arg Glu Val Cys Glu Ser Val Met
35 40 45
Pro Leu Val Leu Glu Arg Pro Glu Tyr Glu Glu Ala Gly Ile Leu Glu
50 55 60
Arg Leu Thr Glu Pro Asp Arg Ile Leu Thr Phe Arg Val Ala Trp Gln
65 70 75 80
Asp Asp Glu Gly Arg Val Arg Ile Asn Arg Ala Tyr Arg Val Gln Phe
85 90 95
Asn Asn Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe His Pro Thr
100 105 110
Val Asp Leu Ser Val Leu Lys Phe Leu Gly Phe Glu Gln Ile Phe Lys
115 120 125
Asn Ser Leu Thr Gly Leu Pro Met Gly Gly Ala Lys Gly Gly Ser Asp
130 135 140
Phe Asp Pro Lys Gly Lys Ser Asp Asn Glu Val Met Arg Phe Cys Gln
145 150 155 160
Ala Met Met Ser Glu Leu Cys His Asp Ile Gly Glu Asp Val Asp Val
165 170 175
Pro Ala Gly Asp Ile Gly Val Gly Ala Arg Glu Ile Gly Tyr Leu Phe
180 185 190
Gly Glu Tyr Arg Arg Leu Met Arg Arg Val Ala Gly Val Leu Thr Gly
195 200 205
Lys Gly Leu Ser Phe Gly Gly Ser Leu Ile Arg Thr Glu Ala Thr Gly
210 215 220
Tyr Gly Cys Val Tyr Phe Val Glu Asn Met Leu Asn His Ile Gly Asp
225 230 235 240
Ser Leu Asp Gly Lys Thr Cys Val Val Ser Gly Ser Gly Asn Val Ala
245 250 255
Leu Tyr Thr Val Glu Lys Val Thr Ala Leu Gly Gly Lys Val Val Thr
260 265 270
Leu Ser Asp Ser Asp Gly Phe Ile Tyr Asp Arg Asp Gly Ile Asp Ala
275 280 285
Glu Lys Leu Glu Trp Val Lys Glu Leu Lys Glu Val Arg Arg Gly Arg
290 295 300
Ile Ser Glu Tyr Ala Glu His Phe Gly Gly Gln Phe His Ala Asp Glu
305 310 315 320
Arg Pro Trp His Val Glu Cys Gln Ala Ala Phe Pro Ser Ala Thr Gln
325 330 335
Asn Glu Leu Asp Lys Glu Asp Ala Glu Val Leu Val Ala Asn Gly Cys
340 345 350
Leu Ala Val Gly Glu Gly Ala Asn Met Pro Ser Thr Ser Asp Ala Thr
355 360 365
Arg Val Phe Leu Glu Ala Gly Thr Leu Phe Ala Pro Gly Lys Ala Ala
370 375 380
Asn Ala Gly Gly Val Ala Val Ser Gly Leu Glu Gln Ser Gln Asn Ala
385 390 395 400
Gln Arg Leu Phe Trp Thr Arg Asp Glu Val Asp Leu Arg Leu Gln Gly
405 410 415
Ile Met Lys Thr Ile His Asp Lys Cys Val Glu Gln Gly Arg Val Ala
420 425 430
Asn Gly Gln Ile Asn Tyr Val Gln Gly Ala Asn Arg Ala Gly Phe Leu
435 440 445
Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Phe
450 455 460
<210> 143
<211> 1386
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_5 sequence from unknown bacterial species from
environmental sample
<400> 143
atgtccaaca agattcgcgc gttgaacccg acgctgagta cacctatggc tttggtccag 60
gaagtcctcg gggtcgtcag caggcgcaac ccgagcgaac cggagtttct tcaggcggtc 120
accgaagtgc ttgaatcgat cgcgccggtc gtccagcgtc gcaaggatta ccgcgatgca 180
aagattctcg aacgcatcgt tgagccggag cgtatgatcc agttccgtgt tccgtggatc 240
gacgataagg gccaaatcca ggttaatcgc ggtttccgtg tgcagatgaa tagcgcgctc 300
ggcccttaca aaggcgggtt acggtttcat ccgaccgtaa atgccagcat cctcaagttc 360
cttgctttcg aacaggtatt taaaaactcg ctcaccactt tgccgatggg cggaggcaaa 420
ggcggcgccg atttcgaccc gaaaggaaaa tccgataccg aagtgatgca cttctgccaa 480
tcgttcatga ccgagttgtt tcgacacgtc ggtcccgata cggacgtgcc ggccggcgat 540
atcggagttg gcggccggga aatcggttat ctgtttggtc aatacaaacg tctggccaat 600
gagttcactg gcgttctcac cggcaaatcg ctcagttggg gcgggtcgct catccgcccg 660
caagcgaccg gttatggcgc cgtttacttt gccgaagaga tgctcaagac gcgaaagcaa 720
ggtctcgaag gcagggtttg taccgtctcc ggttcgggca acgccgcgca atacacagtt 780
tcaaaattga accaggtggg cgccaaagtc gtgaccatgt ccgattcagg cgggttcatt 840
tatgacaagg atggcatcac cgacgaaaag ctgagctgga tcatggattt gaagaacgtg 900
cggcgtcgcc gcatcaagga gtacgccgat cagtttcaag gaacaactta tacggaaggc 960
cagcggccct ggagcgtacc gtgtgaatgc gcgtttccgt gtgccacgca aaatgaaatc 1020
agtggtgaag atgcgaaagc gttgatcgac aacggctgct ttctggtttc ggaagccgca 1080
aatatgccga ccgcgccagc gggagtggat ctcttcctcg ctaataaggt cctttatggt 1140
cccggcaaag ccgccaatgc cggcggggtg gcggtttccg gcttggagat ggcgcaaaat 1200
tcaatgcgtc tgccgtggcc gcgcgctgaa gtggatcaac ggcttcgcca aatcatggcc 1260
acgatccaca gaaacgcgtg ggagaccgcg gccgagtacg atcaacccgg caatcttgtc 1320
atcggcgcga atatcgccgg tttcgttaaa gtcgccgacg ccatgctcga ccagggtgtg 1380
gtctaa 1386
<210> 144
<211> 461
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_5 sequence from unknown bacterial species from
environmental sample
<400> 144
Met Ser Asn Lys Ile Arg Ala Leu Asn Pro Thr Leu Ser Thr Pro Met
1 5 10 15
Ala Leu Val Gln Glu Val Leu Gly Val Val Ser Arg Arg Asn Pro Ser
20 25 30
Glu Pro Glu Phe Leu Gln Ala Val Thr Glu Val Leu Glu Ser Ile Ala
35 40 45
Pro Val Val Gln Arg Arg Lys Asp Tyr Arg Asp Ala Lys Ile Leu Glu
50 55 60
Arg Ile Val Glu Pro Glu Arg Met Ile Gln Phe Arg Val Pro Trp Ile
65 70 75 80
Asp Asp Lys Gly Gln Ile Gln Val Asn Arg Gly Phe Arg Val Gln Met
85 90 95
Asn Ser Ala Leu Gly Pro Tyr Lys Gly Gly Leu Arg Phe His Pro Thr
100 105 110
Val Asn Ala Ser Ile Leu Lys Phe Leu Ala Phe Glu Gln Val Phe Lys
115 120 125
Asn Ser Leu Thr Thr Leu Pro Met Gly Gly Gly Lys Gly Gly Ala Asp
130 135 140
Phe Asp Pro Lys Gly Lys Ser Asp Thr Glu Val Met His Phe Cys Gln
145 150 155 160
Ser Phe Met Thr Glu Leu Phe Arg His Val Gly Pro Asp Thr Asp Val
165 170 175
Pro Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Ile Gly Tyr Leu Phe
180 185 190
Gly Gln Tyr Lys Arg Leu Ala Asn Glu Phe Thr Gly Val Leu Thr Gly
195 200 205
Lys Ser Leu Ser Trp Gly Gly Ser Leu Ile Arg Pro Gln Ala Thr Gly
210 215 220
Tyr Gly Ala Val Tyr Phe Ala Glu Glu Met Leu Lys Thr Arg Lys Gln
225 230 235 240
Gly Leu Glu Gly Arg Val Cys Thr Val Ser Gly Ser Gly Asn Ala Ala
245 250 255
Gln Tyr Thr Val Ser Lys Leu Asn Gln Val Gly Ala Lys Val Val Thr
260 265 270
Met Ser Asp Ser Gly Gly Phe Ile Tyr Asp Lys Asp Gly Ile Thr Asp
275 280 285
Glu Lys Leu Ser Trp Ile Met Asp Leu Lys Asn Val Arg Arg Arg Arg
290 295 300
Ile Lys Glu Tyr Ala Asp Gln Phe Gln Gly Thr Thr Tyr Thr Glu Gly
305 310 315 320
Gln Arg Pro Trp Ser Val Pro Cys Glu Cys Ala Phe Pro Cys Ala Thr
325 330 335
Gln Asn Glu Ile Ser Gly Glu Asp Ala Lys Ala Leu Ile Asp Asn Gly
340 345 350
Cys Phe Leu Val Ser Glu Ala Ala Asn Met Pro Thr Ala Pro Ala Gly
355 360 365
Val Asp Leu Phe Leu Ala Asn Lys Val Leu Tyr Gly Pro Gly Lys Ala
370 375 380
Ala Asn Ala Gly Gly Val Ala Val Ser Gly Leu Glu Met Ala Gln Asn
385 390 395 400
Ser Met Arg Leu Pro Trp Pro Arg Ala Glu Val Asp Gln Arg Leu Arg
405 410 415
Gln Ile Met Ala Thr Ile His Arg Asn Ala Trp Glu Thr Ala Ala Glu
420 425 430
Tyr Asp Gln Pro Gly Asn Leu Val Ile Gly Ala Asn Ile Ala Gly Phe
435 440 445
Val Lys Val Ala Asp Ala Met Leu Asp Gln Gly Val Val
450 455 460
<210> 145
<211> 1392
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_6 sequence from unknown bacterial species from
environmental sample
<400> 145
atgctcgtca gccggtccac gcgcgcccct ctctccacct acgtcaccga catcctcgcc 60
ctcgtcaaag ccaagaatcc cgcggaaccg gagttccacc aggcggtcga agaggttctc 120
gaaagcctcg acctggtcgt gcagcggcgg ccggatctcg cgaaagcaaa gattctcgag 180
cggatcgtcg agcccgaacg cgtgatcatg ttccgcgtcc cgtggcagga cgatcgcggc 240
gaggttcata tcaatcgcgg atatcgggtc cagatgaacg gcgcgcttgg tccctataag 300
ggcggtctgc gcttccatca ttcggtgacg ctcggggtgc tgaagttcct cgcgttcgag 360
caggtgttca agaactcact cacgacgctg tcgatgggcg gcggcaaggg tggttccgac 420
ttccatccgc acggccgttc tgacgatgaa gtgatgcgtt tctgtcagag ctttatgacg 480
gagctgatgc gtcacatcgg ccctgacacc gacgtgcccg cgggtgacat cggcgtcggc 540
ggccgcgaga tcgggtacct gttcggccag tatcgccgtc tgcgcaatga attcacgggc 600
gtgctcactg gcaaaggttt gaactggggt ggctcgctga tccgccccga ggcgaccggt 660
tacggcgctg tctacttcac cgccgagatg ctggccaccc gcaacgaaac gctggaaggg 720
aaggtctgtc tcgtctcggg cagcggcaac gtcgcccagt acacgatcga gaagctgctc 780
gatctcggag ccagagcggt aacggtctcc gactccgacg gctacatcta cgacgaagcc 840
ggcttcgacc gcgagaagct cgcgtatctg atggagctga agaacgtccg ccgcggccgc 900
gtgcgcgaat acgccgatcg gttcaagggc gccgtgtacc aggagataaa ggccgccaac 960
gacttcaacc cgctctggat gcaccgtgcg cactgcgcgt tcccaagcgc gacgcagaac 1020
gagatcaatg agaaggatgc cggacatctg gtcgcgagcg gcgtgctcgc cgtcgccgag 1080
ggcgccaaca tgccgtgcac cattgcagcg acaaaggtgt tgatcgacgg cggcgtactc 1140
tacgctcccg gcaaggccgc caatgcgggc ggcgtcgcga cgtcaggctt ggagatggcg 1200
cagaacagcg cgcggatcgc ctggtcgcgc gagcgcgtcg acaccgagct gcaccggatc 1260
atgaaagcga tccacgccgc gtgccgcgaa accgccgacg aatacggcgt ccccggcaac 1320
tacgtccacg gcgccaatat cgcggggttc accaaggtcg cggacgcgat gctcgaccag 1380
ggactgattt ga 1392
<210> 146
<211> 463
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_6 sequence from unknown bacterial species from
environmental sample
<400> 146
Met Leu Val Ser Arg Ser Thr Arg Ala Pro Leu Ser Thr Tyr Val Thr
1 5 10 15
Asp Ile Leu Ala Leu Val Lys Ala Lys Asn Pro Ala Glu Pro Glu Phe
20 25 30
His Gln Ala Val Glu Glu Val Leu Glu Ser Leu Asp Leu Val Val Gln
35 40 45
Arg Arg Pro Asp Leu Ala Lys Ala Lys Ile Leu Glu Arg Ile Val Glu
50 55 60
Pro Glu Arg Val Ile Met Phe Arg Val Pro Trp Gln Asp Asp Arg Gly
65 70 75 80
Glu Val His Ile Asn Arg Gly Tyr Arg Val Gln Met Asn Gly Ala Leu
85 90 95
Gly Pro Tyr Lys Gly Gly Leu Arg Phe His His Ser Val Thr Leu Gly
100 105 110
Val Leu Lys Phe Leu Ala Phe Glu Gln Val Phe Lys Asn Ser Leu Thr
115 120 125
Thr Leu Ser Met Gly Gly Gly Lys Gly Gly Ser Asp Phe His Pro His
130 135 140
Gly Arg Ser Asp Asp Glu Val Met Arg Phe Cys Gln Ser Phe Met Thr
145 150 155 160
Glu Leu Met Arg His Ile Gly Pro Asp Thr Asp Val Pro Ala Gly Asp
165 170 175
Ile Gly Val Gly Gly Arg Glu Ile Gly Tyr Leu Phe Gly Gln Tyr Arg
180 185 190
Arg Leu Arg Asn Glu Phe Thr Gly Val Leu Thr Gly Lys Gly Leu Asn
195 200 205
Trp Gly Gly Ser Leu Ile Arg Pro Glu Ala Thr Gly Tyr Gly Ala Val
210 215 220
Tyr Phe Thr Ala Glu Met Leu Ala Thr Arg Asn Glu Thr Leu Glu Gly
225 230 235 240
Lys Val Cys Leu Val Ser Gly Ser Gly Asn Val Ala Gln Tyr Thr Ile
245 250 255
Glu Lys Leu Leu Asp Leu Gly Ala Arg Ala Val Thr Val Ser Asp Ser
260 265 270
Asp Gly Tyr Ile Tyr Asp Glu Ala Gly Phe Asp Arg Glu Lys Leu Ala
275 280 285
Tyr Leu Met Glu Leu Lys Asn Val Arg Arg Gly Arg Val Arg Glu Tyr
290 295 300
Ala Asp Arg Phe Lys Gly Ala Val Tyr Gln Glu Ile Lys Ala Ala Asn
305 310 315 320
Asp Phe Asn Pro Leu Trp Met His Arg Ala His Cys Ala Phe Pro Ser
325 330 335
Ala Thr Gln Asn Glu Ile Asn Glu Lys Asp Ala Gly His Leu Val Ala
340 345 350
Ser Gly Val Leu Ala Val Ala Glu Gly Ala Asn Met Pro Cys Thr Ile
355 360 365
Ala Ala Thr Lys Val Leu Ile Asp Gly Gly Val Leu Tyr Ala Pro Gly
370 375 380
Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met Ala
385 390 395 400
Gln Asn Ser Ala Arg Ile Ala Trp Ser Arg Glu Arg Val Asp Thr Glu
405 410 415
Leu His Arg Ile Met Lys Ala Ile His Ala Ala Cys Arg Glu Thr Ala
420 425 430
Asp Glu Tyr Gly Val Pro Gly Asn Tyr Val His Gly Ala Asn Ile Ala
435 440 445
Gly Phe Thr Lys Val Ala Asp Ala Met Leu Asp Gln Gly Leu Ile
450 455 460
<210> 147
<211> 1470
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_7 sequence from unknown bacterial species from
environmental sample
<400> 147
atggagggcg agaacatcat cgacgccgag ccgcaaagcc gcctaacatt cgcgccgcgc 60
agggcacgga gtcagcacgg gggcgcagga ggcaagccgg agaatgctat gagtcaatac 120
gtgtctgatc tgatggcgga ggtaaaagcg aagaaccccg ccgagcctga gttccaccag 180
gcggtcttcg aggtcgcgga gtcgcttacc agtgtgcttg aagcgcatcc gcagttccgc 240
gaagcgaaga tcctcgagcg gatgatcgag cccgagcgcg tgatcatgtt ccgcgtgcca 300
tggcgcgacg ataacggcac gttgcacgtg aaccgcggct tccgcgtgca gatgaacagc 360
gcgatcggcc cgtacaaagg cggcctgcgc tttcatccca cggtcaacct cggcatcctg 420
aaattcctcg ccttcgagca ggtcttcaaa aatgccctaa cgacactgcc gatgggcggc 480
ggaaagggcg gtgcggactt cgatccgaag ggcaagagcg acatggaagt aatgcgcttt 540
tgccaggcgt tcatgtccga gctggcgcgg catatcgggc cggacaccga cgtgccggcg 600
ggcgacatcg gcgtcggcgc gcgggagatc ggtttcctct tcggcatgta caagaagctg 660
aagaacgagt tcaccggcgt gatgactggg aaaggcctca cgtggggtgg ctccgtcatc 720
cgcccggagg caacgggcta tggcgcggtc tacttcgcgg ccgaaatgct caagacgcgc 780
aaagaggaac tgcgcggcaa gacctgcctc gtctccggga gcgggaacgt tgcgcaatac 840
acggtggaga agttgatctc gttaggcgca aagccggtca cgctgtcgga ttcggctggc 900
tacatctacg acgagagcgg catcacgcgc gagaagctcg cgttcgttat ggagctcaag 960
aacgtgcgcc gcggccgcat ctcagaatac gcggagaagt tcactggcgc cgtctacacg 1020
ccgctcgacg gcacgtccga gcacaacccg ctctgggacc acaaggcgga gtgcgccttc 1080
cccagcgcga cccagaacga gatcagtgag cgcgacgcgg cgaacctgct gcgcaacggc 1140
gtctacgttg tctccgaagg cgcgaacatg ccgagcacga tcggcgcgat aaaccagttc 1200
ctggctgccc agattctctt cggccccggg aaagcagcca acgcgggcgg cgtcgcgacc 1260
tctgggctcg agatggcgca gaacagcatg cgcatttcgt ggacgcgcga agaggtggat 1320
aatcgcctct acaacatcat gaaaacgatc cacgaagtct gccaccgcac ggccgacaag 1380
tacggcacgc ccggcaacta cgtgaatggc gccaacatcg ccggcttcct caaggtggcg 1440
aacgcgatga tggaccaggg cctggtctga 1470
<210> 148
<211> 489
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_7 sequence from unknown bacterial species from
environmental sample
<400> 148
Met Glu Gly Glu Asn Ile Ile Asp Ala Glu Pro Gln Ser Arg Leu Thr
1 5 10 15
Phe Ala Pro Arg Arg Ala Arg Ser Gln His Gly Gly Ala Gly Gly Lys
20 25 30
Pro Glu Asn Ala Met Ser Gln Tyr Val Ser Asp Leu Met Ala Glu Val
35 40 45
Lys Ala Lys Asn Pro Ala Glu Pro Glu Phe His Gln Ala Val Phe Glu
50 55 60
Val Ala Glu Ser Leu Thr Ser Val Leu Glu Ala His Pro Gln Phe Arg
65 70 75 80
Glu Ala Lys Ile Leu Glu Arg Met Ile Glu Pro Glu Arg Val Ile Met
85 90 95
Phe Arg Val Pro Trp Arg Asp Asp Asn Gly Thr Leu His Val Asn Arg
100 105 110
Gly Phe Arg Val Gln Met Asn Ser Ala Ile Gly Pro Tyr Lys Gly Gly
115 120 125
Leu Arg Phe His Pro Thr Val Asn Leu Gly Ile Leu Lys Phe Leu Ala
130 135 140
Phe Glu Gln Val Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly
145 150 155 160
Gly Lys Gly Gly Ala Asp Phe Asp Pro Lys Gly Lys Ser Asp Met Glu
165 170 175
Val Met Arg Phe Cys Gln Ala Phe Met Ser Glu Leu Ala Arg His Ile
180 185 190
Gly Pro Asp Thr Asp Val Pro Ala Gly Asp Ile Gly Val Gly Ala Arg
195 200 205
Glu Ile Gly Phe Leu Phe Gly Met Tyr Lys Lys Leu Lys Asn Glu Phe
210 215 220
Thr Gly Val Met Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Val Ile
225 230 235 240
Arg Pro Glu Ala Thr Gly Tyr Gly Ala Val Tyr Phe Ala Ala Glu Met
245 250 255
Leu Lys Thr Arg Lys Glu Glu Leu Arg Gly Lys Thr Cys Leu Val Ser
260 265 270
Gly Ser Gly Asn Val Ala Gln Tyr Thr Val Glu Lys Leu Ile Ser Leu
275 280 285
Gly Ala Lys Pro Val Thr Leu Ser Asp Ser Ala Gly Tyr Ile Tyr Asp
290 295 300
Glu Ser Gly Ile Thr Arg Glu Lys Leu Ala Phe Val Met Glu Leu Lys
305 310 315 320
Asn Val Arg Arg Gly Arg Ile Ser Glu Tyr Ala Glu Lys Phe Thr Gly
325 330 335
Ala Val Tyr Thr Pro Leu Asp Gly Thr Ser Glu His Asn Pro Leu Trp
340 345 350
Asp His Lys Ala Glu Cys Ala Phe Pro Ser Ala Thr Gln Asn Glu Ile
355 360 365
Ser Glu Arg Asp Ala Ala Asn Leu Leu Arg Asn Gly Val Tyr Val Val
370 375 380
Ser Glu Gly Ala Asn Met Pro Ser Thr Ile Gly Ala Ile Asn Gln Phe
385 390 395 400
Leu Ala Ala Gln Ile Leu Phe Gly Pro Gly Lys Ala Ala Asn Ala Gly
405 410 415
Gly Val Ala Thr Ser Gly Leu Glu Met Ala Gln Asn Ser Met Arg Ile
420 425 430
Ser Trp Thr Arg Glu Glu Val Asp Asn Arg Leu Tyr Asn Ile Met Lys
435 440 445
Thr Ile His Glu Val Cys His Arg Thr Ala Asp Lys Tyr Gly Thr Pro
450 455 460
Gly Asn Tyr Val Asn Gly Ala Asn Ile Ala Gly Phe Leu Lys Val Ala
465 470 475 480
Asn Ala Met Met Asp Gln Gly Leu Val
485
<210> 149
<211> 1347
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_8 sequence from unknown bacterial species from
environmental sample
<400> 149
atgaacgtca ggcaatacat cgggagcttc atggagcagc tggtggcccg gaaccctgcc 60
cagcccgaat tccaccaggc tgtgaaagag gtggtcgagt ctctggagcc gtgcctcggg 120
cgtcacccgg aatacgtcga gcaccgcatc ctcgagcgca tgagcgagcc tgaccgcgtc 180
atcatgttca gggtcgcttg gcaagacgat cggggccagg cccaggtgaa ccgggcgttc 240
cgggtcgagt tcaacaacgc catcggcccc tacaaggggg gcctgcggtt ccacccgacc 300
gtgaacctcg gcatcctcaa gtttctcgga ttcgagcaga tcctgaagaa cagcctcact 360
acgctgccca tgggtggcgg caagggcggc agcgatttcg atcccaaggg gaagtccgac 420
ggcgaggtga tgcgcttctg ccagagcttc atgaacgagc tgcaccacta catcggccag 480
aacatcgacg tcccggcggg cgatatcggc gtcggggggc gcgagatcgg gttcctgttc 540
ggtcagttca agcggctcac ccactcgttc gagggcgtgc tcacgggcaa gggcctgggc 600
tggggcggct cgctcgtccg tccggaagcc accggctacg gctgcgtgta tttcgcggag 660
gagcagctca aggctcgcgg agagagcttc gccggcaaga cggtggccgt ctcgggctcc 720
gggaacgtgg cccaatacgc catcgagaag gtgaacgagc tcggcggcaa agtcgtgacg 780
ctctccgatt ccgacgggac catccacgat cccgacggca tccgcgacga aaagtgggcg 840
ttcctcatgg atctcaagaa cgtgcgccgc gggcggatcc gtgagtacgc gcagcgcttc 900
aaggccaatt acaaggaggg ggtgcggccg tggggcatca agtgcgacat cgccctgccg 960
tgcgcgaccc agaacgagat cagcggcgat gaagcgcgca cgctggtgaa aaatggctgc 1020
gtttgcgtcg cagagggcgc gaacatgccg accaccctcg agggcgtgga ggtgttcctc 1080
gccgccaaga tcctctacgg tccgggcaag gccgccaacg ccggcggtgt cgcgacgtcc 1140
gggctcgaga tgtcgcagaa cagcctccgg ctgtcgtgga gccgggaaga ggtcgaccag 1200
cggctgcgcg ggatcatgaa ggagatccac aagtcgtgcg tcgacaccgc ccgggagtac 1260
gaccagccgg gcaactacgt gctgggcgcc aacatagcgg gcttcacgaa ggtggcgaac 1320
gccatgatgg accaggggct ggtctag 1347
<210> 150
<211> 448
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_8 sequence from unknown bacterial species from
environmental sample
<400> 150
Met Asn Val Arg Gln Tyr Ile Gly Ser Phe Met Glu Gln Leu Val Ala
1 5 10 15
Arg Asn Pro Ala Gln Pro Glu Phe His Gln Ala Val Lys Glu Val Val
20 25 30
Glu Ser Leu Glu Pro Cys Leu Gly Arg His Pro Glu Tyr Val Glu His
35 40 45
Arg Ile Leu Glu Arg Met Ser Glu Pro Asp Arg Val Ile Met Phe Arg
50 55 60
Val Ala Trp Gln Asp Asp Arg Gly Gln Ala Gln Val Asn Arg Ala Phe
65 70 75 80
Arg Val Glu Phe Asn Asn Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg
85 90 95
Phe His Pro Thr Val Asn Leu Gly Ile Leu Lys Phe Leu Gly Phe Glu
100 105 110
Gln Ile Leu Lys Asn Ser Leu Thr Thr Leu Pro Met Gly Gly Gly Lys
115 120 125
Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys Ser Asp Gly Glu Val Met
130 135 140
Arg Phe Cys Gln Ser Phe Met Asn Glu Leu His His Tyr Ile Gly Gln
145 150 155 160
Asn Ile Asp Val Pro Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Ile
165 170 175
Gly Phe Leu Phe Gly Gln Phe Lys Arg Leu Thr His Ser Phe Glu Gly
180 185 190
Val Leu Thr Gly Lys Gly Leu Gly Trp Gly Gly Ser Leu Val Arg Pro
195 200 205
Glu Ala Thr Gly Tyr Gly Cys Val Tyr Phe Ala Glu Glu Gln Leu Lys
210 215 220
Ala Arg Gly Glu Ser Phe Ala Gly Lys Thr Val Ala Val Ser Gly Ser
225 230 235 240
Gly Asn Val Ala Gln Tyr Ala Ile Glu Lys Val Asn Glu Leu Gly Gly
245 250 255
Lys Val Val Thr Leu Ser Asp Ser Asp Gly Thr Ile His Asp Pro Asp
260 265 270
Gly Ile Arg Asp Glu Lys Trp Ala Phe Leu Met Asp Leu Lys Asn Val
275 280 285
Arg Arg Gly Arg Ile Arg Glu Tyr Ala Gln Arg Phe Lys Ala Asn Tyr
290 295 300
Lys Glu Gly Val Arg Pro Trp Gly Ile Lys Cys Asp Ile Ala Leu Pro
305 310 315 320
Cys Ala Thr Gln Asn Glu Ile Ser Gly Asp Glu Ala Arg Thr Leu Val
325 330 335
Lys Asn Gly Cys Val Cys Val Ala Glu Gly Ala Asn Met Pro Thr Thr
340 345 350
Leu Glu Gly Val Glu Val Phe Leu Ala Ala Lys Ile Leu Tyr Gly Pro
355 360 365
Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met
370 375 380
Ser Gln Asn Ser Leu Arg Leu Ser Trp Ser Arg Glu Glu Val Asp Gln
385 390 395 400
Arg Leu Arg Gly Ile Met Lys Glu Ile His Lys Ser Cys Val Asp Thr
405 410 415
Ala Arg Glu Tyr Asp Gln Pro Gly Asn Tyr Val Leu Gly Ala Asn Ile
420 425 430
Ala Gly Phe Thr Lys Val Ala Asn Ala Met Met Asp Gln Gly Leu Val
435 440 445
<210> 151
<211> 1374
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_9 sequence from unknown bacterial species from
environmental sample
<400> 151
atggcaaccg ccaagacatc gtccgccgtg caaaagcagg tggacgcgtt catgcagcat 60
gtgaaggtcc gcaacggcaa cgagcctgaa ttcctccagg ccgtgcacga agtggccgag 120
accgtgatcc ctttcatgga ggccaacccc aagtacaagg gcaagatgct cctggagcgc 180
atggtggagc ctgagcgcac catcctcttc cgcgtgccct gggtagacga tcgcggcaac 240
atccaagtga accgcggcta ccgcgtggag ttcaacagcg ctatcggtcc ttacaagggc 300
ggcctgcgct tccaccccac ggtgaccctc agcgtgttga agttcctggg cttcgagcaa 360
gtgttcaaga acagcctcac caccctgccc atgggcggcg gcaagggcgg tagcgatttc 420
gacccgaaag gcaagagcga taatgaagtg atgcgcttct gccagagctt catgaccgag 480
ctgtggcgcc acatcggtgc cgacacggac gtgcccgccg gcgacatcgg cgtgggcggc 540
cgcgagatcg gtttcatgtt cggccaggac aagcgcctgc gcaacgagtt cacgggcgtg 600
ttcacgggca agggccgcac gtggggcggt tcgctgatcc gtccggaggc caccggctac 660
ggctgcgtgt acttcgcgga ggagatgatg aagcgcaaca aggagagctt caagggcaag 720
acggtggcgg tgagcggcag cggcaacgtg gcccagtacg ccatcgagaa ggccacgcag 780
ctcggtgcga aagtggtgac ctgttccgac agcgacggca gcatcttcga tcccgcgggc 840
atcagcggcg acaagctcgc gttcatcatg gaactgaaga acgtgaagcg tggccgcatc 900
gaggaatacg cgaagaagtt caagggcagc acctacaaga agggcgcccg tgtgtgggac 960
gtggtatcca agtgcgacat cgccctgccc tgcgccacgc agaacgagct ggacggaaag 1020
aacgcgaagg acctgatcaa gaaaggcgtg cagtacgtgg ccgaaggcgc caacatgccc 1080
accaccccgg agggcatcga agccttccac gcggcgaagg tgtacttcgc gccgggcaag 1140
gccagcaacg ccggtggtgt ggccaccagc ggcctggaga tgagccagaa cagccagcgc 1200
ctcagctgga cgcgtgacga ggtggaccac cagctccaca agatcatgaa gaacatccat 1260
gccgcctgtg tgcagtatgg caccgaaggc aagcacgtga actacgtgaa gggcgccaac 1320
atcgccggct tcgtgaaagt ggccgacgcg atgctggacc aaggcgtggt gtag 1374
<210> 152
<211> 457
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_9 sequence from unknown bacterial species from
environmental sample
<400> 152
Met Ala Thr Ala Lys Thr Ser Ser Ala Val Gln Lys Gln Val Asp Ala
1 5 10 15
Phe Met Gln His Val Lys Val Arg Asn Gly Asn Glu Pro Glu Phe Leu
20 25 30
Gln Ala Val His Glu Val Ala Glu Thr Val Ile Pro Phe Met Glu Ala
35 40 45
Asn Pro Lys Tyr Lys Gly Lys Met Leu Leu Glu Arg Met Val Glu Pro
50 55 60
Glu Arg Thr Ile Leu Phe Arg Val Pro Trp Val Asp Asp Arg Gly Asn
65 70 75 80
Ile Gln Val Asn Arg Gly Tyr Arg Val Glu Phe Asn Ser Ala Ile Gly
85 90 95
Pro Tyr Lys Gly Gly Leu Arg Phe His Pro Thr Val Thr Leu Ser Val
100 105 110
Leu Lys Phe Leu Gly Phe Glu Gln Val Phe Lys Asn Ser Leu Thr Thr
115 120 125
Leu Pro Met Gly Gly Gly Lys Gly Gly Ser Asp Phe Asp Pro Lys Gly
130 135 140
Lys Ser Asp Asn Glu Val Met Arg Phe Cys Gln Ser Phe Met Thr Glu
145 150 155 160
Leu Trp Arg His Ile Gly Ala Asp Thr Asp Val Pro Ala Gly Asp Ile
165 170 175
Gly Val Gly Gly Arg Glu Ile Gly Phe Met Phe Gly Gln Asp Lys Arg
180 185 190
Leu Arg Asn Glu Phe Thr Gly Val Phe Thr Gly Lys Gly Arg Thr Trp
195 200 205
Gly Gly Ser Leu Ile Arg Pro Glu Ala Thr Gly Tyr Gly Cys Val Tyr
210 215 220
Phe Ala Glu Glu Met Met Lys Arg Asn Lys Glu Ser Phe Lys Gly Lys
225 230 235 240
Thr Val Ala Val Ser Gly Ser Gly Asn Val Ala Gln Tyr Ala Ile Glu
245 250 255
Lys Ala Thr Gln Leu Gly Ala Lys Val Val Thr Cys Ser Asp Ser Asp
260 265 270
Gly Ser Ile Phe Asp Pro Ala Gly Ile Ser Gly Asp Lys Leu Ala Phe
275 280 285
Ile Met Glu Leu Lys Asn Val Lys Arg Gly Arg Ile Glu Glu Tyr Ala
290 295 300
Lys Lys Phe Lys Gly Ser Thr Tyr Lys Lys Gly Ala Arg Val Trp Asp
305 310 315 320
Val Val Ser Lys Cys Asp Ile Ala Leu Pro Cys Ala Thr Gln Asn Glu
325 330 335
Leu Asp Gly Lys Asn Ala Lys Asp Leu Ile Lys Lys Gly Val Gln Tyr
340 345 350
Val Ala Glu Gly Ala Asn Met Pro Thr Thr Pro Glu Gly Ile Glu Ala
355 360 365
Phe His Ala Ala Lys Val Tyr Phe Ala Pro Gly Lys Ala Ser Asn Ala
370 375 380
Gly Gly Val Ala Thr Ser Gly Leu Glu Met Ser Gln Asn Ser Gln Arg
385 390 395 400
Leu Ser Trp Thr Arg Asp Glu Val Asp His Gln Leu His Lys Ile Met
405 410 415
Lys Asn Ile His Ala Ala Cys Val Gln Tyr Gly Thr Glu Gly Lys His
420 425 430
Val Asn Tyr Val Lys Gly Ala Asn Ile Ala Gly Phe Val Lys Val Ala
435 440 445
Asp Ala Met Leu Asp Gln Gly Val Val
450 455
<210> 153
<211> 1329
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_10 sequence from unknown bacterial species from
environmental sample
<400> 153
tctctggagt cattcctcaa ccatgtccaa aagcgcgacc cgaatcaaac cgagttcgcg 60
caagccgttc gtgaagtaat gaccacactc tggccttttc ttgaacaaaa tccaaaatat 120
cgccagatgt cattactgga gcgtctggtt gaaccggagc gcgtgatcca gtttcgcgtg 180
gtatgggttg atgatcgcaa ccagatacag gtcaaccgtg catggcgtgt gcagttcagc 240
tctgccatcg gcccgtacaa aggcggtatg cgcttccatc cgtcagttaa cctttccatt 300
ctcaaattcc tcggctttga acaaaccttc aaaaatgccc tgactactct gccgatgggc 360
ggtggtaaag gcggcagcga tttcgatcag aaaggaaaaa gcgaaggtga agtgatgcgt 420
ttttgccagg cgctgatgac tgaactgtat cgccacctgg gcgcggatac cgacgttccg 480
gcaggtgata tcggggttgg tggtcgtgaa gtcggcttta tggcggggat gatgaaaaag 540
ctctccaaca ataccgcctg cgtcttcacc ggtaagggcc tttcatttgg cggcagtctt 600
attcgcccgg aagctaccgg ctacggtctg gtttatttca cagaagcaat gctaaaacgc 660
cacggtatgg gttttgaagg gatgcgcgtt tccgtttctg gctccggcaa cgtcgcccag 720
tacgctatcg aaaaagcgat ggaatttggt gctcgtgtga tcactgcgtc agactccagc 780
ggcactgtag ttgatgaaag cggattcacg aaagagaaac tggcacgtct tatcgaaatc 840
aaagccagcc gcgatggtcg agtggcagat tacgccaaag aatttggtct ggtctatctc 900
gaaggccaac agccgtggtc tctaccggtt gatatcgccc tgccttgcgc cacccagaat 960
gaactggatg ttgacgccgc gcatcagctt atcgctaatg gcgttaaagc cgtcgccgaa 1020
ggggcaaata tgccgaccac catcgaagcg actgaactgt tccagcaggc aggcgtacta 1080
tttgcaccgg gtaaagcggc taatgctggt ggcgtcgcta catcgggcct ggaaatggca 1140
caaaacgctg cgcgcctggg ctggaaagcc gagaaagttg acgcacgttt gcatcacatc 1200
atgctggata tccaccatgc ctgtgttgag catggtggtg aaggtgagca aaccaactac 1260
gtgcagggcg cgaacattgc cggttttgtg aaggttgccg atgcgatgct ggcgcagggt 1320
gtgatttaa 1329
<210> 154
<211> 442
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_10 sequence from unknown bacterial species from
environmental sample
<400> 154
Ser Leu Glu Ser Phe Leu Asn His Val Gln Lys Arg Asp Pro Asn Gln
1 5 10 15
Thr Glu Phe Ala Gln Ala Val Arg Glu Val Met Thr Thr Leu Trp Pro
20 25 30
Phe Leu Glu Gln Asn Pro Lys Tyr Arg Gln Met Ser Leu Leu Glu Arg
35 40 45
Leu Val Glu Pro Glu Arg Val Ile Gln Phe Arg Val Val Trp Val Asp
50 55 60
Asp Arg Asn Gln Ile Gln Val Asn Arg Ala Trp Arg Val Gln Phe Ser
65 70 75 80
Ser Ala Ile Gly Pro Tyr Lys Gly Gly Met Arg Phe His Pro Ser Val
85 90 95
Asn Leu Ser Ile Leu Lys Phe Leu Gly Phe Glu Gln Thr Phe Lys Asn
100 105 110
Ala Leu Thr Thr Leu Pro Met Gly Gly Gly Lys Gly Gly Ser Asp Phe
115 120 125
Asp Gln Lys Gly Lys Ser Glu Gly Glu Val Met Arg Phe Cys Gln Ala
130 135 140
Leu Met Thr Glu Leu Tyr Arg His Leu Gly Ala Asp Thr Asp Val Pro
145 150 155 160
Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Val Gly Phe Met Ala Gly
165 170 175
Met Met Lys Lys Leu Ser Asn Asn Thr Ala Cys Val Phe Thr Gly Lys
180 185 190
Gly Leu Ser Phe Gly Gly Ser Leu Ile Arg Pro Glu Ala Thr Gly Tyr
195 200 205
Gly Leu Val Tyr Phe Thr Glu Ala Met Leu Lys Arg His Gly Met Gly
210 215 220
Phe Glu Gly Met Arg Val Ser Val Ser Gly Ser Gly Asn Val Ala Gln
225 230 235 240
Tyr Ala Ile Glu Lys Ala Met Glu Phe Gly Ala Arg Val Ile Thr Ala
245 250 255
Ser Asp Ser Ser Gly Thr Val Val Asp Glu Ser Gly Phe Thr Lys Glu
260 265 270
Lys Leu Ala Arg Leu Ile Glu Ile Lys Ala Ser Arg Asp Gly Arg Val
275 280 285
Ala Asp Tyr Ala Lys Glu Phe Gly Leu Val Tyr Leu Glu Gly Gln Gln
290 295 300
Pro Trp Ser Leu Pro Val Asp Ile Ala Leu Pro Cys Ala Thr Gln Asn
305 310 315 320
Glu Leu Asp Val Asp Ala Ala His Gln Leu Ile Ala Asn Gly Val Lys
325 330 335
Ala Val Ala Glu Gly Ala Asn Met Pro Thr Thr Ile Glu Ala Thr Glu
340 345 350
Leu Phe Gln Gln Ala Gly Val Leu Phe Ala Pro Gly Lys Ala Ala Asn
355 360 365
Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met Ala Gln Asn Ala Ala
370 375 380
Arg Leu Gly Trp Lys Ala Glu Lys Val Asp Ala Arg Leu His His Ile
385 390 395 400
Met Leu Asp Ile His His Ala Cys Val Glu His Gly Gly Glu Gly Glu
405 410 415
Gln Thr Asn Tyr Val Gln Gly Ala Asn Ile Ala Gly Phe Val Lys Val
420 425 430
Ala Asp Ala Met Leu Ala Gln Gly Val Ile
435 440
<210> 155
<211> 1341
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_11 sequence from unknown bacterial species from
environmental sample
<400> 155
atgatcgaat ccgtcgacaa tttccttgca cgcctgcaac agcgtgaccc tggccaaccc 60
gagtttcacc aggccgtcga agaagtgctg cgcaccttgt ggccctttct ggaagccaac 120
cctcactacc tgcaagcggg cattctcgag cgcatggtcg agcctgagcg tgcagtgttg 180
ttccgggtgt cgtgggtgga cgatcacggc aaggttcagg tcaaccgcgg ttaccgtatc 240
cagatgaaca gcgccattgg cccctacaag ggcggcctgc gcttccaccc ttcggtgaac 300
ctcagtgttc tgaaattcct cgcattcgag caagtcttca agaactccct gacctcgctg 360
cccatgggcg gtggcaaggg tgggtctgac ttcgatccca agggcaagag cgacgccgaa 420
gtgatgcgct tctgccaggc cttcatgagc gagctgtacc gtcacatcgg tgccgactgc 480
gatgttccgg ccggggacat cggagtaggg gcgcgcgaga tcggctatat gttcgggcaa 540
tacaagcgtc tggccaacca gttcacctcc gtgctgaccg gcaagggcat gacctatggc 600
ggcagcctga ttcgtccgga agccacgggc tatggctgtg tgtattttgc cgaggagatg 660
ctcaagcgcc agggccagcg catcgacggc cgtcgcgtgg cgatctcggg ctcgggcaac 720
gtcgcgcaat acgccgcgcg caaggtgatg gacctggggg gcaaggtgat ctcgctgtct 780
gattccgaag gtaccttgta cgccgaagcg ggcctcaccg acgcgcagtg ggaagcggtg 840
atgaccctca agaacgtcaa gcgcggccgc atcagcgagc tggccgggca attcggcctg 900
gagttccgca agggccagac gccgtggagc ctggcctgcg acatcgcgtt gccatgcgcg 960
acgcagaacg aactggacgt cgaggatgcc aaggcactgt tggccaacgg ctgtatctgc 1020
gtcgcagaag gcgccaacat gcccacgacc ctggcggctg tggacatctt ccttgaagct 1080
ggcatcctct atgcgccggg caaggcgtcc aatgcgggtg gcgttgcggt gtcgggcctg 1140
gaaatgtcgc agaacgccat gcgcttgctg tggactgctg gcgaagtgga cagcaagctg 1200
catggcatca tgcagtcgat tcaccacgcc tgcgttcact atggtgaaga gggcgatggc 1260
cgggtcaact atgtcaaagg ggccaacatt gcgggcttcg tgaaggtggc cgatgcgatg 1320
ctggcccaag gggtcgtctg a 1341
<210> 156
<211> 446
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_11 sequence from unknown bacterial species from
environmental sample
<400> 156
Met Ile Glu Ser Val Asp Asn Phe Leu Ala Arg Leu Gln Gln Arg Asp
1 5 10 15
Pro Gly Gln Pro Glu Phe His Gln Ala Val Glu Glu Val Leu Arg Thr
20 25 30
Leu Trp Pro Phe Leu Glu Ala Asn Pro His Tyr Leu Gln Ala Gly Ile
35 40 45
Leu Glu Arg Met Val Glu Pro Glu Arg Ala Val Leu Phe Arg Val Ser
50 55 60
Trp Val Asp Asp His Gly Lys Val Gln Val Asn Arg Gly Tyr Arg Ile
65 70 75 80
Gln Met Asn Ser Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe His
85 90 95
Pro Ser Val Asn Leu Ser Val Leu Lys Phe Leu Ala Phe Glu Gln Val
100 105 110
Phe Lys Asn Ser Leu Thr Ser Leu Pro Met Gly Gly Gly Lys Gly Gly
115 120 125
Ser Asp Phe Asp Pro Lys Gly Lys Ser Asp Ala Glu Val Met Arg Phe
130 135 140
Cys Gln Ala Phe Met Ser Glu Leu Tyr Arg His Ile Gly Ala Asp Cys
145 150 155 160
Asp Val Pro Ala Gly Asp Ile Gly Val Gly Ala Arg Glu Ile Gly Tyr
165 170 175
Met Phe Gly Gln Tyr Lys Arg Leu Ala Asn Gln Phe Thr Ser Val Leu
180 185 190
Thr Gly Lys Gly Met Thr Tyr Gly Gly Ser Leu Ile Arg Pro Glu Ala
195 200 205
Thr Gly Tyr Gly Cys Val Tyr Phe Ala Glu Glu Met Leu Lys Arg Gln
210 215 220
Gly Gln Arg Ile Asp Gly Arg Arg Val Ala Ile Ser Gly Ser Gly Asn
225 230 235 240
Val Ala Gln Tyr Ala Ala Arg Lys Val Met Asp Leu Gly Gly Lys Val
245 250 255
Ile Ser Leu Ser Asp Ser Glu Gly Thr Leu Tyr Ala Glu Ala Gly Leu
260 265 270
Thr Asp Ala Gln Trp Glu Ala Val Met Thr Leu Lys Asn Val Lys Arg
275 280 285
Gly Arg Ile Ser Glu Leu Ala Gly Gln Phe Gly Leu Glu Phe Arg Lys
290 295 300
Gly Gln Thr Pro Trp Ser Leu Ala Cys Asp Ile Ala Leu Pro Cys Ala
305 310 315 320
Thr Gln Asn Glu Leu Asp Val Glu Asp Ala Lys Ala Leu Leu Ala Asn
325 330 335
Gly Cys Ile Cys Val Ala Glu Gly Ala Asn Met Pro Thr Thr Leu Ala
340 345 350
Ala Val Asp Ile Phe Leu Glu Ala Gly Ile Leu Tyr Ala Pro Gly Lys
355 360 365
Ala Ser Asn Ala Gly Gly Val Ala Val Ser Gly Leu Glu Met Ser Gln
370 375 380
Asn Ala Met Arg Leu Leu Trp Thr Ala Gly Glu Val Asp Ser Lys Leu
385 390 395 400
His Gly Ile Met Gln Ser Ile His His Ala Cys Val His Tyr Gly Glu
405 410 415
Glu Gly Asp Gly Arg Val Asn Tyr Val Lys Gly Ala Asn Ile Ala Gly
420 425 430
Phe Val Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Val
435 440 445
<210> 157
<211> 1374
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_12 sequence from unknown bacterial species from
environmental sample
<400> 157
atggcaaccg ccaagacatc gtccgccgtg caaaagcagg tggacgcgtt catgcagcat 60
gtgaaggtcc gcaacggcaa cgagcctgaa ttcctccagg ccgtgcacga agtggccgag 120
accgtgatcc ctttcatgga ggccaacccc aagtacaagg gcaagatgct cctggagcgc 180
atggtggagc ctgagcgcac catcctcttc cgcgtgccct gggtagacga tcgcggcaac 240
atccaagtga accgcggcta ccgcgtggag ttcaacagcg ctatcggtcc ttacaagggc 300
ggcctgcgct tccaccccac ggtgaccctc agcgtgttga agttcctggg cttcgagcaa 360
gtgttcaaga acagcctcac caccctgccc atgggcggcg gcaagggcgg tagcgatttc 420
gacccgaaag gcaagagcga taatgaagtg atgcgcttct gccagagctt catgaccgag 480
ctgtggcgcc acatcggtgc cgacacggac gtgcccgccg gcgacatcgg cgtgggcggc 540
cgcgagatcg gtttcatgtt cggccaggac aagcgcctgc gcaacgagtt cacgggcgtg 600
ttcacgggca agggccgcac gtggggcggt tcgctgatcc gtccggaggc caccggctac 660
ggctgcgtgt acttcgcgga ggagatgatg aagcgcaaca aggagagctt caagggcaag 720
acggtggcgg tgagcggcag cggcaacgtg gcccagtacg ccatcgagaa ggccacgcag 780
ctcggtgcga aagtggtgac ctgttccgac agcgacggca gcatcttcga tcccgcgggc 840
atcagcggcg acaagctcgc gttcatcatg gaactgaaga acgtgaagcg tggccgcatc 900
gaggaatacg cgaagaagtt caagggcagc acctacaaga agggcgcccg tgtgtgggac 960
gtggtatcca agtgcgacat cgccctgccc tgcgccacgc agaacgagct ggacggaaag 1020
aacgcgaagg acctgatcaa gaaaggcgtg cagtacgtgg ccgaaggcgc caacatgccc 1080
accaccccgg agggcatcga agccttccac gcggcgaagg tgtacttcgc gccgggcaag 1140
gccagcaacg ccggtggtgt ggccaccagc ggcctggaga tgagccagaa cagccagcgc 1200
ctcagctgga cgcgtgacga ggtggaccac cagctccaca agatcatgaa gaacatccat 1260
gccgcctgtg tgcagtatgg caccgaaggc aagcacgtga actacgtgaa gggcgccaac 1320
atcgccggct tcgtgaaagt ggccgacgcg atgctggacc aaggcgtggt gtag 1374
<210> 158
<211> 457
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_12 sequence from unknown bacterial species from
environmental sample
<400> 158
Met Ala Thr Ala Lys Thr Ser Ser Ala Val Gln Lys Gln Val Asp Ala
1 5 10 15
Phe Met Gln His Val Lys Val Arg Asn Gly Asn Glu Pro Glu Phe Leu
20 25 30
Gln Ala Val His Glu Val Ala Glu Thr Val Ile Pro Phe Met Glu Ala
35 40 45
Asn Pro Lys Tyr Lys Gly Lys Met Leu Leu Glu Arg Met Val Glu Pro
50 55 60
Glu Arg Thr Ile Leu Phe Arg Val Pro Trp Val Asp Asp Arg Gly Asn
65 70 75 80
Ile Gln Val Asn Arg Gly Tyr Arg Val Glu Phe Asn Ser Ala Ile Gly
85 90 95
Pro Tyr Lys Gly Gly Leu Arg Phe His Pro Thr Val Thr Leu Ser Val
100 105 110
Leu Lys Phe Leu Gly Phe Glu Gln Val Phe Lys Asn Ser Leu Thr Thr
115 120 125
Leu Pro Met Gly Gly Gly Lys Gly Gly Ser Asp Phe Asp Pro Lys Gly
130 135 140
Lys Ser Asp Asn Glu Val Met Arg Phe Cys Gln Ser Phe Met Thr Glu
145 150 155 160
Leu Trp Arg His Ile Gly Ala Asp Thr Asp Val Pro Ala Gly Asp Ile
165 170 175
Gly Val Gly Gly Arg Glu Ile Gly Phe Met Phe Gly Gln Asp Lys Arg
180 185 190
Leu Arg Asn Glu Phe Thr Gly Val Phe Thr Gly Lys Gly Arg Thr Trp
195 200 205
Gly Gly Ser Leu Ile Arg Pro Glu Ala Thr Gly Tyr Gly Cys Val Tyr
210 215 220
Phe Ala Glu Glu Met Met Lys Arg Asn Lys Glu Ser Phe Lys Gly Lys
225 230 235 240
Thr Val Ala Val Ser Gly Ser Gly Asn Val Ala Gln Tyr Ala Ile Glu
245 250 255
Lys Ala Thr Gln Leu Gly Ala Lys Val Val Thr Cys Ser Asp Ser Asp
260 265 270
Gly Ser Ile Phe Asp Pro Ala Gly Ile Ser Gly Asp Lys Leu Ala Phe
275 280 285
Ile Met Glu Leu Lys Asn Val Lys Arg Gly Arg Ile Glu Glu Tyr Ala
290 295 300
Lys Lys Phe Lys Gly Ser Thr Tyr Lys Lys Gly Ala Arg Val Trp Asp
305 310 315 320
Val Val Ser Lys Cys Asp Ile Ala Leu Pro Cys Ala Thr Gln Asn Glu
325 330 335
Leu Asp Gly Lys Asn Ala Lys Asp Leu Ile Lys Lys Gly Val Gln Tyr
340 345 350
Val Ala Glu Gly Ala Asn Met Pro Thr Thr Pro Glu Gly Ile Glu Ala
355 360 365
Phe His Ala Ala Lys Val Tyr Phe Ala Pro Gly Lys Ala Ser Asn Ala
370 375 380
Gly Gly Val Ala Thr Ser Gly Leu Glu Met Ser Gln Asn Ser Gln Arg
385 390 395 400
Leu Ser Trp Thr Arg Asp Glu Val Asp His Gln Leu His Lys Ile Met
405 410 415
Lys Asn Ile His Ala Ala Cys Val Gln Tyr Gly Thr Glu Gly Lys His
420 425 430
Val Asn Tyr Val Lys Gly Ala Asn Ile Ala Gly Phe Val Lys Val Ala
435 440 445
Asp Ala Met Leu Asp Gln Gly Val Val
450 455
<210> 159
<211> 1383
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_13 sequence from unknown bacterial species from
environmental sample
<400> 159
atggcgacgc tcctcacgac ctcggaagct ctgacgcgtg acacagggaa agccgtcgat 60
cgattcatgg atggcctcgt cgcgcgcaac ccgaatcagc cggagttcca tcaggccgtt 120
cgcgaggtgt gcgagagcgt catgccactc gtcttggagc ggccggagta cgaggaggcc 180
ggaatcctcg agcgcctcac ggaaccggat cgcattctca cgttccgtgt ggcctggcag 240
gatgacgagg gtcgcgtccg tatcaatcgc gcgtatcgcg tgcagttcaa caacgccatt 300
ggtccttaca aaggcggcct ccgctttcat cccaccgtcg atctctcggt cctcaagttc 360
ctcggcttcg agcagatctt caagaacagt ctgaccggtc ttcccatggg tggcgcgaag 420
ggtggttctg atttcgatcc caaagggaag tcggataacg aggtcatgcg gttctgtcag 480
gcgatgatgt cggagctgtg tcacgacatc ggcgaagacg tcgatgtgcc ggccggcgac 540
attggtgtgg gcgctcgaga gattgggtat ctgtttggcg aatatcgtcg cctcatgcgt 600
cgcgtcgctg gtgtgctcac ggggaagggc ttgtcgtttg gcggcagctt gattcggacc 660
gaagccactg gctatggctg cgtctatttc gtcgagaaca tgttgaatca cattggtgat 720
tccctcgacg gcaagacctg tgtcgtttcc ggatcaggca acgtcgcgct ctacacggtc 780
gagaaggtga cggctctcgg cgggaaggtc gtcacgctct cggactcgga cggcttcatc 840
tacgatcgcg acggcatcga tgcggagaag ctggagtggg tcaaggagct caaagaggtt 900
cgtcgcggtc gcatcagcga gtacgcggag cacttcggcg cccagttcca cgccgatgag 960
cggccgtggc atgtcgagtg tcaggcggcg tttccttctg ccacgcagaa cgagttggac 1020
aaagaggatg cggaagtgct ggtcgcgaac ggctgtctcg cggtcggcga aggcgcgaac 1080
atgccgagca cgagcgacgc aacgcgcgtg ttcctcgagg ctggaacgct cttcgcgccg 1140
ggcaaggccg cgaatgccgg tggggtcgcc gtctcaggtc tcgagcagag tcagaatgcg 1200
cagcgcctgt tctggacgcg tgacgaggtg gatcttcgtc ttcaaggcat catgaagacg 1260
atccacgaca agtgcgttga gcagggtcgc gtcgcgaatg gtcagatcaa ctacgtgcag 1320
ggcgccaatc gcgcaggttt cctcaaggtc gccgacgcga tgctcgcgca aggcgtattt 1380
tga 1383
<210> 160
<211> 460
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_13 sequence from unknown bacterial species from
environmental sample
<400> 160
Met Ala Thr Leu Leu Thr Thr Ser Glu Ala Leu Thr Arg Asp Thr Gly
1 5 10 15
Lys Ala Val Asp Arg Phe Met Asp Gly Leu Val Ala Arg Asn Pro Asn
20 25 30
Gln Pro Glu Phe His Gln Ala Val Arg Glu Val Cys Glu Ser Val Met
35 40 45
Pro Leu Val Leu Glu Arg Pro Glu Tyr Glu Glu Ala Gly Ile Leu Glu
50 55 60
Arg Leu Thr Glu Pro Asp Arg Ile Leu Thr Phe Arg Val Ala Trp Gln
65 70 75 80
Asp Asp Glu Gly Arg Val Arg Ile Asn Arg Ala Tyr Arg Val Gln Phe
85 90 95
Asn Asn Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe His Pro Thr
100 105 110
Val Asp Leu Ser Val Leu Lys Phe Leu Gly Phe Glu Gln Ile Phe Lys
115 120 125
Asn Ser Leu Thr Gly Leu Pro Met Gly Gly Ala Lys Gly Gly Ser Asp
130 135 140
Phe Asp Pro Lys Gly Lys Ser Asp Asn Glu Val Met Arg Phe Cys Gln
145 150 155 160
Ala Met Met Ser Glu Leu Cys His Asp Ile Gly Glu Asp Val Asp Val
165 170 175
Pro Ala Gly Asp Ile Gly Val Gly Ala Arg Glu Ile Gly Tyr Leu Phe
180 185 190
Gly Glu Tyr Arg Arg Leu Met Arg Arg Val Ala Gly Val Leu Thr Gly
195 200 205
Lys Gly Leu Ser Phe Gly Gly Ser Leu Ile Arg Thr Glu Ala Thr Gly
210 215 220
Tyr Gly Cys Val Tyr Phe Val Glu Asn Met Leu Asn His Ile Gly Asp
225 230 235 240
Ser Leu Asp Gly Lys Thr Cys Val Val Ser Gly Ser Gly Asn Val Ala
245 250 255
Leu Tyr Thr Val Glu Lys Val Thr Ala Leu Gly Gly Lys Val Val Thr
260 265 270
Leu Ser Asp Ser Asp Gly Phe Ile Tyr Asp Arg Asp Gly Ile Asp Ala
275 280 285
Glu Lys Leu Glu Trp Val Lys Glu Leu Lys Glu Val Arg Arg Gly Arg
290 295 300
Ile Ser Glu Tyr Ala Glu His Phe Gly Ala Gln Phe His Ala Asp Glu
305 310 315 320
Arg Pro Trp His Val Glu Cys Gln Ala Ala Phe Pro Ser Ala Thr Gln
325 330 335
Asn Glu Leu Asp Lys Glu Asp Ala Glu Val Leu Val Ala Asn Gly Cys
340 345 350
Leu Ala Val Gly Glu Gly Ala Asn Met Pro Ser Thr Ser Asp Ala Thr
355 360 365
Arg Val Phe Leu Glu Ala Gly Thr Leu Phe Ala Pro Gly Lys Ala Ala
370 375 380
Asn Ala Gly Gly Val Ala Val Ser Gly Leu Glu Gln Ser Gln Asn Ala
385 390 395 400
Gln Arg Leu Phe Trp Thr Arg Asp Glu Val Asp Leu Arg Leu Gln Gly
405 410 415
Ile Met Lys Thr Ile His Asp Lys Cys Val Glu Gln Gly Arg Val Ala
420 425 430
Asn Gly Gln Ile Asn Tyr Val Gln Gly Ala Asn Arg Ala Gly Phe Leu
435 440 445
Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Phe
450 455 460
<210> 161
<211> 1347
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_14 sequence from unknown bacterial species from
environmental sample
<400> 161
atgaacgcga aaacgtatct ggcgagcttc atggagcagc tcgtcactcg caatccggca 60
gagcaggagt ttcaccaggc cgtacgcgag gtcgtcgaat ctctcgagcc gtgtttggag 120
cggcaccctg aatacatcga tcattcgatc ctcgagcgca tggccgagcc cgatcgcgtc 180
atcagtttcc gcgtcgcgtg gcaggacgat cgcggccgcc cccatgtcaa tcgcggcttc 240
cgtgtggagt tcaacaatgc aatcgggccc tacaaggggg gcctccgatt tcaccccacc 300
gtcaatctca gcatcctcaa gttcctcggt ttcgaacaga tcttgaagaa cagcttgacc 360
acgctgccga tgggcggcgc caaagggggg agcaacttcg atcccaaggg caaatccgac 420
agcgaggtga tgcgattttg ccagagcttc atgaacgagc tctatcggca tatcggctcc 480
gacatcgacg tgccggccgg tgacatcggc gtcggcggac gcgagatagg gtttctcttc 540
ggtcaataca agaagctgac ccactccttc gaaggcgtgc tcaccggcaa agggctcggc 600
tggggcgggt cgctcattcg ccccgaggcc accggttacg gctgcgtgta tttcgccgaa 660
gagatgctga aaacgcgcgg ccagagcttc aagggcaaaa cggtgacggt gtcgggctcc 720
ggcaacgtcg cccaatattc ggtggagaag gtcaatcagc taggcggcag ggtggtgtcg 780
ctgtccgact cggaagggac catttacgat ccggatggca tccgcgacga caagtgggaa 840
ttcttgctga cgctaaaaaa cgtgcggcgc gggcgtctgc gcgaatatgc cgagcgcttc 900
aaggccgagt tccgcgatgg cgtgtgcccg tggagcatca aatgcgatgt cgccctcccg 960
agcgccacgc aaaacgaaat ctccgccgag gacgccaagg cactcgtcaa aaatggctgc 1020
atctgcgtgg cggaaggggc gaacatgccc actaccgccg aaggggtgga gatcttccag 1080
aaaggtaaag tcctcttcgg gccgggcaaa gccgccaacg ccgggggcgt cgctacctcg 1140
ggactcgaga tgtcgcaaaa cagcctgcgc ctctcttgga cgcgcgaaga ggtcgatcgg 1200
cgtctttacg acatcatgaa ggccattcac cacgcctgcg tcacgacggc ccacgagtac 1260
gatcgccccg gcgactacgt gctcggcgcc aacatcgcag gcttcgtcaa ggtggccaac 1320
gcgatgatcg atcaaggcct ggtctga 1347
<210> 162
<211> 448
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_14 sequence from unknown bacterial species from
environmental sample
<400> 162
Met Asn Ala Lys Thr Tyr Leu Ala Ser Phe Met Glu Gln Leu Val Thr
1 5 10 15
Arg Asn Pro Ala Glu Gln Glu Phe His Gln Ala Val Arg Glu Val Val
20 25 30
Glu Ser Leu Glu Pro Cys Leu Glu Arg His Pro Glu Tyr Ile Asp His
35 40 45
Ser Ile Leu Glu Arg Met Ala Glu Pro Asp Arg Val Ile Ser Phe Arg
50 55 60
Val Ala Trp Gln Asp Asp Arg Gly Arg Pro His Val Asn Arg Gly Phe
65 70 75 80
Arg Val Glu Phe Asn Asn Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg
85 90 95
Phe His Pro Thr Val Asn Leu Ser Ile Leu Lys Phe Leu Gly Phe Glu
100 105 110
Gln Ile Leu Lys Asn Ser Leu Thr Thr Leu Pro Met Gly Gly Ala Lys
115 120 125
Gly Gly Ser Asn Phe Asp Pro Lys Gly Lys Ser Asp Ser Glu Val Met
130 135 140
Arg Phe Cys Gln Ser Phe Met Asn Glu Leu Tyr Arg His Ile Gly Ser
145 150 155 160
Asp Ile Asp Val Pro Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Ile
165 170 175
Gly Phe Leu Phe Gly Gln Tyr Lys Lys Leu Thr His Ser Phe Glu Gly
180 185 190
Val Leu Thr Gly Lys Gly Leu Gly Trp Gly Gly Ser Leu Ile Arg Pro
195 200 205
Glu Ala Thr Gly Tyr Gly Cys Val Tyr Phe Ala Glu Glu Met Leu Lys
210 215 220
Thr Arg Gly Gln Ser Phe Lys Gly Lys Thr Val Thr Val Ser Gly Ser
225 230 235 240
Gly Asn Val Ala Gln Tyr Ser Val Glu Lys Val Asn Gln Leu Gly Gly
245 250 255
Arg Val Val Ser Leu Ser Asp Ser Glu Gly Thr Ile Tyr Asp Pro Asp
260 265 270
Gly Ile Arg Asp Asp Lys Trp Glu Phe Leu Leu Thr Leu Lys Asn Val
275 280 285
Arg Arg Gly Arg Leu Arg Glu Tyr Ala Glu Arg Phe Lys Ala Glu Phe
290 295 300
Arg Asp Gly Val Cys Pro Trp Ser Ile Lys Cys Asp Val Ala Leu Pro
305 310 315 320
Ser Ala Thr Gln Asn Glu Ile Ser Ala Glu Asp Ala Lys Ala Leu Val
325 330 335
Lys Asn Gly Cys Ile Cys Val Ala Glu Gly Ala Asn Met Pro Thr Thr
340 345 350
Ala Glu Gly Val Glu Ile Phe Gln Lys Gly Lys Val Leu Phe Gly Pro
355 360 365
Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met
370 375 380
Ser Gln Asn Ser Leu Arg Leu Ser Trp Thr Arg Glu Glu Val Asp Arg
385 390 395 400
Arg Leu Tyr Asp Ile Met Lys Ala Ile His His Ala Cys Val Thr Thr
405 410 415
Ala His Glu Tyr Asp Arg Pro Gly Asp Tyr Val Leu Gly Ala Asn Ile
420 425 430
Ala Gly Phe Val Lys Val Ala Asn Ala Met Ile Asp Gln Gly Leu Val
435 440 445
<210> 163
<211> 1338
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_15 sequence from unknown bacterial species from
environmental sample
<400> 163
atgaattcag tccaggaagt cctcgacatc gttcatcgaa gaaatccaca tcagcctgaa 60
ttccttcagg cggtgacgga agtcttcgag tcgatcagtc cagtgatcga acggcgcaaa 120
gattatcgcg acgccaacat tctcgagcgc atcgtcgagc cggaacggat gattcagttc 180
cgtgttccgt ggattgacga tgcgggcaag gtgcgggtga atcgcggcta tcgcgtgcaa 240
atgaacagcg cgctcggtcc gtacaagggc gggctgcgtt ttcatcccac agttaatgcc 300
agcattctga aattcctcgc atttgaacag gtgttcaaaa attcgctcac gactctgccg 360
atgggcggcg gcaaaggcgg cgccgatttc gatccgaaga acaagtcgga caacgaagtg 420
atgcattttt gccaatcttt catgaccgaa ttgttccgcc atgtcggccc cgacacagac 480
gtgccggcgg gcgacattgg agttgggggt cgtgagattg gttacttgtt cggccaatac 540
aaacggctgg ctaatgaatt taccggcgtg ctgaccggca aatcattgaa ctggggcggc 600
tcgctcatcc ggccgcaagc taccggttat ggcgcggttt atttcgcgga agagatgctg 660
aagacgcgca gcgaaggttt ggaaggaaga gtgtgcactg tctccggctc gggtaacgcc 720
gcgcaataca cggtttcgaa gttaaaccag gtcggcgcca aggttgtcac gatgtctgat 780
tccagtggtt tcatttatga caaggatggg atcaccgagg aaaaactaag ctgggtgatg 840
gaactgaaaa acgaacggcg cggtcgcatc aaagaatacg ccaatttttt caaagcgacg 900
tatgtcgacg gcaaaccgcc atggagtgtt ccatgcgaat gcgccttccc gtgcgcaacg 960
cagaacgaaa ttagcggcga agacgcgaag attctgctcg caaacggttg ctttctcgtt 1020
tccgaagcgg ccaacatgcc gaccgcgccc gcaggagttg acctttttct ggcgaacaaa 1080
atcctttacg gtcccggcaa ggccgcgaat gctggtggcg tggccgtttc gggattggag 1140
atggcgcaaa attcgatgcg cttaccctgg ccgcgcgcgg aagtcgatca acgccttcgc 1200
cagattatgg ccaccattca taagaacgca tggaacacag cggcggaata cgaccagccg 1260
ggtaaccttg ttatcggcgc caacatcgcc gggttcgtta aggtagctga cgcgatgctc 1320
gatcagggcg tggtctag 1338
<210> 164
<211> 445
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_15 sequence from unknown bacterial species from
environmental sample
<400> 164
Met Asn Ser Val Gln Glu Val Leu Asp Ile Val His Arg Arg Asn Pro
1 5 10 15
His Gln Pro Glu Phe Leu Gln Ala Val Thr Glu Val Phe Glu Ser Ile
20 25 30
Ser Pro Val Ile Glu Arg Arg Lys Asp Tyr Arg Asp Ala Asn Ile Leu
35 40 45
Glu Arg Ile Val Glu Pro Glu Arg Met Ile Gln Phe Arg Val Pro Trp
50 55 60
Ile Asp Asp Ala Gly Lys Val Arg Val Asn Arg Gly Tyr Arg Val Gln
65 70 75 80
Met Asn Ser Ala Leu Gly Pro Tyr Lys Gly Gly Leu Arg Phe His Pro
85 90 95
Thr Val Asn Ala Ser Ile Leu Lys Phe Leu Ala Phe Glu Gln Val Phe
100 105 110
Lys Asn Ser Leu Thr Thr Leu Pro Met Gly Gly Gly Lys Gly Gly Ala
115 120 125
Asp Phe Asp Pro Lys Asn Lys Ser Asp Asn Glu Val Met His Phe Cys
130 135 140
Gln Ser Phe Met Thr Glu Leu Phe Arg His Val Gly Pro Asp Thr Asp
145 150 155 160
Val Pro Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Ile Gly Tyr Leu
165 170 175
Phe Gly Gln Tyr Lys Arg Leu Ala Asn Glu Phe Thr Gly Val Leu Thr
180 185 190
Gly Lys Ser Leu Asn Trp Gly Gly Ser Leu Ile Arg Pro Gln Ala Thr
195 200 205
Gly Tyr Gly Ala Val Tyr Phe Ala Glu Glu Met Leu Lys Thr Arg Ser
210 215 220
Glu Gly Leu Glu Gly Arg Val Cys Thr Val Ser Gly Ser Gly Asn Ala
225 230 235 240
Ala Gln Tyr Thr Val Ser Lys Leu Asn Gln Val Gly Ala Lys Val Val
245 250 255
Thr Met Ser Asp Ser Ser Gly Phe Ile Tyr Asp Lys Asp Gly Ile Thr
260 265 270
Glu Glu Lys Leu Ser Trp Val Met Glu Leu Lys Asn Glu Arg Arg Gly
275 280 285
Arg Ile Lys Glu Tyr Ala Asn Phe Phe Lys Ala Thr Tyr Val Asp Gly
290 295 300
Lys Pro Pro Trp Ser Val Pro Cys Glu Cys Ala Phe Pro Cys Ala Thr
305 310 315 320
Gln Asn Glu Ile Ser Gly Glu Asp Ala Lys Ile Leu Leu Ala Asn Gly
325 330 335
Cys Phe Leu Val Ser Glu Ala Ala Asn Met Pro Thr Ala Pro Ala Gly
340 345 350
Val Asp Leu Phe Leu Ala Asn Lys Ile Leu Tyr Gly Pro Gly Lys Ala
355 360 365
Ala Asn Ala Gly Gly Val Ala Val Ser Gly Leu Glu Met Ala Gln Asn
370 375 380
Ser Met Arg Leu Pro Trp Pro Arg Ala Glu Val Asp Gln Arg Leu Arg
385 390 395 400
Gln Ile Met Ala Thr Ile His Lys Asn Ala Trp Asn Thr Ala Ala Glu
405 410 415
Tyr Asp Gln Pro Gly Asn Leu Val Ile Gly Ala Asn Ile Ala Gly Phe
420 425 430
Val Lys Val Ala Asp Ala Met Leu Asp Gln Gly Val Val
435 440 445
<210> 165
<211> 1422
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_16 sequence from unknown bacterial species from
environmental sample
<400> 165
atgtcgtcgc aagtagcctc accgacccga aagctggttc gtcctcccgt ctcacccgcg 60
acccgtgact acattgccgc gctgctcgcg gaggtgaagg cgaagaatcc ggcggagccg 120
gagttccacc aggcggtgca cgaagtcgcc gagtcggtgg gactcgtgct cgagcgccac 180
ccggaatacc gctcggcgaa gatcctggag cggatcatcg agccggagcg cgtcatcatg 240
ttccgtgtcc cgtggctgga cgacgcgggc gaggtccagg tgaaccgcgg cttccgcatc 300
gagatgaaca gcgcgatcgg cccgtacaag ggcgggctgc gttttcacgc ttccgtcaac 360
ctcggcatcc tgaagttcct cgcgttcgag caggtcttca agaacgcgct gacgacgctg 420
ccgatggggg gcggcaaggg cggttccgac ttcgatccga aaggcaggag cgacgcggaa 480
gtcatgcgct tctgtcagag cttcatgacg gagctggcgc ggcacatcgg cgcggacacg 540
gacgtgccgg cgggcgacat cggcgtgggt ggacgcgaaa tcggttatct gttcgggcag 600
tacaagcgga tccgcaacga attcgcgggc gtgctcacgg gcaaggggct caactggggc 660
ggctcgctga tccgtccgga ggcgacgggg tacggcgctg tctacttcgc ggcggagatg 720
ctggcgaccc gcagcgacac cctggcgggc aaggtgtgtc tcgtgtcggg cagcggcaac 780
gtcgcccagt acacggtcga gaagctgctc gcgcacggcg cgaaggtggt gaccctgtcg 840
gactccgctg gtcacgtcta cgacgaagcc ggcatgacgg cggagaagct ggcctatgtg 900
atgaagctga agaacgagcg gcgcggccgg atcgcggagt acgtcgagaa gtatcgggac 960
gcggtgtata cgccggccga tgccgcgcgt ggcttcgatg cgctgtggga tcataaggcc 1020
gactgcgcgt ttccgagcgc gacgcagaac gagatcggcc ggcaggatgc gcagaatctg 1080
ctgatcaacg gcgtatacgt cgtgtcggag ggcgcaaaca tgccgtgcac gccggaagcg 1140
gtcgaactgt tcctcgaaca caatgtgctg tacggcccgg gcaaagcggc gaacgcgggc 1200
ggcgtggcgg tctccggact cgagatgtcg cagaacagca tgcgcctgcg ctggacgcgc 1260
gaggaagtcg atcaccggct gcagcagatc atgcacgaga ttcacgcgac gtgtctggcg 1320
gcggcggagc ggttcggcgc tccgagcaat tacgtgcacg gcgcgaacat cgcgggattc 1380
ctgaaggttg ccgacgcgat gctcgatcag ggtctcgtat ag 1422
<210> 166
<211> 473
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_16 sequence from unknown bacterial species from
environmental sample
<400> 166
Met Ser Ser Gln Val Ala Ser Pro Thr Arg Lys Leu Val Arg Pro Pro
1 5 10 15
Val Ser Pro Ala Thr Arg Asp Tyr Ile Ala Ala Leu Leu Ala Glu Val
20 25 30
Lys Ala Lys Asn Pro Ala Glu Pro Glu Phe His Gln Ala Val His Glu
35 40 45
Val Ala Glu Ser Val Gly Leu Val Leu Glu Arg His Pro Glu Tyr Arg
50 55 60
Ser Ala Lys Ile Leu Glu Arg Ile Ile Glu Pro Glu Arg Val Ile Met
65 70 75 80
Phe Arg Val Pro Trp Leu Asp Asp Ala Gly Glu Val Gln Val Asn Arg
85 90 95
Gly Phe Arg Ile Glu Met Asn Ser Ala Ile Gly Pro Tyr Lys Gly Gly
100 105 110
Leu Arg Phe His Ala Ser Val Asn Leu Gly Ile Leu Lys Phe Leu Ala
115 120 125
Phe Glu Gln Val Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly
130 135 140
Gly Lys Gly Gly Ser Asp Phe Asp Pro Lys Gly Arg Ser Asp Ala Glu
145 150 155 160
Val Met Arg Phe Cys Gln Ser Phe Met Thr Glu Leu Ala Arg His Ile
165 170 175
Gly Ala Asp Thr Asp Val Pro Ala Gly Asp Ile Gly Val Gly Gly Arg
180 185 190
Glu Ile Gly Tyr Leu Phe Gly Gln Tyr Lys Arg Ile Arg Asn Glu Phe
195 200 205
Ala Gly Val Leu Thr Gly Lys Gly Leu Asn Trp Gly Gly Ser Leu Ile
210 215 220
Arg Pro Glu Ala Thr Gly Tyr Gly Ala Val Tyr Phe Ala Ala Glu Met
225 230 235 240
Leu Ala Thr Arg Ser Asp Thr Leu Ala Gly Lys Val Cys Leu Val Ser
245 250 255
Gly Ser Gly Asn Val Ala Gln Tyr Thr Val Glu Lys Leu Leu Ala His
260 265 270
Gly Ala Lys Val Val Thr Leu Ser Asp Ser Ala Gly His Val Tyr Asp
275 280 285
Glu Ala Gly Met Thr Ala Glu Lys Leu Ala Tyr Val Met Lys Leu Lys
290 295 300
Asn Glu Arg Arg Gly Arg Ile Ala Glu Tyr Val Glu Lys Tyr Arg Asp
305 310 315 320
Ala Val Tyr Thr Pro Ala Asp Ala Ala Arg Gly Phe Asp Ala Leu Trp
325 330 335
Asp His Lys Ala Asp Cys Ala Phe Pro Ser Ala Thr Gln Asn Glu Ile
340 345 350
Gly Arg Gln Asp Ala Gln Asn Leu Leu Ile Asn Gly Val Tyr Val Val
355 360 365
Ser Glu Gly Ala Asn Met Pro Cys Thr Pro Glu Ala Val Glu Leu Phe
370 375 380
Leu Glu His Asn Val Leu Tyr Gly Pro Gly Lys Ala Ala Asn Ala Gly
385 390 395 400
Gly Val Ala Val Ser Gly Leu Glu Met Ser Gln Asn Ser Met Arg Leu
405 410 415
Arg Trp Thr Arg Glu Glu Val Asp His Arg Leu Gln Gln Ile Met His
420 425 430
Glu Ile His Ala Thr Cys Leu Ala Ala Ala Glu Arg Phe Gly Ala Pro
435 440 445
Ser Asn Tyr Val His Gly Ala Asn Ile Ala Gly Phe Leu Lys Val Ala
450 455 460
Asp Ala Met Leu Asp Gln Gly Leu Val
465 470
<210> 167
<211> 1389
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_17 sequence from unknown bacterial species from
environmental sample
<400> 167
atgcaggtca gcggcggcgt ccgttcgaag ccctcggcat acgtcaacga tgtgctcgcg 60
caggtgaagg cgaagaaccc cgcggagccg gaattccacc aggcggtcga agaagtcctc 120
gaaagcatcg accttgccgt cgcgaagcgt cccgagctgc gcaaagcccg catcctcgaa 180
cgcatcgtcg agcccgagcg cgtcgtgatg ttccgcgtgg cgtggcagga cgatgccggc 240
gaggtgcaga tcaatcgcgg gtaccgcgtg cagatgaaca gcgcgatagg cccctacaaa 300
ggcggccttc ggttccatcc cagcgtgacg ctcggggtgc tgaagttcct cgcgttcgag 360
caggtcttca agaactccct caccacgctg cccatgggcg gcgggaaggg cggatccgat 420
ttcgatccga aggggcgatc ggacgccgaa gtgatgcgct tctgccaggc gttcatgacg 480
gagctcgcgc gccacatcgg gcccgacacc gacgtgccgg ccggcgacat cggtgtcggc 540
gcgcgtgaga ttggctttct gttcgggcag tacaaacggc tgcgcaacga attcaccggc 600
gtgctgaccg ggaaggcgct gaactggggc ggatcgctga tcaggccgga agccaccggc 660
tacggcgccg tgtatttcgc ggcggagatg ctggcgacgc gcaatcagac gctcgagggc 720
aagacgtgtc tcgtgtcggg cagtggcaat gtcgcgcaat acacgatcga gaagctgctg 780
gatctcggcg cgcgcgcggt gacggcgtcc gattcagacg gctatatcta tgacgaagcg 840
gggttcgatc gcgcgaagct cgcaaagctg atggcgctga aaaacgtgaa gcgcggccgg 900
ctgcgcgagt acgcggacga ggtgaagggc gtgacctaca cgccggtgaa gggcggcgcc 960
gcgcatccga tgtggtcgca tcgagccgac tgcgcgttcc cgagcgcgac gcagaacgag 1020
ctctcgggac aggatgccgc gaacctcgtc tcgaacaaca tcacggccgt ggccgagggg 1080
gcgaacatgc cctgcacgct cgacgccgtg cgcgtgttca tcgacgcgcg tgtgctctac 1140
gcgccgggga aggccgcgaa cgccggcggc gtggcgacgt cgggcctcga gatggcgcag 1200
aacagcgcgc gtctgagctg gacacgcgag gaagtggacg gccgcctgca caacatcatg 1260
aaagcgattc accgcgcgtg ccgcgacacg gcggacgcgt acggcgcgcc tggcaactac 1320
gtactcggcg cgaacatcgc gggcttcctc aaggtcgccg acgcgatgat ggatcagggg 1380
ctcgtctga 1389
<210> 168
<211> 462
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_17 sequence from unknown bacterial species from
environmental sample
<400> 168
Met Gln Val Ser Gly Gly Val Arg Ser Lys Pro Ser Ala Tyr Val Asn
1 5 10 15
Asp Val Leu Ala Gln Val Lys Ala Lys Asn Pro Ala Glu Pro Glu Phe
20 25 30
His Gln Ala Val Glu Glu Val Leu Glu Ser Ile Asp Leu Ala Val Ala
35 40 45
Lys Arg Pro Glu Leu Arg Lys Ala Arg Ile Leu Glu Arg Ile Val Glu
50 55 60
Pro Glu Arg Val Val Met Phe Arg Val Ala Trp Gln Asp Asp Ala Gly
65 70 75 80
Glu Val Gln Ile Asn Arg Gly Tyr Arg Val Gln Met Asn Ser Ala Ile
85 90 95
Gly Pro Tyr Lys Gly Gly Leu Arg Phe His Pro Ser Val Thr Leu Gly
100 105 110
Val Leu Lys Phe Leu Ala Phe Glu Gln Val Phe Lys Asn Ser Leu Thr
115 120 125
Thr Leu Pro Met Gly Gly Gly Lys Gly Gly Ser Asp Phe Asp Pro Lys
130 135 140
Gly Arg Ser Asp Ala Glu Val Met Arg Phe Cys Gln Ala Phe Met Thr
145 150 155 160
Glu Leu Ala Arg His Ile Gly Pro Asp Thr Asp Val Pro Ala Gly Asp
165 170 175
Ile Gly Val Gly Ala Arg Glu Ile Gly Phe Leu Phe Gly Gln Tyr Lys
180 185 190
Arg Leu Arg Asn Glu Phe Thr Gly Val Leu Thr Gly Lys Ala Leu Asn
195 200 205
Trp Gly Gly Ser Leu Ile Arg Pro Glu Ala Thr Gly Tyr Gly Ala Val
210 215 220
Tyr Phe Ala Ala Glu Met Leu Ala Thr Arg Asn Gln Thr Leu Glu Gly
225 230 235 240
Lys Thr Cys Leu Val Ser Gly Ser Gly Asn Val Ala Gln Tyr Thr Ile
245 250 255
Glu Lys Leu Leu Asp Leu Gly Ala Arg Ala Val Thr Ala Ser Asp Ser
260 265 270
Asp Gly Tyr Ile Tyr Asp Glu Ala Gly Phe Asp Arg Ala Lys Leu Ala
275 280 285
Lys Leu Met Ala Leu Lys Asn Val Lys Arg Gly Arg Leu Arg Glu Tyr
290 295 300
Ala Asp Glu Val Lys Gly Val Thr Tyr Thr Pro Val Lys Gly Gly Ala
305 310 315 320
Ala His Pro Met Trp Ser His Arg Ala Asp Cys Ala Phe Pro Ser Ala
325 330 335
Thr Gln Asn Glu Leu Ser Gly Gln Asp Ala Ala Asn Leu Val Ser Asn
340 345 350
Asn Ile Thr Ala Val Ala Glu Gly Ala Asn Met Pro Cys Thr Leu Asp
355 360 365
Ala Val Arg Val Phe Ile Asp Ala Arg Val Leu Tyr Ala Pro Gly Lys
370 375 380
Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met Ala Gln
385 390 395 400
Asn Ser Ala Arg Leu Ser Trp Thr Arg Glu Glu Val Asp Gly Arg Leu
405 410 415
His Asn Ile Met Lys Ala Ile His Arg Ala Cys Arg Asp Thr Ala Asp
420 425 430
Ala Tyr Gly Ala Pro Gly Asn Tyr Val Leu Gly Ala Asn Ile Ala Gly
435 440 445
Phe Leu Lys Val Ala Asp Ala Met Met Asp Gln Gly Leu Val
450 455 460
<210> 169
<211> 1338
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_18 sequence from unknown bacterial species from
environmental sample
<400> 169
atggccgatg ttaaggccaa gaacccgatg gagccggagt tccatcaagc cgtccaagaa 60
gtggtcgagt ccctgtcgct tgttctcgat caacaccctg aatatctaaa ggcggggatc 120
ctggaacgga tggtcgagcc ggaacgcgtc attatgttcc gagtgccatg gcaggacgat 180
aaaggcaatc tccacgtcaa tcgcggtttt cgtgtccaga tgaatagcgc gatcggcccg 240
tataaggggg ggttgcggtt ccatccctcc gtcaacctcg gtattctcaa gtttcttgcc 300
ttcgaacagg tgtttaagaa cgcgcttacc actctgccga tgggcggcgc caagggcgga 360
tctgacttcg atccgaaagg aaagagcgac ttggaagtca cgcgcttctg ccaggctttt 420
atgtgcgaac tttttcgcca catcgggcca gacacagatg ttcccgcggg ggacatcggt 480
