WO2004054779A1 - 研磨用独立発泡体の製造方法、研磨用発泡シート、研磨用積層体と研磨方法、研磨用積層体の製造方法、および溝付き研磨パッド - Google Patents

研磨用独立発泡体の製造方法、研磨用発泡シート、研磨用積層体と研磨方法、研磨用積層体の製造方法、および溝付き研磨パッド Download PDF

Info

Publication number
WO2004054779A1
WO2004054779A1 PCT/JP2003/014964 JP0314964W WO2004054779A1 WO 2004054779 A1 WO2004054779 A1 WO 2004054779A1 JP 0314964 W JP0314964 W JP 0314964W WO 2004054779 A1 WO2004054779 A1 WO 2004054779A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
foam
laminate
layer
pad
Prior art date
Application number
PCT/JP2003/014964
Other languages
English (en)
French (fr)
Inventor
Yoshinori Masaki
Tsuyoshi Furukawa
Kazuhiko Yagata
Original Assignee
Sumitomo Bakelite Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002363711A external-priority patent/JP2004200222A/ja
Priority claimed from JP2003158839A external-priority patent/JP2004358596A/ja
Priority claimed from JP2003169895A external-priority patent/JP2005001083A/ja
Priority claimed from JP2003299565A external-priority patent/JP2005066749A/ja
Priority claimed from JP2003360785A external-priority patent/JP2004188584A/ja
Priority claimed from JP2003373167A external-priority patent/JP2004203024A/ja
Priority claimed from JP2003373168A external-priority patent/JP2004188586A/ja
Application filed by Sumitomo Bakelite Company Limited filed Critical Sumitomo Bakelite Company Limited
Priority to AU2003284655A priority Critical patent/AU2003284655A1/en
Publication of WO2004054779A1 publication Critical patent/WO2004054779A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/38Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in the same barrel