gtcggcggcc gcgaaatagg atttctgttc gggatgtaca agaagcttgg aaacgaattc 540
acgggcgttt taaccggaaa aggcccaact tggggtggat ccgtcatccg ccccgaggcc 600
accggatatg gagcagtcta tttcgcggcc gaaatgctcg aaacccgcaa agaaaatctt 660
aagggtaaga cctgccttgt ttccggaagc ggcaatgtgt cgcaatatac ggtcgataag 720
ctcatcgagg tcggggcgcg gcccgtcacg ctctcagact ccaatggtta tatctatgat 780
gaggccggta ttactcagga aaagctcgcc tttgtcatgg agttaaaaaa cgtccgccgg 840
ggccgaattg gcgagtacgc ggacaaattc aaaagcgcga cttattttcc gagggatccg 900
aagctcgatt acaacccgct ctggaaccac aaggcggagt gtgcgttccc gagcgcgact 960
cagaacgaga ttaacgcgaa ggacgccgcc aatctcctca agaacggtgt ctatgtcgtc 1020
tcagaaggcg caaatatgcc gaccgcgatc gaagggatca atcagttcat cgaggccaag 1080
atcctgttcg gccccggcaa ggccgcaaac gcgggcggtg tcgccacctc tgggttggaa 1140
atggcgcaga acagcatgcg tatttcctgg acgcgcgagg aagtggacgc gcggctgcag 1200
agcatcatga aagggatcca caaaaattgt tacgtgacgg cggagaagta cggtactccg 1260
ggcaactacg ttaacggtgc gaacattgcg ggtttcctga aggtggctaa cgccatgatg 1320
gatcagggac tggtgtag 1338
<210> 170
<211> 445
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_18 sequence from unknown bacterial species from
environmental sample
<400> 170
Met Ala Asp Val Lys Ala Lys Asn Pro Met Glu Pro Glu Phe His Gln
1 5 10 15
Ala Val Gln Glu Val Val Glu Ser Leu Ser Leu Val Leu Asp Gln His
20 25 30
Pro Glu Tyr Leu Lys Ala Gly Ile Leu Glu Arg Met Val Glu Pro Glu
35 40 45
Arg Val Ile Met Phe Arg Val Pro Trp Gln Asp Asp Lys Gly Asn Leu
50 55 60
His Val Asn Arg Gly Phe Arg Val Gln Met Asn Ser Ala Ile Gly Pro
65 70 75 80
Tyr Lys Gly Gly Leu Arg Phe His Pro Ser Val Asn Leu Gly Ile Leu
85 90 95
Lys Phe Leu Ala Phe Glu Gln Val Phe Lys Asn Ala Leu Thr Thr Leu
100 105 110
Pro Met Gly Gly Ala Lys Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys
115 120 125
Ser Asp Leu Glu Val Thr Arg Phe Cys Gln Ala Phe Met Cys Glu Leu
130 135 140
Phe Arg His Ile Gly Pro Asp Thr Asp Val Pro Ala Gly Asp Ile Gly
145 150 155 160
Val Gly Gly Arg Glu Ile Gly Phe Leu Phe Gly Met Tyr Lys Lys Leu
165 170 175
Gly Asn Glu Phe Thr Gly Val Leu Thr Gly Lys Gly Pro Thr Trp Gly
180 185 190
Gly Ser Val Ile Arg Pro Glu Ala Thr Gly Tyr Gly Ala Val Tyr Phe
195 200 205
Ala Ala Glu Met Leu Glu Thr Arg Lys Glu Asn Leu Lys Gly Lys Thr
210 215 220
Cys Leu Val Ser Gly Ser Gly Asn Val Ser Gln Tyr Thr Val Asp Lys
225 230 235 240
Leu Ile Glu Val Gly Ala Arg Pro Val Thr Leu Ser Asp Ser Asn Gly
245 250 255
Tyr Ile Tyr Asp Glu Ala Gly Ile Thr Gln Glu Lys Leu Ala Phe Val
260 265 270
Met Glu Leu Lys Asn Val Arg Arg Gly Arg Ile Gly Glu Tyr Ala Asp
275 280 285
Lys Phe Lys Ser Ala Thr Tyr Phe Pro Arg Asp Pro Lys Leu Asp Tyr
290 295 300
Asn Pro Leu Trp Asn His Lys Ala Glu Cys Ala Phe Pro Ser Ala Thr
305 310 315 320
Gln Asn Glu Ile Asn Ala Lys Asp Ala Ala Asn Leu Leu Lys Asn Gly
325 330 335
Val Tyr Val Val Ser Glu Gly Ala Asn Met Pro Thr Ala Ile Glu Gly
340 345 350
Ile Asn Gln Phe Ile Glu Ala Lys Ile Leu Phe Gly Pro Gly Lys Ala
355 360 365
Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met Ala Gln Asn
370 375 380
Ser Met Arg Ile Ser Trp Thr Arg Glu Glu Val Asp Ala Arg Leu Gln
385 390 395 400
Ser Ile Met Lys Gly Ile His Lys Asn Cys Tyr Val Thr Ala Glu Lys
405 410 415
Tyr Gly Thr Pro Gly Asn Tyr Val Asn Gly Ala Asn Ile Ala Gly Phe
420 425 430
Leu Lys Val Ala Asn Ala Met Met Asp Gln Gly Leu Val
435 440 445
<210> 171
<211> 1362
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_19 sequence from unknown bacterial species from
environmental sample
<400> 171
atgaatgact acgtcacagc gttgatggcc gaggtaaagg ccaagaaccc atcggagccc 60
gagtttcacc aggcggtcga ggaggtggta gagtcgctcg cgctcgtcct ggaacaacat 120
ccggaatacc ggaaagcgaa aatcatcgag cgaatcattg agccggagcg ggtcatcatc 180
ttccgcgttc cctggcagga cgaccagggc gagctgcagg tgaaccgcgg gtttcgcatt 240
cagatgaaca gcgccatcgg cccgtacaag ggcggcctgc gtttccatcc ttcggtcaac 300
ctcggcatcc taaaattcct cgctttcgaa caggtgttca aaaacgcgct caccactctg 360
ccgatgggcg gcggcaaagg cggttccgac ttcgatccga aaggcaagag cgacagtgaa 420
gtgatgcgct tctgtcaggc gttcatgtgc gaactgttcc ggcacattgg cccggatacc 480
gatgttcccg cgggcgatat cggcgtcggg gcacgtgaaa tcggatactt gttcgggatg 540
tacaagaggc tcaggaacga gttcagcggt gtgataacgg gcaagggtct gacctggggt 600
gggtccgtca ttcgccctga ggcgacgggc tacggcgcgg tttatttcgc ggctgaaatg 660
ctcaagacgc gcaaagaaga gatgaagggc aaaacctgtc tcgtgtccgg gagcggcaat 720
gtttcgcagt acacggtgga caaacttatc tcgctggggg ccaaggcagt cacactctcg 780
gattcatctg gctacatcta cgacgaggcc gggatcgacc gcgacaagct tgcctttgtc 840
atggacctga agaacaaccg gcgtggccgg atttcagaat acgccgataa gttcaagggg 900
acgaccttca cggccgtgga cgaggcgctc gatcataacc cgctttggga tcacaaggcc 960
gagtgcgcct ttcccagtgc aacgcagaac gagatcaacg ggaaggacgc ggcgaacctt 1020
ctccgaaacg gcgtctatgt cgtctcggag ggggcgaata tgccgactac gattgacggc 1080
gtaaaccagt tcctcgaggc gcagatcctc ttcggtcctg gcaaagcagc aaatgccggc 1140
ggagttgcga cctccggctt ggagatggcg caaaacagca tgcggatttc ctggacccgc 1200
gaggaagtgg ataaccgtct cttcaatatc atgaagacga tccacgaagt ttgccatcgc 1260
acggccgaga agtacggcac gccgggcaac tacgtgaacg gcgcaaacat tgccggcttt 1320
cagaaagtcg ccaacgcgat gatggaccag ggactggtgt ag 1362
<210> 172
<211> 453
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_19 sequence from unknown bacterial species from
environmental sample
<400> 172
Met Asn Asp Tyr Val Thr Ala Leu Met Ala Glu Val Lys Ala Lys Asn
1 5 10 15
Pro Ser Glu Pro Glu Phe His Gln Ala Val Glu Glu Val Val Glu Ser
20 25 30
Leu Ala Leu Val Leu Glu Gln His Pro Glu Tyr Arg Lys Ala Lys Ile
35 40 45
Ile Glu Arg Ile Ile Glu Pro Glu Arg Val Ile Ile Phe Arg Val Pro
50 55 60
Trp Gln Asp Asp Gln Gly Glu Leu Gln Val Asn Arg Gly Phe Arg Ile
65 70 75 80
Gln Met Asn Ser Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe His
85 90 95
Pro Ser Val Asn Leu Gly Ile Leu Lys Phe Leu Ala Phe Glu Gln Val
100 105 110
Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Gly Lys Gly Gly
115 120 125
Ser Asp Phe Asp Pro Lys Gly Lys Ser Asp Ser Glu Val Met Arg Phe
130 135 140
Cys Gln Ala Phe Met Cys Glu Leu Phe Arg His Ile Gly Pro Asp Thr
145 150 155 160
Asp Val Pro Ala Gly Asp Ile Gly Val Gly Ala Arg Glu Ile Gly Tyr
165 170 175
Leu Phe Gly Met Tyr Lys Arg Leu Arg Asn Glu Phe Ser Gly Val Ile
180 185 190
Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Val Ile Arg Pro Glu Ala
195 200 205
Thr Gly Tyr Gly Ala Val Tyr Phe Ala Ala Glu Met Leu Lys Thr Arg
210 215 220
Lys Glu Glu Met Lys Gly Lys Thr Cys Leu Val Ser Gly Ser Gly Asn
225 230 235 240
Val Ser Gln Tyr Thr Val Asp Lys Leu Ile Ser Leu Gly Ala Lys Ala
245 250 255
Val Thr Leu Ser Asp Ser Ser Gly Tyr Ile Tyr Asp Glu Ala Gly Ile
260 265 270
Asp Arg Asp Lys Leu Ala Phe Val Met Asp Leu Lys Asn Asn Arg Arg
275 280 285
Gly Arg Ile Ser Glu Tyr Ala Asp Lys Phe Lys Gly Thr Thr Phe Thr
290 295 300
Ala Val Asp Glu Ala Leu Asp His Asn Pro Leu Trp Asp His Lys Ala
305 310 315 320
Glu Cys Ala Phe Pro Ser Ala Thr Gln Asn Glu Ile Asn Gly Lys Asp
325 330 335
Ala Ala Asn Leu Leu Arg Asn Gly Val Tyr Val Val Ser Glu Gly Ala
340 345 350
Asn Met Pro Thr Thr Ile Asp Gly Val Asn Gln Phe Leu Glu Ala Gln
355 360 365
Ile Leu Phe Gly Pro Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr
370 375 380
Ser Gly Leu Glu Met Ala Gln Asn Ser Met Arg Ile Ser Trp Thr Arg
385 390 395 400
Glu Glu Val Asp Asn Arg Leu Phe Asn Ile Met Lys Thr Ile His Glu
405 410 415
Val Cys His Arg Thr Ala Glu Lys Tyr Gly Thr Pro Gly Asn Tyr Val
420 425 430
Asn Gly Ala Asn Ile Ala Gly Phe Gln Lys Val Ala Asn Ala Met Met
435 440 445
Asp Gln Gly Leu Val
450
<210> 173
<211> 1362
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_20 sequence from unknown bacterial species from
environmental sample
<400> 173
atgaatgacc atgtcgctgc gttgatggcc gaggtaaagg ccaagaaccc ctcggagccg 60
gaatttcacc aggcggtgga ggaggtggcc gagtcgctca cgctggtgct ggatcagcat 120
ccggaatatc ggaaggcaaa gatcctcgag cgaatcatcg agccggagcg cgtgatcatg 180
tttcgcgttc cctggcagga tgacgcgggg gagctgcacg tgaatcgcgg gttccgcatc 240
cagatgaaca gcgcgattgg cccatacaaa ggcggcctgc gtttccatcc ctcggtcaac 300
ctcggcatcc tgaagttcct cgccttcgag caggtcttta agaacgcgct gaccacgctg 360
ccgatgggcg gcggaaaggg tggggccgac tttgatccga aagggaaaag cgacagcgag 420
gtaatgcggt tctgccaggc cttcatgtgc gagctgttcc ggcacatcgg cccggatacg 480
gatgtgccgg cgggcgatat tggcgtcggg gcacgcgaga tcggatttct ttttgggatg 540
tacaagaggc tgaagaacga gttcaccggt gtgatgacgg gcaaaggcct cacctggggt 600
ggctcggtca ttcgtcctga ggcgacggga tacggcgcag tctatttcgc ggctgagatg 660
ctcaagacgc gcaaggaaga gatgaagggc aagacgtgtc tcgtctcggg aagcggcaac 720
gtttcgcagt acacggtgga caaacttatc tcgctgggcg caaagacggt cacgctctcg 780
gattcatccg gctacatcta tgacgaggcc gggatcgacc gggacaagct cgcctttgtc 840
atggatctga agaacaaccg ccgcgggcgg atcgcggaat atgccgacaa gttcaagggc 900
gcggtcttca cgccattgga tgaggcgctc gatcataacc ccctctggaa tcacaaggcc 960
gagtgcgcct ttcccagcgc cacgcaaaac gagatcaacg ggaaggacgc ggcgaacctt 1020
ctccggaacg gcgtctacgt catctccgag ggcgcaaaca tgccgaccac aactgacggc 1080
gtcagccggt tcctcgaggc gcaggtcctt ttcggtcccg ggaaggccgc caatgccggc 1140
ggagtcgcga cttccggatt ggaaatggcg caaaacagca tgcggatttc ctggacccgc 1200
gaggaagtgg ataaccgtct tttcaatatc atgaagacga tccacgaaaa ttgctatcgc 1260
acggccgaga aatacggcac gccgggtaac tacgtcaacg gtgcgaacat cgccggcttc 1320
ctcaaggtcg cgaacgcgat gatggaccag ggattggtgt ag 1362
<210> 174
<211> 453
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_20 sequence from unknown bacterial species from
environmental sample
<400> 174
Met Asn Asp His Val Ala Ala Leu Met Ala Glu Val Lys Ala Lys Asn
1 5 10 15
Pro Ser Glu Pro Glu Phe His Gln Ala Val Glu Glu Val Ala Glu Ser
20 25 30
Leu Thr Leu Val Leu Asp Gln His Pro Glu Tyr Arg Lys Ala Lys Ile
35 40 45
Leu Glu Arg Ile Ile Glu Pro Glu Arg Val Ile Met Phe Arg Val Pro
50 55 60
Trp Gln Asp Asp Ala Gly Glu Leu His Val Asn Arg Gly Phe Arg Ile
65 70 75 80
Gln Met Asn Ser Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe His
85 90 95
Pro Ser Val Asn Leu Gly Ile Leu Lys Phe Leu Ala Phe Glu Gln Val
100 105 110
Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Gly Lys Gly Gly
115 120 125
Ala Asp Phe Asp Pro Lys Gly Lys Ser Asp Ser Glu Val Met Arg Phe
130 135 140
Cys Gln Ala Phe Met Cys Glu Leu Phe Arg His Ile Gly Pro Asp Thr
145 150 155 160
Asp Val Pro Ala Gly Asp Ile Gly Val Gly Ala Arg Glu Ile Gly Phe
165 170 175
Leu Phe Gly Met Tyr Lys Arg Leu Lys Asn Glu Phe Thr Gly Val Met
180 185 190
Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Val Ile Arg Pro Glu Ala
195 200 205
Thr Gly Tyr Gly Ala Val Tyr Phe Ala Ala Glu Met Leu Lys Thr Arg
210 215 220
Lys Glu Glu Met Lys Gly Lys Thr Cys Leu Val Ser Gly Ser Gly Asn
225 230 235 240
Val Ser Gln Tyr Thr Val Asp Lys Leu Ile Ser Leu Gly Ala Lys Thr
245 250 255
Val Thr Leu Ser Asp Ser Ser Gly Tyr Ile Tyr Asp Glu Ala Gly Ile
260 265 270
Asp Arg Asp Lys Leu Ala Phe Val Met Asp Leu Lys Asn Asn Arg Arg
275 280 285
Gly Arg Ile Ala Glu Tyr Ala Asp Lys Phe Lys Gly Ala Val Phe Thr
290 295 300
Pro Leu Asp Glu Ala Leu Asp His Asn Pro Leu Trp Asn His Lys Ala
305 310 315 320
Glu Cys Ala Phe Pro Ser Ala Thr Gln Asn Glu Ile Asn Gly Lys Asp
325 330 335
Ala Ala Asn Leu Leu Arg Asn Gly Val Tyr Val Ile Ser Glu Gly Ala
340 345 350
Asn Met Pro Thr Thr Thr Asp Gly Val Ser Arg Phe Leu Glu Ala Gln
355 360 365
Val Leu Phe Gly Pro Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr
370 375 380
Ser Gly Leu Glu Met Ala Gln Asn Ser Met Arg Ile Ser Trp Thr Arg
385 390 395 400
Glu Glu Val Asp Asn Arg Leu Phe Asn Ile Met Lys Thr Ile His Glu
405 410 415
Asn Cys Tyr Arg Thr Ala Glu Lys Tyr Gly Thr Pro Gly Asn Tyr Val
420 425 430
Asn Gly Ala Asn Ile Ala Gly Phe Leu Lys Val Ala Asn Ala Met Met
435 440 445
Asp Gln Gly Leu Val
450
<210> 175
<211> 1362
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_21 sequence from unknown bacterial species from
environmental sample
<400> 175
atgaatgacc aagttgcagc gttgatggcc gatgttaagg ccaagaatcc gggggagccg 60
gaatttcacc aggccgtcca ggaagtagtc gaatcgctca cgctcgttct ggatcagcac 120
ccggaatatc gtaaggcgaa gatcatcgag cggatcattg agccggagcg ggtcatcatc 180
ttccgcgttc cctggcagga cgatcagggc gagctgcatg tcaaccgcgg cttccgcatc 240
caaatgaaca gcgcgatcgg cccctacaaa ggcggtctgc gctttcatcc ctccgtcaac 300
ctgggcattc tgaagtttct cgctttcgag caggtgttca agaatgcgct caccacgttg 360
cccatgggcg gcggcaaagg cggggctgac ttcgatccga aaggcaagag cgacagcgaa 420
gtgatgcgtt tctgccaggc gttcatgtgt gaactcttcc ggcacatcgg cccggatacg 480
gacgtgccgg cgggcgacat cggcgtcggg gcgcgtgaga tcggattttt gttcgggatg 540
tacaagaggc tcaagaacga gttcaccggc gtgatgaccg gcaaaggtct tacttggggc 600
ggctcggtca ttcgtccgga ggcgacggga tacggggcgg tctatttcgc agctgaaatg 660
ctcaagacgc gcaaggaaga gatgaagggc aagacctgtc tcgtttccgg aagcggcaac 720
gtttcgcagt acacggtgga caaactgatc tcgctcgggg cgaaggcggt cacgctctcg 780
gattcatccg gctatatcta tgacgaagcc gggatcgacc gggagaagct cgcctttgtc 840
atggacctga agaaccaccg ccgcggccgc atctccgaat atgccgacaa gttcaaagga 900
acgaccttca ccgcagtgga cgaggcgctc gatcataacc caatttggga tcacaaggcg 960
gagtgcgcgt ttccgagcgc gacccagaac gaaatcaacg ggaaggatgc tgcaaatctc 1020
ctgaagaacg gcgtctacgt cgtctccgaa ggcgcgaaca tgccgaccac gatcgatgga 1080
gtaaataaat ttctcgaggc gaatatcttg ttcggtccgg ggaaggccgc gaatgccggc 1140
ggagtcgcca tctccggatt ggagatggcg caaaaaagca tgcgtatctc gtggactcgc 1200
gaagaagtcg acacgcgtct gttcaacatc atgcggacga tccacgaaaa ctgccatcgc 1260
acctccgaga agtacggcac cccaggtaac tacgtcaacg gcgcgaacat cgccggcttc 1320
ctgaaagtcg cgaacgccat gatggaccag ggattggtct ag 1362
<210> 176
<211> 453
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_21 sequence from unknown bacterial species from
environmental sample
<400> 176
Met Asn Asp Gln Val Ala Ala Leu Met Ala Asp Val Lys Ala Lys Asn
1 5 10 15
Pro Gly Glu Pro Glu Phe His Gln Ala Val Gln Glu Val Val Glu Ser
20 25 30
Leu Thr Leu Val Leu Asp Gln His Pro Glu Tyr Arg Lys Ala Lys Ile
35 40 45
Ile Glu Arg Ile Ile Glu Pro Glu Arg Val Ile Ile Phe Arg Val Pro
50 55 60
Trp Gln Asp Asp Gln Gly Glu Leu His Val Asn Arg Gly Phe Arg Ile
65 70 75 80
Gln Met Asn Ser Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe His
85 90 95
Pro Ser Val Asn Leu Gly Ile Leu Lys Phe Leu Ala Phe Glu Gln Val
100 105 110
Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Gly Lys Gly Gly
115 120 125
Ala Asp Phe Asp Pro Lys Gly Lys Ser Asp Ser Glu Val Met Arg Phe
130 135 140
Cys Gln Ala Phe Met Cys Glu Leu Phe Arg His Ile Gly Pro Asp Thr
145 150 155 160
Asp Val Pro Ala Gly Asp Ile Gly Val Gly Ala Arg Glu Ile Gly Phe
165 170 175
Leu Phe Gly Met Tyr Lys Arg Leu Lys Asn Glu Phe Thr Gly Val Met
180 185 190
Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Val Ile Arg Pro Glu Ala
195 200 205
Thr Gly Tyr Gly Ala Val Tyr Phe Ala Ala Glu Met Leu Lys Thr Arg
210 215 220
Lys Glu Glu Met Lys Gly Lys Thr Cys Leu Val Ser Gly Ser Gly Asn
225 230 235 240
Val Ser Gln Tyr Thr Val Asp Lys Leu Ile Ser Leu Gly Ala Lys Ala
245 250 255
Val Thr Leu Ser Asp Ser Ser Gly Tyr Ile Tyr Asp Glu Ala Gly Ile
260 265 270
Asp Arg Glu Lys Leu Ala Phe Val Met Asp Leu Lys Asn His Arg Arg
275 280 285
Gly Arg Ile Ser Glu Tyr Ala Asp Lys Phe Lys Gly Thr Thr Phe Thr
290 295 300
Ala Val Asp Glu Ala Leu Asp His Asn Pro Ile Trp Asp His Lys Ala
305 310 315 320
Glu Cys Ala Phe Pro Ser Ala Thr Gln Asn Glu Ile Asn Gly Lys Asp
325 330 335
Ala Ala Asn Leu Leu Lys Asn Gly Val Tyr Val Val Ser Glu Gly Ala
340 345 350
Asn Met Pro Thr Thr Ile Asp Gly Val Asn Lys Phe Leu Glu Ala Asn
355 360 365
Ile Leu Phe Gly Pro Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Ile
370 375 380
Ser Gly Leu Glu Met Ala Gln Lys Ser Met Arg Ile Ser Trp Thr Arg
385 390 395 400
Glu Glu Val Asp Thr Arg Leu Phe Asn Ile Met Arg Thr Ile His Glu
405 410 415
Asn Cys His Arg Thr Ser Glu Lys Tyr Gly Thr Pro Gly Asn Tyr Val
420 425 430
Asn Gly Ala Asn Ile Ala Gly Phe Leu Lys Val Ala Asn Ala Met Met
435 440 445
Asp Gln Gly Leu Val
450
<210> 177
<211> 1362
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_22 sequence from unknown bacterial species from
environmental sample
<400> 177
atgaaagacg acgtttccgc attgatgtcc gaggtcaaag ccaagaaccc gggagaacca 60
gagttccatc aggctgttca ggaagtatcg gaatctctag cgctcgtgct cgatcagcat 120
cccgaatatc ggaaagccaa gatcctcgag cggatcattg agccggagcg cgtaatcatg 180
tttcgcgtgc cctggcaaga cgaccagggt gagctccacg tcaatcgcgg gttccgcatc 240
caaatgaaca gcgcgattgg gccttacaag ggcggcctcc gatttcatcc ttcggtgaac 300
ctcggcatcc tgaaattcct cgccttcgag caggtcttta agaatgcgct taccaccttg 360
cccatgggag gcgggaaggg cggggcggat ttcgatccga aagggaagag cgacagtgaa 420
gtgatgcgct tctgccaggc gttcatgtgt gagctgtttc ggcatattgg gccggacaca 480
gatgtgccgg cgggtgacat tggcgtgggc gcgcgcgaga tcgggtttct tttcgggatg 540
tttaagcggt taaagaatga gttcaccggc gtgatgacgg gcaaaggcct cacgtggggc 600
ggctcggtca ttcgaccgga agcgacggga tacggcgcgg tttactttgc cgccgagatg 660
ctcaagacgc gcaaggaaga gctagccggt aagacttgtc ttgtttcggg cagcggcaac 720
gtcgcgcaat acacggtcga taaacttatc tcgctaggcg cgaaggcggt cactctctcg 780
gattccacgg gttacattta cgatgaggct ggcatcaatc gggaaaagct cgcctttgtc 840
atggatctta agaacaaccg gcgcgggcgg atcgcggaat acgcggataa gttcaagggg 900
gcgactttca cgcccctgaa cgaaacgctc gatcacaatc cgctttggga gcacaaggcc 960
gaatgcgcct ttcccagcgc gacccagaac gagatcaacg gaaaggacgc agcgaatctt 1020
ctgcgcaacg gcgtctatgt ggtttcagaa ggcgcgaaca tgcccacgac catcgacggc 1080
gtgaatcagt tcctggaagc acaaatcctt ttcggcccgg gcaaggcggc gaatgcgggt 1140
ggcgtcgcca cttcgggact cgagatggcg caaaacagca tgcgcatttc ctggacacgc 1200
gaggaagtgg acgcgcgcct gttcaacatc atgaagacga tccacgaggt ctgccaccgg 1260
acagctgaga agtacggcac gccggggaat tatgtgaacg gcgccaacat tgcgggcttt 1320
ctcaaggtcg cgaacgcgat gatggatcag ggattagtgt ag 1362
<210> 178
<211> 453
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_22 sequence from unknown bacterial species from
environmental sample
<400> 178
Met Lys Asp Asp Val Ser Ala Leu Met Ser Glu Val Lys Ala Lys Asn
1 5 10 15
Pro Gly Glu Pro Glu Phe His Gln Ala Val Gln Glu Val Ser Glu Ser
20 25 30
Leu Ala Leu Val Leu Asp Gln His Pro Glu Tyr Arg Lys Ala Lys Ile
35 40 45
Leu Glu Arg Ile Ile Glu Pro Glu Arg Val Ile Met Phe Arg Val Pro
50 55 60
Trp Gln Asp Asp Gln Gly Glu Leu His Val Asn Arg Gly Phe Arg Ile
65 70 75 80
Gln Met Asn Ser Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe His
85 90 95
Pro Ser Val Asn Leu Gly Ile Leu Lys Phe Leu Ala Phe Glu Gln Val
100 105 110
Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Gly Lys Gly Gly
115 120 125
Ala Asp Phe Asp Pro Lys Gly Lys Ser Asp Ser Glu Val Met Arg Phe
130 135 140
Cys Gln Ala Phe Met Cys Glu Leu Phe Arg His Ile Gly Pro Asp Thr
145 150 155 160
Asp Val Pro Ala Gly Asp Ile Gly Val Gly Ala Arg Glu Ile Gly Phe
165 170 175
Leu Phe Gly Met Phe Lys Arg Leu Lys Asn Glu Phe Thr Gly Val Met
180 185 190
Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Val Ile Arg Pro Glu Ala
195 200 205
Thr Gly Tyr Gly Ala Val Tyr Phe Ala Ala Glu Met Leu Lys Thr Arg
210 215 220
Lys Glu Glu Leu Ala Gly Lys Thr Cys Leu Val Ser Gly Ser Gly Asn
225 230 235 240
Val Ala Gln Tyr Thr Val Asp Lys Leu Ile Ser Leu Gly Ala Lys Ala
245 250 255
Val Thr Leu Ser Asp Ser Thr Gly Tyr Ile Tyr Asp Glu Ala Gly Ile
260 265 270
Asn Arg Glu Lys Leu Ala Phe Val Met Asp Leu Lys Asn Asn Arg Arg
275 280 285
Gly Arg Ile Ala Glu Tyr Ala Asp Lys Phe Lys Gly Ala Thr Phe Thr
290 295 300
Pro Leu Asn Glu Thr Leu Asp His Asn Pro Leu Trp Glu His Lys Ala
305 310 315 320
Glu Cys Ala Phe Pro Ser Ala Thr Gln Asn Glu Ile Asn Gly Lys Asp
325 330 335
Ala Ala Asn Leu Leu Arg Asn Gly Val Tyr Val Val Ser Glu Gly Ala
340 345 350
Asn Met Pro Thr Thr Ile Asp Gly Val Asn Gln Phe Leu Glu Ala Gln
355 360 365
Ile Leu Phe Gly Pro Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr
370 375 380
Ser Gly Leu Glu Met Ala Gln Asn Ser Met Arg Ile Ser Trp Thr Arg
385 390 395 400
Glu Glu Val Asp Ala Arg Leu Phe Asn Ile Met Lys Thr Ile His Glu
405 410 415
Val Cys His Arg Thr Ala Glu Lys Tyr Gly Thr Pro Gly Asn Tyr Val
420 425 430
Asn Gly Ala Asn Ile Ala Gly Phe Leu Lys Val Ala Asn Ala Met Met
435 440 445
Asp Gln Gly Leu Val
450
<210> 179
<211> 1338
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_23 sequence from unknown bacterial species from
environmental sample
<400> 179
atggccgagg tcaaagccaa gaacccgggc gaagccgagt ttcaccaggc agtccaggaa 60
gtcgctgaat cgctggcgct ggtgctcgat cagcacccgg aatatcggaa ggcgaaaatt 120
ctggagcgaa tcatcgagcc ggagcgcgtc atcatgtttc gggtgccgtg gcaggacgac 180
cagggcgagc tccatgtgaa ccgcgggttt cggattcaga tgaacagcgc gatcgggcct 240
tacaagggcg ggctccgttt tcatccgacg gtgaatcttg gcatcctgaa gttcctcgct 300
ttcgagcagg tctttaaaaa tgcgttgacc acgttgccga tgggcggcgg caaaggcggt 360
tcggatttcg atcccaaagg caaaagcgac agcgaagtga tgcgcttctg tcaggcgttc 420
atgtgcgagc tgttccggca catcggtccg gacacggacg tgccagcggg cgacatcggc 480
gttggtgcgc gcgagattgg atttttgttc gggatgtata agcggcttcg gaacgagttc 540
acgggcgtca tcaccggcaa aggccttacc tggggcggct cggtgattcg tcccgaagcg 600
accggttatg gggcggttta tttcgcggcg gagatgctga agacacgcaa ggaagaattg 660
aaaggcaaga cctgtttggt ttccggcagc ggcaatgtcg cccagtacac agtggacaag 720
ctgatctcgt taggcgcgaa agccgtcacg ctttcggatt ccactggcta catcttcgac 780
gaagccggga tcgatcgtga caagctcgcg ttcgtcatgg atttgaagaa caaccgccgc 840
ggccgcattt ccgaatacgc ggacaagttc aaaggggcgg tcttcacggc ggttgaggcg 900
gcggcggatc ataatccgct ttgggatcac aaagctgagt gcgcatttcc gagcgcgacg 960
cagaacgaga tcaacgcgaa ggatgccgcg aaccttttgc ggaacggcat ctacgtcgtc 1020
tcggaagggg cgaacatgcc gaccacgatc gatggcgtga accagttcct cgatgcgaac 1080
atcctgttcg gcccgggcaa ggcggccaac gcgggcggtg tggcaacttc cggcttggaa 1140
atggcgcaaa acagcatgcg catctcctgg acgcgcgaag aagtcgatgg ccggcttttc 1200
aatatcatga aaaccatcca cgaagtttgc caccgcacgg ccgagaagta cggcacgccg 1260
ggcaactacg tgaacggcgc gaacatcgcc ggcttcctca aggtggcgaa cgcgatgatg 1320
gaccaggggt tggtgtag 1338
<210> 180
<211> 445
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_23 sequence from unknown bacterial species from
environmental sample
<400> 180
Met Ala Glu Val Lys Ala Lys Asn Pro Gly Glu Ala Glu Phe His Gln
1 5 10 15
Ala Val Gln Glu Val Ala Glu Ser Leu Ala Leu Val Leu Asp Gln His
20 25 30
Pro Glu Tyr Arg Lys Ala Lys Ile Leu Glu Arg Ile Ile Glu Pro Glu
35 40 45
Arg Val Ile Met Phe Arg Val Pro Trp Gln Asp Asp Gln Gly Glu Leu
50 55 60
His Val Asn Arg Gly Phe Arg Ile Gln Met Asn Ser Ala Ile Gly Pro
65 70 75 80
Tyr Lys Gly Gly Leu Arg Phe His Pro Thr Val Asn Leu Gly Ile Leu
85 90 95
Lys Phe Leu Ala Phe Glu Gln Val Phe Lys Asn Ala Leu Thr Thr Leu
100 105 110
Pro Met Gly Gly Gly Lys Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys
115 120 125
Ser Asp Ser Glu Val Met Arg Phe Cys Gln Ala Phe Met Cys Glu Leu
130 135 140
Phe Arg His Ile Gly Pro Asp Thr Asp Val Pro Ala Gly Asp Ile Gly
145 150 155 160
Val Gly Ala Arg Glu Ile Gly Phe Leu Phe Gly Met Tyr Lys Arg Leu
165 170 175
Arg Asn Glu Phe Thr Gly Val Ile Thr Gly Lys Gly Leu Thr Trp Gly
180 185 190
Gly Ser Val Ile Arg Pro Glu Ala Thr Gly Tyr Gly Ala Val Tyr Phe
195 200 205
Ala Ala Glu Met Leu Lys Thr Arg Lys Glu Glu Leu Lys Gly Lys Thr
210 215 220
Cys Leu Val Ser Gly Ser Gly Asn Val Ala Gln Tyr Thr Val Asp Lys
225 230 235 240
Leu Ile Ser Leu Gly Ala Lys Ala Val Thr Leu Ser Asp Ser Thr Gly
245 250 255
Tyr Ile Phe Asp Glu Ala Gly Ile Asp Arg Asp Lys Leu Ala Phe Val
260 265 270
Met Asp Leu Lys Asn Asn Arg Arg Gly Arg Ile Ser Glu Tyr Ala Asp
275 280 285
Lys Phe Lys Gly Ala Val Phe Thr Ala Val Glu Ala Ala Ala Asp His
290 295 300
Asn Pro Leu Trp Asp His Lys Ala Glu Cys Ala Phe Pro Ser Ala Thr
305 310 315 320
Gln Asn Glu Ile Asn Ala Lys Asp Ala Ala Asn Leu Leu Arg Asn Gly
325 330 335
Ile Tyr Val Val Ser Glu Gly Ala Asn Met Pro Thr Thr Ile Asp Gly
340 345 350
Val Asn Gln Phe Leu Asp Ala Asn Ile Leu Phe Gly Pro Gly Lys Ala
355 360 365
Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met Ala Gln Asn
370 375 380
Ser Met Arg Ile Ser Trp Thr Arg Glu Glu Val Asp Gly Arg Leu Phe
385 390 395 400
Asn Ile Met Lys Thr Ile His Glu Val Cys His Arg Thr Ala Glu Lys
405 410 415
Tyr Gly Thr Pro Gly Asn Tyr Val Asn Gly Ala Asn Ile Ala Gly Phe
420 425 430
Leu Lys Val Ala Asn Ala Met Met Asp Gln Gly Leu Val
435 440 445
<210> 181
<211> 1362
<212> DNA
<213> Unknown
<220>
<223> Gene ID gdh_24 sequence from unknown bacterial species from
environmental sample
<400> 181
atgaaatacg atgtctccgc tttgatggcc gaggttaagg ccaagaaccc gggcgaaccc 60
gagtttcacc aggccgtcca ggaagtcgtc gaatcgctgg ccctcgtcct ggagcagcat 120
cccgaatatc agaaagccaa gatcatcgag cggatcatcg aacccgagcg cgtgatcatg 180
ttccggatcc cgtggcagga cgacaaaggc gagctccatg tgaaccgcgg gttccgcatc 240
cagatgaaca gcgccatcgg gccctacaag ggcggcctcc ggtttcatcc gtcggttaat 300
ctgggcatcc tgaagttcct cgccttcgag caggttttca aaaacgcgct taccactctt 360
ccaatgggcg ggggcaaagg cggctctgac ttcgatccaa aaggaaagag cgacagcgaa 420
gtgatgcggt tttgccaggc gttcatgtgc gagctgtttc gtcacatcgg cccggatacg 480
gacgtgccgg ccggcgatat cggggtaggc gcgcgcgaga tcggctttct tttcgggatg 540
tataagagac tgaagaatga attcaccgga gtgatgacgg gcaagggtct cacctggggc 600
ggctcggtca ttcgtcctga agccaccgga tacggcgcgg tttatttcgc cgcggaaatg 660
ctcaagacgc gcaaggaaga gctcaaaggc aagacctgtc tcgtttccgg cagcggcaac 720
gtcgcgcaat acaccgtcga caaactgatc tcgttaggcg cgcaggcggt cacgctctcg 780
gattcgaccg gttacatcta cgacgaagcc gggatcgacc gcgacaagct cgcctttgtc 840
atggacctca agaacaaccg gcgcggccgg atcagcgaat acgccgacaa gttcaaaggg 900
gccgagttca ttccggcgga tgcgaagcgc gaccataacc ccctttggga tcacaaggcc 960
gagtgcgctt tcccgagcgc gacccagaac gaaattaacg agaaggacgc ggcgaacctg 1020
atcaagaacg gcgtctatgt cgtctcggaa ggcgcgaaca tgccgaccac gatcgatggc 1080
gtgaaccagt tcctgaaagc cggtatcctt ttcgggcccg gaaaagcggc caatgccgga 1140
ggggttgcga cctccggttt ggaaatggcg cagaacagca tgcgcatttc ctggacccgc 1200
gaagaagtcg acgggcgcct cttcaacatc atgaagacca tccacgaagt ctgtcatcgc 1260
accgcggaaa agtacggcac gcccggcaac tacgtgaacg gcgcgaacat cgccggcttc 1320
ctcaaagtgg ccaacgcgat gatggaccag gggctggtgt aa 1362
<210> 182
<211> 453
<212> PRT
<213> Unknown
<220>
<223> Gene ID gdh_24 sequence from unknown bacterial species from
environmental sample
<400> 182
Met Lys Tyr Asp Val Ser Ala Leu Met Ala Glu Val Lys Ala Lys Asn
1 5 10 15
Pro Gly Glu Pro Glu Phe His Gln Ala Val Gln Glu Val Val Glu Ser
20 25 30
Leu Ala Leu Val Leu Glu Gln His Pro Glu Tyr Gln Lys Ala Lys Ile
35 40 45
Ile Glu Arg Ile Ile Glu Pro Glu Arg Val Ile Met Phe Arg Ile Pro
50 55 60
Trp Gln Asp Asp Lys Gly Glu Leu His Val Asn Arg Gly Phe Arg Ile
65 70 75 80
Gln Met Asn Ser Ala Ile Gly Pro Tyr Lys Gly Gly Leu Arg Phe His
85 90 95
Pro Ser Val Asn Leu Gly Ile Leu Lys Phe Leu Ala Phe Glu Gln Val
100 105 110
Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Gly Lys Gly Gly
115 120 125
Ser Asp Phe Asp Pro Lys Gly Lys Ser Asp Ser Glu Val Met Arg Phe
130 135 140
Cys Gln Ala Phe Met Cys Glu Leu Phe Arg His Ile Gly Pro Asp Thr
145 150 155 160
Asp Val Pro Ala Gly Asp Ile Gly Val Gly Ala Arg Glu Ile Gly Phe
165 170 175
Leu Phe Gly Met Tyr Lys Arg Leu Lys Asn Glu Phe Thr Gly Val Met
180 185 190
Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Val Ile Arg Pro Glu Ala
195 200 205
Thr Gly Tyr Gly Ala Val Tyr Phe Ala Ala Glu Met Leu Lys Thr Arg
210 215 220
Lys Glu Glu Leu Lys Gly Lys Thr Cys Leu Val Ser Gly Ser Gly Asn
225 230 235 240
Val Ala Gln Tyr Thr Val Asp Lys Leu Ile Ser Leu Gly Ala Gln Ala
245 250 255
Val Thr Leu Ser Asp Ser Thr Gly Tyr Ile Tyr Asp Glu Ala Gly Ile
260 265 270
Asp Arg Asp Lys Leu Ala Phe Val Met Asp Leu Lys Asn Asn Arg Arg
275 280 285
Gly Arg Ile Ser Glu Tyr Ala Asp Lys Phe Lys Gly Ala Glu Phe Ile
290 295 300
Pro Ala Asp Ala Lys Arg Asp His Asn Pro Leu Trp Asp His Lys Ala
305 310 315 320
Glu Cys Ala Phe Pro Ser Ala Thr Gln Asn Glu Ile Asn Glu Lys Asp
325 330 335
Ala Ala Asn Leu Ile Lys Asn Gly Val Tyr Val Val Ser Glu Gly Ala
340 345 350
Asn Met Pro Thr Thr Ile Asp Gly Val Asn Gln Phe Leu Lys Ala Gly
355 360 365
Ile Leu Phe Gly Pro Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr
370 375 380
Ser Gly Leu Glu Met Ala Gln Asn Ser Met Arg Ile Ser Trp Thr Arg
385 390 395 400
Glu Glu Val Asp Gly Arg Leu Phe Asn Ile Met Lys Thr Ile His Glu
405 410 415
Val Cys His Arg Thr Ala Glu Lys Tyr Gly Thr Pro Gly Asn Tyr Val
420 425 430
Asn Gly Ala Asn Ile Ala Gly Phe Leu Lys Val Ala Asn Ala Met Met
435 440 445
Asp Gln Gly Leu Val
450
<210> 183
<211> 1008
<212> DNA
<213> Cronobactor sakazakaii
<400> 183
atgatcgacc tgcgctccga caccgttacg cgccctggta aggcgatgct ggaacgtatg 60
atggcggcac ctacgggtga tgacgtatat ggtgatgacc cgaccgtgaa tgcgcttcag 120
gattacgcgg cgcgtctttc tggtaaggag gcggccttat tcttacctac gggaacacaa 180
gcaaatctgg tggctttatt aagccactgc gagcgtggtg aggagtacat tgttggtcag 240
ttggctcata actacctgta cgaagctgga ggggccgccg tgttgggctc tatccagcca 300
caaccaatcg aagctgatgt ggacggtact ttacccctgg acaaggtcgc agcgaaaatc 360
aagccggatg atattcactt tgcgcgcacg cgcctgctga gtttggaaaa cactcataat 420
ggcaaagtcc tgcctcgtga ttacttacaa caggcatggg gatttacgcg cgagcgcggt 480
cttgcgttgc atgtcgatgg ggcacgtatc tttaatgcgg tagtcgcata cggctgtgaa 540
ttaaaggaga ttgctcaata ctgcgatacc ttcactattt gtttgagcaa aggattgggt 600
gctccagtag gatctttgtt ggtagggagt cacgattata ttaagcgcgc caagcgctgg 660
cgcaaaatga ctggcggagg aatgcgccaa gcggggattt tagccgctgc aggcttatat 720
gcgcttgagc acaacgttgc acgccttaaa gaggaccacg acaatgcagc ctggttggcg 780
gctgcgttgc gcgatgctgg ggctgaggta cgtcgccatg acaccaatat gttatttgtc 840
tccgtgcctc aagctcaggt tgcagccctt ggagccttta tgaaatctcg caacgtttta 900
atttccgcag ctcctgttac tcgtttggtt actcatcttg acgttaatcg tgagcagctt 960
gaaacggttg tagcctattg gcgtgaattt ctgcagcaaa cagcctaa 1008
<210> 184
<211> 335
<212> PRT
<213> Cronobactor sakazakaii
<400> 184
Met Ile Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Gly Lys Ala Met
1 5 10 15
Leu Glu Arg Met Met Ala Ala Pro Thr Gly Asp Asp Val Tyr Gly Asp
20 25 30
Asp Pro Thr Val Asn Ala Leu Gln Asp Tyr Ala Ala Arg Leu Ser Gly
35 40 45
Lys Glu Ala Ala Leu Phe Leu Pro Thr Gly Thr Gln Ala Asn Leu Val
50 55 60
Ala Leu Leu Ser His Cys Glu Arg Gly Glu Glu Tyr Ile Val Gly Gln
65 70 75 80
Leu Ala His Asn Tyr Leu Tyr Glu Ala Gly Gly Ala Ala Val Leu Gly
85 90 95
Ser Ile Gln Pro Gln Pro Ile Glu Ala Asp Val Asp Gly Thr Leu Pro
100 105 110
Leu Asp Lys Val Ala Ala Lys Ile Lys Pro Asp Asp Ile His Phe Ala
115 120 125
Arg Thr Arg Leu Leu Ser Leu Glu Asn Thr His Asn Gly Lys Val Leu
130 135 140
Pro Arg Asp Tyr Leu Gln Gln Ala Trp Gly Phe Thr Arg Glu Arg Gly
145 150 155 160
Leu Ala Leu His Val Asp Gly Ala Arg Ile Phe Asn Ala Val Val Ala
165 170 175
Tyr Gly Cys Glu Leu Lys Glu Ile Ala Gln Tyr Cys Asp Thr Phe Thr
180 185 190
Ile Cys Leu Ser Lys Gly Leu Gly Ala Pro Val Gly Ser Leu Leu Val
195 200 205
Gly Ser His Asp Tyr Ile Lys Arg Ala Lys Arg Trp Arg Lys Met Thr
210 215 220
Gly Gly Gly Met Arg Gln Ala Gly Ile Leu Ala Ala Ala Gly Leu Tyr
225 230 235 240
Ala Leu Glu His Asn Val Ala Arg Leu Lys Glu Asp His Asp Asn Ala
245 250 255
Ala Trp Leu Ala Ala Ala Leu Arg Asp Ala Gly Ala Glu Val Arg Arg
260 265 270
His Asp Thr Asn Met Leu Phe Val Ser Val Pro Gln Ala Gln Val Ala
275 280 285
Ala Leu Gly Ala Phe Met Lys Ser Arg Asn Val Leu Ile Ser Ala Ala
290 295 300
Pro Val Thr Arg Leu Val Thr His Leu Asp Val Asn Arg Glu Gln Leu
305 310 315 320
Glu Thr Val Val Ala Tyr Trp Arg Glu Phe Leu Gln Gln Thr Ala
325 330 335
<210> 185
<211> 1041
<212> DNA
<213> Unknown
<220>
<223> ltaE_1 sequence from unknown bacterial species from environmental
sample
<400> 185
atgagagaaa tcgacctgcg cagcgatacc gtcacacgcc cttccgccgc catgcgtgcg 60
gccatggccg cggccgaggt gggggacgac gtctacggtg aagacccgac cgtcaaccag 120
ctcgaggcgc tcgcagcgga gatgctcggc atggatgcgg ggttgttcgt gccatcgggc 180
acgcagggca acctgctcgg cgtgatgtcc cactgcgagc gcggcgacga atacatcgtc 240
gggcaacagg cgcataccta taagtacgag gggggcggcg ctgccgtgct gggcagcatc 300
cagccacagc cgctcgagtt ccagcgggat gggacgctcg atctcgctca agtcgccaac 360
gcgatcaaac ctgacgacac gcactttgcg cggacgcgtc tcctgtgcct cgaaaacact 420
caggatggca agccgctgcc gctggaatat ctggagcgcg cccatgcgtt cgcgcgcgaa 480
cgcaggctcg ggttgcacct ggacggcgcc cggctgttca acgccgcggt ggaccaggag 540
gtggcgccgc agcgaatcgc gcgcctcttt gacaccgtat cagtgtgtct gtcgaaaggt 600
ctcggcgcgc cggtcggatc ggtgttgtgc ggaaccgccg cgcatatgac caaggcgaga 660
cgctggcgga aagtgctcgg tggcgggatg cgacaggctg gcgtgctggc ggccgccggc 720
atctacgcgc tgcagaacaa cgtcaatcgg cttgctgagg atcatgcgaa cgcacggctc 780
ctcgcgacgc tcctctcgcg aatcgacaag gtcaccgtgg agtccgtcca gaccaacatg 840
gtcttcgcca gggtcgaccc gtcgcacgag ccgcacctgc gccagttcct cacgcatcga 900
catatccgga tccaccccgg cccccggctc aggctggtca cccatctcga cgtccaacgc 960
gacgacgtgg ttgcctttgc cgacgcggtg acggccttct acgcagggag cctgccgcca 1020
acggtcgccg cgcaggcctg a 1041
<210> 186
<211> 346
<212> PRT
<213> Unknown
<220>
<223> ltaE_1 sequence from unknown bacterial species from environmental
sample
<400> 186
Met Arg Glu Ile Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Ser Ala
1 5 10 15
Ala Met Arg Ala Ala Met Ala Ala Ala Glu Val Gly Asp Asp Val Tyr
20 25 30
Gly Glu Asp Pro Thr Val Asn Gln Leu Glu Ala Leu Ala Ala Glu Met
35 40 45
Leu Gly Met Asp Ala Gly Leu Phe Val Pro Ser Gly Thr Gln Gly Asn
50 55 60
Leu Leu Gly Val Met Ser His Cys Glu Arg Gly Asp Glu Tyr Ile Val
65 70 75 80
Gly Gln Gln Ala His Thr Tyr Lys Tyr Glu Gly Gly Gly Ala Ala Val
85 90 95
Leu Gly Ser Ile Gln Pro Gln Pro Leu Glu Phe Gln Arg Asp Gly Thr
100 105 110
Leu Asp Leu Ala Gln Val Ala Asn Ala Ile Lys Pro Asp Asp Thr His
115 120 125
Phe Ala Arg Thr Arg Leu Leu Cys Leu Glu Asn Thr Gln Asp Gly Lys
130 135 140
Pro Leu Pro Leu Glu Tyr Leu Glu Arg Ala His Ala Phe Ala Arg Glu
145 150 155 160
Arg Arg Leu Gly Leu His Leu Asp Gly Ala Arg Leu Phe Asn Ala Ala
165 170 175
Val Asp Gln Glu Val Ala Pro Gln Arg Ile Ala Arg Leu Phe Asp Thr
180 185 190
Val Ser Val Cys Leu Ser Lys Gly Leu Gly Ala Pro Val Gly Ser Val
195 200 205
Leu Cys Gly Thr Ala Ala His Met Thr Lys Ala Arg Arg Trp Arg Lys
210 215 220
Val Leu Gly Gly Gly Met Arg Gln Ala Gly Val Leu Ala Ala Ala Gly
225 230 235 240
Ile Tyr Ala Leu Gln Asn Asn Val Asn Arg Leu Ala Glu Asp His Ala
245 250 255
Asn Ala Arg Leu Leu Ala Thr Leu Leu Ser Arg Ile Asp Lys Val Thr
260 265 270
Val Glu Ser Val Gln Thr Asn Met Val Phe Ala Arg Val Asp Pro Ser
275 280 285
His Glu Pro His Leu Arg Gln Phe Leu Thr His Arg His Ile Arg Ile
290 295 300
His Pro Gly Pro Arg Leu Arg Leu Val Thr His Leu Asp Val Gln Arg
305 310 315 320
Asp Asp Val Val Ala Phe Ala Asp Ala Val Thr Ala Phe Tyr Ala Gly
325 330 335
Ser Leu Pro Pro Thr Val Ala Ala Gln Ala
340 345
<210> 187
<211> 1017
<212> DNA
<213> Unknown
<220>
<223> ltaE_2 sequence from unknown bacterial species from environmental
sample
<400> 187
gtgaagatag tcgatctgcg cagtgacacc gtgacccggc cgtcgccagg catgcgtgcc 60
gccatggctg cggcggaagt cggggacgac gtctacggcg aggaccccac ggtcaaccgt 120
ctcgaagcga tgaccgccga gatgctcggc aaggaagccg cgatcttcgt ctgcagcggc 180
acgcagagca acctgctcgc gctgatgtcc cattgcgagc gcggcgacga gtacatcgtc 240
ggacagcaag cgcacaccta caagttggaa ggcggcgggg cggcggtgct cggcagcatc 300
cagccgcagc cgctggacta cgagccggat ggatcgctcg acctcacccg tgtcgaagcc 360
gcgatcaagc ccgatgatcc acatttcgcc aagacccgcc tgctgtgtct ggagaacacc 420
caggccggca aggtgctgtc gctcgactac ctcgcgcgcg cgggccagtt cgcccgggcg 480
aacggacttc gcctgcatct cgacggcgcg cgcatcttca acgcggcggt cgatctcggc 540
gtcgcggtca tcgagatcag ccggcatttc gactcggtat cggtgtgtct gtcgaagggg 600
ctcggcgcgc cggtcggctc gatcctgtgc ggcacgcgtg agcggatcgt cagcgcgcgg 660
cgctggcgca aagtgctcgg cggcggcatg cgccaagccg gcgtgctggc ggcggcgggg 720
atctacgcgc tcgagcacaa catcgagcgg ttggccgagg atcacgagaa cgcgcgcgcg 780
ctcgtcgacg gaatggcgga gatcgacgag ctgaagacgg acggtccaca caccaacatg 840
gtgtacatcg cgctcgagcc gcggcggtcc gtggcgatgc gcaactatct ggaagagcgt 900
ggcatgcggg tgaagggcca gggaaccatg cggctggtga cgcacctcga cgtcgatcgg 960
agcgacatcc agcgattcgt ggcagcggcg aagcagttct tcgccgacgc ggcctga 1017
<210> 188
<211> 338
<212> PRT
<213> Unknown
<220>
<223> ltaE_2 sequence from unknown bacterial species from environmental
sample
<400> 188
Val Lys Ile Val Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Ser Pro
1 5 10 15
Gly Met Arg Ala Ala Met Ala Ala Ala Glu Val Gly Asp Asp Val Tyr
20 25 30
Gly Glu Asp Pro Thr Val Asn Arg Leu Glu Ala Met Thr Ala Glu Met
35 40 45
Leu Gly Lys Glu Ala Ala Ile Phe Val Cys Ser Gly Thr Gln Ser Asn
50 55 60
Leu Leu Ala Leu Met Ser His Cys Glu Arg Gly Asp Glu Tyr Ile Val
65 70 75 80
Gly Gln Gln Ala His Thr Tyr Lys Leu Glu Gly Gly Gly Ala Ala Val
85 90 95
Leu Gly Ser Ile Gln Pro Gln Pro Leu Asp Tyr Glu Pro Asp Gly Ser
100 105 110
Leu Asp Leu Thr Arg Val Glu Ala Ala Ile Lys Pro Asp Asp Pro His
115 120 125
Phe Ala Lys Thr Arg Leu Leu Cys Leu Glu Asn Thr Gln Ala Gly Lys
130 135 140
Val Leu Ser Leu Asp Tyr Leu Ala Arg Ala Gly Gln Phe Ala Arg Ala
145 150 155 160
Asn Gly Leu Arg Leu His Leu Asp Gly Ala Arg Ile Phe Asn Ala Ala
165 170 175
Val Asp Leu Gly Val Ala Val Ile Glu Ile Ser Arg His Phe Asp Ser
180 185 190
Val Ser Val Cys Leu Ser Lys Gly Leu Gly Ala Pro Val Gly Ser Ile
195 200 205
Leu Cys Gly Thr Arg Glu Arg Ile Val Ser Ala Arg Arg Trp Arg Lys
210 215 220
Val Leu Gly Gly Gly Met Arg Gln Ala Gly Val Leu Ala Ala Ala Gly
225 230 235 240
Ile Tyr Ala Leu Glu His Asn Ile Glu Arg Leu Ala Glu Asp His Glu
245 250 255
Asn Ala Arg Ala Leu Val Asp Gly Met Ala Glu Ile Asp Glu Leu Lys
260 265 270
Thr Asp Gly Pro His Thr Asn Met Val Tyr Ile Ala Leu Glu Pro Arg
275 280 285
Arg Ser Val Ala Met Arg Asn Tyr Leu Glu Glu Arg Gly Met Arg Val
290 295 300
Lys Gly Gln Gly Thr Met Arg Leu Val Thr His Leu Asp Val Asp Arg
305 310 315 320
Ser Asp Ile Gln Arg Phe Val Ala Ala Ala Lys Gln Phe Phe Ala Asp
325 330 335
Ala Ala
<210> 189
<211> 1101
<212> DNA
<213> Unknown
<220>
<223> ltaE_3 sequence from unknown bacterial species from environmental
sample
<400> 189
gtgtcaatta gcgtggtgga gatcggattg accggtctca ggccgccgct aattggcggc 60
atgaagacga tcgatttgcg cagcgacacg gtgacccggc cctgtgaagg gatgcggcgg 120
gcgatggcgg ccgcggaggt cggagatgat gtgtttggcg acgatccgac cgtgcgtcgt 180
ctcgaggcgc tggctgcgga aatgctgggg aaggaagcgg cggtgttcgc ggcgagcggc 240
acgcagacca atctcatctc cctcctgaca cattgcgggc gcggcgacga gtatatcgtc 300
gcccagcagg cgcacacgta tctccacgag ggcggtggcg gcgcggcgct gggcggcatc 360
cagccccagc cgctcgattg tctcccggat ggcaccctcg accttgccaa agtcgaagcg 420
cttatcaagc cggacgactc tcactacgcc cgcaccagac tgctttgcct cgagaacacc 480
atcggtggcc gtgcgctgcc ggcggactat cctgacaagg cccgcgcgtt gaccgaccgc 540
cgcggactac gcctccatct cgatggcgcc cgcatcttca atgctgcgat caagcagaac 600
cggcccgttg cggaactcgc gcggccgttt cacagcgtat cactctgcct ctcgaaggga 660
ctcggcgcgc cggtgggttc gctgctgctg gggagcgaag acttcatccg cgaggcccgc 720
cgctggcgaa aagtcgtcgg cggcggcatg cgtcaggcgg gaattctggc ggcggccggc 780
attttcgccc tgaccaaaaa cgtcgcccgg ctcgcagacg accacgagaa tgcccggcgc 840
ctcgccgacg gcctcgcagg cctggacggc ggccgctttt tcgtcgatcc tgccgctgtg 900
cagacgaaca tggtttttgt caggctcaac ggcatcgatg ccgcgacgct ggcggcacat 960
cttgcggagg cgggcatcct cattctcaaa ggaaatcccc tgagactcgt cacgcatcgc 1020
gacgtcgagg ccacggatat cgagcgtgcg atccgcgcct tcgcaacgtt tccgccaggg 1080
ccagattcag tgaatctgtg a 1101
<210> 190
<211> 366
<212> PRT
<213> Unknown
<220>
<223> ltaE_3 sequence from unknown bacterial species from environmental
sample
<400> 190
Val Ser Ile Ser Val Val Glu Ile Gly Leu Thr Gly Leu Arg Pro Pro
1 5 10 15
Leu Ile Gly Gly Met Lys Thr Ile Asp Leu Arg Ser Asp Thr Val Thr
20 25 30
Arg Pro Cys Glu Gly Met Arg Arg Ala Met Ala Ala Ala Glu Val Gly
35 40 45
Asp Asp Val Phe Gly Asp Asp Pro Thr Val Arg Arg Leu Glu Ala Leu
50 55 60
Ala Ala Glu Met Leu Gly Lys Glu Ala Ala Val Phe Ala Ala Ser Gly
65 70 75 80
Thr Gln Thr Asn Leu Ile Ser Leu Leu Thr His Cys Gly Arg Gly Asp
85 90 95
Glu Tyr Ile Val Ala Gln Gln Ala His Thr Tyr Leu His Glu Gly Gly
100 105 110
Gly Gly Ala Ala Leu Gly Gly Ile Gln Pro Gln Pro Leu Asp Cys Leu
115 120 125
Pro Asp Gly Thr Leu Asp Leu Ala Lys Val Glu Ala Leu Ile Lys Pro
130 135 140
Asp Asp Ser His Tyr Ala Arg Thr Arg Leu Leu Cys Leu Glu Asn Thr
145 150 155 160
Ile Gly Gly Arg Ala Leu Pro Ala Asp Tyr Pro Asp Lys Ala Arg Ala
165 170 175
Leu Thr Asp Arg Arg Gly Leu Arg Leu His Leu Asp Gly Ala Arg Ile
180 185 190
Phe Asn Ala Ala Ile Lys Gln Asn Arg Pro Val Ala Glu Leu Ala Arg
195 200 205
Pro Phe His Ser Val Ser Leu Cys Leu Ser Lys Gly Leu Gly Ala Pro
210 215 220
Val Gly Ser Leu Leu Leu Gly Ser Glu Asp Phe Ile Arg Glu Ala Arg
225 230 235 240
Arg Trp Arg Lys Val Val Gly Gly Gly Met Arg Gln Ala Gly Ile Leu
245 250 255
Ala Ala Ala Gly Ile Phe Ala Leu Thr Lys Asn Val Ala Arg Leu Ala
260 265 270
Asp Asp His Glu Asn Ala Arg Arg Leu Ala Asp Gly Leu Ala Gly Leu
275 280 285
Asp Gly Gly Arg Phe Phe Val Asp Pro Ala Ala Val Gln Thr Asn Met
290 295 300
Val Phe Val Arg Leu Asn Gly Ile Asp Ala Ala Thr Leu Ala Ala His
305 310 315 320
Leu Ala Glu Ala Gly Ile Leu Ile Leu Lys Gly Asn Pro Leu Arg Leu
325 330 335
Val Thr His Arg Asp Val Glu Ala Thr Asp Ile Glu Arg Ala Ile Arg
340 345 350
Ala Phe Ala Thr Phe Pro Pro Gly Pro Asp Ser Val Asn Leu
355 360 365
<210> 191
<211> 1047
<212> DNA
<213> Unknown
<220>
<223> ltaE_4 sequence from unknown bacterial species from environmental
sample
<400> 191
atgctagtgg atgacttccg ttcggatacg gtcacacgcc ccgatgaggg gatgcgttct 60
gccatggctg cggccgaggt tggcgacgca gtctacgatg actgcccgac caccaagcgc 120
ctggaagcca tggccgccga gcgattggga aaggaagcct cgcttttctt ccccaccggc 180
acgcaagcga acctggccgg gctcatggcc cattgcggcc gcggcgacga atatctcgtt 240
ggccagatgg ctcacaccta tcggctcgag ggcggcggcg ccgcagtcct ggggtcgatc 300
cagccgcagc ccctgcccaa cgagccagat gggacgatcg cgctggacgc catttcgaac 360
gcgatcaagc caaacgactt tcactttgca gtcacacggc tgctggccct ggaaaatacg 420
ttcaacggcc tggtgctgtc cgacgcatac ctgcaagccg caactcaact cgcccgctct 480
cgcgggcttg cgacgcatct ggacggtgcc cggttgatga acgctgcagc ggcgagcggc 540
cgggacgcgg catggatcgc ggcgcagttc gacaccgttt ccatgtgtct ctccaagggg 600
ctgggagcgc cggttggatc cgtcctcatc ggccccaggg acttcatcaa aaaggcccgc 660
cggatcagga aaatgctggg cggtggcatg cgccagaccg gcgtgctcgc cggggccgcg 720
atctatgcat tggagcacaa cgtcgcgcgg ctcagtgaag atcatcggcg cgccgctgat 780
ctcgcgactg tgctggcgcg ttttcccgag ctgggcgcgg gaccgtcacg aacgaacatg 840
gtgttcatga cgcccaaggg gctcgacgtt agcgctttcg tcgcgtttct gcgcggccgc 900
ggcatcgccg tcagcgggag atatggaacg ctgcgttggg tgacccatct ggacgttggt 960
gacgattccg tggagcgggt cgccgaggcc tgcgaggtct tctttgaagg gcaaaacgcg 1020
gccgccggat tgagagtgca agcctaa 1047
<210> 192
<211> 348
<212> PRT
<213> Unknown
<220>
<223> ltaE_4 sequence from unknown bacterial species from environmental
sample
<400> 192
Met Leu Val Asp Asp Phe Arg Ser Asp Thr Val Thr Arg Pro Asp Glu
1 5 10 15
Gly Met Arg Ser Ala Met Ala Ala Ala Glu Val Gly Asp Ala Val Tyr
20 25 30
Asp Asp Cys Pro Thr Thr Lys Arg Leu Glu Ala Met Ala Ala Glu Arg
35 40 45
Leu Gly Lys Glu Ala Ser Leu Phe Phe Pro Thr Gly Thr Gln Ala Asn
50 55 60
Leu Ala Gly Leu Met Ala His Cys Gly Arg Gly Asp Glu Tyr Leu Val
65 70 75 80
Gly Gln Met Ala His Thr Tyr Arg Leu Glu Gly Gly Gly Ala Ala Val
85 90 95
Leu Gly Ser Ile Gln Pro Gln Pro Leu Pro Asn Glu Pro Asp Gly Thr
100 105 110
Ile Ala Leu Asp Ala Ile Ser Asn Ala Ile Lys Pro Asn Asp Phe His
115 120 125
Phe Ala Val Thr Arg Leu Leu Ala Leu Glu Asn Thr Phe Asn Gly Leu
130 135 140
Val Leu Ser Asp Ala Tyr Leu Gln Ala Ala Thr Gln Leu Ala Arg Ser
145 150 155 160
Arg Gly Leu Ala Thr His Leu Asp Gly Ala Arg Leu Met Asn Ala Ala
165 170 175
Ala Ala Ser Gly Arg Asp Ala Ala Trp Ile Ala Ala Gln Phe Asp Thr
180 185 190
Val Ser Met Cys Leu Ser Lys Gly Leu Gly Ala Pro Val Gly Ser Val
195 200 205
Leu Ile Gly Pro Arg Asp Phe Ile Lys Lys Ala Arg Arg Ile Arg Lys
210 215 220
Met Leu Gly Gly Gly Met Arg Gln Thr Gly Val Leu Ala Gly Ala Ala
225 230 235 240
Ile Tyr Ala Leu Glu His Asn Val Ala Arg Leu Ser Glu Asp His Arg
245 250 255
Arg Ala Ala Asp Leu Ala Thr Val Leu Ala Arg Phe Pro Glu Leu Gly
260 265 270
Ala Gly Pro Ser Arg Thr Asn Met Val Phe Met Thr Pro Lys Gly Leu
275 280 285
Asp Val Ser Ala Phe Val Ala Phe Leu Arg Gly Arg Gly Ile Ala Val
290 295 300
Ser Gly Arg Tyr Gly Thr Leu Arg Trp Val Thr His Leu Asp Val Gly
305 310 315 320
Asp Asp Ser Val Glu Arg Val Ala Glu Ala Cys Glu Val Phe Phe Glu
325 330 335
Gly Gln Asn Ala Ala Ala Gly Leu Arg Val Gln Ala
340 345
<210> 193
<211> 1035
<212> DNA
<213> Unknown
<220>
<223> ltaE_5 sequence from unknown bacterial species from environmental
sample
<400> 193
atgagcccaa tccgccacga tttccgctcc gacaccgtta cgcgtccgag ccccgctatg 60
cgggaggcga tggggcgggc cgaggtcggc gacgacgtgt ttggcgggga tccgaccgtg 120
aacgcgctcg aggccgagac cgccgaactg ctaggcaaag aggccgggct attcctaccg 180
tccggcacgc aatcgaacct cgtcgccctg atggcccatt gtgggcgggg cgacgaatac 240
atcacgggcc agcaggcgca ttgctatagg tgggaagcgg gcggggctgc cgtgctcggc 300
tcaatccagc cgcagccgat cgccaatgcc gctgacggca ccctcccgct cgccgagatc 360
gaagcggcta tcaagccgga cgatccgcat tacgcgacga cccggctcct ggcactcgag 420
aacacgatcg gcggcaaggt cctgccgcag gattacgtga ttgcggctac cgcgctcgcc 480
cggaagcaca ggctggcctg ccacctcgac ggcgcccggc tgtgcaatgc cgctgtggca 540
cagaacacga gcgcggccga gctcgccgcg ccgttcgaca cggtttcgct ctgcctctcg 600
aaggggctgg gcgcgcccgt cggatcggtg ctggtcgggc cgcgcgacct gatcggcaag 660
gcgcgccgca tccggaagat ggtgggcggg ggcatgcgcc aggcgggcgt gattgcggcg 720
ggtgccctct atgcactccg ccacaacatc gctcggctcg cggacgacca cgccaacgcc 780
gcgcgtctcg cgaagggtct ggccggcctg ccggggctct cggttgaggc ctccgggacc 840
aacatcgttt tcgtcgaggt ggaccgcgcg atcgcggagg cctttgcggg ccatctcgct 900
gcggccagcg tcggggtcac tggaaccacc cgccaacgct gggtcactca cctcgatgtc 960
ggccccgccg acgtcgacgc ggcgctggtt gcggcccagg ccttcttcac ggctgcccgt 1020
caggccgccg agtag 1035
<210> 194
<211> 344
<212> PRT
<213> Unknown
<220>
<223> ltaE_5 sequence from unknown bacterial species from environmental
sample
<400> 194
Met Ser Pro Ile Arg His Asp Phe Arg Ser Asp Thr Val Thr Arg Pro
1 5 10 15
Ser Pro Ala Met Arg Glu Ala Met Gly Arg Ala Glu Val Gly Asp Asp
20 25 30
Val Phe Gly Gly Asp Pro Thr Val Asn Ala Leu Glu Ala Glu Thr Ala
35 40 45
Glu Leu Leu Gly Lys Glu Ala Gly Leu Phe Leu Pro Ser Gly Thr Gln
50 55 60
Ser Asn Leu Val Ala Leu Met Ala His Cys Gly Arg Gly Asp Glu Tyr
65 70 75 80
Ile Thr Gly Gln Gln Ala His Cys Tyr Arg Trp Glu Ala Gly Gly Ala
85 90 95
Ala Val Leu Gly Ser Ile Gln Pro Gln Pro Ile Ala Asn Ala Ala Asp
100 105 110
Gly Thr Leu Pro Leu Ala Glu Ile Glu Ala Ala Ile Lys Pro Asp Asp
115 120 125
Pro His Tyr Ala Thr Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Gly
130 135 140
Gly Lys Val Leu Pro Gln Asp Tyr Val Ile Ala Ala Thr Ala Leu Ala
145 150 155 160
Arg Lys His Arg Leu Ala Cys His Leu Asp Gly Ala Arg Leu Cys Asn
165 170 175
Ala Ala Val Ala Gln Asn Thr Ser Ala Ala Glu Leu Ala Ala Pro Phe
180 185 190
Asp Thr Val Ser Leu Cys Leu Ser Lys Gly Leu Gly Ala Pro Val Gly
195 200 205
Ser Val Leu Val Gly Pro Arg Asp Leu Ile Gly Lys Ala Arg Arg Ile
210 215 220
Arg Lys Met Val Gly Gly Gly Met Arg Gln Ala Gly Val Ile Ala Ala
225 230 235 240
Gly Ala Leu Tyr Ala Leu Arg His Asn Ile Ala Arg Leu Ala Asp Asp
245 250 255
His Ala Asn Ala Ala Arg Leu Ala Lys Gly Leu Ala Gly Leu Pro Gly
260 265 270
Leu Ser Val Glu Ala Ser Gly Thr Asn Ile Val Phe Val Glu Val Asp
275 280 285
Arg Ala Ile Ala Glu Ala Phe Ala Gly His Leu Ala Ala Ala Ser Val
290 295 300
Gly Val Thr Gly Thr Thr Arg Gln Arg Trp Val Thr His Leu Asp Val
305 310 315 320
Gly Pro Ala Asp Val Asp Ala Ala Leu Val Ala Ala Gln Ala Phe Phe
325 330 335
Thr Ala Ala Arg Gln Ala Ala Glu
340
<210> 195
<211> 1032
<212> DNA
<213> Unknown
<220>
<223> ltaE_6 sequence from unknown bacterial species from environmental
sample
<400> 195
atgactgaac gctggatcga cctgcgcagc gacaccgtca cccatccgaa tgacgccatg 60
cgcgccgtca tgggctccgc cagcgttggc gacgacgtct acgccgacga tcccagcgtg 120
aaccggctgc aggcgacggc cgctgagata ttcggcttcg aggccggcct gttcgcgccg 180
tccggcacgc agaccaacct gatcgcgctg atgacccatt gcgggcgcgg cgacgaatac 240
ctggtcgggc aggaagccca cacctacaag tacgaaggcg gcggcgcggc tgttctgggc 300
agcatccagc cgcagccgat tgtcaaccag gcggacggct cgattgccct agctgacatc 360
gccgccgcca tcaagcccga cgacatgcac ttcgcgcgca cgcgactgct ggcgctggag 420
aacaccattg gcgggcgcgt gctgggccgg gactacctgc ttgcggccac cggcctggcg 480
cacgagcggg gacttgccac ccacctggac ggggcgcgta tctgcaacgc cgccgtccag 540
cagggcatca gcctgatgga cgcggccacg ggtttcgaca gcgtgtcggt ctgcctgtcc 600
aagggcctgg gggcgccggt gggctcggtg ctgctcgggc cgcgcggctt catcgaggcc 660
ggcaagcgct ggcgcaagat gctgggcggc ggcatgcgcc aggccggcat cctggcagcg 720
gccggcctgt acgcgctgga gcacaacgtc gagcgcctgg ccgaggacca cgccaacgcg 780
gccgcgctgg ccgacggact gcgggtcatc gaacagctga aggtcagcac gccgcagacc 840
aacatcttct atgtcgagat tccggcggat gcctgcgatg gcttgcgcga agcgttggcg 900
cgcgcacaca tccgcgccag tatcggtccg cacacgcgct tggtcacgca tctcgacgtc 960
aaggccgagg acgtgaagac ggttgtcgac gcattcaccc gctttttcgc cggctggggg 1020
gcatccgcat ga 1032
<210> 196
<211> 343
<212> PRT
<213> Unknown
<220>
<223> ltaE_6 sequence from unknown bacterial species from environmental
sample
<400> 196
Met Thr Glu Arg Trp Ile Asp Leu Arg Ser Asp Thr Val Thr His Pro
1 5 10 15
Asn Asp Ala Met Arg Ala Val Met Gly Ser Ala Ser Val Gly Asp Asp
20 25 30
Val Tyr Ala Asp Asp Pro Ser Val Asn Arg Leu Gln Ala Thr Ala Ala
35 40 45
Glu Ile Phe Gly Phe Glu Ala Gly Leu Phe Ala Pro Ser Gly Thr Gln
50 55 60
Thr Asn Leu Ile Ala Leu Met Thr His Cys Gly Arg Gly Asp Glu Tyr
65 70 75 80
Leu Val Gly Gln Glu Ala His Thr Tyr Lys Tyr Glu Gly Gly Gly Ala
85 90 95
Ala Val Leu Gly Ser Ile Gln Pro Gln Pro Ile Val Asn Gln Ala Asp
100 105 110
Gly Ser Ile Ala Leu Ala Asp Ile Ala Ala Ala Ile Lys Pro Asp Asp
115 120 125
Met His Phe Ala Arg Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Gly
130 135 140
Gly Arg Val Leu Gly Arg Asp Tyr Leu Leu Ala Ala Thr Gly Leu Ala
145 150 155 160
His Glu Arg Gly Leu Ala Thr His Leu Asp Gly Ala Arg Ile Cys Asn
165 170 175
Ala Ala Val Gln Gln Gly Ile Ser Leu Met Asp Ala Ala Thr Gly Phe
180 185 190
Asp Ser Val Ser Val Cys Leu Ser Lys Gly Leu Gly Ala Pro Val Gly
195 200 205
Ser Val Leu Leu Gly Pro Arg Gly Phe Ile Glu Ala Gly Lys Arg Trp
210 215 220
Arg Lys Met Leu Gly Gly Gly Met Arg Gln Ala Gly Ile Leu Ala Ala
225 230 235 240
Ala Gly Leu Tyr Ala Leu Glu His Asn Val Glu Arg Leu Ala Glu Asp
245 250 255
His Ala Asn Ala Ala Ala Leu Ala Asp Gly Leu Arg Val Ile Glu Gln
260 265 270
Leu Lys Val Ser Thr Pro Gln Thr Asn Ile Phe Tyr Val Glu Ile Pro
275 280 285
Ala Asp Ala Cys Asp Gly Leu Arg Glu Ala Leu Ala Arg Ala His Ile
290 295 300
Arg Ala Ser Ile Gly Pro His Thr Arg Leu Val Thr His Leu Asp Val
305 310 315 320
Lys Ala Glu Asp Val Lys Thr Val Val Asp Ala Phe Thr Arg Phe Phe
325 330 335
Ala Gly Trp Gly Ala Ser Ala
340
<210> 197
<211> 1494
<212> DNA
<213> Unknown
<220>
<223> ltaE_7 sequence from unknown bacterial species from environmental
sample
<400> 197
gtatacaagc gagagctgaa ctggctgcca tttttcggat ggggaattgc atcggcgcag 60
atgattagca tcgatcgcag caaaggtcag gacgcgttcg aacaagtcgt cgagcagggc 120
aacgatcggt tggcacgcgg ctggtggatc gtaatttttc ccgaaggtac gcgcatgcgg 180
cccggcacga tgaagcggta caagaccggt ggtgcacgtt tggcagtgcg aaccggcgct 240
gttgtcgtac cgattgcact gaactcgggc gagtattggc cgaagcattc gttaatcaag 300
acgcccggca tcattacggt gtccatcggt caaccgatcg atcctcgcga caagacggct 360
gaagaaatca gtgcgcaagt cgaatcatgg atcgaatcag aaatgcggcg gctggcgccg 420
catcgttaca gcgctccata cactccggag ccccgggtcc aaaccgtggc cgcgcaaagc 480
cttcgcacac cgattgctat gacaattgtc gatttacgct ccgatacagt cacacgtcca 540
tcgcccggta tgcgcaaagc gatgatggac gcagaagtgg gcgatgatgt gttcggcgac 600
gatcccaccg tcaaccggtt gcaggcgcgt gccgccgaga tattcggctt cgaatcggca 660
ctgctttttc cgtcaggcac gcaatctaac ctcgcagcgc tgatgagcca ttgccagcgc 720
ggcgatgagg taatcgtcgg caagctggca cacacttatc gtaacgaagc cggaggcgca 780
gccgtgctcg gctcgatcca accgcacgtc atcacgaatc gcgcggacgg ctcacttgat 840
ctcgctgaag tcgaggcggc gatcaagccc gatgacccgc atttcgctcg aacccgactg 900
cttgcgctcg aaaatacgat ctcaggcaaa gtactgtcga ggtcttatct cgaaaaggcg 960
ttgcagttgg cggaggcaaa gaaactttct gcacacctcg atggcgcgcg catcttcaat 1020
gcggcggtcg atcagaagat caaagtgaac gagctgtgcg cgggcttcga ctccgtatcg 1080
gcgtgtctat cgaagggact cggcgctccc gccggaactg tattgctcgg aagcaaggat 1140
ttgatcgagc gcgcgaagcg caaccgaaag atcctcggtg gcgcgatgcg ccaggcggga 1200
atcatcgctg cggccggcct ttacgcactg cagaacaaca tcgagcggtt gcaaagcgat 1260
catgacaatg ccaagcggct ggctgacgga ttgagagcgt tgaagctcga cgtcgaacaa 1320
catacgaaca tggtattcgt aaacgtgtca gccgaacatg ccgctgcgct cgctgcacac 1380
cttggacgaa gcggcgtgat cgtactgccg tgggcgccaa tgcgtttggt cacgcacctc 1440
gacgtcgacc gcgacggcat cgagcgagcg ctcgatgccg tcgcggaatt cgtt 1494
<210> 198
<211> 498
<212> PRT
<213> Unknown
<220>
<223> ltaE_7 sequence from unknown bacterial species from environmental
sample
<400> 198
Val Tyr Lys Arg Glu Leu Asn Trp Leu Pro Phe Phe Gly Trp Gly Ile
1 5 10 15
Ala Ser Ala Gln Met Ile Ser Ile Asp Arg Ser Lys Gly Gln Asp Ala
20 25 30
Phe Glu Gln Val Val Glu Gln Gly Asn Asp Arg Leu Ala Arg Gly Trp
35 40 45
Trp Ile Val Ile Phe Pro Glu Gly Thr Arg Met Arg Pro Gly Thr Met
50 55 60
Lys Arg Tyr Lys Thr Gly Gly Ala Arg Leu Ala Val Arg Thr Gly Ala
65 70 75 80
Val Val Val Pro Ile Ala Leu Asn Ser Gly Glu Tyr Trp Pro Lys His
85 90 95
Ser Leu Ile Lys Thr Pro Gly Ile Ile Thr Val Ser Ile Gly Gln Pro
100 105 110
Ile Asp Pro Arg Asp Lys Thr Ala Glu Glu Ile Ser Ala Gln Val Glu
115 120 125
Ser Trp Ile Glu Ser Glu Met Arg Arg Leu Ala Pro His Arg Tyr Ser
130 135 140
Ala Pro Tyr Thr Pro Glu Pro Arg Val Gln Thr Val Ala Ala Gln Ser
145 150 155 160
Leu Arg Thr Pro Ile Ala Met Thr Ile Val Asp Leu Arg Ser Asp Thr
165 170 175
Val Thr Arg Pro Ser Pro Gly Met Arg Lys Ala Met Met Asp Ala Glu
180 185 190
Val Gly Asp Asp Val Phe Gly Asp Asp Pro Thr Val Asn Arg Leu Gln
195 200 205
Ala Arg Ala Ala Glu Ile Phe Gly Phe Glu Ser Ala Leu Leu Phe Pro
210 215 220
Ser Gly Thr Gln Ser Asn Leu Ala Ala Leu Met Ser His Cys Gln Arg
225 230 235 240
Gly Asp Glu Val Ile Val Gly Lys Leu Ala His Thr Tyr Arg Asn Glu
245 250 255
Ala Gly Gly Ala Ala Val Leu Gly Ser Ile Gln Pro His Val Ile Thr
260 265 270
Asn Arg Ala Asp Gly Ser Leu Asp Leu Ala Glu Val Glu Ala Ala Ile
275 280 285
Lys Pro Asp Asp Pro His Phe Ala Arg Thr Arg Leu Leu Ala Leu Glu
290 295 300
Asn Thr Ile Ser Gly Lys Val Leu Ser Arg Ser Tyr Leu Glu Lys Ala
305 310 315 320
Leu Gln Leu Ala Glu Ala Lys Lys Leu Ser Ala His Leu Asp Gly Ala
325 330 335
Arg Ile Phe Asn Ala Ala Val Asp Gln Lys Ile Lys Val Asn Glu Leu
340 345 350
Cys Ala Gly Phe Asp Ser Val Ser Ala Cys Leu Ser Lys Gly Leu Gly
355 360 365
Ala Pro Ala Gly Thr Val Leu Leu Gly Ser Lys Asp Leu Ile Glu Arg
370 375 380
Ala Lys Arg Asn Arg Lys Ile Leu Gly Gly Ala Met Arg Gln Ala Gly
385 390 395 400
Ile Ile Ala Ala Ala Gly Leu Tyr Ala Leu Gln Asn Asn Ile Glu Arg
405 410 415
Leu Gln Ser Asp His Asp Asn Ala Lys Arg Leu Ala Asp Gly Leu Arg
420 425 430
Ala Leu Lys Leu Asp Val Glu Gln His Thr Asn Met Val Phe Val Asn
435 440 445
Val Ser Ala Glu His Ala Ala Ala Leu Ala Ala His Leu Gly Arg Ser
450 455 460
Gly Val Ile Val Leu Pro Trp Ala Pro Met Arg Leu Val Thr His Leu
465 470 475 480
Asp Val Asp Arg Asp Gly Ile Glu Arg Ala Leu Asp Ala Val Ala Glu
485 490 495
Phe Val
<210> 199
<211> 1002
<212> DNA
<213> Unknown
<220>
<223> ltaE_8 sequence from unknown bacterial species from environmental
sample
<400> 199
atgatcgatc tgcgcagcga taccgtcacc cggccgacgc ccggcatgct caaggccatg 60
gccgaggcgc cggtgggcga tgacgtcttc ggtgacgatc cgaccgtcaa caaattgcag 120
gcggtggtcg cggagcgcgc gggcaaggaa gccgcgctgt tcctggcgac aggcacccag 180
agcaatctca ccgccctgat ggcccattgc gagcggggcg acgaatatat cgtcggacag 240
aacgcgcata cctataagta cgaaggtggc ggcgcggcgg tgctgggtag catccagccg 300
cagccgctgg ccaacgcgcc cgatggcacc attccgctcg acctcatcgc cgcggcgatc 360
aagccggacg acacccattt tgcgatcacg cgcctgctcg cgctcgaaaa cacgatcgga 420
ggaaaggtgc tgccggcgag ttacatcgcc gaggccaccg ctttcgcgcg gagcaaggga 480
ctcggcaccc atctcgacgg cgcgcggatc tggaacgtga tggcggcgtc gaacgcctcg 540
ctcgccgagc tctgcgcgcc tttcgatacg gtctcgatgt gtttctcgaa aggcatgggc 600
gctccggtgg gctctgtgct ggccggaccg aaggcgctga tcacccgcgc ggcgcgctgg 660
cgtaaaacct tgggcggcgg gatgcgccag gcgggtgtgc tggcggcggc ctgcctctac 720
gcgctggaga atcacatcgg ccgcctgcgg accgatcacg gaaacgccgc caagctcggc 780
gcggcgctcg ggcaaatccc ggcgctgaaa ctcattcatc agtcgacgaa tatggtgtgg 840
cttaccgtgc cgccggagaa gtgcgccgcg ctcgacagct ttctcaaggc gcgcggcatc 900
ctgacgctga tggggccaac gctgcgtctt gtcacgcacg gcgacctgaa gcccggcgac 960
gtcgataccg ccatccaggc cttcaaggat ttcttcaagt ag 1002
<210> 200
<211> 333
<212> PRT
<213> Unknown
<220>
<223> ltaE_8 sequence from unknown bacterial species from environmental
sample
<400> 200
Met Ile Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Thr Pro Gly Met
1 5 10 15
Leu Lys Ala Met Ala Glu Ala Pro Val Gly Asp Asp Val Phe Gly Asp
20 25 30
Asp Pro Thr Val Asn Lys Leu Gln Ala Val Val Ala Glu Arg Ala Gly
35 40 45
Lys Glu Ala Ala Leu Phe Leu Ala Thr Gly Thr Gln Ser Asn Leu Thr
50 55 60
Ala Leu Met Ala His Cys Glu Arg Gly Asp Glu Tyr Ile Val Gly Gln
65 70 75 80
Asn Ala His Thr Tyr Lys Tyr Glu Gly Gly Gly Ala Ala Val Leu Gly
85 90 95
Ser Ile Gln Pro Gln Pro Leu Ala Asn Ala Pro Asp Gly Thr Ile Pro
100 105 110
Leu Asp Leu Ile Ala Ala Ala Ile Lys Pro Asp Asp Thr His Phe Ala
115 120 125
Ile Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Gly Gly Lys Val Leu
130 135 140
Pro Ala Ser Tyr Ile Ala Glu Ala Thr Ala Phe Ala Arg Ser Lys Gly
145 150 155 160
Leu Gly Thr His Leu Asp Gly Ala Arg Ile Trp Asn Val Met Ala Ala
165 170 175
Ser Asn Ala Ser Leu Ala Glu Leu Cys Ala Pro Phe Asp Thr Val Ser
180 185 190
Met Cys Phe Ser Lys Gly Met Gly Ala Pro Val Gly Ser Val Leu Ala
195 200 205
Gly Pro Lys Ala Leu Ile Thr Arg Ala Ala Arg Trp Arg Lys Thr Leu
210 215 220
Gly Gly Gly Met Arg Gln Ala Gly Val Leu Ala Ala Ala Cys Leu Tyr
225 230 235 240
Ala Leu Glu Asn His Ile Gly Arg Leu Arg Thr Asp His Gly Asn Ala
245 250 255
Ala Lys Leu Gly Ala Ala Leu Gly Gln Ile Pro Ala Leu Lys Leu Ile
260 265 270
His Gln Ser Thr Asn Met Val Trp Leu Thr Val Pro Pro Glu Lys Cys
275 280 285
Ala Ala Leu Asp Ser Phe Leu Lys Ala Arg Gly Ile Leu Thr Leu Met
290 295 300
Gly Pro Thr Leu Arg Leu Val Thr His Gly Asp Leu Lys Pro Gly Asp
305 310 315 320
Val Asp Thr Ala Ile Gln Ala Phe Lys Asp Phe Phe Lys
325 330
<210> 201
<211> 1044
<212> DNA
<213> Unknown
<220>
<223> ltaE_9 sequence from unknown bacterial species from environmental
sample
<400> 201
atgaactcga ccattgactt gcgcagcgac accgtgacgc gccccaccgc tgcgatgcgt 60
gccgcgatga tggaagcgcc gctcggcgac gacgtgttcg gcgacgatcc cacggtcaat 120
gcgctgcaag acaagatcgc cggcatgctc ggcaaggagg cggcgctgtt catggcgtcg 180
ggcacgcaga gcaatctgtc ggcgttgatg gcgcattgcc agcgcggcga cgagtacatc 240
gtgggtcagg gcgcgcacac ctatcgctac gaggccggcg gcggcgcggt gctcggcagc 300
atccagccgc agcccatcac gaatcagccc gatggctcgc tggcgctggc cgacatcgag 360
gccgcgatca agcccgacga tgcgcatttc gcgcgcacgc gcttgctgtg cctggagaac 420
acgttcggtg gccaggtgct cggcatcgac tacctgcgcc aggccaccga tctggcgcgg 480
cgccacggcc tggccacgca tctggacggc gcgcgcctgt tcaacgccgc ggtcgcgctg 540
gcgcatcagc agtcgggcgg cggcgatgcg cgcgccaagg ccaaagagat ggccgaactg 600
ttcgacagcg tgtcggtgtg cttcagcaag ggcctcggcg cgccggtggg ttcggcgctg 660
gtcggcagcc gcgagctgat cgcacgcgcg caccgcgtgc gcaagatgct gggcggcgga 720
ttgcgccagg ccggcgtgct ggccgccgct gcgctgcatg cgctcgacca tcacatcgat 780
cggcttgccg aggatcacgc gaacgcgcag cggctggccg aagggctgcg cgggcttggc 840
agtgtgttga acgcgccggc caacaccaac atggtcttcg tcgacctggc acccggcggc 900
tcacgccagg acaccgtggc ccacctgcgc gagcacggcg tgttgtgcac cggcttgtac 960
aagctgcgcc tggtgacgca cctcgacgtg agtgccgacg acgtcgatcg cgccgtgcgc 1020
atcttgcgcg agacgttgaa cacg 1044
<210> 202
<211> 348
<212> PRT
<213> Unknown
<220>
<223> ltaE_9 sequence from unknown bacterial species from environmental
sample
<400> 202
Met Asn Ser Thr Ile Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Thr
1 5 10 15
Ala Ala Met Arg Ala Ala Met Met Glu Ala Pro Leu Gly Asp Asp Val
20 25 30
Phe Gly Asp Asp Pro Thr Val Asn Ala Leu Gln Asp Lys Ile Ala Gly
35 40 45
Met Leu Gly Lys Glu Ala Ala Leu Phe Met Ala Ser Gly Thr Gln Ser
50 55 60
Asn Leu Ser Ala Leu Met Ala His Cys Gln Arg Gly Asp Glu Tyr Ile
65 70 75 80
Val Gly Gln Gly Ala His Thr Tyr Arg Tyr Glu Ala Gly Gly Gly Ala
85 90 95
Val Leu Gly Ser Ile Gln Pro Gln Pro Ile Thr Asn Gln Pro Asp Gly
100 105 110
Ser Leu Ala Leu Ala Asp Ile Glu Ala Ala Ile Lys Pro Asp Asp Ala
115 120 125
His Phe Ala Arg Thr Arg Leu Leu Cys Leu Glu Asn Thr Phe Gly Gly
130 135 140
Gln Val Leu Gly Ile Asp Tyr Leu Arg Gln Ala Thr Asp Leu Ala Arg
145 150 155 160
Arg His Gly Leu Ala Thr His Leu Asp Gly Ala Arg Leu Phe Asn Ala
165 170 175
Ala Val Ala Leu Ala His Gln Gln Ser Gly Gly Gly Asp Ala Arg Ala
180 185 190
Lys Ala Lys Glu Met Ala Glu Leu Phe Asp Ser Val Ser Val Cys Phe
195 200 205
Ser Lys Gly Leu Gly Ala Pro Val Gly Ser Ala Leu Val Gly Ser Arg
210 215 220
Glu Leu Ile Ala Arg Ala His Arg Val Arg Lys Met Leu Gly Gly Gly
225 230 235 240
Leu Arg Gln Ala Gly Val Leu Ala Ala Ala Ala Leu His Ala Leu Asp
245 250 255
His His Ile Asp Arg Leu Ala Glu Asp His Ala Asn Ala Gln Arg Leu
260 265 270
Ala Glu Gly Leu Arg Gly Leu Gly Ser Val Leu Asn Ala Pro Ala Asn
275 280 285
Thr Asn Met Val Phe Val Asp Leu Ala Pro Gly Gly Ser Arg Gln Asp
290 295 300
Thr Val Ala His Leu Arg Glu His Gly Val Leu Cys Thr Gly Leu Tyr
305 310 315 320
Lys Leu Arg Leu Val Thr His Leu Asp Val Ser Ala Asp Asp Val Asp
325 330 335
Arg Ala Val Arg Ile Leu Arg Glu Thr Leu Asn Thr
340 345
<210> 203
<211> 1098
<212> DNA
<213> Unknown
<220>
<223> ltaE_10 sequence from unknown bacterial species from
environmental sample
<400> 203
atgcggcacg agccggccgg gaagctgccc ctcgcctcga cctgctccaa cgaatcacca 60
atcacgaatc acgaatcacg gctctccatg ctgatcgacc tcagaagcga caccgtcacc 120
cgtcccaccg cggcgatgcg cgaggcgatg ctgcgcgcgg aggtcggtga cgacgtctac 180
ggcgaggacc cgaccgtgaa cgcgctgcag gcgcggctgg cggccgagct cggcttcgag 240
gccggcctgt tcgtgccctc gggcacgcag tcgaacctgc tggcgctgat gagccattgc 300
gcgcgcggcg acgagtacct ggtcgggatg gaggcgcaca cctacaagtt cgaaggcggc 360
ggcgccgcgg tgctgggctc gatccagccg cagccgatcc cgcacgcgcc cgacggcacg 420
ctgccgctcg atgccgtggc gcgcgcgatc aagccggtcg atccgcactt cgcccgcagc 480
cgtctgctgt gcctggagaa cacctggcac ggccgaccgc tgccgctcga ctacctcgcg 540
caggcgcgtg ccttctgtcg cgagcgcggg ctcggcctgc acctggatgg cgcgcgcctg 600
ttcaatgccg cggtcgcctg ccgggtcgag gcacgcgcca tcgcccggca cttcgacagc 660
gtctcgatct gcttctccaa gggcctgggc gcaccggtcg gctcggtact ggtcggctcg 720
cacgcgctga tcgacgaggc gcggcgctgg cgcaaggtcg ccggcggcgg ctggcgccag 780
gccggcatgc tggcggcagc ctgcctgtac gcgctcgacc atcacgtcgc gcgactggcc 840
gacgaccatg cccgcgccgc gcgcctggcc gaaggtctgc gcggcctgac tgggctcgag 900
gtcgtggcgc agcacaccaa catggtgttc atcgacgtcg caccggaacg gctggcggcg 960
ttcaagcagc aactcgaggc ggcgcgcatc cggatgtcga tcggctacct gccgagcatc 1020
cgtctggtga cgcacctgga catcgacgac gccgcggtcg agcacacgat cgcgacgctg 1080
cgtgggttct tccgctga 1098
<210> 204
<211> 365
<212> PRT
<213> Unknown
<220>
<223> ltaE_10 sequence from unknown bacterial species from
environmental sample
<400> 204
Met Arg His Glu Pro Ala Gly Lys Leu Pro Leu Ala Ser Thr Cys Ser
1 5 10 15
Asn Glu Ser Pro Ile Thr Asn His Glu Ser Arg Leu Ser Met Leu Ile
20 25 30
Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Thr Ala Ala Met Arg Glu
35 40 45
Ala Met Leu Arg Ala Glu Val Gly Asp Asp Val Tyr Gly Glu Asp Pro
50 55 60
Thr Val Asn Ala Leu Gln Ala Arg Leu Ala Ala Glu Leu Gly Phe Glu
65 70 75 80
Ala Gly Leu Phe Val Pro Ser Gly Thr Gln Ser Asn Leu Leu Ala Leu
85 90 95
Met Ser His Cys Ala Arg Gly Asp Glu Tyr Leu Val Gly Met Glu Ala
100 105 110
His Thr Tyr Lys Phe Glu Gly Gly Gly Ala Ala Val Leu Gly Ser Ile
115 120 125
Gln Pro Gln Pro Ile Pro His Ala Pro Asp Gly Thr Leu Pro Leu Asp
130 135 140
Ala Val Ala Arg Ala Ile Lys Pro Val Asp Pro His Phe Ala Arg Ser
145 150 155 160
Arg Leu Leu Cys Leu Glu Asn Thr Trp His Gly Arg Pro Leu Pro Leu
165 170 175
Asp Tyr Leu Ala Gln Ala Arg Ala Phe Cys Arg Glu Arg Gly Leu Gly
180 185 190
Leu His Leu Asp Gly Ala Arg Leu Phe Asn Ala Ala Val Ala Cys Arg
195 200 205
Val Glu Ala Arg Ala Ile Ala Arg His Phe Asp Ser Val Ser Ile Cys
210 215 220
Phe Ser Lys Gly Leu Gly Ala Pro Val Gly Ser Val Leu Val Gly Ser
225 230 235 240
His Ala Leu Ile Asp Glu Ala Arg Arg Trp Arg Lys Val Ala Gly Gly
245 250 255
Gly Trp Arg Gln Ala Gly Met Leu Ala Ala Ala Cys Leu Tyr Ala Leu
260 265 270
Asp His His Val Ala Arg Leu Ala Asp Asp His Ala Arg Ala Ala Arg
275 280 285
Leu Ala Glu Gly Leu Arg Gly Leu Thr Gly Leu Glu Val Val Ala Gln
290 295 300
His Thr Asn Met Val Phe Ile Asp Val Ala Pro Glu Arg Leu Ala Ala
305 310 315 320
Phe Lys Gln Gln Leu Glu Ala Ala Arg Ile Arg Met Ser Ile Gly Tyr
325 330 335
Leu Pro Ser Ile Arg Leu Val Thr His Leu Asp Ile Asp Asp Ala Ala
340 345 350
Val Glu His Thr Ile Ala Thr Leu Arg Gly Phe Phe Arg
355 360 365
<210> 205
<211> 1002
<212> DNA
<213> Unknown
<220>
<223> ltaE_11 sequence from unknown bacterial species from
environmental sample
<400> 205
atgacggttg acctgcgctc cgataccgtc acgcgccctt cggcggggat gcgcaaggcg 60
atgatggagg ccgagctggg cgacgacgtg ttcggcgacg acccgaccgt caaccgcctg 120
caggagcggg cggccgagat cttcggcttc gaggccgccc tgcttttccc caccggcacc 180
cagtcgaatc tcgccgccct gatcgctcac tgcgatcggg gcgacgaagt catcctcggc 240
tcggaagccc acagttaccg ctacgaggcc ggcggcctcg cggtgctcgg ctcgatccag 300
ccgcaggtgg ttcccaaccg tgccgatgga acccttgatt tgaatgaagt ggaatccctg 360
ataaagcccg acgaccctca cttcccgcgc acgcggctgc tcgcgctcga gaacacgatt 420
accggccggg tcatcccgcg gccgtatctc gagcaggcgg ttgccctcgc gaaaaagaag 480
cggctcgccg tccacctgga cggggcgagg attttcaatg ccgcaacggc gctgaagatg 540
aaggtgaaag acctgtgcgc cgggttcgac tcggtgtcgt cgtgcctgtc gaaagggctg 600
ggcaccccgg ccggcaccgt tcttctcggc ggaaaagaat tcatccagaa agcgaaacgc 660
gcgcggaaaa tcctcggcgg cgggatgcgg caggcgggcg tgatcgccgc ggccgggctc 720
tacgcgctgg agaacaacgt cgagcgcctg cgcatcgatc acgacaacgc ggaaaagctt 780
gcacgcggct tacgcgactt gaaactggac gttcagctaa ataccaacat ggtgctggtg 840
aagatcaagc cggaggaagc ccacgatctg gcttcgttta tgagcaccaa gggtgtgctc 900
gtgctgccgc gtgcgccgat gcggctggtc acccacctcg acgtcgacgc cgccgggatc 960
gaccgcgcgc tcgtaggctt ccgcggcttt ttcggaaaat ga 1002
<210> 206
<211> 333
<212> PRT
<213> Unknown
<220>
<223> ltaE_11 sequence from unknown bacterial species from
environmental sample
<400> 206
Met Thr Val Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Ser Ala Gly
1 5 10 15
Met Arg Lys Ala Met Met Glu Ala Glu Leu Gly Asp Asp Val Phe Gly
20 25 30
Asp Asp Pro Thr Val Asn Arg Leu Gln Glu Arg Ala Ala Glu Ile Phe
35 40 45
Gly Phe Glu Ala Ala Leu Leu Phe Pro Thr Gly Thr Gln Ser Asn Leu
50 55 60
Ala Ala Leu Ile Ala His Cys Asp Arg Gly Asp Glu Val Ile Leu Gly
65 70 75 80
Ser Glu Ala His Ser Tyr Arg Tyr Glu Ala Gly Gly Leu Ala Val Leu
85 90 95
Gly Ser Ile Gln Pro Gln Val Val Pro Asn Arg Ala Asp Gly Thr Leu
100 105 110
Asp Leu Asn Glu Val Glu Ser Leu Ile Lys Pro Asp Asp Pro His Phe
115 120 125
Pro Arg Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Thr Gly Arg Val
130 135 140
Ile Pro Arg Pro Tyr Leu Glu Gln Ala Val Ala Leu Ala Lys Lys Lys
145 150 155 160
Arg Leu Ala Val His Leu Asp Gly Ala Arg Ile Phe Asn Ala Ala Thr
165 170 175
Ala Leu Lys Met Lys Val Lys Asp Leu Cys Ala Gly Phe Asp Ser Val
180 185 190
Ser Ser Cys Leu Ser Lys Gly Leu Gly Thr Pro Ala Gly Thr Val Leu
195 200 205
Leu Gly Gly Lys Glu Phe Ile Gln Lys Ala Lys Arg Ala Arg Lys Ile
210 215 220
Leu Gly Gly Gly Met Arg Gln Ala Gly Val Ile Ala Ala Ala Gly Leu
225 230 235 240
Tyr Ala Leu Glu Asn Asn Val Glu Arg Leu Arg Ile Asp His Asp Asn
245 250 255
Ala Glu Lys Leu Ala Arg Gly Leu Arg Asp Leu Lys Leu Asp Val Gln
260 265 270
Leu Asn Thr Asn Met Val Leu Val Lys Ile Lys Pro Glu Glu Ala His
275 280 285
Asp Leu Ala Ser Phe Met Ser Thr Lys Gly Val Leu Val Leu Pro Arg
290 295 300
Ala Pro Met Arg Leu Val Thr His Leu Asp Val Asp Ala Ala Gly Ile
305 310 315 320
Asp Arg Ala Leu Val Gly Phe Arg Gly Phe Phe Gly Lys
325 330
<210> 207
<211> 969
<212> DNA
<213> Unknown
<220>
<223> ltaE_12 sequence from unknown bacterial species from
environmental sample
<400> 207
atggcggccg agctcggcga cgacgtgttc ggcgacgacc cgaccgtcaa ccgcctgcag 60
gagcgcgccg ccgaggtctt cggcttcgag gcggcgctgc tctttccctc cgggacccag 120
tcgaacctcg cggcgctgat gggacactgc cagcgcggcg aggaggtgat cctcgggacg 180
gaagcgcata gctaccgcta cgaggcgggc gggctctcgg tgctcggctc gatccacccg 240
caggcgatca ccaaccgggc ggacggcacg ctggatctcg ccgaggtcga ggccgcgatc 300
aagcccgacg acccgcattt tccgaggact cgcctcattg ctctggagaa cacgatcacc 360
ggccgggtcc tgccccgcga atacctggcc aaggcggcgg agctggcgaa gcggaaaaac 420
ctggcgatcc acctcgacgg cgcgcgggtg ttcaacgcgg cgacgcatct cggcatgaag 480
gtgaaagacc tttgcgccgg cttcgactcg gtgtcctcgt gcctgtcgaa ggggttgggc 540
acgccggcag gcacggtgct cctcggcagc aagtccttca tcgggaaagc aagacgctcg 600
cgcaagatcc tcggcggcgc gatgcgccag gcgggggtca tcgctgccgc gggactctac 660
gcgctcgagc acaacgtcga gcgcctgaag accgatcacg agaatgccga gcgccttgcc 720
aggggattgc gcgagctcgg gctcgaagtg cagcacaaca cgaacatggt gctggtgaag 780
attgcgccgg accgggcagc ggcggtggaa gtccacatga ggaagaacaa catcctggtc 840
ctgccgcgcg cgccgatgcg gctcgtcacg catctcgacg tcgacgcggc cggcatcgac 900
cgcgcgctcg ccgggtttcg cagcttccta gggagtggtt tcctcgaaag ccaggcgcag 960
tcgcgctag 969
<210> 208
<211> 322
<212> PRT
<213> Unknown
<220>
<223> ltaE_12 sequence from unknown bacterial species from
environmental sample
<400> 208
Met Ala Ala Glu Leu Gly Asp Asp Val Phe Gly Asp Asp Pro Thr Val
1 5 10 15
Asn Arg Leu Gln Glu Arg Ala Ala Glu Val Phe Gly Phe Glu Ala Ala
20 25 30
Leu Leu Phe Pro Ser Gly Thr Gln Ser Asn Leu Ala Ala Leu Met Gly
35 40 45
His Cys Gln Arg Gly Glu Glu Val Ile Leu Gly Thr Glu Ala His Ser
50 55 60
Tyr Arg Tyr Glu Ala Gly Gly Leu Ser Val Leu Gly Ser Ile His Pro
65 70 75 80
Gln Ala Ile Thr Asn Arg Ala Asp Gly Thr Leu Asp Leu Ala Glu Val
85 90 95
Glu Ala Ala Ile Lys Pro Asp Asp Pro His Phe Pro Arg Thr Arg Leu
100 105 110
Ile Ala Leu Glu Asn Thr Ile Thr Gly Arg Val Leu Pro Arg Glu Tyr
115 120 125
Leu Ala Lys Ala Ala Glu Leu Ala Lys Arg Lys Asn Leu Ala Ile His
130 135 140
Leu Asp Gly Ala Arg Val Phe Asn Ala Ala Thr His Leu Gly Met Lys
145 150 155 160
Val Lys Asp Leu Cys Ala Gly Phe Asp Ser Val Ser Ser Cys Leu Ser
165 170 175
Lys Gly Leu Gly Thr Pro Ala Gly Thr Val Leu Leu Gly Ser Lys Ser
180 185 190
Phe Ile Gly Lys Ala Arg Arg Ser Arg Lys Ile Leu Gly Gly Ala Met
195 200 205
Arg Gln Ala Gly Val Ile Ala Ala Ala Gly Leu Tyr Ala Leu Glu His
210 215 220
Asn Val Glu Arg Leu Lys Thr Asp His Glu Asn Ala Glu Arg Leu Ala
225 230 235 240
Arg Gly Leu Arg Glu Leu Gly Leu Glu Val Gln His Asn Thr Asn Met
245 250 255
Val Leu Val Lys Ile Ala Pro Asp Arg Ala Ala Ala Val Glu Val His
260 265 270
Met Arg Lys Asn Asn Ile Leu Val Leu Pro Arg Ala Pro Met Arg Leu
275 280 285
Val Thr His Leu Asp Val Asp Ala Ala Gly Ile Asp Arg Ala Leu Ala
290 295 300
Gly Phe Arg Ser Phe Leu Gly Ser Gly Phe Leu Glu Ser Gln Ala Gln
305 310 315 320
Ser Arg
<210> 209
<211> 1017
<212> DNA
<213> Unknown
<220>
<223> ltaE_13 sequence from unknown bacterial species from
environmental sample
<400> 209
atgatcgatc ttcgttccga caccgtaacc cgcccctcgc ccgggatgcg caaggcgatg 60
cacgaagccg agctcggcga cgacgtgttc ggcgacgacc cgaccgtcaa ccgcctgcag 120
gcgcgcgccg ccgagatgtt cggcttcgag gcggcgctgc tctttcccac cggcacccag 180
tccaacctcg cggcgctgat gagccactgc ggccgcggcg aggaagtgat cctcggcatg 240
gaggcgcaca gctaccgcta cgaggcgggc ggcgtctcgg tgctcgcttc catccagccg 300
caggcagtgc cgaaccgccc cgacggctcg ctcgatctgg cggaagtcga ggccgcgatc 360
aagcccgacg acccgcattt cgcgcgcacg cgtctgctgg cgctcgagaa caccatcagc 420
ggccgggttc tatcccgcga atatctgcaa aaggcggtgg atctggcgag gcgcaaacac 480
ctcgcgatcc acctcgacgg cgcgcggatt ttcaatgcgg ccacccagct caacatgaag 540
gtgaaggacc tttgcgccgg cttcgactcg gtttcctcct gcctgtccaa gggattgggc 600
acgcctgcgg gtacggttct gctgggaagc tcggaattga tccagaaggc aaagcgcgcg 660
cgcaagatcc tcggcggcgg aatgcgccag gcaggcgtga ttgcggccgc gggcctctac 720
gcgctggaga acaacgtcga gcgtctgaag acggaccatg aaaatgccga gcggctggcg 780
cgtgggctgc gcgagctcgg actggacgtt cagcacaaca ccaacatggt gatggtgaag 840
cttccgccgg agaaggccca gccgctggcc gatgcgttga aacggcagca catcctggtg 900
ctgccgcgcg cgccgatgcg cctcgtcacg cacctggatg tcgacgcggc gggcatcgac 960
cgcgcgctgg cgggcttccg cagcttcttt ggcgcccggg ctccgtcccc gaactga 1017
<210> 210
<211> 338
<212> PRT
<213> Unknown
<220>
<223> ltaE_13 sequence from unknown bacterial species from
environmental sample
<400> 210
Met Ile Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Ser Pro Gly Met
1 5 10 15
Arg Lys Ala Met His Glu Ala Glu Leu Gly Asp Asp Val Phe Gly Asp
20 25 30
Asp Pro Thr Val Asn Arg Leu Gln Ala Arg Ala Ala Glu Met Phe Gly
35 40 45
Phe Glu Ala Ala Leu Leu Phe Pro Thr Gly Thr Gln Ser Asn Leu Ala
50 55 60
Ala Leu Met Ser His Cys Gly Arg Gly Glu Glu Val Ile Leu Gly Met
65 70 75 80
Glu Ala His Ser Tyr Arg Tyr Glu Ala Gly Gly Val Ser Val Leu Ala
85 90 95
Ser Ile Gln Pro Gln Ala Val Pro Asn Arg Pro Asp Gly Ser Leu Asp
100 105 110
Leu Ala Glu Val Glu Ala Ala Ile Lys Pro Asp Asp Pro His Phe Ala
115 120 125
Arg Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Ser Gly Arg Val Leu
130 135 140
Ser Arg Glu Tyr Leu Gln Lys Ala Val Asp Leu Ala Arg Arg Lys His
145 150 155 160
Leu Ala Ile His Leu Asp Gly Ala Arg Ile Phe Asn Ala Ala Thr Gln
165 170 175
Leu Asn Met Lys Val Lys Asp Leu Cys Ala Gly Phe Asp Ser Val Ser
180 185 190
Ser Cys Leu Ser Lys Gly Leu Gly Thr Pro Ala Gly Thr Val Leu Leu
195 200 205
Gly Ser Ser Glu Leu Ile Gln Lys Ala Lys Arg Ala Arg Lys Ile Leu
210 215 220
Gly Gly Gly Met Arg Gln Ala Gly Val Ile Ala Ala Ala Gly Leu Tyr
225 230 235 240
Ala Leu Glu Asn Asn Val Glu Arg Leu Lys Thr Asp His Glu Asn Ala
245 250 255
Glu Arg Leu Ala Arg Gly Leu Arg Glu Leu Gly Leu Asp Val Gln His
260 265 270
Asn Thr Asn Met Val Met Val Lys Leu Pro Pro Glu Lys Ala Gln Pro
275 280 285
Leu Ala Asp Ala Leu Lys Arg Gln His Ile Leu Val Leu Pro Arg Ala
290 295 300
Pro Met Arg Leu Val Thr His Leu Asp Val Asp Ala Ala Gly Ile Asp
305 310 315 320
Arg Ala Leu Ala Gly Phe Arg Ser Phe Phe Gly Ala Arg Ala Pro Ser
325 330 335
Pro Asn
<210> 211
<211> 1002
<212> DNA
<213> Unknown
<220>
<223> ltaE_14 sequence from unknown bacterial species from
environmental sample
<400> 211
atgaatcaac ccatagacct tcgctccgat acggttaccc gtccttcagc cggcatgcgc 60
aaggccatgg cggaggccga gctcggcgac gacgtcttcg gcgacgaccc caccgtcaac 120
cgcctgcagg cgcgcgccgc cgagctgttc ggggtggagg cggcgctttt cttccccagc 180
ggcacgcagt ccaacctcgc cgcgctgatg tcgcattgcc agcggggcga ggaagtcatc 240
ctcggctccg aggcgcacag ctatcgctac gaggccggcg ggctcgccgt cctcggctcg 300
atccagccgc aggtcgtgct caaccgcgcc gatggcacgc tcgatctcgc ggaagtggaa 360
gcggcgatca agcccgacga tccgcatttc ccgaaaacgc gattgctcgc gctcgagaac 420
acgataacgg ggcgggtgct cccccgctcc tacctcgaaa aggcgatcaa cgttgcaaac 480
aggcgcggtc tcgccaccca cctcgatggc gcgcgcatct tcaacgcggc aatgcacgag 540
aagatcaacg tcaaaacgct gtgcgcagga ttcgattcgg tctcgtcgtg cctgtccaaa 600
gggctcggca cgccggccgg caccgtgctg gtcgggaaaa aagagatcat cgagaaggcc 660
aagcgcgcaa gaaagatcct gggcgggggc atgcgccagg ccggggtgct ggccgcagcc 720
ggcctctacg cgctggagaa caacgtcgag cggctcgccg aagaccacgc caacgccgag 780
cggctcgcca aagggctgcg cgagctggga caggaagtgc agctcagcac gaacatggtg 840
atgctcacta tcccgtccga gaaggccgcg ccgctcgccg agcacatgaa gaagagcggc 900
gtgatcgtgc tgccgcgggc accgatgcgg cttgtcacgc acctcgacgt cgacgcggcc 960
ggcatcgatc gcgcgctggc cgccttccgc gctttcttct ag 1002
<210> 212
<211> 333
<212> PRT
<213> Unknown
<220>
<223> ltaE_14 sequence from unknown bacterial species from
environmental sample
<400> 212
Met Asn Gln Pro Ile Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Ser
1 5 10 15
Ala Gly Met Arg Lys Ala Met Ala Glu Ala Glu Leu Gly Asp Asp Val
20 25 30
Phe Gly Asp Asp Pro Thr Val Asn Arg Leu Gln Ala Arg Ala Ala Glu
35 40 45
Leu Phe Gly Val Glu Ala Ala Leu Phe Phe Pro Ser Gly Thr Gln Ser
50 55 60
Asn Leu Ala Ala Leu Met Ser His Cys Gln Arg Gly Glu Glu Val Ile
65 70 75 80
Leu Gly Ser Glu Ala His Ser Tyr Arg Tyr Glu Ala Gly Gly Leu Ala
85 90 95
Val Leu Gly Ser Ile Gln Pro Gln Val Val Leu Asn Arg Ala Asp Gly
100 105 110
Thr Leu Asp Leu Ala Glu Val Glu Ala Ala Ile Lys Pro Asp Asp Pro
115 120 125
His Phe Pro Lys Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Thr Gly
130 135 140
Arg Val Leu Pro Arg Ser Tyr Leu Glu Lys Ala Ile Asn Val Ala Asn
145 150 155 160
Arg Arg Gly Leu Ala Thr His Leu Asp Gly Ala Arg Ile Phe Asn Ala
165 170 175
Ala Met His Glu Lys Ile Asn Val Lys Thr Leu Cys Ala Gly Phe Asp
180 185 190
Ser Val Ser Ser Cys Leu Ser Lys Gly Leu Gly Thr Pro Ala Gly Thr
195 200 205
Val Leu Val Gly Lys Lys Glu Ile Ile Glu Lys Ala Lys Arg Ala Arg
210 215 220
Lys Ile Leu Gly Gly Gly Met Arg Gln Ala Gly Val Leu Ala Ala Ala
225 230 235 240
Gly Leu Tyr Ala Leu Glu Asn Asn Val Glu Arg Leu Ala Glu Asp His
245 250 255
Ala Asn Ala Glu Arg Leu Ala Lys Gly Leu Arg Glu Leu Gly Gln Glu
260 265 270
Val Gln Leu Ser Thr Asn Met Val Met Leu Thr Ile Pro Ser Glu Lys
275 280 285
Ala Ala Pro Leu Ala Glu His Met Lys Lys Ser Gly Val Ile Val Leu
290 295 300
Pro Arg Ala Pro Met Arg Leu Val Thr His Leu Asp Val Asp Ala Ala
305 310 315 320
Gly Ile Asp Arg Ala Leu Ala Ala Phe Arg Ala Phe Phe
325 330
<210> 213
<211> 1005
<212> DNA
<213> Unknown
<220>
<223> ltaE_15 sequence from unknown bacterial species from
environmental sample
<400> 213
atggcctcaa tcgtagacct gcgctcggat accgtcacgc gtccctccgc ggcgatgcgc 60
cgcgcgatgc tggagtcgga gcttggcgac gacgtgttcg gcgacgaccc gacggtcaat 120
cgcctgcagg agcgggccgc ggagatcttc ggcttcgaag ccgccttgct gtttccgtcc 180
ggtacgcagt ccaacctcgc cgccctcatg agccattgcc agcgtggcga ggaagtgatt 240
ctcggccagg aggcgcacag ctatcgctac gaggcgggcg gcgctgcggt actgggctcg 300
atccagcccc aggcgatcgc caaccggccc gacggcacgc tcgatctcgc cgaagtcgag 360
gccgcgatca agcccgacga tccgcacttc gcaagaacgc gcctgctcgc gctcgagaac 420
acgatcggcg gtcgggtgct cccccgccgc tatctcgccg aagcgctcga tctcgcgaag 480
aagaagactc ttgcgacgca cctcgatggc gcacgcgtct tcaacgccgc gaccgagctg 540
cagatgaagg tgaaggacct gtgcgcggga ttcgactcgg tgtcggcctg cctgtcgaag 600
ggcctgggcg cgcccgcggg aaccgtgctg ctcggcagga aggatttcat ccagaaagcg 660
aagaggtcgc gcaagatcct cggcggcgcg atgcgccagg ccggggtgat cgccgccgcc 720
ggcctctacg cgctcgaaaa caacgtcgcg cgcctggagg aggaccatcg caatgcgcag 780
cggctggcga aggggctgca ggggctggag cttccggccg agcagcacac caacatggtc 840
ttcgtgcgca tcgcacccga gcggctggag ggcctggccg gccatctgaa gaaggcaggc 900
atcgcggtgc tgccgggcgc gcgcatgcgg ctggtgacgc atctcgatgt ggacgccgcc 960
ggggtcgagc gcgcgctggc ggcgttccgg agctacttcc ggtaa 1005
<210> 214
<211> 334
<212> PRT
<213> Unknown
<220>
<223> ltaE_15 sequence from unknown bacterial species from
environmental sample
<400> 214
Met Ala Ser Ile Val Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Ser
1 5 10 15
Ala Ala Met Arg Arg Ala Met Leu Glu Ser Glu Leu Gly Asp Asp Val
20 25 30
Phe Gly Asp Asp Pro Thr Val Asn Arg Leu Gln Glu Arg Ala Ala Glu
35 40 45
Ile Phe Gly Phe Glu Ala Ala Leu Leu Phe Pro Ser Gly Thr Gln Ser
50 55 60
Asn Leu Ala Ala Leu Met Ser His Cys Gln Arg Gly Glu Glu Val Ile
65 70 75 80
Leu Gly Gln Glu Ala His Ser Tyr Arg Tyr Glu Ala Gly Gly Ala Ala
85 90 95
Val Leu Gly Ser Ile Gln Pro Gln Ala Ile Ala Asn Arg Pro Asp Gly
100 105 110
Thr Leu Asp Leu Ala Glu Val Glu Ala Ala Ile Lys Pro Asp Asp Pro
115 120 125
His Phe Ala Arg Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Gly Gly
130 135 140
Arg Val Leu Pro Arg Arg Tyr Leu Ala Glu Ala Leu Asp Leu Ala Lys
145 150 155 160
Lys Lys Thr Leu Ala Thr His Leu Asp Gly Ala Arg Val Phe Asn Ala
165 170 175
Ala Thr Glu Leu Gln Met Lys Val Lys Asp Leu Cys Ala Gly Phe Asp
180 185 190
Ser Val Ser Ala Cys Leu Ser Lys Gly Leu Gly Ala Pro Ala Gly Thr
195 200 205
Val Leu Leu Gly Arg Lys Asp Phe Ile Gln Lys Ala Lys Arg Ser Arg
210 215 220
Lys Ile Leu Gly Gly Ala Met Arg Gln Ala Gly Val Ile Ala Ala Ala
225 230 235 240
Gly Leu Tyr Ala Leu Glu Asn Asn Val Ala Arg Leu Glu Glu Asp His
245 250 255
Arg Asn Ala Gln Arg Leu Ala Lys Gly Leu Gln Gly Leu Glu Leu Pro
260 265 270
Ala Glu Gln His Thr Asn Met Val Phe Val Arg Ile Ala Pro Glu Arg
275 280 285
Leu Glu Gly Leu Ala Gly His Leu Lys Lys Ala Gly Ile Ala Val Leu
290 295 300
Pro Gly Ala Arg Met Arg Leu Val Thr His Leu Asp Val Asp Ala Ala
305 310 315 320
Gly Val Glu Arg Ala Leu Ala Ala Phe Arg Ser Tyr Phe Arg
325 330
<210> 215
<211> 957
<212> DNA
<213> Unknown
<220>
<223> ltaE_16 sequence from unknown bacterial species from
environmental sample
<400> 215
atgcgccgcg cgatgttcga cgccgaggtc ggcgacgatg tttggggtga cgatccgacc 60
gtgaaccgct tgcaggagcg gtcggcggaa atcttcgggt tcgaggctgc cctgttcttt 120
ccttccggaa cgcagtcgaa cctggcggcg ttgatgtgcc attgtcagcg cggcgacgag 180
gtgatcgttg gtgcggaggc gcacacctac cgctacgagg caggcggaat ctcggtgctc 240
gcctcggtcc atccgcgtcc actcccgaat cagccggacg gaaccctcga cctcgccgaa 300
gtcgaacgcg cgatcaaccc tgaggatgca catttcgcga ggacacgcct cctcacgctg 360
gagaatacca taagcggacg cgttctcccg agcacctatc tcgagtccgc gatgtcgctt 420
gcccagcgaa accatttatc gacgcatctg gatggcgcgc ggatcttcaa tgcagcgctt 480
cacctaggcg tggcggtcag agagctttgt tacggattcg attcggtctc tgcctgcctg 540
tctaagggac tgggggctcc tgccgggacg atcctgctgg gaagcaaagc tttcatcgag 600
gaggccaaac gcgcgcgtaa gctcctgggg ggaggcatgc ggcaagtcgg aattctcgcg 660
gctgctgggc tctatgcgct cgagaacaac gtcgagcgaa tggctgacga tcatcggaac 720
gccgtacgtc tcgccgaagg attgcgagag ctaggactcg cagtaggaca aagtacgaat 780
atggttttcg ttactattcc ggatggtcaa gcgcgcggtc tggccgaagc cctgaaaaat 840
gcccaggtcc tcgtggcccc tgaagagacg atgaggttgg taacccacct cgacgtggat 900
gcagcgggga tcgagcgggt gatagaaggc ttccgtgctt tcttccggtc caattaa 957
<210> 216
<211> 318
<212> PRT
<213> Unknown
<220>
<223> ltaE_16 sequence from unknown bacterial species from
environmental sample
<400> 216
Met Arg Arg Ala Met Phe Asp Ala Glu Val Gly Asp Asp Val Trp Gly
1 5 10 15
Asp Asp Pro Thr Val Asn Arg Leu Gln Glu Arg Ser Ala Glu Ile Phe
20 25 30
Gly Phe Glu Ala Ala Leu Phe Phe Pro Ser Gly Thr Gln Ser Asn Leu
35 40 45
Ala Ala Leu Met Cys His Cys Gln Arg Gly Asp Glu Val Ile Val Gly
50 55 60
Ala Glu Ala His Thr Tyr Arg Tyr Glu Ala Gly Gly Ile Ser Val Leu
65 70 75 80
Ala Ser Val His Pro Arg Pro Leu Pro Asn Gln Pro Asp Gly Thr Leu
85 90 95
Asp Leu Ala Glu Val Glu Arg Ala Ile Asn Pro Glu Asp Ala His Phe
100 105 110
Ala Arg Thr Arg Leu Leu Thr Leu Glu Asn Thr Ile Ser Gly Arg Val
115 120 125
Leu Pro Ser Thr Tyr Leu Glu Ser Ala Met Ser Leu Ala Gln Arg Asn
130 135 140
His Leu Ser Thr His Leu Asp Gly Ala Arg Ile Phe Asn Ala Ala Leu
145 150 155 160
His Leu Gly Val Ala Val Arg Glu Leu Cys Tyr Gly Phe Asp Ser Val
165 170 175
Ser Ala Cys Leu Ser Lys Gly Leu Gly Ala Pro Ala Gly Thr Ile Leu
180 185 190
Leu Gly Ser Lys Ala Phe Ile Glu Glu Ala Lys Arg Ala Arg Lys Leu
195 200 205
Leu Gly Gly Gly Met Arg Gln Val Gly Ile Leu Ala Ala Ala Gly Leu
210 215 220
Tyr Ala Leu Glu Asn Asn Val Glu Arg Met Ala Asp Asp His Arg Asn
225 230 235 240
Ala Val Arg Leu Ala Glu Gly Leu Arg Glu Leu Gly Leu Ala Val Gly
245 250 255
Gln Ser Thr Asn Met Val Phe Val Thr Ile Pro Asp Gly Gln Ala Arg
260 265 270
Gly Leu Ala Glu Ala Leu Lys Asn Ala Gln Val Leu Val Ala Pro Glu
275 280 285
Glu Thr Met Arg Leu Val Thr His Leu Asp Val Asp Ala Ala Gly Ile
290 295 300
Glu Arg Val Ile Glu Gly Phe Arg Ala Phe Phe Arg Ser Asn
305 310 315
<210> 217
<211> 1014
<212> DNA
<213> Unknown
<220>
<223> ltaE_17
<400> 217
atgacgatcg tcgacttacg ttccgatacc gtcacgcgtc cgtcaccggg catgcgcaaa 60
gcgatgatgg acgccgaagt tggcgatgat gtgttcggcg acgatccgac ggtcaatcga 120
ctgcaagcgc gcgcggcgga gatcttcggc ttcgagtcgg cgctgctgtt tccatcgggc 180
acgcagtcca atctggcggc gctgatgagt cattgtcagc gtggcgatga ggtaatcgtc 240
ggccagctgg cgcacagtta ccgtaacgaa gccggcggcg cggccgtgct cggctcgatt 300
cagccgcaag ccattacgaa tcgcgctgac ggctcacttg atctcgctga aatagaggcg 360
gctatcaagc ctgacgaccc gcatttcgcg cggacccgtc tgcttgcgct cgagaacacg 420
atctcaggca aggtgctaac gaggtcgtat cttgagaagg ctttgcaatt ggctaaggca 480
aagaagctgt ttacgcatct cgatggcgcg cgcattttca atgccgccgc cgatcagaag 540
atgaaagtga acgagctgtg cgcgggcttc gattccgtat cggcgtgttt atcgaagggg 600
ctaggcgctc ccgccggaac agtattgctc ggaagcaagg atctgatcga gcgagcgaag 660
cgcaaccgaa aaatcctcgg cggcgcgatg cgccaggcgg ggattatcgc tgccgcgggt 720
ctttacgcac tacagaacaa catcgagcgg ttgcaaagcg atcatgacaa tgccgagcgg 780
ctggccgccg gattaagaat gctgaagctc gacgtcgaac aacatacgaa catggtgttc 840
gtgaacatgc cagccgaaca tactgctgcg ctcgctgcgc atcttgggcg acgtggcgtg 900
gtcgtgatgc cgtgggcgcc gatgcgtttg gttacgcacc tcgacgtcga ccgcgccggg 960
atcgagcgag tgctcggtgc ggtcgctgag ttcgtttccg ttaattcggt gtaa 1014
<210> 218
<211> 337
<212> PRT
<213> Unknown
<220>
<223> ltaE_17 sequence from unknown bacterial species from
environmental sample
<400> 218
Met Thr Ile Val Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Ser Pro
1 5 10 15
Gly Met Arg Lys Ala Met Met Asp Ala Glu Val Gly Asp Asp Val Phe
20 25 30
Gly Asp Asp Pro Thr Val Asn Arg Leu Gln Ala Arg Ala Ala Glu Ile
35 40 45
Phe Gly Phe Glu Ser Ala Leu Leu Phe Pro Ser Gly Thr Gln Ser Asn
50 55 60
Leu Ala Ala Leu Met Ser His Cys Gln Arg Gly Asp Glu Val Ile Val
65 70 75 80
Gly Gln Leu Ala His Ser Tyr Arg Asn Glu Ala Gly Gly Ala Ala Val
85 90 95
Leu Gly Ser Ile Gln Pro Gln Ala Ile Thr Asn Arg Ala Asp Gly Ser
100 105 110
Leu Asp Leu Ala Glu Ile Glu Ala Ala Ile Lys Pro Asp Asp Pro His
115 120 125
Phe Ala Arg Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Ser Gly Lys
130 135 140
Val Leu Thr Arg Ser Tyr Leu Glu Lys Ala Leu Gln Leu Ala Lys Ala
145 150 155 160
Lys Lys Leu Phe Thr His Leu Asp Gly Ala Arg Ile Phe Asn Ala Ala
165 170 175
Ala Asp Gln Lys Met Lys Val Asn Glu Leu Cys Ala Gly Phe Asp Ser
180 185 190
Val Ser Ala Cys Leu Ser Lys Gly Leu Gly Ala Pro Ala Gly Thr Val
195 200 205
Leu Leu Gly Ser Lys Asp Leu Ile Glu Arg Ala Lys Arg Asn Arg Lys
210 215 220
Ile Leu Gly Gly Ala Met Arg Gln Ala Gly Ile Ile Ala Ala Ala Gly
225 230 235 240
Leu Tyr Ala Leu Gln Asn Asn Ile Glu Arg Leu Gln Ser Asp His Asp
245 250 255
Asn Ala Glu Arg Leu Ala Ala Gly Leu Arg Met Leu Lys Leu Asp Val
260 265 270
Glu Gln His Thr Asn Met Val Phe Val Asn Met Pro Ala Glu His Thr
275 280 285
Ala Ala Leu Ala Ala His Leu Gly Arg Arg Gly Val Val Val Met Pro
290 295 300
Trp Ala Pro Met Arg Leu Val Thr His Leu Asp Val Asp Arg Ala Gly
305 310 315 320
Ile Glu Arg Val Leu Gly Ala Val Ala Glu Phe Val Ser Val Asn Ser
325 330 335
Val
<210> 219
<211> 1005
<212> DNA
<213> Unknown
<220>
<223> ltaE_18 sequence from unknown bacterial species from
environmental sample
<400> 219
atgccagggc ttgtcgacct gcgttccgac accgtcacac ggccttcccc cggcatgcgc 60
cgcgcgatgc tcgaggccga gctcggcgac gacgtgttcg gcgacgatcc gacggtcaac 120
cgcctgcagg cgcgcgccgc cgagatcttc ggcatggaag cgggcctgct cctgccctcg 180
ggcacccagt ccaacctggc ggcgctgatg agccattgcc agcgcggcga cgaggtgatc 240
atcggccagg aggcgcacag ctaccgctac gaagccggcg gcatggcggt gctcggctcg 300
atccagccgc gcaccgtggc caaccgtgcc gacggcagcc tcgacctccg cgaggtcgag 360
gcggcgatca acccggacga cgcgcatttc gcgaggaccc ggctgctcgc cctcgagaac 420
acgatctcgg gccgcgtgct ttccgggaag tatttacgcg aagcggtcga tcttgcaaat 480
cgaaaaaagc tggcgaccca cctggacggt gcgcgcatct tcaacgcggc ggtccacgaa 540
ggcaccggcg tgaaggagct gtgcgccggc ttcgactcgg tatcggcgtg cctgtcgaag 600
gggctgggcg ctccggccgg gacggtcctg gtgggcagga aagagctcat cgacaaggcg 660
cggcgcgcgc gcaagatgct cggcggcgcg atgcggcagg cgggcgtgat cgcggcggcc 720
gggctgtatg cgctcgagca caacgtcgag cggctcgccg aggaccacgc caacgccgtc 780
aggctgtcga aaggactggc ggagatcggc ctgcccgtcg agcagcacac caacatggtg 840
tttgcacgga ttccgcccga gcgtgtcgcg ccactggaat cccatctgaa ggatagaggc 900
gttctggtgc tgcccggcgc gcgcatgcgt ctcgtcacgc acctcgacct cgaccgcgag 960
ggcgtcgagc gcgcgctcgc ggcgttcagg gggttcttcg gctga 1005
<210> 220
<211> 334
<212> PRT
<213> Unknown
<220>
<223> ltaE_18 sequence from unknown bacterial species from
environmental sample
<400> 220
Met Pro Gly Leu Val Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Ser
1 5 10 15
Pro Gly Met Arg Arg Ala Met Leu Glu Ala Glu Leu Gly Asp Asp Val
20 25 30
Phe Gly Asp Asp Pro Thr Val Asn Arg Leu Gln Ala Arg Ala Ala Glu
35 40 45
Ile Phe Gly Met Glu Ala Gly Leu Leu Leu Pro Ser Gly Thr Gln Ser
50 55 60
Asn Leu Ala Ala Leu Met Ser His Cys Gln Arg Gly Asp Glu Val Ile
65 70 75 80
Ile Gly Gln Glu Ala His Ser Tyr Arg Tyr Glu Ala Gly Gly Met Ala
85 90 95
Val Leu Gly Ser Ile Gln Pro Arg Thr Val Ala Asn Arg Ala Asp Gly
100 105 110
Ser Leu Asp Leu Arg Glu Val Glu Ala Ala Ile Asn Pro Asp Asp Ala
115 120 125
His Phe Ala Arg Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Ser Gly
130 135 140
Arg Val Leu Ser Gly Lys Tyr Leu Arg Glu Ala Val Asp Leu Ala Asn
145 150 155 160
Arg Lys Lys Leu Ala Thr His Leu Asp Gly Ala Arg Ile Phe Asn Ala
165 170 175
Ala Val His Glu Gly Thr Gly Val Lys Glu Leu Cys Ala Gly Phe Asp
180 185 190
Ser Val Ser Ala Cys Leu Ser Lys Gly Leu Gly Ala Pro Ala Gly Thr
195 200 205
Val Leu Val Gly Arg Lys Glu Leu Ile Asp Lys Ala Arg Arg Ala Arg
210 215 220
Lys Met Leu Gly Gly Ala Met Arg Gln Ala Gly Val Ile Ala Ala Ala
225 230 235 240
Gly Leu Tyr Ala Leu Glu His Asn Val Glu Arg Leu Ala Glu Asp His
245 250 255
Ala Asn Ala Val Arg Leu Ser Lys Gly Leu Ala Glu Ile Gly Leu Pro
260 265 270
Val Glu Gln His Thr Asn Met Val Phe Ala Arg Ile Pro Pro Glu Arg
275 280 285
Val Ala Pro Leu Glu Ser His Leu Lys Asp Arg Gly Val Leu Val Leu
290 295 300
Pro Gly Ala Arg Met Arg Leu Val Thr His Leu Asp Leu Asp Arg Glu
305 310 315 320
Gly Val Glu Arg Ala Leu Ala Ala Phe Arg Gly Phe Phe Gly
325 330
<210> 221
<211> 939
<212> DNA
<213> Unknown
<220>
<223> ltaE_19 sequence from unknown bacterial species from
environmental sample
<400> 221
atgcttgaag cagagctcgg cgacgatgtc ttcggcgacg atcccacggt gaaccggctc 60
caggcgaggg cggccgagct cttcggtttc gaggcagcgc ttttctttcc gtccggcacg 120
caatccaacc tcgcggcgct catgagccac tgccagcgcg gcgaggaggt gatcctcggt 180
cacgaagcgc acagctatcg ctacgaggcg ggcggcgccg cggtgctggg gtcgatccag 240
ttgcaggtgg tggccaaccg gcccgacggc acgcttgacc ttgccgaggt cgaagcggcg 300
atcaagcccg acgatccgca ctttgcaaag acacgcctcc ttgctctcga gaacaccatc 360
ggcgggcgcg ccttgccgcg cgcgtatctg gagcaggcat tgaagctcgc gcagcgccgg 420
ggtctgcaaa cccatttgga cggcgcgcga gtcttcaacg ccgcggtgta tttcggaacg 480
ggcgtcaagg cgctttgcgc cgggttcgat tcggtgtcgg cgtgcctctc caaaggattg 540
ggcgcaccgg caggaacggt tctactgggc agcaaggaac tcatcgcaag agcgcggcgg 600
gcgcgcaaga ttctcggtgg cgcgatgcgc caggcgggtg tcctcgccgc ggccgggctc 660
tacgcgctcg agaacaacgt cgagcgcctc gccgaggacc atgagaacgc gcgaggactc 720
gcgagcggcc tgcgcgcgct ggacctcgcg gtcgagcagc acaccaacat ggtcttcgtg 780
cgcgttgcgc ccgagcacgt ggagcggctc gcggcccacc tcgcaaatcg cggcgtcgcc 840
gtgctgccag cagcacgcat gcggctcgtc acgcacctgg acgtcgacag cgctgcggtg 900
gagcgcgccg tcggcgcgtt cagagcgttc ttcgcctag 939
<210> 222
<211> 312
<212> PRT
<213> Unknown
<220>
<223> ltaE_19 sequence from unknown bacterial species from
environmental sample
<400> 222
Met Leu Glu Ala Glu Leu Gly Asp Asp Val Phe Gly Asp Asp Pro Thr
1 5 10 15
Val Asn Arg Leu Gln Ala Arg Ala Ala Glu Leu Phe Gly Phe Glu Ala
20 25 30
Ala Leu Phe Phe Pro Ser Gly Thr Gln Ser Asn Leu Ala Ala Leu Met
35 40 45
Ser His Cys Gln Arg Gly Glu Glu Val Ile Leu Gly His Glu Ala His
50 55 60
Ser Tyr Arg Tyr Glu Ala Gly Gly Ala Ala Val Leu Gly Ser Ile Gln
65 70 75 80
Leu Gln Val Val Ala Asn Arg Pro Asp Gly Thr Leu Asp Leu Ala Glu
85 90 95
Val Glu Ala Ala Ile Lys Pro Asp Asp Pro His Phe Ala Lys Thr Arg
100 105 110
Leu Leu Ala Leu Glu Asn Thr Ile Gly Gly Arg Ala Leu Pro Arg Ala
115 120 125
Tyr Leu Glu Gln Ala Leu Lys Leu Ala Gln Arg Arg Gly Leu Gln Thr
130 135 140
His Leu Asp Gly Ala Arg Val Phe Asn Ala Ala Val Tyr Phe Gly Thr
145 150 155 160
Gly Val Lys Ala Leu Cys Ala Gly Phe Asp Ser Val Ser Ala Cys Leu
165 170 175
Ser Lys Gly Leu Gly Ala Pro Ala Gly Thr Val Leu Leu Gly Ser Lys
180 185 190
Glu Leu Ile Ala Arg Ala Arg Arg Ala Arg Lys Ile Leu Gly Gly Ala
195 200 205
Met Arg Gln Ala Gly Val Leu Ala Ala Ala Gly Leu Tyr Ala Leu Glu
210 215 220
Asn Asn Val Glu Arg Leu Ala Glu Asp His Glu Asn Ala Arg Gly Leu
225 230 235 240
Ala Ser Gly Leu Arg Ala Leu Asp Leu Ala Val Glu Gln His Thr Asn
245 250 255
Met Val Phe Val Arg Val Ala Pro Glu His Val Glu Arg Leu Ala Ala
260 265 270
His Leu Ala Asn Arg Gly Val Ala Val Leu Pro Ala Ala Arg Met Arg
275 280 285
Leu Val Thr His Leu Asp Val Asp Ser Ala Ala Val Glu Arg Ala Val
290 295 300
Gly Ala Phe Arg Ala Phe Phe Ala
305 310
<210> 223
<211> 942
<212> DNA
<213> Unknown
<220>
<223> ltaE_20 sequence from unknown bacterial species from
environmental sample
<400> 223
atggcggagg ccgaggtcgg cgacgatgtg tttggcgacg accccacggt gaaccggctg 60
caggcgcgcg cggcggaggt gctcgggttc gaggcggcgc tgatcttccc ctcgggaacg 120
cagtcgaacc tagccgcgct gatgacgcac tgtcagcggg gcgacgaaat gatcgtcggc 180
caagaggcgc atacctacgt ccatgaggcg ggcggcacct ccgtgctcgg tgcgatccat 240
ccgcacgttg tccccaacct gcccgacggc acgctcgacc tgagcgacgt ggaggcggcc 300
atcaagcccg acgatccgca ctacccgcgg acacggctcc tcgccctcga gaatacaatc 360
ggcggacggg cggtgccgcg cgcgtatctc gagcgcgcgg ttggtcttgc aaggcgccgc 420
cgcctcgcca cgcatctcga cggtgcgcgg atcttcaacg ccgcggtggc gctgaatacc 480
gatgtgagga atctgtgtgc gggattcgac tccgtgtccg tgtgtctgtc gaagggattg 540
ggcgcaccgg tcgggacgct cctcctcggc agcgccgact tcatcgcgcg cgcgacgcgc 600
gtgcggaaga tccttggggg tgggatgcgc caggtcggcg tactcgctgc ggcaggactg 660
tatgcgctgg aacacaactc gagccgcctg cacgtcgacc acgagcacgc cgcgcggctg 720
gcgcagggcc tcgggcggct gggccttccg gtcgagcatc acaccaacat ggtgttcgtg 780
cgcgtcggtg ctgacgcgga ggcgctggcg gggcatctgg agcgtcacgg agtcttggta 840
ctggcggagc cacgtatgcg gctcgtcacg catctcgatg tcgacgcggc ggggatcgat 900
cgagcggtcg aggcgtttac ggcttttcgc tggtcacgat aa 942
<210> 224
<211> 313
<212> PRT
<213> Unknown
<220>
<223> ltaE_20 sequence from unknown bacterial species from
environmental sample
<400> 224
Met Ala Glu Ala Glu Val Gly Asp Asp Val Phe Gly Asp Asp Pro Thr
1 5 10 15
Val Asn Arg Leu Gln Ala Arg Ala Ala Glu Val Leu Gly Phe Glu Ala
20 25 30
Ala Leu Ile Phe Pro Ser Gly Thr Gln Ser Asn Leu Ala Ala Leu Met
35 40 45
Thr His Cys Gln Arg Gly Asp Glu Met Ile Val Gly Gln Glu Ala His
50 55 60
Thr Tyr Val His Glu Ala Gly Gly Thr Ser Val Leu Gly Ala Ile His
65 70 75 80
Pro His Val Val Pro Asn Leu Pro Asp Gly Thr Leu Asp Leu Ser Asp
85 90 95
Val Glu Ala Ala Ile Lys Pro Asp Asp Pro His Tyr Pro Arg Thr Arg
100 105 110
Leu Leu Ala Leu Glu Asn Thr Ile Gly Gly Arg Ala Val Pro Arg Ala
115 120 125
Tyr Leu Glu Arg Ala Val Gly Leu Ala Arg Arg Arg Arg Leu Ala Thr
130 135 140
His Leu Asp Gly Ala Arg Ile Phe Asn Ala Ala Val Ala Leu Asn Thr
145 150 155 160
Asp Val Arg Asn Leu Cys Ala Gly Phe Asp Ser Val Ser Val Cys Leu
165 170 175
Ser Lys Gly Leu Gly Ala Pro Val Gly Thr Leu Leu Leu Gly Ser Ala
180 185 190
Asp Phe Ile Ala Arg Ala Thr Arg Val Arg Lys Ile Leu Gly Gly Gly
195 200 205
Met Arg Gln Val Gly Val Leu Ala Ala Ala Gly Leu Tyr Ala Leu Glu
210 215 220
His Asn Ser Ser Arg Leu His Val Asp His Glu His Ala Ala Arg Leu
225 230 235 240
Ala Gln Gly Leu Gly Arg Leu Gly Leu Pro Val Glu His His Thr Asn
245 250 255
Met Val Phe Val Arg Val Gly Ala Asp Ala Glu Ala Leu Ala Gly His
260 265 270
Leu Glu Arg His Gly Val Leu Val Leu Ala Glu Pro Arg Met Arg Leu
275 280 285
Val Thr His Leu Asp Val Asp Ala Ala Gly Ile Asp Arg Ala Val Glu
290 295 300
Ala Phe Thr Ala Phe Arg Trp Ser Arg
305 310
<210> 225
<211> 1029
<212> DNA
<213> Unknown
<220>
<223> ltaE_21 sequence from unknown bacterial species from
environmental sample
<400> 225
gtgagcacga tcgaccttcg cagcgacacc atcacgcggc ccggccccgt catgcgtcgc 60
gccatggccg aggcggaagt gggcgacgac gtcttcggcg acgaccccac cgtcaaccgc 120
ctccaggacg cgtgcgccga gcggttcggg atggaggccg ggctgctgtt tcccaccggc 180
acgcagtcca atctcgccgc cctgatgtcc cactgcgccc gcggcgagga ggtgatcgtc 240
gggcaggagg cccacaccta ccggtacgag gccggcggca tggccgtcct cggctcgatc 300
cagccgcagc cgctccagaa ccggtccgag ggcacgctcg acctggccga ggtggaggcg 360
gcgatcaagc cggacgaccc ccacttcgcg gtgacgaaac tggttgccct ggagaacacg 420
atcggcggta aggtcctgcc tcgggcctac ttggccgacg cggtcgccct ggcgcgccgc 480
cggggacttt cgctgcacct cgacggcgcc cgcgtcttca atgcggcggt gaagctcggc 540
gtgccggtgg accggctgtg cgaggggttc gacacggtgt cggtgtgcct ctcgaaggga 600
ctgggcgcgc ccgcggggac agtgctcgtc ggccgccgcg acgtcatcga ccgcgcgaag 660
cgcgtgcgga agatgctggg cggcacgatg cgccagtccg gcgtcctcgc cgccgcgggc 720
ctctacgcgc tggcgcacca cgtggaccgc ctcgccgaag accacgccaa cgcccagcgc 780
ctcggccggg cgctcgaagg gctggggctg agggtggagc cggtgcagac gaacatggtc 840
ttcgtccacg tcccccgcga gtccgagacg gcgctgcgcg cccacctcgc gtcgcgaggc 900
gtgatgaccc tccccggccc gcggctgcgg cttgtcaccc acctcgacgt cgacgccgcc 960
ggaatcgacc gcgccgtcga agccttcgcc agtttcttcc gggcggcgaa tctgaaatct 1020
caaatttga 1029
<210> 226
<211> 342
<212> PRT
<213> Unknown
<220>
<223> ltaE_21 sequence from unknown bacterial species from
environmental sample
<400> 226
Val Ser Thr Ile Asp Leu Arg Ser Asp Thr Ile Thr Arg Pro Gly Pro
1 5 10 15
Val Met Arg Arg Ala Met Ala Glu Ala Glu Val Gly Asp Asp Val Phe
20 25 30
Gly Asp Asp Pro Thr Val Asn Arg Leu Gln Asp Ala Cys Ala Glu Arg
35 40 45
Phe Gly Met Glu Ala Gly Leu Leu Phe Pro Thr Gly Thr Gln Ser Asn
50 55 60
Leu Ala Ala Leu Met Ser His Cys Ala Arg Gly Glu Glu Val Ile Val
65 70 75 80
Gly Gln Glu Ala His Thr Tyr Arg Tyr Glu Ala Gly Gly Met Ala Val
85 90 95
Leu Gly Ser Ile Gln Pro Gln Pro Leu Gln Asn Arg Ser Glu Gly Thr
100 105 110
Leu Asp Leu Ala Glu Val Glu Ala Ala Ile Lys Pro Asp Asp Pro His
115 120 125
Phe Ala Val Thr Lys Leu Val Ala Leu Glu Asn Thr Ile Gly Gly Lys
130 135 140
Val Leu Pro Arg Ala Tyr Leu Ala Asp Ala Val Ala Leu Ala Arg Arg
145 150 155 160
Arg Gly Leu Ser Leu His Leu Asp Gly Ala Arg Val Phe Asn Ala Ala
165 170 175
Val Lys Leu Gly Val Pro Val Asp Arg Leu Cys Glu Gly Phe Asp Thr
180 185 190
Val Ser Val Cys Leu Ser Lys Gly Leu Gly Ala Pro Ala Gly Thr Val
195 200 205
Leu Val Gly Arg Arg Asp Val Ile Asp Arg Ala Lys Arg Val Arg Lys
210 215 220
Met Leu Gly Gly Thr Met Arg Gln Ser Gly Val Leu Ala Ala Ala Gly
225 230 235 240
Leu Tyr Ala Leu Ala His His Val Asp Arg Leu Ala Glu Asp His Ala
245 250 255
Asn Ala Gln Arg Leu Gly Arg Ala Leu Glu Gly Leu Gly Leu Arg Val
260 265 270
Glu Pro Val Gln Thr Asn Met Val Phe Val His Val Pro Arg Glu Ser
275 280 285
Glu Thr Ala Leu Arg Ala His Leu Ala Ser Arg Gly Val Met Thr Leu
290 295 300
Pro Gly Pro Arg Leu Arg Leu Val Thr His Leu Asp Val Asp Ala Ala
305 310 315 320
Gly Ile Asp Arg Ala Val Glu Ala Phe Ala Ser Phe Phe Arg Ala Ala
325 330 335
Asn Leu Lys Ser Gln Ile
340
<210> 227
<211> 1023
<212> DNA
<213> Unknown
<220>
<223> ltaE_22 sequence from unknown bacterial species from
environmental sample
<400> 227
atgagcgcgc ccgtcgatct tcgctccgat accgtcacgc gcccctcgcc cgggatgcgc 60
aaggcgatgc tggaagccga gctcggcgac gacgtgttcg gcgacgaccc gaccgtcaac 120
cgcctccagg cgcgcgccgc cgagatcttc ggcttcgagg cggcgctgct ctttccctcc 180
ggcacgcaat cgaacctcgc cgcgctcatg agccactgcc agcgcggcga cgaggtgatc 240
ctcggcatgg aggcgcacag ctaccgctac gaggcgggcg gcctctcggt gctcggctcg 300
attcagccgc aggcgattcc caaccgtccg gacgggaccc tcgacctggc cgaggttgaa 360
gccgcgatca agcccgacga cccgcacttt gcccgctccc ggttgctcgc tctggaaaac 420
acgatcaccg gccgcgttct caagcgtgag tacctgggca aggctgtgga gctggcaaga 480
cggaagaatc tctcgattca cctcgacggg gcgcgcgtct tcaacgccgc cacagcgctc 540
accatgaagg tgaaggagct gtgcgccggc ttcgactcgg tgtcgtcgtg cctctcgaag 600
gggctcggcg cgccggccgg caccgtcctg ctgggtaata gggatttcat tcaaaaagcc 660
aaacgggcaa gaaagatcct cggcggcggg atgcggcagg cgggcgtgat cgccgccgcg 720
ggcctctacg cgctcgagaa caacgtcgag cggctgcgcg aggaccacga gaacgccgag 780
cgcctcgcgc gcggactgcg cgagctcggg ctcgaagccc agctcaacac gaacatggtg 840
ctcctgaaga ttgagccggc aaaagcacaa ccactagccg agagacttct tcagtctaag 900
attctcgtat tgccgcgcgc gccgatgcgg ctggtgacgc atcttgacgt cgacaaggca 960
ggaattgatc gcgcgctatc ggcgttccgc gcgttcttct cgcaaaacga attacgaccc 1020
tga 1023
<210> 228
<211> 340
<212> PRT
<213> Unknown
<220>
<223> ltaE_22 sequence from unknown bacterial species from
environmental sample
<400> 228
Met Ser Ala Pro Val Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Ser
1 5 10 15
Pro Gly Met Arg Lys Ala Met Leu Glu Ala Glu Leu Gly Asp Asp Val
20 25 30
Phe Gly Asp Asp Pro Thr Val Asn Arg Leu Gln Ala Arg Ala Ala Glu
35 40 45
Ile Phe Gly Phe Glu Ala Ala Leu Leu Phe Pro Ser Gly Thr Gln Ser
50 55 60
Asn Leu Ala Ala Leu Met Ser His Cys Gln Arg Gly Asp Glu Val Ile
65 70 75 80
Leu Gly Met Glu Ala His Ser Tyr Arg Tyr Glu Ala Gly Gly Leu Ser
85 90 95
Val Leu Gly Ser Ile Gln Pro Gln Ala Ile Pro Asn Arg Pro Asp Gly
100 105 110
Thr Leu Asp Leu Ala Glu Val Glu Ala Ala Ile Lys Pro Asp Asp Pro
115 120 125
His Phe Ala Arg Ser Arg Leu Leu Ala Leu Glu Asn Thr Ile Thr Gly
130 135 140
Arg Val Leu Lys Arg Glu Tyr Leu Gly Lys Ala Val Glu Leu Ala Arg
145 150 155 160
Arg Lys Asn Leu Ser Ile His Leu Asp Gly Ala Arg Val Phe Asn Ala
165 170 175
Ala Thr Ala Leu Thr Met Lys Val Lys Glu Leu Cys Ala Gly Phe Asp
180 185 190
Ser Val Ser Ser Cys Leu Ser Lys Gly Leu Gly Ala Pro Ala Gly Thr
195 200 205
Val Leu Leu Gly Asn Arg Asp Phe Ile Gln Lys Ala Lys Arg Ala Arg
210 215 220
Lys Ile Leu Gly Gly Gly Met Arg Gln Ala Gly Val Ile Ala Ala Ala
225 230 235 240
Gly Leu Tyr Ala Leu Glu Asn Asn Val Glu Arg Leu Arg Glu Asp His
245 250 255
Glu Asn Ala Glu Arg Leu Ala Arg Gly Leu Arg Glu Leu Gly Leu Glu
260 265 270
Ala Gln Leu Asn Thr Asn Met Val Leu Leu Lys Ile Glu Pro Ala Lys
275 280 285
Ala Gln Pro Leu Ala Glu Arg Leu Leu Gln Ser Lys Ile Leu Val Leu
290 295 300
Pro Arg Ala Pro Met Arg Leu Val Thr His Leu Asp Val Asp Lys Ala
305 310 315 320
Gly Ile Asp Arg Ala Leu Ser Ala Phe Arg Ala Phe Phe Ser Gln Asn
325 330 335
Glu Leu Arg Pro
340
<210> 229
<211> 1017
<212> DNA
<213> Unknown
<220>
<223> ltaE_23 sequence from unknown bacterial species from
environmental sample
<400> 229
atgacggttg acctacgctc cgataccgtc acgcgtcctg gcactggaat gcgcaaggcg 60
atgatggaag ccgagctcgg cgacgatgtg ttcggcgacg acccgaccgt caaccgcctg 120
caggcgcgcg ccgccgagat cttcggcttc gaggcggcgc tcctctttcc ctccggcacg 180
caatcgaacc tggccgcgct catgagccat tgccagcgcg gcgacgaggt gatcctcggc 240
atggaggcgc atagctaccg ctacgaggcg ggcggcctct cggtgctcgg ctcgatccag 300
ccgcaggcga ttcccaaccg tccggacggc acgctcgatc tcgcggaagt ggaagcggcg 360
atcaagcccg acgatccgca cttcgcgcga acacggttgc tggcgcttga gaacaccatc 420
accggccgcg tgctctcgag aagttatctg gaacaggcca tcgggctggc gaagaaaaaa 480
aacctctcga ttcacctcga cggggctcgc gtcttcaacg ccgcaagcgc gctcaagatg 540
ccggtgaaag acctttgcgc cggattcgac tcggtgtcgt cgtgtctctc gaagggcctc 600
ggtgcgcccg ccggcacagt gctcttaggt agtaaacctt tcatagaaaa agcaaagcgc 660
gcacgcaaga tcctcggcgg cggcatgcgg caggcgggcg tgatcgcggc ggcggggctt 720
tatgcgctcg agcacaacgt tgaaagattg aataccgatc atgagaacgc ggagcgcctt 780
gcgcgcgggc tgcgcgagct cgggctcgag gcccagctca acacgaacat ggtgttgttg 840
cgacttcccg ccgagagggc ggcgccactg gaagcacacc tgaagaaaca tgatgtgctg 900
gtgctgccgc gcgcgccgat gcggctcgtg acgcacctcg acgtcgaccg ggccggcatc 960
gatcgggcgc tcgccgggtt ccgcgcgttc ttcacgcaga aagaattacg accctga 1017
<210> 230
<211> 338
<212> PRT
<213> Unknown
<220>
<223> ltaE_23 sequence from unknown bacterial species from
environmental sample
<400> 230
Met Thr Val Asp Leu Arg Ser Asp Thr Val Thr Arg Pro Gly Thr Gly
1 5 10 15
Met Arg Lys Ala Met Met Glu Ala Glu Leu Gly Asp Asp Val Phe Gly
20 25 30
Asp Asp Pro Thr Val Asn Arg Leu Gln Ala Arg Ala Ala Glu Ile Phe
35 40 45
Gly Phe Glu Ala Ala Leu Leu Phe Pro Ser Gly Thr Gln Ser Asn Leu
50 55 60
Ala Ala Leu Met Ser His Cys Gln Arg Gly Asp Glu Val Ile Leu Gly
65 70 75 80
Met Glu Ala His Ser Tyr Arg Tyr Glu Ala Gly Gly Leu Ser Val Leu
85 90 95
Gly Ser Ile Gln Pro Gln Ala Ile Pro Asn Arg Pro Asp Gly Thr Leu
100 105 110
Asp Leu Ala Glu Val Glu Ala Ala Ile Lys Pro Asp Asp Pro His Phe
115 120 125
Ala Arg Thr Arg Leu Leu Ala Leu Glu Asn Thr Ile Thr Gly Arg Val
130 135 140
Leu Ser Arg Ser Tyr Leu Glu Gln Ala Ile Gly Leu Ala Lys Lys Lys
145 150 155 160
Asn Leu Ser Ile His Leu Asp Gly Ala Arg Val Phe Asn Ala Ala Ser
165 170 175
Ala Leu Lys Met Pro Val Lys Asp Leu Cys Ala Gly Phe Asp Ser Val
180 185 190
Ser Ser Cys Leu Ser Lys Gly Leu Gly Ala Pro Ala Gly Thr Val Leu
195 200 205
Leu Gly Ser Lys Pro Phe Ile Glu Lys Ala Lys Arg Ala Arg Lys Ile
210 215 220
Leu Gly Gly Gly Met Arg Gln Ala Gly Val Ile Ala Ala Ala Gly Leu
225 230 235 240
Tyr Ala Leu Glu His Asn Val Glu Arg Leu Asn Thr Asp His Glu Asn
245 250 255
Ala Glu Arg Leu Ala Arg Gly Leu Arg Glu Leu Gly Leu Glu Ala Gln
260 265 270
Leu Asn Thr Asn Met Val Leu Leu Arg Leu Pro Ala Glu Arg Ala Ala
275 280 285
Pro Leu Glu Ala His Leu Lys Lys His Asp Val Leu Val Leu Pro Arg
290 295 300
Ala Pro Met Arg Leu Val Thr His Leu Asp Val Asp Arg Ala Gly Ile
305 310 315 320
Asp Arg Ala Leu Ala Gly Phe Arg Ala Phe Phe Thr Gln Lys Glu Leu
325 330 335
Arg Pro
<210> 231
<211> 954
<212> DNA
<213> Unknown
<220>
<223> ltaE_24 sequence from unknown bacterial species from
environmental sample
<400> 231
atggaagccg aactcggcga cgacgtcttc ggcgaagacc cgaccgtcaa ccgcctgcag 60
gcgcgcgcgg ccgagatgtt cggcttcgag gtggcgctcc tctttccctc cggcacgcaa 120
tcgaacctgg ccgcgctcat gagccactgc cagcgcggcg acgaggtgat cctcgggatg 180
gaggcgcaca gttaccgcta cgaagcgggc ggcctctcgg tgctcggctc gatccagccg 240
caggcgatcc ccaatcgccc cgacggcacg ctcgatctcg ccgaagtgga agccgcgatc 300
aagcccgacg atccgcactt cgcgcgcacc cgcttgctcg ctttggaaaa cacgatcacg 360
ggccgcgtgc tctcaagaag ttatctggaa caggccatcg gggtggcgaa gaaaaaaaac 420
ctctcgattc acctcgacgg cgcgcgcgtc ttcaatgctg ccacgcagct caagatgaag 480
gtaaaggacc tctgcgcggg cttcgactcg gtgtcctcgt gcctctcgaa ggggctcggt 540
gcgcccgccg gcacagtgct cttaggtagc aaagctttca tggaaaaagc aaagcgggca 600
agaaaaatcc tcggcggcgg gatgcggcag gcaggcgtga tcgccgccgc gggactctac 660
gcgctcgaga acaacgtcga gcgcctgcgc gaggaccacg agaacgccga gcgccttgcg 720
cgcgggctgc gcgaggtcgg gctcgaggcg cagctcaaca ccaacatggt tcttctcaag 780
atcccagtgg ataaagctgc accgctggaa gcgcatatga agaggaacaa tgtgctcgtg 840
ctgccgcgcg cgccgatgcg gctcgtgacg cacctcgacg tcgaccgggc cggcatcgat 900
cgcgcgctcg ccgggttccg cgcgttcttc gcgcagaaag aattacgacc ctga 954
<210> 232
<211> 317
<212> PRT
<213> Unknown
<220>
<223> ltaE_24 sequence from unknown bacterial species from
environmental sample
<400> 232
Met Glu Ala Glu Leu Gly Asp Asp Val Phe Gly Glu Asp Pro Thr Val
1 5 10 15
Asn Arg Leu Gln Ala Arg Ala Ala Glu Met Phe Gly Phe Glu Val Ala
20 25 30
Leu Leu Phe Pro Ser Gly Thr Gln Ser Asn Leu Ala Ala Leu Met Ser
35 40 45
His Cys Gln Arg Gly Asp Glu Val Ile Leu Gly Met Glu Ala His Ser
50 55 60
Tyr Arg Tyr Glu Ala Gly Gly Leu Ser Val Leu Gly Ser Ile Gln Pro
65 70 75 80
Gln Ala Ile Pro Asn Arg Pro Asp Gly Thr Leu Asp Leu Ala Glu Val
85 90 95
Glu Ala Ala Ile Lys Pro Asp Asp Pro His Phe Ala Arg Thr Arg Leu
100 105 110
Leu Ala Leu Glu Asn Thr Ile Thr Gly Arg Val Leu Ser Arg Ser Tyr
115 120 125
Leu Glu Gln Ala Ile Gly Val Ala Lys Lys Lys Asn Leu Ser Ile His
130 135 140
Leu Asp Gly Ala Arg Val Phe Asn Ala Ala Thr Gln Leu Lys Met Lys
145 150 155 160
Val Lys Asp Leu Cys Ala Gly Phe Asp Ser Val Ser Ser Cys Leu Ser
165 170 175
Lys Gly Leu Gly Ala Pro Ala Gly Thr Val Leu Leu Gly Ser Lys Ala
180 185 190
Phe Met Glu Lys Ala Lys Arg Ala Arg Lys Ile Leu Gly Gly Gly Met
195 200 205
Arg Gln Ala Gly Val Ile Ala Ala Ala Gly Leu Tyr Ala Leu Glu Asn
210 215 220
Asn Val Glu Arg Leu Arg Glu Asp His Glu Asn Ala Glu Arg Leu Ala
225 230 235 240
Arg Gly Leu Arg Glu Val Gly Leu Glu Ala Gln Leu Asn Thr Asn Met
245 250 255
Val Leu Leu Lys Ile Pro Val Asp Lys Ala Ala Pro Leu Glu Ala His
260 265 270
Met Lys Arg Asn Asn Val Leu Val Leu Pro Arg Ala Pro Met Arg Leu
275 280 285
Val Thr His Leu Asp Val Asp Arg Ala Gly Ile Asp Arg Ala Leu Ala
290 295 300
Gly Phe Arg Ala Phe Phe Ala Gln Lys Glu Leu Arg Pro
305 310 315
<210> 233
<211> 102
<212> PRT
<213> Artificial Sequence
<220>
<223> Strain 331829 gapA truncation
<400> 233
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Asn Glu Gly Leu Arg Gln His Arg Gln Gly Cys Phe Leu Val
65 70 75 80
Arg Gln Arg Val Gly Leu His Leu Pro Ala Pro Ala Ser Asp Arg Ala
85 90 95
Arg Ser Phe Gln Ala Leu
100
<210> 234
<211> 71
<212> PRT
<213> Artificial Sequence
<220>
<223> Strain 331831 gapA truncation
<400> 234
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu
50 55 60
Lys Phe Asp Ser Ile Ser Arg
65 70
<210> 235
<211> 93
<212> PRT
<213> Artificial Sequence
<220>
<223> Strain 331897 gapA truncation
<400> 235
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala Thr Thr Leu Thr Ser
85 90
<210> 236
<211> 33
<212> PRT
<213> Artificial Sequence
<220>
<223> Strain 331904 gapA truncation
<400> 236
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Val Ala Gly Ala Lys Lys Val Ile Ile Ser Arg Cys Lys Arg
20 25 30
Gly
<210> 237
<211> 63
<212> DNA
<213> Artificial Sequence
<220>
<223> pMB038
<400> 237
accgtgcgtg ttgactattt tacctctggc ggtgatactg gttgcatgta ctaaggaggt 60
tgt 63
<210> 238
<211> 57
<212> DNA
<213> Escherichia coli
<400> 238
ggaaacacag aaaaaagccc gcacctgaca gtgcgggctt tttttttcga ccaaagg 57
<210> 239
<211> 5953
<212> DNA
<213> Artificial Sequence
<220>
<223> linear p15A plasmid backbone
<400> 239
ggcgtatcac gaggcccttt cgtctcgcgc gtttcggtga tgacggtgaa aacctctgac 60
acatgcagct cccggagacg gtcacagctt gtctgtaagc ggatgccggg agcagacaag 120
cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac tatgcggcat 180
cagagcagat tgtactgaga gtgcaccata ccactttttc gtgacgcgcg gttttgaaaa 240
catagacaag tttttggcgt cgttgttaat ttcgaagagg atgtccaata ttttttttaa 300
ggaataagga tacttcaaga ctagattccc ccctgcattc ccatcagaac cgtaaacctt 360
ggcgctttcc ttgggaagta ttcaagaagt gccttgtccg gtttctgtgg ctcacaaacc 420
agcgcgcccg atatggcttt cttttcactt atgaatgtac cagtacggga caattagaac 480
gctcctgtaa caatctcttt gcaaatgtgg ggttacattc taaccatgtc acactgctga 540
cgaaattcaa agtaaaaaaa aatgggacca cgtcttgaga acgatagatt ttctttattt 600
tacattgaac agtcgttgtc tcagcgcgct ttatgttttc attcatactt catattataa 660
aataacaaaa gaagaatttc atattcacgc ccaagaaatc aggctgcttt ccaaatgcaa 720
ttgacacttc attagccatc acacaaaact ctttcttgct ggagcttctt ttaaaaaaga 780
cctcagtaca ccaaacacgt tacccgacct cgttatttta cgacaactat gataaaattc 840
tgaagaaaaa ataaaaaaat tttcatactt cttgctttta tttaaaccat tgaatgattt 900
cttttgaaca aaactacctg tttcaccaaa ggaaatagaa agaaaaaatc aattagaaga 960
aaacaaaaaa caaaatgtct gttattaatt tcacaggtag ttctggtcca ttggtgaaag 1020
tttgcggctt gcagagcaca gaggccgcag aatgtgctct agattccgat gctgacttgc 1080
tgggtattat atgtgtgccc aatagaaaga gaacaattga cccggttatt gcaaggaaaa 1140
tttcaagtct tgtaaaagca tataaaaata gttcaggcac tccgaaatac ttggttggcg 1200
tgtttcgtaa tcaacctaag gaggatgttt tggctctggt caatgattac ggcattgata 1260
tcgtccaact gcatggagat gagtcgtggc aagaatacca agagttcctc ggtttgccag 1320
ttattaaaag actcgtattt ccaaaagact gcaacatact actcagtgca gcttcacaga 1380
aacctcattc gtttattccc ttgtttgatt cagaagcagg tgggacaggt gaacttttgg 1440
attggaactc gatttctgac tgggttggaa ggcaagagag ccccgaaagc ttacatttta 1500
tgttagctgg tggactgacg ccagaaaatg ttggtgatgc gcttagatta aatggcgtta 1560
ttggtgttga tgtaagcgga ggtgtggaga caaatggtgt aaaagactct aacaaaatag 1620
caaatttcgt caaaaatgct aagaaatagg ttattactga gtagtattta tttaagtatt 1680
gtttgtgcac ttgcctgcag gccttttgaa aagcaagcat aaaagatcta aacataaaat 1740
ctgtaaaata acaagatgta aagataatgc taaatcattt ggctttttga ttgattgtac 1800
aggactgggt ggaatccctt ctgcagcacc tggattaccc tgttatccct agtcatggtc 1860
gtcacagagc tggaagcggc agcgagaatt atcgcgatcg tggcggtgcc cgcaggcatg 1920
acaaacatcg taaatgccgc gtttcgtgtg ccgtggccgc ccaggacgtg tcagcgccgc 1980
caccacctgc accgaatcgg cagcagcgtc gcgcgtcgaa aaagcgcaca ggcggcaaga 2040
agcgataagc tgcacgaata cctgaaaaat gttgaacgcc ccgtgagcgg taactcacag 2100
ggcgtcggct aacccccagt ccaaacctgg gagaaagcgc tcaaaaatga ctctagcgga 2160
ttcacgagac attgacacac cggcctggaa attttccgct gatctgttcg acacccatcc 2220
cgagctcgcg ctgcgatcac gtggctggac gagcgaagac cgccgcgaat tcctcgctca 2280
cctgggcaga gaaaatttcc agggcagcaa gacccgcgac ttcgccagcg cttggatcaa 2340
agacccggac acggagaaac acagccgaag ttataccgag ttggttcaaa atcgcttgcc 2400
cggtgccagt atgttgctct gacgcacgcg cagcacgcag ccgtgcttgt cctggacatt 2460
gatgtgccga gccaccaggc cggcgggaaa atcgagcacg taaaccccga ggtctacgcg 2520
attttggagc gctgggcacg cctggaaaaa gcgccagctt ggatcggcgt gaatccactg 2580
agcgggaaat gccagctcat ctggctcatt gatccggtgt atgccgcagc aggcatgagc 2640
agcccgaata tgcgcctgct ggctgcaacg accgaggaaa tgacccgcgt tttcggcgct 2700
gaccaggctt tttcacatag gctgagccgt ggccactgca ctctccgacg atcccagccg 2760
taccgctggc atgcccagca caatcgcgtg gatcgcctag ctgatcttat ggaggttgct 2820
cgcatgatct caggcacaga aaaacctaaa aaacgctatg agcaggagtt ttctagcgga 2880
cgggcacgta tcgaagcggc aagaaaagcc actgcggaag caaaagcact tgccacgctt 2940
gaagcaagcc tgccgagcgc cgctgaagcg tctggagagc tgatcgacgg cgtccgtgtc 3000
ctctggactg ctccagggcg tgccgcccgt gatgagacgg cttttcgcca cgctttgact 3060
gtgggatacc agttaaaagc ggctggtgag cgcctaaaag acaccaaggg tcatcgagcc 3120
tacgagcgtg cctacaccgt cgctcaggcg gtcggaggag gccgtgagcc tgatctgccg 3180
ccggactgtg accgccagac ggattggccg cgacgtgtgc gcggctacgt cgctaaaggc 3240
cagccagtcg tccctgctcg tcagacagag acgcagagcc agccgaggcg aaaagctctg 3300
gccactatgg gaagacgtgg cggtaaaaag gccgcagaac gctggaaaga cccaaacagt 3360
gagtacgccc gagcacagcg agaaaaacta gctaagtcca gtcaacgaca agctaggaaa 3420
gctaaaggaa atcgcttgac cattgcaggt tggtttatga ctgttgaggg agagactggc 3480
tcgtggccga caatcaatga agctatgtct gaatttagcg tgtcacgtca gaccgtgaat 3540
agagcactta aggtctgcgg gcattgaact tccacgagga cgccgaaagc ttcccagtaa 3600
atgtgccatc tcgtaggcag aaaacggttc ccccgtaggg tctctctctt ggcctccttt 3660
ctaggtcggg ctgattgctc ttgaagctct ctaggggggc tcacaccata ggcagataac 3720
gttccccacc ggctcgcctc gtaagcgcac aaggactgct cccaaataat gagtagtcct 3780
catctccctc aagcaggcgc cggcggtact gccatcctcg agactaccta gctgcatttt 3840
caggaggaag cgatgggcgg ccgcacacct tcttaataag atgatcttct tgagatcgtt 3900
ttggtctgcg cgtaatctct tgctctgaaa acgaaaaaac cgccttgcag ggcggttttt 3960
cgaaggttct ctgagctacc aactctttga accgaggtaa ctggcttgga ggagcgcagt 4020
caccaaaact tgtcctttca gtttagcctt aaccggcgca tgacttcaag actaactcct 4080
ctaaatcaat taccagtggc tgctgccagt ggtgcttttg catgtctttc cgggttggac 4140
tcaagacgat agttaccgga taaggcgcag cggtcggact gaacgggggg ttcgtgcata 4200
cagtccagct tggagcgaac tgcctacccg gaactgagtg tcaggcgtgg aatgagacaa 4260
acgcggccat aacagcggaa tgacaccggt aaaccgaaag gcaggaacag gagagcgcac 4320
gagggagccg ccaggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccaccac 4380
tgatttgagc gtcagatttc gtgatgcttg tcaggggggc ggagcctatg gaaaaacggc 4440
tttgccgcgg ccctctcact tccctgttaa gtatcttcct ggcatcttcc aggaaatctc 4500
cgccccgttc gtaagccatt tccgctcgcc gcagtcgaac gaccgagcgt agcgagtcag 4560
tgagcgagga agcggaatat atcctgtatc acatattctg ctgacgcacc ggtgcagcct 4620
tttttctcct gccacatgaa gcacttcact gacaccctca tcagtgccaa catagtaagc 4680
cagtatacac tccgctatga taatgggtga gtgagtgtgt gcgtgtgggg cgcgccagat 4740
gggaacactt agctttgacc tgcacaaata gttgcaaatt gtcccacata cacataaagt 4800
agcttgcgta tttaaaatta tgaacctaag gggtttagca cttcacgctg ccgcaagcac 4860
tcagggcgca agggctgcta aaggaagcgg aacacgtaga aagccagtcc gcagaaacgg 4920
tgctgacccc ggatgaatgt cagctactgg gctatctgga caagggaaaa cgcaagcgca 4980
aagagaaagc aggtagcttg cagtgggctt acatggcgat agctagactg ggcggtttta 5040
tggacagcaa gcgaaccgga attgccagct ggggcgccct ctggtaaggt tgggaagccc 5100
tgcaaagtaa actggatggc tttcttgccg ccaaggatct gatggcgcag gggatcaaga 5160
tctgatcaag agacaggatg aggatcgttt cgcatggaga aaaagatcac gggctacact 5220
accgtggaca tctcgcaatg gcatcgcaag gaacacttcg aggcatttca aagcgtggca 5280
caatgtactt acaaccagac cgtccagctg gatattaccg cgtttttgaa gaccgttaag 5340
aaaaacaagc acaagtttta tccagccttt atccatattc tcgcccgctt gatgaatgcg 5400
caccccgaat ttcgtatggc catgaaagat ggtgagctcg ttatctggga ctcagtccat 5460
ccatgctata ccgttttcca cgaacaaact gaaacttttt cttcgctgtg gtccgaatat 5520
cacgatgatt tccgccaatt tttgcatatc tacagccaag atgtcgcgtg ctatggtgaa 5580
aacctggctt actttcccaa gggattcatc gagaatatgt tctttgtttc agcaaacccc 5640
tgggtgtcct tcacgtcgtt tgacttgaac gtggccaata tggataattt cttcgctcca 5700
gttttcacca tgggtaagta ctatacccaa ggagacaagg tccttatgcc acttgcaatc 5760
caagtacacc acgcagtctg cgatggtttc catgtgggac gcatgcttaa cgaactccaa 5820
cagtactgtg atgaatggca aggcggcgcg tagcccccca accgaagttg aggggatttt 5880
tactccagtc tttctagaag atggcaaaca gctattatgg gtattatggg tgctccccga 5940
aaagtgccac ctg 5953
<210> 240
<211> 3423
<212> DNA
<213> Corynebacterium glutamicum
<400> 240
gtgtcgactc acacatcttc aacgcttcca gcattcaaaa agatcttggt agcaaaccgc 60
ggcgaaatcg cggtccgtgc tttccgtgca gcactcgaaa ccggtgcagc cacggtagct 120
atttaccccc gtgaagatcg gggatcattc caccgctctt ttgcttctga agctgtccgc 180
attggtactg aaggctcacc agtcaaggcg tacctggaca tcgatgaaat tatcggtgca 240
gctaaaaaag ttaaagcaga tgctatttac ccgggatatg gcttcctgtc tgaaaatgcc 300
cagcttgccc gcgagtgcgc ggaaaacggc attactttta ttggcccaac cccagaggtt 360
cttgatctca ccggtgataa gtctcgtgcg gtaaccgccg cgaagaaggc tggtctgcca 420
gttttggcgg aatccacccc gagcaaaaac atcgatgaca tcgttaaaag cgctgaaggc 480
cagacttacc ccatctttgt aaaggcagtt gccggtggtg gcggacgcgg tatgcgcttt 540
gtttcttcac ctgatgagct ccgcaaattg gcaacagaag catctcgtga agctgaagcg 600
gcattcggcg acggttcggt atatgtcgaa cgtgctgtga ttaaccccca gcacattgaa 660
gtgcagatcc ttggcgatcg cactggagaa gttgtacacc tttatgaacg tgactgctca 720
ctgcagcgtc gtcaccaaaa agttgtcgaa attgcgccag cacagcattt ggatccagaa 780
ctgcgtgatc gcatttgtgc ggatgcagta aagttctgcc gctccattgg ttaccagggc 840
gcgggaaccg tggaattctt ggtcgatgaa aagggcaacc acgtcttcat cgaaatgaac 900
ccacgtatcc aggttgagca caccgtgact gaagaagtca ccgaggtgga cctggtgaag 960
gcgcagatgc gcttggctgc tggtgcaacc ttgaaggaat tgggtctgac ccaagataag 1020
atcaagaccc acggtgcagc actgcagtgc cgcatcacca cggaagatcc aaacaacggc 1080
ttccgcccag ataccggaac tatcaccgcg taccgctcac caggcggagc tggcgttcgt 1140
cttgacggtg cagctcagct cggtggcgaa atcaccgcac actttgactc catgctggtg 1200
aaaatgacct gccgtggttc cgattttgaa actgctgttg ctcgtgcaca gcgcgcgttg 1260
gctgagttca ccgtgtctgg tgttgcaacc aacattggtt tcttgcgtgc gttgctgcgt 1320
gaagaggact tcacttccaa gcgcatcgcc accggattta tcggcgatca cccacacctc 1380
cttcaggctc cacctgcgga tgatgagcag ggacgcatcc tggattactt ggcagatgtc 1440
accgtgaaca agcctcatgg tgtgcgtcca aaggatgttg cagcaccaat cgataagctg 1500
cccaacatca aggatctgcc actgccacgc ggttcccgtg accgcctgaa gcagcttgga 1560
ccagcagcgt ttgcccgcga tctccgtgag caggacgcac tggcagttac tgataccacc 1620
ttccgcgatg cacaccagtc tttgcttgcg acccgagtcc gctcattcgc actgaagcct 1680
gcggcagagg ccgtcgcaaa gctgactcct gagcttttgt ccgtggaggc ctggggcggt 1740
gcgacctacg atgtggcgat gcgtttcctc tttgaggatc cgtgggacag gctcgacgag 1800
ctgcgcgagg cgatgccgaa tgtgaacatt cagatgctgc ttcgcggccg caacaccgtg 1860
ggatacaccc catacccaga ctccgtctgt cgcgcgtttg ttaaggaagc tgccacctcc 1920
ggcgtggaca tcttccgcat cttcgacgcg cttaacgacg tctcccagat gcgtccagca 1980
atcgacgcag tcctggagac caacaccgcg gtcgctgaag tggctatggc ttattctggt 2040
gatctttccg atccgaatga aaagctctac accctggatt actacctgaa gatggcagag 2100
gagatcgtca agtctggcgc tcacattctg gctattaagg atatggctgg tctgcttcgc 2160
ccagctgcag ccaccaagct ggtcaccgca ctgcgccgtg aatttgatct gccagtgcac 2220
gtgcacaccc acgacactgc gggtggccag ctggcaacct actttgctgc agctcaagct 2280
ggtgcagatg ctgttgacgg tgcttccgca ccactgtctg gcaccacctc ccagccatcc 2340
ctgtctgcca ttgttgctgc attcgcgcac acccgtcgcg ataccggttt gagcctcgag 2400
gctgtttctg acctcgagcc atactgggaa gcagtgcgcg gactgtacct gccatttgag 2460
tctggaaccc caggcccaac cggtcgcgtc taccgccacg aaatcccagg cggacagttg 2520
tccaacctgc gtgcacaggc caccgcactg ggccttgcgg atcgtttcga actcatcgaa 2580
gacaactacg cggcagttaa tgagatgctg ggacgcccaa ccaaggtcac cccatcctcc 2640
aaggttgttg gcgacctcgc actccacctc gttggtgcgg gtgtggatcc agcagacttt 2700
gctgccgatc cacaaaagta cgacatccca gactctgtca tcgcgttcct gcgcggcgag 2760
cttggtaacc ctccaggtgg ctggccagag ccactgcgca cccgcgcact ggaaggccgc 2820
tccgaaggca aagcaccttt gacggaagtt cctgaggaag agcaggcgca cctcgacgct 2880
gatgattcca aggaacgtcg caacagcctc aaccgcctgc tgttcccgaa gccaactgaa 2940
gagttcctcg agcaccgtcg ccgcttcggc aacacctctg cgctggatga tcgtgaattc 3000
ttctacggcc tggtcgaagg ccgcgagact ttgatccgcc tgccagatgt gcgcacccca 3060
ctgcttgttc gcctggatgc gatctctgag ccagacgata agggtatgcg caatgttgtg 3120
gctaacgtca acggccagat ccgcccaatg cgtgtgcgtg accgctccgt tgagtctgtc 3180
accgcaaccg cagaaaaggc agattcctcc aacaagggcc atgttgctgc accattcgct 3240
ggtgttgtca ctgtgactgt tgctgaaggt gatgaggtca aggctggaga tgcagtcgca 3300
atcatcgagg ctatgaagat ggaagcaaca atcactgctt ctgttgacgg caaaatcgat 3360
cgcgttgtgg ttcctgctgc aacgaaggtg gaaggtggcg acttgatcgt cgtcatttcc 3420
taa 3423
<210> 241
<211> 1140
<212> PRT
<213> Corynebacterium glutamicum
<400> 241
Val Ser Thr His Thr Ser Ser Thr Leu Pro Ala Phe Lys Lys Ile Leu
1 5 10 15
Val Ala Asn Arg Gly Glu Ile Ala Val Arg Ala Phe Arg Ala Ala Leu
20 25 30
Glu Thr Gly Ala Ala Thr Val Ala Ile Tyr Pro Arg Glu Asp Arg Gly
35 40 45
Ser Phe His Arg Ser Phe Ala Ser Glu Ala Val Arg Ile Gly Thr Glu
50 55 60
Gly Ser Pro Val Lys Ala Tyr Leu Asp Ile Asp Glu Ile Ile Gly Ala
65 70 75 80
Ala Lys Lys Val Lys Ala Asp Ala Ile Tyr Pro Gly Tyr Gly Phe Leu
85 90 95
Ser Glu Asn Ala Gln Leu Ala Arg Glu Cys Ala Glu Asn Gly Ile Thr
100 105 110
Phe Ile Gly Pro Thr Pro Glu Val Leu Asp Leu Thr Gly Asp Lys Ser
115 120 125
Arg Ala Val Thr Ala Ala Lys Lys Ala Gly Leu Pro Val Leu Ala Glu
130 135 140
Ser Thr Pro Ser Lys Asn Ile Asp Asp Ile Val Lys Ser Ala Glu Gly
145 150 155 160
Gln Thr Tyr Pro Ile Phe Val Lys Ala Val Ala Gly Gly Gly Gly Arg
165 170 175
Gly Met Arg Phe Val Ser Ser Pro Asp Glu Leu Arg Lys Leu Ala Thr
180 185 190
Glu Ala Ser Arg Glu Ala Glu Ala Ala Phe Gly Asp Gly Ser Val Tyr
195 200 205
Val Glu Arg Ala Val Ile Asn Pro Gln His Ile Glu Val Gln Ile Leu
210 215 220
Gly Asp Arg Thr Gly Glu Val Val His Leu Tyr Glu Arg Asp Cys Ser
225 230 235 240
Leu Gln Arg Arg His Gln Lys Val Val Glu Ile Ala Pro Ala Gln His
245 250 255
Leu Asp Pro Glu Leu Arg Asp Arg Ile Cys Ala Asp Ala Val Lys Phe
260 265 270
Cys Arg Ser Ile Gly Tyr Gln Gly Ala Gly Thr Val Glu Phe Leu Val
275 280 285
Asp Glu Lys Gly Asn His Val Phe Ile Glu Met Asn Pro Arg Ile Gln
290 295 300
Val Glu His Thr Val Thr Glu Glu Val Thr Glu Val Asp Leu Val Lys
305 310 315 320
Ala Gln Met Arg Leu Ala Ala Gly Ala Thr Leu Lys Glu Leu Gly Leu
325 330 335
Thr Gln Asp Lys Ile Lys Thr His Gly Ala Ala Leu Gln Cys Arg Ile
340 345 350
Thr Thr Glu Asp Pro Asn Asn Gly Phe Arg Pro Asp Thr Gly Thr Ile
355 360 365
Thr Ala Tyr Arg Ser Pro Gly Gly Ala Gly Val Arg Leu Asp Gly Ala
370 375 380
Ala Gln Leu Gly Gly Glu Ile Thr Ala His Phe Asp Ser Met Leu Val
385 390 395 400
Lys Met Thr Cys Arg Gly Ser Asp Phe Glu Thr Ala Val Ala Arg Ala
405 410 415
Gln Arg Ala Leu Ala Glu Phe Thr Val Ser Gly Val Ala Thr Asn Ile
420 425 430
Gly Phe Leu Arg Ala Leu Leu Arg Glu Glu Asp Phe Thr Ser Lys Arg
435 440 445
Ile Ala Thr Gly Phe Ile Gly Asp His Pro His Leu Leu Gln Ala Pro
450 455 460
Pro Ala Asp Asp Glu Gln Gly Arg Ile Leu Asp Tyr Leu Ala Asp Val
465 470 475 480
Thr Val Asn Lys Pro His Gly Val Arg Pro Lys Asp Val Ala Ala Pro
485 490 495
Ile Asp Lys Leu Pro Asn Ile Lys Asp Leu Pro Leu Pro Arg Gly Ser
500 505 510
Arg Asp Arg Leu Lys Gln Leu Gly Pro Ala Ala Phe Ala Arg Asp Leu
515 520 525
Arg Glu Gln Asp Ala Leu Ala Val Thr Asp Thr Thr Phe Arg Asp Ala
530 535 540
His Gln Ser Leu Leu Ala Thr Arg Val Arg Ser Phe Ala Leu Lys Pro
545 550 555 560
Ala Ala Glu Ala Val Ala Lys Leu Thr Pro Glu Leu Leu Ser Val Glu
565 570 575
Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala Met Arg Phe Leu Phe Glu
580 585 590
Asp Pro Trp Asp Arg Leu Asp Glu Leu Arg Glu Ala Met Pro Asn Val
595 600 605
Asn Ile Gln Met Leu Leu Arg Gly Arg Asn Thr Val Gly Tyr Thr Pro
610 615 620
Tyr Pro Asp Ser Val Cys Arg Ala Phe Val Lys Glu Ala Ala Thr Ser
625 630 635 640
Gly Val Asp Ile Phe Arg Ile Phe Asp Ala Leu Asn Asp Val Ser Gln
645 650 655
Met Arg Pro Ala Ile Asp Ala Val Leu Glu Thr Asn Thr Ala Val Ala
660 665 670
Glu Val Ala Met Ala Tyr Ser Gly Asp Leu Ser Asp Pro Asn Glu Lys
675 680 685
Leu Tyr Thr Leu Asp Tyr Tyr Leu Lys Met Ala Glu Glu Ile Val Lys
690 695 700
Ser Gly Ala His Ile Leu Ala Ile Lys Asp Met Ala Gly Leu Leu Arg
705 710 715 720
Pro Ala Ala Val Thr Lys Leu Val Thr Ala Leu Arg Arg Glu Phe Asp
725 730 735
Leu Pro Val His Val His Thr His Asp Thr Ala Gly Gly Gln Leu Ala
740 745 750
Thr Tyr Phe Ala Ala Ala Gln Ala Gly Ala Asp Ala Val Asp Gly Ala
755 760 765
Ser Ala Pro Leu Ser Gly Thr Thr Ser Gln Pro Ser Leu Ser Ala Ile
770 775 780
Val Ala Ala Phe Ala His Thr Arg Arg Asp Thr Gly Leu Ser Leu Glu
785 790 795 800
Ala Val Ser Asp Leu Glu Pro Tyr Trp Glu Ala Val Arg Gly Leu Tyr
805 810 815
Leu Pro Phe Glu Ser Gly Thr Pro Gly Pro Thr Gly Arg Val Tyr Arg
820 825 830
His Glu Ile Pro Gly Gly Gln Leu Ser Asn Leu Arg Ala Gln Ala Thr
835 840 845
Ala Leu Gly Leu Ala Asp Arg Phe Glu Leu Ile Glu Asp Asn Tyr Ala
850 855 860
Ala Val Asn Glu Met Leu Gly Arg Pro Thr Lys Val Thr Pro Ser Ser
865 870 875 880
Lys Val Val Gly Asp Leu Ala Leu His Leu Val Gly Ala Gly Val Asp
885 890 895
Pro Ala Asp Phe Ala Ala Asp Pro Gln Lys Tyr Asp Ile Pro Asp Ser
900 905 910
Val Ile Ala Phe Leu Arg Gly Glu Leu Gly Asn Pro Pro Gly Gly Trp
915 920 925
Pro Glu Pro Leu Arg Thr Arg Ala Leu Glu Gly Arg Ser Glu Gly Lys
930 935 940
Ala Pro Leu Thr Glu Val Pro Glu Glu Glu Gln Ala His Leu Asp Ala
945 950 955 960
Asp Asp Ser Lys Glu Arg Arg Asn Ser Leu Asn Arg Leu Leu Phe Pro
965 970 975
Lys Pro Thr Glu Glu Phe Leu Glu His Arg Arg Arg Phe Gly Asn Thr
980 985 990
Ser Ala Leu Asp Asp Arg Glu Phe Phe Tyr Gly Leu Val Glu Gly Arg
995 1000 1005
Glu Thr Leu Ile Arg Leu Pro Asp Val Arg Thr Pro Leu Leu Val
1010 1015 1020
Arg Leu Asp Ala Ile Ser Glu Pro Asp Asp Lys Gly Met Arg Asn
1025 1030 1035
Val Val Ala Asn Val Asn Gly Gln Ile Arg Pro Met Arg Val Arg
1040 1045 1050
Asp Arg Ser Val Glu Ser Val Thr Ala Thr Ala Glu Lys Ala Asp
1055 1060 1065
Ser Ser Asn Lys Gly His Val Ala Ala Pro Phe Ala Gly Val Val
1070 1075 1080
Thr Val Thr Val Ala Glu Gly Asp Glu Val Lys Ala Gly Asp Ala
1085 1090 1095
Val Ala Ile Ile Glu Ala Met Lys Met Glu Ala Thr Ile Thr Ala
1100 1105 1110
Ser Val Asp Gly Lys Ile Glu Arg Val Val Val Pro Ala Ala Thr
1115 1120 1125
Lys Val Glu Gly Gly Asp Leu Ile Val Val Val Ser
1130 1135 1140
<210> 242
<211> 3549
<212> DNA
<213> Unknown
<220>
<223> pyc_1 sequence from unknown bacterial species from environmental
sample
<400> 242
gtgttcagca aggtgctggt cgccaaccgc ggggagatcg cgatccgggc gtttcgtgcc 60
gcctacgaac tgggttgcca gacggtggcg gtgttccctt acgaggatcg caactccgaa 120
caccggctca aggcaaacga ggcctacgag atcggcgaga agggccatcc ggttcgggcc 180
tatctctcgg tggaagagat cgtccgggcg gcgcagcgcg ccggggccga cgccgtctac 240
cccggttacg gcttcctgtc ggagaatccg aagctggcca cggcctgccg gcaggccggt 300
atcactttcg tcgggccgcc acctgcggtg ctggccctgg ccggcaacaa gtcacgggcg 360
gtggccgcgg cgcgcgaagc cagagtgccg gtgctggaat cctgcgcccc gtccgccgat 420
atcgaccagc tgatggccgc ggccgacgag atcgggttcc ccatattcgt caaggccgtc 480
gccggcggcg gtgggcgtgg catgcgcagg gtcacctcgc tgcgtggcct gcgcgatgca 540
ctggaggcgg cctcccgcga ggctgaatcg acgttcgggg acccgaccgt gttcctggag 600
cgggccgtca tcgaacctcg gcacatcgag gcgcaggtcc tcgcagactc gaccggcgag 660
gtgatccacc tctatgagcg agactgctcg gtacagcggc gccaccagaa agtcgtagag 720
atcgcccccg cgcccaacct ggaccctgat ctgcgggcgc gaatctgtgc cgatgcggtg 780
gccttcgccc ggcagatcgg ctacgtcaac gcgggcaccg tggagttcct tgtcgaccgc 840
gcgggcaacc atgtgttcat cgagatgaac ccgcgcatcc aagtcgagca caccgtcacc 900
gaggaaatca ccgatatcga cctggtcgcc tcccaactgc gcatcgcggc gggggagacg 960
ctggccgacc tcgggttgtc ccaagacgcg atcgtgccgc atggcgccgc gctgcaatgc 1020
cggatcacca ccgaggaccc ggccaacgac ttccgtccgg acatcggaac ggtcaccgcg 1080
taccgctccg ccagcggcgc cggagttcgg ctggacggcg gcaccgtata cccgggtgcg 1140
cagataggtc cgcatttcga ctccttgctg gtcaaggtga cgtgccgggg acgggacctg 1200
gggtctgccg tgctgcgggc gcggcgcgcg atcgccgagt tccggatccg cggggtacac 1260
acgaacatcc cgttcctgct cgccctgctc gacgaaccgg atctccaggc gggcaaggtc 1320
accacctcgt tcatcgagca acggccgtac ttgctcacca cgcgccagtc cgccgaccgc 1380
ggcacccggt tgctgaccta cctcggccac atgacggtga atcggccgca cggtgagccc 1440
cccgagctgg tcgacccgat gctcaagctc ccgccgatcg acctggacgc gccaccacct 1500
accggatccc ggcagcagct ccgcgcgctg ggcccggaag gcttcgcgcg ctggttgcgg 1560
acccgcgaca gtgtcggcgt caccgacacc accttccgcg acgcccacca gtcactgctc 1620
gctacccgag tgcgcagcaa ggacctcgtt gcggtggcgc cctacgtgac ccggatgacc 1680
tcgcaactgc tgtcgttgga gtgctggggt ggcgcgacct acgacgtggc gctgcgcttc 1740
ctcgccgagg acccctggga gcgactggcc gcattgcgtg aagcggtccc caacctgtgc 1800
ctgcagatgt tgctgcgcgg gcgcaacacc gtcggctaca cgccttaccc caccgaggtg 1860
actgcggcct tcgtcgagca ggccgtcgag accggcctgg acatttttcg catcttcgac 1920
gcgctcaacg acatctccca gatgcgcccc gccatcgaca cggtgcgcga gaccggccgg 1980
gccatcgccg aggtggcgct gtgctatacc gccgatctgt ccgatccggc ggagaagctg 2040
tacacgctgg actattacct gcggctggcc gaggagatcg tggcggccgg cgcgcacgtg 2100
ctggccatca aggacatggc gggcctgcta cgaccccccg cggcccgcac gctggtgacc 2160
gcgctgcgca gccggttcga tctccccgtg cacctgcata cccacgacac acctggtggg 2220
cagctggcca ccctgctcgc agcgatcgac gccggggtag atgcggtcga tgccgccacc 2280
gcctcgatgg ccggcaccac gtcgcagcca tcgctatccg cgctggtagc ggctactgac 2340
cacaccgagc gcagcaccgg gctgaacctg caggcggtct gtgatctgga gccctactgg 2400
gaactggtgc gcaaggtcta cgcgcccttc gagtccggcc tggcctcgcc caccggtcgg 2460
gtgtatcacc acgagatccc tggtggccag ctatccaacc tgcgccagca agccgtggcg 2520
ttgggcctgg cggacaagtt cgagcagatc gaacaagcct acgcagcggc tgaccggatg 2580
ctcggcaggt tgatcaaggt gaccccttcc tccaaggtcg tgggagatct ggcgctgcac 2640
ctggtcggtg ccggtgtcga gccgacagac ttcgaggccg atccggctcg gttcgacatc 2700
cccgactcgg tgatcggatt cctgcacggc gaactcggtg atcctcccgg cggctggccc 2760
gaacccctgc gcagcaaggc gctcaagggt cgcagcgacc ccaaggggat cgcggagctg 2820
tccgccgagg accgcaaggg ccttcgcgag gaccgggcgc gcaccctcaa ccggctgctg 2880
ttcgctggtc ccaccgcaga cttcgaagag catcgcgagt cctacgggga tacctcggta 2940
ctgcccagca aggagttctt ctacgggctg cgttccggtc aggagcatgc ggtagatctc 3000
gaaccggggg tgcggctgct gatccagctt caggcgatcg gcgatgctga cgaacgcggc 3060
ctgcgcaccg tgatgtgcac cctcaacggg cagttgcggc cactgcagat ccgggatcac 3120
tccatcgact cggagatccc ggttgcagag cgagccaaca aatccgacag caaccatgtt 3180
gcggcgccgt tcgcgggggt ggtcaccctg caggtgtccg aaggggacac cgtgtctgcc 3240
gggcagctgg tggccggtgc ccttctggcg ccacggcttc ttgcccgagc cgctcacctc 3300
cgcacgcgtc ttcgtcgcgt gcgtgccgcg acgctcggcg gcgttggcgt gcaccacgga 3360
ctcgtggatc aggtccgtct tgatgcggcc cccgaacagc tcgtcgctca ggtcgaccga 3420
gccgaccttc tcgttctgct ggttcacgac atctacggtc atggctactt cttgcccttc 3480
ttcttcgccg gctcggcctg tgcgaccttg atgcgcttgg cggccaccgc tttgcggatc 3540
gtcacgtag 3549
<210> 243
<211> 1182
<212> PRT
<213> Unknown
<220>
<223> pyc_1 sequence from unknown bacterial species from environmental
sample
<400> 243
Val Phe Ser Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Leu Gly Cys Gln Thr Val Ala Val Phe
20 25 30
Pro Tyr Glu Asp Arg Asn Ser Glu His Arg Leu Lys Ala Asn Glu Ala
35 40 45
Tyr Glu Ile Gly Glu Lys Gly His Pro Val Arg Ala Tyr Leu Ser Val
50 55 60
Glu Glu Ile Val Arg Ala Ala Gln Arg Ala Gly Ala Asp Ala Val Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro Lys Leu Ala Thr Ala Cys
85 90 95
Arg Gln Ala Gly Ile Thr Phe Val Gly Pro Pro Pro Ala Val Leu Ala
100 105 110
Leu Ala Gly Asn Lys Ser Arg Ala Val Ala Ala Ala Arg Glu Ala Arg
115 120 125
Val Pro Val Leu Glu Ser Cys Ala Pro Ser Ala Asp Ile Asp Gln Leu
130 135 140
Met Ala Ala Ala Asp Glu Ile Gly Phe Pro Ile Phe Val Lys Ala Val
145 150 155 160
Ala Gly Gly Gly Gly Arg Gly Met Arg Arg Val Thr Ser Leu Arg Gly
165 170 175
Leu Arg Asp Ala Leu Glu Ala Ala Ser Arg Glu Ala Glu Ser Thr Phe
180 185 190
Gly Asp Pro Thr Val Phe Leu Glu Arg Ala Val Ile Glu Pro Arg His
195 200 205
Ile Glu Ala Gln Val Leu Ala Asp Ser Thr Gly Glu Val Ile His Leu
210 215 220
Tyr Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Val Glu
225 230 235 240
Ile Ala Pro Ala Pro Asn Leu Asp Pro Asp Leu Arg Ala Arg Ile Cys
245 250 255
Ala Asp Ala Val Ala Phe Ala Arg Gln Ile Gly Tyr Val Asn Ala Gly
260 265 270
Thr Val Glu Phe Leu Val Asp Arg Ala Gly Asn His Val Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Ile Thr
290 295 300
Asp Ile Asp Leu Val Ala Ser Gln Leu Arg Ile Ala Ala Gly Glu Thr
305 310 315 320
Leu Ala Asp Leu Gly Leu Ser Gln Asp Ala Ile Val Pro His Gly Ala
325 330 335
Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala Asn Asp Phe Arg
340 345 350
Pro Asp Ile Gly Thr Val Thr Ala Tyr Arg Ser Ala Ser Gly Ala Gly
355 360 365
Val Arg Leu Asp Gly Gly Thr Val Tyr Pro Gly Ala Gln Ile Gly Pro
370 375 380
His Phe Asp Ser Leu Leu Val Lys Val Thr Cys Arg Gly Arg Asp Leu
385 390 395 400
Gly Ser Ala Val Leu Arg Ala Arg Arg Ala Ile Ala Glu Phe Arg Ile
405 410 415
Arg Gly Val His Thr Asn Ile Pro Phe Leu Leu Ala Leu Leu Asp Glu
420 425 430
Pro Asp Leu Gln Ala Gly Lys Val Thr Thr Ser Phe Ile Glu Gln Arg
435 440 445
Pro Tyr Leu Leu Thr Thr Arg Gln Ser Ala Asp Arg Gly Thr Arg Leu
450 455 460
Leu Thr Tyr Leu Gly His Met Thr Val Asn Arg Pro His Gly Glu Pro
465 470 475 480
Pro Glu Leu Val Asp Pro Met Leu Lys Leu Pro Pro Ile Asp Leu Asp
485 490 495
Ala Pro Pro Pro Thr Gly Ser Arg Gln Gln Leu Arg Ala Leu Gly Pro
500 505 510
Glu Gly Phe Ala Arg Trp Leu Arg Thr Arg Asp Ser Val Gly Val Thr
515 520 525
Asp Thr Thr Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Val
530 535 540
Arg Ser Lys Asp Leu Val Ala Val Ala Pro Tyr Val Thr Arg Met Thr
545 550 555 560
Ser Gln Leu Leu Ser Leu Glu Cys Trp Gly Gly Ala Thr Tyr Asp Val
565 570 575
Ala Leu Arg Phe Leu Ala Glu Asp Pro Trp Glu Arg Leu Ala Ala Leu
580 585 590
Arg Glu Ala Val Pro Asn Leu Cys Leu Gln Met Leu Leu Arg Gly Arg
595 600 605
Asn Thr Val Gly Tyr Thr Pro Tyr Pro Thr Glu Val Thr Ala Ala Phe
610 615 620
Val Glu Gln Ala Val Glu Thr Gly Leu Asp Ile Phe Arg Ile Phe Asp
625 630 635 640
Ala Leu Asn Asp Ile Ser Gln Met Arg Pro Ala Ile Asp Thr Val Arg
645 650 655
Glu Thr Gly Arg Ala Ile Ala Glu Val Ala Leu Cys Tyr Thr Ala Asp
660 665 670
Leu Ser Asp Pro Ala Glu Lys Leu Tyr Thr Leu Asp Tyr Tyr Leu Arg
675 680 685
Leu Ala Glu Glu Ile Val Ala Ala Gly Ala His Val Leu Ala Ile Lys
690 695 700
Asp Met Ala Gly Leu Leu Arg Pro Pro Ala Ala Arg Thr Leu Val Thr
705 710 715 720
Ala Leu Arg Ser Arg Phe Asp Leu Pro Val His Leu His Thr His Asp
725 730 735
Thr Pro Gly Gly Gln Leu Ala Thr Leu Leu Ala Ala Ile Asp Ala Gly
740 745 750
Val Asp Ala Val Asp Ala Ala Thr Ala Ser Met Ala Gly Thr Thr Ser
755 760 765
Gln Pro Ser Leu Ser Ala Leu Val Ala Ala Thr Asp His Thr Glu Arg
770 775 780
Ser Thr Gly Leu Asn Leu Gln Ala Val Cys Asp Leu Glu Pro Tyr Trp
785 790 795 800
Glu Leu Val Arg Lys Val Tyr Ala Pro Phe Glu Ser Gly Leu Ala Ser
805 810 815
Pro Thr Gly Arg Val Tyr His His Glu Ile Pro Gly Gly Gln Leu Ser
820 825 830
Asn Leu Arg Gln Gln Ala Val Ala Leu Gly Leu Ala Asp Lys Phe Glu
835 840 845
Gln Ile Glu Gln Ala Tyr Ala Ala Ala Asp Arg Met Leu Gly Arg Leu
850 855 860
Ile Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu His
865 870 875 880
Leu Val Gly Ala Gly Val Glu Pro Thr Asp Phe Glu Ala Asp Pro Ala
885 890 895
Arg Phe Asp Ile Pro Asp Ser Val Ile Gly Phe Leu His Gly Glu Leu
900 905 910
Gly Asp Pro Pro Gly Gly Trp Pro Glu Pro Leu Arg Ser Lys Ala Leu
915 920 925
Lys Gly Arg Ser Asp Pro Lys Gly Ile Ala Glu Leu Ser Ala Glu Asp
930 935 940
Arg Lys Gly Leu Arg Glu Asp Arg Ala Arg Thr Leu Asn Arg Leu Leu
945 950 955 960
Phe Ala Gly Pro Thr Ala Asp Phe Glu Glu His Arg Glu Ser Tyr Gly
965 970 975
Asp Thr Ser Val Leu Pro Ser Lys Glu Phe Phe Tyr Gly Leu Arg Ser
980 985 990
Gly Gln Glu His Ala Val Asp Leu Glu Pro Gly Val Arg Leu Leu Ile
995 1000 1005
Gln Leu Gln Ala Ile Gly Asp Ala Asp Glu Arg Gly Leu Arg Thr
1010 1015 1020
Val Met Cys Thr Leu Asn Gly Gln Leu Arg Pro Leu Gln Ile Arg
1025 1030 1035
Asp His Ser Ile Asp Ser Glu Ile Pro Val Ala Glu Arg Ala Asn
1040 1045 1050
Lys Ser Asp Ser Asn His Val Ala Ala Pro Phe Ala Gly Val Val
1055 1060 1065
Thr Leu Gln Val Ser Glu Gly Asp Thr Val Ser Ala Gly Gln Leu
1070 1075 1080
Val Ala Gly Ala Leu Leu Ala Pro Arg Leu Leu Ala Arg Ala Ala
1085 1090 1095
His Leu Arg Thr Arg Leu Arg Arg Val Arg Ala Ala Thr Leu Gly
1100 1105 1110
Gly Val Gly Val His His Gly Leu Val Asp Gln Val Arg Leu Asp
1115 1120 1125
Ala Ala Pro Glu Gln Leu Val Ala Gln Val Asp Arg Ala Asp Leu
1130 1135 1140
Leu Val Leu Leu Val His Asp Ile Tyr Gly His Gly Tyr Phe Leu
1145 1150 1155
Pro Phe Phe Phe Ala Gly Ser Ala Cys Ala Thr Leu Met Arg Leu
1160 1165 1170
Ala Ala Thr Ala Leu Arg Ile Val Thr
1175 1180
<210> 244
<211> 3405
<212> DNA
<213> Unknown
<220>
<223> pyc_2 sequence from unknown bacterial species from environmental
sample
<400> 244
gtgttccaga agattctcgt ggccaaccgc ggtgagatcg cgatccgcgc gttccgcgcc 60
gcgtacgagc tcggcgtgcg caccgtcgct gtcttcccct acgaggaccg cggctccacc 120
caccgcatga cggcggacga ggcgtaccag atcggcgagc cgggacaccc cgtgcgcgcc 180
tacctcgatg tcgacgagat catccgcgtg gcgaaggagt gcggcgccga cgccatctat 240
cccggctacg ggttcctctc ggagaacccg gcgctcgccg aggcggcgca ggaggcgggc 300
atcacgttcg tcgggccgcc cgcccgcgtg ctcgagatag ccgggaacaa ggtcaccgcg 360
aaggagcgcg cgatcgccgc cggggtgccg gtgctggcgt cgacgccggc gtcgcgcgac 420
ctcgacgagc tcgtgcgcgc ggccgacgac ctcggcttcc cggtgttcgc caaggcggtc 480
gccggcggag gggggcgcgg catgcgccgc gtcgacacgc gcgaagagct gccggccgcc 540
ctcgaggagg ccatgcgcga ggcggagacc gcgttcggcg accccacgat gttcctcgag 600
caggccttcc cgcagccccg gcacatcgag gtgcagatcc tcgcggacgg ccacggcgac 660
gtggtgcacc tcttcgagcg cgactgctcc gtgcagcggc gccaccagaa ggtgatcgag 720
atcgcgcccg cgcccaacgt cgaccagccg ctgcgcgagg cgctctaccg cgacgccgtc 780
gcgttcgcgc gatccatcgg ctacgtgaac gccggcacgg tcgagttcct cgtggacacc 840
gccggcgagc gcgccgggca gcacgtgttc atcgagatga acccacgcat ccaggtggag 900
cacacggtca ccgaggaggt gacggacgtc gacctcgtgc aggcgcagat gcgcatcgcg 960
gccggcgagc ggctgagcga cctcggcatc cggcaggaga gcctccaact gcgaggcgcc 1020
gcgatgcagt gccgcatcac gaccgaggat ccgatgaacg gattccgccc ggacgtcggc 1080
cgcatcacaa cgtaccgctc gcccggcggc gccggcatcc gcctggacgg cggcacgatc 1140
aacctcggca gcgagatcgg accgtacttc gactcgatgc tcgtgaagct cacgtcgcgc 1200
gcgggcgact tccccgccgc ggtgagccgc gcgcggcgcg ccctcgcgga gttccgcatc 1260
cgaggcgtat cgacgaacat tccgttcctg caggcggtcg tcgccgaccc ggacttcatc 1320
gccggcaact tcacgacctc gttcatcgac gagcggccgt acctgctcaa cgcgaaccgc 1380
tcgaacgacc gcggcaccaa ggtgctgagc tggctcgccg acgtcacggt gaaccagccg 1440
cacggacgcc gcggcaagat cgtcagtccg tggcacaagc tgcccgccgt ggacatcgag 1500
gcgcccgcac cgccgggctc gcgcgaccgg ctgcgggcgc tcggcccggc ggcgttcgcg 1560
cgttcgctgc gggagcagac gccgctcgcc gtgacggaga cgacgttccg cgatgcgcac 1620
cagtcgctgc tggcgacgcg cgtgcgcacg cgcgacctcg tgagtgtggc gccgtacgtg 1680
gcgcgcacga cgccgcagtt gctctcgatc gaggcgtggg gcggcgcgac gtacgacgcg 1740
tcgctgcgct tcctgggcga ggacccgtgg gagcggctgg cggcgctgcg cgaggcgctg 1800
cccaacgtga acatccagat gctgctgcgc ggccgcaaca ccgtcggcta cacgccctac 1860
cccgaggagg tgaccgacgc cttcgtgcgg gaggcggcga ccaccggcgt cgacatcttc 1920
cgcatcttcg acgcgctgaa cgacgtctcg cagatgcgcc cggcgatcga gtcggtgctc 1980
gcgacgggta ccggcatcgc cgaggtcgcg ttctgctaca cgggcgacct gctggacccc 2040
aacgagacgc tgtacacgct cgactactac ctgaagctcg ccgaggagat cgtcggcacc 2100
ggcgcgcaca tcctcgcgat caaggacatg gccggactgc tccgcccgcg cgccgccgag 2160
gtgctcgtgc gcgcgctgcg cgagcgcttc gacctgccgg tccacctgca cacgcacgac 2220
accccgggcg gccagctcgc gacgctgctc gcggcgagcg gcgccggcgt cgacgccgtc 2280
gacgtcgcga gcgcgccgat ggccggcacc acgagccagc cgccgatctc ggcgctggtc 2340
gcggcgctcg cgcacaccga ccgcgacacg ggcctctcgc tgcaggccgt gtgcgacctc 2400
gagccgtact gggaggccgt gcgtacggcg taccggccgt tcgagtcggg tctgtccgcg 2460
cccaccggcc gcgtctacaa gcacgagatc ccgggcgggc agctctccaa cctccgccag 2520
caggcgatca gcatgggcat gggcgagcag ttcgagaagg tcgaggactg gtacgccgcc 2580
gcgaacgaga tcctcggccg gccgccgaag gtcacgccgt cctcgaaggc cgtgggcgac 2640
ctcgcgatct acctcgcggc ggtgaacgcg gaccgcgcgg acttcgaggc gcacccggag 2700
cgctacgaca tcccggagtc ggtgatcggc ttcatggccg gcgagctcgg cgacctgccg 2760
ggcggctggc ccgagccatt ccgcagcaag atcctcgagg gccggcacgt cgacatcgcg 2820
gtcacgccga tcagcgacgc cgaccgcgag gcgctcgagg gcgacaccgc ctcgcggcgg 2880
caggtgctga accggctgct cttcccggac gcgctcgcgg tgttccagga ggtgagcgac 2940
cagtacggcg acctgtcggt ggtcgacacc gtggactacc tctacggcct cgaccgcgcg 3000
accgagcacc tcgtgcacat cagcaagggc gtcacgctct acatcggcct cgaggcgatc 3060
ggcgaggtgg acgagcgcgg catccgcacg gtgatgacga ccctcaacgg ccagctgcgg 3120
ccggtgtacg tgcacgaccg cagcgtctcc gccgccatcc tcggcgcgga gaaggcagac 3180
ctgagccagc ccggtcacgt ggccgcgccc ttctcgggct tcgtgacggt gcaggtgcac 3240
gtcggcgaca ccgtcaccgc cggccagacg gtcgcgacca tcgaggcgat gaagatggag 3300
gccgcgatca cggccgccgt cggcggcgtg gtccgccgcg tcgtgatcac ggagacgcgc 3360
caggtgaacg gcggcgacct gctgatgctg atcgagccgg tctga 3405
<210> 245
<211> 1134
<212> PRT
<213> Unknown
<220>
<223> pyc_2 sequence from unknown bacterial species from environmental
sample
<400> 245
Val Phe Gln Lys Ile Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Leu Gly Val Arg Thr Val Ala Val Phe
20 25 30
Pro Tyr Glu Asp Arg Gly Ser Thr His Arg Met Thr Ala Asp Glu Ala
35 40 45
Tyr Gln Ile Gly Glu Pro Gly His Pro Val Arg Ala Tyr Leu Asp Val
50 55 60
Asp Glu Ile Ile Arg Val Ala Lys Glu Cys Gly Ala Asp Ala Ile Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro Ala Leu Ala Glu Ala Ala
85 90 95
Gln Glu Ala Gly Ile Thr Phe Val Gly Pro Pro Ala Arg Val Leu Glu
100 105 110
Ile Ala Gly Asn Lys Val Thr Ala Lys Glu Arg Ala Ile Ala Ala Gly
115 120 125
Val Pro Val Leu Ala Ser Thr Pro Ala Ser Arg Asp Leu Asp Glu Leu
130 135 140
Val Arg Ala Ala Asp Asp Leu Gly Phe Pro Val Phe Ala Lys Ala Val
145 150 155 160
Ala Gly Gly Gly Gly Arg Gly Met Arg Arg Val Asp Thr Arg Glu Glu
165 170 175
Leu Pro Ala Ala Leu Glu Glu Ala Met Arg Glu Ala Glu Thr Ala Phe
180 185 190
Gly Asp Pro Thr Met Phe Leu Glu Gln Ala Phe Pro Gln Pro Arg His
195 200 205
Ile Glu Val Gln Ile Leu Ala Asp Gly His Gly Asp Val Val His Leu
210 215 220
Phe Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Ile Glu
225 230 235 240
Ile Ala Pro Ala Pro Asn Val Asp Gln Pro Leu Arg Glu Ala Leu Tyr
245 250 255
Arg Asp Ala Val Ala Phe Ala Arg Ser Ile Gly Tyr Val Asn Ala Gly
260 265 270
Thr Val Glu Phe Leu Val Asp Thr Ala Gly Glu Arg Ala Gly Gln His
275 280 285
Val Phe Ile Glu Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr
290 295 300
Glu Glu Val Thr Asp Val Asp Leu Val Gln Ala Gln Met Arg Ile Ala
305 310 315 320
Ala Gly Glu Arg Leu Ser Asp Leu Gly Ile Arg Gln Glu Ser Leu Gln
325 330 335
Leu Arg Gly Ala Ala Met Gln Cys Arg Ile Thr Thr Glu Asp Pro Met
340 345 350
Asn Gly Phe Arg Pro Asp Val Gly Arg Ile Thr Thr Tyr Arg Ser Pro
355 360 365
Gly Gly Ala Gly Ile Arg Leu Asp Gly Gly Thr Ile Asn Leu Gly Ser
370 375 380
Glu Ile Gly Pro Tyr Phe Asp Ser Met Leu Val Lys Leu Thr Ser Arg
385 390 395 400
Ala Gly Asp Phe Pro Ala Ala Val Ser Arg Ala Arg Arg Ala Leu Ala
405 410 415
Glu Phe Arg Ile Arg Gly Val Ser Thr Asn Ile Pro Phe Leu Gln Ala
420 425 430
Val Val Ala Asp Pro Asp Phe Ile Ala Gly Asn Phe Thr Thr Ser Phe
435 440 445
Ile Asp Glu Arg Pro Tyr Leu Leu Asn Ala Asn Arg Ser Asn Asp Arg
450 455 460
Gly Thr Lys Val Leu Ser Trp Leu Ala Asp Val Thr Val Asn Gln Pro
465 470 475 480
His Gly Arg Arg Gly Lys Ile Val Ser Pro Trp His Lys Leu Pro Ala
485 490 495
Val Asp Ile Glu Ala Pro Ala Pro Pro Gly Ser Arg Asp Arg Leu Arg
500 505 510
Ala Leu Gly Pro Ala Ala Phe Ala Arg Ser Leu Arg Glu Gln Thr Pro
515 520 525
Leu Ala Val Thr Glu Thr Thr Phe Arg Asp Ala His Gln Ser Leu Leu
530 535 540
Ala Thr Arg Val Arg Thr Arg Asp Leu Val Ser Val Ala Pro Tyr Val
545 550 555 560
Ala Arg Thr Thr Pro Gln Leu Leu Ser Ile Glu Ala Trp Gly Gly Ala
565 570 575
Thr Tyr Asp Ala Ser Leu Arg Phe Leu Gly Glu Asp Pro Trp Glu Arg
580 585 590
Leu Ala Ala Leu Arg Glu Ala Leu Pro Asn Val Asn Ile Gln Met Leu
595 600 605
Leu Arg Gly Arg Asn Thr Val Gly Tyr Thr Pro Tyr Pro Glu Glu Val
610 615 620
Thr Asp Ala Phe Val Arg Glu Ala Ala Thr Thr Gly Val Asp Ile Phe
625 630 635 640
Arg Ile Phe Asp Ala Leu Asn Asp Val Ser Gln Met Arg Pro Ala Ile
645 650 655
Glu Ser Val Leu Ala Thr Gly Thr Gly Ile Ala Glu Val Ala Phe Cys
660 665 670
Tyr Thr Gly Asp Leu Leu Asp Pro Asn Glu Thr Leu Tyr Thr Leu Asp
675 680 685
Tyr Tyr Leu Lys Leu Ala Glu Glu Ile Val Gly Thr Gly Ala His Ile
690 695 700
Leu Ala Ile Lys Asp Met Ala Gly Leu Leu Arg Pro Arg Ala Ala Glu
705 710 715 720
Val Leu Val Arg Ala Leu Arg Glu Arg Phe Asp Leu Pro Val His Leu
725 730 735
His Thr His Asp Thr Pro Gly Gly Gln Leu Ala Thr Leu Leu Ala Ala
740 745 750
Ser Gly Ala Gly Val Asp Ala Val Asp Val Ala Ser Ala Pro Met Ala
755 760 765
Gly Thr Thr Ser Gln Pro Pro Ile Ser Ala Leu Val Ala Ala Leu Ala
770 775 780
His Thr Asp Arg Asp Thr Gly Leu Ser Leu Gln Ala Val Cys Asp Leu
785 790 795 800
Glu Pro Tyr Trp Glu Ala Val Arg Thr Ala Tyr Arg Pro Phe Glu Ser
805 810 815
Gly Leu Ser Ala Pro Thr Gly Arg Val Tyr Lys His Glu Ile Pro Gly
820 825 830
Gly Gln Leu Ser Asn Leu Arg Gln Gln Ala Ile Ser Met Gly Met Gly
835 840 845
Glu Gln Phe Glu Lys Val Glu Asp Trp Tyr Ala Ala Ala Asn Glu Ile
850 855 860
Leu Gly Arg Pro Pro Lys Val Thr Pro Ser Ser Lys Ala Val Gly Asp
865 870 875 880
Leu Ala Ile Tyr Leu Ala Ala Val Asn Ala Asp Arg Ala Asp Phe Glu
885 890 895
Ala His Pro Glu Arg Tyr Asp Ile Pro Glu Ser Val Ile Gly Phe Met
900 905 910
Ala Gly Glu Leu Gly Asp Leu Pro Gly Gly Trp Pro Glu Pro Phe Arg
915 920 925
Ser Lys Ile Leu Glu Gly Arg His Val Asp Ile Ala Val Thr Pro Ile
930 935 940
Ser Asp Ala Asp Arg Glu Ala Leu Glu Gly Asp Thr Ala Ser Arg Arg
945 950 955 960
Gln Val Leu Asn Arg Leu Leu Phe Pro Asp Ala Leu Ala Val Phe Gln
965 970 975
Glu Val Ser Asp Gln Tyr Gly Asp Leu Ser Val Val Asp Thr Val Asp
980 985 990
Tyr Leu Tyr Gly Leu Asp Arg Ala Thr Glu His Leu Val His Ile Ser
995 1000 1005
Lys Gly Val Thr Leu Tyr Ile Gly Leu Glu Ala Ile Gly Glu Val
1010 1015 1020
Asp Glu Arg Gly Ile Arg Thr Val Met Thr Thr Leu Asn Gly Gln
1025 1030 1035
Leu Arg Pro Val Tyr Val His Asp Arg Ser Val Ser Ala Ala Ile
1040 1045 1050
Leu Gly Ala Glu Lys Ala Asp Leu Ser Gln Pro Gly His Val Ala
1055 1060 1065
Ala Pro Phe Ser Gly Phe Val Thr Val Gln Val His Val Gly Asp
1070 1075 1080
Thr Val Thr Ala Gly Gln Thr Val Ala Thr Ile Glu Ala Met Lys
1085 1090 1095
Met Glu Ala Ala Ile Thr Ala Ala Val Gly Gly Val Val Arg Arg
1100 1105 1110
Val Val Ile Thr Glu Thr Arg Gln Val Asn Gly Gly Asp Leu Leu
1115 1120 1125
Met Leu Ile Glu Pro Val
1130
<210> 246
<211> 3408
<212> DNA
<213> Unknown
<220>
<223> pyc_3 sequence from unknown bacterial species from environmental
sample
<400> 246
atgtttggca aggtactggt cgctaatcgt ggcgagatcg cggtccgagc ctttcgcgcg 60
gcgtacgagc tgggcgtgag gaccgtcgcg gtgttcgcct acgaggaccg aaacgcggtc 120
caccggatca aggcggatga ggcgtacttg atcggtgagc ggggtcaccc ggtacgcgcc 180
tatctcgata tcaacgagat catgcgggct gccaagcagt ctgaggcaga tgcgatctat 240
cccggctacg gcttcctgag cgaaaatccc gaccttgccc gggcgtgtga agacgccggc 300
ataaccttca tcggtccgcc tgccaaagtg ctggagcttg ccgggaacaa ggtccacgcc 360
atcgaggcag ccaaggccgc aggcgtgcca accctcacct caacgccacc gtcggccaac 420
atcgaggagc tgatggcaag tgccgaaagc atcggctttc cggcgttcgt taaggcggtt 480
gccggtggcg gtggccgcgg catgcggcgg atcgcggacc gcgatcagct cagagaatcg 540
ctatctgccg cgatgcgcga ggccgaaggc gcgttcggcg acccgacggc atacatcgag 600
caggcggtag gccggccgcg gcacatcgag gtgcaggtac tcgctgacag tcagggcgac 660
accatccatc tgttcgagcg cgactgttcg gtgcagcgac ggcaccaaaa gatcattgag 720
attgcaccgg ctccgcacat ctcgactgag ttgcgcgagg cgttgtgtcg tgatgcggtg 780
cggttcgctg aatcgatcga ttactcctgc gccggcactg tcgagtttct ggttgagacc 840
gagggtgagc gggccggtca gcacgtcttc atcgagatga atcctcgaat ccaggtggag 900
cacaccatta ctgaggagat caccgatgtt gatcttgtgc aggcccagat gcggattgct 960
gcaggggaaa gccttactga tcttggtctg tcacaggaag cgattcggat caacggggcc 1020
gcgctgcaat gccgaatcac caccgaggat cctgcgaacg atttccggcc cgatacgggc 1080
accattaccg cctatcgttc cgcgggcggt gcgggcgtgc ggatcgacgg tggcacggtc 1140
gacatcggcg ttgaaatcag cgcatatttc gactccctgc tggtcaagct catctgtcac 1200
gggtgggatt tccaggcggc agtgacccga gcccggcggg cgcttgccga gttccggatc 1260
cgcggcgtaa gcaccaacat tccttttctg caagccgttc tggccgatcc caagttcaga 1320
gcaggtgacg tctcgacatc ctttatcgag gagcggcccg acctgctgac cgcgcacgcg 1380
cccgccgacc ggggcaccaa attgctgcgc tggctggcgg aggtaacggt caaccagccg 1440
catggaccag caccgactca actcgatcca ggcctgaagc gacctaccgg catcgatctc 1500
accatcccat cccccaccgg ctcacggcag cggcttcttg atcttggtcc agaggctttc 1560
gccgaggatc tgcggcaacg ggtgccgatc gaggtaactg acacaacctt ccgcgacgct 1620
caccagtccc tgcttgcgac tcgggttcgt accaaggatt tgatacgtat tgcgccctat 1680
gtgggacgca tgacaccgca gctgctctcg gtcgagtgct ggggcggggc aacctacgac 1740
gtggcgctgc gcttcatcgc cgaggacccg tgggaacgcc tcgccgcgct gcgctacaac 1800
atgccaggtc tgtgcctgca aatgctctta cgcggacgca acacggtcgg ttatacgccg 1860
tacccaacga aggtcaccac ttcattcgtg gccgaagctg cccaagtcgg tatcgacatc 1920
ttccgcatct tcgatgcgct caacgacgtc gagcagatgc ggccagcgat cgaggcggta 1980
cgagagaccg gcagcaccat cgccgaggta gccctgtgct acaccggcga cctcaactca 2040
ccggccgagg acctgtacac cctggactac tacctgcgac tggccgagaa gatggtcaag 2100
gccggtgctc acatcatcgg gatcaaggac atggctgggc tgctccggcc gcctgcggct 2160
cggaagttgg tcaccgcact acggcagaac ttcgacctcc cggtgcatct gcacacccac 2220
gacaccgccg gtggtcagct ggcgacactg ctcgccgcca tcgaggttgg agtcgatgca 2280
gtcgatgtgg ccagcgcccc gatggccgga accaccagtc aggtgcccgc ttcagcactg 2340
gtcgcggcct gcgcgaatac tgagcggccc accaaccttg acctgcgaga cgtgatggag 2400
cttgagccgt actgggaggc ggttcggaag gtgtatgcgc cgttcgagtc aggactgccg 2460
agcccaaccg gccgggtcta tgaccacgag atccccggtg gccagctctc caatctccgg 2520
cagcaggcaa ttgctctggg actgggggag aagtttgagc aaattgaggc tatgtatacc 2580
gccgcgagcc gcatcttggg taggccgccc aaggtcacac cgtcctcgaa agtcgttggt 2640
gatcttgctt tacacctagt tgcggttgga gccgatccgg acgacttcgc ccagaaccct 2700
cacaagtacg acatcccgga ttcagtgatc ggtttcctca acggtgagct aggtgatccg 2760
cccggcggct ggccggagcc gttccgcacc aaggcgctac aggggcgtac cgtgccggta 2820
cgcgacatcg agctttcgcc cgaggactca gccaaccttg acgacaaagg tttggtgcga 2880
cagagcacgc tgaaccgctt gctgttcccc gggccgacca aggagttcct ggccaaccgg 2940
gaaacctacg gcgatgtggg tcggcttaac accctggact tcctctacgg gttacagccc 3000
ggtcaggagc accttgccaa gatcggtaag ggtgtcagcc tgatactcgg gctttcggcg 3060
atcggcaacg ccgacgaacg gggcatgcgt accgttatgt gcacgatcaa cggacagctg 3120
cggcccatcc gagttcgcga caagtcgatc aaggtcgatg ttaagactgc cgagcgtgcg 3180
gatccgaaca atccgggtca tgtggcggca ccgttcgccg gcgtggtcac cgttacggtg 3240
cgtgagggcg atcaggtcca ggctggtgcc accgttgcca cgatcgaggc gatgaagatg 3300
gaagccgcga ttactacgcc ggtgtcaggc gtggtacagc ggctggcact cgctgacgtg 3360
cagcaagttg agggcggtga cctcgtcctg gtggttgccg ctgcctaa 3408
<210> 247
<211> 1135
<212> PRT
<213> Unknown
<220>
<223> pyc_3 sequence from unknown bacterial species from environmental
sample
<400> 247
Met Phe Gly Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Val Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Leu Gly Val Arg Thr Val Ala Val Phe
20 25 30
Ala Tyr Glu Asp Arg Asn Ala Val His Arg Ile Lys Ala Asp Glu Ala
35 40 45
Tyr Leu Ile Gly Glu Arg Gly His Pro Val Arg Ala Tyr Leu Asp Ile
50 55 60
Asn Glu Ile Met Arg Ala Ala Lys Gln Ser Glu Ala Asp Ala Ile Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro Asp Leu Ala Arg Ala Cys
85 90 95
Glu Asp Ala Gly Ile Thr Phe Ile Gly Pro Pro Ala Lys Val Leu Glu
100 105 110
Leu Ala Gly Asn Lys Val His Ala Ile Glu Ala Ala Lys Ala Ala Gly
115 120 125
Val Pro Thr Leu Thr Ser Thr Pro Pro Ser Ala Asn Ile Glu Glu Leu
130 135 140
Met Ala Ser Ala Glu Ser Ile Gly Phe Pro Ala Phe Val Lys Ala Val
145 150 155 160
Ala Gly Gly Gly Gly Arg Gly Met Arg Arg Ile Ala Asp Arg Asp Gln
165 170 175
Leu Arg Glu Ser Leu Ser Ala Ala Met Arg Glu Ala Glu Gly Ala Phe
180 185 190
Gly Asp Pro Thr Ala Tyr Ile Glu Gln Ala Val Gly Arg Pro Arg His
195 200 205
Ile Glu Val Gln Val Leu Ala Asp Ser Gln Gly Asp Thr Ile His Leu
210 215 220
Phe Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Ile Ile Glu
225 230 235 240
Ile Ala Pro Ala Pro His Ile Ser Thr Glu Leu Arg Glu Ala Leu Cys
245 250 255
Arg Asp Ala Val Arg Phe Ala Glu Ser Ile Asp Tyr Ser Cys Ala Gly
260 265 270
Thr Val Glu Phe Leu Val Glu Thr Glu Gly Glu Arg Ala Gly Gln His
275 280 285
Val Phe Ile Glu Met Asn Pro Arg Ile Gln Val Glu His Thr Ile Thr
290 295 300
Glu Glu Ile Thr Asp Val Asp Leu Val Gln Ala Gln Met Arg Ile Ala
305 310 315 320
Ala Gly Glu Ser Leu Thr Asp Leu Gly Leu Ser Gln Glu Ala Ile Arg
325 330 335
Ile Asn Gly Ala Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala
340 345 350
Asn Asp Phe Arg Pro Asp Thr Gly Thr Ile Thr Ala Tyr Arg Ser Ala
355 360 365
Gly Gly Ala Gly Val Arg Ile Asp Gly Gly Thr Val Asp Ile Gly Val
370 375 380
Glu Ile Ser Ala Tyr Phe Asp Ser Leu Leu Val Lys Leu Ile Cys His
385 390 395 400
Gly Trp Asp Phe Gln Ala Ala Val Thr Arg Ala Arg Arg Ala Leu Ala
405 410 415
Glu Phe Arg Ile Arg Gly Val Ser Thr Asn Ile Pro Phe Leu Gln Ala
420 425 430
Val Leu Ala Asp Pro Lys Phe Arg Ala Gly Asp Val Ser Thr Ser Phe
435 440 445
Ile Glu Glu Arg Pro Asp Leu Leu Thr Ala His Ala Pro Ala Asp Arg
450 455 460
Gly Thr Lys Leu Leu Arg Trp Leu Ala Glu Val Thr Val Asn Gln Pro
465 470 475 480
His Gly Pro Ala Pro Thr Gln Leu Asp Pro Gly Leu Lys Arg Pro Thr
485 490 495
Gly Ile Asp Leu Thr Ile Pro Ser Pro Thr Gly Ser Arg Gln Arg Leu
500 505 510
Leu Asp Leu Gly Pro Glu Ala Phe Ala Glu Asp Leu Arg Gln Arg Val
515 520 525
Pro Ile Glu Val Thr Asp Thr Thr Phe Arg Asp Ala His Gln Ser Leu
530 535 540
Leu Ala Thr Arg Val Arg Thr Lys Asp Leu Ile Arg Ile Ala Pro Tyr
545 550 555 560
Val Gly Arg Met Thr Pro Gln Leu Leu Ser Val Glu Cys Trp Gly Gly
565 570 575
Ala Thr Tyr Asp Val Ala Leu Arg Phe Ile Ala Glu Asp Pro Trp Glu
580 585 590
Arg Leu Ala Ala Leu Arg Tyr Asn Met Pro Gly Leu Cys Leu Gln Met
595 600 605
Leu Leu Arg Gly Arg Asn Thr Val Gly Tyr Thr Pro Tyr Pro Thr Lys
610 615 620
Val Thr Thr Ser Phe Val Ala Glu Ala Ala Gln Val Gly Ile Asp Ile
625 630 635 640
Phe Arg Ile Phe Asp Ala Leu Asn Asp Val Glu Gln Met Arg Pro Ala
645 650 655
Ile Glu Ala Val Arg Glu Thr Gly Ser Thr Ile Ala Glu Val Ala Leu
660 665 670
Cys Tyr Thr Gly Asp Leu Asn Ser Pro Ala Glu Asp Leu Tyr Thr Leu
675 680 685
Asp Tyr Tyr Leu Arg Leu Ala Glu Lys Met Val Lys Ala Gly Ala His
690 695 700
Ile Ile Gly Ile Lys Asp Met Ala Gly Leu Leu Arg Pro Pro Ala Ala
705 710 715 720
Arg Lys Leu Val Thr Ala Leu Arg Gln Asn Phe Asp Leu Pro Val His
725 730 735
Leu His Thr His Asp Thr Ala Gly Gly Gln Leu Ala Thr Leu Leu Ala
740 745 750
Ala Ile Glu Val Gly Val Asp Ala Val Asp Val Ala Ser Ala Pro Met
755 760 765
Ala Gly Thr Thr Ser Gln Val Pro Ala Ser Ala Leu Val Ala Ala Cys
770 775 780
Ala Asn Thr Glu Arg Pro Thr Asn Leu Asp Leu Arg Asp Val Met Glu
785 790 795 800
Leu Glu Pro Tyr Trp Glu Ala Val Arg Lys Val Tyr Ala Pro Phe Glu
805 810 815
Ser Gly Leu Pro Ser Pro Thr Gly Arg Val Tyr Asp His Glu Ile Pro
820 825 830
Gly Gly Gln Leu Ser Asn Leu Arg Gln Gln Ala Ile Ala Leu Gly Leu
835 840 845
Gly Glu Lys Phe Glu Gln Ile Glu Ala Met Tyr Thr Ala Ala Ser Arg
850 855 860
Ile Leu Gly Arg Pro Pro Lys Val Thr Pro Ser Ser Lys Val Val Gly
865 870 875 880
Asp Leu Ala Leu His Leu Val Ala Val Gly Ala Asp Pro Asp Asp Phe
885 890 895
Ala Gln Asn Pro His Lys Tyr Asp Ile Pro Asp Ser Val Ile Gly Phe
900 905 910
Leu Asn Gly Glu Leu Gly Asp Pro Pro Gly Gly Trp Pro Glu Pro Phe
915 920 925
Arg Thr Lys Ala Leu Gln Gly Arg Thr Val Pro Val Arg Asp Ile Glu
930 935 940
Leu Ser Pro Glu Asp Ser Ala Asn Leu Asp Asp Lys Gly Leu Val Arg
945 950 955 960
Gln Ser Thr Leu Asn Arg Leu Leu Phe Pro Gly Pro Thr Lys Glu Phe
965 970 975
Leu Ala Asn Arg Glu Thr Tyr Gly Asp Val Gly Arg Leu Asn Thr Leu
980 985 990
Asp Phe Leu Tyr Gly Leu Gln Pro Gly Gln Glu His Leu Ala Lys Ile
995 1000 1005
Gly Lys Gly Val Ser Leu Ile Leu Gly Leu Ser Ala Ile Gly Asn
1010 1015 1020
Ala Asp Glu Arg Gly Met Arg Thr Val Met Cys Thr Ile Asn Gly
1025 1030 1035
Gln Leu Arg Pro Ile Arg Val Arg Asp Lys Ser Ile Lys Val Asp
1040 1045 1050
Val Lys Thr Ala Glu Arg Ala Asp Pro Asn Asn Pro Gly His Val
1055 1060 1065
Ala Ala Pro Phe Ala Gly Val Val Thr Val Thr Val Arg Glu Gly
1070 1075 1080
Asp Gln Val Gln Ala Gly Ala Thr Val Ala Thr Ile Glu Ala Met
1085 1090 1095
Lys Met Glu Ala Ala Ile Thr Thr Pro Val Ser Gly Val Val Gln
1100 1105 1110
Arg Leu Ala Leu Ala Asp Val Gln Gln Val Glu Gly Gly Asp Leu
1115 1120 1125
Val Leu Val Val Ala Ala Ala
1130 1135
<210> 248
<211> 3486
<212> DNA
<213> Unknown
<220>
<223> pyc_4 sequence from unknown bacterial species from environmental
sample
<400> 248
ttggggaccc tcctggacgg gcagccggac aggcgggagg gtccgccgtc ccatgagaag 60
gtgtcccccg gagtgacgac ccgaggggga cacatgttcg gcaaggtcct ggtcgccaac 120
cgaggcgaga tcgcgatccg cgcgttccgc gccgcctacg agatgggcgc gcagaccgtc 180
gcggtgttcc cctacgagga ccgcaactcc gagcaccggc tcaaggccga cgaggcctac 240
cagatcggcg agctgggccg accggtacgc gcctacctcg acgtcgacgc gatcgtgcgt 300
acggcggtcc gcgccggcgc cgacgcggtc taccccggat acggcttcct gtccgagaac 360
ccccagctcg cggaggcctg tgccgccgcg gggatcgcct tcatcggtcc cagcgccgag 420
gtgctcgagc tcaccgggaa caaggcccgc gcgatcgcgg cggcgcgcaa ggccggagtg 480
ccgacgctca gcagcgtcgc ccccgggacc gaccccgcag cgctagtcga ggctgcccga 540
gagctcgcct tcccgctgtt cgtcaaggcg gtcgccggtg gcggcggtcg cggcatgcgg 600
cgcgtggacg accccgcggt cctcgaggag gccgtgcgga cctgtatgcg cgaggccgac 660
agtgccttcg gcgacccgac ggtcttcatc gagcaggccg tcgtcgaccc gcgccacatc 720
gaggtccaga tcctcgccga cgggcagggc gaggtccttc acctgttcga gcgcgactgc 780
tcggtgcagc gacgccacca gaaggtcgtc gagatcgcgc cggcgcccaa cctcgacccc 840
gggctgcgcg accggatgtg cgccgacgcg gtgcggttcg cgcgcgagat cggctacacg 900
aatgccggca ccgtcgagtt cctcctggac ccgcagggcc gctacgtgtt catcgagatg 960
aacccccgca tccaggtcga gcacaccgtg accgaggagg tcaccgacgt cgacctggtc 1020
cgcagccaga tgcgcatcgc gtcgggggag acgctggccg acctcgggct cacccaggag 1080
gacatccggc tccgcggcgc cgcgctgcag tgccggatca ccaccgagga cccggcgaac 1140
ggcttccgcc ccgacacggg cgtcatcacg acgtatcgct ccccgggcgg cgccggtatc 1200
cggctcgacg gcgggacgac ctacaccggc gcggagatct ccggtcactt cgactcgatg 1260
ctcgccaagc tcacctgccg cggccgcgac ttcaccaccg cggtcgagcg ctcgcgccgg 1320
gcggtggcgg agttccggat ccgcggcgtc gccacgaaca tccccttcct ccaggccgtc 1380
ctcgacgacc cggacttcgc ccgcggcggg gtgaccaccg gcttcatcga ggagcggccc 1440
cacctgctca ccgcgcgctc gagcgccgac cggggcacca agctgctcaa ctacctcgcc 1500
gacgtcaccg tcaaccagcc gtacggcgcg cttcaggtcg gggtcgaccc ccgggcgaag 1560
ctcccgcccg tcgacctcgc cgcaacgcca ccctccggaa cccgtcaact cctctgcgac 1620
gtcgggcctg aggagttcgc tcgccggctg cgccgtcaga cccgggtcgc cgtcaccgac 1680
accacgttcc gcgacgccca ccagtcgctg ctcgccaccc gcatccgcac ccgcgacctg 1740
ctgggggtcg ccggccacgt cgcccggacc accccagagc tctggtcgat cgaggcgtgg 1800
ggcggagcca cctacgacgt cgcgctgcgc ttcctctccg aggacccgtg ggaccggctc 1860
gcgcggctgc gtcgagcggt gcccaacatc tgcctgcaga tgcttctccg cggtcgcaac 1920
accgtgggct acacgccgta cccgaccgag gtgaccgacg ccttcgtcga ggaggcggcc 1980
gccaccggga tcgacgtctt ccgggtcttc gacgcgctca acgacgtgga gcagatgcgc 2040
ccggcggtcg aggccgtccg gaggaccggg accgcggtgg ccgaggtcgc gctgtgctac 2100
accggcgacc tctccgaccc ggccgagcgg ctctacaccc tcgactacta cctgcggctc 2160
gccgagcgca tcgtcgaggc cggtgcccac gtgctggcga tcaaggacat ggccgggctg 2220
ctccgggcgc cggccgccca ccggctggtg accgcgctgc gcgagcgttt cgacctgccg 2280
gtgcacctcc acacccacga cacccctggc ggccagctgg cgacgctgct cgccgcgatc 2340
gacgcggggg tggacgcggt cgacgccgcg agcgccgcga tggcggggac gaccagccag 2400
ccggcactgt ccgccctggt cgccgccaca gaccaccccg tgacggaggg ccgcgacacc 2460
gggctggacc tccgcgccgt ctgcgacctc gagccctact gggaggccac gagacgggtc 2520
tacgcgccgt tcgagtcggg gctgccctcg cccactggtc gggtctacac ccacgagatc 2580
cccggcgggc agctctcgaa cctccggcag caggcgatcg cgctcgggct gggggagaag 2640
ttcgagcaga tcgaggacat gtacgccgcg gcgaaccgga tcctcgggaa catcgtgaag 2700
gtgaccccgt cctccaaggt cgtcggtgac ctggcgctcc acctcgtggc ggtcgacgcc 2760
gaccccacgg cgttcgccga ggaccccggg aagttcgacg tgcccgactc ggtcgtcggc 2820
ttcctcagcg gcgacctcgg cgatccgccc gggggctggc cggagccgtt ccggacccgg 2880
gccctcgagg gccgtacgac gcgaccggcg gtcaccgagc tcaccgaggg cgatcgcgac 2940
gggctcgccg cggaccggag ggcgaccctc aaccggttgc tgttcccggg ccccacccgc 3000
gagttcgagg agtcccgaca gcggtacggc gacctgtcgg tgctgccgac gcggcagtac 3060
ctctacggtt tgcagcaggg tgaggagcac caggtggagc tcgccgaggg caagacgctc 3120
atcctggggc tcgaggcggt cgggggcgcg gacgagcgcg gcttccgcac cgtcatgtgc 3180
acgatcaacg gccacctgcg accggtcccc gtccgcgacc gttcggtggc ggcggacacc 3240
ccgacggcgg agaaggcgga ccccaccaag ccagggcagg tcgcggcgcc gttcggcggg 3300
gtcgtcaccc cgacggtggc ggagggcgac ccggtggagg ccggggccac cgtggcgacc 3360
atcgaggcga tgaagatgga ggcgtcgatc acggcgccgg tcgggggcac ggtgcagcgg 3420
gtcgcgctcg gcggtccgca gcaggtggag ggcggcgacc tggtgctcgt gatcggacga 3480
ggctga 3486
<210> 249
<211> 1161
<212> PRT
<213> Unknown
<220>
<223> pyc_4 sequence from unknown bacterial species from environmental
sample
<400> 249
Leu Gly Thr Leu Leu Asp Gly Gln Pro Asp Arg Arg Glu Gly Pro Pro
1 5 10 15
Ser His Glu Lys Val Ser Pro Gly Val Thr Thr Arg Gly Gly His Met
20 25 30
Phe Gly Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg Ala
35 40 45
Phe Arg Ala Ala Tyr Glu Met Gly Ala Gln Thr Val Ala Val Phe Pro
50 55 60
Tyr Glu Asp Arg Asn Ser Glu His Arg Leu Lys Ala Asp Glu Ala Tyr
65 70 75 80
Gln Ile Gly Glu Leu Gly Arg Pro Val Arg Ala Tyr Leu Asp Val Asp
85 90 95
Ala Ile Val Arg Thr Ala Val Arg Ala Gly Ala Asp Ala Val Tyr Pro
100 105 110
Gly Tyr Gly Phe Leu Ser Glu Asn Pro Gln Leu Ala Glu Ala Cys Ala
115 120 125
Ala Ala Gly Ile Ala Phe Ile Gly Pro Ser Ala Glu Val Leu Glu Leu
130 135 140
Thr Gly Asn Lys Ala Arg Ala Ile Ala Ala Ala Arg Lys Ala Gly Val
145 150 155 160
Pro Thr Leu Ser Ser Val Ala Pro Gly Thr Asp Pro Ala Ala Leu Val
165 170 175
Glu Ala Ala Arg Glu Leu Ala Phe Pro Leu Phe Val Lys Ala Val Ala
180 185 190
Gly Gly Gly Gly Arg Gly Met Arg Arg Val Asp Asp Pro Ala Val Leu
195 200 205
Glu Glu Ala Val Arg Thr Cys Met Arg Glu Ala Asp Ser Ala Phe Gly
210 215 220
Asp Pro Thr Val Phe Ile Glu Gln Ala Val Val Asp Pro Arg His Ile
225 230 235 240
Glu Val Gln Ile Leu Ala Asp Gly Gln Gly Glu Val Leu His Leu Phe
245 250 255
Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Val Glu Ile
260 265 270
Ala Pro Ala Pro Asn Leu Asp Pro Gly Leu Arg Asp Arg Met Cys Ala
275 280 285
Asp Ala Val Arg Phe Ala Arg Glu Ile Gly Tyr Thr Asn Ala Gly Thr
290 295 300
Val Glu Phe Leu Leu Asp Pro Gln Gly Arg Tyr Val Phe Ile Glu Met
305 310 315 320
Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Val Thr Asp
325 330 335
Val Asp Leu Val Arg Ser Gln Met Arg Ile Ala Ser Gly Glu Thr Leu
340 345 350
Ala Asp Leu Gly Leu Thr Gln Glu Asp Ile Arg Leu Arg Gly Ala Ala
355 360 365
Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala Asn Gly Phe Arg Pro
370 375 380
Asp Thr Gly Val Ile Thr Thr Tyr Arg Ser Pro Gly Gly Ala Gly Ile
385 390 395 400
Arg Leu Asp Gly Gly Thr Thr Tyr Thr Gly Ala Glu Ile Ser Gly His
405 410 415
Phe Asp Ser Met Leu Ala Lys Leu Thr Cys Arg Gly Arg Asp Phe Thr
420 425 430
Thr Ala Val Glu Arg Ser Arg Arg Ala Val Ala Glu Phe Arg Ile Arg
435 440 445
Gly Val Ala Thr Asn Ile Pro Phe Leu Gln Ala Val Leu Asp Asp Pro
450 455 460
Asp Phe Ala Arg Gly Gly Val Thr Thr Gly Phe Ile Glu Glu Arg Pro
465 470 475 480
His Leu Leu Thr Ala Arg Ser Ser Ala Asp Arg Gly Thr Lys Leu Leu
485 490 495
Asn Tyr Leu Ala Asp Val Thr Val Asn Gln Pro Tyr Gly Ala Leu Gln
500 505 510
Val Gly Val Asp Pro Arg Ala Lys Leu Pro Pro Val Asp Leu Ala Ala
515 520 525
Thr Pro Pro Ser Gly Thr Arg Gln Leu Leu Cys Asp Val Gly Pro Glu
530 535 540
Glu Phe Ala Arg Arg Leu Arg Arg Gln Thr Arg Val Ala Val Thr Asp
545 550 555 560
Thr Thr Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Ile Arg
565 570 575
Thr Arg Asp Leu Leu Gly Val Ala Gly His Val Ala Arg Thr Thr Pro
580 585 590
Glu Leu Trp Ser Ile Glu Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala
595 600 605
Leu Arg Phe Leu Ser Glu Asp Pro Trp Asp Arg Leu Ala Arg Leu Arg
610 615 620
Arg Ala Val Pro Asn Ile Cys Leu Gln Met Leu Leu Arg Gly Arg Asn
625 630 635 640
Thr Val Gly Tyr Thr Pro Tyr Pro Thr Glu Val Thr Asp Ala Phe Val
645 650 655
Glu Glu Ala Ala Ala Thr Gly Ile Asp Val Phe Arg Val Phe Asp Ala
660 665 670
Leu Asn Asp Val Glu Gln Met Arg Pro Ala Val Glu Ala Val Arg Arg
675 680 685
Thr Gly Thr Ala Val Ala Glu Val Ala Leu Cys Tyr Thr Gly Asp Leu
690 695 700
Ser Asp Pro Ala Glu Arg Leu Tyr Thr Leu Asp Tyr Tyr Leu Arg Leu
705 710 715 720
Ala Glu Arg Ile Val Glu Ala Gly Ala His Val Leu Ala Ile Lys Asp
725 730 735
Met Ala Gly Leu Leu Arg Ala Pro Ala Ala His Arg Leu Val Thr Ala
740 745 750
Leu Arg Glu Arg Phe Asp Leu Pro Val His Leu His Thr His Asp Thr
755 760 765
Pro Gly Gly Gln Leu Ala Thr Leu Leu Ala Ala Ile Asp Ala Gly Val
770 775 780
Asp Ala Val Asp Ala Ala Ser Ala Ala Met Ala Gly Thr Thr Ser Gln
785 790 795 800
Pro Ala Leu Ser Ala Leu Val Ala Ala Thr Asp His Pro Val Thr Glu
805 810 815
Gly Arg Asp Thr Gly Leu Asp Leu Arg Ala Val Cys Asp Leu Glu Pro
820 825 830
Tyr Trp Glu Ala Thr Arg Arg Val Tyr Ala Pro Phe Glu Ser Gly Leu
835 840 845
Pro Ser Pro Thr Gly Arg Val Tyr Thr His Glu Ile Pro Gly Gly Gln
850 855 860
Leu Ser Asn Leu Arg Gln Gln Ala Ile Ala Leu Gly Leu Gly Glu Lys
865 870 875 880
Phe Glu Gln Ile Glu Asp Met Tyr Ala Ala Ala Asn Arg Ile Leu Gly
885 890 895
Asn Ile Val Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala
900 905 910
Leu His Leu Val Ala Val Asp Ala Asp Pro Thr Ala Phe Ala Glu Asp
915 920 925
Pro Gly Lys Phe Asp Val Pro Asp Ser Val Val Gly Phe Leu Ser Gly
930 935 940
Asp Leu Gly Asp Pro Pro Gly Gly Trp Pro Glu Pro Phe Arg Thr Arg
945 950 955 960
Ala Leu Glu Gly Arg Thr Thr Arg Pro Ala Val Thr Glu Leu Thr Glu
965 970 975
Gly Asp Arg Asp Gly Leu Ala Ala Asp Arg Arg Ala Thr Leu Asn Arg
980 985 990
Leu Leu Phe Pro Gly Pro Thr Arg Glu Phe Glu Glu Ser Arg Gln Arg
995 1000 1005
Tyr Gly Asp Leu Ser Val Leu Pro Thr Arg Gln Tyr Leu Tyr Gly
1010 1015 1020
Leu Gln Gln Gly Glu Glu His Gln Val Glu Leu Ala Glu Gly Lys
1025 1030 1035
Thr Leu Ile Leu Gly Leu Glu Ala Val Gly Gly Ala Asp Glu Arg
1040 1045 1050
Gly Phe Arg Thr Val Met Cys Thr Ile Asn Gly His Leu Arg Pro
1055 1060 1065
Val Pro Val Arg Asp Arg Ser Val Ala Ala Asp Thr Pro Thr Ala
1070 1075 1080
Glu Lys Ala Asp Pro Thr Lys Pro Gly Gln Val Ala Ala Pro Phe
1085 1090 1095
Gly Gly Val Val Thr Pro Thr Val Ala Glu Gly Asp Pro Val Glu
1100 1105 1110
Ala Gly Ala Thr Val Ala Thr Ile Glu Ala Met Lys Met Glu Ala
1115 1120 1125
Ser Ile Thr Ala Pro Val Gly Gly Thr Val Gln Arg Val Ala Leu
1130 1135 1140
Gly Gly Pro Gln Gln Val Glu Gly Gly Asp Leu Val Leu Val Ile
1145 1150 1155
Gly Arg Gly
1160
<210> 250
<211> 3462
<212> DNA
<213> Unknown
<220>
<223> pyc_5 sequence from unknown bacterial species from environmental
sample
<400> 250
gtgttcgaga aggtgttggt cgccaaccgg ggtgagatcg cggtgcgggt gttccgggcc 60
gcgtacgagc tgggcgcgcg cacggtcgcg gtgttcccgc acgaggaccg ggactcggtg 120
caccggctga aggcggacga ggcatatctg atcggccaac cgggccatcc ggtgcgcgcg 180
tacctcgacg ttgacgagat cgtccgggtg gcctcggcgt gcggtgcgga cgcggtccac 240
ccgggctacg gtttcctgtc cgagaatccg gagctggcgc gggcgtgtgc ggcggcgggg 300
atcgcgttcg tcggcccgcc gcccgaggtg ctggagctga ccggcaacaa ggtgcgggcg 360
gtggcggcgg cccgggcggc cggggtgccg gtgttgcgct cgacgccgcc ctcgtcggag 420
gtggatgagc tggtcgtcgc ggcggcggag gtcggctttc cgatcttcgt caaggcggtg 480
gccgggggtg gcggccgcgg gatgcgccgg gtggacgcgc cgggggagct gcccgatgcg 540
gtggccgccg cggtccggga ggctgaggcg gcgttcggtg atccgaccgt gttctgcgag 600
caggcggtgc tgcgcccgcg gcacgtcgag gtgcaggtcc tcgccgacgc ggcgggggag 660
atgatccact tgttcgagcg ggactgctcg gtgcagaggc ggcaccagaa ggtgatcgag 720
atcgcgccgg cgccgaacct ggacgagccg atccggcgac ggctgcacgc ggacgcgctc 780
gcgttcgccc gcgcggtcgg ctaccgcaac gccggcaccg tcgagttcct ggtcggcacc 840
gctggggatc gggccggcga gcatgtgttc atcgagatga acccgcggat ccaggtggag 900
cacacggtca ccgaggaggt gaccgatgtg gacctcgtgc aggcgcagct gcggatcgcg 960
gccggcgcga ccctgggcga cctgggattg gcgcaggaga cgatccactg taacgggacc 1020
gccgtgcaga cccggatcac caccgaggat cccgcccacg gctttcgccc ggacaccggc 1080
cggatcaccg cgtaccgctc gccgggtggg gcgggggtcc ggctggacgg cggtacggca 1140
cacgcgaacg ccgagatcag cgcgcacttc gactcgatgc tggtgaagct gacctgccgg 1200
ggccgcgacc tgcgcaccgc ggtgggccgg gtccggcggg cgctggcgga gttccggatc 1260
cgcggggtcg cgaccaacct cccgttcctg caggcggtgc tggacgagga cgacttcctg 1320
gccggccggc tcactacctc ctttatcgac gaacgtcccc acctgctgcg ggcgcgttcc 1380
agcgccgacc gcggcacccg gctgctgcgg tggctggcgg aggtcaccgt caaccgcccg 1440
tacggcgacg ccccggtcac ggtcgacccg gccgacaagt tgccggcggt cggccaagtc 1500
cggcgcctcc actccgaccc cgccgattgc tccggccccg gacaaggccg cgaggacccg 1560
accggagcgc cggccggcag ccggcagcgg ctgcgcgagc tcggcccgga agggttcgcc 1620
cgggcgctac gcgaccaggc cacggtcgcg gtcaccgaca cgaccttccg ggacgcccac 1680
cagtcgttgc tggcgacccg ggtccggacc aaggacctgc tggtggccgc accgtacgtc 1740
gcgcaccggc tggccgggtt gtggagcctg gaggcctggg gcggcgccac ctacgacgtc 1800
gcgctccggt tcctgggcga ggacccgtgg gagcggctgg cggcgctgcg cgaggcggtg 1860
ccgaacatcg cgctgcagat gctgctgcgc ggccgcaaca ccgtcggcta cacgccctac 1920
ccggagcagg tgacccgggc gttcgtggac gaggcggtcg ccaccggcat cgacgtgttc 1980
cggatcttcg atgcattgaa cgacgtggga cagatgaccc cggcgatcga ggcggtacgc 2040
gagtccggcc gggcggtcgc cgaggtggcg ctgtgctaca ccgctgacct gtccgacccg 2100
ggcgagccgc tctacaccct cgactactac ctggcgctgg ccgagcggat cgtggcggcg 2160
ggcgcgcacg tgctggcgat caaggacatg gccgggctgc tgcgcccgcc ggcggcacgg 2220
cggctggtcg ccgcgctgcg cgagcggttc gacctgccgg tccacctgca cacccacgac 2280
accgccggcg gccagctcgc caccctgctg gcggcggtcg acgccggggt ggacgcggtc 2340
gacgtggcct gcgcctcgat ggccgggacc accagccagc cgccgatgtc ggcactgctg 2400
gcggcgctgg cccataccgg gcgcgccccc gggctggacc tcgccgccgc ccaggagtac 2460
gagccgtact gggaggccgt ccgtcgggtg tatgcgccgt tcgagtccgg cctgcccggc 2520
ccgaccgggc gcgtctaccg gcacgagatc cccggcgggc agctcagcaa cctgcggcag 2580
caggcgatcg cgctcgggct gggggagaag ttcgagcaga tcgaggacac ctatgcggcg 2640
accgaccgga tcctcggccg gctggtcaag gtcaccccgt ccagcaaggt cgtcggcgac 2700
ctggcgctgc atctggtcgc gctgggcgcc gacgctgacg agttcgcccg cgacccggag 2760
cggttcgata tccccgactc ggtgatcggc ttcctcgccg gcgagctcgg taccccgccg 2820
ggcggctggc cggagccgct gcgcacccgc gccctggcgg gccgggagcc gacttccggc 2880
cgcgccgagc tcgacgcgac cgacgcgaag gcgctcgccg accccggacc gcagcggcgc 2940
gacaccctga accggctgct ctttccgggc ccgacccgcg agttcaccga ggtccggcag 3000
acctatggcg acctctcggt gctgggcacc gtcgactacc tgtacgggtt gcgccccggc 3060
gtggagtcga tcatcgagct ggaacggggc gtccacctga tcgtccggct ggaggcggtc 3120
ggcgacgccg acgagcgcgg cttccgtacc gtcatgtgca cgctcaacgg ccagctgcgc 3180
ccggtgtggg tgcgcgaccg gtcgatcgct gccgacgtac cggaggccga gaaggccgac 3240
cccgccaacc ctcggcatct ggccgtgccg ttcgccgggg tggtgaccgc ggtggtggcc 3300
gagggcgacg aggtcgaggc gggtcagacc gtcgccacca tcgaggccat gaagctggcg 3360
gcctccatca cggcaccggt cggcggccgg gtcgcccggc tggcgatcac cggcccgcgg 3420
caggccgagg ccggcgacct gatcgccgtc ctggagcagt aa 3462
<210> 251
<211> 1153
<212> PRT
<213> Unknown
<220>
<223> pyc_5 sequence from unknown bacterial species from environmental
sample
<400> 251
Val Phe Glu Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Val Arg
1 5 10 15
Val Phe Arg Ala Ala Tyr Glu Leu Gly Ala Arg Thr Val Ala Val Phe
20 25 30
Pro His Glu Asp Arg Asp Ser Val His Arg Leu Lys Ala Asp Glu Ala
35 40 45
Tyr Leu Ile Gly Gln Pro Gly His Pro Val Arg Ala Tyr Leu Asp Val
50 55 60
Asp Glu Ile Val Arg Val Ala Ser Ala Cys Gly Ala Asp Ala Val His
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro Glu Leu Ala Arg Ala Cys
85 90 95
Ala Ala Ala Gly Ile Ala Phe Val Gly Pro Pro Pro Glu Val Leu Glu
100 105 110
Leu Thr Gly Asn Lys Val Arg Ala Val Ala Ala Ala Arg Ala Ala Gly
115 120 125
Val Pro Val Leu Arg Ser Thr Pro Pro Ser Ser Glu Val Asp Glu Leu
130 135 140
Val Val Ala Ala Ala Glu Val Gly Phe Pro Ile Phe Val Lys Ala Val
145 150 155 160
Ala Gly Gly Gly Gly Arg Gly Met Arg Arg Val Asp Ala Pro Gly Glu
165 170 175
Leu Pro Asp Ala Val Ala Ala Ala Val Arg Glu Ala Glu Ala Ala Phe
180 185 190
Gly Asp Pro Thr Val Phe Cys Glu Gln Ala Val Leu Arg Pro Arg His
195 200 205
Val Glu Val Gln Val Leu Ala Asp Ala Ala Gly Glu Met Ile His Leu
210 215 220
Phe Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Ile Glu
225 230 235 240
Ile Ala Pro Ala Pro Asn Leu Asp Glu Pro Ile Arg Arg Arg Leu His
245 250 255
Ala Asp Ala Leu Ala Phe Ala Arg Ala Val Gly Tyr Arg Asn Ala Gly
260 265 270
Thr Val Glu Phe Leu Val Gly Thr Ala Gly Asp Arg Ala Gly Glu His
275 280 285
Val Phe Ile Glu Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr
290 295 300
Glu Glu Val Thr Asp Val Asp Leu Val Gln Ala Gln Leu Arg Ile Ala
305 310 315 320
Ala Gly Ala Thr Leu Gly Asp Leu Gly Leu Ala Gln Glu Thr Ile His
325 330 335
Cys Asn Gly Thr Ala Val Gln Thr Arg Ile Thr Thr Glu Asp Pro Ala
340 345 350
His Gly Phe Arg Pro Asp Thr Gly Arg Ile Thr Ala Tyr Arg Ser Pro
355 360 365
Gly Gly Ala Gly Val Arg Leu Asp Gly Gly Thr Ala His Ala Asn Ala
370 375 380
Glu Ile Ser Ala His Phe Asp Ser Met Leu Val Lys Leu Thr Cys Arg
385 390 395 400
Gly Arg Asp Leu Arg Thr Ala Val Gly Arg Val Arg Arg Ala Leu Ala
405 410 415
Glu Phe Arg Ile Arg Gly Val Ala Thr Asn Leu Pro Phe Leu Gln Ala
420 425 430
Val Leu Asp Glu Asp Asp Phe Leu Ala Gly Arg Leu Thr Thr Ser Phe
435 440 445
Ile Asp Glu Arg Pro His Leu Leu Arg Ala Arg Ser Ser Ala Asp Arg
450 455 460
Gly Thr Arg Leu Leu Arg Trp Leu Ala Glu Val Thr Val Asn Arg Pro
465 470 475 480
Tyr Gly Asp Ala Pro Val Thr Val Asp Pro Ala Asp Lys Leu Pro Ala
485 490 495
Val Gly Gln Val Arg Arg Leu His Ser Asp Pro Ala Asp Cys Ser Gly
500 505 510
Pro Gly Gln Gly Arg Glu Asp Pro Thr Gly Ala Pro Ala Gly Ser Arg
515 520 525
Gln Arg Leu Arg Glu Leu Gly Pro Glu Gly Phe Ala Arg Ala Leu Arg
530 535 540
Asp Gln Ala Thr Val Ala Val Thr Asp Thr Thr Phe Arg Asp Ala His
545 550 555 560
Gln Ser Leu Leu Ala Thr Arg Val Arg Thr Lys Asp Leu Leu Val Ala
565 570 575
Ala Pro Tyr Val Ala His Arg Leu Ala Gly Leu Trp Ser Leu Glu Ala
580 585 590
Trp Gly Gly Ala Thr Tyr Asp Val Ala Leu Arg Phe Leu Gly Glu Asp
595 600 605
Pro Trp Glu Arg Leu Ala Ala Leu Arg Glu Ala Val Pro Asn Ile Ala
610 615 620
Leu Gln Met Leu Leu Arg Gly Arg Asn Thr Val Gly Tyr Thr Pro Tyr
625 630 635 640
Pro Glu Gln Val Thr Arg Ala Phe Val Asp Glu Ala Val Ala Thr Gly
645 650 655
Ile Asp Val Phe Arg Ile Phe Asp Ala Leu Asn Asp Val Gly Gln Met
660 665 670
Thr Pro Ala Ile Glu Ala Val Arg Glu Ser Gly Arg Ala Val Ala Glu
675 680 685
Val Ala Leu Cys Tyr Thr Ala Asp Leu Ser Asp Pro Gly Glu Pro Leu
690 695 700
Tyr Thr Leu Asp Tyr Tyr Leu Ala Leu Ala Glu Arg Ile Val Ala Ala
705 710 715 720
Gly Ala His Val Leu Ala Ile Lys Asp Met Ala Gly Leu Leu Arg Pro
725 730 735
Pro Ala Ala Arg Arg Leu Val Ala Ala Leu Arg Glu Arg Phe Asp Leu
740 745 750
Pro Val His Leu His Thr His Asp Thr Ala Gly Gly Gln Leu Ala Thr
755 760 765
Leu Leu Ala Ala Val Asp Ala Gly Val Asp Ala Val Asp Val Ala Cys
770 775 780
Ala Ser Met Ala Gly Thr Thr Ser Gln Pro Pro Met Ser Ala Leu Leu
785 790 795 800
Ala Ala Leu Ala His Thr Gly Arg Ala Pro Gly Leu Asp Leu Ala Ala
805 810 815
Ala Gln Glu Tyr Glu Pro Tyr Trp Glu Ala Val Arg Arg Val Tyr Ala
820 825 830
Pro Phe Glu Ser Gly Leu Pro Gly Pro Thr Gly Arg Val Tyr Arg His
835 840 845
Glu Ile Pro Gly Gly Gln Leu Ser Asn Leu Arg Gln Gln Ala Ile Ala
850 855 860
Leu Gly Leu Gly Glu Lys Phe Glu Gln Ile Glu Asp Thr Tyr Ala Ala
865 870 875 880
Thr Asp Arg Ile Leu Gly Arg Leu Val Lys Val Thr Pro Ser Ser Lys
885 890 895
Val Val Gly Asp Leu Ala Leu His Leu Val Ala Leu Gly Ala Asp Ala
900 905 910
Asp Glu Phe Ala Arg Asp Pro Glu Arg Phe Asp Ile Pro Asp Ser Val
915 920 925
Ile Gly Phe Leu Ala Gly Glu Leu Gly Thr Pro Pro Gly Gly Trp Pro
930 935 940
Glu Pro Leu Arg Thr Arg Ala Leu Ala Gly Arg Glu Pro Thr Ser Gly
945 950 955 960
Arg Ala Glu Leu Asp Ala Thr Asp Ala Lys Ala Leu Ala Asp Pro Gly
965 970 975
Pro Gln Arg Arg Asp Thr Leu Asn Arg Leu Leu Phe Pro Gly Pro Thr
980 985 990
Arg Glu Phe Thr Glu Val Arg Gln Thr Tyr Gly Asp Leu Ser Val Leu
995 1000 1005
Gly Thr Val Asp Tyr Leu Tyr Gly Leu Arg Pro Gly Val Glu Ser
1010 1015 1020
Ile Ile Glu Leu Glu Arg Gly Val His Leu Ile Val Arg Leu Glu
1025 1030 1035
Ala Val Gly Asp Ala Asp Glu Arg Gly Phe Arg Thr Val Met Cys
1040 1045 1050
Thr Leu Asn Gly Gln Leu Arg Pro Val Trp Val Arg Asp Arg Ser
1055 1060 1065
Ile Ala Ala Asp Val Pro Glu Ala Glu Lys Ala Asp Pro Ala Asn
1070 1075 1080
Pro Arg His Leu Ala Val Pro Phe Ala Gly Val Val Thr Ala Val
1085 1090 1095
Val Ala Glu Gly Asp Glu Val Glu Ala Gly Gln Thr Val Ala Thr
1100 1105 1110
Ile Glu Ala Met Lys Leu Ala Ala Ser Ile Thr Ala Pro Val Gly
1115 1120 1125
Gly Arg Val Ala Arg Leu Ala Ile Thr Gly Pro Arg Gln Ala Glu
1130 1135 1140
Ala Gly Asp Leu Ile Ala Val Leu Glu Gln
1145 1150
<210> 252
<211> 3450
<212> DNA
<213> Unknown
<220>
<223> pyc_6 sequence from unknown bacterial species from environmental
sample
<400> 252
ttgatctcca aggtgctggt cgccaaccgc ggagagatcg ccatccgcgc gtttcgcgcc 60
gcctacgaga tggggctcgc caccgtcgcg gtttatccgg tcgaggaccg caactcggtg 120
caccgcctga aggccgatga ggcctatcag atcggccaac ccgggcaccc ggtgcgggcc 180
tatctctcgg ttgacgagat catgcgcgct gcggagatct ccggcgccga tgtgatctat 240
cctggttacg gattcctttc ggagaaccca gaattggccg cggggtgtga aactcgcggg 300
ttgacgtttg tcggtccgcc cgctcggata ctcgagctga cgggaaacaa ggcgagggcg 360
atcgccgcgg cgaaggcagc ggggctgcct gtcttgtccg cgaccgcgcc gtccgacgat 420
gtcgacgcgc tcgtcgaggc cgccggatcg atggccttcc cggtattcgt gaaggccgtt 480
gcgggcggtg gcgggcgcgg tatgcgccgg gtcagcgaat acgcgcagtt gcgcgagtcc 540
atcgaagcag cggctcggga ggccgagtcc gcgttcggtg accccaccgt gttcctcgaa 600
caagcggtga tcaacccgcg gcacatcgag gtccagatac tcgcggacaa ccagggcaac 660
gtcgtccatc tgtacgagcg tgactgttca gtgcaacgcc ggcaccagaa ggtcatcgag 720
ctcgcgcccg cccccaacct ggatccggcg ctgcgcgatc ggatctgcgc cgacgccgtg 780
gccttcgccc gggagatcgg ctactcgtgt gcagggacgg tggagttcct cgtcgacgag 840
aacggtcgac atgtattcat cgagatgaac ccgcgcatcc aggtcgagca cacggtcacc 900
gaagagatca cggacgtcga cctcgtgcag gcccagatgc gcatcgccgc cggggagtcg 960
ctgtcggagc tgggcctcag ccaggacacg gtccggatcc gcggcgcggc tctgcaatgc 1020
cgcattacca ccgaggatcc cgagaacgag ttccggccgg acaccggacg tatcagcgga 1080
taccgcactc ccggcggagc gggcgtgcga ctcgacggcg gaaccatgct cggcgcccag 1140
gtcggagcgc acttcgattc cttgctggtc aagttgacgt gccggggccg tgacttcgat 1200
gccgccgtcg ccagggcgcg gcgcggcgtg gccgaattcc gcatccgcgg tgtggccacc 1260
aatattccgt tcctgcaagc ggttctcgac aatgaggatt tccgagcggg cctggtcacg 1320
acgtcgttca tcgaaaccca tccggggttg ctcaatggct ataacccggc gaaccgcggt 1380
agcaagatct tggcgtacct cgccgacgtg actgtcaaca agcctcacgg cgaggccccg 1440
gatatcagcc acccgggcga caagctgccg cccgtggatc tgtcgaaacc gattcccgat 1500
ggctcacggc agcgacttat ggcgctgggc ccgcaggcct tcgcagatgc gctgcgccgc 1560
cagcctgccc tggcggtcac cgataccacc ttccgcgacg ctcaccaatc cttgctggcg 1620
acgcggcttc gcacccatga ccttgttgcc gtcgccgacc acatcgcgcg cactacaccg 1680
cagctgttct ccgtcgaggc ttggggcggc gcgacttacg atgtggcgct tcggcttctg 1740
cacgaggatc cgtggcaacg gttggctgaa ctacgagcgg cgattcccaa catctgcctg 1800
cagatgctgc tgcgaggacg caacaccgtt ggttatacgc cctaccccga ccaggtgaca 1860
gaggcattcg tcgccgaagc cgcggccacg ggtgtcgaca tcttccggat cttcgacgcg 1920
ctcaacaaca tcgaccagat gcgcccggct atcgacgccg tgcacacgac ggggacggcc 1980
gtcgctgagg tcgcgatgtc gtacaccggc gacctcagtg acccgaacga gcgcctctac 2040
acgctcgact actacctgcg tctggccgag cagttcgtcg aggcgggggc gcacatcctg 2100
gcgatcaagg acatggcggg gctgctgcgg gcaccggcgg ccgcgacctt ggtttccgcg 2160
ctacgcaaca actttgacct tcctgtgcat gtgcacaccc atgacacacc gggtggccaa 2220
ctcgcaacgt accttgccgc ctggcaggcc ggtgccgatg cggtcgatgg cgccgcagcg 2280
ccgctggcag gaaccacgag ccagcccgcg ctgtcgggga tcgttgcggc aacggcgaat 2340
acaggtcgcg acaccgggat cgaactgcag tcgctgtgcg acctggaacc gtactgggag 2400
tcggtgcgac gcatctatgc cccgttcgag gctggcctgc ccgccccgac cggccgggtg 2460
tacacccacg agattcccgg tgggcagctg tcgaacctgc ggacccaggc cgtggcgctg 2520
gggcttgggg agcggttcga ggacatcgag gccgcctatg cgggcgccga tcggctgctg 2580
ggccgtttgg tcaaggtcac gccgtcatcg aaggtggtcg gcgatctcgc gctggccctc 2640
gtcggcgccg gcgtcagtgc cgaacggttc gcggccgagc ctgcccgcta cgacataccg 2700
gactcggtga tcgggttcct gcgcggcgaa ctcggtgtgc ccgtcggtgg atggccagaa 2760
cccttgcgta ccaaggcact tgagggccgc ggggcggcca ggccggaaca ggtgctcact 2820
gccgaggacc gcacggcgct cggcgggtta ccgcaggagc gtcgcgcggc gttgaaccgg 2880
ttgctgtttc ccgggccgac ccgggaattc accgagcacc gggctcgcta tggcgacacc 2940
tcgctgctcg ccagtccgca gttcttctac ggcctgcgcc aggacgagga gacgcaggta 3000
acgctgagcc ccggggtgac gttgaacgtc ggcctggagg cgatcgcgga tgccgacgag 3060
cgcgggtacc gcacggtgat gtgtctgctg aacggccagc tacggccaat ccaagtgcga 3120
gacaactcga ttgcgacggc gcaccccgcc gccgagaagg ccgaccgcga cgatccgcgg 3180
catgtcgcgg cgccgttcgc tggcacggtc actttgtcgg tcggtgctgg cgatcaggta 3240
agcgcgggtg atccgatcgc caccatagaa gcgatgaaga tggaggccgc catcaccgcg 3300
cccgccgtcg gcagggtgtc gcgcgtcgca atcgacccga tcgcgcaggt tgagggtggt 3360
gacttgctgc tggtggtcga cgtcgaggac gctgtgaagg gtgagcagca ctcgaatcgc 3420
ggcgccgagg tcgtcggtgt cggcagctga 3450
<210> 253
<211> 1149
<212> PRT
<213> Unknown
<220>
<223> pyc_6 sequence from unknown bacterial species from environmental
sample
<400> 253
Leu Ile Ser Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Met Gly Leu Ala Thr Val Ala Val Tyr
20 25 30
Pro Val Glu Asp Arg Asn Ser Val His Arg Leu Lys Ala Asp Glu Ala
35 40 45
Tyr Gln Ile Gly Gln Pro Gly His Pro Val Arg Ala Tyr Leu Ser Val
50 55 60
Asp Glu Ile Met Arg Ala Ala Glu Ile Ser Gly Ala Asp Val Ile Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro Glu Leu Ala Ala Gly Cys
85 90 95
Glu Thr Arg Gly Leu Thr Phe Val Gly Pro Pro Ala Arg Ile Leu Glu
100 105 110
Leu Thr Gly Asn Lys Ala Arg Ala Ile Ala Ala Ala Lys Ala Ala Gly
115 120 125
Leu Pro Val Leu Ser Ala Thr Ala Pro Ser Asp Asp Val Asp Ala Leu
130 135 140
Val Glu Ala Ala Gly Ser Met Ala Phe Pro Val Phe Val Lys Ala Val
145 150 155 160
Ala Gly Gly Gly Gly Arg Gly Met Arg Arg Val Ser Glu Tyr Ala Gln
165 170 175
Leu Arg Glu Ser Ile Glu Ala Ala Ala Arg Glu Ala Glu Ser Ala Phe
180 185 190
Gly Asp Pro Thr Val Phe Leu Glu Gln Ala Val Ile Asn Pro Arg His
195 200 205
Ile Glu Val Gln Ile Leu Ala Asp Asn Gln Gly Asn Val Val His Leu
210 215 220
Tyr Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Ile Glu
225 230 235 240
Leu Ala Pro Ala Pro Asn Leu Asp Pro Ala Leu Arg Asp Arg Ile Cys
245 250 255
Ala Asp Ala Val Ala Phe Ala Arg Glu Ile Gly Tyr Ser Cys Ala Gly
260 265 270
Thr Val Glu Phe Leu Val Asp Glu Asn Gly Arg His Val Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Ile Thr
290 295 300
Asp Val Asp Leu Val Gln Ala Gln Met Arg Ile Ala Ala Gly Glu Ser
305 310 315 320
Leu Ser Glu Leu Gly Leu Ser Gln Asp Thr Val Arg Ile Arg Gly Ala
325 330 335
Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Glu Asn Glu Phe Arg
340 345 350
Pro Asp Thr Gly Arg Ile Ser Gly Tyr Arg Thr Pro Gly Gly Ala Gly
355 360 365
Val Arg Leu Asp Gly Gly Thr Met Leu Gly Ala Gln Val Gly Ala His
370 375 380
Phe Asp Ser Leu Leu Val Lys Leu Thr Cys Arg Gly Arg Asp Phe Asp
385 390 395 400
Ala Ala Val Ala Arg Ala Arg Arg Gly Val Ala Glu Phe Arg Ile Arg
405 410 415
Gly Val Ala Thr Asn Ile Pro Phe Leu Gln Ala Val Leu Asp Asn Glu
420 425 430
Asp Phe Arg Ala Gly Leu Val Thr Thr Ser Phe Ile Glu Thr His Pro
435 440 445
Gly Leu Leu Asn Gly Tyr Asn Pro Ala Asn Arg Gly Ser Lys Ile Leu
450 455 460
Ala Tyr Leu Ala Asp Val Thr Val Asn Lys Pro His Gly Glu Ala Pro
465 470 475 480
Asp Ile Ser His Pro Gly Asp Lys Leu Pro Pro Val Asp Leu Ser Lys
485 490 495
Pro Ile Pro Asp Gly Ser Arg Gln Arg Leu Met Ala Leu Gly Pro Gln
500 505 510
Ala Phe Ala Asp Ala Leu Arg Arg Gln Pro Ala Leu Ala Val Thr Asp
515 520 525
Thr Thr Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Leu Arg
530 535 540
Thr His Asp Leu Val Ala Val Ala Asp His Ile Ala Arg Thr Thr Pro
545 550 555 560
Gln Leu Phe Ser Val Glu Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala
565 570 575
Leu Arg Leu Leu His Glu Asp Pro Trp Gln Arg Leu Ala Glu Leu Arg
580 585 590
Ala Ala Ile Pro Asn Ile Cys Leu Gln Met Leu Leu Arg Gly Arg Asn
595 600 605
Thr Val Gly Tyr Thr Pro Tyr Pro Asp Gln Val Thr Glu Ala Phe Val
610 615 620
Ala Glu Ala Ala Ala Thr Gly Val Asp Ile Phe Arg Ile Phe Asp Ala
625 630 635 640
Leu Asn Asn Ile Asp Gln Met Arg Pro Ala Ile Asp Ala Val His Thr
645 650 655
Thr Gly Thr Ala Val Ala Glu Val Ala Met Ser Tyr Thr Gly Asp Leu
660 665 670
Ser Asp Pro Asn Glu Arg Leu Tyr Thr Leu Asp Tyr Tyr Leu Arg Leu
675 680 685
Ala Glu Gln Phe Val Glu Ala Gly Ala His Ile Leu Ala Ile Lys Asp
690 695 700
Met Ala Gly Leu Leu Arg Ala Pro Ala Ala Ala Thr Leu Val Ser Ala
705 710 715 720
Leu Arg Asn Asn Phe Asp Leu Pro Val His Val His Thr His Asp Thr
725 730 735
Pro Gly Gly Gln Leu Ala Thr Tyr Leu Ala Ala Trp Gln Ala Gly Ala
740 745 750
Asp Ala Val Asp Gly Ala Ala Ala Pro Leu Ala Gly Thr Thr Ser Gln
755 760 765
Pro Ala Leu Ser Gly Ile Val Ala Ala Thr Ala Asn Thr Gly Arg Asp
770 775 780
Thr Gly Ile Glu Leu Gln Ser Leu Cys Asp Leu Glu Pro Tyr Trp Glu
785 790 795 800
Ser Val Arg Arg Ile Tyr Ala Pro Phe Glu Ala Gly Leu Pro Ala Pro
805 810 815
Thr Gly Arg Val Tyr Thr His Glu Ile Pro Gly Gly Gln Leu Ser Asn
820 825 830
Leu Arg Thr Gln Ala Val Ala Leu Gly Leu Gly Glu Arg Phe Glu Asp
835 840 845
Ile Glu Ala Ala Tyr Ala Gly Ala Asp Arg Leu Leu Gly Arg Leu Val
850 855 860
Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu Ala Leu
865 870 875 880
Val Gly Ala Gly Val Ser Ala Glu Arg Phe Ala Ala Glu Pro Ala Arg
885 890 895
Tyr Asp Ile Pro Asp Ser Val Ile Gly Phe Leu Arg Gly Glu Leu Gly
900 905 910
Val Pro Val Gly Gly Trp Pro Glu Pro Leu Arg Thr Lys Ala Leu Glu
915 920 925
Gly Arg Gly Ala Ala Arg Pro Glu Gln Val Leu Thr Ala Glu Asp Arg
930 935 940
Thr Ala Leu Gly Gly Leu Pro Gln Glu Arg Arg Ala Ala Leu Asn Arg
945 950 955 960
Leu Leu Phe Pro Gly Pro Thr Arg Glu Phe Thr Glu His Arg Ala Arg
965 970 975
Tyr Gly Asp Thr Ser Leu Leu Ala Ser Pro Gln Phe Phe Tyr Gly Leu
980 985 990
Arg Gln Asp Glu Glu Thr Gln Val Thr Leu Ser Pro Gly Val Thr Leu
995 1000 1005
Asn Val Gly Leu Glu Ala Ile Ala Asp Ala Asp Glu Arg Gly Tyr
1010 1015 1020
Arg Thr Val Met Cys Leu Leu Asn Gly Gln Leu Arg Pro Ile Gln
1025 1030 1035
Val Arg Asp Asn Ser Ile Ala Thr Ala His Pro Ala Ala Glu Lys
1040 1045 1050
Ala Asp Arg Asp Asp Pro Arg His Val Ala Ala Pro Phe Ala Gly
1055 1060 1065
Thr Val Thr Leu Ser Val Gly Ala Gly Asp Gln Val Ser Ala Gly
1070 1075 1080
Asp Pro Ile Ala Thr Ile Glu Ala Met Lys Met Glu Ala Ala Ile
1085 1090 1095
Thr Ala Pro Ala Val Gly Arg Val Ser Arg Val Ala Ile Asp Pro
1100 1105 1110
Ile Ala Gln Val Glu Gly Gly Asp Leu Leu Leu Val Val Asp Val
1115 1120 1125
Glu Asp Ala Val Lys Gly Glu Gln His Ser Asn Arg Gly Ala Glu
1130 1135 1140
Val Val Gly Val Gly Ser
1145
<210> 254
<211> 3414
<212> DNA
<213> Unknown
<220>
<223> pyc_7 sequence from unknown bacterial species from environmental
sample
<400> 254
atgcgaaagt tgttggtcgc gaaccggggg gagatcgcga ttcgtgcgtt ccgcgctgcg 60
ttcgagctcg acctcgcgac ggtcgcggtg ttcgcgtggg aggaccgcgg gtcgctgcac 120
cgcctgaaag ccgatgaggc gtacttgatc ggtgagcgcg gccacccggt gcgggcgtac 180
ctcgacgtgg accagatcgt gacaaccgcg ttgtcgtgcg gagccgatgc gatctacccg 240
ggctacggat tcctatcgga aaaccccggg ttggccgagg catgcgagca tgccggtatc 300
gcattcgtcg gtccgaccgc agcggtacta gcgatggccg gcaacaaggt gcgcgcgatt 360
gaagtggcgc ggcgcgctgg cgttccgacg cttcgtagtg tgcatgcgca ggacaacgaa 420
ggtttggtcg ccggcgcaga gcagatcgat cttcctgtgt tcgtcaaagc gcaagctggc 480
ggcggcggcc gtggcatgcg tcgcgtcgac agtcgtgcgg atctgctgcc ctacatcgag 540
gcggcgcgcc gtgaagcgct gtcagcgttc ggtgacgcgt ccgtatacat cgaggaggcg 600
gtcgttcggc cgcgccacat tgagatccag attctcggcg acgccacggg cgcggtggtc 660
catctcttcg aacgcgactg ctcggtacag cgccggcacc agaaggtggt cgagatcgca 720
cccgcacctg gccttgaccc cgtgttgcgc gaccgtttgt gcgcagacgc ggttcgcttc 780
gcccagtcga tcggctacac caacgcaggc acggtcgagt ttctggttgc cgacgatggg 840
cgctacgcgt tcatcgagat caatccgcgg atccaggtcg agcacaccgt caccgaggag 900
gtgaccgacg tcgatctcgt ccacgcgcag atccggatcg cctcgggcgc aacactggcc 960
gagttgggtt tgttgcagga cgacatcgtt cagcgcggct gcgcgctcca gtgtcgcatc 1020
acgaccgagg atccacacaa cgacttccgt cctgacgcgg ggcgtatctc cgcgtaccgc 1080
gctcccggcg gcgcgggcgt acgcctcgac gcagcaagcg gatacgtcgg tgccgagatc 1140
tccgcgtact tcgactcgct cctcgtcaag ttgacatgtc gagggaatga tcgtcacagc 1200
gccgcagcgc gagcgcgacg cgccctcgcg gagtttcgca tccggggcgt agccacaaac 1260
ctcgcgttcc tacagagcct cctcgcggat cctgacttcg tggctggtcg actccatacg 1320
tcgtttatcg aggaccgccc gtatctgctc aaggcacgag cggcagcgga taggggcacg 1380
aaactgttaa cctatcttgc cgacgtgacg gtcaacaagc cgttcggtga cgcccccagc 1440
cgcatagacc cgcgctcgaa gctgcctcta gcgaccgact acgacgaagc agcgacgcca 1500
ggtagtcgtc aactccttgc agaactcggt ccacaagcat tcgcagctcg tctgcgcacc 1560
caggcagcaa ccgcagtgac cgacaccacc tttcgcgatg cgcaccagtc attgctcgcc 1620
acccgacttc gcacgtatga catgttggcg gccgccccga ccgtggcgag aacgcttcct 1680
cagctgctga gtctcgaagc ttggggcggc gcgacctatg acgtcgcgct gcggtttcta 1740
aaggaagacc cgtgggagcg actcgacgcc ctacgagaaa cggtgccgaa catctgcctg 1800
caaatgctgc tgcgcggcgc caacactgtc ggctacggac cgtcgccgcc ctcgacgacg 1860
aaacgattcg ttcaggaggc ggcgcgcagc ggaatcgata tcttccgcat cttcgacgct 1920
ctcaacgacg taaaccagat gcgagccgca atcgacgctg tcctcgaaac cgacgcgctc 1980
gtcgaggcat gcctgtgcta cacgggcgac ctcggcgagc ctaccgagaa cctctacacc 2040
ctcgactact acctcgcagt cgccgagcgg ctcgtcgcca ccggcgcgca cgtgatcgcc 2100
atcaaggaca tggcgggtct gttgcgccct ccggctgcac gtactctcgt atcggcacta 2160
cgcgcactgt tcgacgcacc aatccacgta cacacccatg acaccgcggg cgggcaactc 2220
gctacgtacc tcgcagctgt tgacgctgga gccgacgcca tcgacggcgc cattgctccc 2280
ttcgcaggca cgacgagcca gccatccctc gcggcgatcg tcgctgccac cgaccacacg 2340
ccacgtgcga ccggtctctc cctcgatgcg ctcatcgatc tcgagccata ttgggacgcc 2400
gttcgcgacc actaccgacc attcgacgaa gcccttcgcg ccccgaccgg cgcggtttac 2460
cgtcacgaga ttccaggcgg ccaactcacg aacctgcgcc agcaagccat cgcgctcgga 2520
ttcgggcacc gcttcgaaga cgtccagcgt tggtatacga cggtcaacca cctcctcggc 2580
aacatcatca aggtcacacc cacgagcaag gtcgttggcg atctcgccat cgccttgtgc 2640
gggaccggcc tcacccccga ggaattcgag accgatccga gccgcgtcga catacccgac 2700
agcgtggtcg cgtttctcca aggcgcgctc ggcgagccgc ccggaggatg gcgcgagccg 2760
ttcagaacgc gcgcactcgc tggtcgcacg cgcatcacag actcaactcc cgaggatgcg 2820
gaaacgctcc caccgccggg ccccgactgc cgcgtggcaa tcagccagga gttgttcccg 2880
gacccggcca ccgacttcga acaaacccga accctctacg gcgacctctc cgtgctccca 2940
agcagtctgt tcttctacgg tctgcgacca ggcgaagagt ttgacgtccg cctcggcccc 3000
ggcgtcgact tgatcatcgg cctcgaagca atcgccgaac ccgacgcgcg cggtatgcgc 3060
accgtgctct gccgcatcaa cggacaggtc cgacccatcg tggtccgcga ccaccaggcc 3120
aactccaccg ccgcaactgc tgaacgcgca aatccgcaaa ctccaggcca cgtcgcggcg 3180
ccctacgatg gcgtcgtcac cgtccgcgtc accgcgggtc aagtagtgac cgctggtgac 3240
cctgttgcca gcatcgaggc tatgaagatg gaaagcacca tcaccgcgcc catctcagga 3300
accgtcgaac gcatcgcaat cagcccaatc ggacacgtac aagcaggcga cctcatcctc 3360
acgatcaaac ccgcatcgct cgcctcccca catgttgaac cgaccgcgct ctaa 3414
<210> 255
<211> 1137
<212> PRT
<213> Unknown
<220>
<223> pyc_7 sequence from unknown bacterial species from environmental
sample
<400> 255
Met Arg Lys Leu Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg Ala
1 5 10 15
Phe Arg Ala Ala Phe Glu Leu Asp Leu Ala Thr Val Ala Val Phe Ala
20 25 30
Trp Glu Asp Arg Gly Ser Leu His Arg Leu Lys Ala Asp Glu Ala Tyr
35 40 45
Leu Ile Gly Glu Arg Gly His Pro Val Arg Ala Tyr Leu Asp Val Asp
50 55 60
Gln Ile Val Thr Thr Ala Leu Ser Cys Gly Ala Asp Ala Ile Tyr Pro
65 70 75 80
Gly Tyr Gly Phe Leu Ser Glu Asn Pro Gly Leu Ala Glu Ala Cys Glu
85 90 95
His Ala Gly Ile Ala Phe Val Gly Pro Thr Ala Ala Val Leu Ala Met
100 105 110
Ala Gly Asn Lys Val Arg Ala Ile Glu Val Ala Arg Arg Ala Gly Val
115 120 125
Pro Thr Leu Arg Ser Val His Ala Gln Asp Asn Glu Gly Leu Val Ala
130 135 140
Gly Ala Glu Gln Ile Asp Leu Pro Val Phe Val Lys Ala Gln Ala Gly
145 150 155 160
Gly Gly Gly Arg Gly Met Arg Arg Val Asp Ser Arg Ala Asp Leu Leu
165 170 175
Pro Tyr Ile Glu Ala Ala Arg Arg Glu Ala Leu Ser Ala Phe Gly Asp
180 185 190
Ala Ser Val Tyr Ile Glu Glu Ala Val Val Arg Pro Arg His Ile Glu
195 200 205
Ile Gln Ile Leu Gly Asp Ala Thr Gly Ala Val Val His Leu Phe Glu
210 215 220
Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Val Glu Ile Ala
225 230 235 240
Pro Ala Pro Gly Leu Asp Pro Val Leu Arg Asp Arg Leu Cys Ala Asp
245 250 255
Ala Val Arg Phe Ala Gln Ser Ile Gly Tyr Thr Asn Ala Gly Thr Val
260 265 270
Glu Phe Leu Val Ala Asp Asp Gly Arg Tyr Ala Phe Ile Glu Ile Asn
275 280 285
Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Val Thr Asp Val
290 295 300
Asp Leu Val His Ala Gln Ile Arg Ile Ala Ser Gly Ala Thr Leu Ala
305 310 315 320
Glu Leu Gly Leu Leu Gln Asp Asp Ile Val Gln Arg Gly Cys Ala Leu
325 330 335
Gln Cys Arg Ile Thr Thr Glu Asp Pro His Asn Asp Phe Arg Pro Asp
340 345 350
Ala Gly Arg Ile Ser Ala Tyr Arg Ala Pro Gly Gly Ala Gly Val Arg
355 360 365
Leu Asp Ala Ala Ser Gly Tyr Val Gly Ala Glu Ile Ser Ala Tyr Phe
370 375 380
Asp Ser Leu Leu Val Lys Leu Thr Cys Arg Gly Asn Asp Arg His Ser
385 390 395 400
Ala Ala Ala Arg Ala Arg Arg Ala Leu Ala Glu Phe Arg Ile Arg Gly
405 410 415
Val Ala Thr Asn Leu Ala Phe Leu Gln Ser Leu Leu Ala Asp Pro Asp
420 425 430
Phe Val Ala Gly Arg Leu His Thr Ser Phe Ile Glu Asp Arg Pro Tyr
435 440 445
Leu Leu Lys Ala Arg Ala Ala Ala Asp Arg Gly Thr Lys Leu Leu Thr
450 455 460
Tyr Leu Ala Asp Val Thr Val Asn Lys Pro Phe Gly Asp Ala Pro Ser
465 470 475 480
Arg Ile Asp Pro Arg Ser Lys Leu Pro Leu Ala Thr Asp Tyr Asp Glu
485 490 495
Ala Ala Thr Pro Gly Ser Arg Gln Leu Leu Ala Glu Leu Gly Pro Gln
500 505 510
Ala Phe Ala Ala Arg Leu Arg Thr Gln Ala Ala Thr Ala Val Thr Asp
515 520 525
Thr Thr Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Leu Arg
530 535 540
Thr Tyr Asp Met Leu Ala Ala Ala Pro Thr Val Ala Arg Thr Leu Pro
545 550 555 560
Gln Leu Leu Ser Leu Glu Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala
565 570 575
Leu Arg Phe Leu Lys Glu Asp Pro Trp Glu Arg Leu Asp Ala Leu Arg
580 585 590
Glu Thr Val Pro Asn Ile Cys Leu Gln Met Leu Leu Arg Gly Ala Asn
595 600 605
Thr Val Gly Tyr Gly Pro Ser Pro Pro Ser Thr Thr Lys Arg Phe Val
610 615 620
Gln Glu Ala Ala Arg Ser Gly Ile Asp Ile Phe Arg Ile Phe Asp Ala
625 630 635 640
Leu Asn Asp Val Asn Gln Met Arg Ala Ala Ile Asp Ala Val Leu Glu
645 650 655
Thr Asp Ala Leu Val Glu Ala Cys Leu Cys Tyr Thr Gly Asp Leu Gly
660 665 670
Glu Pro Thr Glu Asn Leu Tyr Thr Leu Asp Tyr Tyr Leu Ala Val Ala
675 680 685
Glu Arg Leu Val Ala Thr Gly Ala His Val Ile Ala Ile Lys Asp Met
690 695 700
Ala Gly Leu Leu Arg Pro Pro Ala Ala Arg Thr Leu Val Ser Ala Leu
705 710 715 720
Arg Ala Leu Phe Asp Ala Pro Ile His Val His Thr His Asp Thr Ala
725 730 735
Gly Gly Gln Leu Ala Thr Tyr Leu Ala Ala Val Asp Ala Gly Ala Asp
740 745 750
Ala Ile Asp Gly Ala Ile Ala Pro Phe Ala Gly Thr Thr Ser Gln Pro
755 760 765
Ser Leu Ala Ala Ile Val Ala Ala Thr Asp His Thr Pro Arg Ala Thr
770 775 780
Gly Leu Ser Leu Asp Ala Leu Ile Asp Leu Glu Pro Tyr Trp Asp Ala
785 790 795 800
Val Arg Asp His Tyr Arg Pro Phe Asp Glu Ala Leu Arg Ala Pro Thr
805 810 815
Gly Ala Val Tyr Arg His Glu Ile Pro Gly Gly Gln Leu Thr Asn Leu
820 825 830
Arg Gln Gln Ala Ile Ala Leu Gly Phe Gly His Arg Phe Glu Asp Val
835 840 845
Gln Arg Trp Tyr Thr Thr Val Asn His Leu Leu Gly Asn Ile Ile Lys
850 855 860
Val Thr Pro Thr Ser Lys Val Val Gly Asp Leu Ala Ile Ala Leu Cys
865 870 875 880
Gly Thr Gly Leu Thr Pro Glu Glu Phe Glu Thr Asp Pro Ser Arg Val
885 890 895
Asp Ile Pro Asp Ser Val Val Ala Phe Leu Gln Gly Ala Leu Gly Glu
900 905 910
Pro Pro Gly Gly Trp Arg Glu Pro Phe Arg Thr Arg Ala Leu Ala Gly
915 920 925
Arg Thr Arg Ile Thr Asp Ser Thr Pro Glu Asp Ala Glu Thr Leu Pro
930 935 940
Pro Pro Gly Pro Asp Cys Arg Val Ala Ile Ser Gln Glu Leu Phe Pro
945 950 955 960
Asp Pro Ala Thr Asp Phe Glu Gln Thr Arg Thr Leu Tyr Gly Asp Leu
965 970 975
Ser Val Leu Pro Ser Ser Leu Phe Phe Tyr Gly Leu Arg Pro Gly Glu
980 985 990
Glu Phe Asp Val Arg Leu Gly Pro Gly Val Asp Leu Ile Ile Gly Leu
995 1000 1005
Glu Ala Ile Ala Glu Pro Asp Ala Arg Gly Met Arg Thr Val Leu
1010 1015 1020
Cys Arg Ile Asn Gly Gln Val Arg Pro Ile Val Val Arg Asp His
1025 1030 1035
Gln Ala Asn Ser Thr Ala Ala Thr Ala Glu Arg Ala Asn Pro Gln
1040 1045 1050
Thr Pro Gly His Val Ala Ala Pro Tyr Asp Gly Val Val Thr Val
1055 1060 1065
Arg Val Thr Ala Gly Gln Val Val Thr Ala Gly Asp Pro Val Ala
1070 1075 1080
Ser Ile Glu Ala Met Lys Met Glu Ser Thr Ile Thr Ala Pro Ile
1085 1090 1095
Ser Gly Thr Val Glu Arg Ile Ala Ile Ser Pro Ile Gly His Val
1100 1105 1110
Gln Ala Gly Asp Leu Ile Leu Thr Ile Lys Pro Ala Ser Leu Ala
1115 1120 1125
Ser Pro His Val Glu Pro Thr Ala Leu
1130 1135
<210> 256
<211> 3387
<212> DNA
<213> Unknown
<220>
<223> pyc_8 sequence from unknown bacterial species from environmental
sample
<400> 256
gtgcgtaccg tgctggtcgc caaccgcggc gagatcgcca tccgggcgtt ccgggccgcg 60
gtcgagctgg gtctgcagac ggtcgcgatc tacacccacc tcgaccgcgg gtcggtgcac 120
cgcatcaagg ccgaccgggc ctacgaggtc ggcccgcccg agcgcccgct ggcgggctac 180
ctcgatgtcg gcgctattgt cgaggcggcg gtcgccagcg gcgccgacgc cgtctacccg 240
gggtacgggt tcctctccga gagtgcggcc ttcgcggccg catgccgcga cgccggcctg 300
acatggatcg gcccacctcc cgaggtgctg gcgctcaccg gcgacaaggt gcgcgcgcgg 360
gaggcggccg tcgccgccgg gctgccggtg cttgccgcgt cgccaccggt cgacgagcac 420
gacgcccccg agcaggccga aggcctgggc tacccggtgt tcgtcaaggc cgccgctggg 480
ggtggcggac gcgggctgcg cgtcgtgcgg cgcgcgcagg acctcgtcgc cgcagtctcg 540
acggcccgcc gcgaggccga ggcggcgttc ggcgacccga ccgtgttcct ggagcgcgcc 600
ctcgagcggc cgcgccacgt cgaggtgcag attctcggcg acgccaccgg cggtctcgtc 660
cacctgggcg agcgcgactg ctcgatccag cgccgccacc agaaagtcgt cgagcttgcg 720
ccggcgccga acctcgaccc tggcgtccgc gaccagctgc atgccgatgc cgtcgcgctc 780
gggcaggccg ttggttacgt caacgccggc accgtcgagt tcctcgtcgc cgaggacggc 840
agtcacatct tcctggaggt caacccgcgg atccaggtcg agcacacggt gaccgaggag 900
gtcaccggcg tcgacctcgt cgcggcgcag ctgcgcatcg ccgacggcgc gtcgctcgcg 960
gacctgggta tcgcgcagga gtcggtgcgc tggcagggcg tcgcgatcca atgccggatc 1020
acgaccgagg acccggcgac ggggttccgg cccgacaccg gcacggtgat ggcctaccgc 1080
tcgcctggcg gcgctggcgt gcggctggac ggcggtgcga tcgatctcgg cagcgagatc 1140
acgccgtggt tcgactcgct gctggtgaag ctgacctgcc gcgggcccga cctcgacacg 1200
gccgcgcgtc gcgcgcgccg ggcgctcgcg gagttccgcg tgcgcggcct cgccaccaac 1260
atcgcgttcc tgcaggcgct gctgtcggag ccggacctgc tcgaggggcg cctgtcgacc 1320
gcgttcctcg acgagcaccc tcacctgctg cacgccccgg gcgggcacga ccgggtgtcg 1380
aagctgctct cctacgtcgc ggacgtgacc gtgaaccggc cccatgggcg ggcgcctgcg 1440
tccgtcgacc cggtgtcgct cctgcccgca ccgccggagt ggccgccgcc ggagggctcg 1500
aagcaactgc tggaccgtct gggcgcggag gggttcgcaa ggtggaccgc ggagcagccg 1560
tcgaccggcg tcaccgatac caccatgcgc gacgcgcacc agtcgctgat cgcgacccgg 1620
atgcgcaccg ccgacatggt cgcggcggca cgccacgtcg ccgcgatgct gccgcagctg 1680
tggagcatgg aggtgtgggg cggtgcgatc cacgacgtat cgcttcgctt cctgctggag 1740
gatccgtggc agcggctggc agcgctgcgt gaggcgatcc ccaacatctg cctacagatg 1800
ctgctgcgcg ggcggaacct ggtcggctac ggcagtgtcg acgacgcggt cgtgcgcgcg 1860
ttcgtggacg aggcggcgaa gaccggcatc gacgtgttcc gcatcttcga cgccttcaac 1920
gacgtcgagc ggatgcgccc cgccatcgat gcggtccgta cgacgcacgc ggtcgccgag 1980
gcggtcgtct gctacacggc tcacgccgtc gacccgcgcg agcggctgta cacggtgtcc 2040
tactacgccg acatcgcggc gcggctcgcg gccgcgggcg cacacaccct cgcgatcaag 2100
gacatggcgg ggctgctgcg cgcgggcgcg gccaccgcgc tggtacgagc ggtgcgcgac 2160
gccaccgggc tgccggtgca catccacacg cacgacacgg cgggcgggca gctcgccacc 2220
tatctcgccg cggtcggggc gggcgcatcg gtggtggacg ccgcggccgc gccatggtcg 2280
ggcggcacca gccagccgtc gctgagcgcg ctgatcgcgg cgctggatgc caccgactcc 2340
ccgacggcgc tgtcgctgga cgcggcgttg gacctggagc cgtactggga ggcggtccgg 2400
cggctctacg cgccgttcga ccaggggatc cccgcgccga gcggcgcggt ctaccgccat 2460
gagatcccgg gcggccagct gtcgaacctg cgccagcagg ccgcggcgct gggcctggcg 2520
gagcggttcg acgagatcgg tcgggtgtac cagcgggtcg atcggatgct cgggcggctc 2580
gtcaaggtga cgccgtcgag caaggtggtc ggcgacctcg cgctgtacct gatctcggcc 2640
ggcatcgacc cggacgcctt ggaggccgac cccggtgcgt acgacgtgcc cgcgtcggtg 2700
atccggttcc tgcaaggtga tctcggcacc ccgccaggtg ggtgggcgga gccgttccgc 2760
agcctggcgc tagcgcggca cggcgcggcc caggcgccgt ccgatgcagg ccccgccgtc 2820
gaccacgccg cgctggaggc cacctccgcc aatcgccgcg acgccctcaa cgccagtcag 2880
ttcccggcgg aggcgcgcga gcgcaaggag gcggtcgagc gctacgccga cgtgtcggtg 2940
ctgccgacgc gcacgttctt ctacggcctc gacccgctcg aggagatcgt cgtggaactg 3000
gaacccggcg tgcgcgtctt cctcgacctg gacgccgtcg gcgaggccga cgacaagggt 3060
cgccgcaccg tggtgatgcg ggtcaacggc caactgcgcg ccgtgaccgc gcacgaccgt 3120
tcggtcgccc ccgccgacgc gcccgccgag cgtgcggacc cgagcagccc gggagatatc 3180
gccgccccgt tgaccggcat cgtcaccgtg ctcgtcgccg acggcgaaca ggtgcaggcg 3240
ggcgcgcgcc tgtgcgcgct ggaggcgatg aagatggagt cgacggtcac tgcgccgttc 3300
gccggccgcg ttgctcgtgt ggtggcgagc aacggcgccc gcgtcgagcc cggcgacctg 3360
ctcgtcgtcc tcgagcccga cgagtga 3387
<210> 257
<211> 1128
<212> PRT
<213> Unknown
<220>
<223> pyc_8 sequence from unknown bacterial species from environmental
sample
<400> 257
Val Arg Thr Val Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg Ala
1 5 10 15
Phe Arg Ala Ala Val Glu Leu Gly Leu Gln Thr Val Ala Ile Tyr Thr
20 25 30
His Leu Asp Arg Gly Ser Val His Arg Ile Lys Ala Asp Arg Ala Tyr
35 40 45
Glu Val Gly Pro Pro Glu Arg Pro Leu Ala Gly Tyr Leu Asp Val Gly
50 55 60
Ala Ile Val Glu Ala Ala Val Ala Ser Gly Ala Asp Ala Val Tyr Pro
65 70 75 80
Gly Tyr Gly Phe Leu Ser Glu Ser Ala Ala Phe Ala Ala Ala Cys Arg
85 90 95
Asp Ala Gly Leu Thr Trp Ile Gly Pro Pro Pro Glu Val Leu Ala Leu
100 105 110
Thr Gly Asp Lys Val Arg Ala Arg Glu Ala Ala Val Ala Ala Gly Leu
115 120 125
Pro Val Leu Ala Ala Ser Pro Pro Val Asp Glu His Asp Ala Pro Glu
130 135 140
Gln Ala Glu Gly Leu Gly Tyr Pro Val Phe Val Lys Ala Ala Ala Gly
145 150 155 160
Gly Gly Gly Arg Gly Leu Arg Val Val Arg Arg Ala Gln Asp Leu Val
165 170 175
Ala Ala Val Ser Thr Ala Arg Arg Glu Ala Glu Ala Ala Phe Gly Asp
180 185 190
Pro Thr Val Phe Leu Glu Arg Ala Leu Glu Arg Pro Arg His Val Glu
195 200 205
Val Gln Ile Leu Gly Asp Ala Thr Gly Gly Leu Val His Leu Gly Glu
210 215 220
Arg Asp Cys Ser Ile Gln Arg Arg His Gln Lys Val Val Glu Leu Ala
225 230 235 240
Pro Ala Pro Asn Leu Asp Pro Gly Val Arg Asp Gln Leu His Ala Asp
245 250 255
Ala Val Ala Leu Gly Gln Ala Val Gly Tyr Val Asn Ala Gly Thr Val
260 265 270
Glu Phe Leu Val Ala Glu Asp Gly Ser His Ile Phe Leu Glu Val Asn
275 280 285
Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Val Thr Gly Val
290 295 300
Asp Leu Val Ala Ala Gln Leu Arg Ile Ala Asp Gly Ala Ser Leu Ala
305 310 315 320
Asp Leu Gly Ile Ala Gln Glu Ser Val Arg Trp Gln Gly Val Ala Ile
325 330 335
Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala Thr Gly Phe Arg Pro Asp
340 345 350
Thr Gly Thr Val Met Ala Tyr Arg Ser Pro Gly Gly Ala Gly Val Arg
355 360 365
Leu Asp Gly Gly Ala Ile Asp Leu Gly Ser Glu Ile Thr Pro Trp Phe
370 375 380
Asp Ser Leu Leu Val Lys Leu Thr Cys Arg Gly Pro Asp Leu Asp Thr
385 390 395 400
Ala Ala Arg Arg Ala Arg Arg Ala Leu Ala Glu Phe Arg Val Arg Gly
405 410 415
Leu Ala Thr Asn Ile Ala Phe Leu Gln Ala Leu Leu Ser Glu Pro Asp
420 425 430
Leu Leu Glu Gly Arg Leu Ser Thr Ala Phe Leu Asp Glu His Pro His
435 440 445
Leu Leu His Ala Pro Gly Gly His Asp Arg Val Ser Lys Leu Leu Ser
450 455 460
Tyr Val Ala Asp Val Thr Val Asn Arg Pro His Gly Arg Ala Pro Ala
465 470 475 480
Ser Val Asp Pro Val Ser Leu Leu Pro Ala Pro Pro Glu Trp Pro Pro
485 490 495
Pro Glu Gly Ser Lys Gln Leu Leu Asp Arg Leu Gly Ala Glu Gly Phe
500 505 510
Ala Arg Trp Thr Ala Glu Gln Pro Ser Thr Gly Val Thr Asp Thr Thr
515 520 525
Met Arg Asp Ala His Gln Ser Leu Ile Ala Thr Arg Met Arg Thr Ala
530 535 540
Asp Met Val Ala Ala Ala Arg His Val Ala Ala Met Leu Pro Gln Leu
545 550 555 560
Trp Ser Met Glu Val Trp Gly Gly Ala Ile His Asp Val Ser Leu Arg
565 570 575
Phe Leu Leu Glu Asp Pro Trp Gln Arg Leu Ala Ala Leu Arg Glu Ala
580 585 590
Ile Pro Asn Ile Cys Leu Gln Met Leu Leu Arg Gly Arg Asn Leu Val
595 600 605
Gly Tyr Gly Ser Val Asp Asp Ala Val Val Arg Ala Phe Val Asp Glu
610 615 620
Ala Ala Lys Thr Gly Ile Asp Val Phe Arg Ile Phe Asp Ala Phe Asn
625 630 635 640
Asp Val Glu Arg Met Arg Pro Ala Ile Asp Ala Val Arg Thr Thr His
645 650 655
Ala Val Ala Glu Ala Val Val Cys Tyr Thr Ala His Ala Val Asp Pro
660 665 670
Arg Glu Arg Leu Tyr Thr Val Ser Tyr Tyr Ala Asp Ile Ala Ala Arg
675 680 685
Leu Ala Ala Ala Gly Ala His Thr Leu Ala Ile Lys Asp Met Ala Gly
690 695 700
Leu Leu Arg Ala Gly Ala Ala Thr Ala Leu Val Arg Ala Val Arg Asp
705 710 715 720
Ala Thr Gly Leu Pro Val His Ile His Thr His Asp Thr Ala Gly Gly
725 730 735
Gln Leu Ala Thr Tyr Leu Ala Ala Val Gly Ala Gly Ala Ser Val Val
740 745 750
Asp Ala Ala Ala Ala Pro Trp Ser Gly Gly Thr Ser Gln Pro Ser Leu
755 760 765
Ser Ala Leu Ile Ala Ala Leu Asp Ala Thr Asp Ser Pro Thr Ala Leu
770 775 780
Ser Leu Asp Ala Ala Leu Asp Leu Glu Pro Tyr Trp Glu Ala Val Arg
785 790 795 800
Arg Leu Tyr Ala Pro Phe Asp Gln Gly Ile Pro Ala Pro Ser Gly Ala
805 810 815
Val Tyr Arg His Glu Ile Pro Gly Gly Gln Leu Ser Asn Leu Arg Gln
820 825 830
Gln Ala Ala Ala Leu Gly Leu Ala Glu Arg Phe Asp Glu Ile Gly Arg
835 840 845
Val Tyr Gln Arg Val Asp Arg Met Leu Gly Arg Leu Val Lys Val Thr
850 855 860
Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu Tyr Leu Ile Ser Ala
865 870 875 880
Gly Ile Asp Pro Asp Ala Leu Glu Ala Asp Pro Gly Ala Tyr Asp Val
885 890 895
Pro Ala Ser Val Ile Arg Phe Leu Gln Gly Asp Leu Gly Thr Pro Pro
900 905 910
Gly Gly Trp Ala Glu Pro Phe Arg Ser Leu Ala Leu Ala Arg His Gly
915 920 925
Ala Ala Gln Ala Pro Ser Asp Ala Gly Pro Ala Val Asp His Ala Ala
930 935 940
Leu Glu Ala Thr Ser Ala Asn Arg Arg Asp Ala Leu Asn Ala Ser Gln
945 950 955 960
Phe Pro Ala Glu Ala Arg Glu Arg Lys Glu Ala Val Glu Arg Tyr Ala
965 970 975
Asp Val Ser Val Leu Pro Thr Arg Thr Phe Phe Tyr Gly Leu Asp Pro
980 985 990
Leu Glu Glu Ile Val Val Glu Leu Glu Pro Gly Val Arg Val Phe Leu
995 1000 1005
Asp Leu Asp Ala Val Gly Glu Ala Asp Asp Lys Gly Arg Arg Thr
1010 1015 1020
Val Val Met Arg Val Asn Gly Gln Leu Arg Ala Val Thr Ala His
1025 1030 1035
Asp Arg Ser Val Ala Pro Ala Asp Ala Pro Ala Glu Arg Ala Asp
1040 1045 1050
Pro Ser Ser Pro Gly Asp Ile Ala Ala Pro Leu Thr Gly Ile Val
1055 1060 1065
Thr Val Leu Val Ala Asp Gly Glu Gln Val Gln Ala Gly Ala Arg
1070 1075 1080
Leu Cys Ala Leu Glu Ala Met Lys Met Glu Ser Thr Val Thr Ala
1085 1090 1095
Pro Phe Ala Gly Arg Val Ala Arg Val Val Ala Ser Asn Gly Ala
1100 1105 1110
Arg Val Glu Pro Gly Asp Leu Leu Val Val Leu Glu Pro Asp Glu
1115 1120 1125
<210> 258
<211> 3456
<212> DNA
<213> Unknown
<220>
<223> pyc_9 sequence from unknown bacterial species from environmental
sample
<400> 258
atgcgcaaac tgctcgtcgc caaccgctct gagattgcga tccgctgttt cagggcggcg 60
accgaactcg gcctccggac cgtcgccatc tacagccacg aggatcgatt ctcactacat 120
cgcttcaagg cagacgaagc attcctgatc ggtccgccgg gcggcggcga gccggtacgc 180
tcgtatctga acatccccgc gatcatcgcc attgctcatc agcagagcgt cgatgcgatt 240
catccgggct acggattcct cgccgagagc gccgacctcg cgcgcgcgtg cgaggcggcc 300
ggcattcaat tcgtcgggcc gacgcccgag catctcgata tgtttggcga caagaccgcc 360
gccaagcgtc tggcggtcgc cgccggcgtg ccgactgtgc ccggctccga gggcgctctc 420
caggaccttg gcgacatctc ggcggcggcc gccaaagtga gttatcccct gatgatcaag 480
gcgagcttcg gcggcggcgg ccgaggcatg cgcatcgtca ggacgcccga cgagctcgcc 540
aacaagctcg aggaggcgca gcgggaagcg ggcgcggcgt tcgggcgacc ggacgtgttt 600
ctcgagcggt acataccgcg cgccaagcac atcgaggtgc agatcctcgg tgatgcccac 660
ggcgctctgg ttcatctctg ggagcgcgac tgctccgtac agcgccggca tcagaaagtc 720
gtcgagctcg cgccgagcat caatgtggcc gagagcctgc gtcagcagat ctgcgacgct 780
gccgtgcgct tgtgccggtc agtcaactat cgcaatgccg gcaccgtcga gttcctgctg 840
gatgtcgagc gcggtgagtt ctacttcatc gaggtaaacc cgcgcattca ggtcgagcac 900
acggtcaccg aggtcgtcac ggggatcgat ctggtccgca gtcagatcct gatcgccgac 960
ggccatcgcc tgcatgaggc cccgctcaac gtccccgccc aggaggagat ccgcacgcgc 1020
ggtgtcgcca tgcagtgccg gatcacaacc gaagatccgg accgccattt catccccgac 1080
tacgggcgca tcaccacgta tcgatcggcc ggcggcttcg cggtgcggct cgatgggggc 1140
aacgggttcg gcggctccgt catcacgccc ttcttcgatt cgctgctcgt gaaagtgacg 1200
acgtggggcg gcacgctcga ggaatcggcg cagcgcgctg accgcgcgct ccgcgagttc 1260
cgtattcgcg gcgtcaagac gaacatcgcg tttctgttga atctgattgg tcacccgacg 1320
ttcaggtcgg gcgccgccac cacgaccttc atcgacgaga cgccggagct cttccggatt 1380
caggccccac gggatcgcgc cacgaaaatg ctcgggtact tgggcgacgt gatcgtgaac 1440
ggccgaccag acgtcaagaa cgcgtacgac ccccaacgca agctgccgac ccagaagcca 1500
ccggttgtgc cgccaatggc cgccccccca gctggaatgc gccagaagct tcaagagctt 1560
gggccggagc gcttcgcctc gtgggtgcgg ggtgaacgtc gtctgctcat gaccgacacg 1620
acgttccgcg atgcgcacca gtcgttgctc gcgacacgcg tacggacgta cgacatgctg 1680
gcgatcgccg acgccgtggc gcggttgatg ccggatctgt tcagcctgga gatgtgggga 1740
ggtgcgacgt tcgacacctc gatgcgcttc ctccaggaag acccgtgggc caggctcatt 1800
cagctgcgcg agcgcatccc gaacatcctg tttcagatgc tgctccgcgg cagcaacgcg 1860
gtcggctaca ccacctatcc cgacaacgtg gttcgcgcct tcgtgaagcg gagcgcggag 1920
gccggcatcg acgtattccg gatcttcgac gcgctgaact ccaccgacaa catgcgtgtc 1980
gcgatcgagg ccgtccgcga ggacacgacg gcgatctgcg aggccgccat ctgctacacg 2040
ggcgatatcc tcgatccgaa cagaaccaag tactccctgg attactacct gcggatcgcg 2100
aagaagctcg tggccatggg cacgcacatc ctctgcatca aggacatggc cgggttgtgc 2160
aaaccctacg cggcccacgc gctgattcag gcgctgcgcg aggaagtgga cgtcccgatc 2220
catttccaca cgcatgacac gagcggagtg aacgccggca gcattctgcg cgcatccgac 2280
gccggagtgg acattgccga cgctgcgatc gcctcgatga gcgggatgac gagccagccg 2340
agtctgaacg gcgtcgttgc agcgctccgc catacggagc gcgacaccgc actgaatcag 2400
gaagcgctcg acgagctgag ccgctactgg gccgacgtgc gggaactcta ttacccgttc 2460
gaagaagggt tgaaagcgcc tcaggccgat gtctatcaac acgagatgcc cgggggtcag 2520
ttcacaaacc ttcgtcagca ggcccgcaac cttggatttg gcgatcgctg gcccgagatc 2580
tccgcggcct atgcagaagc caatcggctg gccggcgata tcgtgaaggt gaccccttcc 2640
agcaaggtca tcggcgatct ggcgctcttc atggtcacga acaacctgac cgccaacgac 2700
atcctgacgt ccggcgcgcc cctgagtttc ccgcgcagcg tcgtcggcat gatgcaggga 2760
ctgctcggcc agcccgaggg cggctggccg aaagactttc aggagatcgt gctgcgttcg 2820
gcgcacgcaa cgcctatcac gggccgcccc gcggatactc tgccgccagc tgacttcgag 2880
gccaccgcgc aggagctcaa ggctaagaca ggacgcgatg tcagcgagca cgacgtgctc 2940
tcgtacttgc tgtatccgca ggtgtatgtc gagtacatcg agcactggca gaagtacggc 3000
gacacctcga cgattccgac agcgaatttc ttctacggat tgcagccagg ggaggagacc 3060
gcgatcgaga tcgagcgcgg caagacgttg ttcgtccgct ttctgacggc tggagaggtg 3120
cgcgaggacg gcacgcgaac ggtgttcttc gagctgaacg gacagccgcg agaggtgcgt 3180
gtcatcgatc gttcagtgac cgccctccgc aagagccatc ccaaggccga cgttgaaaat 3240
cccgatcatg tcgctgcgcc gatgccggga aagatctcgt cggtcgcggt acggccaggc 3300
caaagggtgc gagcgggtga ccgtctgctt tcgatcgaag cgatgaaaat ggagacagcc 3360
gtatatagtc cacgcgatgg ggccgtggca gaggtgctgg tcgtcacggg ccaggttgtc 3420
gaaacccggg atctgctgct tgtcctgact gagtga 3456
<210> 259
<211> 1151
<212> PRT
<213> Unknown
<220>
<223> pyc_9 sequence from unknown bacterial species from environmental
sample
<400> 259
Met Arg Lys Leu Leu Val Ala Asn Arg Ser Glu Ile Ala Ile Arg Cys
1 5 10 15
Phe Arg Ala Ala Thr Glu Leu Gly Leu Arg Thr Val Ala Ile Tyr Ser
20 25 30
His Glu Asp Arg Phe Ser Leu His Arg Phe Lys Ala Asp Glu Ala Phe
35 40 45
Leu Ile Gly Pro Pro Gly Gly Gly Glu Pro Val Arg Ser Tyr Leu Asn
50 55 60
Ile Pro Ala Ile Ile Ala Ile Ala His Gln Gln Ser Val Asp Ala Ile
65 70 75 80
His Pro Gly Tyr Gly Phe Leu Ala Glu Ser Ala Asp Leu Ala Arg Ala
85 90 95
Cys Glu Ala Ala Gly Ile Gln Phe Val Gly Pro Thr Pro Glu His Leu
100 105 110
Asp Met Phe Gly Asp Lys Thr Ala Ala Lys Arg Leu Ala Val Ala Ala
115 120 125
Gly Val Pro Thr Val Pro Gly Ser Glu Gly Ala Leu Gln Asp Leu Gly
130 135 140
Asp Ile Ser Ala Ala Ala Ala Lys Val Ser Tyr Pro Leu Met Ile Lys
145 150 155 160
Ala Ser Phe Gly Gly Gly Gly Arg Gly Met Arg Ile Val Arg Thr Pro
165 170 175
Asp Glu Leu Ala Asn Lys Leu Glu Glu Ala Gln Arg Glu Ala Gly Ala
180 185 190
Ala Phe Gly Arg Pro Asp Val Phe Leu Glu Arg Tyr Ile Pro Arg Ala
195 200 205
Lys His Ile Glu Val Gln Ile Leu Gly Asp Ala His Gly Ala Leu Val
210 215 220
His Leu Trp Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val
225 230 235 240
Val Glu Leu Ala Pro Ser Ile Asn Val Ala Glu Ser Leu Arg Gln Gln
245 250 255
Ile Cys Asp Ala Ala Val Arg Leu Cys Arg Ser Val Asn Tyr Arg Asn
260 265 270
Ala Gly Thr Val Glu Phe Leu Leu Asp Val Glu Arg Gly Glu Phe Tyr
275 280 285
Phe Ile Glu Val Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu
290 295 300
Val Val Thr Gly Ile Asp Leu Val Arg Ser Gln Ile Leu Ile Ala Asp
305 310 315 320
Gly His Arg Leu His Glu Ala Pro Leu Asn Val Pro Ala Gln Glu Glu
325 330 335
Ile Arg Thr Arg Gly Val Ala Met Gln Cys Arg Ile Thr Thr Glu Asp
340 345 350
Pro Asp Arg His Phe Ile Pro Asp Tyr Gly Arg Ile Thr Thr Tyr Arg
355 360 365
Ser Ala Gly Gly Phe Ala Val Arg Leu Asp Gly Gly Asn Gly Phe Gly
370 375 380
Gly Ser Val Ile Thr Pro Phe Phe Asp Ser Leu Leu Val Lys Val Thr
385 390 395 400
Thr Trp Gly Gly Thr Leu Glu Glu Ser Ala Gln Arg Ala Asp Arg Ala
405 410 415
Leu Arg Glu Phe Arg Ile Arg Gly Val Lys Thr Asn Ile Ala Phe Leu
420 425 430
Leu Asn Leu Ile Gly His Pro Thr Phe Arg Ser Gly Ala Ala Thr Thr
435 440 445
Thr Phe Ile Asp Glu Thr Pro Glu Leu Phe Arg Ile Gln Ala Pro Arg
450 455 460
Asp Arg Ala Thr Lys Met Leu Gly Tyr Leu Gly Asp Val Ile Val Asn
465 470 475 480
Gly Arg Pro Asp Val Lys Asn Ala Tyr Asp Pro Gln Arg Lys Leu Pro
485 490 495
Thr Gln Lys Pro Pro Val Val Pro Pro Met Ala Ala Pro Pro Ala Gly
500 505 510
Met Arg Gln Lys Leu Gln Glu Leu Gly Pro Glu Arg Phe Ala Ser Trp
515 520 525
Val Arg Gly Glu Arg Arg Leu Leu Met Thr Asp Thr Thr Phe Arg Asp
530 535 540
Ala His Gln Ser Leu Leu Ala Thr Arg Val Arg Thr Tyr Asp Met Leu
545 550 555 560
Ala Ile Ala Asp Ala Val Ala Arg Leu Met Pro Asp Leu Phe Ser Leu
565 570 575
Glu Met Trp Gly Gly Ala Thr Phe Asp Thr Ser Met Arg Phe Leu Gln
580 585 590
Glu Asp Pro Trp Ala Arg Leu Ile Gln Leu Arg Glu Arg Ile Pro Asn
595 600 605
Ile Leu Phe Gln Met Leu Leu Arg Gly Ser Asn Ala Val Gly Tyr Thr
610 615 620
Thr Tyr Pro Asp Asn Val Val Arg Ala Phe Val Lys Arg Ser Ala Glu
625 630 635 640
Ala Gly Ile Asp Val Phe Arg Ile Phe Asp Ala Leu Asn Ser Thr Asp
645 650 655
Asn Met Arg Val Ala Ile Glu Ala Val Arg Glu Asp Thr Thr Ala Ile
660 665 670
Cys Glu Ala Ala Ile Cys Tyr Thr Gly Asp Ile Leu Asp Pro Asn Arg
675 680 685
Thr Lys Tyr Ser Leu Asp Tyr Tyr Leu Arg Ile Ala Lys Lys Leu Val
690 695 700
Ala Met Gly Thr His Ile Leu Cys Ile Lys Asp Met Ala Gly Leu Cys
705 710 715 720
Lys Pro Tyr Ala Ala His Ala Leu Ile Gln Ala Leu Arg Glu Glu Val
725 730 735
Asp Val Pro Ile His Phe His Thr His Asp Thr Ser Gly Val Asn Ala
740 745 750
Gly Ser Ile Leu Arg Ala Ser Asp Ala Gly Val Asp Ile Ala Asp Ala
755 760 765
Ala Ile Ala Ser Met Ser Gly Met Thr Ser Gln Pro Ser Leu Asn Gly
770 775 780
Val Val Ala Ala Leu Arg His Thr Glu Arg Asp Thr Ala Leu Asn Gln
785 790 795 800
Glu Ala Leu Asp Glu Leu Ser Arg Tyr Trp Ala Asp Val Arg Glu Leu
805 810 815
Tyr Tyr Pro Phe Glu Glu Gly Leu Lys Ala Pro Gln Ala Asp Val Tyr
820 825 830
Gln His Glu Met Pro Gly Gly Gln Phe Thr Asn Leu Arg Gln Gln Ala
835 840 845
Arg Asn Leu Gly Phe Gly Asp Arg Trp Pro Glu Ile Ser Ala Ala Tyr
850 855 860
Ala Glu Ala Asn Arg Leu Ala Gly Asp Ile Val Lys Val Thr Pro Ser
865 870 875 880
Ser Lys Val Ile Gly Asp Leu Ala Leu Phe Met Val Thr Asn Asn Leu
885 890 895
Thr Ala Asn Asp Ile Leu Thr Ser Gly Ala Pro Leu Ser Phe Pro Arg
900 905 910
Ser Val Val Gly Met Met Gln Gly Leu Leu Gly Gln Pro Glu Gly Gly
915 920 925
Trp Pro Lys Asp Phe Gln Glu Ile Val Leu Arg Ser Ala His Ala Thr
930 935 940
Pro Ile Thr Gly Arg Pro Ala Asp Thr Leu Pro Pro Ala Asp Phe Glu
945 950 955 960
Ala Thr Ala Gln Glu Leu Lys Ala Lys Thr Gly Arg Asp Val Ser Glu
965 970 975
His Asp Val Leu Ser Tyr Leu Leu Tyr Pro Gln Val Tyr Val Glu Tyr
980 985 990
Ile Glu His Trp Gln Lys Tyr Gly Asp Thr Ser Thr Ile Pro Thr Ala
995 1000 1005
Asn Phe Phe Tyr Gly Leu Gln Pro Gly Glu Glu Thr Ala Ile Glu
1010 1015 1020
Ile Glu Arg Gly Lys Thr Leu Phe Val Arg Phe Leu Thr Ala Gly
1025 1030 1035
Glu Val Arg Glu Asp Gly Thr Arg Thr Val Phe Phe Glu Leu Asn
1040 1045 1050
Gly Gln Pro Arg Glu Val Arg Val Ile Asp Arg Ser Val Thr Ala
1055 1060 1065
Leu Arg Lys Ser His Pro Lys Ala Asp Val Glu Asn Pro Asp His
1070 1075 1080
Val Ala Ala Pro Met Pro Gly Lys Ile Ser Ser Val Ala Val Arg
1085 1090 1095
Pro Gly Gln Arg Val Arg Ala Gly Asp Arg Leu Leu Ser Ile Glu
1100 1105 1110
Ala Met Lys Met Glu Thr Ala Val Tyr Ser Pro Arg Asp Gly Ala
1115 1120 1125
Val Ala Glu Val Leu Val Val Thr Gly Gln Val Val Glu Thr Arg
1130 1135 1140
Asp Leu Leu Leu Val Leu Thr Glu
1145 1150
<210> 260
<211> 3459
<212> DNA
<213> Unknown
<220>
<223> pyc_10 sequence from unknown bacterial species from environmental
sample
<400> 260
atggccatgt ccatccgccc cccccctgcc ttcaagcgca tcctggtcgc caaccgcagc 60
gagatcgcca tccgggtctt tcgcgcctgc accgagctcg gcatccgcac cctcggcatc 120
ttcagcaagg aagaccgcac ggctctgcat cgctacaagg cggacgagac ctacgcgctg 180
gacgagcggc tcgagcccat caaggcctac ctcgacatcc ccggcatcat caacatcgcc 240
aaacgccacg gcgccgacgc catccacccc ggctacggct tcctctccga gaacgcggcc 300
ttcgcgcgcg cctgcgagga agcgggcatc gtcttcattg gcccgccccc cgcgctgctc 360
gacatgatgg gcgacaaaac cgccgcccgg aaacaagccc aagaggtggg cctgccggtg 420
gtgcccggca ccgacgcccc ggtgcccagc cccgaggacg cggtcaccat cgccggccgc 480
atcggctacc cggtgatcct caaagcctcc tacggcggcg gcggccgcgg catgcgcgtg 540
gcgcgcaccg acgccgagct gcgcgagttt ttcacccagg ccgaacgcga agccaccgcc 600
gctttcggcc gcggcgagat cttcctcgag aagttcatcg agagccccaa acacatcgag 660
gtgcagatcc tggccgacca gcacggccac accgtgcacc tttacgagcg cgactgctcg 720
gtccagcgcc gccaccagaa ggtggtggag atcgccccct ccccgcacct cgacgacaag 780
ctgcgcgcca ccctgtgcga cgaggccgtg cgcctgtgcc aggcggtggg ctacgtcaac 840
gccggcacgg tggagttcct ggtcgacaaa cacggcgccc attacttcat cgagatgaac 900
ccccgggtgc aggtggaaca caccgtcacc gagatggtca ccggcatcga catcgtcaaa 960
tcgcagatcc gcatcgccga gggccacccc ctggaaagcc ccctcatcgg catccccgcc 1020
caaagcgcgg tcagcctgcg cggctacgcc atccagtgcc gcataaccac cgaggatccc 1080
gccaacaact tcatccccga ctacggccgc atctcgcact accgctcggc ggccggcttc 1140
ggcatccgcc tcgacgccgg caccgccttt tccggtgccc tcatcacccc gttttacgac 1200
tcgctgctgg tcaaggtctg cgcctcgggc ctcaccttcg acgaggcctg cagcaagatg 1260
gaccgcgccc tggccgagtg gcgcgtgcgc ggcgtgcgca ccaacctgcc cttcctgcgc 1320
aacgtggtca atcacccgcg ctttcgcgcc ggcgacgcca ccaccacctt catcgccgac 1380
acacccgagc tgctggtgtt ccaagagcgc ttcgatcgcg ccaccaagat cctgcagttc 1440
atcggcgacg tcagcgtgaa cggcaacccc gaggtcaagg gcgcgcggcc cgagaagctg 1500
cgcaagccgg tggtgcccga acacgagccc caccaggccc ccccgcccgg cacccgcgat 1560
ctgtggaaga agctcggcac cgcggacttc tgcgcctggg tgcgcgatca gaagaagctg 1620
ctgctcaccg acaccacctt ccgcgacgcc caccagtcgc tcttcgccac ccgcctgcgc 1680
acgctggaga tgacccgggt ggcgcccgcg gtggcccagc acctctccgg cctgttctcg 1740
ctggagatgt ggggcggcgc caccttcgac gtggccatgc gctttttgca cgaggatccc 1800
tgggaccgcc tggccacctt gcgcaagcag atccccaacg tgctcttcca gatgctcctg 1860
cgcggggcga acgcggtcgg ctacaccaac taccccgaca atgtcgtgcg ccgcttcgtc 1920
gaggaagccg cccgcaccgg catggacatc ttccgcatct tcgattcgct caactggctg 1980
cccggcatcc tgcccgccat cgagatggtg gccagcgccg gcggcatcgc cgaagcctcc 2040
ctctgttaca ccggcaacat cgacgacccc aaacgttcga agtacgacct caagtactac 2100
gtcgatctgg ccaaggagct ggagaaacac ggcgcccaca tgctgggcat caaggacatg 2160
tcgggcctct tgcgcccctt cgccgcccgc cgcctgatcc gggccctgcg cgaggaagtg 2220
ggcctgccca tccacctgca cacccacgac accgccggca tccaagccgg ctcctatctg 2280
ttcgccgccg aggccggggt caacgtggtc gactgcgcgt tcggcgccat gtccagcctc 2340
acctcgcagc ccaacctcga gagcatcgtg gccgccctcg agcaccagga gcgcgacacc 2400
ggcctcgact tcacccggct gctggacttc acctactact gggaagaggt ccgcaactac 2460
tacgccgcct tcgaaagcgg catgaagtca ccttccgccg acgtctacgt gcacgagatc 2520
cccggcggtc agtacagcaa cctgcgcccg caggccgaat cagtgggggt gggggatcgc 2580
atccccgagc tcaagcgcat gtacgccgtg gtcaacgaga tgctggggga catcgtcaag 2640
gtgacgccca gctcgaagat ggtgggcgat ctggccctct tcatgttgac caacaatctc 2700
actccgccgg acctgatcga gcgcggacgc gagctgacct tccccgagtc ggtgatcggc 2760
tacttcgccg gcgaaatcgg ccagccgccc ggcggttttc ccccggcgct gtccgcggcc 2820
atcctcaagg gccgcacgcc cttcgccggc cgcccgggcg acaccctgcc gccggtggac 2880
ttcgacaaga cccggcgcga ggtggaaacc aaagtgggcc gtcccgccag cgagcaggac 2940
gtgctgtcct atctgatgta ccccaaggtc ttcaccgact ttgccagcta tgtgaaaaag 3000
tacggtgacg tctcggcggt gcccaccgat gtgatgttct atggcatgcg caagggcgac 3060
gagaccgagg tggagatcga acggggcaag accctgttca tccgcctcgg cgccatcagc 3120
gagcccaacg aacgcggcat gcgcaccttg ttcttcgagc tgaacgggca cccccgcgag 3180
gtcgaggtgc tggacaagaa gctgggcaag gcggtggcgg cccgccccaa ggccgacaag 3240
gacaacctgc accacctcgg ctcacccatg cccggcaccg tcatcgaggt gaaggccaag 3300
gcgggcgacg aggtcaagga aggcgacaag ctggtggtgc tggaagcgat gaagatggag 3360
atgacgctgg cctcgccgct ggccggcgtc atcaaggaaa tcaccgtcac cccgaaggac 3420
cgtgtcgata ccggggatct gctggtggta ttcaagtag 3459
<210> 261
<211> 1152
<212> PRT
<213> Unknown
<220>
<223> pyc_10 sequence from unknown bacterial species from environmental
sample
<400> 261
Met Ala Met Ser Ile Arg Pro Pro Pro Ala Phe Lys Arg Ile Leu Val
1 5 10 15
Ala Asn Arg Ser Glu Ile Ala Ile Arg Val Phe Arg Ala Cys Thr Glu
20 25 30
Leu Gly Ile Arg Thr Leu Gly Ile Phe Ser Lys Glu Asp Arg Thr Ala
35 40 45
Leu His Arg Tyr Lys Ala Asp Glu Thr Tyr Ala Leu Asp Glu Arg Leu
50 55 60
Glu Pro Ile Lys Ala Tyr Leu Asp Ile Pro Gly Ile Ile Asn Ile Ala
65 70 75 80
Lys Arg His Gly Ala Asp Ala Ile His Pro Gly Tyr Gly Phe Leu Ser
85 90 95
Glu Asn Ala Ala Phe Ala Arg Ala Cys Glu Glu Ala Gly Ile Val Phe
100 105 110
Ile Gly Pro Pro Pro Ala Leu Leu Asp Met Met Gly Asp Lys Thr Ala
115 120 125
Ala Arg Lys Gln Ala Gln Glu Val Gly Leu Pro Val Val Pro Gly Thr
130 135 140
Asp Ala Pro Val Pro Ser Pro Glu Asp Ala Val Thr Ile Ala Gly Arg
145 150 155 160
Ile Gly Tyr Pro Val Ile Leu Lys Ala Ser Tyr Gly Gly Gly Gly Arg
165 170 175
Gly Met Arg Val Ala Arg Thr Asp Ala Glu Leu Arg Glu Phe Phe Thr
180 185 190
Gln Ala Glu Arg Glu Ala Thr Ala Ala Phe Gly Arg Gly Glu Ile Phe
195 200 205
Leu Glu Lys Phe Ile Glu Ser Pro Lys His Ile Glu Val Gln Ile Leu
210 215 220
Ala Asp Gln His Gly His Thr Val His Leu Tyr Glu Arg Asp Cys Ser
225 230 235 240
Val Gln Arg Arg His Gln Lys Val Val Glu Ile Ala Pro Ser Pro His
245 250 255
Leu Asp Asp Lys Leu Arg Ala Thr Leu Cys Asp Glu Ala Val Arg Leu
260 265 270
Cys Gln Ala Val Gly Tyr Val Asn Ala Gly Thr Val Glu Phe Leu Val
275 280 285
Asp Lys His Gly Ala His Tyr Phe Ile Glu Met Asn Pro Arg Val Gln
290 295 300
Val Glu His Thr Val Thr Glu Met Val Thr Gly Ile Asp Ile Val Lys
305 310 315 320
Ser Gln Ile Arg Ile Ala Glu Gly His Pro Leu Glu Ser Pro Leu Ile
325 330 335
Gly Ile Pro Ala Gln Ser Ala Val Ser Leu Arg Gly Tyr Ala Ile Gln
340 345 350
Cys Arg Ile Thr Thr Glu Asp Pro Ala Asn Asn Phe Ile Pro Asp Tyr
355 360 365
Gly Arg Ile Ser His Tyr Arg Ser Ala Ala Gly Phe Gly Ile Arg Leu
370 375 380
Asp Ala Gly Thr Ala Phe Ser Gly Ala Leu Ile Thr Pro Phe Tyr Asp
385 390 395 400
Ser Leu Leu Val Lys Val Cys Ala Ser Gly Leu Thr Phe Asp Glu Ala
405 410 415
Cys Ser Lys Met Asp Arg Ala Leu Ala Glu Trp Arg Val Arg Gly Val
420 425 430
Arg Thr Asn Leu Pro Phe Leu Arg Asn Val Val Asn His Pro Arg Phe
435 440 445
Arg Ala Gly Asp Ala Thr Thr Thr Phe Ile Ala Asp Thr Pro Glu Leu
450 455 460
Leu Val Phe Gln Glu Arg Phe Asp Arg Ala Thr Lys Ile Leu Gln Phe
465 470 475 480
Ile Gly Asp Val Ser Val Asn Gly Asn Pro Glu Val Lys Gly Ala Arg
485 490 495
Pro Glu Lys Leu Arg Lys Pro Val Val Pro Glu His Glu Pro His Gln
500 505 510
Ala Pro Pro Pro Gly Thr Arg Asp Leu Trp Lys Lys Leu Gly Thr Ala
515 520 525
Asp Phe Cys Ala Trp Val Arg Asp Gln Lys Lys Leu Leu Leu Thr Asp
530 535 540
Thr Thr Phe Arg Asp Ala His Gln Ser Leu Phe Ala Thr Arg Leu Arg
545 550 555 560
Thr Leu Glu Met Thr Arg Val Ala Pro Ala Val Ala Gln His Leu Ser
565 570 575
Gly Leu Phe Ser Leu Glu Met Trp Gly Gly Ala Thr Phe Asp Val Ala
580 585 590
Met Arg Phe Leu His Glu Asp Pro Trp Asp Arg Leu Ala Thr Leu Arg
595 600 605
Lys Gln Ile Pro Asn Val Leu Phe Gln Met Leu Leu Arg Gly Ala Asn
610 615 620
Ala Val Gly Tyr Thr Asn Tyr Pro Asp Asn Val Val Arg Arg Phe Val
625 630 635 640
Glu Glu Ala Ala Arg Thr Gly Met Asp Ile Phe Arg Ile Phe Asp Ser
645 650 655
Leu Asn Trp Leu Pro Gly Ile Leu Pro Ala Ile Glu Met Val Ala Ser
660 665 670
Ala Gly Gly Ile Ala Glu Ala Ser Leu Cys Tyr Thr Gly Asn Ile Asp
675 680 685
Asp Pro Lys Arg Ser Lys Tyr Asp Leu Lys Tyr Tyr Val Asp Leu Ala
690 695 700
Lys Glu Leu Glu Lys His Gly Ala His Met Leu Gly Ile Lys Asp Met
705 710 715 720
Ser Gly Leu Leu Arg Pro Phe Ala Ala Arg Arg Leu Ile Arg Ala Leu
725 730 735
Arg Glu Glu Val Gly Leu Pro Ile His Leu His Thr His Asp Thr Ala
740 745 750
Gly Ile Gln Ala Gly Ser Tyr Leu Phe Ala Ala Glu Ala Gly Val Asn
755 760 765
Val Val Asp Cys Ala Phe Gly Ala Met Ser Ser Leu Thr Ser Gln Pro
770 775 780
Asn Leu Glu Ser Ile Val Ala Ala Leu Glu His Gln Glu Arg Asp Thr
785 790 795 800
Gly Leu Asp Phe Thr Arg Leu Leu Asp Phe Thr Tyr Tyr Trp Glu Glu
805 810 815
Val Arg Asn Tyr Tyr Ala Ala Phe Glu Ser Gly Met Lys Ser Pro Ser
820 825 830
Ala Asp Val Tyr Val His Glu Ile Pro Gly Gly Gln Tyr Ser Asn Leu
835 840 845
Arg Pro Gln Ala Glu Ser Val Gly Val Gly Asp Arg Ile Pro Glu Leu
850 855 860
Lys Arg Met Tyr Ala Val Val Asn Glu Met Leu Gly Asp Ile Val Lys
865 870 875 880
Val Thr Pro Ser Ser Lys Met Val Gly Asp Leu Ala Leu Phe Met Leu
885 890 895
Thr Asn Asn Leu Thr Pro Pro Asp Leu Ile Glu Arg Gly Arg Glu Leu
900 905 910
Thr Phe Pro Glu Ser Val Ile Gly Tyr Phe Ala Gly Glu Ile Gly Gln
915 920 925
Pro Pro Gly Gly Phe Pro Pro Ala Leu Ser Ala Ala Ile Leu Lys Gly
930 935 940
Arg Thr Pro Phe Ala Gly Arg Pro Gly Asp Thr Leu Pro Pro Val Asp
945 950 955 960
Phe Asp Lys Thr Arg Arg Glu Val Glu Thr Lys Val Gly Arg Pro Ala
965 970 975
Ser Glu Gln Asp Val Leu Ser Tyr Leu Met Tyr Pro Lys Val Phe Thr
980 985 990
Asp Phe Ala Ser Tyr Val Lys Lys Tyr Gly Asp Val Ser Ala Val Pro
995 1000 1005
Thr Asp Val Met Phe Tyr Gly Met Arg Lys Gly Asp Glu Thr Glu
1010 1015 1020
Val Glu Ile Glu Arg Gly Lys Thr Leu Phe Ile Arg Leu Gly Ala
1025 1030 1035
Ile Ser Glu Pro Asn Glu Arg Gly Met Arg Thr Leu Phe Phe Glu
1040 1045 1050
Leu Asn Gly His Pro Arg Glu Val Glu Val Leu Asp Lys Lys Leu
1055 1060 1065
Gly Lys Ala Val Ala Ala Arg Pro Lys Ala Asp Lys Asp Asn Leu
1070 1075 1080
His His Leu Gly Ser Pro Met Pro Gly Thr Val Ile Glu Val Lys
1085 1090 1095
Ala Lys Ala Gly Asp Glu Val Lys Glu Gly Asp Lys Leu Val Val
1100 1105 1110
Leu Glu Ala Met Lys Met Glu Met Thr Leu Ala Ser Pro Leu Ala
1115 1120 1125
Gly Val Ile Lys Glu Ile Thr Val Thr Pro Lys Asp Arg Val Asp
1130 1135 1140
Thr Gly Asp Leu Leu Val Val Phe Lys
1145 1150
<210> 262
<211> 3393
<212> DNA
<213> Unknown
<220>
<223> pyc_11 sequence from unknown bacterial species from environmental
sample
<400> 262
atgccggtca gggagtcgct cgtgcgcaag gtcctcgtcg ccaaccgcag tgagatcgcg 60
gtccgcgtca tgcgcgcggc ccacgagatg gacctgctga ccgtcggggt ctacacgccc 120
gaggaccgcg gggcgctgca ccgcaccaag gcgggcgagg cctaccagct gggcgagccg 180
ggccaccccg tgcgcggcta cctcgacgtc gaggcgctgc tcgaggtcgc ccgccgctcc 240
ggcgccgacg cgctgcaccc cggctacggc ttcctgtccg agagcgccgc gctcgccgac 300
gcctgcgcct cggctggcat caccttcgtc gggccgccgg cggacgtgct gcgcctgacc 360
ggtgacaagg tcaccgcccg ccaggcggcg gtggccgcgg gcctgccggt gctgcgcgcc 420
tccgacccgc tgccggacgg gtccggggcg atcgaggcgg ccgaggcggt gggcttcccg 480
ctgttcgtca aggcggcggc cggcggcggc ggccgcggcc tgcggctcgt gcggacgccc 540
gaggagctcg ccgacgcggc gctgtcggcg tcgagggagg cggccgcggc cttcggcgac 600
gggacgatct tcctcgagca ggcggtcgag cggccgcgcc acatcgaggt gcaggtgctc 660
ggcgacacgc acggctcggt ggtccacctg ttcgagcgcg actgctcggt gcagcggcgc 720
caccagaagg tcgtcgagct cgcgccggcg cccgacctgc cggaggccac gcgcacgggc 780
ctgcacgagg cggccctcgc gttcgcccgt tcggtcggct acgtcaacgc cgggacggtg 840
gagttcctcg tgggcgccga cggggcgttc acgttcatgg agatgaaccc ccgcatccag 900
gtcgagcaca ccgtcaccga ggaggtcacc ggcgtcgacc tcgtcggcgc ccagctgcgg 960
gtggccgcgg gggagtcgct cgccgacatc ggcatcgtgc aggagcgcct ggcggtccgc 1020
ggctgcgccg tccagtgccg catcaccacc gaggacccgg ccaacggctt ccgcccggac 1080
accggcacga tcgcgaccta ccagtcgccc ggcggcccgg gcgtgcgcct cgacggcgcg 1140
gtctacgccg gcgccgaggt cacgccgtac ttcgactccc tgctcgtcaa gctcacgacc 1200
cgcgcccccg acctgcgcac cgccgccaac cgcacccggc gggcgctgcg ggagttccgc 1260
gtgcgcgggg tgaagaccaa cgtcgagttc ctctaccgcc tcatggagga cgaggacttc 1320
ctgtccggcg cggtgccgac gtcgttcctc gccgagcacc cgcacctcac ggacgcgccc 1380
gcggtcaccg accggacgac ccggatgctc ggcgcgctgg ccgacgcgac ggtgaacggg 1440
ctgcagcgcc cgtcgcgccc gctgctcgac ccggtcagca agctccccga cctgcccgcc 1500
gccccgccgg tgcagggctc gcggcgcctg ctcgacgagg tcggcccgga gcgctgggcg 1560
caggccctgc gcgaccgcac gtccctcgcg gtgaccgaca cgacgctgcg cgacgcccac 1620
cagtcgctgc tggccacccg gctgcggacc accgacgtcc tcggcgccgc gccgaggacg 1680
gcggagctgc tgcccggcct gctgtcgctc gaggcgtggg gcggcgcgac gtacgacgtg 1740
gcgctgcgct tcctgcacga ggacccctgg cagcggctcg ccgcgctgcg cgaggccgcg 1800
cccgacgtct gcctgcagat gctgctgcgc ggccgcaacg ccgtcggcta cacgccctac 1860
ccggaccggg tcgtgcaggt cttcgtcgcc gaggcggcgg ccaccggcgt cgacgtcttc 1920
cgcgtgttcg acgccctgaa cgacctcgag cagatgcgtc ccgcgctcga cgccgtccgc 1980
gaggccggca aggtcgcgga gggcacgctc tgctacaccg gcgacctgac gaacccgggc 2040
gagcggctct acacgctcga ctactacctg cgcctcgccg aggggctcgt cgaggcgggc 2100
gcgcacgtgc tggccgtcaa ggacatggcc gggctgctgc gcccgcgcgc cgccgacacg 2160
ctggtccggg cgctgcgcag ccgcttcgag ctgcccgtgc acctgcacac ccacgacacg 2220
accggcgggc agctcgcgac gctgctcgcc gccagcgacg cgggggtcga cgccgtcgac 2280
gccgccatgg cgccgatgtc gggcggcacc agccaggtca acctgtcggc cctggtcgcc 2340
gcgaccgacc acaccgagcg gtccacgggc ctgtcgctgg ccgcgctgtc ggcgctcgag 2400
ccgtactggg aggcggtgcg cgacctctac gcgccgttcg aggcgggcct gcgggcgccg 2460
accggcaccg tctaccgcca cgagatcccg ggcggccagc tcaccaacct gcgccagcag 2520
gcgatcgcgc tcggcctcgg cgaccgctgg gaggacgtcc aggagctgta cgccgtcgcc 2580
aacgagctgc tcggcaagcc gatcaaggtg acgccgacga gcaaggtcgt cggcgacctg 2640
gcgatcttcc tggccagcgg cgacgtcgac gtcgagcggc tgcgcgagga cccgggggcg 2700
tacgacctgc cggccagcgt gctcggctac ctcgccggcg agctgggcac gccgcccgcc 2760
ggcttccccg agccgttccg ctccaaggcg gtcgcgggcc gtgcggagga gctgccggag 2820
gtcgtcctcg acccggccga cgacgcggcc ctcgacggcg agcagcggcg cgacgtgctg 2880
tcgcggctgc tgttctccgg cccgtggaag gactaccagt cggcgctcgc cgagcacggc 2940
gacgtctcga tgatccccac ggaggcgttc ttctacggcc tgcagcccgg cgggacggtc 3000
accgtctgcc tcgaggccgg ggtcgaggtg ctcgtcgagc tgcagacggt cggcgagctg 3060
tccaaggacg gcctgcggac cctccacgtg cgcgtgaacg gccagccccg gccggtgcag 3120
gtgcgcgacc gctcggtcaa ggtcgccgac acggccgcgc gccgcgccga ccccggcgac 3180
ccccgccacg tcggcgcggc cctgcccggg ctcgtcctgc cgaaggtcgc cgtcggcgac 3240
cgggtgacca agggacaggc gctggccgtc gtcgaggcga tgaagatgga gtcgaccgtc 3300
tcgagccccg ccgacgggac cgtggccgag gtcgccgtga cggccggcac caacgtcgag 3360
gtgggcgacc tgctcgtggt cctgggcgac tga 3393
<210> 263
<211> 1130
<212> PRT
<213> Unknown
<220>
<223> pyc_11 sequence from unknown bacterial species from environmental
sample
<400> 263
Met Pro Val Arg Glu Ser Leu Val Arg Lys Val Leu Val Ala Asn Arg
1 5 10 15
Ser Glu Ile Ala Val Arg Val Met Arg Ala Ala His Glu Met Asp Leu
20 25 30
Leu Thr Val Gly Val Tyr Thr Pro Glu Asp Arg Gly Ala Leu His Arg
35 40 45
Thr Lys Ala Gly Glu Ala Tyr Gln Leu Gly Glu Pro Gly His Pro Val
50 55 60
Arg Gly Tyr Leu Asp Val Glu Ala Leu Leu Glu Val Ala Arg Arg Ser
65 70 75 80
Gly Ala Asp Ala Leu His Pro Gly Tyr Gly Phe Leu Ser Glu Ser Ala
85 90 95
Ala Leu Ala Asp Ala Cys Ala Ser Ala Gly Ile Thr Phe Val Gly Pro
100 105 110
Pro Ala Asp Val Leu Arg Leu Thr Gly Asp Lys Val Thr Ala Arg Gln
115 120 125
Ala Ala Val Ala Ala Gly Leu Pro Val Leu Arg Ala Ser Asp Pro Leu
130 135 140
Pro Asp Gly Ser Gly Ala Ile Glu Ala Ala Glu Ala Val Gly Phe Pro
145 150 155 160
Leu Phe Val Lys Ala Ala Ala Gly Gly Gly Gly Arg Gly Leu Arg Leu
165 170 175
Val Arg Thr Pro Glu Glu Leu Ala Asp Ala Ala Leu Ser Ala Ser Arg
180 185 190
Glu Ala Ala Ala Ala Phe Gly Asp Gly Thr Ile Phe Leu Glu Gln Ala
195 200 205
Val Glu Arg Pro Arg His Ile Glu Val Gln Val Leu Gly Asp Thr His
210 215 220
Gly Ser Val Val His Leu Phe Glu Arg Asp Cys Ser Val Gln Arg Arg
225 230 235 240
His Gln Lys Val Val Glu Leu Ala Pro Ala Pro Asp Leu Pro Glu Ala
245 250 255
Thr Arg Thr Gly Leu His Glu Ala Ala Leu Ala Phe Ala Arg Ser Val
260 265 270
Gly Tyr Val Asn Ala Gly Thr Val Glu Phe Leu Val Gly Ala Asp Gly
275 280 285
Ala Phe Thr Phe Met Glu Met Asn Pro Arg Ile Gln Val Glu His Thr
290 295 300
Val Thr Glu Glu Val Thr Gly Val Asp Leu Val Gly Ala Gln Leu Arg
305 310 315 320
Val Ala Ala Gly Glu Ser Leu Ala Asp Ile Gly Ile Val Gln Glu Arg
325 330 335
Leu Ala Val Arg Gly Cys Ala Val Gln Cys Arg Ile Thr Thr Glu Asp
340 345 350
Pro Ala Asn Gly Phe Arg Pro Asp Thr Gly Thr Ile Ala Thr Tyr Gln
355 360 365
Ser Pro Gly Gly Pro Gly Val Arg Leu Asp Gly Ala Val Tyr Ala Gly
370 375 380
Ala Glu Val Thr Pro Tyr Phe Asp Ser Leu Leu Val Lys Leu Thr Thr
385 390 395 400
Arg Ala Pro Asp Leu Arg Thr Ala Ala Asn Arg Thr Arg Arg Ala Leu
405 410 415
Arg Glu Phe Arg Val Arg Gly Val Lys Thr Asn Val Glu Phe Leu Tyr
420 425 430
Arg Leu Met Glu Asp Glu Asp Phe Leu Ser Gly Ala Val Pro Thr Ser
435 440 445
Phe Leu Ala Glu His Pro His Leu Thr Asp Ala Pro Ala Val Thr Asp
450 455 460
Arg Thr Thr Arg Met Leu Gly Ala Leu Ala Asp Ala Thr Val Asn Gly
465 470 475 480
Leu Gln Arg Pro Ser Arg Pro Leu Leu Asp Pro Val Ser Lys Leu Pro
485 490 495
Asp Leu Pro Ala Ala Pro Pro Val Gln Gly Ser Arg Arg Leu Leu Asp
500 505 510
Glu Val Gly Pro Glu Arg Trp Ala Gln Ala Leu Arg Asp Arg Thr Ser
515 520 525
Leu Ala Val Thr Asp Thr Thr Leu Arg Asp Ala His Gln Ser Leu Leu
530 535 540
Ala Thr Arg Leu Arg Thr Thr Asp Val Leu Gly Ala Ala Pro Arg Thr
545 550 555 560
Ala Glu Leu Leu Pro Gly Leu Leu Ser Leu Glu Ala Trp Gly Gly Ala
565 570 575
Thr Tyr Asp Val Ala Leu Arg Phe Leu His Glu Asp Pro Trp Gln Arg
580 585 590
Leu Ala Ala Leu Arg Glu Ala Ala Pro Asp Val Cys Leu Gln Met Leu
595 600 605
Leu Arg Gly Arg Asn Ala Val Gly Tyr Thr Pro Tyr Pro Asp Arg Val
610 615 620
Val Gln Val Phe Val Ala Glu Ala Ala Ala Thr Gly Val Asp Val Phe
625 630 635 640
Arg Val Phe Asp Ala Leu Asn Asp Leu Glu Gln Met Arg Pro Ala Leu
645 650 655
Asp Ala Val Arg Glu Ala Gly Lys Val Ala Glu Gly Thr Leu Cys Tyr
660 665 670
Thr Gly Asp Leu Thr Asn Pro Gly Glu Arg Leu Tyr Thr Leu Asp Tyr
675 680 685
Tyr Leu Arg Leu Ala Glu Gly Leu Val Glu Ala Gly Ala His Val Leu
690 695 700
Ala Val Lys Asp Met Ala Gly Leu Leu Arg Pro Arg Ala Ala Asp Thr
705 710 715 720
Leu Val Arg Ala Leu Arg Ser Arg Phe Glu Leu Pro Val His Leu His
725 730 735
Thr His Asp Thr Thr Gly Gly Gln Leu Ala Thr Leu Leu Ala Ala Ser
740 745 750
Asp Ala Gly Val Asp Ala Val Asp Ala Ala Met Ala Pro Met Ser Gly
755 760 765
Gly Thr Ser Gln Val Asn Leu Ser Ala Leu Val Ala Ala Thr Asp His
770 775 780
Thr Glu Arg Ser Thr Gly Leu Ser Leu Ala Ala Leu Ser Ala Leu Glu
785 790 795 800
Pro Tyr Trp Glu Ala Val Arg Asp Leu Tyr Ala Pro Phe Glu Ala Gly
805 810 815
Leu Arg Ala Pro Thr Gly Thr Val Tyr Arg His Glu Ile Pro Gly Gly
820 825 830
Gln Leu Thr Asn Leu Arg Gln Gln Ala Ile Ala Leu Gly Leu Gly Asp
835 840 845
Arg Trp Glu Asp Val Gln Glu Leu Tyr Ala Val Ala Asn Glu Leu Leu
850 855 860
Gly Lys Pro Ile Lys Val Thr Pro Thr Ser Lys Val Val Gly Asp Leu
865 870 875 880
Ala Ile Phe Leu Ala Ser Gly Asp Val Asp Val Glu Arg Leu Arg Glu
885 890 895
Asp Pro Gly Ala Tyr Asp Leu Pro Ala Ser Val Leu Gly Tyr Leu Ala
900 905 910
Gly Glu Leu Gly Thr Pro Pro Ala Gly Phe Pro Glu Pro Phe Arg Ser
915 920 925
Lys Ala Val Ala Gly Arg Ala Glu Glu Leu Pro Glu Val Val Leu Asp
930 935 940
Pro Ala Asp Asp Ala Ala Leu Asp Gly Glu Gln Arg Arg Asp Val Leu
945 950 955 960
Ser Arg Leu Leu Phe Ser Gly Pro Trp Lys Asp Tyr Gln Ser Ala Leu
965 970 975
Ala Glu His Gly Asp Val Ser Met Ile Pro Thr Glu Ala Phe Phe Tyr
980 985 990
Gly Leu Gln Pro Gly Gly Thr Val Thr Val Cys Leu Glu Ala Gly Val
995 1000 1005
Glu Val Leu Val Glu Leu Gln Thr Val Gly Glu Leu Ser Lys Asp
1010 1015 1020
Gly Leu Arg Thr Leu His Val Arg Val Asn Gly Gln Pro Arg Pro
1025 1030 1035
Val Gln Val Arg Asp Arg Ser Val Lys Val Ala Asp Thr Ala Ala
1040 1045 1050
Arg Arg Ala Asp Pro Gly Asp Pro Arg His Val Gly Ala Ala Leu
1055 1060 1065
Pro Gly Leu Val Leu Pro Lys Val Ala Val Gly Asp Arg Val Thr
1070 1075 1080
Lys Gly Gln Ala Leu Ala Val Val Glu Ala Met Lys Met Glu Ser
1085 1090 1095
Thr Val Ser Ser Pro Ala Asp Gly Thr Val Ala Glu Val Ala Val
1100 1105 1110
Thr Ala Gly Thr Asn Val Glu Val Gly Asp Leu Leu Val Val Leu
1115 1120 1125
Gly Asp
1130
<210> 264
<211> 3384
<212> DNA
<213> Unknown
<220>
<223> pyc12 sequence from unknown bacterial species from environmental
sample
<400> 264
atgatcgaga aggtgctggt cgccaatcgc ggcgagatcg cgacccgcgc cttccgagcg 60
gcgaatgagc ttcggatccg cagcgtggcg ttgtacgcgc cggaggatcg cgactcggtc 120
catcgcgtaa aggccgacga ggcgtacgag atcggtgcgc cgggtcatcc ggtcagcacc 180
tacctggacc ctgacatcgc ggtcgcgctc gcgctgcggg tcggcgccga cgcgatctac 240
ccgggctacg gcttcatgtc cgaaaacccg gagctcgctc gagcctgcgt cgctgccgga 300
ttggtgttcg tcgggccgcc accggaggtg ctcggtctcg ccggcgacaa gacgcgcgcg 360
cgaacggcgg cgcgcgaggc gggcgtcccg gtgctcgacg cttcagagcc ggtcgagaac 420
gccgaagctg cgctggcggc agccgagaag atcggcttcc cggtgttcgt gaaggcgtcg 480
cacggcggcg gcgggcgcgg catgcgcctc gtgaccgatc cggcgcgcct cgcggcgtcg 540
ctggaggagg cgcgcaacga ggcggaggcg gcgttcggcg acggcacggt ctacctcgag 600
caggcgctcg tgcgcccgcg ccacatcgag gttcagctgc tggccgacgc gaccggcgac 660
gtcgtgcatc tctacgagcg cgactgctca ttgcagcgcc ggcatcagaa ggtgatcgag 720
atcacaccgg caccgaacct cgagccggag ctgcgcgacc gcatctgcgc cgacgccgtc 780
cgcttcgccc gccacgtggg gtacgtcaac gcgggcacgg tcgagttcct gctcgacgag 840
gccaacgggc gctacgcgtt catcgagatg aaccctcgca ttcaggtcga gcacacggtc 900
accgaggaga cgaccgacat cgacctcgtg cgcgcacaac tgcagatagc cggcggcgag 960
acgctcgccg gactcggcgt gcgccaggac gacatccgcc agcgcggctt cgcgctgcag 1020
tgccgggtga cgacggagga ccccgccaac gggttccgcc ccgactccgg ccgcatcacc 1080
gcgtaccgat cccccggagg ggcgggcgtg cggctcgacg agggctcagc cttcgtcggc 1140
gccgaggtct cgccgttctt cgacccgctg ctggtgaaga tctccgcgcg cgggcgtgat 1200
ctgcacagcg cggtctcacg cgcgcggcgc gccgtcgccg agctgcgagt acgcggtgtc 1260
aagaccaacc agggcttcct gctcgcgctg ctcaacgacc ccgacgtcct cgctgggcgc 1320
acgcacacca cgttcgtcga cgagcgtccc gacctctcga ccgccggccc cggcggcgac 1380
cgcgccagcc gactgctcaa acgcctcgcc gaggtcacgg tcaaccacga gcctgccagc 1440
tccgccctcg ccggcgatcc gcgcgcgaag ctcccagcgc ccccgacggg cgcgccgccc 1500
gccgggtcgc gccagaaact gctcgacctc ggcccgtcca cgttcgccgc ggcgctgcgc 1560
ggacagcagg cgatcgcgct caccgacacc acgctccgtg acgcccacca gtcactgttc 1620
gccacgcgta tgcgcacgcg cgacatgctc cccgtagcac cgcacctcgc gcacgaactg 1680
ccgcagctgc tgtcgcttga ggtgtggggc ggcgcaacct tcgatgtcgc gctgcgcttc 1740
ctgcacgagg acccgtggga ccggctcgtg cagctacgcg aactggtccc caacgtgtgc 1800
ctgcagatgc tcctgcgcgg ccagaacctg ctcgcctact cccgctttcc caccagggtg 1860
gtgcgtgcat tcgtcgccga ggcggtcgag gccggcatcg acgtcttccg catcttcgac 1920
gcgctcaacg acatcgaagg catgcgctcc gcgatcgagg caacgctcga gacgcccgcg 1980
ctagccgaag gaaccctgtg ttacacgggc gacctgagcg acccgcgcga gcggctctac 2040
accctcgact attacctgcg cctcgcccag cagctggtcg acgccggtgt acacatgctc 2100
gccatcaagg acatggccgg gctgctgagg gcacccgccg cacacacgct cgtgaccgcg 2160
ctgcaccgcg agttcgaact gccggtgcac ctgcacacac acgacaccgc cggcgggcaa 2220
ctcgccacct acctcgccgc catcgaggcc ggcgtcgacg ccgtcgatgg cgccgccgcg 2280
ccgatggcgg gcatgaccag ccagccctcc ctggcggcga tcgtcgccgc caccgcgacg 2340
accgagcgcg actcgggcat cgcgctcgac gcgctcctgg accaagagcc ctactgggag 2400
tcggtgcgca cgctctacgg cgcgttcgag accggcctga aggcgccgac tggtcgcgtc 2460
taccgccacg agatccccgg tggccagctc tccaacctgc gccaacaagc ggacgcggtc 2520
ggcctcacgg gccgcttcga cgagatcgaa cgcgcctacg agcgagccaa ccgactgctc 2580
ggcaacgtgg tcaaggtcac gccctcgagc aaggtcgtcg gcgacctcgc cctgtttgcg 2640
gtctcagccg gcatcgactt cgacgagctc gaacgccgac ccggctcctt cgacctcccc 2700
gactccgtca tcgacttcct gcgcggcggg atcggcaccc cacccggcgg cttcccacaa 2760
cccttcaccg acctggcact cgccggtcgc cccgcgccgc cggcacccac ggagctcgac 2820
cccgagctcg ccgaccggct acagcaaccc ggcgcacctc gtcgcggggc gctcgccgag 2880
atcctcttcc ccgggccggc gtccgacttc gccgccgccc gcgccacgtt cggcgacgtc 2940
tcgctgatcc ccacgcccgc gttcttccgc ggcctgcacg aggacgaaga actggcgatc 3000
gacctcgcac ccggcgtacg cctgctcttc gaactcgaag ccatcggcga acccgacaag 3060
cgcggcatgc ggaccgtcct ggtacgcgtc aacggccagc tgcgccccgt cgaagtgcgc 3120
gaccactccg tcaagaccac cggtgtgcag atcgaacgcg cggaccccaa acgcccaggc 3180
cacgtcccgg cgccagtgac cgggatcgtg tccctgctcg tcgccgcggg cgacaccgtg 3240
tccgagggcg acccgatcgc aacgctcgaa gccatgaaga tggagtccac gatctccgcg 3300
ccgctcgccg gccgcgtgca acgcctcgcc gtcaccacgg gtgcgcgcct ggaacagggg 3360
gacctcctgc tcgtcatcga ctag 3384
<210> 265
<211> 1127
<212> PRT
<213> Unknown
<220>
<223> pyc_12 sequence from unknown bacterial species from environmental
sample
<400> 265
Met Ile Glu Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Thr Arg
1 5 10 15
Ala Phe Arg Ala Ala Asn Glu Leu Arg Ile Arg Ser Val Ala Leu Tyr
20 25 30
Ala Pro Glu Asp Arg Asp Ser Val His Arg Val Lys Ala Asp Glu Ala
35 40 45
Tyr Glu Ile Gly Ala Pro Gly His Pro Val Ser Thr Tyr Leu Asp Pro
50 55 60
Asp Ile Ala Val Ala Leu Ala Leu Arg Val Gly Ala Asp Ala Ile Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Met Ser Glu Asn Pro Glu Leu Ala Arg Ala Cys
85 90 95
Val Ala Ala Gly Leu Val Phe Val Gly Pro Pro Pro Glu Val Leu Gly
100 105 110
Leu Ala Gly Asp Lys Thr Arg Ala Arg Thr Ala Ala Arg Glu Ala Gly
115 120 125
Val Pro Val Leu Asp Ala Ser Glu Pro Val Glu Asn Ala Glu Ala Ala
130 135 140
Leu Ala Ala Ala Glu Lys Ile Gly Phe Pro Val Phe Val Lys Ala Ser
145 150 155 160
His Gly Gly Gly Gly Arg Gly Met Arg Leu Val Thr Asp Pro Ala Arg
165 170 175
Leu Ala Ala Ser Leu Glu Glu Ala Arg Asn Glu Ala Glu Ala Ala Phe
180 185 190
Gly Asp Gly Thr Val Tyr Leu Glu Gln Ala Leu Val Arg Pro Arg His
195 200 205
Ile Glu Val Gln Leu Leu Ala Asp Ala Thr Gly Asp Val Val His Leu
210 215 220
Tyr Glu Arg Asp Cys Ser Leu Gln Arg Arg His Gln Lys Val Ile Glu
225 230 235 240
Ile Thr Pro Ala Pro Asn Leu Glu Pro Glu Leu Arg Asp Arg Ile Cys
245 250 255
Ala Asp Ala Val Arg Phe Ala Arg His Val Gly Tyr Val Asn Ala Gly
260 265 270
Thr Val Glu Phe Leu Leu Asp Glu Ala Asn Gly Arg Tyr Ala Phe Ile
275 280 285
Glu Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Thr
290 295 300
Thr Asp Ile Asp Leu Val Arg Ala Gln Leu Gln Ile Ala Gly Gly Glu
305 310 315 320
Thr Leu Ala Gly Leu Gly Val Arg Gln Asp Asp Ile Arg Gln Arg Gly
325 330 335
Phe Ala Leu Gln Cys Arg Val Thr Thr Glu Asp Pro Ala Asn Gly Phe
340 345 350
Arg Pro Asp Ser Gly Arg Ile Thr Ala Tyr Arg Ser Pro Gly Gly Ala
355 360 365
Gly Val Arg Leu Asp Glu Gly Ser Ala Phe Val Gly Ala Glu Val Ser
370 375 380
Pro Phe Phe Asp Pro Leu Leu Val Lys Ile Ser Ala Arg Gly Arg Asp
385 390 395 400
Leu His Ser Ala Val Ser Arg Ala Arg Arg Ala Val Ala Glu Leu Arg
405 410 415
Val Arg Gly Val Lys Thr Asn Gln Gly Phe Leu Leu Ala Leu Leu Asn
420 425 430
Asp Pro Asp Val Leu Ala Gly Arg Thr His Thr Thr Phe Val Asp Glu
435 440 445
Arg Pro Asp Leu Ser Thr Ala Gly Pro Gly Gly Asp Arg Ala Ser Arg
450 455 460
Leu Leu Lys Arg Leu Ala Glu Val Thr Val Asn His Glu Pro Ala Ser
465 470 475 480
Ser Ala Leu Ala Gly Asp Pro Arg Ala Lys Leu Pro Ala Pro Pro Thr
485 490 495
Gly Ala Pro Pro Ala Gly Ser Arg Gln Lys Leu Leu Asp Leu Gly Pro
500 505 510
Ser Thr Phe Ala Ala Ala Leu Arg Gly Gln Gln Ala Ile Ala Leu Thr
515 520 525
Asp Thr Thr Leu Arg Asp Ala His Gln Ser Leu Phe Ala Thr Arg Met
530 535 540
Arg Thr Arg Asp Met Leu Pro Val Ala Pro His Leu Ala His Glu Leu
545 550 555 560
Pro Gln Leu Leu Ser Leu Glu Val Trp Gly Gly Ala Thr Phe Asp Val
565 570 575
Ala Leu Arg Phe Leu His Glu Asp Pro Trp Asp Arg Leu Val Gln Leu
580 585 590
Arg Glu Leu Val Pro Asn Val Cys Leu Gln Met Leu Leu Arg Gly Gln
595 600 605
Asn Leu Leu Ala Tyr Ser Arg Phe Pro Thr Arg Val Val Arg Ala Phe
610 615 620
Val Ala Glu Ala Val Glu Ala Gly Ile Asp Val Phe Arg Ile Phe Asp
625 630 635 640
Ala Leu Asn Asp Ile Glu Gly Met Arg Ser Ala Ile Glu Ala Thr Leu
645 650 655
Glu Thr Pro Ala Leu Ala Glu Gly Thr Leu Cys Tyr Thr Gly Asp Leu
660 665 670
Ser Asp Pro Arg Glu Arg Leu Tyr Thr Leu Asp Tyr Tyr Leu Arg Leu
675 680 685
Ala Gln Gln Leu Val Asp Ala Gly Val His Met Leu Ala Ile Lys Asp
690 695 700
Met Ala Gly Leu Leu Arg Ala Pro Ala Ala His Thr Leu Val Thr Ala
705 710 715 720
Leu His Arg Glu Phe Glu Leu Pro Val His Leu His Thr His Asp Thr
725 730 735
Ala Gly Gly Gln Leu Ala Thr Tyr Leu Ala Ala Ile Glu Ala Gly Val
740 745 750
Asp Ala Val Asp Gly Ala Ala Ala Pro Met Ala Gly Met Thr Ser Gln
755 760 765
Pro Ser Leu Ala Ala Ile Val Ala Ala Thr Ala Thr Thr Glu Arg Asp
770 775 780
Ser Gly Ile Ala Leu Asp Ala Leu Leu Asp Gln Glu Pro Tyr Trp Glu
785 790 795 800
Ser Val Arg Thr Leu Tyr Gly Ala Phe Glu Thr Gly Leu Lys Ala Pro
805 810 815
Thr Gly Arg Val Tyr Arg His Glu Ile Pro Gly Gly Gln Leu Ser Asn
820 825 830
Leu Arg Gln Gln Ala Asp Ala Val Gly Leu Thr Gly Arg Phe Asp Glu
835 840 845
Ile Glu Arg Ala Tyr Glu Arg Ala Asn Arg Leu Leu Gly Asn Val Val
850 855 860
Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu Phe Ala
865 870 875 880
Val Ser Ala Gly Ile Asp Phe Asp Glu Leu Glu Arg Arg Pro Gly Ser
885 890 895
Phe Asp Leu Pro Asp Ser Val Ile Asp Phe Leu Arg Gly Gly Ile Gly
900 905 910
Thr Pro Pro Gly Gly Phe Pro Gln Pro Phe Thr Asp Leu Ala Leu Ala
915 920 925
Gly Arg Pro Ala Pro Pro Ala Pro Thr Glu Leu Asp Pro Glu Leu Ala
930 935 940
Asp Arg Leu Gln Gln Pro Gly Ala Pro Arg Arg Gly Ala Leu Ala Glu
945 950 955 960
Ile Leu Phe Pro Gly Pro Ala Ser Asp Phe Ala Ala Ala Arg Ala Thr
965 970 975
Phe Gly Asp Val Ser Leu Ile Pro Thr Pro Ala Phe Phe Arg Gly Leu
980 985 990
His Glu Asp Glu Glu Leu Ala Ile Asp Leu Ala Pro Gly Val Arg Leu
995 1000 1005
Leu Phe Glu Leu Glu Ala Ile Gly Glu Pro Asp Lys Arg Gly Met
1010 1015 1020
Arg Thr Val Leu Val Arg Val Asn Gly Gln Leu Arg Pro Val Glu
1025 1030 1035
Val Arg Asp His Ser Val Lys Thr Thr Gly Val Gln Ile Glu Arg
1040 1045 1050
Ala Asp Pro Lys Arg Pro Gly His Val Pro Ala Pro Val Thr Gly
1055 1060 1065
Ile Val Ser Leu Leu Val Ala Ala Gly Asp Thr Val Ser Glu Gly
1070 1075 1080
Asp Pro Ile Ala Thr Leu Glu Ala Met Lys Met Glu Ser Thr Ile
1085 1090 1095
Ser Ala Pro Leu Ala Gly Arg Val Gln Arg Leu Ala Val Thr Thr
1100 1105 1110
Gly Ala Arg Leu Glu Gln Gly Asp Leu Leu Leu Val Ile Asp
1115 1120 1125
<210> 266
<211> 3429
<212> DNA
<213> Unknown
<220>
<223> pyc_13 sequence from unknown bacterial species from environmental
sample
<400> 266
gtgctgaaga aggttctggt tgccaaccgg ggagagatag ccatacgcgc cttccgggcc 60
gcttacgagc taggtatccg caccgtcgcg gtctacacgc cagaggacag ggactcgttg 120
caccggcaga aggccgacga ggcgtacggg atcggcgagg cggggcaccc ggtgagagct 180
tacctggacg tcgagacgct ggtcgataag gccctggagg tcggggccga ctcgatctac 240
ccgggctacg gctttctctc cgagagcgca aagctcgcgt cggcgtgcga ggaggccggc 300
cttaccttcg tgggaccccc gagcgaggtc ctctccctta ccggagacaa gatcgaggcg 360
cgagaggcgg cggagtccgc cggaatctcg atcacccaag cgtcggggct gatctctgac 420
cccaacgagg cttcggaggc ggccgaggag gttgggtatc cgctcttcgt gaaggcagcc 480
ggtgggggag ggggcagagg tatgcgcttg gtcagggatg ccggcgacct gcaagaggcg 540
gtggatgcgg cgacgagcga ggcggagtcc gcgttcggtg acccgtcggt ctttctggag 600
caggccctcg tgagaccccg gcacatagag atccaggtgc tcgccgacgc ggaaggggag 660
gttatacacc tctacgagcg cgattgctcg gtgcagcggc gtcaccagaa ggtcctggag 720
atggcgccgg cgccgaacct ggatccggac ctcagggacc gattgtgcga ggatgcggtc 780
cgcttcgccc gcgaggtcgg ctacctcaac gccggtacgg tcgagttttt ggtcggggaa 840
gacggtgagt acgctttcat cgagatgaac ccccgcatcc aggtcgaaca caccgtcacc 900
gaggagacca ccgacgtaga cttggtcagc gcccagctga ggatcgccgg gggggagacg 960
ctggaggatc tgggtctctc ccaggaaggt atagagcagc gcggtgttgc tttgcagtgc 1020
cgggtgacca ccgaagaccc ggcgcagaac tttcagccgg atacgggccg gatctcggcc 1080
taccgctcgc cgggcgggtt gggtatccgc acggacggcg gcaccgtcta ctccggcgcc 1140
gaggtcagcc cgtacttcga cccgctcctc gtcaaggtca ccgctcgtgg tcccgacctg 1200
ctcaccgcgg cgaggagggc gagtagggca ctcgccgaga tacgggtgcg cggcctggca 1260
acgaacgtgg ccttcctccg ggccgtcctc aacgacgacg actttctggc cgggcggacg 1320
aacacctcct ttatagacga gaggccgcac cttacccagg cctacgcggg tagggaccgg 1380
gcgacccgcc tgctctcgct gctcgccgac gtcaccgtca atcggccaaa cggcccgcca 1440
cccgaagcgc ccgacccgcg caccaagctg ccgtcgctac cggagggtga cgcgccggcc 1500
ggcactaagc agaagctaga cgagctcggc ccggagggct tcgcccgctg gatgcgcgag 1560
tccgaggccc tgctcgtcac tgataccacc atgcgcgacg cccaccagtc cctcttcgcg 1620
acccggatgc gaaccttcga catgctcgcc gtcgcccctc acctggcacg gatgcttccg 1680
cagatcttct ccgccgaggt gtggggtggg gcgaccttcg acgtggctct gcgctttctg 1740
cgcgaggatc cctgggaacg gctgggccgt ctgcgggagg cgctcccgaa cacgtgcctg 1800
cagatgctcc tccggggcca gaatgccgtc ggctacacga cctacccgga cgacgtgcta 1860
aaggccttcg tcgccgaaac cgccgagacc ggcctcgaca tcttccgcgt cttcgacgcc 1920
aacaacgaca tccgcaggat gcgaccggcc atagaggcgg tgctcgagac cgacgccgtc 1980
gcggagggtg cgatctccta caccggcgac ctctcgaacc cggacgagga gctctacacc 2040
ctcgactact acctgcggct cgccgaggag ttggtcgagg ccggctcgca cgtcctgtgc 2100
ataaaggaca tggccggcct cctgcgcgcc cccgccgccg agaagctcat aagttctctg 2160
cggagcgagt tcgacctacc ggtccacctg cacacccacg acaccgccgg cggccaactc 2220
gccacctatc tcgcggcctt acgagcgggg gtagacgccg tagacggcgc cgccgccccg 2280
atgtccggga tgacgagcca gccgtccctg gcggccatag tggcgacgac cgagcacacg 2340
gagcgcgaaa ccggcctctc gctcgacgcc ctgggcgatc tggagcccta ctgggaggcg 2400
gtgagggacc tctacgcgcc cttcgagtct gggctgcgct caccgacggg taccgtttat 2460
cagcacgaga taccgggcgg ccagctctcg aacctgcgcg tgcaggcgac ggccctgggg 2520
ctcggggaac gcttcgagga gatagagtac gcctacgccc gctgcgacga gctattgggg 2580
cacctggtca aggttacgcc cacgagcaag gtcgtcggcg acctagctct gtatctcgtc 2640
tcctccaaca tagatcccgg tgagttcgag gaggaccccg ccgactacga cctgccggag 2700
agcgtgatcg gctttctgcg cggggagatc ggcgagccgc cgggtggctg gcccgaaccc 2760
ttgcgctccg aggtgctctc gcgacaggat gagaacggct cgtcctcggc cgggccctcc 2820
gaggacgggt cctccgggga tgagcaactc cccgaggagg accgggaggc gctcgcgcag 2880
gccgagcgtg gctcggagcg acgggccgcg ctgaaccgat tgcttctgcc cgacccggcc 2940
gccggtaagg aggaggccga ggagagatac ggcgacgtct ccgtgatacc cacgaagccc 3000
tttttctacg ggctggagac cgggcaggag ctcgacctgg acctcgagcc cggcgtcagg 3060
ttgcacgtgg ggctggaggc gatctcggag gccgaccagc gcggcatccg ggccctcatc 3120
gtcacggtca acggccaatc gaggagcgta gacgctcagg accgctcgct ggagccggag 3180
acgccgagca cggagaaggc cgacccgaac gaggaaggac acgtcgcagc cccgatgacg 3240
ggcgcggtga cgctcgccgt cgaggagggc gaggaggtcg aggagggcca gcagctcggc 3300
acgatggagg cgatgaagat ggagtccgcc ataagcgccc ccgtctcggg aaccatcgag 3360
cgcatcgccg tcccctccgg caccaacgtc gagtccggcg acctcctgct cgtactggag 3420
acctcttga 3429
<210> 267
<211> 1142
<212> PRT
<213> Unknown
<220>
<223> pyc_13 sequence from unknown bacterial species from environmental
sample
<400> 267
Val Leu Lys Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Leu Gly Ile Arg Thr Val Ala Val Tyr
20 25 30
Thr Pro Glu Asp Arg Asp Ser Leu His Arg Gln Lys Ala Asp Glu Ala
35 40 45
Tyr Gly Ile Gly Glu Ala Gly His Pro Val Arg Ala Tyr Leu Asp Val
50 55 60
Glu Thr Leu Val Asp Lys Ala Leu Glu Val Gly Ala Asp Ser Ile Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Ser Ala Lys Leu Ala Ser Ala Cys
85 90 95
Glu Glu Ala Gly Leu Thr Phe Val Gly Pro Pro Ser Glu Val Leu Ser
100 105 110
Leu Thr Gly Asp Lys Ile Glu Ala Arg Glu Ala Ala Glu Ser Ala Gly
115 120 125
Ile Ser Ile Thr Gln Ala Ser Gly Leu Ile Ser Asp Pro Asn Glu Ala
130 135 140
Ser Glu Ala Ala Glu Glu Val Gly Tyr Pro Leu Phe Val Lys Ala Ala
145 150 155 160
Gly Gly Gly Gly Gly Arg Gly Met Arg Leu Val Arg Asp Ala Gly Asp
165 170 175
Leu Gln Glu Ala Val Asp Ala Ala Thr Ser Glu Ala Glu Ser Ala Phe
180 185 190
Gly Asp Pro Ser Val Phe Leu Glu Gln Ala Leu Val Arg Pro Arg His
195 200 205
Ile Glu Ile Gln Val Leu Ala Asp Ala Glu Gly Glu Val Ile His Leu
210 215 220
Tyr Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Leu Glu
225 230 235 240
Met Ala Pro Ala Pro Asn Leu Asp Pro Asp Leu Arg Asp Arg Leu Cys
245 250 255
Glu Asp Ala Val Arg Phe Ala Arg Glu Val Gly Tyr Leu Asn Ala Gly
260 265 270
Thr Val Glu Phe Leu Val Gly Glu Asp Gly Glu Tyr Ala Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Thr Thr
290 295 300
Asp Val Asp Leu Val Ser Ala Gln Leu Arg Ile Ala Gly Gly Glu Thr
305 310 315 320
Leu Glu Asp Leu Gly Leu Ser Gln Glu Gly Ile Glu Gln Arg Gly Val
325 330 335
Ala Leu Gln Cys Arg Val Thr Thr Glu Asp Pro Ala Gln Asn Phe Gln
340 345 350
Pro Asp Thr Gly Arg Ile Ser Ala Tyr Arg Ser Pro Gly Gly Leu Gly
355 360 365
Ile Arg Thr Asp Gly Gly Thr Val Tyr Ser Gly Ala Glu Val Ser Pro
370 375 380
Tyr Phe Asp Pro Leu Leu Val Lys Val Thr Ala Arg Gly Pro Asp Leu
385 390 395 400
Leu Thr Ala Ala Arg Arg Ala Ser Arg Ala Leu Ala Glu Ile Arg Val
405 410 415
Arg Gly Leu Ala Thr Asn Val Ala Phe Leu Arg Ala Val Leu Asn Asp
420 425 430
Asp Asp Phe Leu Ala Gly Arg Thr Asn Thr Ser Phe Ile Asp Glu Arg
435 440 445
Pro His Leu Thr Gln Ala Tyr Ala Gly Arg Asp Arg Ala Thr Arg Leu
450 455 460
Leu Ser Leu Leu Ala Asp Val Thr Val Asn Arg Pro Asn Gly Pro Pro
465 470 475 480
Pro Glu Ala Pro Asp Pro Arg Thr Lys Leu Pro Ser Leu Pro Glu Gly
485 490 495
Asp Ala Pro Ala Gly Thr Lys Gln Lys Leu Asp Glu Leu Gly Pro Glu
500 505 510
Gly Phe Ala Arg Trp Met Arg Glu Ser Glu Ala Leu Leu Val Thr Asp
515 520 525
Thr Thr Met Arg Asp Ala His Gln Ser Leu Phe Ala Thr Arg Met Arg
530 535 540
Thr Phe Asp Met Leu Ala Val Ala Pro His Leu Ala Arg Met Leu Pro
545 550 555 560
Gln Ile Phe Ser Ala Glu Val Trp Gly Gly Ala Thr Phe Asp Val Ala
565 570 575
Leu Arg Phe Leu Arg Glu Asp Pro Trp Glu Arg Leu Gly Arg Leu Arg
580 585 590
Glu Ala Leu Pro Asn Thr Cys Leu Gln Met Leu Leu Arg Gly Gln Asn
595 600 605
Ala Val Gly Tyr Thr Thr Tyr Pro Asp Asp Val Leu Lys Ala Phe Val
610 615 620
Ala Glu Thr Ala Glu Thr Gly Leu Asp Ile Phe Arg Val Phe Asp Ala
625 630 635 640
Asn Asn Asp Ile Arg Arg Met Arg Pro Ala Ile Glu Ala Val Leu Glu
645 650 655
Thr Asp Ala Val Ala Glu Gly Ala Ile Ser Tyr Thr Gly Asp Leu Ser
660 665 670
Asn Pro Asp Glu Glu Leu Tyr Thr Leu Asp Tyr Tyr Leu Arg Leu Ala
675 680 685
Glu Glu Leu Val Glu Ala Gly Ser His Val Leu Cys Ile Lys Asp Met
690 695 700
Ala Gly Leu Leu Arg Ala Pro Ala Ala Glu Lys Leu Ile Ser Ser Leu
705 710 715 720
Arg Ser Glu Phe Asp Leu Pro Val His Leu His Thr His Asp Thr Ala
725 730 735
Gly Gly Gln Leu Ala Thr Tyr Leu Ala Ala Leu Arg Ala Gly Val Asp
740 745 750
Ala Val Asp Gly Ala Ala Ala Pro Met Ser Gly Met Thr Ser Gln Pro
755 760 765
Ser Leu Ala Ala Ile Val Ala Thr Thr Glu His Thr Glu Arg Glu Thr
770 775 780
Gly Leu Ser Leu Asp Ala Leu Gly Asp Leu Glu Pro Tyr Trp Glu Ala
785 790 795 800
Val Arg Asp Leu Tyr Ala Pro Phe Glu Ser Gly Leu Arg Ser Pro Thr
805 810 815
Gly Thr Val Tyr Gln His Glu Ile Pro Gly Gly Gln Leu Ser Asn Leu
820 825 830
Arg Val Gln Ala Thr Ala Leu Gly Leu Gly Glu Arg Phe Glu Glu Ile
835 840 845
Glu Tyr Ala Tyr Ala Arg Cys Asp Glu Leu Leu Gly His Leu Val Lys
850 855 860
Val Thr Pro Thr Ser Lys Val Val Gly Asp Leu Ala Leu Tyr Leu Val
865 870 875 880
Ser Ser Asn Ile Asp Pro Gly Glu Phe Glu Glu Asp Pro Ala Asp Tyr
885 890 895
Asp Leu Pro Glu Ser Val Ile Gly Phe Leu Arg Gly Glu Ile Gly Glu
900 905 910
Pro Pro Gly Gly Trp Pro Glu Pro Leu Arg Ser Glu Val Leu Ser Arg
915 920 925
Gln Asp Glu Asn Gly Ser Ser Ser Ala Gly Pro Ser Glu Asp Gly Ser
930 935 940
Ser Gly Asp Glu Gln Leu Pro Glu Glu Asp Arg Glu Ala Leu Ala Gln
945 950 955 960
Ala Glu Arg Gly Ser Glu Arg Arg Ala Ala Leu Asn Arg Leu Leu Leu
965 970 975
Pro Asp Pro Ala Ala Gly Lys Glu Glu Ala Glu Glu Arg Tyr Gly Asp
980 985 990
Val Ser Val Ile Pro Thr Lys Pro Phe Phe Tyr Gly Leu Glu Thr Gly
995 1000 1005
Gln Glu Leu Asp Leu Asp Leu Glu Pro Gly Val Arg Leu His Val
1010 1015 1020
Gly Leu Glu Ala Ile Ser Glu Ala Asp Gln Arg Gly Ile Arg Ala
1025 1030 1035
Leu Ile Val Thr Val Asn Gly Gln Ser Arg Ser Val Asp Ala Gln
1040 1045 1050
Asp Arg Ser Leu Glu Pro Glu Thr Pro Ser Thr Glu Lys Ala Asp
1055 1060 1065
Pro Asn Glu Glu Gly His Val Ala Ala Pro Met Thr Gly Ala Val
1070 1075 1080
Thr Leu Ala Val Glu Glu Gly Glu Glu Val Glu Glu Gly Gln Gln
1085 1090 1095
Leu Gly Thr Met Glu Ala Met Lys Met Glu Ser Ala Ile Ser Ala
1100 1105 1110
Pro Val Ser Gly Thr Ile Glu Arg Ile Ala Val Pro Ser Gly Thr
1115 1120 1125
Asn Val Glu Ser Gly Asp Leu Leu Leu Val Leu Glu Thr Ser
1130 1135 1140
<210> 268
<211> 3387
<212> DNA
<213> Unknown
<220>
<223> pyc_14 sequence from unknown bacterial species from environmental
sample
<400> 268
atgctgcgca agctcttggt cgccaaccgc ggcgagatcg ccatccgggc gttccgcgcg 60
gcctacgagc tcggcatcgc caccgtcgcc gtctacaccc accccgaccg cgtgtcgctc 120
caccgatcca aggcggacga ggcgtacgag atcggcgacc ccgcctcggc gctgcgcggc 180
tacctcgacc ccgcgctcat cgtcgacacg gcggtgcggg tgggcgcgga cgcgatctat 240
cccggctacg ggttcctctc cgagtcggag ctgttcgcgc aggcctgcgt cgatgccggg 300
gtgatcttcg tcgggccgcc tcccgaggtc ctgcgcctga ccggcgacaa gctgcgggcg 360
cgcgacgccg ctcgcagggc ggggttgccc gtgctcgagg ccagcccggc ggtcgccgac 420
gccgacgcgg cccgcgaggc cgcctcctcg ctcgggtatc cggtgttcgt caaggccgcg 480
ggcggcgggg gcggtcgcgg cctgcgccgg gtcgagcggc ccgaggacct tccgggcgcc 540
gtcgagaccg cgatgcgcga ggcccagggg gcattcgggg atcggaccat cttcctcgag 600
caggcggtca tccggccccg ccacatcgag gtgcagctgc tcgccgatgc cgacggcgag 660
gtcgtccatc tctacgagcg cgactgctcg atccagcggc ggcaccagaa ggcgctggag 720
ctggcgccgg ccccgggcat cacccccgag ctgcgccagc gcctctgcgc cgacgccgtg 780
tccttcgccc gcgcggtggg ctaccgcaac gcgggtaccg ccgagttcct ggtcggccag 840
gacgggcgcc acgtcttcat cgagatgaac ccccgcatcc aggtcgagca caccgtgacc 900
gaggagacca ccgacgtcga catcgtcgga tcacagctgc gcatcgcagg gggcgcgacg 960
ctggctgacc tcgggctgtc ccaggaccgg atcgtgcagc ggggcgcggc ggtgcagtgc 1020
cgcatcacga cggaggaccc cagcaacggc ttccgccccg acaccggccg catcgtggcc 1080
taccgctcgc cgggcggagc cggcatccgc ctcgacgccg gcagcgccta cgtgggcgcg 1140
gaggtctccc cctacttcga ctcgatgctg gtcaagctga ccgcccgcgg ctccgacctg 1200
caggtcgccg ccacccgcgc ccgccgcgcc ctcgcggagt tccgcatccg cggcgtcagc 1260
acgaacaccc gcttcctgtc cgcggtgctg gccgatcccg acttcctggc gggcaagctg 1320
tccacctcgt tcctggacga gcgcccctgg ctggtctcga cgaccaccgg cgaggaccgc 1380
gccacccggc tgctgcgccg cctggccgac gtcaccgtga accggccaca cggtgcggcg 1440
cccacgacgg tcgatccggt ctccaagctg ccgccgctgc ccggcggcga gcccccgccc 1500
ggctcccgcc agcggctggc cgagttcggt ccgcgggcct tcgcgcgggc gctgcgcgag 1560
caggcggccc tcgcggtcac cgacacgacc ctgcgtgacg cgcaccagtc gctgctggcc 1620
acgcgcatgc ggacacgcga catgctggcc gcggcgccgc atgtcgccca cggtatgggc 1680
ggcctgctga gcttcgaggt ctggggcggc gcgaccttcg acgcggcgct gctgttcctc 1740
ggcgaggacc cgtgggagcg gctggcccac ctgcgcaccg tgctgcccaa cgtgtgcctg 1800
cagatgctgc tgcgcggcga gaacctggtc ggctacacga cctacccggc gccggtggtc 1860
cgctccttcg tcgccgaggc gcgcgcgtgc gggatcgaca tcttccgcgt cttcgacgcc 1920
aacaacgacg tcgagcggat gcgcccggcc atcgaggccg tcgccgagga gggcgggctg 1980
gccgagggca ctctgtgcta caccggcgac ctgtctaccc cgggcgagcg gtacgacctc 2040
gaccactacc tgaccgtcgc caagggctgc ctcgaggccg gcgcgcacat cctgtgcatc 2100
aaggacatgg cggggctgct gcgggcaccg gccgcgcgca cgctggtcac cgccctgcgc 2160
gacagcttcg acgcgccggt gcacatgcat actcacgaca gcgccggcgg gcagctcgcc 2220
acctacctcg ccgccatcgc ggccggcgtc gacgcggtcg acggcgccgc ggcgccgctg 2280
tcgggcggca ccagccagcc ctcgctcgcg gcgatcgtgg ccgcgaccga tcacacggag 2340
cgtgcgaccg gcctgtcgct tgacgcgctg gccgacctcg agccctactg ggaggccgtg 2400
cgcaccctct acgccccctt cgaatccggg ctgcgcgccc cgaccggcgc cgtgtaccgc 2460
cacgagatcc ccggcggcca gctgtccaac ctgcgccagc aggcggtggc gctggggctc 2520
ggcacccggt tcgaggaggt cgagcgcgtc tacgcccgct gtgacgacct gctcggcggg 2580
ctcatcaagg tgacccccac cagcaaggtc gtcggcgacc tcgcgctcta cctcgtgtcg 2640
gctggcatcg atcccgggga gctggaggcc gatcccgcca ggtacgacct gcccggctcg 2700
gtgatcggct tcctgcaggg cgagctgggc gagccaccct tcgggtggcc cgagccgttt 2760
cgctccaagg cgctggcggg caagcccgac cacgtcgacc cgccggccct cgacgccgac 2820
cagcagcgcg acctcgacgc cgccgatcca gagcagcgcc gccgcgcgct gagcaccctg 2880
ctgctgccgg ctgcggcccg cgagcacctc aagtcgatcg agctgtacgg cgacgtctcc 2940
gtgctgccca cccgcgccta cctgtacggc ctggagcccg gcgaggaggt ggccgtagac 3000
ctcgaaccgg gcgtgcggct gttcctgcag ctcgaagcgg tcggcgaggt cgacaagcgc 3060
ggcgtgcgca ccgtgctggt caacgtcaac ggccaggccc gccccatcga ggtccaggac 3120
cgctccgccg aggtcaccgc caaggtcacc gagaaggccg atcccgccag accgggtcac 3180
atccccgcgc ccttgaccgg cgtcgtcgcc atgcgcgtcg ccgaaggcga ccaggtcgag 3240
gccggcgccc agctcgccac gatcgaggcc atgaagatgg aaagctctat cagcgccccc 3300
ttcgccgccc gcatcgaccg cctcgtcgtc accgacggca cggccgtcga acccggcgat 3360
ctcctcctcg tcctctccca ggcgtga 3387
<210> 269
<211> 1128
<212> PRT
<213> Unknown
<220>
<223> pyc_14 sequence from unknown bacterial species from environmental
sample
<400> 269
Met Leu Arg Lys Leu Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Leu Gly Ile Ala Thr Val Ala Val Tyr
20 25 30
Thr His Pro Asp Arg Val Ser Leu His Arg Ser Lys Ala Asp Glu Ala
35 40 45
Tyr Glu Ile Gly Asp Pro Ala Ser Ala Leu Arg Gly Tyr Leu Asp Pro
50 55 60
Ala Leu Ile Val Asp Thr Ala Val Arg Val Gly Ala Asp Ala Ile Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Ser Glu Leu Phe Ala Gln Ala Cys
85 90 95
Val Asp Ala Gly Val Ile Phe Val Gly Pro Pro Pro Glu Val Leu Arg
100 105 110
Leu Thr Gly Asp Lys Leu Arg Ala Arg Asp Ala Ala Arg Arg Ala Gly
115 120 125
Leu Pro Val Leu Glu Ala Ser Pro Ala Val Ala Asp Ala Asp Ala Ala
130 135 140
Arg Glu Ala Ala Ser Ser Leu Gly Tyr Pro Val Phe Val Lys Ala Ala
145 150 155 160
Gly Gly Gly Gly Gly Arg Gly Leu Arg Arg Val Glu Arg Pro Glu Asp
165 170 175
Leu Pro Gly Ala Val Glu Thr Ala Met Arg Glu Ala Gln Gly Ala Phe
180 185 190
Gly Asp Arg Thr Ile Phe Leu Glu Gln Ala Val Ile Arg Pro Arg His
195 200 205
Ile Glu Val Gln Leu Leu Ala Asp Ala Asp Gly Glu Val Val His Leu
210 215 220
Tyr Glu Arg Asp Cys Ser Ile Gln Arg Arg His Gln Lys Ala Leu Glu
225 230 235 240
Leu Ala Pro Ala Pro Gly Ile Thr Pro Glu Leu Arg Gln Arg Leu Cys
245 250 255
Ala Asp Ala Val Ser Phe Ala Arg Ala Val Gly Tyr Arg Asn Ala Gly
260 265 270
Thr Ala Glu Phe Leu Val Gly Gln Asp Gly Arg His Val Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Thr Thr
290 295 300
Asp Val Asp Ile Val Gly Ser Gln Leu Arg Ile Ala Gly Gly Ala Thr
305 310 315 320
Leu Ala Asp Leu Gly Leu Ser Gln Asp Arg Ile Val Gln Arg Gly Ala
325 330 335
Ala Val Gln Cys Arg Ile Thr Thr Glu Asp Pro Ser Asn Gly Phe Arg
340 345 350
Pro Asp Thr Gly Arg Ile Val Ala Tyr Arg Ser Pro Gly Gly Ala Gly
355 360 365
Ile Arg Leu Asp Ala Gly Ser Ala Tyr Val Gly Ala Glu Val Ser Pro
370 375 380
Tyr Phe Asp Ser Met Leu Val Lys Leu Thr Ala Arg Gly Ser Asp Leu
385 390 395 400
Gln Val Ala Ala Thr Arg Ala Arg Arg Ala Leu Ala Glu Phe Arg Ile
405 410 415
Arg Gly Val Ser Thr Asn Thr Arg Phe Leu Ser Ala Val Leu Ala Asp
420 425 430
Pro Asp Phe Leu Ala Gly Lys Leu Ser Thr Ser Phe Leu Asp Glu Arg
435 440 445
Pro Trp Leu Val Ser Thr Thr Thr Gly Glu Asp Arg Ala Thr Arg Leu
450 455 460
Leu Arg Arg Leu Ala Asp Val Thr Val Asn Arg Pro His Gly Ala Ala
465 470 475 480
Pro Thr Thr Val Asp Pro Val Ser Lys Leu Pro Pro Leu Pro Gly Gly
485 490 495
Glu Pro Pro Pro Gly Ser Arg Gln Arg Leu Ala Glu Phe Gly Pro Arg
500 505 510
Ala Phe Ala Arg Ala Leu Arg Glu Gln Ala Ala Leu Ala Val Thr Asp
515 520 525
Thr Thr Leu Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Met Arg
530 535 540
Thr Arg Asp Met Leu Ala Ala Ala Pro His Val Ala His Gly Met Gly
545 550 555 560
Gly Leu Leu Ser Phe Glu Val Trp Gly Gly Ala Thr Phe Asp Ala Ala
565 570 575
Leu Leu Phe Leu Gly Glu Asp Pro Trp Glu Arg Leu Ala His Leu Arg
580 585 590
Thr Val Leu Pro Asn Val Cys Leu Gln Met Leu Leu Arg Gly Glu Asn
595 600 605
Leu Val Gly Tyr Thr Thr Tyr Pro Ala Pro Val Val Arg Ser Phe Val
610 615 620
Ala Glu Ala Arg Ala Cys Gly Ile Asp Ile Phe Arg Val Phe Asp Ala
625 630 635 640
Asn Asn Asp Val Glu Arg Met Arg Pro Ala Ile Glu Ala Val Ala Glu
645 650 655
Glu Gly Gly Leu Ala Glu Gly Thr Leu Cys Tyr Thr Gly Asp Leu Ser
660 665 670
Thr Pro Gly Glu Arg Tyr Asp Leu Asp His Tyr Leu Thr Val Ala Lys
675 680 685
Gly Cys Leu Glu Ala Gly Ala His Ile Leu Cys Ile Lys Asp Met Ala
690 695 700
Gly Leu Leu Arg Ala Pro Ala Ala Arg Thr Leu Val Thr Ala Leu Arg
705 710 715 720
Asp Ser Phe Asp Ala Pro Val His Met His Thr His Asp Ser Ala Gly
725 730 735
Gly Gln Leu Ala Thr Tyr Leu Ala Ala Ile Ala Ala Gly Val Asp Ala
740 745 750
Val Asp Gly Ala Ala Ala Pro Leu Ser Gly Gly Thr Ser Gln Pro Ser
755 760 765
Leu Ala Ala Ile Val Ala Ala Thr Asp His Thr Glu Arg Ala Thr Gly
770 775 780
Leu Ser Leu Asp Ala Leu Ala Asp Leu Glu Pro Tyr Trp Glu Ala Val
785 790 795 800
Arg Thr Leu Tyr Ala Pro Phe Glu Ser Gly Leu Arg Ala Pro Thr Gly
805 810 815
Ala Val Tyr Arg His Glu Ile Pro Gly Gly Gln Leu Ser Asn Leu Arg
820 825 830
Gln Gln Ala Val Ala Leu Gly Leu Gly Thr Arg Phe Glu Glu Val Glu
835 840 845
Arg Val Tyr Ala Arg Cys Asp Asp Leu Leu Gly Gly Leu Ile Lys Val
850 855 860
Thr Pro Thr Ser Lys Val Val Gly Asp Leu Ala Leu Tyr Leu Val Ser
865 870 875 880
Ala Gly Ile Asp Pro Gly Glu Leu Glu Ala Asp Pro Ala Arg Tyr Asp
885 890 895
Leu Pro Gly Ser Val Ile Gly Phe Leu Gln Gly Glu Leu Gly Glu Pro
900 905 910
Pro Phe Gly Trp Pro Glu Pro Phe Arg Ser Lys Ala Leu Ala Gly Lys
915 920 925
Pro Asp His Val Asp Pro Pro Ala Leu Asp Ala Asp Gln Gln Arg Asp
930 935 940
Leu Asp Ala Ala Asp Pro Glu Gln Arg Arg Arg Ala Leu Ser Thr Leu
945 950 955 960
Leu Leu Pro Ala Ala Ala Arg Glu His Leu Lys Ser Ile Glu Leu Tyr
965 970 975
Gly Asp Val Ser Val Leu Pro Thr Arg Ala Tyr Leu Tyr Gly Leu Glu
980 985 990
Pro Gly Glu Glu Val Ala Val Asp Leu Glu Pro Gly Val Arg Leu Phe
995 1000 1005
Leu Gln Leu Glu Ala Val Gly Glu Val Asp Lys Arg Gly Val Arg
1010 1015 1020
Thr Val Leu Val Asn Val Asn Gly Gln Ala Arg Pro Ile Glu Val
1025 1030 1035
Gln Asp Arg Ser Ala Glu Val Thr Ala Lys Val Thr Glu Lys Ala
1040 1045 1050
Asp Pro Ala Arg Pro Gly His Ile Pro Ala Pro Leu Thr Gly Val
1055 1060 1065
Val Ala Met Arg Val Ala Glu Gly Asp Gln Val Glu Ala Gly Ala
1070 1075 1080
Gln Leu Ala Thr Ile Glu Ala Met Lys Met Glu Ser Ser Ile Ser
1085 1090 1095
Ala Pro Phe Ala Ala Arg Ile Asp Arg Leu Val Val Thr Asp Gly
1100 1105 1110
Thr Ala Val Glu Pro Gly Asp Leu Leu Leu Val Leu Ser Gln Ala
1115 1120 1125
<210> 270
<211> 3438
<212> DNA
<213> Unknown
<220>
<223> pyc_15 sequence from unknown bacterial species from environmental
sample
<400> 270
atggtccgca agctgctcgt tgccaaccgc ggcgagatcg ccatccgcgc gtttcgtgct 60
gcgaccgagc tcggcatcgc cacggtggcg gtgtacaccc aggaagaccg tgactccctc 120
caccgcctca aggccgacga ggcatatcag atcggcgagc ccggccatcc cgtccgcgcg 180
tacctcgacg gggctgcgct catcgcgctt gccgggcgca tcggcgcgga tgcggtttac 240
ccgggctatg ggttcctgtc cgagaacgcg gagttcgccg ccgactgtgc ggctgccggc 300
ctgacgttcg tgggtccgcc gcccagcgtg ttgcggttga ccggcgacaa gaccgaggcg 360
cgacggctgg cgcgcgacgc tgggctgcgc gtgctcgagg cgagcgacat ccttgcggat 420
cccgcggacg ctgcggcggc cgccgagcag ctgggatatc ccgtgttcgt gaaggccgct 480
gccggtggtg gcggtcgcgg tctgcgcagg gttgagtcgc ccgccgacct ggcgggcgcg 540
gttgagacgg ccattcgcga ggcgcatggc gccttcggcg atgagcgggt gttcctcgag 600
cacgccgtaa cacggccgcg gcacatcgaa gtgcaggtgc ttgccgatga ccgcggcgag 660
gtcatccacc tgtgggagcg tgattgctcg gtccagcgac gccatcagaa ggtgatggag 720
atcgcgccgg cgccaaagct ggatccggcg ctgcgtgagg cgatctgtgc tgacggggtc 780
cggttcgctc gcgcggctgg ctaccgcaac gccggcacgg tggagttcct gctcgatcgc 840
aacggcacgc acgtgttcat cgagatgaac ccgcgcatcc aggtcgagca caccgtgacc 900
gaggaggtca ccgacgtcga tctggtgcaa gcgcagctgc ggatcgcctc cggcgagacg 960
ctggccgacc tcggactcac ccaggacacg gtggccacgc gtggatccgc gatccagtgc 1020
cggatcacca cggaggactc agccaacggg tttcgccccg ataccggtcg catcacggcc 1080
taccggtcgg cggccggggc aggcatccgc ctcgacgccg gctcggcctt cgttggctca 1140
caggtcagtc cgttcttcga ctcgttgctg gtcaagctga cggccagagg tcgcgacttc 1200
cccgccgccg cgcaacgcgc gcgccgggcg ctggcggagt tccgcgtgcg cggcgtggcg 1260
accaacatgg cgttcctggg cgccgtgctc gccgatcccg acttcctggc cggcaacctg 1320
tcgaccacgt tcatcgacga gcgaccgcac ctggtcagca ccagcgcggg tcgcgaccgc 1380
gggacgcgcc tgctggagta cctggccaac gtcacggtca accggccgca tggcacggtg 1440
cgcgatgtgg ttgacgcgcg cgacaagctg ccgccgctcc ccgccgagcc gacggtgagg 1500
gcgaccgcca gcgagccggc gggcggggac ctcatggtcc cgccgggcgc tcgccagcaa 1560
ctgcaagcgc tgggcccgga gcgcttcgcg cgctggctgc gggagcgcga cgccgtgggg 1620
ctgaccgaca ccacgttccg cgacgcgcac cagtcgctgc tcgccacgcg gatgcggaca 1680
ttcgacatgc tcgcggtggc gccgcacatc gccgccggcc tgccggaact gttcagcctg 1740
gagatgtggg gcggcgccac ctatgacgtg gcgctgcggt tcctgcacga ggatccctgg 1800
cagcggctgg cggccatgcg ggaggccgtg cccaacatct gcctgcagat gctgctgcgc 1860
ggccagaacg cggtcggcta ctcggcctat ccgagcgatg tggtgcgcgc cttcgtggcc 1920
gaagccagcc tcaccggcat cgatatcttc cggatcttcg atgcccttaa caacgtgacg 1980
gcaatgcgcg ccgcgatcag cgcgacgctc gaggcgggtg ccgtggccga aggcgccatc 2040
tgctacaccg gcgacctcca cgatcccgcc gaacgcgtgt acacgctcga ctactacctg 2100
ggtgtcgccg aggagctcgt cgaagcgggc gtgcacatcc tgtgcatcaa agacatggcg 2160
ggcctgctgc gcccacctgc tgcgcgcacg ctgatagccg cgctgcgcga gcgcttcgac 2220
cagccggtgc acctgcatac gcacgacacc gccggcggcc agctcgggac cgtggtggcc 2280
gccatcgacg cgggcgtgga tgccgtcgac ggtgcggccg cgccgctgtc gggcatgacc 2340
agccagccca acctcgccgc gatcgtggca gccaccgacc acaccccacg cgcaacggga 2400
gtgtcgctgg acacgctgac cgcgctggag ccctactggg aggcggtgcg caaccagtac 2460
gcgccgctgg aggcgggtct gcgctcgccg accggagccg tctacgacca cgagatcccc 2520
ggtggccagc tgtcgaacct gcgtcagcag gcgatcgcgt tggggctcgg tgaccggttc 2580
gagcacctga cccggctcta ccggcagtgc aacgatctgc tcgggaacat gatcaaggtc 2640
acgccgacca gcaaggtcgt gggcgacctg gcgctgtacc tcgacagcgc cggcatcacg 2700
cccgagcagc tggtggccga cccagcgcgc tacgatctgc ccgacagcgt catcggctac 2760
ctgcacggtg agcttggaac cccgcccggc ggctggcccg agccgttgcg cggcaaggtg 2820
gtggccgccc gccccaaccg tccgccgccc ccgacgttga ccgaccacca gcgcaccgcc 2880
ctgcgcgagc gctcggggcg gtaccgtcag gagctgttga acgagctgct gttccccggt 2940
ccggcggcgg cgcgagccga gatgcggcag cggttcggcg acgtctccat cctgccgacg 3000
tgggcgttcc tctacggcct cacgccacgc cgggagctgc atgttgatct ggcccccggc 3060
gtgcggttgt tcatccacct ggaggccgtc agcgaacccg acgaacaggg catccgtacc 3120
gtgctgtgca cgctgaacgg gcaggtgcga ccggtcgata cgcgcgaccg ttctatcgaa 3180
gccgccacgg agcctgccga gcgcgctgat ctcaacgatc ccagccacgt ggcagcgccg 3240
ctgaccgggg tggtgaccat cgtcgtgtcg cccggcgagc acgtggccgc cggcgccaag 3300
ctcggttcca tcgaagccat gaagatggag tccaacatca gcgcacccca cgccggcacg 3360
gtctcccgcg tgctcaccgg cagcggcacg gcagtcgagc cgggtgacct cctcctggtc 3420
ctcgaccccg acgactga 3438
<210> 271
<211> 1145
<212> PRT
<213> Unknown
<220>
<223> pyc_15 sequence from unknown bacterial species from environmental
sample
<400> 271
Met Val Arg Lys Leu Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg
1 5 10 15
Ala Phe Arg Ala Ala Thr Glu Leu Gly Ile Ala Thr Val Ala Val Tyr
20 25 30
Thr Gln Glu Asp Arg Asp Ser Leu His Arg Leu Lys Ala Asp Glu Ala
35 40 45
Tyr Gln Ile Gly Glu Pro Gly His Pro Val Arg Ala Tyr Leu Asp Gly
50 55 60
Ala Ala Leu Ile Ala Leu Ala Gly Arg Ile Gly Ala Asp Ala Val Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Ala Glu Phe Ala Ala Asp Cys
85 90 95
Ala Ala Ala Gly Leu Thr Phe Val Gly Pro Pro Pro Ser Val Leu Arg
100 105 110
Leu Thr Gly Asp Lys Thr Glu Ala Arg Arg Leu Ala Arg Asp Ala Gly
115 120 125
Leu Arg Val Leu Glu Ala Ser Asp Ile Leu Ala Asp Pro Ala Asp Ala
130 135 140
Ala Ala Ala Ala Glu Gln Leu Gly Tyr Pro Val Phe Val Lys Ala Ala
145 150 155 160
Ala Gly Gly Gly Gly Arg Gly Leu Arg Arg Val Glu Ser Pro Ala Asp
165 170 175
Leu Ala Gly Ala Val Glu Thr Ala Ile Arg Glu Ala His Gly Ala Phe
180 185 190
Gly Asp Glu Arg Val Phe Leu Glu His Ala Val Thr Arg Pro Arg His
195 200 205
Ile Glu Val Gln Val Leu Ala Asp Asp Arg Gly Glu Val Ile His Leu
210 215 220
Trp Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Met Glu
225 230 235 240
Ile Ala Pro Ala Pro Lys Leu Asp Pro Ala Leu Arg Glu Ala Ile Cys
245 250 255
Ala Asp Gly Val Arg Phe Ala Arg Ala Ala Gly Tyr Arg Asn Ala Gly
260 265 270
Thr Val Glu Phe Leu Leu Asp Arg Asn Gly Thr His Val Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Val Thr
290 295 300
Asp Val Asp Leu Val Gln Ala Gln Leu Arg Ile Ala Ser Gly Glu Thr
305 310 315 320
Leu Ala Asp Leu Gly Leu Thr Gln Asp Thr Val Ala Thr Arg Gly Ser
325 330 335
Ala Ile Gln Cys Arg Ile Thr Thr Glu Asp Ser Ala Asn Gly Phe Arg
340 345 350
Pro Asp Thr Gly Arg Ile Thr Ala Tyr Arg Ser Ala Ala Gly Ala Gly
355 360 365
Ile Arg Leu Asp Ala Gly Ser Ala Phe Val Gly Ser Gln Val Ser Pro
370 375 380
Phe Phe Asp Ser Leu Leu Val Lys Leu Thr Ala Arg Gly Arg Asp Phe
385 390 395 400
Pro Ala Ala Ala Gln Arg Ala Arg Arg Ala Leu Ala Glu Phe Arg Val
405 410 415
Arg Gly Val Ala Thr Asn Met Ala Phe Leu Gly Ala Val Leu Ala Asp
420 425 430
Pro Asp Phe Leu Ala Gly Asn Leu Ser Thr Thr Phe Ile Asp Glu Arg
435 440 445
Pro His Leu Val Ser Thr Ser Ala Gly Arg Asp Arg Gly Thr Arg Leu
450 455 460
Leu Glu Tyr Leu Ala Asn Val Thr Val Asn Arg Pro His Gly Thr Val
465 470 475 480
Arg Asp Val Val Asp Ala Arg Asp Lys Leu Pro Pro Leu Pro Ala Glu
485 490 495
Pro Thr Val Arg Ala Thr Ala Ser Glu Pro Ala Gly Gly Asp Leu Met
500 505 510
Val Pro Pro Gly Ala Arg Gln Gln Leu Gln Ala Leu Gly Pro Glu Arg
515 520 525
Phe Ala Arg Trp Leu Arg Glu Arg Asp Ala Val Gly Leu Thr Asp Thr
530 535 540
Thr Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Met Arg Thr
545 550 555 560
Phe Asp Met Leu Ala Val Ala Pro His Ile Ala Ala Gly Leu Pro Glu
565 570 575
Leu Phe Ser Leu Glu Met Trp Gly Gly Ala Thr Tyr Asp Val Ala Leu
580 585 590
Arg Phe Leu His Glu Asp Pro Trp Gln Arg Leu Ala Ala Met Arg Glu
595 600 605
Ala Val Pro Asn Ile Cys Leu Gln Met Leu Leu Arg Gly Gln Asn Ala
610 615 620
Val Gly Tyr Ser Ala Tyr Pro Ser Asp Val Val Arg Ala Phe Val Ala
625 630 635 640
Glu Ala Ser Leu Thr Gly Ile Asp Ile Phe Arg Ile Phe Asp Ala Leu
645 650 655
Asn Asn Val Thr Ala Met Arg Ala Ala Ile Ser Ala Thr Leu Glu Ala
660 665 670
Gly Ala Val Ala Glu Gly Ala Ile Cys Tyr Thr Gly Asp Leu His Asp
675 680 685
Pro Ala Glu Arg Val Tyr Thr Leu Asp Tyr Tyr Leu Gly Val Ala Glu
690 695 700
Glu Leu Val Glu Ala Gly Val His Ile Leu Cys Ile Lys Asp Met Ala
705 710 715 720
Gly Leu Leu Arg Pro Pro Ala Ala Arg Thr Leu Ile Ala Ala Leu Arg
725 730 735
Glu Arg Phe Asp Gln Pro Val His Leu His Thr His Asp Thr Ala Gly
740 745 750
Gly Gln Leu Gly Thr Val Val Ala Ala Ile Asp Ala Gly Val Asp Ala
755 760 765
Val Asp Gly Ala Ala Ala Pro Leu Ser Gly Met Thr Ser Gln Pro Asn
770 775 780
Leu Ala Ala Ile Val Ala Ala Thr Asp His Thr Pro Arg Ala Thr Gly
785 790 795 800
Val Ser Leu Asp Thr Leu Thr Ala Leu Glu Pro Tyr Trp Glu Ala Val
805 810 815
Arg Asn Gln Tyr Ala Pro Leu Glu Ala Gly Leu Arg Ser Pro Thr Gly
820 825 830
Ala Val Tyr Asp His Glu Ile Pro Gly Gly Gln Leu Ser Asn Leu Arg
835 840 845
Gln Gln Ala Ile Ala Leu Gly Leu Gly Asp Arg Phe Glu His Leu Thr
850 855 860
Arg Leu Tyr Arg Gln Cys Asn Asp Leu Leu Gly Asn Met Ile Lys Val
865 870 875 880
Thr Pro Thr Ser Lys Val Val Gly Asp Leu Ala Leu Tyr Leu Asp Ser
885 890 895
Ala Gly Ile Thr Pro Glu Gln Leu Val Ala Asp Pro Ala Arg Tyr Asp
900 905 910
Leu Pro Asp Ser Val Ile Gly Tyr Leu His Gly Glu Leu Gly Thr Pro
915 920 925
Pro Gly Gly Trp Pro Glu Pro Leu Arg Gly Lys Val Val Ala Ala Arg
930 935 940
Pro Asn Arg Pro Pro Pro Pro Thr Leu Thr Asp His Gln Arg Thr Ala
945 950 955 960
Leu Arg Glu Arg Ser Gly Arg Tyr Arg Gln Glu Leu Leu Asn Glu Leu
965 970 975
Leu Phe Pro Gly Pro Ala Ala Ala Arg Ala Glu Met Arg Gln Arg Phe
980 985 990
Gly Asp Val Ser Ile Leu Pro Thr Trp Ala Phe Leu Tyr Gly Leu Thr
995 1000 1005
Pro Arg Arg Glu Leu His Val Asp Leu Ala Pro Gly Val Arg Leu
1010 1015 1020
Phe Ile His Leu Glu Ala Val Ser Glu Pro Asp Glu Gln Gly Ile
1025 1030 1035
Arg Thr Val Leu Cys Thr Leu Asn Gly Gln Val Arg Pro Val Asp
1040 1045 1050
Thr Arg Asp Arg Ser Ile Glu Ala Ala Thr Glu Pro Ala Glu Arg
1055 1060 1065
Ala Asp Leu Asn Asp Pro Ser His Val Ala Ala Pro Leu Thr Gly
1070 1075 1080
Val Val Thr Ile Val Val Ser Pro Gly Glu His Val Ala Ala Gly
1085 1090 1095
Ala Lys Leu Gly Ser Ile Glu Ala Met Lys Met Glu Ser Asn Ile
1100 1105 1110
Ser Ala Pro His Ala Gly Thr Val Ser Arg Val Leu Thr Gly Ser
1115 1120 1125
Gly Thr Ala Val Glu Pro Gly Asp Leu Leu Leu Val Leu Asp Pro
1130 1135 1140
Asp Asp
1145
<210> 272
<211> 3384
<212> DNA
<213> Unknown
<220>
<223> pyc_16 sequence from unknown bacterial species from environmental
sample
<400> 272
atgatcgaga aggtgctggt cgccaatcgc ggcgagatcg cgacccgcgc cttccgagcg 60
gcgaatgagc ttcggatccg cagcgtggcg ttgtacgcgc cggaggatcg cgactcggtc 120
catcgcgtaa aggccgacga ggcgtacgag atcggtgcgc cgggtcatcc ggtcagcacc 180
tacctggacc ctgacatcgc ggtcgcgctc gcgctgcggg tcggcgccga cgcgatctac 240
ccgggctacg gcttcatgtc cgaaaacccg gagctcgctc gagcctgcgt cgctgccgga 300
ttggtgttcg tcgggccgcc accggaggtg ctcggtctcg ccggcgacaa gacgcgcgcg 360
cgaacggcgg cgcgcgaggc gggcgtcccg gtgctcgacg cttcagagcc ggtcgagaac 420
gccgaagctg cgctggcggc agccgagaag atcggcttcc cggtgttcgt gaaggcgtcg 480
cacggcggcg gcgggcgcgg catgcgcctc gtgaccgatc cggcgcgcct cgcggcgtcg 540
ctggaggagg cgcgcaacga ggcggaggcg gcgttcggcg acggcacggt ctacctcgag 600
caggcgctcg tgcgcccgcg ccacatcgag gttcagctgc tggccgacgc gaccggcgac 660
gtcgtgcatc tctacgagcg cgactgctca ttgcagcgcc ggcatcagaa ggtgatcgag 720
atcacaccgg caccgaacct cgagccggag ctgcgcgacc gcatctgcgc cgacgccgtc 780
cgcttcgccc gccacgtggg gtacgtcaac gcgggcacgg tcgagttcct gctcgacgag 840
gccaacgggc gctacgcgtt catcgagatg aaccctcgca ttcaggtcga gcacacggtc 900
accgaggaga cgaccgacat cgacctcgtg cgcgcacaac tgcagatagc cggcggcgag 960
acgctcgccg gactcggcgt gcgccaggac gacatccgcc agcgcggctt cgcgctgcag 1020
tgccgggtga cgacggagga ccccgccaac gggttccgcc ccgactccgg ccgcatcacc 1080
gcgtaccgat cccccggagg ggcgggcgtg cggctcgacg agggctcagc cttcgtcggc 1140
gccgaggtct cgccgttctt cgacccgctg ctggtgaaga tctccgcgcg cgggcgtgat 1200
ctgcacagcg cggtctcacg cgcgcggcgc gccgtcgccg agctgcgagt acgcggtgtc 1260
aagaccaacc agggcttcct gctcgcgctg ctcaacgacc ccgacgtcct cgctgggcgc 1320
acgcacacca cgttcgtcga cgagcgtccc gacctctcga ccgccggccc cggcggcgac 1380
cgcgccagcc gactgctcaa acgcctcgcc gaggtcacgg tcaaccacga gcctgccagc 1440
tccgccctcg ccggcgatcc gcgcgcgaag ctcccagcgc ccccgacggg cgcgccgccc 1500
gccgggtcgc gccagaaact gctcgacctc ggcccgtcca cgttcgccgc ggcgctgcgc 1560
ggacagcagg cgatcgcgct caccgacacc acgctccgtg acgcccacca gtcactgttc 1620
gccacgcgta tgcgcacgcg cgacatgctc cccgtagcac cgcacctcgc gcacgaactg 1680
ccgcagctgc tgtcgcttga ggtgtggggc ggcgcaacct tcgatgtcgc gctgcgcttc 1740
ctgcacgagg acccgtggga ccggctcgtg cagctacgcg aactggtccc caacgtgtgc 1800
ctgcagatgc tcctgcgcgg ccagaacctg ctcgcctact cccgctttcc caccagggtg 1860
gtgcgtgcat tcgtcgccga ggcggtcgag gccggcatcg acgtcttccg catcttcgac 1920
gcgctcaacg acatcgaagg catgcgctcc gcgatcgagg caacgctcga gacgcccgcg 1980
ctagccgaag gaaccctgtg ttacacgggc gacctgagcg acccgcgcga gcggctctac 2040
accctcgact attacctgcg cctcgcccag cagctggtcg acgccggtgt acacatgctc 2100
gccatcaagg acatggccgg gctgctgagg gcacccgccg cacacacgct cgtgaccgcg 2160
ctgcaccgcg agttcgaact gccggtgcac ctgcacacac acgacaccgc cggcgggcaa 2220
ctcgccacct acctcgccgc catcgaggcc ggcgtcgacg ccgtcgatgg cgccgccgcg 2280
ccgatggcgg gcatgaccag ccagccctcc ctggcggcga tcgtcgccgc caccgcgacg 2340
accgagcgcg actcgggcat cgcgctcgac gcgctcctgg accaagagcc ctactgggag 2400
tcggtgcgca cgctctacgg cgcgttcgag accggcctga aggcgccgac tggtcgcgtc 2460
taccgccacg agatccccgg tggccagctc tccaacctgc gccaacaagc ggacgcggtc 2520
ggcctcacgg gccgcttcga cgagatcgaa cgcgcctacg agcgagccaa ccgactgctc 2580
ggcaacgtgg tcaaggtcac gccctcgagc aaggtcgtcg gcgacctcgc cctgtttgcg 2640
gtctcagccg gcatcgactt cgacgagctc gaacgccgac ccggctcctt cgacctcccc 2700
gactccgtca tcgacttcct gcgcggcggg atcggcaccc cacccggcgg cttcccacaa 2760
cccttcaccg acctggcact cgccggtcgc cccgcgccgc cggcacccac ggagctcgac 2820
cccgagctcg ccgaccggct acagcaaccc ggcgcacctc gtcgcggggc gctcgccgag 2880
atcctcttcc ccgggccggc gtccgacttc gccgccgccc gcgccacgtt cggcgacgtc 2940
tcgctgatcc ccacgcccgc gttcttccgc ggcctgcacg aggacgaaga actggcgatc 3000
gacctcgcac ccggcgtacg cctgctcttc gaactcgaag ccatcggcga acccgacaag 3060
cgcggcatgc ggaccgtcct ggtacgcgtc aacggccagc tgcgccccgt cgaagtgcgc 3120
gaccactccg tcaagaccac cggtgtgcag atcgaacgcg cggaccccaa acgcccaggc 3180
cacgtcccgg cgccagtgac cgggatcgtg tccctgctcg tcgccgcggg cgacaccgtg 3240
tccgagggcg acccgatcgc aacgctcgaa gccatgaaga tggagtccac gatctccgcg 3300
ccgctcgccg gccgcgtgca acgcctcgcc gtcaccacgg gtgcgcgcct ggaacagggg 3360
gacctcctgc tcgtcatcga ctag 3384
<210> 273
<211> 1127
<212> PRT
<213> Unknown
<220>
<223> pyc_16 sequence from unknown bacterial species from environmental
sample
<400> 273
Met Ile Glu Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Thr Arg
1 5 10 15
Ala Phe Arg Ala Ala Asn Glu Leu Arg Ile Arg Ser Val Ala Leu Tyr
20 25 30
Ala Pro Glu Asp Arg Asp Ser Val His Arg Val Lys Ala Asp Glu Ala
35 40 45
Tyr Glu Ile Gly Ala Pro Gly His Pro Val Ser Thr Tyr Leu Asp Pro
50 55 60
Asp Ile Ala Val Ala Leu Ala Leu Arg Val Gly Ala Asp Ala Ile Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Met Ser Glu Asn Pro Glu Leu Ala Arg Ala Cys
85 90 95
Val Ala Ala Gly Leu Val Phe Val Gly Pro Pro Pro Glu Val Leu Gly
100 105 110
Leu Ala Gly Asp Lys Thr Arg Ala Arg Thr Ala Ala Arg Glu Ala Gly
115 120 125
Val Pro Val Leu Asp Ala Ser Glu Pro Val Glu Asn Ala Glu Ala Ala
130 135 140
Leu Ala Ala Ala Glu Lys Ile Gly Phe Pro Val Phe Val Lys Ala Ser
145 150 155 160
His Gly Gly Gly Gly Arg Gly Met Arg Leu Val Thr Asp Pro Ala Arg
165 170 175
Leu Ala Ala Ser Leu Glu Glu Ala Arg Asn Glu Ala Glu Ala Ala Phe
180 185 190
Gly Asp Gly Thr Val Tyr Leu Glu Gln Ala Leu Val Arg Pro Arg His
195 200 205
Ile Glu Val Gln Leu Leu Ala Asp Ala Thr Gly Asp Val Val His Leu
210 215 220
Tyr Glu Arg Asp Cys Ser Leu Gln Arg Arg His Gln Lys Val Ile Glu
225 230 235 240
Ile Thr Pro Ala Pro Asn Leu Glu Pro Glu Leu Arg Asp Arg Ile Cys
245 250 255
Ala Asp Ala Val Arg Phe Ala Arg His Val Gly Tyr Val Asn Ala Gly
260 265 270
Thr Val Glu Phe Leu Leu Asp Glu Ala Asn Gly Arg Tyr Ala Phe Ile
275 280 285
Glu Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Thr
290 295 300
Thr Asp Ile Asp Leu Val Arg Ala Gln Leu Gln Ile Ala Gly Gly Glu
305 310 315 320
Thr Leu Ala Gly Leu Gly Val Arg Gln Asp Asp Ile Arg Gln Arg Gly
325 330 335
Phe Ala Leu Gln Cys Arg Val Thr Thr Glu Asp Pro Ala Asn Gly Phe
340 345 350
Arg Pro Asp Ser Gly Arg Ile Thr Ala Tyr Arg Ser Pro Gly Gly Ala
355 360 365
Gly Val Arg Leu Asp Glu Gly Ser Ala Phe Val Gly Ala Glu Val Ser
370 375 380
Pro Phe Phe Asp Pro Leu Leu Val Lys Ile Ser Ala Arg Gly Arg Asp
385 390 395 400
Leu His Ser Ala Val Ser Arg Ala Arg Arg Ala Val Ala Glu Leu Arg
405 410 415
Val Arg Gly Val Lys Thr Asn Gln Gly Phe Leu Leu Ala Leu Leu Asn
420 425 430
Asp Pro Asp Val Leu Ala Gly Arg Thr His Thr Thr Phe Val Asp Glu
435 440 445
Arg Pro Asp Leu Ser Thr Ala Gly Pro Gly Gly Asp Arg Ala Ser Arg
450 455 460
Leu Leu Lys Arg Leu Ala Glu Val Thr Val Asn His Glu Pro Ala Ser
465 470 475 480
Ser Ala Leu Ala Gly Asp Pro Arg Ala Lys Leu Pro Ala Pro Pro Thr
485 490 495
Gly Ala Pro Pro Ala Gly Ser Arg Gln Lys Leu Leu Asp Leu Gly Pro
500 505 510
Ser Thr Phe Ala Ala Ala Leu Arg Gly Gln Gln Ala Ile Ala Leu Thr
515 520 525
Asp Thr Thr Leu Arg Asp Ala His Gln Ser Leu Phe Ala Thr Arg Met
530 535 540
Arg Thr Arg Asp Met Leu Pro Val Ala Pro His Leu Ala His Glu Leu
545 550 555 560
Pro Gln Leu Leu Ser Leu Glu Val Trp Gly Gly Ala Thr Phe Asp Val
565 570 575
Ala Leu Arg Phe Leu His Glu Asp Pro Trp Asp Arg Leu Val Gln Leu
580 585 590
Arg Glu Leu Val Pro Asn Val Cys Leu Gln Met Leu Leu Arg Gly Gln
595 600 605
Asn Leu Leu Ala Tyr Ser Arg Phe Pro Thr Arg Val Val Arg Ala Phe
610 615 620
Val Ala Glu Ala Val Glu Ala Gly Ile Asp Val Phe Arg Ile Phe Asp
625 630 635 640
Ala Leu Asn Asp Ile Glu Gly Met Arg Ser Ala Ile Glu Ala Thr Leu
645 650 655
Glu Thr Pro Ala Leu Ala Glu Gly Thr Leu Cys Tyr Thr Gly Asp Leu
660 665 670
Ser Asp Pro Arg Glu Arg Leu Tyr Thr Leu Asp Tyr Tyr Leu Arg Leu
675 680 685
Ala Gln Gln Leu Val Asp Ala Gly Val His Met Leu Ala Ile Lys Asp
690 695 700
Met Ala Gly Leu Leu Arg Ala Pro Ala Ala His Thr Leu Val Thr Ala
705 710 715 720
Leu His Arg Glu Phe Glu Leu Pro Val His Leu His Thr His Asp Thr
725 730 735
Ala Gly Gly Gln Leu Ala Thr Tyr Leu Ala Ala Ile Glu Ala Gly Val
740 745 750
Asp Ala Val Asp Gly Ala Ala Ala Pro Met Ala Gly Met Thr Ser Gln
755 760 765
Pro Ser Leu Ala Ala Ile Val Ala Ala Thr Ala Thr Thr Glu Arg Asp
770 775 780
Ser Gly Ile Ala Leu Asp Ala Leu Leu Asp Gln Glu Pro Tyr Trp Glu
785 790 795 800
Ser Val Arg Thr Leu Tyr Gly Ala Phe Glu Thr Gly Leu Lys Ala Pro
805 810 815
Thr Gly Arg Val Tyr Arg His Glu Ile Pro Gly Gly Gln Leu Ser Asn
820 825 830
Leu Arg Gln Gln Ala Asp Ala Val Gly Leu Thr Gly Arg Phe Asp Glu
835 840 845
Ile Glu Arg Ala Tyr Glu Arg Ala Asn Arg Leu Leu Gly Asn Val Val
850 855 860
Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu Phe Ala
865 870 875 880
Val Ser Ala Gly Ile Asp Phe Asp Glu Leu Glu Arg Arg Pro Gly Ser
885 890 895
Phe Asp Leu Pro Asp Ser Val Ile Asp Phe Leu Arg Gly Gly Ile Gly
900 905 910
Thr Pro Pro Gly Gly Phe Pro Gln Pro Phe Thr Asp Leu Ala Leu Ala
915 920 925
Gly Arg Pro Ala Pro Pro Ala Pro Thr Glu Leu Asp Pro Glu Leu Ala
930 935 940
Asp Arg Leu Gln Gln Pro Gly Ala Pro Arg Arg Gly Ala Leu Ala Glu
945 950 955 960
Ile Leu Phe Pro Gly Pro Ala Ser Asp Phe Ala Ala Ala Arg Ala Thr
965 970 975
Phe Gly Asp Val Ser Leu Ile Pro Thr Pro Ala Phe Phe Arg Gly Leu
980 985 990
His Glu Asp Glu Glu Leu Ala Ile Asp Leu Ala Pro Gly Val Arg Leu
995 1000 1005
Leu Phe Glu Leu Glu Ala Ile Gly Glu Pro Asp Lys Arg Gly Met
1010 1015 1020
Arg Thr Val Leu Val Arg Val Asn Gly Gln Leu Arg Pro Val Glu
1025 1030 1035
Val Arg Asp His Ser Val Lys Thr Thr Gly Val Gln Ile Glu Arg
1040 1045 1050
Ala Asp Pro Lys Arg Pro Gly His Val Pro Ala Pro Val Thr Gly
1055 1060 1065
Ile Val Ser Leu Leu Val Ala Ala Gly Asp Thr Val Ser Glu Gly
1070 1075 1080
Asp Pro Ile Ala Thr Leu Glu Ala Met Lys Met Glu Ser Thr Ile
1085 1090 1095
Ser Ala Pro Leu Ala Gly Arg Val Gln Arg Leu Ala Val Thr Thr
1100 1105 1110
Gly Ala Arg Leu Glu Gln Gly Asp Leu Leu Leu Val Ile Asp
1115 1120 1125
<210> 274
<211> 3372
<212> DNA
<213> Unknown
<220>
<223> pyc_17 sequence from unknown bacterial species from environmental
sample
<400> 274
gtgcgcaagg tcctcgtcgc caaccgcagt gagatcgcgg tccgcgtcat gcgcgcggcc 60
cacgagatgg acctgctgac cgtcggcgtc tacacgcccg aggaccgcgg ggcgctgcac 120
cgcaccaagg cgggggaggc ctaccagctc ggcgagcccg gccacccggt ccgcggctac 180
ctcgacgtcg aggcactgct cgaggtcgcc cgccgctcgg gcgccgacgc gctgcacccc 240
ggctacggct tcctgtccga gagcgcggcg ctcgccgacg cctgcgccgc cgcgggcgtc 300
accttcgtcg ggccgcccgc cgacgtgctg cgcctgaccg gcgacaaggt caccgctcgc 360
caggcggcgg tcgccgccgg cctgccggtg ctgcgcgcct cggacccgct gccggacggc 420
gagggcgcga tcgaggcggc ggaggcggtc ggcttcccgc tgttcgtcaa ggcggcagcc 480
ggtggcggtg gccgcggcct gcgcctggtg cagacgccgg aggagctcgc ggacgctgcc 540
cggtcggcgt cgagggaggc ggccgcggca ttcggtgacg ggaccatctt cctcgagcag 600
gccgtcgagc ggccgcgcca catcgaggtg caggtgctcg gcgacacgca cgggtcggtg 660
gtgcacctgt tcgagcgcga ctgctcggtg cagcgccgcc accagaaggt ggtggagctc 720
gcgccggcac ccgacctgcc ggaggccacc cgcacgggtc tgcacgaggc ggcgctggcg 780
ttcgcccgct cggtgggcta cgtcaacgcc ggcacggtcg agttcctcgt cggggccgac 840
ggcgcgttca cgttcatcga gatgaacccg cgcatccagg tcgagcacac ggtcaccgag 900
gaggtcaccg gcgtcgacct cgtcggcgcc cagctgcggg tcgcgcgcgg cgagacgctc 960
gagcagatcg gcatcgtgca ggaccgtctg tcggtgcgcg gctgcgcggt gcagtgccgc 1020
atcaccaccg aggaccccgc caacggcttc cgccccgaca ccggcaccat cgcgacctac 1080
cagtcgccgg gcggcccggg cgtccgcctc gacggcgccg tctacgcagg cgccgaggtc 1140
acgccgtact tcgactcgct gctcgtcaag ctcacgacgc gcggccccga cctgcgcacc 1200
gccgccaacc gcacccgccg ggcgctgcgg gagttccgcg tccgcggcgt caagaccaac 1260
gtcgagttcc tctaccggct catggaggac gaggacttcc tgtccggcgc ggtgccgacg 1320
tcgttcctcg ccgagcaccc ccacctcacc gacgccccgg cggtcaccga ccgcacgacg 1380
cgcatgctcg gcgcgctggc cgacgcgacc gtgaacggcc tgcagcgacc gtcccgggcg 1440
ctgctcgacc ccgtcagcaa gctgccggag ctgccggccg ccccgccggt ccagggctcc 1500
cggcgcctgc tcgacgaggt cgggcccgag cgctgggcgc aggcgctgcg tgagcgcacc 1560
tccctcgcgg tgaccgacac gaccctgcgc gacgcccacc agtcgctgct cgccacccgg 1620
ctgcgcacca ccgacgtcct gggcgccgcg cccacgaccg cgaagctcct gccgggcctg 1680
ctgtccttgg aggcgtgggg cggtgcgacg tacgacgtgg cgctgcggtt cctgcacgag 1740
gacccctggc agcgcctcgc ccagctgcgc gaggccgccc ccgacgtctg cctgcagatg 1800
ctgctgcgcg ggcgcaacgc cgtcggctac acgccctacc ccgaccgcgt cgtgcaggtc 1860
ttcgtcgccg aggcggccgc gacgggcgtc gacgtgttcc gcgtcttcga cgccctgaac 1920
gacctcgagc agatgcgccc ggcgctcgac gccgtccgcg aggcgggcaa ggtcgccgag 1980
gggacgctct gctacacggg cgacctgagc gaccccgggg agcggctcta cacgctcgac 2040
tactacctgc gcctggccga gcagctcgtc ggagccggcg cccacgtgct cgccgtcaag 2100
gacatggccg ggctgctgcg cccgcgcgcc gcggccacgc tcgtgcaggc cctgcgcagc 2160
cgcttcgacc tgcccgtgca cctgcacacc cacgacacga ccggcgggca gctcgccacc 2220
ctgctcgccg cgagcgacgc cggcgtcgac gcggtcgacg gcgccatggc gccgatgtcg 2280
ggcggcacca gccaggtcaa cctgtcggcg ctggtggccg cgaccgacca caccgagcgc 2340
tcgaccgggc tgtcgctggc ggccctgtcg gcgctcgagc cctactggga ggcggtgcgc 2400
gacctctacg cgccgttcga ggcgggactg cgggcgccga ccggcaccgt ctaccgccac 2460
gagatcccgg gcggccagct caccaacctg cgccagcagg cgatcgcgat cggactcggc 2520
gaccgctggg aggacgtcca ggagctgtac gccgtcgcca acgagctgct cggcaagccg 2580
atcaaggtga ccccgacgag caaggtcgtc ggtgacctcg cgatcttcct ggccagcggc 2640
gacgtcgacg tcgagcgcct gcgcgccgac ccgggggcct acgacctgcc ggccagcgtc 2700
ctcggctacc tcgccggcga gctcggcacg ccaccggccg gcttccccga gccgttccgc 2760
acccaggcgg tcgccggccg ggcagaggag ctgccggagg tcgcactcga gccggccgac 2820
gacgaggccc tcgacggacc cgaccgtcgc gcggtcctgt cgcggctgct gttccccggc 2880
ccgtggaagg actacgagac ggcgctcgcg gcgcacggcg acgtctcgat gatcccgacc 2940
gaggccttct tctacggcct cgagcccggc ggcaccgtga ccgtctgcct cgaggccggc 3000
gtggaggtgc tcgtcgagct gcagaccgtc ggggagctgt cggcggacgg gatgcgcacg 3060
ctccacgtcc gggtcaacgg ccagccccgg ccggtgcagg tgcgcgaccg ctcggtgggg 3120
gtggccgaca cggccgcccg gcgcgccgac ccgggcaacc cgcgccacgt cggtgcggcg 3180
ctgcccggcc tcgtgctgcc gaaggtggcg gtcggcgaca cggtcaccaa gggccaggcg 3240
ctcgccgtcg tcgaggcgat gaagatggag tcgaccgtct cgagccccgc ggacgggacc 3300
gtcgccgagg tggccgtcac cgccggcacc aacgtcgagg tcggtgacct gctggtggtg 3360
ctgggcgact ga 3372
<210> 275
<211> 1123
<212> PRT
<213> Unknown
<220>
<223> pyc_17 sequence from unknown bacterial species from environmental
sample
<400> 275
Val Arg Lys Val Leu Val Ala Asn Arg Ser Glu Ile Ala Val Arg Val
1 5 10 15
Met Arg Ala Ala His Glu Met Asp Leu Leu Thr Val Gly Val Tyr Thr
20 25 30
Pro Glu Asp Arg Gly Ala Leu His Arg Thr Lys Ala Gly Glu Ala Tyr
35 40 45
Gln Leu Gly Glu Pro Gly His Pro Val Arg Gly Tyr Leu Asp Val Glu
50 55 60
Ala Leu Leu Glu Val Ala Arg Arg Ser Gly Ala Asp Ala Leu His Pro
65 70 75 80
Gly Tyr Gly Phe Leu Ser Glu Ser Ala Ala Leu Ala Asp Ala Cys Ala
85 90 95
Ala Ala Gly Val Thr Phe Val Gly Pro Pro Ala Asp Val Leu Arg Leu
100 105 110
Thr Gly Asp Lys Val Thr Ala Arg Gln Ala Ala Val Ala Ala Gly Leu
115 120 125
Pro Val Leu Arg Ala Ser Asp Pro Leu Pro Asp Gly Glu Gly Ala Ile
130 135 140
Glu Ala Ala Glu Ala Val Gly Phe Pro Leu Phe Val Lys Ala Ala Ala
145 150 155 160
Gly Gly Gly Gly Arg Gly Leu Arg Leu Val Gln Thr Pro Glu Glu Leu
165 170 175
Ala Asp Ala Ala Arg Ser Ala Ser Arg Glu Ala Ala Ala Ala Phe Gly
180 185 190
Asp Gly Thr Ile Phe Leu Glu Gln Ala Val Glu Arg Pro Arg His Ile
195 200 205
Glu Val Gln Val Leu Gly Asp Thr His Gly Ser Val Val His Leu Phe
210 215 220
Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Val Glu Leu
225 230 235 240
Ala Pro Ala Pro Asp Leu Pro Glu Ala Thr Arg Thr Gly Leu His Glu
245 250 255
Ala Ala Leu Ala Phe Ala Arg Ser Val Gly Tyr Val Asn Ala Gly Thr
260 265 270
Val Glu Phe Leu Val Gly Ala Asp Gly Ala Phe Thr Phe Ile Glu Met
275 280 285
Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Val Thr Gly
290 295 300
Val Asp Leu Val Gly Ala Gln Leu Arg Val Ala Arg Gly Glu Thr Leu
305 310 315 320
Glu Gln Ile Gly Ile Val Gln Asp Arg Leu Ser Val Arg Gly Cys Ala
325 330 335
Val Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala Asn Gly Phe Arg Pro
340 345 350
Asp Thr Gly Thr Ile Ala Thr Tyr Gln Ser Pro Gly Gly Pro Gly Val
355 360 365
Arg Leu Asp Gly Ala Val Tyr Ala Gly Ala Glu Val Thr Pro Tyr Phe
370 375 380
Asp Ser Leu Leu Val Lys Leu Thr Thr Arg Gly Pro Asp Leu Arg Thr
385 390 395 400
Ala Ala Asn Arg Thr Arg Arg Ala Leu Arg Glu Phe Arg Val Arg Gly
405 410 415
Val Lys Thr Asn Val Glu Phe Leu Tyr Arg Leu Met Glu Asp Glu Asp
420 425 430
Phe Leu Ser Gly Ala Val Pro Thr Ser Phe Leu Ala Glu His Pro His
435 440 445
Leu Thr Asp Ala Pro Ala Val Thr Asp Arg Thr Thr Arg Met Leu Gly
450 455 460
Ala Leu Ala Asp Ala Thr Val Asn Gly Leu Gln Arg Pro Ser Arg Ala
465 470 475 480
Leu Leu Asp Pro Val Ser Lys Leu Pro Glu Leu Pro Ala Ala Pro Pro
485 490 495
Val Gln Gly Ser Arg Arg Leu Leu Asp Glu Val Gly Pro Glu Arg Trp
500 505 510
Ala Gln Ala Leu Arg Glu Arg Thr Ser Leu Ala Val Thr Asp Thr Thr
515 520 525
Leu Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Leu Arg Thr Thr
530 535 540
Asp Val Leu Gly Ala Ala Pro Thr Thr Ala Lys Leu Leu Pro Gly Leu
545 550 555 560
Leu Ser Leu Glu Ala Trp Gly Gly Ala Thr Tyr Asp Val Ala Leu Arg
565 570 575
Phe Leu His Glu Asp Pro Trp Gln Arg Leu Ala Gln Leu Arg Glu Ala
580 585 590
Ala Pro Asp Val Cys Leu Gln Met Leu Leu Arg Gly Arg Asn Ala Val
595 600 605
Gly Tyr Thr Pro Tyr Pro Asp Arg Val Val Gln Val Phe Val Ala Glu
610 615 620
Ala Ala Ala Thr Gly Val Asp Val Phe Arg Val Phe Asp Ala Leu Asn
625 630 635 640
Asp Leu Glu Gln Met Arg Pro Ala Leu Asp Ala Val Arg Glu Ala Gly
645 650 655
Lys Val Ala Glu Gly Thr Leu Cys Tyr Thr Gly Asp Leu Ser Asp Pro
660 665 670
Gly Glu Arg Leu Tyr Thr Leu Asp Tyr Tyr Leu Arg Leu Ala Glu Gln
675 680 685
Leu Val Gly Ala Gly Ala His Val Leu Ala Val Lys Asp Met Ala Gly
690 695 700
Leu Leu Arg Pro Arg Ala Ala Ala Thr Leu Val Gln Ala Leu Arg Ser
705 710 715 720
Arg Phe Asp Leu Pro Val His Leu His Thr His Asp Thr Thr Gly Gly
725 730 735
Gln Leu Ala Thr Leu Leu Ala Ala Ser Asp Ala Gly Val Asp Ala Val
740 745 750
Asp Gly Ala Met Ala Pro Met Ser Gly Gly Thr Ser Gln Val Asn Leu
755 760 765
Ser Ala Leu Val Ala Ala Thr Asp His Thr Glu Arg Ser Thr Gly Leu
770 775 780
Ser Leu Ala Ala Leu Ser Ala Leu Glu Pro Tyr Trp Glu Ala Val Arg
785 790 795 800
Asp Leu Tyr Ala Pro Phe Glu Ala Gly Leu Arg Ala Pro Thr Gly Thr
805 810 815
Val Tyr Arg His Glu Ile Pro Gly Gly Gln Leu Thr Asn Leu Arg Gln
820 825 830
Gln Ala Ile Ala Ile Gly Leu Gly Asp Arg Trp Glu Asp Val Gln Glu
835 840 845
Leu Tyr Ala Val Ala Asn Glu Leu Leu Gly Lys Pro Ile Lys Val Thr
850 855 860
Pro Thr Ser Lys Val Val Gly Asp Leu Ala Ile Phe Leu Ala Ser Gly
865 870 875 880
Asp Val Asp Val Glu Arg Leu Arg Ala Asp Pro Gly Ala Tyr Asp Leu
885 890 895
Pro Ala Ser Val Leu Gly Tyr Leu Ala Gly Glu Leu Gly Thr Pro Pro
900 905 910
Ala Gly Phe Pro Glu Pro Phe Arg Thr Gln Ala Val Ala Gly Arg Ala
915 920 925
Glu Glu Leu Pro Glu Val Ala Leu Glu Pro Ala Asp Asp Glu Ala Leu
930 935 940
Asp Gly Pro Asp Arg Arg Ala Val Leu Ser Arg Leu Leu Phe Pro Gly
945 950 955 960
Pro Trp Lys Asp Tyr Glu Thr Ala Leu Ala Ala His Gly Asp Val Ser
965 970 975
Met Ile Pro Thr Glu Ala Phe Phe Tyr Gly Leu Glu Pro Gly Gly Thr
980 985 990
Val Thr Val Cys Leu Glu Ala Gly Val Glu Val Leu Val Glu Leu Gln
995 1000 1005
Thr Val Gly Glu Leu Ser Ala Asp Gly Met Arg Thr Leu His Val
1010 1015 1020
Arg Val Asn Gly Gln Pro Arg Pro Val Gln Val Arg Asp Arg Ser
1025 1030 1035
Val Gly Val Ala Asp Thr Ala Ala Arg Arg Ala Asp Pro Gly Asn
1040 1045 1050
Pro Arg His Val Gly Ala Ala Leu Pro Gly Leu Val Leu Pro Lys
1055 1060 1065
Val Ala Val Gly Asp Thr Val Thr Lys Gly Gln Ala Leu Ala Val
1070 1075 1080
Val Glu Ala Met Lys Met Glu Ser Thr Val Ser Ser Pro Ala Asp
1085 1090 1095
Gly Thr Val Ala Glu Val Ala Val Thr Ala Gly Thr Asn Val Glu
1100 1105 1110
Val Gly Asp Leu Leu Val Val Leu Gly Asp
1115 1120
<210> 276
<211> 3399
<212> DNA
<213> Unknown
<220>
<223> pyc_18 sequence from unknown bacterial species from environmental
sample
<400> 276
atgcgaaagc tcctggtcgc aaaccgcggc gagatcgcca cccgtgcgtt ccgcgccgcc 60
tacgaactgg gcctccgcag cgtcgcgatc tacacgccgg aggatcgcga gtccgcccac 120
cgcgtgaagg ccgacgaggc ctacgagatc ggagagccgg gacaccccgt ccgcggctac 180
ctcgaccccg agctcatcgc cgcgaccgcg aagtcggtgg gcgccgacgc cgtctatccc 240
ggctacgggt tcctctccga gaacccggat ctcgcgaccg cgtgcaccga gcgcgacatc 300
acgttcgtcg gcccgcccgc cgaggtcctg gagcgggtgg gcgacaaggt ccgcgcccgc 360
acggcggcga tcgaagccgg cctgcccgtg ctgagcgcga ccgacctgct cgacgaggac 420
gccgacgtgg cggcgctcgc cgaggagctc ggcatgccgg tgttcgtgaa ggccgcgcac 480
ggcggcggcg ggcgcggcat gcggctcgtc accgacctgg ccgatctccc cgaggccgtc 540
gccgccgcgc gccgcgaggc cgagagcgcg ttcggcaacc ccgccgtcta cctcgagcag 600
gcgatggtgc gcccgcggca catcgaggtg caggtgctcg cggacggcca cggcgggctc 660
gttcacctgt acgagcgcga ctgctcggtg caacgccgcc atcagaaggt cgtcgagctt 720
gcgcccgcgc cgaacctcga ccccgagctg cgcgaccgga tctgcgcgga cgccgtgcgc 780
ttcgccggcc acgtgggcta cgtcaacgcg ggcaccgtcg agttcctcgt cgacacggag 840
cgcgaccggc acgtcttcat cgagatgaac ccgcgcatcc aggtcgagca cacggtgacg 900
gaggagacga ccgacgtcga cctggtccgc acacagctgc tcgtcgccga gggcgcgcgg 960
ctgcacgagc tcggcctccg ccaggaggac atccgccagc gcggcttcgc gctgcagtgc 1020
cgcatcacga ccgaggaccc gagcgccggc ttccggcccg acaccggcac gatcgccgcg 1080
taccgcgcgc caggcggcgc cggggtgcgc ctcgacgagg ggtccgcgta cgtcggcgcg 1140
gagatctcgc cgtatttcga cccgctgctg ctgaagctca cgacgcgcgg gccggacatg 1200
cagaccgcca tcgcacgcgc gcgccgggcc gtcgaggagg tccgcatccg cggcgtcacg 1260
acgaaccagg cgttcctcgg caagctgctc gacgacccgg acttccgctc cgggcggctg 1320
cacacgacgt tcatcgacga gcgcccgcag ctcaccgccg tcgccccggg cggcgaccgc 1380
gcgacgcgca tcctgcgcct gctcgccgag cggacggtga accggcccta cggccacgcg 1440
cccggcggcc ccgatccccg ctccaagctg ccccgcgtgc ccaagggcga ggcgccggcc 1500
ggctcgcgcc agcggctcca ggagctgggg cccgagggct tcgctcgctg gctgcgttcg 1560
cgcgacgcgc tgcagctcac cgacaccacg ctgcgcgacg cgcaccagtc cctgttcgcg 1620
acgcgcatgc gcacgcacga catggaggcg gtcgcgccgc acatggcacg gctgctcggc 1680
gggctgttct cgctggaggc gtggggcggc gcgacgttcg acgtcgcgct gcgcttcctc 1740
aacgaggacc cctgggagcg catcggccgg ctgcgcgacc tcatcccgaa cgtctgcctg 1800
cagatgctgc tgcggggccg caacctgctc ggctacgagc cctatccgga cgaggcggtc 1860
agggcgttcg tcttcgaggc cgtcgacgcg ggggtcgaca tcttccgcat cttcgacgcg 1920
ctgaacaacg tcgagccgat gcgtgcggcg atcagcgcga cggtcgaggc gggggcggtc 1980
gcggagggtg ccatctgcta caccggcgac ctcttggacc ccggcgagcg gctctacacg 2040
ctcgaccact acctgcacgt cgccgagcag ctcgcggagg cgggcgtgca catcctcgcc 2100
atcaaggaca tggcggggct gctccgcgcg ccggccgcgg cccagctcgt cacccgcctg 2160
cggcgcgagt tcgacctccc cgtgcacctg cacacgcacg acaccgccgg cgggcagctc 2220
gcgacgtacc tggcggcgat cgaggcgggc gtcgacgccg tcgacggcgc tgccgcgtcg 2280
atggccggca tgacgagcca gccctcgctg gccagcatcg tggccgccac cgaccacacg 2340
gcgcgcgcga cgggcatcgc cctggagtcg ctgctggagc tcgagccgta ctgggaggcg 2400
gtgcgcacga cgtacgcgcc gttcgagagc ggcctgcgcg cgccgaccgg ccgcgtgtac 2460
cgccatcaga tccccggcgg ccagctgtcg aacctgcacc agcaggccgg ggcgctgggc 2520
ctgggcgacc ggttcgagga ggtcgagctc gcgtacgagc gcgccaacgc gctgctcggc 2580
gacatcatca aggtcacgcc gacgagcaag gtcgtcggcg acctcgcgct gttcgtcgtc 2640
tcggccggca tcgactggga cgagctggcc gcccagccgg agcgcttcga cctcccggcg 2700
tccgtcatcc agctgctgcg gggcgacctc ggcgagccgg ccggtggctt cccgcagccc 2760
ttcaccgagc gcgcgctgcg cggcgctgcg cgacacagcc aggacggctc cgccctcgac 2820
ccggagatgc gcacgcgcct ggccgaggcc gggaaggacc gccgcacggc gctcgccgag 2880
ctgcagttcc ccggtcccac ccaggagcgc agggacgcgt acgagcgcta cggggacgtg 2940
acccatgtgc ccacccggcc gtttctctac ggcctgcccg atgacggcga ggtctcgatc 3000
gacctcgggc ccggtgtgcg gctcatctac gcgctggagg cgatcggcga gcccgacgac 3060
cgcggcatgc gcaccgtcat ggtgcgcgtg aacggccagc tgcggccgat cgacgtgcgc 3120
gacgagtcgg tcgaggcgcc gacgtcgaag gtcgagcgcg ccgacccggc caacgacagc 3180
cacgtggcgg cgccgctcac cggcgtcgtg acgctgcgcg tgaaggagcg cgaggaggtc 3240
gccgaggggc agccgatcgc gatcctcgag gcgatgaaga tggagtcgac ggtgacgtcg 3300
ccggcggccg ggacggtcca gcgcgtgccg gtgccgagcg ggacgcgtct cgaacagggc 3360
gatctcattg cggtgatcga gaggtccgag tcggggtaa 3399
<210> 277
<211> 1132
<212> PRT
<213> Unknown
<220>
<223> pyc_18 sequence from unknown bacterial species from environmental
sample
<400> 277
Met Arg Lys Leu Leu Val Ala Asn Arg Gly Glu Ile Ala Thr Arg Ala
1 5 10 15
Phe Arg Ala Ala Tyr Glu Leu Gly Leu Arg Ser Val Ala Ile Tyr Thr
20 25 30
Pro Glu Asp Arg Glu Ser Ala His Arg Val Lys Ala Asp Glu Ala Tyr
35 40 45
Glu Ile Gly Glu Pro Gly His Pro Val Arg Gly Tyr Leu Asp Pro Glu
50 55 60
Leu Ile Ala Ala Thr Ala Lys Ser Val Gly Ala Asp Ala Val Tyr Pro
65 70 75 80
Gly Tyr Gly Phe Leu Ser Glu Asn Pro Asp Leu Ala Thr Ala Cys Thr
85 90 95
Glu Arg Asp Ile Thr Phe Val Gly Pro Pro Ala Glu Val Leu Glu Arg
100 105 110
Val Gly Asp Lys Val Arg Ala Arg Thr Ala Ala Ile Glu Ala Gly Leu
115 120 125
Pro Val Leu Ser Ala Thr Asp Leu Leu Asp Glu Asp Ala Asp Val Ala
130 135 140
Ala Leu Ala Glu Glu Leu Gly Met Pro Val Phe Val Lys Ala Ala His
145 150 155 160
Gly Gly Gly Gly Arg Gly Met Arg Leu Val Thr Asp Leu Ala Asp Leu
165 170 175
Pro Glu Ala Val Ala Ala Ala Arg Arg Glu Ala Glu Ser Ala Phe Gly
180 185 190
Asn Pro Ala Val Tyr Leu Glu Gln Ala Met Val Arg Pro Arg His Ile
195 200 205
Glu Val Gln Val Leu Ala Asp Gly His Gly Gly Leu Val His Leu Tyr
210 215 220
Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Val Glu Leu
225 230 235 240
Ala Pro Ala Pro Asn Leu Asp Pro Glu Leu Arg Asp Arg Ile Cys Ala
245 250 255
Asp Ala Val Arg Phe Ala Gly His Val Gly Tyr Val Asn Ala Gly Thr
260 265 270
Val Glu Phe Leu Val Asp Thr Glu Arg Asp Arg His Val Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Thr Thr
290 295 300
Asp Val Asp Leu Val Arg Thr Gln Leu Leu Val Ala Glu Gly Ala Arg
305 310 315 320
Leu His Glu Leu Gly Leu Arg Gln Glu Asp Ile Arg Gln Arg Gly Phe
325 330 335
Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Ser Ala Gly Phe Arg
340 345 350
Pro Asp Thr Gly Thr Ile Ala Ala Tyr Arg Ala Pro Gly Gly Ala Gly
355 360 365
Val Arg Leu Asp Glu Gly Ser Ala Tyr Val Gly Ala Glu Ile Ser Pro
370 375 380
Tyr Phe Asp Pro Leu Leu Leu Lys Leu Thr Thr Arg Gly Pro Asp Met
385 390 395 400
Gln Thr Ala Ile Ala Arg Ala Arg Arg Ala Val Glu Glu Val Arg Ile
405 410 415
Arg Gly Val Thr Thr Asn Gln Ala Phe Leu Gly Lys Leu Leu Asp Asp
420 425 430
Pro Asp Phe Arg Ser Gly Arg Leu His Thr Thr Phe Ile Asp Glu Arg
435 440 445
Pro Gln Leu Thr Ala Val Ala Pro Gly Gly Asp Arg Ala Thr Arg Ile
450 455 460
Leu Arg Leu Leu Ala Glu Arg Thr Val Asn Arg Pro Tyr Gly His Ala
465 470 475 480
Pro Gly Gly Pro Asp Pro Arg Ser Lys Leu Pro Arg Val Pro Lys Gly
485 490 495
Glu Ala Pro Ala Gly Ser Arg Gln Arg Leu Gln Glu Leu Gly Pro Glu
500 505 510
Gly Phe Ala Arg Trp Leu Arg Ser Arg Asp Ala Leu Gln Leu Thr Asp
515 520 525
Thr Thr Leu Arg Asp Ala His Gln Ser Leu Phe Ala Thr Arg Met Arg
530 535 540
Thr His Asp Met Glu Ala Val Ala Pro His Met Ala Arg Leu Leu Gly
545 550 555 560
Gly Leu Phe Ser Leu Glu Ala Trp Gly Gly Ala Thr Phe Asp Val Ala
565 570 575
Leu Arg Phe Leu Asn Glu Asp Pro Trp Glu Arg Ile Gly Arg Leu Arg
580 585 590
Asp Leu Ile Pro Asn Val Cys Leu Gln Met Leu Leu Arg Gly Arg Asn
595 600 605
Leu Leu Gly Tyr Glu Pro Tyr Pro Asp Glu Ala Val Arg Ala Phe Val
610 615 620
Phe Glu Ala Val Asp Ala Gly Val Asp Ile Phe Arg Ile Phe Asp Ala
625 630 635 640
Leu Asn Asn Val Glu Pro Met Arg Ala Ala Ile Ser Ala Thr Val Glu
645 650 655
Ala Gly Ala Val Ala Glu Gly Ala Ile Cys Tyr Thr Gly Asp Leu Leu
660 665 670
Asp Pro Gly Glu Arg Leu Tyr Thr Leu Asp His Tyr Leu His Val Ala
675 680 685
Glu Gln Leu Ala Glu Ala Gly Val His Ile Leu Ala Ile Lys Asp Met
690 695 700
Ala Gly Leu Leu Arg Ala Pro Ala Ala Ala Gln Leu Val Thr Arg Leu
705 710 715 720
Arg Arg Glu Phe Asp Leu Pro Val His Leu His Thr His Asp Thr Ala
725 730 735
Gly Gly Gln Leu Ala Thr Tyr Leu Ala Ala Ile Glu Ala Gly Val Asp
740 745 750
Ala Val Asp Gly Ala Ala Ala Ser Met Ala Gly Met Thr Ser Gln Pro
755 760 765
Ser Leu Ala Ser Ile Val Ala Ala Thr Asp His Thr Ala Arg Ala Thr
770 775 780
Gly Ile Ala Leu Glu Ser Leu Leu Glu Leu Glu Pro Tyr Trp Glu Ala
785 790 795 800
Val Arg Thr Thr Tyr Ala Pro Phe Glu Ser Gly Leu Arg Ala Pro Thr
805 810 815
Gly Arg Val Tyr Arg His Gln Ile Pro Gly Gly Gln Leu Ser Asn Leu
820 825 830
His Gln Gln Ala Gly Ala Leu Gly Leu Gly Asp Arg Phe Glu Glu Val
835 840 845
Glu Leu Ala Tyr Glu Arg Ala Asn Ala Leu Leu Gly Asp Ile Ile Lys
850 855 860
Val Thr Pro Thr Ser Lys Val Val Gly Asp Leu Ala Leu Phe Val Val
865 870 875 880
Ser Ala Gly Ile Asp Trp Asp Glu Leu Ala Ala Gln Pro Glu Arg Phe
885 890 895
Asp Leu Pro Ala Ser Val Ile Gln Leu Leu Arg Gly Asp Leu Gly Glu
900 905 910
Pro Ala Gly Gly Phe Pro Gln Pro Phe Thr Glu Arg Ala Leu Arg Gly
915 920 925
Ala Ala Arg His Ser Gln Asp Gly Ser Ala Leu Asp Pro Glu Met Arg
930 935 940
Thr Arg Leu Ala Glu Ala Gly Lys Asp Arg Arg Thr Ala Leu Ala Glu
945 950 955 960
Leu Gln Phe Pro Gly Pro Thr Gln Glu Arg Arg Asp Ala Tyr Glu Arg
965 970 975
Tyr Gly Asp Val Thr His Val Pro Thr Arg Pro Phe Leu Tyr Gly Leu
980 985 990
Pro Asp Asp Gly Glu Val Ser Ile Asp Leu Gly Pro Gly Val Arg Leu
995 1000 1005
Ile Tyr Ala Leu Glu Ala Ile Gly Glu Pro Asp Asp Arg Gly Met
1010 1015 1020
Arg Thr Val Met Val Arg Val Asn Gly Gln Leu Arg Pro Ile Asp
1025 1030 1035
Val Arg Asp Glu Ser Val Glu Ala Pro Thr Ser Lys Val Glu Arg
1040 1045 1050
Ala Asp Pro Ala Asn Asp Ser His Val Ala Ala Pro Leu Thr Gly
1055 1060 1065
Val Val Thr Leu Arg Val Lys Glu Arg Glu Glu Val Ala Glu Gly
1070 1075 1080
Gln Pro Ile Ala Ile Leu Glu Ala Met Lys Met Glu Ser Thr Val
1085 1090 1095
Thr Ser Pro Ala Ala Gly Thr Val Gln Arg Val Pro Val Pro Ser
1100 1105 1110
Gly Thr Arg Leu Glu Gln Gly Asp Leu Ile Ala Val Ile Glu Arg
1115 1120 1125
Ser Glu Ser Gly
1130
<210> 278
<211> 3390
<212> DNA
<213> Unknown
<220>
<223> pyc_19 sequence from unknown bacterial species from environmental
sample
<400> 278
atgcgcaagc tcctggtcgc aaatcgcggc gagatcgcca ccagggcgtt ccgcgccgct 60
tacgaactgg gcctccgcag cgtcgcgatc tacacaccgg aggatcgcga gtccgcccac 120
cgagtgaagg ccgacgaggc ctacgagatc ggggagccgg gacatcccgt ccgcggctac 180
ctggatcccg agctcatcgc cgagacggcc aagtcggtgg gcgccgacgc catctatccg 240
ggctacgggt tcctctcgga gaacccggac ctggcgaccg cgtgcgcgga gcgcgacatc 300
acgttcgtcg gcccgcccgc cgaggtgctg gagcgggtgg gcgacaaggt ccgcgcgcgc 360
accgcggcca tcgaggccgg gctgcccgtc ctgagcgcga cggacctgct cgacgaggac 420
gccgacgtcg aggcgctcgc cgaggagctc ggcatgcccg tgttcgtgaa ggccgcgcac 480
ggcggcggcg ggcgcggcat gcggctcgtc accgacgtcg ccgacctccc cgaggcggtc 540
gcagcggcgc gccgcgaggc cgagagcgcg ttcgggaatc ccgccgtcta cctcgagcag 600
gcgatggtgc gcccgcggca catcgaggtg caggtgctcg cggacggcca cggcgggctc 660
gttcacctgt acgagcgcga ctgctcggtg cagcgccgcc accagaaggt cgtcgagctg 720
gcacctgcgc cgaacctcga ccccgagctc cgcgatcgga tctgcgcgga cgccgtgcgg 780
ttcgccggcc acgtgggcta cgtcaacgcg ggcaccgtcg agttcctcgt cgacacggag 840
cgcgaccggc acgtcttcat cgagatgaac ccgcgcatcc aggtcgagca cacggtgacg 900
gaggagacga ccgacgtcga cctcgtccgc acgcagctgc tcgtcgccga aggtgcgcgc 960
ctgcacgagc tcggcctccg ccaggaggac atccgccagc gcggcttcgc gctgcagtgc 1020
cgcatcacga ccgaggatcc cagcgccggc tttcggcccg acaccggcac gatcgccgcg 1080
taccgggcgc cgggcggcgc cggagtgcgc ctcgacgagg ggtccgcgta cgtcggcgcg 1140
gagatctcgc cctacttcga cccgctgctg ctgaagctca cgacgcgcgg gccggacatg 1200
cagaccgcca tcgcacgcgc gcggcgcgcc gtcgaggagg ttcgcatccg tggcgtcacg 1260
accaaccagg cgttcctcgg caagctgctc gacgacccgg acttccgctc cgggcggctg 1320
cacacgacgt tcatcgacga gcgcccgcag ctgacggcag tcgcccccgg cggcgaccgc 1380
gcgacgcgga tcctgcgcct gctcgccgag cggacggtga accggcccta cggccacgcg 1440
ccggacggcc ccgatccccg ctccaagctg ccgcgcgcac cgaagggtga gccgcccgcc 1500
ggctcgcgcc agcgcctgca ggagctgggg ccggagggct tcgcgcgctg gctgcgctcg 1560
cgcgacgcgc tgcagctcac cgacaccacg ttgcgcgacg cgcaccagtc gctgttcgcg 1620
acgcgcatgc gcacacacga catggaggcg gtcgcgccgc acctggcacg gctgctcggc 1680
gggctgttct cgctggaggc gtggggcggc gcgacgttcg acgtcgcgtt gcgcttcctc 1740
aacgaggacc cgtgggagcg catcggccgg ctgcgcgacc tcattccgaa cgtctgcctg 1800
cagatgctgc tgcggggccg caacctgctc ggctacgagc cctatccgga cgaggcggtc 1860
agggcgttcg tcttcgaggc cgtcgacgca ggggtcgaca tcttccgcat cttcgacgcg 1920
ctgaacaacg tcgagccgat gcgcgcggcg atcagcgcga cggtcgaggc gggggcggtc 1980
gcggagggcg ccatctgcta caccggcgac ctcctggacc ccggcgagcg gctctacacg 2040
ctcgaccact accttcacgt cgccgagcag ctcgtcgagg cgggcgtgca catcctcgcc 2100
atcaaggaca tggcggggct gctccgagcg ccggccgcgg cccagctcgt cacccgcctg 2160
cggcgcgagt tcgacctccc cgtgcacctg catacgcacg acaccgccgg cggccagctc 2220
gcgacatacc tggcggcgat cgaggcgggc gtggacgccg tcgacggcgc cgccgcgtcg 2280
atggccggca tgaccagcca gccctcgctg gccagtatcg tcgccgccac cgaccacacg 2340
gcccgcgcga ccggcatcgc cctggagtcg ctgctggagc tcgagccgta ctgggaggcg 2400
gtgcgcacca cgtacgcgcc gttcgagagc ggcctgcgcg cgccgaccgg ccgcgtgtac 2460
cgccatcaga tccccggcgg ccagctgtcg aacctgcacc agcaggccgg ggcgttgggc 2520
ctcggcaacc ggttcgagga ggtcgagctc gcgtacgagc gcgccaacgc gctgctcggc 2580
gacatcatca aggtcacgcc gacgagcaag gtcgtcggcg atctcgcgct gttcgtcgtc 2640
tcggccggca tcgactggga cgagctggcc gcccagccgg agcgcttcga cctcccggcg 2700
tcggtcatcc aattgctgcg aggtgacctc ggcgagccgg ccggcggctt tccccagccc 2760
ttcaccgagc gcgcgctgcg cggcgccgcg cgtgacagcc gggacggctc cgcgctcgag 2820
ccggagatgc gcacgcgctt ggccgaggcc ggaaacgacc gccgtaccgc gctcgccgag 2880
ctgcagttcc ccggccctac ccaggagcgc agggacgcgt acgagcgcta cggggacgtc 2940
acgcccgtgc cgacccggcc gttcctctac ggcctgcccg atgacggcga ggtctcgatc 3000
gacctcgggc ctggcgtgcg gctcatctac gcgctggagg cgatcgggga gcccgacgac 3060
cgcggcatgc gcagcgtcct cgtgcgcgtg aacgggcagc tgcggccgat cgacgtgcgc 3120
gacgagtccg tcgaggcgcc gacgtcgaag gtcgagcgcg ccgacccggc caacgacagc 3180
cacgtggcgg ccccgctcac cggtgtcgtg accgtgcgcg tgaaggaggg cgacgaggtc 3240
tccgagggtc agccgctcgc gatgctcgag gcgatgaaga tggagtcgac ggtgacctcg 3300
cccgccgccg gaacggtgca gcgggtgccg gtgccgagcg gcacgcgcct ggagcagggc 3360
gatctcattg cggtgatcga gcagtcctag 3390
<210> 279
<211> 1129
<212> PRT
<213> Unknown
<220>
<223> pyc_19 sequence from unknown bacterial species from environmental
sample
<400> 279
Met Arg Lys Leu Leu Val Ala Asn Arg Gly Glu Ile Ala Thr Arg Ala
1 5 10 15
Phe Arg Ala Ala Tyr Glu Leu Gly Leu Arg Ser Val Ala Ile Tyr Thr
20 25 30
Pro Glu Asp Arg Glu Ser Ala His Arg Val Lys Ala Asp Glu Ala Tyr
35 40 45
Glu Ile Gly Glu Pro Gly His Pro Val Arg Gly Tyr Leu Asp Pro Glu
50 55 60
Leu Ile Ala Glu Thr Ala Lys Ser Val Gly Ala Asp Ala Ile Tyr Pro
65 70 75 80
Gly Tyr Gly Phe Leu Ser Glu Asn Pro Asp Leu Ala Thr Ala Cys Ala
85 90 95
Glu Arg Asp Ile Thr Phe Val Gly Pro Pro Ala Glu Val Leu Glu Arg
100 105 110
Val Gly Asp Lys Val Arg Ala Arg Thr Ala Ala Ile Glu Ala Gly Leu
115 120 125
Pro Val Leu Ser Ala Thr Asp Leu Leu Asp Glu Asp Ala Asp Val Glu
130 135 140
Ala Leu Ala Glu Glu Leu Gly Met Pro Val Phe Val Lys Ala Ala His
145 150 155 160
Gly Gly Gly Gly Arg Gly Met Arg Leu Val Thr Asp Val Ala Asp Leu
165 170 175
Pro Glu Ala Val Ala Ala Ala Arg Arg Glu Ala Glu Ser Ala Phe Gly
180 185 190
Asn Pro Ala Val Tyr Leu Glu Gln Ala Met Val Arg Pro Arg His Ile
195 200 205
Glu Val Gln Val Leu Ala Asp Gly His Gly Gly Leu Val His Leu Tyr
210 215 220
Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Val Glu Leu
225 230 235 240
Ala Pro Ala Pro Asn Leu Asp Pro Glu Leu Arg Asp Arg Ile Cys Ala
245 250 255
Asp Ala Val Arg Phe Ala Gly His Val Gly Tyr Val Asn Ala Gly Thr
260 265 270
Val Glu Phe Leu Val Asp Thr Glu Arg Asp Arg His Val Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Thr Thr
290 295 300
Asp Val Asp Leu Val Arg Thr Gln Leu Leu Val Ala Glu Gly Ala Arg
305 310 315 320
Leu His Glu Leu Gly Leu Arg Gln Glu Asp Ile Arg Gln Arg Gly Phe
325 330 335
Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Ser Ala Gly Phe Arg
340 345 350
Pro Asp Thr Gly Thr Ile Ala Ala Tyr Arg Ala Pro Gly Gly Ala Gly
355 360 365
Val Arg Leu Asp Glu Gly Ser Ala Tyr Val Gly Ala Glu Ile Ser Pro
370 375 380
Tyr Phe Asp Pro Leu Leu Leu Lys Leu Thr Thr Arg Gly Pro Asp Met
385 390 395 400
Gln Thr Ala Ile Ala Arg Ala Arg Arg Ala Val Glu Glu Val Arg Ile
405 410 415
Arg Gly Val Thr Thr Asn Gln Ala Phe Leu Gly Lys Leu Leu Asp Asp
420 425 430
Pro Asp Phe Arg Ser Gly Arg Leu His Thr Thr Phe Ile Asp Glu Arg
435 440 445
Pro Gln Leu Thr Ala Val Ala Pro Gly Gly Asp Arg Ala Thr Arg Ile
450 455 460
Leu Arg Leu Leu Ala Glu Arg Thr Val Asn Arg Pro Tyr Gly His Ala
465 470 475 480
Pro Asp Gly Pro Asp Pro Arg Ser Lys Leu Pro Arg Ala Pro Lys Gly
485 490 495
Glu Pro Pro Ala Gly Ser Arg Gln Arg Leu Gln Glu Leu Gly Pro Glu
500 505 510
Gly Phe Ala Arg Trp Leu Arg Ser Arg Asp Ala Leu Gln Leu Thr Asp
515 520 525
Thr Thr Leu Arg Asp Ala His Gln Ser Leu Phe Ala Thr Arg Met Arg
530 535 540
Thr His Asp Met Glu Ala Val Ala Pro His Leu Ala Arg Leu Leu Gly
545 550 555 560
Gly Leu Phe Ser Leu Glu Ala Trp Gly Gly Ala Thr Phe Asp Val Ala
565 570 575
Leu Arg Phe Leu Asn Glu Asp Pro Trp Glu Arg Ile Gly Arg Leu Arg
580 585 590
Asp Leu Ile Pro Asn Val Cys Leu Gln Met Leu Leu Arg Gly Arg Asn
595 600 605
Leu Leu Gly Tyr Glu Pro Tyr Pro Asp Glu Ala Val Arg Ala Phe Val
610 615 620
Phe Glu Ala Val Asp Ala Gly Val Asp Ile Phe Arg Ile Phe Asp Ala
625 630 635 640
Leu Asn Asn Val Glu Pro Met Arg Ala Ala Ile Ser Ala Thr Val Glu
645 650 655
Ala Gly Ala Val Ala Glu Gly Ala Ile Cys Tyr Thr Gly Asp Leu Leu
660 665 670
Asp Pro Gly Glu Arg Leu Tyr Thr Leu Asp His Tyr Leu His Val Ala
675 680 685
Glu Gln Leu Val Glu Ala Gly Val His Ile Leu Ala Ile Lys Asp Met
690 695 700
Ala Gly Leu Leu Arg Ala Pro Ala Ala Ala Gln Leu Val Thr Arg Leu
705 710 715 720
Arg Arg Glu Phe Asp Leu Pro Val His Leu His Thr His Asp Thr Ala
725 730 735
Gly Gly Gln Leu Ala Thr Tyr Leu Ala Ala Ile Glu Ala Gly Val Asp
740 745 750
Ala Val Asp Gly Ala Ala Ala Ser Met Ala Gly Met Thr Ser Gln Pro
755 760 765
Ser Leu Ala Ser Ile Val Ala Ala Thr Asp His Thr Ala Arg Ala Thr
770 775 780
Gly Ile Ala Leu Glu Ser Leu Leu Glu Leu Glu Pro Tyr Trp Glu Ala
785 790 795 800
Val Arg Thr Thr Tyr Ala Pro Phe Glu Ser Gly Leu Arg Ala Pro Thr
805 810 815
Gly Arg Val Tyr Arg His Gln Ile Pro Gly Gly Gln Leu Ser Asn Leu
820 825 830
His Gln Gln Ala Gly Ala Leu Gly Leu Gly Asn Arg Phe Glu Glu Val
835 840 845
Glu Leu Ala Tyr Glu Arg Ala Asn Ala Leu Leu Gly Asp Ile Ile Lys
850 855 860
Val Thr Pro Thr Ser Lys Val Val Gly Asp Leu Ala Leu Phe Val Val
865 870 875 880
Ser Ala Gly Ile Asp Trp Asp Glu Leu Ala Ala Gln Pro Glu Arg Phe
885 890 895
Asp Leu Pro Ala Ser Val Ile Gln Leu Leu Arg Gly Asp Leu Gly Glu
900 905 910
Pro Ala Gly Gly Phe Pro Gln Pro Phe Thr Glu Arg Ala Leu Arg Gly
915 920 925
Ala Ala Arg Asp Ser Arg Asp Gly Ser Ala Leu Glu Pro Glu Met Arg
930 935 940
Thr Arg Leu Ala Glu Ala Gly Asn Asp Arg Arg Thr Ala Leu Ala Glu
945 950 955 960
Leu Gln Phe Pro Gly Pro Thr Gln Glu Arg Arg Asp Ala Tyr Glu Arg
965 970 975
Tyr Gly Asp Val Thr Pro Val Pro Thr Arg Pro Phe Leu Tyr Gly Leu
980 985 990
Pro Asp Asp Gly Glu Val Ser Ile Asp Leu Gly Pro Gly Val Arg Leu
995 1000 1005
Ile Tyr Ala Leu Glu Ala Ile Gly Glu Pro Asp Asp Arg Gly Met
1010 1015 1020
Arg Ser Val Leu Val Arg Val Asn Gly Gln Leu Arg Pro Ile Asp
1025 1030 1035
Val Arg Asp Glu Ser Val Glu Ala Pro Thr Ser Lys Val Glu Arg
1040 1045 1050
Ala Asp Pro Ala Asn Asp Ser His Val Ala Ala Pro Leu Thr Gly
1055 1060 1065
Val Val Thr Val Arg Val Lys Glu Gly Asp Glu Val Ser Glu Gly
1070 1075 1080
Gln Pro Leu Ala Met Leu Glu Ala Met Lys Met Glu Ser Thr Val
1085 1090 1095
Thr Ser Pro Ala Ala Gly Thr Val Gln Arg Val Pro Val Pro Ser
1100 1105 1110
Gly Thr Arg Leu Glu Gln Gly Asp Leu Ile Ala Val Ile Glu Gln
1115 1120 1125
Ser
<210> 280
<211> 3378
<212> DNA
<213> Unknown
<220>
<223> pyc_20 sequence from unknown bacterial species from environmental
sample
<400> 280
atgttctcga aggtgctcgt ggccaaccgg ggcgagatcg ccatccgggc gttccgggct 60
gcctacgagc tcggtgctcg cacggtggcg gtcttcccca acgaggacag gtggtccgag 120
caccgcctca aggccgacga ggcctacgag atcggccagc gaggccaccc ggtccgcgcc 180
tacctcgacc cggacgcgat cgtcgcggtc gccgtacgtt cgggtgccga cgcggtctac 240
cccggctacg gcttcctgtc ggagaacccc aggctggccg aggcctgcgc caacgccggc 300
atcaccttcg tcggcccgac ggccgaggtg ctcaccctca ccggcaacaa ggcccgggcg 360
atcgcggcgg cccacgaggc cggcgtaccc acactggcct cggtgccgcc gagccaggac 420
gccgacgagc tggtcgccac ggccggcgag ctgccctacc cgctcttcgt caaggcggtc 480
gccggcggcg gcgggcgcgg catgaggcgg gtcgacgagc ccgcgcagct gcgcgcggcc 540
atcgagacgt gcatgcgcga ggccgagggc gccttcggcg atgcgaccgt gttcgtcgag 600
caggcggtgg tcgacccacg gcacatcgag gtgcagatcc tcgcggacag gcaaggcaac 660
gtcatccacc tcttcgagcg cgactgctca gtgcagcgcc gccaccagaa agtggtcgag 720
atcgcaccgg cccccaactt cgaccccgag ctgcgggagc ggatctgcgc cgacgcggtg 780
aggttcgcgc gccacatcgg ctaccagaac gccggcacgg tcgagttcct cgtcgacccc 840
ggtggcagct acgtcttcat cgagatgaac ccccgcatcc aggtcgagca caccgtgacc 900
gaggaggtca ccgacgtcga cctcgtgcag tcgcagctgc ggatcgcctc gggagagacg 960
ctccaggacc tcggcctgcg ccaagactcg atcgtgctgc gcggcgccgc gctccagtgc 1020
cggatcacga ccgaggaccc tgccaacaac ttccggcccg acaccggccg gatcacgacg 1080
taccgctccc ccggcggcgc cggcatccgc ctcgacggcg gcacgaccta caccggcgcc 1140
gaggtcagcc cgcacttcga ctcgatgctg gccaagctca cctgccgggg ccgcacgttc 1200
gagaaggccg tcgaacgggc ccgccgggcg gtcgcggagt tccggatccg cggggtgtcg 1260
accaacatcg cgttcctgca ggcgctgctc gacgaccctg acttccgtgc cggccgggtg 1320
accacgtcgt tcatcgagac gcaccccgag ctgctcaccg cgcgcgcgag cggcgaccgc 1380
ggcaccaagc tgctcaccta cctcgccgac gtcaccgtca accagccaca cggcccagcg 1440
ccggtgagcc tcgacccggt cagcaagctc cccgaggtcg acctcaaggt gcccgcgccc 1500
gacggcaccc gccagtcgtt gctggccctc ggacccgctg cgttcgcgca ggcgcttcgc 1560
gaccagggcc gggttgccgt caccgacacg accttccgcg acgcccacca gtccctgctg 1620
gccacccggg tgcggacccg cgacctgctc gccgtcgcgg gtcatgtcgc gcggacgacc 1680
ccgcagctgt ggtcgctcga ggcgtggggc ggagcgacgt acgacgtggc gctgcggttc 1740
ctgtccgagg acccgtggga gcggctggcc aagctccgcc aggccacacc gaacatctgc 1800
ctccagatgt tgctgcgcgg gcgcaacacg gtcggctaca cgccgtaccc gaccgacgtc 1860
accaccgcct tcgtcgagga ggccgcggcc accgggatcg acgtcttccg catcttcgac 1920
gccctcaacg acgtcgagca gatgcggccg gccatcgagg ccgtgctggc gaccggcacc 1980
agcgtcgcgg aggtcgctct ctgctacacc ggcgacctgt ccgaccctcg cgagaggctc 2040
tacacgctcg actactacct cggcctggca tcgcggatcg tggagtccgg cgcacatgtg 2100
ctggcgatca aggacatggc cggtgtgctg cgggctccgg ccgcccgaag gctggtgacc 2160
gcgctgcgct cggagttcga cctgccggtg cacctgcaca cccacgacac ccccggcggc 2220
cagctggcta cgctgctggc cgcgatcgaa gcaggggtcg acgccgtcga cgcggccacc 2280
gcgtccatgg ccggcaccac ctcgcagccg ccgctctcgg cgctggtgtc cgcgaccgac 2340
cactcgccgc gcgagaccgg tctctcgctc gacgcggtgg gtgcgctgga gccctactgg 2400
gaggccgtgc gccgcgtcta cgcgccgttc gagtcggggc tgcccgcgcc caccggccgc 2460
gtctacaccc acgagatccc cggtgggcag ctctccaacc tgcgccagca ggcgatcgcg 2520
ctcggcctcg gcgagaagtt cgagcagatc gaggacatgt acgccgcggc cgaccgcatc 2580
ctcggccaca tcgtcaaggt gaccccgtcg tccaaggtcg tcggcgacct ggcgctgcac 2640
ctcgtcgcgg tcggtgccga cccggcggag ttcgcggcca accctcagaa gttcgacatc 2700
cccgcctcgg tcatcggctt cctccacggc gagctgggcg acccgcccgg cggctggccg 2760
gagccgttcc ggtcgcgcgc gatcgagggg cgggcgtggg agccgccctc gggctcgctc 2820
accgacgacc agcgcgccgg cctgcgcgac aaccgccgcg agaccctcaa cgagctgctg 2880
ttcccagggc cgaccaagca gttccgcgag atccgggcga cgtacggcga cgtgtcggcg 2940
ctctcctcga tcgactacct ctacggcctg cgtcaggggg tcgagcacca ggtcgagctc 3000
gacgagggcg tgacgatctt cctcgggctc caggcgatct ccgaccccga cgaacgcggc 3060
ttccgtaccg tgatggcgct gatcaacggc cagctacggc cgatcagcgt gcgcgaccgc 3120
agcgtctcca cggccgtcgc cgccgccgag aaggcggacc actctgaccc gagccatgtc 3180
gcggcgccgt tccagggtgc ggtgacggtg gtcgtcgaga agggcgagga ggtcgaggca 3240
ggccagaccg tcgccacgat cgaggcgatg aagatggagg ccgcgatcac cgctccccgc 3300
gccggcaccg tcgagcgcct ggccttcgcc ggcacccaga ccgtcgacgg aggcgacctg 3360
gtgctggtcc tcggctga 3378
<210> 281
<211> 1125
<212> PRT
<213> Unknown
<220>
<223> pyc_20 sequence from unknown bacterial species from environmental
sample
<400> 281
Met Phe Ser Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Leu Gly Ala Arg Thr Val Ala Val Phe
20 25 30
Pro Asn Glu Asp Arg Trp Ser Glu His Arg Leu Lys Ala Asp Glu Ala
35 40 45
Tyr Glu Ile Gly Gln Arg Gly His Pro Val Arg Ala Tyr Leu Asp Pro
50 55 60
Asp Ala Ile Val Ala Val Ala Val Arg Ser Gly Ala Asp Ala Val Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro Arg Leu Ala Glu Ala Cys
85 90 95
Ala Asn Ala Gly Ile Thr Phe Val Gly Pro Thr Ala Glu Val Leu Thr
100 105 110
Leu Thr Gly Asn Lys Ala Arg Ala Ile Ala Ala Ala His Glu Ala Gly
115 120 125
Val Pro Thr Leu Ala Ser Val Pro Pro Ser Gln Asp Ala Asp Glu Leu
130 135 140
Val Ala Thr Ala Gly Glu Leu Pro Tyr Pro Leu Phe Val Lys Ala Val
145 150 155 160
Ala Gly Gly Gly Gly Arg Gly Met Arg Arg Val Asp Glu Pro Ala Gln
165 170 175
Leu Arg Ala Ala Ile Glu Thr Cys Met Arg Glu Ala Glu Gly Ala Phe
180 185 190
Gly Asp Ala Thr Val Phe Val Glu Gln Ala Val Val Asp Pro Arg His
195 200 205
Ile Glu Val Gln Ile Leu Ala Asp Arg Gln Gly Asn Val Ile His Leu
210 215 220
Phe Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Val Glu
225 230 235 240
Ile Ala Pro Ala Pro Asn Phe Asp Pro Glu Leu Arg Glu Arg Ile Cys
245 250 255
Ala Asp Ala Val Arg Phe Ala Arg His Ile Gly Tyr Gln Asn Ala Gly
260 265 270
Thr Val Glu Phe Leu Val Asp Pro Gly Gly Ser Tyr Val Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Val Thr
290 295 300
Asp Val Asp Leu Val Gln Ser Gln Leu Arg Ile Ala Ser Gly Glu Thr
305 310 315 320
Leu Gln Asp Leu Gly Leu Arg Gln Asp Ser Ile Val Leu Arg Gly Ala
325 330 335
Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala Asn Asn Phe Arg
340 345 350
Pro Asp Thr Gly Arg Ile Thr Thr Tyr Arg Ser Pro Gly Gly Ala Gly
355 360 365
Ile Arg Leu Asp Gly Gly Thr Thr Tyr Thr Gly Ala Glu Val Ser Pro
370 375 380
His Phe Asp Ser Met Leu Ala Lys Leu Thr Cys Arg Gly Arg Thr Phe
385 390 395 400
Glu Lys Ala Val Glu Arg Ala Arg Arg Ala Val Ala Glu Phe Arg Ile
405 410 415
Arg Gly Val Ser Thr Asn Ile Ala Phe Leu Gln Ala Leu Leu Asp Asp
420 425 430
Pro Asp Phe Arg Ala Gly Arg Val Thr Thr Ser Phe Ile Glu Thr His
435 440 445
Pro Glu Leu Leu Thr Ala Arg Ala Ser Gly Asp Arg Gly Thr Lys Leu
450 455 460
Leu Thr Tyr Leu Ala Asp Val Thr Val Asn Gln Pro His Gly Pro Ala
465 470 475 480
Pro Val Ser Leu Asp Pro Val Ser Lys Leu Pro Glu Val Asp Leu Lys
485 490 495
Val Pro Ala Pro Asp Gly Thr Arg Gln Ser Leu Leu Ala Leu Gly Pro
500 505 510
Ala Ala Phe Ala Gln Ala Leu Arg Asp Gln Gly Arg Val Ala Val Thr
515 520 525
Asp Thr Thr Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Val
530 535 540
Arg Thr Arg Asp Leu Leu Ala Val Ala Gly His Val Ala Arg Thr Thr
545 550 555 560
Pro Gln Leu Trp Ser Leu Glu Ala Trp Gly Gly Ala Thr Tyr Asp Val
565 570 575
Ala Leu Arg Phe Leu Ser Glu Asp Pro Trp Glu Arg Leu Ala Lys Leu
580 585 590
Arg Gln Ala Thr Pro Asn Ile Cys Leu Gln Met Leu Leu Arg Gly Arg
595 600 605
Asn Thr Val Gly Tyr Thr Pro Tyr Pro Thr Asp Val Thr Thr Ala Phe
610 615 620
Val Glu Glu Ala Ala Ala Thr Gly Ile Asp Val Phe Arg Ile Phe Asp
625 630 635 640
Ala Leu Asn Asp Val Glu Gln Met Arg Pro Ala Ile Glu Ala Val Leu
645 650 655
Ala Thr Gly Thr Ser Val Ala Glu Val Ala Leu Cys Tyr Thr Gly Asp
660 665 670
Leu Ser Asp Pro Arg Glu Arg Leu Tyr Thr Leu Asp Tyr Tyr Leu Gly
675 680 685
Leu Ala Ser Arg Ile Val Glu Ser Gly Ala His Val Leu Ala Ile Lys
690 695 700
Asp Met Ala Gly Val Leu Arg Ala Pro Ala Ala Arg Arg Leu Val Thr
705 710 715 720
Ala Leu Arg Ser Glu Phe Asp Leu Pro Val His Leu His Thr His Asp
725 730 735
Thr Pro Gly Gly Gln Leu Ala Thr Leu Leu Ala Ala Ile Glu Ala Gly
740 745 750
Val Asp Ala Val Asp Ala Ala Thr Ala Ser Met Ala Gly Thr Thr Ser
755 760 765
Gln Pro Pro Leu Ser Ala Leu Val Ser Ala Thr Asp His Ser Pro Arg
770 775 780
Glu Thr Gly Leu Ser Leu Asp Ala Val Gly Ala Leu Glu Pro Tyr Trp
785 790 795 800
Glu Ala Val Arg Arg Val Tyr Ala Pro Phe Glu Ser Gly Leu Pro Ala
805 810 815
Pro Thr Gly Arg Val Tyr Thr His Glu Ile Pro Gly Gly Gln Leu Ser
820 825 830
Asn Leu Arg Gln Gln Ala Ile Ala Leu Gly Leu Gly Glu Lys Phe Glu
835 840 845
Gln Ile Glu Asp Met Tyr Ala Ala Ala Asp Arg Ile Leu Gly His Ile
850 855 860
Val Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu His
865 870 875 880
Leu Val Ala Val Gly Ala Asp Pro Ala Glu Phe Ala Ala Asn Pro Gln
885 890 895
Lys Phe Asp Ile Pro Ala Ser Val Ile Gly Phe Leu His Gly Glu Leu
900 905 910
Gly Asp Pro Pro Gly Gly Trp Pro Glu Pro Phe Arg Ser Arg Ala Ile
915 920 925
Glu Gly Arg Ala Trp Glu Pro Pro Ser Gly Ser Leu Thr Asp Asp Gln
930 935 940
Arg Ala Gly Leu Arg Asp Asn Arg Arg Glu Thr Leu Asn Glu Leu Leu
945 950 955 960
Phe Pro Gly Pro Thr Lys Gln Phe Arg Glu Ile Arg Ala Thr Tyr Gly
965 970 975
Asp Val Ser Ala Leu Ser Ser Ile Asp Tyr Leu Tyr Gly Leu Arg Gln
980 985 990
Gly Val Glu His Gln Val Glu Leu Asp Glu Gly Val Thr Ile Phe Leu
995 1000 1005
Gly Leu Gln Ala Ile Ser Asp Pro Asp Glu Arg Gly Phe Arg Thr
1010 1015 1020
Val Met Ala Leu Ile Asn Gly Gln Leu Arg Pro Ile Ser Val Arg
1025 1030 1035
Asp Arg Ser Val Ser Thr Ala Val Ala Ala Ala Glu Lys Ala Asp
1040 1045 1050
His Ser Asp Pro Ser His Val Ala Ala Pro Phe Gln Gly Ala Val
1055 1060 1065
Thr Val Val Val Glu Lys Gly Glu Glu Val Glu Ala Gly Gln Thr
1070 1075 1080
Val Ala Thr Ile Glu Ala Met Lys Met Glu Ala Ala Ile Thr Ala
1085 1090 1095
Pro Arg Ala Gly Thr Val Glu Arg Leu Ala Phe Ala Gly Thr Gln
1100 1105 1110
Thr Val Asp Gly Gly Asp Leu Val Leu Val Leu Gly
1115 1120 1125
<210> 282
<211> 3405
<212> DNA
<213> Unknown
<220>
<223> pyc_21 sequence from unknown bacterial species from environmental
sample
<400> 282
atgttcgcca aggtgctggt cgccaaccgc ggtgagatcg ctgtccgggc cttccgtgcc 60
gcgtacgagc tgggcgtgaa gacggtagcg gtctttccct atgaggaccg taacgctgtg 120
caccggatca aggcggatga ggcctacatg atcggcgagc gtggccatcc ggtacgcgct 180
tacctggata tcgcagagat catccgggcc gctaaggagt ccgaggccga tgcgatctac 240
cccggctatg gattcttgag cgagaatcct ggcctggccc aggcctgcga cgaggcgggc 300
atcgtcttca tcggcccgcc cgccggggtt ctcgagcttg ccggcaacaa ggtccgtgcc 360
attgaagcag ccagggcggc tggcgtcccc accctcaagt ccacacctcc ttcggcagac 420
cttgatgagc tggtgcccgc cgccgaggag atcggctttc cggtgttcgt caaggcggtc 480
gccggcggcg gcggtcgcgg tatgcgccgg gtcgatgacc ccaagatgct tcgggaatcc 540
ataactgcag cgatgcgcga ggctgaaggc gcgttcggcg atcccaccgt gtacatcgag 600
caggcggttg ggcgcccgcg ccacatcgag gtacagatcc ttgccgatac ccagggccac 660
accatccatc tgttcgagcg tgactgctcg gttcagcggc ggcaccagaa gattgttgag 720
attgcgcccg cgcagaacat ctcgaccgag ttgcgggagg cattgtgccg tgacgcggtg 780
cgctttgccg agtcgatcaa cttctcatgt gcgggaactg ttgagttctt ggtcgaaact 840
gaaggacagc gtgccggtca gcacgtcttc atcgagatga atcctcggat tcaggttgag 900
cacccggtca ccgaagagat caccgacgtt gatcttgtgc aggcccagat gcgcattgcc 960
gccggggaga gcctgagtga tcttggtctg gcccaggatg tgatcaggat caacggtgcg 1020
gcactgcagt gtcggatcac gaccgaggac ccggcgaacg gctttcggcc cgacaccggc 1080
acgatcactg cctaccgctc cgccggtggc gcgggcgtac gcctcgacgg tggcaccatc 1140
gacatcgggg tggagatcag cgcgtacttc gattcgttgc tggtcaagct catttgccgc 1200
ggccggacat tcgagcaggc tgtggctcgg gctcagcgga ccttggctga gttccggatt 1260
cgtggagtca gcaccaacat tcctttcctg caatcggttt tggaggatcc ggacttcatt 1320
gccggcgata tctcgacctc cttcattgac gagcggcccg acctgctgac cgcccatgct 1380
ccggcggacc gcggtaccaa gctgttgcgc tggctggctg aggtaacggt caaccagccg 1440
catggcccgg caccgacgca gctcgaccca ggcgttaaac gacctaccgg cgtcgatctc 1500
aacgtcccgt cgcccccggg ctcgcggcag cgtcttcttg atcttggtcc agaagccttc 1560
gctgccgacc tgcggcaacg ggtcccgatc gaggtcaccg acacgacctt ccgggacgcc 1620
catcagtcgt tgctggctac ccgggtccgt accaaagacc tcatcaggat cgcgccatac 1680
gtcggccgga tgacgccgga actgctgtcg gtcgaatgct ggggcggggc gacctatgac 1740
gtagcgcttc gcttcatttc cgaggatcct tgggaacgcc tggccgcgct gcgctacaac 1800
atgccgggcc tgtgcctgca gatgttgctg cgcggtcgca acacggttgg ctatacgcca 1860
tacccgacca aggtcacgac ctccttcgtg gccgaggctg ccgaggttgg catcgacatc 1920
ttccggatct tcgatgcgct caacgacgtc gagcagatgc gtccagcgat cgaggcggtg 1980
cgcgagacag gcagcaccat tgccgaggtg gctctgtgct acaccggcga tctgaactca 2040
ccggctgagg atctctacac gctcgactac tacttgcgtt tggccgagaa gatcgtgaac 2100
gcgggggcgc acgtgctcgg gatcaaggac atggccggcc tgctccgccc accagcggcc 2160
cggaagctcg tcgccgcact gcgagacaac tttgatctgc cggtgcactt gcatacccac 2220
gacaccgcag gtggtcagct tgcgaccttg ttagccgcca tcgatgtggg tgttgatgcg 2280
gttgacgtgg ccagcgcccc gatggccggg acgaccagcc aggtgccggc gtcggccctg 2340
gtggcagcct gcgcgaacac cgagcggccg accaaccttg atctgcgcgc cgtgatggaa 2400
ctggagccgt actgggaagc ggtgcgcagg gtgtacgcac ccttcgagtc agggttgccc 2460
agtccgacgg gccgggttta cgaccacgag attccgggag ggcagctctc caacctccgc 2520
cagcaggcga tcgctctcgg gctgggggag aagtttgagc agatcgaggc gatgtacacc 2580
gcggcgaatg caattttggg caggccgccc aaggtcaccc cgtcgtcgaa ggtggtcggc 2640
gatctggcac ttcacctggt cgcggtcggc gcggacccgg acgacttcgc tgagaacccg 2700
cagagctacg acatcccgga ttcagtgatc ggctttctca atggggaact gggcgatccg 2760
cctggcggct ggccggaacc attccggacc aaagcgctgc aggggcggac cgtgccggtc 2820
cgcgatgtgg agctctcacc ggaagattca gctgatcttg atgacaaggg ccaggtccgc 2880
caggccacgt tgaaccgcct gctgtttcct gggccgacca aggagttcct ggccaaccga 2940
gcaacctacg gcgacgtcgc ccggctcaat actctcgact tcctctacgg gttgcagccc 3000
ggccaggagc atgtcgccaa gatcggtaaa ggtgtcagcc tgattctcgg gctggcggcg 3060
atcggtaacg ccgacgagcg aggcatgcgc accgtgatgt gtacgctcaa cgggcagttg 3120
cggccgctcc gggtgcgcga caagtcgatc aaggtcgatg tcaagactgc cgaacgcgcg 3180
gatcccacca agccgggtca tgtcgccgct ccgttcgccg gggtggtcac cgtcaccgtc 3240
aacgaaggcg acacagtcga gaccggtgca acggtagcaa ccatcgaagc catgaagatg 3300
gaggccgcca tcaccgcgcc ggtctcaggt gtggtgcagc gattggcgat cgcagcagtg 3360
cagcaggtgg agggcggcga cctcctgctc gtcatcgcgg tctag 3405
<210> 283
<211> 1134
<212> PRT
<213> Unknown
<220>
<223> pyc_21 sequence from unknown bacterial species from environmental
sample
<400> 283
Met Phe Ala Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Val Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Leu Gly Val Lys Thr Val Ala Val Phe
20 25 30
Pro Tyr Glu Asp Arg Asn Ala Val His Arg Ile Lys Ala Asp Glu Ala
35 40 45
Tyr Met Ile Gly Glu Arg Gly His Pro Val Arg Ala Tyr Leu Asp Ile
50 55 60
Ala Glu Ile Ile Arg Ala Ala Lys Glu Ser Glu Ala Asp Ala Ile Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro Gly Leu Ala Gln Ala Cys
85 90 95
Asp Glu Ala Gly Ile Val Phe Ile Gly Pro Pro Ala Gly Val Leu Glu
100 105 110
Leu Ala Gly Asn Lys Val Arg Ala Ile Glu Ala Ala Arg Ala Ala Gly
115 120 125
Val Pro Thr Leu Lys Ser Thr Pro Pro Ser Ala Asp Leu Asp Glu Leu
130 135 140
Val Pro Ala Ala Glu Glu Ile Gly Phe Pro Val Phe Val Lys Ala Val
145 150 155 160
Ala Gly Gly Gly Gly Arg Gly Met Arg Arg Val Asp Asp Pro Lys Met
165 170 175
Leu Arg Glu Ser Ile Thr Ala Ala Met Arg Glu Ala Glu Gly Ala Phe
180 185 190
Gly Asp Pro Thr Val Tyr Ile Glu Gln Ala Val Gly Arg Pro Arg His
195 200 205
Ile Glu Val Gln Ile Leu Ala Asp Thr Gln Gly His Thr Ile His Leu
210 215 220
Phe Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Ile Val Glu
225 230 235 240
Ile Ala Pro Ala Gln Asn Ile Ser Thr Glu Leu Arg Glu Ala Leu Cys
245 250 255
Arg Asp Ala Val Arg Phe Ala Glu Ser Ile Asn Phe Ser Cys Ala Gly
260 265 270
Thr Val Glu Phe Leu Val Glu Thr Glu Gly Gln Arg Ala Gly Gln His
275 280 285
Val Phe Ile Glu Met Asn Pro Arg Ile Gln Val Glu His Pro Val Thr
290 295 300
Glu Glu Ile Thr Asp Val Asp Leu Val Gln Ala Gln Met Arg Ile Ala
305 310 315 320
Ala Gly Glu Ser Leu Ser Asp Leu Gly Leu Ala Gln Asp Val Ile Arg
325 330 335
Ile Asn Gly Ala Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala
340 345 350
Asn Gly Phe Arg Pro Asp Thr Gly Thr Ile Thr Ala Tyr Arg Ser Ala
355 360 365
Gly Gly Ala Gly Val Arg Leu Asp Gly Gly Thr Ile Asp Ile Gly Val
370 375 380
Glu Ile Ser Ala Tyr Phe Asp Ser Leu Leu Val Lys Leu Ile Cys Arg
385 390 395 400
Gly Arg Thr Phe Glu Gln Ala Val Ala Arg Ala Gln Arg Thr Leu Ala
405 410 415
Glu Phe Arg Ile Arg Gly Val Ser Thr Asn Ile Pro Phe Leu Gln Ser
420 425 430
Val Leu Glu Asp Pro Asp Phe Ile Ala Gly Asp Ile Ser Thr Ser Phe
435 440 445
Ile Asp Glu Arg Pro Asp Leu Leu Thr Ala His Ala Pro Ala Asp Arg
450 455 460
Gly Thr Lys Leu Leu Arg Trp Leu Ala Glu Val Thr Val Asn Gln Pro
465 470 475 480
His Gly Pro Ala Pro Thr Gln Leu Asp Pro Gly Val Lys Arg Pro Thr
485 490 495
Gly Val Asp Leu Asn Val Pro Ser Pro Pro Gly Ser Arg Gln Arg Leu
500 505 510
Leu Asp Leu Gly Pro Glu Ala Phe Ala Ala Asp Leu Arg Gln Arg Val
515 520 525
Pro Ile Glu Val Thr Asp Thr Thr Phe Arg Asp Ala His Gln Ser Leu
530 535 540
Leu Ala Thr Arg Val Arg Thr Lys Asp Leu Ile Arg Ile Ala Pro Tyr
545 550 555 560
Val Gly Arg Met Thr Pro Glu Leu Leu Ser Val Glu Cys Trp Gly Gly
565 570 575
Ala Thr Tyr Asp Val Ala Leu Arg Phe Ile Ser Glu Asp Pro Trp Glu
580 585 590
Arg Leu Ala Ala Leu Arg Tyr Asn Met Pro Gly Leu Cys Leu Gln Met
595 600 605
Leu Leu Arg Gly Arg Asn Thr Val Gly Tyr Thr Pro Tyr Pro Thr Lys
610 615 620
Val Thr Thr Ser Phe Val Ala Glu Ala Ala Glu Val Gly Ile Asp Ile
625 630 635 640
Phe Arg Ile Phe Asp Ala Leu Asn Asp Val Glu Gln Met Arg Pro Ala
645 650 655
Ile Glu Ala Val Arg Glu Thr Gly Ser Thr Ile Ala Glu Val Ala Leu
660 665 670
Cys Tyr Thr Gly Asp Leu Asn Ser Pro Ala Glu Asp Leu Tyr Thr Leu
675 680 685
Asp Tyr Tyr Leu Arg Leu Ala Glu Lys Ile Val Asn Ala Gly Ala His
690 695 700
Val Leu Gly Ile Lys Asp Met Ala Gly Leu Leu Arg Pro Pro Ala Ala
705 710 715 720
Arg Lys Leu Val Ala Ala Leu Arg Asp Asn Phe Asp Leu Pro Val His
725 730 735
Leu His Thr His Asp Thr Ala Gly Gly Gln Leu Ala Thr Leu Leu Ala
740 745 750
Ala Ile Asp Val Gly Val Asp Ala Val Asp Val Ala Ser Ala Pro Met
755 760 765
Ala Gly Thr Thr Ser Gln Val Pro Ala Ser Ala Leu Val Ala Ala Cys
770 775 780
Ala Asn Thr Glu Arg Pro Thr Asn Leu Asp Leu Arg Ala Val Met Glu
785 790 795 800
Leu Glu Pro Tyr Trp Glu Ala Val Arg Arg Val Tyr Ala Pro Phe Glu
805 810 815
Ser Gly Leu Pro Ser Pro Thr Gly Arg Val Tyr Asp His Glu Ile Pro
820 825 830
Gly Gly Gln Leu Ser Asn Leu Arg Gln Gln Ala Ile Ala Leu Gly Leu
835 840 845
Gly Glu Lys Phe Glu Gln Ile Glu Ala Met Tyr Thr Ala Ala Asn Ala
850 855 860
Ile Leu Gly Arg Pro Pro Lys Val Thr Pro Ser Ser Lys Val Val Gly
865 870 875 880
Asp Leu Ala Leu His Leu Val Ala Val Gly Ala Asp Pro Asp Asp Phe
885 890 895
Ala Glu Asn Pro Gln Ser Tyr Asp Ile Pro Asp Ser Val Ile Gly Phe
900 905 910
Leu Asn Gly Glu Leu Gly Asp Pro Pro Gly Gly Trp Pro Glu Pro Phe
915 920 925
Arg Thr Lys Ala Leu Gln Gly Arg Thr Val Pro Val Arg Asp Val Glu
930 935 940
Leu Ser Pro Glu Asp Ser Ala Asp Leu Asp Asp Lys Gly Gln Val Arg
945 950 955 960
Gln Ala Thr Leu Asn Arg Leu Leu Phe Pro Gly Pro Thr Lys Glu Phe
965 970 975
Leu Ala Asn Arg Ala Thr Tyr Gly Asp Val Ala Arg Leu Asn Thr Leu
980 985 990
Asp Phe Leu Tyr Gly Leu Gln Pro Gly Gln Glu His Val Ala Lys Ile
995 1000 1005
Gly Lys Gly Val Ser Leu Ile Leu Gly Leu Ala Ala Ile Gly Asn
1010 1015 1020
Ala Asp Glu Arg Gly Met Arg Thr Val Met Cys Thr Leu Asn Gly
1025 1030 1035
Gln Leu Arg Pro Leu Arg Val Arg Asp Lys Ser Ile Lys Val Asp
1040 1045 1050
Val Lys Thr Ala Glu Arg Ala Asp Pro Thr Lys Pro Gly His Val
1055 1060 1065
Ala Ala Pro Phe Ala Gly Val Val Thr Val Thr Val Asn Glu Gly
1070 1075 1080
Asp Thr Val Glu Thr Gly Ala Thr Val Ala Thr Ile Glu Ala Met
1085 1090 1095
Lys Met Glu Ala Ala Ile Thr Ala Pro Val Ser Gly Val Val Gln
1100 1105 1110
Arg Leu Ala Ile Ala Ala Val Gln Gln Val Glu Gly Gly Asp Leu
1115 1120 1125
Leu Leu Val Ile Ala Val
1130
<210> 284
<211> 3096
<212> DNA
<213> Unknown
<220>
<223> pyc_22 sequence from unknown bacterial species from environmental
sample
<400> 284
gtgtggcacg acagagacgt cgccgacacc atggtgttcg tcaccggcag gctgaaggga 60
tccggaatgt tccgcaaggt gctggtcgcc aaccgtgggg agatcgcgat tcgcgcgttc 120
cgcgccggtt acgaactggg tgcgcgcacg gtcgccgtct tcccgcacga ggaccgcaac 180
tcgctgcacc ggctcaaggc cgacgaggca tacgagatcg gcgagccggg ccacccggtg 240
cgggcctacc tgtccgtgga ggagatcatc cgggcggcac gtctggccgg tgcggacgcg 300
gtctacccgg ggtacgggtt cctgtccgag aacccggcac tggcccgtgc ctgcgaggag 360
gcgggcatca cgttcgtggg gccggacatg cggaccctgg agctgaccgg gaacaaggcg 420
cgtgccgtgg ccgccgcccg cgaggccggc gtacccgtgc tgggctcgtc ggagccctcc 480
accgacgtgg acgaactggt cgcggccgcc gagggcatcg gcttcccggt gttcgtcaag 540
gccgtcgccg gcggcggcgg acgcggcatg cggcgcgtcg aggacccctc gacgctgcgt 600
gagtccatcg aggcggcggc ccgtgaggcc gcatccgcgt tcggcgaccc caccgtcttc 660
ctggagaagg ccgtcgtcga cccccggcac atcgaggtgc agatcctcgc cgacgggcag 720
ggcgacgtca tccacctctt cgagcgcgac tgctcggtgc agcgccgcca ccagaaggtg 780
atcgaactcg cgcccgcccc gaacctcgac ccggcactgc gcgagcgcat ctgcgacgac 840
gccgtcaagt tcgcccgccg gatcggctac cgcaacgcgg gcaccgtgga attccttctc 900
gaccgcgacg gcaaccacgt cttcatcgag atgaacccgc gcatccaggt cgagcacacg 960
gtgaccgagg aggtgaccga cgtcgacctg gtgcaggcgc agctgcgcat cgccgccggc 1020
gagacgctgg ccgacctcgg cctgacgcag gacgccgtcg tcctgcgcgg cgccgcgctg 1080
cagtgccgga tcaccaccga ggacccggcc aacggcttcc gcccggacac cggcatgatc 1140
agcgcgtacc gctcgccggg cggttcgggc atccgcctcg acggcggcac cacccacgcc 1200
ggtacggagg tcagcgccca cttcgactcg atgctggtca agctgacctg ccggggaagg 1260
gacttcagga ccgcggtcag ccgtgcccgg cgcgcggtgg ccgagttccg catcaggggc 1320
gtgtccacga acatcccgtt cctgcaggct gtgctcgacg acccggactt ccgggccggc 1380
cacgtcacga cctccttcat cgagcagcgg ccgcacctgc tcaccgcgcg ccactccgcc 1440
gaccgcggca cgaagctgct cacctacctc gccgacgtca cggtgaacaa gccccacggc 1500
ccgcggcccg acctgatcgc gccgaccacc aagctgccac cgctgcccgc caccgagccg 1560
ccggccggct cccggcagca gctcaccgcg ctcggcccgg agggcttcgc acgccggctg 1620
cgcgagtcgc cgaccatcgg cgtcaccgac accaccttcc gggacgccca ccagtcgctg 1680
ctcgccaccc gggtccggac caaggacctg ctcgccgtcg cccctgtggt ggcgcgcacc 1740
ctgccgcagc tgctgtccct ggagtgctgg ggcggcgcca cctacgacgt cgccctgcgc 1800
ttcctcgcgg aggacccctg ggagcgcctg gccgcgctgc gcgaagccgt accgaacatc 1860
tgcctccaga tgttgctgcg cggccgcaac accgtgggct acaccccgta cccgaccgag 1920
gtgacggacg ccttcgtgca ggaggcggcc gccaccggaa tcgacatctt ccgtatcttc 1980
gacgcgctca acgacgtcgg acagatgcgg cccgccatcg acgccgtacg cgagaccggg 2040
tcggcggtcg ccgaggtggc gctgtgctac accggcgacc tgtccgatcc gtcggaacgg 2100
ctctacaccc tggactacta cctccggctg gccgaggaga tcgtggccgc gggtgcccac 2160
gtcctggccg tcaaggacat ggccgggctg ctccgcgccc cggccgccgc cacgctggtg 2220
tccgcgctgc gcagggagtt cgacctgccg gtgcacctgc acacgcacga caccgcgggc 2280
ggccagctcg ccacctacct cgcggcggtc caggccggtg cggacgccgt ggacggggcg 2340
gtggcctcca tggcgggcac cacctcgcag ccgtcgctgt cggcgatcgt cgccgcgacc 2400
gaccacaccg agcggccgac gggactcgac ctccaggcgg tcggcgacct ggagccgtac 2460
tgggagagcg tccgcaggat ctacgcaccg ttcgaggccg gtctcgcctc gccgaccggg 2520
cgcgtgtacc accacgagat ccccggcggc cagctctcca acctccgcac ccaggcgatc 2580
gcactcggac tcggcgaccg cttcgaggag gtcgaggcga tgtacgccgc cgcggacagg 2640
atgctcggcc ggctggtgaa ggtcaccccg tcctcgaagg tggtcggcga tctcgcgctg 2700
cacctcgtgg gcgccgccgt gtccccggag gacttcgagg cggagcccgg caggttcgac 2760
atcccggact cggtcatcgg cttcctgcgc ggtgaattgg gcaatccgcc gggcggctgg 2820
cccgagccgt tccgcagcaa ggcgctggcg ggccgcgccg agcccaagcc ggtgcgggag 2880
ctgaccgcgg aagaccgcac cggcctcgag aaggaccggc ggacgacgct caaccggctg 2940
ctgttccccg gaccggcgaa ggagttcgag acacaccgtc agacctacgg cgacaccagc 3000
gtgctcgaca gcaaggactt cttctacggg ctgcgccccg gaaaggagta cgccgtcgac 3060
ctcggaccgg gcgtgcggct gctcatcgag ctggag 3096
<210> 285
<211> 1032
<212> PRT
<213> Unknown
<220>
<223> pyc_22 sequence from unknown bacterial species from environmental
sample
<400> 285
Val Trp His Asp Arg Asp Val Ala Asp Thr Met Val Phe Val Thr Gly
1 5 10 15
Arg Leu Lys Gly Ser Gly Met Phe Arg Lys Val Leu Val Ala Asn Arg
20 25 30
Gly Glu Ile Ala Ile Arg Ala Phe Arg Ala Gly Tyr Glu Leu Gly Ala
35 40 45
Arg Thr Val Ala Val Phe Pro His Glu Asp Arg Asn Ser Leu His Arg
50 55 60
Leu Lys Ala Asp Glu Ala Tyr Glu Ile Gly Glu Pro Gly His Pro Val
65 70 75 80
Arg Ala Tyr Leu Ser Val Glu Glu Ile Ile Arg Ala Ala Arg Leu Ala
85 90 95
Gly Ala Asp Ala Val Tyr Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro
100 105 110
Ala Leu Ala Arg Ala Cys Glu Glu Ala Gly Ile Thr Phe Val Gly Pro
115 120 125
Asp Met Arg Thr Leu Glu Leu Thr Gly Asn Lys Ala Arg Ala Val Ala
130 135 140
Ala Ala Arg Glu Ala Gly Val Pro Val Leu Gly Ser Ser Glu Pro Ser
145 150 155 160
Thr Asp Val Asp Glu Leu Val Ala Ala Ala Glu Gly Ile Gly Phe Pro
165 170 175
Val Phe Val Lys Ala Val Ala Gly Gly Gly Gly Arg Gly Met Arg Arg
180 185 190
Val Glu Asp Pro Ser Thr Leu Arg Glu Ser Ile Glu Ala Ala Ala Arg
195 200 205
Glu Ala Ala Ser Ala Phe Gly Asp Pro Thr Val Phe Leu Glu Lys Ala
210 215 220
Val Val Asp Pro Arg His Ile Glu Val Gln Ile Leu Ala Asp Gly Gln
225 230 235 240
Gly Asp Val Ile His Leu Phe Glu Arg Asp Cys Ser Val Gln Arg Arg
245 250 255
His Gln Lys Val Ile Glu Leu Ala Pro Ala Pro Asn Leu Asp Pro Ala
260 265 270
Leu Arg Glu Arg Ile Cys Asp Asp Ala Val Lys Phe Ala Arg Arg Ile
275 280 285
Gly Tyr Arg Asn Ala Gly Thr Val Glu Phe Leu Leu Asp Arg Asp Gly
290 295 300
Asn His Val Phe Ile Glu Met Asn Pro Arg Ile Gln Val Glu His Thr
305 310 315 320
Val Thr Glu Glu Val Thr Asp Val Asp Leu Val Gln Ala Gln Leu Arg
325 330 335
Ile Ala Ala Gly Glu Thr Leu Ala Asp Leu Gly Leu Thr Gln Asp Ala
340 345 350
Val Val Leu Arg Gly Ala Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp
355 360 365
Pro Ala Asn Gly Phe Arg Pro Asp Thr Gly Met Ile Ser Ala Tyr Arg
370 375 380
Ser Pro Gly Gly Ser Gly Ile Arg Leu Asp Gly Gly Thr Thr His Ala
385 390 395 400
Gly Thr Glu Val Ser Ala His Phe Asp Ser Met Leu Val Lys Leu Thr
405 410 415
Cys Arg Gly Arg Asp Phe Arg Thr Ala Val Ser Arg Ala Arg Arg Ala
420 425 430
Val Ala Glu Phe Arg Ile Arg Gly Val Ser Thr Asn Ile Pro Phe Leu
435 440 445
Gln Ala Val Leu Asp Asp Pro Asp Phe Arg Ala Gly His Val Thr Thr
450 455 460
Ser Phe Ile Glu Gln Arg Pro His Leu Leu Thr Ala Arg His Ser Ala
465 470 475 480
Asp Arg Gly Thr Lys Leu Leu Thr Tyr Leu Ala Asp Val Thr Val Asn
485 490 495
Lys Pro His Gly Pro Arg Pro Asp Leu Ile Ala Pro Thr Thr Lys Leu
500 505 510
Pro Pro Leu Pro Ala Thr Glu Pro Pro Ala Gly Ser Arg Gln Gln Leu
515 520 525
Thr Ala Leu Gly Pro Glu Gly Phe Ala Arg Arg Leu Arg Glu Ser Pro
530 535 540
Thr Ile Gly Val Thr Asp Thr Thr Phe Arg Asp Ala His Gln Ser Leu
545 550 555 560
Leu Ala Thr Arg Val Arg Thr Lys Asp Leu Leu Ala Val Ala Pro Val
565 570 575
Val Ala Arg Thr Leu Pro Gln Leu Leu Ser Leu Glu Cys Trp Gly Gly
580 585 590
Ala Thr Tyr Asp Val Ala Leu Arg Phe Leu Ala Glu Asp Pro Trp Glu
595 600 605
Arg Leu Ala Ala Leu Arg Glu Ala Val Pro Asn Ile Cys Leu Gln Met
610 615 620
Leu Leu Arg Gly Arg Asn Thr Val Gly Tyr Thr Pro Tyr Pro Thr Glu
625 630 635 640
Val Thr Asp Ala Phe Val Gln Glu Ala Ala Ala Thr Gly Ile Asp Ile
645 650 655
Phe Arg Ile Phe Asp Ala Leu Asn Asp Val Gly Gln Met Arg Pro Ala
660 665 670
Ile Asp Ala Val Arg Glu Thr Gly Ser Ala Val Ala Glu Val Ala Leu
675 680 685
Cys Tyr Thr Gly Asp Leu Ser Asp Pro Ser Glu Arg Leu Tyr Thr Leu
690 695 700
Asp Tyr Tyr Leu Arg Leu Ala Glu Glu Ile Val Ala Ala Gly Ala His
705 710 715 720
Val Leu Ala Val Lys Asp Met Ala Gly Leu Leu Arg Ala Pro Ala Ala
725 730 735
Ala Thr Leu Val Ser Ala Leu Arg Arg Glu Phe Asp Leu Pro Val His
740 745 750
Leu His Thr His Asp Thr Ala Gly Gly Gln Leu Ala Thr Tyr Leu Ala
755 760 765
Ala Val Gln Ala Gly Ala Asp Ala Val Asp Gly Ala Val Ala Ser Met
770 775 780
Ala Gly Thr Thr Ser Gln Pro Ser Leu Ser Ala Ile Val Ala Ala Thr
785 790 795 800
Asp His Thr Glu Arg Pro Thr Gly Leu Asp Leu Gln Ala Val Gly Asp
805 810 815
Leu Glu Pro Tyr Trp Glu Ser Val Arg Arg Ile Tyr Ala Pro Phe Glu
820 825 830
Ala Gly Leu Ala Ser Pro Thr Gly Arg Val Tyr His His Glu Ile Pro
835 840 845
Gly Gly Gln Leu Ser Asn Leu Arg Thr Gln Ala Ile Ala Leu Gly Leu
850 855 860
Gly Asp Arg Phe Glu Glu Val Glu Ala Met Tyr Ala Ala Ala Asp Arg
865 870 875 880
Met Leu Gly Arg Leu Val Lys Val Thr Pro Ser Ser Lys Val Val Gly
885 890 895
Asp Leu Ala Leu His Leu Val Gly Ala Ala Val Ser Pro Glu Asp Phe
900 905 910
Glu Ala Glu Pro Gly Arg Phe Asp Ile Pro Asp Ser Val Ile Gly Phe
915 920 925
Leu Arg Gly Glu Leu Gly Asn Pro Pro Gly Gly Trp Pro Glu Pro Phe
930 935 940
Arg Ser Lys Ala Leu Ala Gly Arg Ala Glu Pro Lys Pro Val Arg Glu
945 950 955 960
Leu Thr Ala Glu Asp Arg Thr Gly Leu Glu Lys Asp Arg Arg Thr Thr
965 970 975
Leu Asn Arg Leu Leu Phe Pro Gly Pro Ala Lys Glu Phe Glu Thr His
980 985 990
Arg Gln Thr Tyr Gly Asp Thr Ser Val Leu Asp Ser Lys Asp Phe Phe
995 1000 1005
Tyr Gly Leu Arg Pro Gly Lys Glu Tyr Ala Val Asp Leu Gly Pro
1010 1015 1020
Gly Val Arg Leu Leu Ile Glu Leu Glu
1025 1030
<210> 286
<211> 3378
<212> DNA
<213> Unknown
<220>
<223> pyc_23 sequence from unknown bacterial species from environmental
sample
<400> 286
atgttccgca aggtgctggt cgcgaaccgc ggggagatcg ccatccgcgc gttccgcgca 60
gcgtacgagc tgggcgtgtc gacggtggcg gtgttcccgc acgaggaccg cagctcgctg 120
catcgagcca aggccgacga gtcgtaccag atcggcgagc cgggccaccc ggtgcgggca 180
tacctgtcgg tcgaggaagt catcaaggcc gcgcggaagg ccggagcgga cgcgatctac 240
cccgggtacg gcttcctgtc ggagaaccct gatctcgcgg aggcctgcga gcgcgagggc 300
atcacgttcg tgggtccgtc cgccgaggta ctgcacctca ccggcaacaa ggcgcgcgcg 360
gtggcggccg cccgggaggc gggcatcccg gtgctgcgct cgtcggcgcc gtccgacgac 420
gtcgacacac tgctcgccgc ggcggacggg atcgacttcc cgatcttcgt caaggccgtc 480
gccggcggcg gcgggcgcgg catgcggcgg gtgaccgcgc ccggcgagct gcgcgaggcc 540
gtcgaggcgg cgatgcggga ggccgaatcg gcgttcggcg accgaaccgt cttcctcgaa 600
caggcggtgg tgaacccccg ccacatcgag gtgcagatcc tcgccgacgc cgcgggcaac 660
gtcgtgcacc tctacgagcg cgactgctcg gtgcagcgcc gccatcagaa ggtcatcgag 720
atcgcgcccg cgcccaacct cgaccccgag ctgcgcgagc ggatctgctc cgacgccgtg 780
gccttcgccc gccacatcgg ctacgtcaac gcgggcaccg tcgagttcct gctcgacgag 840
cgcggcaacc acgtgttcat cgagatgaac ccgcgcatcc aggtggagca cacggtcacc 900
gagcaggtca ccgaccgcga cctcgtgatc gcccagctgc gcatcgcgtc cgggatgacg 960
ctgccgcagt tgcggctgaa ccaggaggac gtgacgctga acggcgccgc gctgcagtgc 1020
cgcgtcacca cggaggatcc gaccaacggc ttccgccccg acaccggcac gatcagcgcc 1080
taccgctcgc cgggtggccc cggcgtccgg ctggacggtg gcaccacgca caccggcgcc 1140
gaggtgagcg cccacttcga ctcgatgctg gtgaagctca cctgctacgg ccacgacttc 1200
tcgaacgccg tgcgcagggc gcggcgggcg atcgcggagt tccggatccg cggcgtgtcg 1260
acgaacctgc cgtacctcgc cgctgtactc gacgacccgg acttcgcggc cggccggatc 1320
accacgagct tcatcgacga gcgcccccac ctgctcaccg cgcgcaagcc tgccgaccgg 1380
ggcacccggg tactcagcta cctcgccgac atcacggtca acaagccgaa cgggccgagg 1440
ccgcaggtcg tcgaggcggt ggacaagctg ccccgctgcg acctggacgc ccccgccccg 1500
gacggctccc ggcagctact gcgcgagctg ggtcccgaag gtttcgcgcg gtggttgcgt 1560
gagcagacga ccgtgccggt cactgacacc acgttccgcg acgcgcacca gtcgctgctc 1620
gcgacgcggg tgcggacccg ggacctgctc gcgatcgccc cgcatatggc ccgcatggca 1680
ccacagctgc tctccctcga gtgctggggc ggcgcgacct acgacgtggc gctgcggttc 1740
ctcgccgagg acccgtggga gcggctggcc gcgctcagcg ccgcggtgcc gaacatctgc 1800
acgcagatgc tcctgcgcgg gcgcaacacc gtgggctaca cgccgtaccc caccgaggtg 1860
accgacgcct tcgtcgagga ggcggcgcgt accgggatgg acatcttccg gatcttcgac 1920
gccctcaacg acgtcgagca gatgcgcccg gccatcgacg ccgtgcgcgc cacgggcacc 1980
gccgtcgccg aggtggcgct ctgctacacc gccgacctgt ccgaccccgc cgagcagctc 2040
tacacgctgg actactacct gcggctggcc gagcagatcg tcgaggcagg tgcccacgtc 2100
ctcgcgatca aggacatggc cgggctgctt cgcccgcccg cggcccgcgc gctggtcacg 2160
gcgctgcgcg agcgcttcga cctgccggtg cacctgcaca cccacgacac ggcgggcggg 2220
cagctcgcca cgctggtcac ggcgatcgac gcgggcgtgg acgccgtcga cgcggcagtc 2280
gcgtccatgg caggaacgac gagccagccg tcgctctccg cgctggtcgc ggccaccgac 2340
cacaccgacc gcaccaccgg cctctcgctg gaggcggtcg gcgacctgga gccgtactgg 2400
gaggccgtgc ggaaggtgta cgcgccgttc gaggcggcat tgccgtcgcc gaccgggcgc 2460
gtctaccacc acgagatccc cggcgggcag ctgtccaacc tgcgccagca ggcgatcgcg 2520
ctcgggctcg gcgaccggtt cgagctgatc gaggactgct acgcggccgc ggaccggatg 2580
ctcgggcggc tggtgaaggt gaccccgtcg tcgaaggtgg tgggcgacct cgcgctgcac 2640
ctcgtcggcg ccggggtgga acccaaggac ttcgaggccg acccgggcca gttcgacgtg 2700
cccgactcgg tgatcgggtt cctgcgcggt gagctgggcg acccgccagg cggctggccc 2760
gagccgttcc gcagccgcgc tctcgagggg cgcccggcgg cgaaggaggg cgcgggcctc 2820
tccgacgagg atcgggcggg cctgcgggac gatcgccggg cgacgctcaa ccgactgctg 2880
ttcccggggc cggcgaagga gttcctcgcc caccgcgagg cttacagtga cacctccgtg 2940
ctctcgacga aggacttcct ctacggcctg gagcccgaca tcgagcacat cgcacagctg 3000
gagccaggcg tcgcgctgct catcgagctg gaggcgatct ccgagcccga caagcggggc 3060
taccgcaacg tgctcgccac cttgaacggc cagatgcggc cggtgtcggt gcgcgaccgg 3120
tcgatcgtga gcgacgtcaa ggccgccgag agggccgacc ggtcgaaccc gaagcacgtg 3180
gcggcgccgt tcgccggggt cgtgacgctg caggtcggcg agggcgaccg ggtcgaggac 3240
ggccagaccg tcgccaccat cgaggcgatg aagatggagg cctcgatcac cgcgcaccag 3300
gcgggcacgg tcgggcggct cgcgatcggc aaggtacagc aggtcgaggg cggtgacctg 3360
ctgctggtgc tcgagtga 3378
<210> 287
<211> 1125
<212> PRT
<213> Unknown
<220>
<223> pyc_23 sequence from unknown bacterial species from environmental
sample
<400> 287
Met Phe Arg Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Leu Gly Val Ser Thr Val Ala Val Phe
20 25 30
Pro His Glu Asp Arg Ser Ser Leu His Arg Ala Lys Ala Asp Glu Ser
35 40 45
Tyr Gln Ile Gly Glu Pro Gly His Pro Val Arg Ala Tyr Leu Ser Val
50 55 60
Glu Glu Val Ile Lys Ala Ala Arg Lys Ala Gly Ala Asp Ala Ile Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro Asp Leu Ala Glu Ala Cys
85 90 95
Glu Arg Glu Gly Ile Thr Phe Val Gly Pro Ser Ala Glu Val Leu His
100 105 110
Leu Thr Gly Asn Lys Ala Arg Ala Val Ala Ala Ala Arg Glu Ala Gly
115 120 125
Ile Pro Val Leu Arg Ser Ser Ala Pro Ser Asp Asp Val Asp Thr Leu
130 135 140
Leu Ala Ala Ala Asp Gly Ile Asp Phe Pro Ile Phe Val Lys Ala Val
145 150 155 160
Ala Gly Gly Gly Gly Arg Gly Met Arg Arg Val Thr Ala Pro Gly Glu
165 170 175
Leu Arg Glu Ala Val Glu Ala Ala Met Arg Glu Ala Glu Ser Ala Phe
180 185 190
Gly Asp Arg Thr Val Phe Leu Glu Gln Ala Val Val Asn Pro Arg His
195 200 205
Ile Glu Val Gln Ile Leu Ala Asp Ala Ala Gly Asn Val Val His Leu
210 215 220
Tyr Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Ile Glu
225 230 235 240
Ile Ala Pro Ala Pro Asn Leu Asp Pro Glu Leu Arg Glu Arg Ile Cys
245 250 255
Ser Asp Ala Val Ala Phe Ala Arg His Ile Gly Tyr Val Asn Ala Gly
260 265 270
Thr Val Glu Phe Leu Leu Asp Glu Arg Gly Asn His Val Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Gln Val Thr
290 295 300
Asp Arg Asp Leu Val Ile Ala Gln Leu Arg Ile Ala Ser Gly Met Thr
305 310 315 320
Leu Pro Gln Leu Arg Leu Asn Gln Glu Asp Val Thr Leu Asn Gly Ala
325 330 335
Ala Leu Gln Cys Arg Val Thr Thr Glu Asp Pro Thr Asn Gly Phe Arg
340 345 350
Pro Asp Thr Gly Thr Ile Ser Ala Tyr Arg Ser Pro Gly Gly Pro Gly
355 360 365
Val Arg Leu Asp Gly Gly Thr Thr His Thr Gly Ala Glu Val Ser Ala
370 375 380
His Phe Asp Ser Met Leu Val Lys Leu Thr Cys Tyr Gly His Asp Phe
385 390 395 400
Ser Asn Ala Val Arg Arg Ala Arg Arg Ala Ile Ala Glu Phe Arg Ile
405 410 415
Arg Gly Val Ser Thr Asn Leu Pro Tyr Leu Ala Ala Val Leu Asp Asp
420 425 430
Pro Asp Phe Ala Ala Gly Arg Ile Thr Thr Ser Phe Ile Asp Glu Arg
435 440 445
Pro His Leu Leu Thr Ala Arg Lys Pro Ala Asp Arg Gly Thr Arg Val
450 455 460
Leu Ser Tyr Leu Ala Asp Ile Thr Val Asn Lys Pro Asn Gly Pro Arg
465 470 475 480
Pro Gln Val Val Glu Ala Val Asp Lys Leu Pro Arg Cys Asp Leu Asp
485 490 495
Ala Pro Ala Pro Asp Gly Ser Arg Gln Leu Leu Arg Glu Leu Gly Pro
500 505 510
Glu Gly Phe Ala Arg Trp Leu Arg Glu Gln Thr Thr Val Pro Val Thr
515 520 525
Asp Thr Thr Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Val
530 535 540
Arg Thr Arg Asp Leu Leu Ala Ile Ala Pro His Met Ala Arg Met Ala
545 550 555 560
Pro Gln Leu Leu Ser Leu Glu Cys Trp Gly Gly Ala Thr Tyr Asp Val
565 570 575
Ala Leu Arg Phe Leu Ala Glu Asp Pro Trp Glu Arg Leu Ala Ala Leu
580 585 590
Ser Ala Ala Val Pro Asn Ile Cys Thr Gln Met Leu Leu Arg Gly Arg
595 600 605
Asn Thr Val Gly Tyr Thr Pro Tyr Pro Thr Glu Val Thr Asp Ala Phe
610 615 620
Val Glu Glu Ala Ala Arg Thr Gly Met Asp Ile Phe Arg Ile Phe Asp
625 630 635 640
Ala Leu Asn Asp Val Glu Gln Met Arg Pro Ala Ile Asp Ala Val Arg
645 650 655
Ala Thr Gly Thr Ala Val Ala Glu Val Ala Leu Cys Tyr Thr Ala Asp
660 665 670
Leu Ser Asp Pro Ala Glu Gln Leu Tyr Thr Leu Asp Tyr Tyr Leu Arg
675 680 685
Leu Ala Glu Gln Ile Val Glu Ala Gly Ala His Val Leu Ala Ile Lys
690 695 700
Asp Met Ala Gly Leu Leu Arg Pro Pro Ala Ala Arg Ala Leu Val Thr
705 710 715 720
Ala Leu Arg Glu Arg Phe Asp Leu Pro Val His Leu His Thr His Asp
725 730 735
Thr Ala Gly Gly Gln Leu Ala Thr Leu Val Thr Ala Ile Asp Ala Gly
740 745 750
Val Asp Ala Val Asp Ala Ala Val Ala Ser Met Ala Gly Thr Thr Ser
755 760 765
Gln Pro Ser Leu Ser Ala Leu Val Ala Ala Thr Asp His Thr Asp Arg
770 775 780
Thr Thr Gly Leu Ser Leu Glu Ala Val Gly Asp Leu Glu Pro Tyr Trp
785 790 795 800
Glu Ala Val Arg Lys Val Tyr Ala Pro Phe Glu Ala Ala Leu Pro Ser
805 810 815
Pro Thr Gly Arg Val Tyr His His Glu Ile Pro Gly Gly Gln Leu Ser
820 825 830
Asn Leu Arg Gln Gln Ala Ile Ala Leu Gly Leu Gly Asp Arg Phe Glu
835 840 845
Leu Ile Glu Asp Cys Tyr Ala Ala Ala Asp Arg Met Leu Gly Arg Leu
850 855 860
Val Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu His
865 870 875 880
Leu Val Gly Ala Gly Val Glu Pro Lys Asp Phe Glu Ala Asp Pro Gly
885 890 895
Gln Phe Asp Val Pro Asp Ser Val Ile Gly Phe Leu Arg Gly Glu Leu
900 905 910
Gly Asp Pro Pro Gly Gly Trp Pro Glu Pro Phe Arg Ser Arg Ala Leu
915 920 925
Glu Gly Arg Pro Ala Ala Lys Glu Gly Ala Gly Leu Ser Asp Glu Asp
930 935 940
Arg Ala Gly Leu Arg Asp Asp Arg Arg Ala Thr Leu Asn Arg Leu Leu
945 950 955 960
Phe Pro Gly Pro Ala Lys Glu Phe Leu Ala His Arg Glu Ala Tyr Ser
965 970 975
Asp Thr Ser Val Leu Ser Thr Lys Asp Phe Leu Tyr Gly Leu Glu Pro
980 985 990
Asp Ile Glu His Ile Ala Gln Leu Glu Pro Gly Val Ala Leu Leu Ile
995 1000 1005
Glu Leu Glu Ala Ile Ser Glu Pro Asp Lys Arg Gly Tyr Arg Asn
1010 1015 1020
Val Leu Ala Thr Leu Asn Gly Gln Met Arg Pro Val Ser Val Arg
1025 1030 1035
Asp Arg Ser Ile Val Ser Asp Val Lys Ala Ala Glu Arg Ala Asp
1040 1045 1050
Arg Ser Asn Pro Lys His Val Ala Ala Pro Phe Ala Gly Val Val
1055 1060 1065
Thr Leu Gln Val Gly Glu Gly Asp Arg Val Glu Asp Gly Gln Thr
1070 1075 1080
Val Ala Thr Ile Glu Ala Met Lys Met Glu Ala Ser Ile Thr Ala
1085 1090 1095
His Gln Ala Gly Thr Val Gly Arg Leu Ala Ile Gly Lys Val Gln
1100 1105 1110
Gln Val Glu Gly Gly Asp Leu Leu Leu Val Leu Glu
1115 1120 1125
<210> 288
<211> 3384
<212> DNA
<213> Unknown
<220>
<223> pyc_24 sequence from unknown bacterial species from environmental
sample
<400> 288
gtgatctcga aagtcctggt tgccaaccgc ggcgagatcg ccatccgcgc ctttcgcgcc 60
gcctacgagt tgggcatcac gaccgtggcc gtctacccct tcgaggaccg caattcccaa 120
caccggctca aggccgacga gtcctaccag atcggcgaga agggccaccc ggtgcgtgcc 180
tacctgtcgg tcgacgagat cgtctcgacc gcgcgccgcg ccggcgccga cgccgtctac 240
cccggctatg gcttcctgtc ggagaatccc gagctggccg aggcttgcgc ggcagcgggc 300
atcaagttca tcggcccgag cgcggcgatc ctggagctga ccggcaataa gtcccgggcc 360
atcggggagg cgcgcgccgc cgggttgccg gtgctgaact cgtcggcgcc gtcgtcgtcg 420
gtgtacgaac tgcttgccgc cgcccaaaac atgccattcc cgctgttcgt caaggcggtg 480
tctggtggcg gcgggcgcgg catgcgccgg gtgaatgacc ctgacgcctt gcgtgaggcg 540
atcgaggctg ccagccgcga ggccgagtcg tcgttcggcg acccgagcgt gtacctcgag 600
caggccgtgc gcaacccacg ccacatcgag gtacagatcc tggccgacgc tcacggcaac 660
gtgatgcatc tcttcgagcg cgactgcagc gtgcagcgac ggcatcagaa ggtgatcgag 720
ctggcgcctg cgccgaacct gccgacggag ctgcgcgaga agatctgcgc cgacgccgtc 780
gcgttcgcac gccggatcaa ctacacgtat gcgggaaccg tcgagttcct gcttgacgag 840
cgtggacact acgtgttcat cgagatgaac ccgcgcatcc aagtcgagca cacggtcacc 900
gaagaggtca ccgacgttga cctggtggca agccagatgc gcatcgccga cggtgagacc 960
ctcgaagatc ttggcttgaa ccaggattcg ctgcgcacgc gcggtgcggc gttgcagtgc 1020
cggataacca ccgaggaccc ggccaacggg ttccgacccg acacgggccg catcaccggc 1080
taccgctctg cgggcggtgc cggcatccgg ctggacggcg cggcgaacct gggcgccgag 1140
atcggtgcgc atttcgattc gatgctggtg aagctcacct gccggggccg cgacttcgcc 1200
acggcggtcg cccgtgctcg gcgcgcgctc gctgagttcc gggttcgcgg ggtatcgacg 1260
aacatcccgt tcctgttggc cgtggtcacc gactcagatt ttcgggccgg tcggatcaac 1320
acgtcgttca tcgacgagcg cccctacctg ttgaccgcac gcacaccggc ggaccgaggc 1380
accaagatcc tgaactactt ggccgacgtc acggtcaacc agccgcacgg cacccgtcag 1440
tcgacggcgt atccccagga caagcttccg cagatcgatc tgtcggcgcc gccgccggcc 1500
ggctccaagc aactgctcac cgagctcggc ccggagggat tcgctcgccg gctgcgcgag 1560
tcacccgccg tcggcgtcac cgacacgacg ttccgcgatg cccatcagtc gctgctggcc 1620
acccgaatcc gcacgacggg gctgctgatg gttgcgccgt acatcgccag gatgatcccg 1680
cagctgttgt cgatcgaatg ctggggtggc gcgacttatg atgtggcact gcggtttttg 1740
aaggagaacc cgtgggagcg gctggccgcg ctgcgtgagg cggtgcccaa catctgcctg 1800
cagatgctgc tgcgcgggcg caacacggtg ggctacaccc cgtatccgga gtcggtcacg 1860
acggccttca tcgaggaagc cacggccacc ggtgtcgaca tctaccggat cttcgacgcc 1920
ctcaacaacg tggagtcgat gcggccggct atcgacgcgg tgcgcgaaac cggcacggcg 1980
atagccgaag tcgcgatgag ctacaccggc gacctgtccg acccgggcga gaggctttac 2040
acgctggatt actacctcaa gcttgccgag cagatcgtgg acgccggcgc acatgtgctg 2100
gccatcaagg acatggctgg gctgctaaaa gcgccggcgg caacggcttt ggtcggcgcg 2160
ctgcgcagcc gtttcgacct gccggtgcac gtgcacaccc acgacacccc cggcgggcaa 2220
ctggccacgt actgggcggc gtggcatgcc ggtgccaacg cggtcgacgg cgcctccgcg 2280
ccgctggccg gcacgacgag ccagcccgcg ctgtcgtcga tcgtggcggc cgcggcgaac 2340
accgaatacg acacaggcct ggcgctctcc gcggtgtgcg agctggagcc gtactgggat 2400
gccctgcgaa aggtctacgc gcccttcgag tccggactac ccgcgccgac cgggcgcgtg 2460
tacaaccacg agatccccgg gggccagttg tcaaatctgc gtcagcaggc gatcgccctg 2520
gggttcggtg accggttcga ggagatcgag gcgaattacg ctgcggccga ccgcatcctg 2580
ggtcggctgg tcaaggtcac gccgtcgtcg aaggtggtcg gcgaccttgc cctagctctg 2640
gtgggcgccg gcgtgagtgc cgacgagttc gccgctgacc cagcgcgatt cgacattccc 2700
gactccgtga tcggcttctt gcgcggagag ctgggcgatc cgcccggcgg ctggccggag 2760
ccattgcgca ccaaggccct agcgggacgg ccaccggcca agccgcaggt cgcgcttgca 2820
ccagatgatg aggcggcgtt gacgattccc ggctcggagc gtcaatccac cctgaatcgt 2880
ctgctgttcc cgggcccgac aaaggaattc gaagctcacc gcgagctgta cggcgacacg 2940
tcgcgcctgt cggccaacca gttcttctac ggattgcgcc agggcgaaga gcaccgggtg 3000
aggctggagc gcggcgtaga gctgctgatc gggctggagg cgatttccga ccccgacgag 3060
cgtgggatgc gcacggtgat gtgcctactc aacggccagc tgcggccagt gctggtgcgc 3120
gaccgcagca tcgccagcgc ggtgcccgcc gccgagaagg ccgagcgcgc gaaccccgcc 3180
cacatcgcgg caccattcgc cggtgtcgtc accgtcagcg tggcggaggg cggcgaggtg 3240
gccgccggtc agaccgtcgc gacgatcgag gcgatgaaga tggaagccgc aatcaccgcg 3300
ccgaaggccg gaaccgtcga gcgcatcgcc gtgtcagaga ccgcccaggt cgagggcggc 3360
gatctgttga tggtgatcag ctga 3384
<210> 289
<211> 1127
<212> PRT
<213> Unknown
<220>
<223> pyc_24 sequence from unknown bacterial species from environmental
sample
<400> 289
Val Ile Ser Lys Val Leu Val Ala Asn Arg Gly Glu Ile Ala Ile Arg
1 5 10 15
Ala Phe Arg Ala Ala Tyr Glu Leu Gly Ile Thr Thr Val Ala Val Tyr
20 25 30
Pro Phe Glu Asp Arg Asn Ser Gln His Arg Leu Lys Ala Asp Glu Ser
35 40 45
Tyr Gln Ile Gly Glu Lys Gly His Pro Val Arg Ala Tyr Leu Ser Val
50 55 60
Asp Glu Ile Val Ser Thr Ala Arg Arg Ala Gly Ala Asp Ala Val Tyr
65 70 75 80
Pro Gly Tyr Gly Phe Leu Ser Glu Asn Pro Glu Leu Ala Glu Ala Cys
85 90 95
Ala Ala Ala Gly Ile Lys Phe Ile Gly Pro Ser Ala Ala Ile Leu Glu
100 105 110
Leu Thr Gly Asn Lys Ser Arg Ala Ile Gly Glu Ala Arg Ala Ala Gly
115 120 125
Leu Pro Val Leu Asn Ser Ser Ala Pro Ser Ser Ser Val Tyr Glu Leu
130 135 140
Leu Ala Ala Ala Gln Asn Met Pro Phe Pro Leu Phe Val Lys Ala Val
145 150 155 160
Ser Gly Gly Gly Gly Arg Gly Met Arg Arg Val Asn Asp Pro Asp Ala
165 170 175
Leu Arg Glu Ala Ile Glu Ala Ala Ser Arg Glu Ala Glu Ser Ser Phe
180 185 190
Gly Asp Pro Ser Val Tyr Leu Glu Gln Ala Val Arg Asn Pro Arg His
195 200 205
Ile Glu Val Gln Ile Leu Ala Asp Ala His Gly Asn Val Met His Leu
210 215 220
Phe Glu Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Val Ile Glu
225 230 235 240
Leu Ala Pro Ala Pro Asn Leu Pro Thr Glu Leu Arg Glu Lys Ile Cys
245 250 255
Ala Asp Ala Val Ala Phe Ala Arg Arg Ile Asn Tyr Thr Tyr Ala Gly
260 265 270
Thr Val Glu Phe Leu Leu Asp Glu Arg Gly His Tyr Val Phe Ile Glu
275 280 285
Met Asn Pro Arg Ile Gln Val Glu His Thr Val Thr Glu Glu Val Thr
290 295 300
Asp Val Asp Leu Val Ala Ser Gln Met Arg Ile Ala Asp Gly Glu Thr
305 310 315 320
Leu Glu Asp Leu Gly Leu Asn Gln Asp Ser Leu Arg Thr Arg Gly Ala
325 330 335
Ala Leu Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala Asn Gly Phe Arg
340 345 350
Pro Asp Thr Gly Arg Ile Thr Gly Tyr Arg Ser Ala Gly Gly Ala Gly
355 360 365
Ile Arg Leu Asp Gly Ala Ala Asn Leu Gly Ala Glu Ile Gly Ala His
370 375 380
Phe Asp Ser Met Leu Val Lys Leu Thr Cys Arg Gly Arg Asp Phe Ala
385 390 395 400
Thr Ala Val Ala Arg Ala Arg Arg Ala Leu Ala Glu Phe Arg Val Arg
405 410 415
Gly Val Ser Thr Asn Ile Pro Phe Leu Leu Ala Val Val Thr Asp Ser
420 425 430
Asp Phe Arg Ala Gly Arg Ile Asn Thr Ser Phe Ile Asp Glu Arg Pro
435 440 445
Tyr Leu Leu Thr Ala Arg Thr Pro Ala Asp Arg Gly Thr Lys Ile Leu
450 455 460
Asn Tyr Leu Ala Asp Val Thr Val Asn Gln Pro His Gly Thr Arg Gln
465 470 475 480
Ser Thr Ala Tyr Pro Gln Asp Lys Leu Pro Gln Ile Asp Leu Ser Ala
485 490 495
Pro Pro Pro Ala Gly Ser Lys Gln Leu Leu Thr Glu Leu Gly Pro Glu
500 505 510
Gly Phe Ala Arg Arg Leu Arg Glu Ser Pro Ala Val Gly Val Thr Asp
515 520 525
Thr Thr Phe Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Ile Arg
530 535 540
Thr Thr Gly Leu Leu Met Val Ala Pro Tyr Ile Ala Arg Met Ile Pro
545 550 555 560
Gln Leu Leu Ser Ile Glu Cys Trp Gly Gly Ala Thr Tyr Asp Val Ala
565 570 575
Leu Arg Phe Leu Lys Glu Asn Pro Trp Glu Arg Leu Ala Ala Leu Arg
580 585 590
Glu Ala Val Pro Asn Ile Cys Leu Gln Met Leu Leu Arg Gly Arg Asn
595 600 605
Thr Val Gly Tyr Thr Pro Tyr Pro Glu Ser Val Thr Thr Ala Phe Ile
610 615 620
Glu Glu Ala Thr Ala Thr Gly Val Asp Ile Tyr Arg Ile Phe Asp Ala
625 630 635 640
Leu Asn Asn Val Glu Ser Met Arg Pro Ala Ile Asp Ala Val Arg Glu
645 650 655
Thr Gly Thr Ala Ile Ala Glu Val Ala Met Ser Tyr Thr Gly Asp Leu
660 665 670
Ser Asp Pro Gly Glu Arg Leu Tyr Thr Leu Asp Tyr Tyr Leu Lys Leu
675 680 685
Ala Glu Gln Ile Val Asp Ala Gly Ala His Val Leu Ala Ile Lys Asp
690 695 700
Met Ala Gly Leu Leu Lys Ala Pro Ala Ala Thr Ala Leu Val Gly Ala
705 710 715 720
Leu Arg Ser Arg Phe Asp Leu Pro Val His Val His Thr His Asp Thr
725 730 735
Pro Gly Gly Gln Leu Ala Thr Tyr Trp Ala Ala Trp His Ala Gly Ala
740 745 750
Asn Ala Val Asp Gly Ala Ser Ala Pro Leu Ala Gly Thr Thr Ser Gln
755 760 765
Pro Ala Leu Ser Ser Ile Val Ala Ala Ala Ala Asn Thr Glu Tyr Asp
770 775 780
Thr Gly Leu Ala Leu Ser Ala Val Cys Glu Leu Glu Pro Tyr Trp Asp
785 790 795 800
Ala Leu Arg Lys Val Tyr Ala Pro Phe Glu Ser Gly Leu Pro Ala Pro
805 810 815
Thr Gly Arg Val Tyr Asn His Glu Ile Pro Gly Gly Gln Leu Ser Asn
820 825 830
Leu Arg Gln Gln Ala Ile Ala Leu Gly Phe Gly Asp Arg Phe Glu Glu
835 840 845
Ile Glu Ala Asn Tyr Ala Ala Ala Asp Arg Ile Leu Gly Arg Leu Val
850 855 860
Lys Val Thr Pro Ser Ser Lys Val Val Gly Asp Leu Ala Leu Ala Leu
865 870 875 880
Val Gly Ala Gly Val Ser Ala Asp Glu Phe Ala Ala Asp Pro Ala Arg
885 890 895
Phe Asp Ile Pro Asp Ser Val Ile Gly Phe Leu Arg Gly Glu Leu Gly
900 905 910
Asp Pro Pro Gly Gly Trp Pro Glu Pro Leu Arg Thr Lys Ala Leu Ala
915 920 925
Gly Arg Pro Pro Ala Lys Pro Gln Val Ala Leu Ala Pro Asp Asp Glu
930 935 940
Ala Ala Leu Thr Ile Pro Gly Ser Glu Arg Gln Ser Thr Leu Asn Arg
945 950 955 960
Leu Leu Phe Pro Gly Pro Thr Lys Glu Phe Glu Ala His Arg Glu Leu
965 970 975
Tyr Gly Asp Thr Ser Arg Leu Ser Ala Asn Gln Phe Phe Tyr Gly Leu
980 985 990
Arg Gln Gly Glu Glu His Arg Val Arg Leu Glu Arg Gly Val Glu Leu
995 1000 1005
Leu Ile Gly Leu Glu Ala Ile Ser Asp Pro Asp Glu Arg Gly Met
1010 1015 1020
Arg Thr Val Met Cys Leu Leu Asn Gly Gln Leu Arg Pro Val Leu
1025 1030 1035
Val Arg Asp Arg Ser Ile Ala Ser Ala Val Pro Ala Ala Glu Lys
1040 1045 1050
Ala Glu Arg Ala Asn Pro Ala His Ile Ala Ala Pro Phe Ala Gly
1055 1060 1065
Val Val Thr Val Ser Val Ala Glu Gly Gly Glu Val Ala Ala Gly
1070 1075 1080
Gln Thr Val Ala Thr Ile Glu Ala Met Lys Met Glu Ala Ala Ile
1085 1090 1095
Thr Ala Pro Lys Ala Gly Thr Val Glu Arg Ile Ala Val Ser Glu
1100 1105 1110
Thr Ala Gln Val Glu Gly Gly Asp Leu Leu Met Val Ile Ser
1115 1120 1125
<210> 290
<211> 309
<212> DNA
<213> Artificial Sequence
<220>
<223> Strain 331829 gapA truncation
<400> 290
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcaccaa ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcaa tgaaggtctc cggcaacacc gtcaaggttg tttcctggta 240
cgacaacgag tggggctaca cctgccagct cctgcgtctg accgagctcg tagcttccaa 300
gctctttag 309
<210> 291
<211> 216
<212> DNA
<213> Artificial Sequence
<220>
<223> Strain 331831 gapA truncation
<400> 291
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcaccaa ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggca ccaaggacaa caagaccctt 180
tccacccttc tcaagttcga ctcgatctcg aggtag 216
<210> 292
<211> 282
<212> DNA
<213> Artificial Sequence
<220>
<223> Strain 331897 gapA truncation
<400> 292
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcaccaa ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcac cgttggtggc aagcgcatcg ctgtttacgc agagcgcgat 240
ccaaagaacc tggactgggc cgccacaacg ttgacatcgt ga 282
<210> 293
<211> 102
<212> DNA
<213> Artificial Sequence
<220>
<223> Strain 331904 gapA truncation
<400> 293
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttcgtcgca 60
ggtgccaaga aggtcatcat ctcccgatgc aaacgcggct aa 102
<210> 294
<211> 334
<212> PRT
<213> Artificial Sequence
<220>
<223> GapAv9-L224S (331772)
<400> 294
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala His Asn Val Asp Ile Val Ile Glu
85 90 95
Ser Thr Gly Phe Phe Thr Asp Ala Asn Ala Ala Lys Ala His Ile Glu
100 105 110
Ala Gly Ala Lys Lys Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp
115 120 125
Ala Thr Phe Val Tyr Gly Val Asn His Glu Ser Tyr Asp Pro Glu Asn
130 135 140
His Asn Val Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro
145 150 155 160
Met Ala Lys Val Leu Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met
165 170 175
Thr Thr Val His Ala Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Ser
180 185 190
His Arg Asp Leu Arg Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro
195 200 205
Thr Ser Thr Gly Ala Ala Lys Ala Val Ala Leu Val Leu Pro Glu Ser
210 215 220
Lys Gly Lys Leu Asp Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly
225 230 235 240
Ser Ala Thr Asp Leu Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu
245 250 255
Ser Ile Asn Ala Ala Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu
260 265 270
Thr Leu Ala Tyr Ser Glu Glu Pro Leu Val Ser Thr Asp Ile Val His
275 280 285
Asp Ser His Gly Ser Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly
290 295 300
Asn Thr Val Lys Val Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr
305 310 315 320
Cys Gln Leu Leu Arg Leu Thr Glu Leu Val Ala Ser Lys Leu
325 330
<210> 295
<211> 1005
<212> DNA
<213> Artificial Sequence
<220>
<223> GapAv9-L224S (331772)
<400> 295
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcaccaa ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcac cgttggtggc aagcgcatcg ctgtttacgc agagcgcgat 240
ccaaagaacc tggactgggc tgcacacaac gttgacatcg tgatcgagtc caccggcttc 300
ttcaccgatg caaacgcggc taaggctcac atcgaagcag gtgccaagaa ggtcatcatc 360
tccgcaccag caagcaacga agacgcaacc ttcgtttacg gtgtgaacca cgagtcctac 420
gatcctgaga accacaacgt gatctccggc gcatcttgca ccaccaactg cctcgcacca 480
atggcaaagg tcctgaacga caagttcggc atcgagaacg gtctcatgac caccgttcac 540
gcatacaccg gcgaccagcg cctgcacgat gcaagccacc gcgacctgcg tcgtgcacgt 600
gcagcagcag tcaacatcgt tcctacctcc accggtgcag ctaaggctgt tgctctggtt 660
ctcccagaga gcaagggcaa gcttgacggc tacgcacttc gcgttccagt tatcaccggt 720
tccgcaaccg acctgacctt caacaccaag tctgaggtca ccgttgagtc catcaacgct 780
gcaatcaagg aagctgcagt cggcgagttc ggcgagaccc tggcttactc cgaagagcca 840
ctggtttcca ccgacatcgt ccacgattcc cacggctcca tcttcgacgc tggcctgacc 900
aaggtctccg gcaacaccgt caaggttgtt tcctggtacg acaacgagtg gggctacacc 960
tgccagctcc tgcgtctgac cgagctcgta gcttccaagc tctaa 1005
<210> 296
<211> 334
<212> PRT
<213> Artificial Sequence
<220>
<223> GapAv9-H110D (331828)
<400> 296
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala His Asn Val Asp Ile Val Ile Glu
85 90 95
Ser Thr Gly Phe Phe Thr Asp Ala Asn Ala Ala Lys Ala Asp Ile Glu
100 105 110
Ala Gly Ala Lys Lys Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp
115 120 125
Ala Thr Phe Val Tyr Gly Val Asn His Glu Ser Tyr Asp Pro Glu Asn
130 135 140
His Asn Val Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro
145 150 155 160
Met Ala Lys Val Leu Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met
165 170 175
Thr Thr Val His Ala Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Ser
180 185 190
His Arg Asp Leu Arg Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro
195 200 205
Thr Ser Thr Gly Ala Ala Lys Ala Val Ala Leu Val Leu Pro Glu Leu
210 215 220
Lys Gly Lys Leu Asp Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly
225 230 235 240
Ser Ala Thr Asp Leu Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu
245 250 255
Ser Ile Asn Ala Ala Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu
260 265 270
Thr Leu Ala Tyr Ser Glu Glu Pro Leu Val Ser Thr Asp Ile Val His
275 280 285
Asp Ser His Gly Ser Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly
290 295 300
Asn Thr Val Lys Val Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr
305 310 315 320
Cys Gln Leu Leu Arg Leu Thr Glu Leu Val Ala Ser Lys Leu
325 330
<210> 297
<211> 1005
<212> DNA
<213> Artificial Sequence
<220>
<223> GapAv9-H110D (331828)
<400> 297
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcaccaa ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcac cgttggtggc aagcgcatcg ctgtttacgc agagcgcgat 240
ccaaagaacc tggactgggc tgcacacaac gttgacatcg tgatcgagtc caccggcttc 300
ttcaccgatg caaacgcggc taaggctgac atcgaagcag gtgccaagaa ggtcatcatc 360
tccgcaccag caagcaacga agacgcaacc ttcgtttacg gtgtgaacca cgagtcctac 420
gatcctgaga accacaacgt gatctccggc gcatcttgca ccaccaactg cctcgcacca 480
atggcaaagg tcctgaacga caagttcggc atcgagaacg gtctcatgac caccgttcac 540
gcatacaccg gcgaccagcg cctgcacgat gcaagccacc gcgacctgcg tcgtgcacgt 600
gcagcagcag tcaacatcgt tcctacctcc accggtgcag ctaaggctgt tgctctggtt 660
ctcccagagc tcaagggcaa gcttgacggc tacgcacttc gcgttccagt tatcaccggt 720
tccgcaaccg acctgacctt caacaccaag tctgaggtca ccgttgagtc catcaacgct 780
gcaatcaagg aagctgcagt cggcgagttc ggcgagaccc tggcttactc cgaagagcca 840
ctggtttcca ccgacatcgt ccacgattcc cacggctcca tcttcgacgc tggcctgacc 900
aaggtctccg gcaacaccgt caaggttgtt tcctggtacg acaacgagtg gggctacacc 960
tgccagctcc tgcgtctgac cgagctcgta gcttccaagc tctaa 1005
<210> 298
<211> 334
<212> PRT
<213> Artificial Sequence
<220>
<223> GapAv9-K37P (331009)
<400> 298
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Pro Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala His Asn Val Asp Ile Val Ile Glu
85 90 95
Ser Thr Gly Phe Phe Thr Asp Ala Asn Ala Ala Lys Ala His Ile Glu
100 105 110
Ala Gly Ala Lys Lys Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp
115 120 125
Ala Thr Phe Val Tyr Gly Val Asn His Glu Ser Tyr Asp Pro Glu Asn
130 135 140
His Asn Val Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro
145 150 155 160
Met Ala Lys Val Leu Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met
165 170 175
Thr Thr Val His Ala Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Ser
180 185 190
His Arg Asp Leu Arg Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro
195 200 205
Thr Ser Thr Gly Ala Ala Lys Ala Val Ala Leu Val Leu Pro Glu Leu
210 215 220
Lys Gly Lys Leu Asp Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly
225 230 235 240
Ser Ala Thr Asp Leu Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu
245 250 255
Ser Ile Asn Ala Ala Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu
260 265 270
Thr Leu Ala Tyr Ser Glu Glu Pro Leu Val Ser Thr Asp Ile Val His
275 280 285
Asp Ser His Gly Ser Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly
290 295 300
Asn Thr Val Lys Val Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr
305 310 315 320
Cys Gln Leu Leu Arg Leu Thr Glu Leu Val Ala Ser Lys Leu
325 330
<210> 299
<211> 1005
<212> DNA
<213> Artificial Sequence
<220>
<223> GapAv9-K37P (331009)
<400> 299
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcacccc ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcac cgttggtggc aagcgcatcg ctgtttacgc agagcgcgat 240
ccaaagaacc tggactgggc tgcacacaac gttgacatcg tgatcgagtc caccggcttc 300
ttcaccgatg caaacgcggc taaggctcac atcgaagcag gtgccaagaa ggtcatcatc 360
tccgcaccag caagcaacga agacgcaacc ttcgtttacg gtgtgaacca cgagtcctac 420
gatcctgaga accacaacgt gatctccggc gcatcttgca ccaccaactg cctcgcacca 480
atggcaaagg tcctgaacga caagttcggc atcgagaacg gtctcatgac caccgttcac 540
gcatacaccg gcgaccagcg cctgcacgat gcaagccacc gcgacctgcg tcgtgcacgt 600
gcagcagcag tcaacatcgt tcctacctcc accggtgcag ctaaggctgt tgctctggtt 660
ctcccagagc tcaagggcaa gcttgacggc tacgcacttc gcgttccagt tatcaccggt 720
tccgcaaccg acctgacctt caacaccaag tctgaggtca ccgttgagtc catcaacgct 780
gcaatcaagg aagctgcagt cggcgagttc ggcgagaccc tggcttactc cgaagagcca 840
ctggtttcca ccgacatcgt ccacgattcc cacggctcca tcttcgacgc tggcctgacc 900
aaggtctccg gcaacaccgt caaggttgtt tcctggtacg acaacgagtg gggctacacc 960
tgccagctcc tgcgtctgac cgagctcgta gcttccaagc tctaa 1005
<210> 300
<211> 334
<212> PRT
<213> Artificial Sequence
<220>
<223> GapAv9-Y140G (331005)
<400> 300
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala His Asn Val Asp Ile Val Ile Glu
85 90 95
Ser Thr Gly Phe Phe Thr Asp Ala Asn Ala Ala Lys Ala His Ile Glu
100 105 110
Ala Gly Ala Lys Lys Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp
115 120 125
Ala Thr Phe Val Tyr Gly Val Asn His Glu Ser Gly Asp Pro Glu Asn
130 135 140
His Asn Val Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro
145 150 155 160
Met Ala Lys Val Leu Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met
165 170 175
Thr Thr Val His Ala Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Ser
180 185 190
His Arg Asp Leu Arg Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro
195 200 205
Thr Ser Thr Gly Ala Ala Lys Ala Val Ala Leu Val Leu Pro Glu Leu
210 215 220
Lys Gly Lys Leu Asp Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly
225 230 235 240
Ser Ala Thr Asp Leu Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu
245 250 255
Ser Ile Asn Ala Ala Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu
260 265 270
Thr Leu Ala Tyr Ser Glu Glu Pro Leu Val Ser Thr Asp Ile Val His
275 280 285
Asp Ser His Gly Ser Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly
290 295 300
Asn Thr Val Lys Val Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr
305 310 315 320
Cys Gln Leu Leu Arg Leu Thr Glu Leu Val Ala Ser Lys Leu
325 330
<210> 301
<211> 1005
<212> DNA
<213> Artificial Sequence
<220>
<223> GapAv9-Y140G (331005)
<400> 301
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcaccaa ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcac cgttggtggc aagcgcatcg ctgtttacgc agagcgcgat 240
ccaaagaacc tggactgggc tgcacacaac gttgacatcg tgatcgagtc caccggcttc 300
ttcaccgatg caaacgcggc taaggctcac atcgaagcag gtgccaagaa ggtcatcatc 360
tccgcaccag caagcaacga agacgcaacc ttcgtttacg gtgtgaacca cgagtccggc 420
gatcctgaga accacaacgt gatctccggc gcatcttgca ccaccaactg cctcgcacca 480
atggcaaagg tcctgaacga caagttcggc atcgagaacg gtctcatgac caccgttcac 540
gcatacaccg gcgaccagcg cctgcacgat gcaagccacc gcgacctgcg tcgtgcacgt 600
gcagcagcag tcaacatcgt tcctacctcc accggtgcag ctaaggctgt tgctctggtt 660
ctcccagagc tcaagggcaa gcttgacggc tacgcacttc gcgttccagt tatcaccggt 720
tccgcaaccg acctgacctt caacaccaag tctgaggtca ccgttgagtc catcaacgct 780
gcaatcaagg aagctgcagt cggcgagttc ggcgagaccc tggcttactc cgaagagcca 840
ctggtttcca ccgacatcgt ccacgattcc cacggctcca tcttcgacgc tggcctgacc 900
aaggtctccg gcaacaccgt caaggttgtt tcctggtacg acaacgagtg gggctacacc 960
tgccagctcc tgcgtctgac cgagctcgta gcttccaagc tctaa 1005
<210> 302
<211> 334
<212> PRT
<213> Artificial Sequence
<220>
<223> gapAv9 from Corynebacterium glutamicum
<400> 302
Met Thr Ile Arg Val Gly Ile Asn Gly Phe Gly Arg Ile Gly Arg Asn
1 5 10 15
Phe Phe Arg Ala Ile Leu Glu Arg Ser Asp Asp Leu Glu Val Val Ala
20 25 30
Val Asn Gly Thr Lys Asp Asn Lys Thr Leu Ser Thr Leu Leu Lys Phe
35 40 45
Asp Ser Ile Met Gly Arg Leu Gly Gln Glu Val Glu Tyr Asp Asp Asp
50 55 60
Ser Ile Thr Val Gly Gly Lys Arg Ile Ala Val Tyr Ala Glu Arg Asp
65 70 75 80
Pro Lys Asn Leu Asp Trp Ala Ala His Asn Val Asp Ile Val Ile Glu
85 90 95
Ser Thr Gly Phe Phe Thr Asp Ala Asn Ala Ala Lys Ala His Ile Glu
100 105 110
Ala Gly Ala Lys Lys Val Ile Ile Ser Ala Pro Ala Ser Asn Glu Asp
115 120 125
Ala Thr Phe Val Tyr Gly Val Asn His Glu Ser Tyr Asp Pro Glu Asn
130 135 140
His Asn Val Ile Ser Gly Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro
145 150 155 160
Met Ala Lys Val Leu Asn Asp Lys Phe Gly Ile Glu Asn Gly Leu Met
165 170 175
Thr Thr Val His Ala Tyr Thr Gly Asp Gln Arg Leu His Asp Ala Ser
180 185 190
His Arg Asp Leu Arg Arg Ala Arg Ala Ala Ala Val Asn Ile Val Pro
195 200 205
Thr Ser Thr Gly Ala Ala Lys Ala Val Ala Leu Val Leu Pro Glu Leu
210 215 220
Lys Gly Lys Leu Asp Gly Tyr Ala Leu Arg Val Pro Val Ile Thr Gly
225 230 235 240
Ser Ala Thr Asp Leu Thr Phe Asn Thr Lys Ser Glu Val Thr Val Glu
245 250 255
Ser Ile Asn Ala Ala Ile Lys Glu Ala Ala Val Gly Glu Phe Gly Glu
260 265 270
Thr Leu Ala Tyr Ser Glu Glu Pro Leu Val Ser Thr Asp Ile Val His
275 280 285
Asp Ser His Gly Ser Ile Phe Asp Ala Gly Leu Thr Lys Val Ser Gly
290 295 300
Asn Thr Val Lys Val Val Ser Trp Tyr Asp Asn Glu Trp Gly Tyr Thr
305 310 315 320
Cys Gln Leu Leu Arg Leu Thr Glu Leu Val Ala Ser Lys Leu
325 330
<210> 303
<211> 1005
<212> DNA
<213> Artificial Sequence
<220>
<223> gapAv9 from Corynebacterium glutamicum
<400> 303
atgaccattc gtgttggtat taacggattt ggccgtatcg gacgtaactt cttccgcgca 60
attctggagc gcagcgacga tctcgaggta gttgcagtca acggcaccaa ggacaacaag 120
accctttcca cccttctcaa gttcgactcc atcatgggcc gccttggcca ggaagttgaa 180
tacgacgatg actccatcac cgttggtggc aagcgcatcg ctgtttacgc agagcgcgat 240
ccaaagaacc tggactgggc tgcacacaac gttgacatcg tgatcgagtc caccggcttc 300
ttcaccgatg caaacgcggc taaggctcac atcgaagcag gtgccaagaa ggtcatcatc 360
tccgcaccag caagcaacga agacgcaacc ttcgtttacg gtgtgaacca cgagtcctac 420
gatcctgaga accacaacgt gatctccggc gcatcttgca ccaccaactg cctcgcacca 480
atggcaaagg tcctgaacga caagttcggc atcgagaacg gtctcatgac caccgttcac 540
gcatacaccg gcgaccagcg cctgcacgat gcaagccacc gcgacctgcg tcgtgcacgt 600
gcagcagcag tcaacatcgt tcctacctcc accggtgcag ctaaggctgt tgctctggtt 660
ctcccagagc tcaagggcaa gcttgacggc tacgcacttc gcgttccagt tatcaccggt 720
tccgcaaccg acctgacctt caacaccaag tctgaggtca ccgttgagtc catcaacgct 780
gcaatcaagg aagctgcagt cggcgagttc ggcgagaccc tggcttactc cgaagagcca 840
ctggtttcca ccgacatcgt ccacgattcc cacggctcca tcttcgacgc tggcctgacc 900
aaggtctccg gcaacaccgt caaggttgtt tcctggtacg acaacgagtg gggctacacc 960
tgccagctcc tgcgtctgac cgagctcgta gcttccaagc tctaa 1005
<210> 304
<211> 1266
<212> DNA
<213> Corynebacterium glutamicum
<400> 304
atggccctgg tcgtacagaa atatggcggt tcctcgcttg agagtgcgga acgcattaga 60
aacgtcgctg aacggatcgt tgccaccaag aaggctggaa atgatgtcgt ggttgtctgc 120
tccgcaatgg gagacaccac ggatgaactt ctagaacttg cagcggcagt gaatcccgtt 180
ccgccagctc gtgaaatgga tatgctcctg actgctggtg agcgtatttc taacgctctc 240
gtcgccatgg ctattgagtc ccttggcgca gaagctcaat ctttcactgg ctctcaggct 300
ggtgtgctca ccaccgagcg ccacggaaac gcacgcattg ttgacgtcac accgggtcgt 360
gtgcgtgaag cactcgatga gggcaagatc tgcattgttg ctggttttca gggtgttaat 420
aaagaaaccc gcgatgtcac cacgttgggt cgtggtggtt ctgacaccac tgcagttgcg 480
ttggcagctg ctttgaacgc tgatgtgtgt gagatttact cggacgttga cggtgtgtat 540
accgctgacc cgcgcatcgt tcctaatgca cagaagctgg aaaagctcag cttcgaagaa 600
atgctggaac ttgctgctgt tggctccaag attttggtgc tgcgcagtgt tgaatacgct 660
cgtgcattca atgtgccact tcgcgtacgc tcgtcttata gtaatgatcc cggcactttg 720
attgccggct ctatggagga tattcctgtg gaagaagcag tccttaccgg tgtcgcaacc 780
gacaagtccg aagccaaagt aaccgttctg ggtatttccg ataagccagg cgagactgcc 840
aaggttttcc gtgcgttggc tgatgcagaa atcaacattg acatggttct gcagaacgtc 900
ttctctgtgg aagacggcac caccgacatc acgttcacct gccctcgcgc tgacggacgc 960
cgtgcgatgg agatcttgaa gaagcttcag gttcagggca actggaccaa tgtgctttac 1020
gacgaccagg tcggcaaagt ctccctcgtg ggtgctggca tgaagtctca cccaggtgtt 1080
accgcagagt tcatggaagc tctgcgcgat gtcaacgtga acatcgaatt gatttccacc 1140
tctgagatcc gcatttccgt gctgatccgt gaagatgatc tggatgctgc tgcacgtgca 1200
ttgcatgagc agttccagct gggcggcgaa gacgaagccg tcgtttatgc aggcaccgga 1260
cgctaa 1266
<210> 305
<211> 421
<212> PRT
<213> Corynebacterium glutamicum
<400> 305
Met Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala
1 5 10 15
Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala
20 25 30
Gly Asn Asp Val Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp
35 40 45
Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg
50 55 60
Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu
65 70 75 80
Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr
85 90 95
Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg
100 105 110
Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly
115 120 125
Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg
130 135 140
Asp Val Thr Thr Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala
145 150 155 160
Leu Ala Ala Ala Leu Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val
165 170 175
Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys
180 185 190
Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly
195 200 205
Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn
210 215 220
Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu
225 230 235 240
Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr
245 250 255
Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile
260 265 270
Ser Asp Lys Pro Gly Glu Thr Ala Lys Val Phe Arg Ala Leu Ala Asp
275 280 285
Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Phe Ser Val Glu
290 295 300
Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ala Asp Gly Arg
305 310 315 320
Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr
325 330 335
Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala
340 345 350
Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu
355 360 365
Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg
370 375 380
Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala
385 390 395 400
Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr
405 410 415
Ala Gly Thr Gly Arg
420
<210> 306
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial ribosome binding site
<400> 306
agctggtgga atat 14
<210> 307
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial ribosome binding site
<400> 307
aggaggttgt 10
<210> 308
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial ribosome binding site
<400> 308
tgacacctat tg 12
Claims (76)
- NADPH를 사용하여 생산된 화합물을 생산하는 미생물 세포의 능력을 향상시키는 방법으로서, 세포의 이용 가능한 NADPH를 변경하는 단계를 포함하는 방법.
- 제 1 항에 있어서,
이용 가능한 NADPH는 세포에서 변형된 글리세르알데하이드-3-포스페이트 탈수소 효소(GAPDH)를 발현시킴으로써 변경되며, 변형된 GAPDH는 이의 조효소 특이성이 확장되도록 변형되는 방법. - 제 1 항에 있어서,
세포의 이용 가능한 NADPH는 미생물 세포에서 효소 글루타메이트 탈수소 효소(gdh), 아스파르테이트 세미알데하이드 탈수소 효소(asd), 다이하이드로피콜리네이트 환원 효소(dapB) 및 메소-다이아미노피멜레이트 탈수소 효소(ddh)의 하나 이상의 변이체 효소를 발현시킴으로써 변경되며, 변이체 효소는 조효소 NADH 및 NADPH에 대해 이중 특이성을 나타내는 방법. - 제 2 항에 있어서,
변형된 GAPDH는 상응하는 자연 발생 GAPDH에 비해 조효소 NADP에 대해 증가된 특이성을 갖는 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
미생물 세포는 박테리아 세포인 방법. - 제 5 항에 있어서,
박테리아 세포는 코리네박테리움 종, 에스케리키아 종, 바실러스 종 또는 게오바실루스 종으로 이루어진 그룹으로부터 선택된 박테리아로부터인 방법. - 제 5 항에 있어서,
박테리아는 코리네박테리움 글루타미쿰 또는 대장균인 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
미생물 세포는 효모 세포인 방법. - 제 8 항에 있어서,
효모 세포는 사카로마이세스 종으로부터의 세포인 방법. - 제 4 항에 있어서,
자연 발생 GAPDH는 gapA인 방법. - 제 10 항에 있어서,
gapA는 SEQ ID NO: 58의 아미노산 서열을 갖는 방법. - 제 2 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 58의 아미노산 서열과 적어도 70%의 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법. - 제 2 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 서열 동일성을 공유하는 아미노산 서열을 포함하는 방법. - 제 12 항 또는 제 13 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 58의 아미노산 37에 해당하는 위치에 아미노산 치환을 포함하는 방법. - 제 14 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 58의 아미노산 36 및 37에 해당하는 위치에서 아미노산 치환을 포함하는 방법. - 제 14 항에 있어서,
SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신으로 치환되는 방법. - 제 15 항에 있어서,
SEQ ID NO: 58의 아미노산 36에 해당하는 위치의 류신은 트레오닌으로 치환되고, SEQ ID NO: 58의 아미노산 37에 해당하는 위치의 트레오닌은 리신에 의해 치환되는 방법. - 제 2 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 58의 아미노산 192에 해당하는 위치에 아미노산 치환을 포함하는 방법. - 제 2 항에 있어서,
SEQ ID NO: 58의 아미노산 172에 해당하는 위치의 프롤린은 세린으로 치환되는 방법. - 제 2 항에 있어서,
SEQ ID NO: 58의 아미노산 224에 해당하는 위치의 류신은 세린으로 치환되는 방법. - 제 2 항에 있어서,
SEQ ID NO: 58의 아미노산 110에 해당하는 위치의 히스티딘은 아스파르트산으로 치환되는 방법. - 제 135 항에 있어서,
SEQ ID NO: 58의 아미노산 140에 해당하는 위치의 티로신은 글리신으로 치환되는 방법. - 제 13 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 69, 71, 73, 303, 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택되는 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
화합물은 표 2로부터 선택되는 방법. - 제 24 항에 있어서,
화합물은 L-리신 또는 L-트레오닌인 방법. - 자연적으로 존재하는 GAPDH에 비해 확장된 조효소 특이성을 갖는 변형된 GAPDH를 포함하는 미생물 세포로서, 미생물 세포는 변형된 GAPDH가 결여된 상대 미생물 세포에 비해 NADPH를 사용하여 생산된 화합물의 생산을 개선시키는 미생물 세포.
- 제 26 항에 있어서,
변형된 GAPDH는 자연적으로 존재하는 GAPDH에 비해 NADP에 대한 증가된 특이성을 갖는 미생물 세포. - 제 27 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 58과 적어도 70% 동일한 아미노산 서열을 포함하는 미생물 세포. - 제 27 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 미생물 세포. - 제 27 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 58과 적어도 70% 동일한 아미노산 서열을 포함하고 변형된 GAPDH는 SEQ ID NO: 58의 위치 36, 37 또는 둘 다의 아미노산에 대한 치환을 포함하는 미생물 세포. - 제 27 항에 있어서,
변형된 GAPDH는 SEQ ID NO: 69, 71, 73, 303, 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택되는 미생물 세포. - 제 26 항에 있어서,
화합물은 표 2로부터 선택되는 미생물 세포. - 제 32 항에 있어서,
화합물은 L-리신 또는 L-트레오닌인 미생물 세포. - 제 26 항에 있어서,
미생물 세포는 박테리아로부터인 미생물 세포. - 제 34 항에 있어서,
박테리아는 코리네박테리움 종, 에스케리키아 종, 바실러스 종 또는 게오바실루스 종인 미생물 세포. - 제 35 항에 있어서,
박테리아는 코리네박테리움 글루타미쿰 또는 대장균인 미생물 세포. - 제 33 항에 있어서,
미생물 세포는 효모 세포인 미생물 세포. - GAPDH를 변형시켜 변형된 GAPDH가 조효소 NADP 및 NAD에 대해 이중 특이성을 갖게 하는 단계를 포함하여 GAPDH의 조효소 특이성을 확장시키는 방법.
- 제 38 항에 있어서,
변형된 GAPDH는 NAD에 비해 조효소 NADP에 대한 증가된 특이성을 갖는 방법. - 제 39 항에 있어서,
변형된 GAPDH는 NAD보다 NADP를 더 효과적으로 사용하는 방법. - 제 3 항에 있어서,
상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하고, 변이체 효소는 SEQ ID NO: 42 또는 44의 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법. - 제 3 항에 있어서,
상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하고, 변이체 효소는 SEQ ID NO: 30 또는 40의 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법. - 제 3 항에 있어서,
상기 방법은 dapB의 변이체 효소를 발현시키는 단계를 포함하고, 변이체 효소는 SEQ ID NO: 46 또는 48의 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법. - 제 3 항에 있어서,
상기 방법은 ddh를 발현시키는 단계를 포함하고, ddh 효소는 SEQ ID NO: 4의 아미노산 서열을 포함하는 방법. - 제 3 항에 있어서,
상기 방법은 gdh의 변이체 효소를 발현시키는 단계를 포함하고, 변이체 효소는 SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법. - 제 3 항에 있어서,
상기 방법은 asd의 변이체 효소를 발현시키는 단계를 포함하고, 변이체 효소는 SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법. - 제 3 항에 있어서,
모든 4개 효소의 변이체는 미생물 세포에서 동시에 발현되는 방법. - 하나 이상의 효소 gdh, asd, dapB 및 ddh의 변이체를 포함하는 미생물 세포로서, 여기서 변이체는 조효소 NADH 및 NADPH에 대한 이중 특이성을 나타내는 미생물 세포.
- 제 45 항에 있어서,
gdh의 변이체 효소는 SEQ ID NO: 144, 150, 162, 166, 170, 174, 178로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법. - 제 46 항에 있어서,
asd의 변이체 효소는 SEQ ID NO: 108 및 118로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
미생물 세포에서 트레오닌 알돌라제의 변이체 효소를 발현시키는 단계를 더 포함하는 방법으로서, 트레오닌 알돌라제의 변이체 효소는 대장균 트레오닌 알돌라제(ltaE)와 상이한 기질 선호도 또는 효소 동역학을 나타내는 방법. - 제 51 항에 있어서,
변이체 트레오닌 알돌라제는 글리신 생산보다 트레오닌 생산에 유리한 방법. - 제 51 항에 있어서,
변이체 트레오닌 알돌라제는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 및 232로 이루어진 그룹으로부터 선택된 아미노산과 적어도 70% 동일한 아미노산 서열을 포함하는 방법. - 제 53 항에 있어서,
변이체 트레오닌 알돌라제는 SEQ ID NO: 196, 206, 220, 224 및 232로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 방법. - 제 51 항에 있어서,
화합물은 L-트레오닌인 방법. - 제 7 항에 있어서,
박테리아는 대장균이고 상기 방법은 대장균 세포에서 pyc를 발현시키는 단계를 더 포함하는 방법. - 제 56 항에 있어서,
상기 방법은 pyc의 변이체 효소를 발현시키는 단계를 포함하고, pyc의 변이체 효소는 SEQ ID NO: 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 및 289로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 아미노산 서열을 포함하는 방법. - 각각 하나 이상의 합성 프로모터에 작동 가능하게 연결된 thrA 유전자, thrB 유전자 및 thrC 유전자를 포함하는 다중-카피 복제 플라스미드를 포함하는 미생물 세포.
- 제 58 항에 있어서,
미생물 세포는 tdh 결실(Δtdh) 세포인 미생물 세포. - 제 58 항에 있어서,
다중-카피 복제 플라스미드는 SEQ ID NO: 77의 thrABC 오페론 서열과 적어도 70% 동일한 서열을 포함하는 미생물 세포. - 다음 단계 중 둘 이상을 포함하여 미생물 세포에 의해 화합물의 생산 효율을 개선시키는 방법: (1) 내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하는 단계; (2) NADH로부터 NADPH를 생성하는 박테리아에서 수소전달 효소를 발현시키는 단계; (3) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하는 단계; (4) 보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하는 단계; (5) 트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하는 단계; 및 (6) 이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시키는 단계.
- 제 61 항에 있어서,
화합물은 표 2로부터 선택되는 방법. - 제 62 항에 있어서,
화합물은 L-트레오닌인 방법. - 제 61 내지 제 63 항 중 어느 한 항에 있어서,
내인성 해당 효소 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 조효소 특이성을 확장시킴으로써 NADPH를 생산하는 해당 경로를 조작하여 효소가 NADP 및 NAD에 대한 이중 특이성을 갖게 하는 단계는 SEQ ID NO: 294, 296, 233, 234, 235, 236, 298, 및 300으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 gapA의 변이체 효소를 발현시키는 단계를 포함하는 방법. - 제 61 항 내지 제 63 항 중 어느 한 항에 있어서,
보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh, asd, dapB 및 ddh 효소의 상동체를 발현시킴으로써 리신 합성을 위한 DAP-경로를 재프로그래밍하는 단계는 다음 단계 중 하나 이상을 포함하는 방법:
i) SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 gdh의 변이체 효소를 발현시키는 단계;
ii) SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 asd의 변이체 효소를 발현시키는 단계;
iii) SEQ ID NO: 46 및 48로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 dapB의 변이체 효소를 발현시키는 단계; 및
iv) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 및 20으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 ddh의 변이체 효소를 발현시키는 단계. - 제 61 항 내지 제 63 항 중 어느 한 항에 있어서,
보조 인자로서 NADPH보다 NADH를 더 효과적으로 사용하는 내인성 gdh 및 asd 효소의 상동체를 발현시킴으로써 트레오닌 합성을 위한 thrABC-경로를 재프로그래밍하는 단계는 다음 단계 중 하나 이상을 포함하는 방법:
i) SEQ ID NO: 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 및 182로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 gdh의 변이체 효소를 발현시키는 단계; 및
ii) SEQ ID NO: 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 및 130으로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 asd의 변이체 효소를 발현시키는 단계. - 제 61 항 내지 제 63 항 중 어느 한 항에 있어서,
트레오닌의 글리신으로의 분해를 감소시키거나 역전시키는 내인성 L-트레오닌 알돌라제(ltA)의 상동체를 발현시킴으로써 트레오닌 합성을 재프로그래밍하는 단계는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 및 232로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 ltA의 변이체 효소를 발현시키는 단계를 포함하는 방법. - 제 61 항 내지 제 63 항 중 어느 한 항에 있어서,
이종 피루베이트 카복실라제(pyc) 또는 이의 상동체를 발현시켜 옥살로아세테이트의 합성을 증가시키거나 내인성 pyc의 발현을 증가시키는 단계는 SEQ ID NO: 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 및 289로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 pyc의 변이체 효소를 발현시키는 단계를 포함하는 방법. - 절단된 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA) 유전자를 암호화하는 인공 폴리뉴클레오타이드로서, 폴리뉴클레오타이드는 SEQ ID NO: 290, 291, 292, 및 293으로 이루어진 그룹으로부터 선택된 폴리뉴클레오타이드 서열과 적어도 70% 동일한 서열을 포함하는 인공 폴리뉴클레오타이드.
- 제 69 항에 있어서,
폴리뉴클레오타이드는 SEQ ID NO: 290, 291, 292 및 293으로 이루어진 그룹으로부터 선택된 폴리뉴클레오타이드 서열을 포함하는 인공 폴리뉴클레오타이드. - 프로모터에 작동 가능하게 연결된 제 69 항 또는 제 70 항의 인공 폴리뉴클레오타이드를 포함하는 벡터.
- 글리세르알데하이드-3-포스페이트 탈수소 효소(gapA)의 재조합 단백질 단편으로서, 여기서 재조합 단백질 단편은 SEQ ID NO: 233, 234, 235, 236, 및 298로 이루어진 그룹으로부터 선택된 아미노산 서열과 적어도 70% 동일한 서열을 포함하는 재조합 단백질 단편.
- 제 72 항에 있어서,
재조합 단백질 단편은 SEQ ID NO: 233, 234, 235, 236, 및 298로 이루어진 그룹으로부터 선택된 아미노산 서열을 포함하는 재조합 단백질 단편. - 제 72 항 또는 제 73 항에 있어서,
재조합 단백질 단편은 gapA 활성이 결여되는 재조합 단백질 단편. - 제 74 항에 있어서,
재조합 단백질 단편은 미생물 세포가 gapA 활성을 갖는 다른 단백질을 포함할 때 미생물 세포에 의해 표 2로부터 선택된 화합물의 생산성을 증가시키는 재조합 단백질 단편. - 제 26 항 내지 제 36 항 중 어느 한 항에 있어서,
미생물 세포는 변이체 트레오닌 알돌라제, pyc 단백질 또는 둘 다를 더 포함하는 미생물 세포.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762508589P | 2017-05-19 | 2017-05-19 | |
US62/508,589 | 2017-05-19 | ||
PCT/US2018/033529 WO2018213796A1 (en) | 2017-05-19 | 2018-05-18 | Genomic engineering of biosynthetic pathways leading to increased nadph |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20200010285A true KR20200010285A (ko) | 2020-01-30 |
Family
ID=62528904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197035414A KR20200010285A (ko) | 2017-05-19 | 2018-05-18 | 증가된 nadph를 유도하는 생합성 경로의 게놈 공학 |
Country Status (7)
Country | Link |
---|---|
US (2) | US11519012B2 (ko) |
EP (1) | EP3625351A1 (ko) |
JP (1) | JP2020520645A (ko) |
KR (1) | KR20200010285A (ko) |
CN (1) | CN110741091A (ko) |
CA (1) | CA3061731A1 (ko) |
WO (1) | WO2018213796A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023106543A1 (ko) * | 2021-12-06 | 2023-06-15 | 대상 주식회사 | L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018213796A1 (en) | 2017-05-19 | 2018-11-22 | Zymergen Inc. | Genomic engineering of biosynthetic pathways leading to increased nadph |
CN110106129B (zh) * | 2019-05-20 | 2022-08-30 | 福建师范大学 | 谷氨酸脱氢酶基因受抑制的类球红细菌及其制备方法和法尼醇的生产方法 |
KR102126951B1 (ko) * | 2019-09-26 | 2020-06-26 | 씨제이제일제당 주식회사 | 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법 |
CN118389710B (zh) * | 2024-06-28 | 2024-09-06 | 南京农业大学 | 一种与鸡开产日龄性状相关的tdh基因分子标记及其应用 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4435504A (en) | 1982-07-15 | 1984-03-06 | Syva Company | Immunochromatographic assay with support having bound "MIP" and second enzyme |
GB8406752D0 (en) | 1984-03-15 | 1984-04-18 | Unilever Plc | Chemical and clinical tests |
CA1303983C (en) | 1987-03-27 | 1992-06-23 | Robert W. Rosenstein | Solid phase assay |
US4855240A (en) | 1987-05-13 | 1989-08-08 | Becton Dickinson And Company | Solid phase assay employing capillary flow |
US6060296A (en) | 1991-07-03 | 2000-05-09 | The Salk Institute For Biological Studies | Protein kinases |
US5837458A (en) | 1994-02-17 | 1998-11-17 | Maxygen, Inc. | Methods and compositions for cellular and metabolic engineering |
US5605793A (en) | 1994-02-17 | 1997-02-25 | Affymax Technologies N.V. | Methods for in vitro recombination |
US6090592A (en) | 1994-08-03 | 2000-07-18 | Mosaic Technologies, Inc. | Method for performing amplification of nucleic acid on supports |
AU6846698A (en) | 1997-04-01 | 1998-10-22 | Glaxo Group Limited | Method of nucleic acid amplification |
JPH1180185A (ja) | 1997-09-05 | 1999-03-26 | Res Dev Corp Of Japan | オリゴヌクレオチドの化学合成法 |
AR021833A1 (es) | 1998-09-30 | 2002-08-07 | Applied Research Systems | Metodos de amplificacion y secuenciacion de acido nucleico |
US6171833B1 (en) | 1998-12-23 | 2001-01-09 | Massachusetts Institute Of Technology | Pyruvate carboxylase from corynebacterium glutamicum |
US6300070B1 (en) | 1999-06-04 | 2001-10-09 | Mosaic Technologies, Inc. | Solid phase methods for amplifying multiple nucleic acids |
WO2005021772A1 (en) | 2003-08-29 | 2005-03-10 | Degussa Ag | Process for the preparation of l-lysine |
AU2007254993A1 (en) | 2006-05-30 | 2007-12-13 | Dow Global Technologies Llc | Codon optimization method |
JP2010226956A (ja) * | 2007-07-23 | 2010-10-14 | Ajinomoto Co Inc | L−リジンの製造法 |
US8808986B2 (en) | 2008-08-27 | 2014-08-19 | Gen9, Inc. | Methods and devices for high fidelity polynucleotide synthesis |
CN101667897A (zh) | 2008-09-01 | 2010-03-10 | 华为技术有限公司 | 一种实现物理层重传的方法、装置及系统 |
US20100137143A1 (en) | 2008-10-22 | 2010-06-03 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
WO2010051527A2 (en) * | 2008-10-31 | 2010-05-06 | Gevo, Inc. | Engineered microorganisms capable of producing target compounds under anaerobic conditions |
DK2398915T3 (en) | 2009-02-20 | 2016-12-12 | Synthetic Genomics Inc | Synthesis of nucleic acids sequence verified |
US8574835B2 (en) | 2009-05-29 | 2013-11-05 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
KR101182033B1 (ko) * | 2009-07-08 | 2012-09-11 | 씨제이제일제당 (주) | 외래종 유래의 글리세르알데하이드-3-포스페이트 디하이드로지나제의 활성을 획득한 코리네박테리움 속의 l-라이신 생산방법 |
EP2519637A2 (en) | 2009-12-30 | 2012-11-07 | Metabolic Explorer | Strains and method for the production of methionine |
WO2011153116A2 (en) | 2010-05-29 | 2011-12-08 | Jackson Crisp | Food container incorporating oral facility |
WO2011153166A1 (en) * | 2010-06-01 | 2011-12-08 | William Marsh Rice University | Native nad-dependent gapdh replaced with nadp-dependent gapdh plus nadk |
EP2395087A1 (en) | 2010-06-11 | 2011-12-14 | Icon Genetics GmbH | System and method of modular cloning |
EP2559758A1 (en) * | 2011-08-17 | 2013-02-20 | Technische Universität Hamburg-Harburg | Modified glyceraldehyde-3-phosphate dehydrogenase from corynebacterium glutamicum and uses thereof |
MY179341A (en) * | 2014-04-30 | 2020-11-04 | Evonik Operations Gmbh | Method for producing l-amino acids using an alkaliphilic bacteria |
AU2015343034B2 (en) | 2014-11-05 | 2021-12-16 | Illumina, Inc. | Transposase compositions for reduction of insertion bias |
US11151497B2 (en) | 2016-04-27 | 2021-10-19 | Zymergen Inc. | Microbial strain design system and methods for improved large-scale production of engineered nucleotide sequences |
CA3007635A1 (en) | 2015-12-07 | 2017-06-15 | Zymergen Inc. | Promoters from corynebacterium glutamicum |
US9988624B2 (en) | 2015-12-07 | 2018-06-05 | Zymergen Inc. | Microbial strain improvement by a HTP genomic engineering platform |
KR20190090081A (ko) | 2015-12-07 | 2019-07-31 | 지머젠 인코포레이티드 | Htp 게놈 공학 플랫폼에 의한 미생물 균주 개량 |
JP2019519243A (ja) * | 2016-07-05 | 2019-07-11 | ザイマージェン インコーポレイテッド | Rnaデグラドソームタンパク質複合体の遺伝的攪乱 |
EP3497226A4 (en) * | 2016-08-15 | 2020-07-01 | Cathay Biotech Inc. | CONTROL OF THE DISTRIBUTION OF A BIOFILM FOR THE PRODUCTION OF AMINO ACIDS OR PRODUCTS FROM AMINO ACIDS |
WO2018213796A1 (en) | 2017-05-19 | 2018-11-22 | Zymergen Inc. | Genomic engineering of biosynthetic pathways leading to increased nadph |
-
2018
- 2018-05-18 WO PCT/US2018/033529 patent/WO2018213796A1/en unknown
- 2018-05-18 JP JP2019563587A patent/JP2020520645A/ja active Pending
- 2018-05-18 KR KR1020197035414A patent/KR20200010285A/ko unknown
- 2018-05-18 CA CA3061731A patent/CA3061731A1/en not_active Abandoned
- 2018-05-18 CN CN201880033263.9A patent/CN110741091A/zh active Pending
- 2018-05-18 EP EP18729304.8A patent/EP3625351A1/en not_active Withdrawn
- 2018-05-18 US US16/614,566 patent/US11519012B2/en active Active
-
2022
- 2022-10-07 US US18/045,098 patent/US20240067997A1/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023106543A1 (ko) * | 2021-12-06 | 2023-06-15 | 대상 주식회사 | L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법 |
Also Published As
Publication number | Publication date |
---|---|
US20200263214A1 (en) | 2020-08-20 |
CA3061731A1 (en) | 2018-11-22 |
WO2018213796A1 (en) | 2018-11-22 |
US11519012B2 (en) | 2022-12-06 |
CN110741091A (zh) | 2020-01-31 |
US20240067997A1 (en) | 2024-02-29 |
EP3625351A1 (en) | 2020-03-25 |
JP2020520645A (ja) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20200010285A (ko) | 증가된 nadph를 유도하는 생합성 경로의 게놈 공학 | |
Sylvers et al. | A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase | |
KR101511639B1 (ko) | 재조합 미생물 및 이의 사용 방법 | |
KR102345899B1 (ko) | 박테리아 헤모글로빈 라이브러리를 생성하는 방법 및 이의 용도 | |
CN1599751A (zh) | 分枝杆菌比较基因组学作为鉴定分枝杆菌病的诊断、预防或治疗靶的工具 | |
KR102345898B1 (ko) | 글루코오스 투과 효소 라이브러리를 생성하는 방법 및 이의 용도 | |
US20050181490A1 (en) | Fermentation process for preparing coenzyme Q10 by the recombinant Agrobacterium tumefaciens | |
KR20210144816A (ko) | 키메라 플라스미드 라이브러리의 구축 방법 | |
CN106520801B (zh) | 苏氨酸衰减子的突变体及其应用以及解除苏氨酸操纵子反馈阻遏的方法 | |
KR101718681B1 (ko) | 가용성 단백질 발현량 및 활성이 증대된 헬리코박터 파일로리 유래 α-1,3 푸코실 전달효소의 유전자와 단백질 및 α-1,3 푸코실올리고당 생산에의 응용 | |
AU2016293527A1 (en) | Microorganisms having increased lipid productivity | |
CN114277046B (zh) | 一种合成四氢嘧啶的三基因串联表达载体及应用 | |
KR20200134333A (ko) | 발효에 의한 히스타민 생산을 위해 조작된 생합성 경로 | |
JP5810077B2 (ja) | 遺伝子組換えStreptomyces属放線菌による有用物質生産法 | |
CN107287197B (zh) | 组氨酸衰减子突变体和解决反馈阻遏的组氨酸操纵子以及它们的应用 | |
KR102282778B1 (ko) | 재조합 미생물 및 이의 사용 방법 | |
CN113166741A (zh) | Dna文库的多重确定性组装 | |
EP3599282B1 (en) | Method for the fermentative production of l-lysine | |
JP2022535651A (ja) | 好熱性タンパク質を利用した組換えインビトロ転写及び翻訳のための系、方法及び組成物 | |
KR20180035297A (ko) | 글루타메이트 측정용 바이오센서 및 그 제조방법 | |
CN107810269A (zh) | 新颖的启动子及其用途 | |
KR20200023450A (ko) | 기능적 dna 서열의 안정화된 카피 수를 갖는 미생물 및 관련 방법 | |
CN111607548B (zh) | 一种产甘露聚糖的重组大肠杆菌及其应用 | |
EP1231266A1 (en) | Arabidopsis-origin gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene | |
RU2229517C1 (ru) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК PZIFN 2α, КОДИРУЮЩАЯ СИНТЕЗ АЛЬФА-2B-ИНТЕРФЕРОНА ЧЕЛОВЕКА, И ШТАММ ESCHERICHIA COLI - ПРОДУЦЕНТ АЛЬФА-2B-ИНТЕРФЕРОНА ЧЕЛОВЕКА |