Definitions

  • the present invention relates to a method for producing a polishing independent foam which can be suitably used for a polishing pad used for polishing semiconductors, various memory hard disk substrates, and the like, and particularly to a method for producing a semiconductor device wafer such as an interlayer insulating film or a metal wiring.
  • the present invention relates to a foamed polishing sheet and a polishing laminate used for a polishing pad suitable for surface flattening, a polishing method using the polishing laminate, a method for producing a polishing laminate, and a grooved polishing pad.
  • FIGS 1 and 2 show an example of a typical process, chemical mechanical polishing (CMP), which is a typical process used for surface flattening of semiconductor wafers.
  • CMP chemical mechanical polishing
  • the semiconductor wafer 1 is pressed against the surface of the polishing pad 6 while the polishing plate 4 containing abrasive grains is dropped through the slurry supply pipe 10 by rotating the platen 2 and the sample holder 5, so that the surface of the depiice is removed. It is to flatten with high precision.
  • reference numeral 7 denotes a driving rotary shaft.
  • the surface state of the polishing pad 6 is adjusted by pressing the dressing disc 3 against the surface of the polishing pad 6 while rotating.
  • the characteristics of each component such as the polishing pad 6, dressing disc 3, polishing slurry 4, wafer fixing jig 8, and packing material 9 are determined by the polishing rate, the flatness of the device surface after polishing and the wafer surface. Influences the polishing performance typified by the flatness variation in the wafer and the variation over time between the wafers, which is an index of the variation with time, among which polishing pad 6, polishing slurry 5, and polishing The effect of the abrasive grains contained in the slurry is extremely large.
  • a polishing pad used for polishing interlayer insulating films, metal wiring, etc. has a function of retaining slurry by dressing before and during use and by abrasion of the polishing pad surface as polishing progresses.
  • a polymer matrix matrix resin
  • IC 100 trade name
  • the matrix resin a thermosetting polyurethane resin which is hard and has a small compression ratio has been used.
  • a typical conventional method for producing a closed cell foam is generally called a casting method.After mixing and dispersing hollow polymer microelements in the raw material of polymer matrix, it is poured into a mold and cured. And slicing the obtained compound.
  • the independent foam obtained by the casting method tends to have a bias in the distribution in the compound during the curing process in addition to the variation in the size of the hollow polymer microelement itself.
  • the foaming state varies within and between the lots, and when the polishing pad finally becomes a polishing pad, the polishing performance tends to vary.
  • hollow polymer microelements which are more expensive than general physical foaming agents, causes a decrease in productivity due to the fact that curing takes a long time and a compound slicing step is required. And the resulting increase in product costs.
  • a non-reactive gas in a supercritical state is impregnated and then subjected to normal pressure. And then further heating to produce an independent foam (called a patch-type supercritical foaming method).
  • a patch-type supercritical foaming method Specifically, a non-foamed sheet molded by an extruder is sealed in a high-pressure container, the sheet is impregnated with carbon dioxide as a foaming agent for a long time, the pressure is released, and the removed sheet is heated to foam. It is a way to make it.
  • the batch type supercritical foaming method can obtain a closed foam with less foaming variation than the casting method, but on the other hand, the productivity is low because the impregnation of the foaming agent takes a long time. In addition, large-scale high-pressure equipment is required, resulting in a large capital investment.
  • transistors I c , L
  • the method for producing a polishing independent foam according to the present invention firstly solves the problems that conventionally, the production takes a long time and the performance of the obtained polishing pad varies.
  • the purpose of the present invention is to provide a method for producing a polishing independent foam, which efficiently produces a polishing independent foam having a small variation in performance, which is suitable for polishing.
  • the purpose of this method is to mold hard-to-foam resin, which has been difficult with extrusion molding. Is to provide.
  • the conventional closed-cell foam breaks shells of polymer microelements due to dressing before and during use and wear of the polishing pad surface as polishing proceeds, opening pores and retaining polishing slurry. It was to express the ability.
  • conventional closed-cell foams there are very few documents and reports referring to the size, number, total area, etc. of the holes that are opened on the polished surface, which are considered to have a significant effect on the polishing performance. In most cases, only the size, number, and porosity of the polymer microelements were described.
  • Flatness can be expected to be improved by using a polishing layer with a hardness of 80 or more according to JISK 731 1 and a high hardness classified as a hard type and a small compression ratio.
  • Force S it is difficult to follow the large undulation of the whole wafer, and the uniformity is reduced.
  • a polishing layer belonging to a soft type having a high compression ratio is used, the uniformity is maintained but the flatness is inevitably reduced. In recent years, how to achieve both flatness and uniformity has become a more important issue than ever.
  • the hard polishing layer 6 (closed foam) is made of a soft base material having cushioning properties.
  • the mainstream method has been to bond the material 11 with the polishing pad 12 to form a two-layer structure (see Fig. 2).
  • the concept was to maintain flatness with the independent foam 6 having a large surface hardness and a small compressibility, and uniformity with the base material 11 having a cushioning property with a large compressibility.
  • the polishing foam sheet according to the present invention firstly improves the polishing rate of a polishing pad using a conventional independent foam, for example, by improving the polishing rate and solving the problem of variation in polishing performance.
  • the purpose of the present invention is to provide a polishing foam sheet capable of stably exhibiting high-precision polishing performance over time.
  • the polishing layer can be made thicker.
  • the purpose of the present invention is to provide a long-life polishing foam sheet having both flatness and uniformity.
  • polishing layer of the polishing pad for example, polyurethane foam has been typically used.
  • the layer is a foam, the size and density of the bubbles contained in the polishing layer have a great influence on the finished state of the workpiece after polishing.
  • the polishing pad having a two-layer structure in which a hard polishing layer is bonded to a soft base material in order to achieve both flatness and uniformity can be used to polish a relatively hard object such as an oxide film. In this case, good polishing can be realized.
  • the polishing laminate and the polishing method according to the present invention firstly polishes the surface of a relatively soft material with a conventional polishing pad in which a polishing layer is laminated on a cushion layer. The purpose of this is to improve the performance of the polishing pad by solving the problem that scratches easily enter the surface of the workpiece when polishing is performed.
  • a relatively soft material such as a copper film
  • a conventional polishing pad in which a cushion layer and a molded body for polishing are bonded together
  • the main purpose of this method is to use the polishing pad as a polishing pad that can maintain uniformity without lowering the polishing rate even when polishing at a lower pressure than before.
  • the size according to the polishing pad means that, for example, a polishing pad used for polishing a device wafer having a diameter of 8 inches ⁇ generally needs to have a diameter of about 61 O mm. In order to cover the size of the polishing pad with this compact, a width of at least 610 mm is required.
  • the method for manufacturing a polishing laminate according to the present invention is intended to provide a polishing laminate which has less quality variation and exhibits stable polishing performance as compared with a conventional polishing pad.
  • the purpose is to provide a method of manufacturing a polishing laminate that can exhibit stable polishing performance without deteriorating the quality even when scaling up to accommodate a large diameter wafer. is there.
  • a conventional polishing pad that has been used as a standard for polishing an interlayer insulating film, a metal wiring, and the like includes a polishing liquid layer having a thickness of, for example, as disclosed in JP-A-8-21669. Grooves are provided to make the surface almost the same at all locations on the polished surface.However, as the flatness of the pattern formation surface becomes severer due to the development of the electronics industry mentioned above, As the level of polishing performance required for pads has increased remarkably, the role of the grooves has also become more important, and the increase in the diameter of wafers has further accelerated this trend.
  • the grooved polishing pad according to the present invention is intended to improve the polishing performance of the conventional grooved polishing pad in view of the above circumstances, and the purpose thereof is, for example, a polishing speed and uniformity balance.
  • An object of the present invention is to provide a grooved polishing pad which has a good polishing performance and a small variation in polishing performance with time. Disclosure of the invention
  • the first characteristic configuration of the method for producing a polishing independent foam according to the present invention is as follows.
  • a step of dissolving and mixing the blowing agent into the molten resin under a pressure atmosphere exceeding (A) and a step of exposing the molten resin to a pressure atmosphere lower than the pressure at which the blowing agent is dissolved and mixed (B). is there.
  • a closed cell having an average cell diameter of 0.1 to 100 m is suitable for high-precision polishing, for example, CMP of a semiconductor device surface. If the average diameter of the bubbles is less than 0.1, agglomerates of abrasive grains contained in the polishing slurry and polishing debris generated with the progress of polishing are not easily discharged from the opened bubbles. Voids are easily clogged. As a result, the polishing rate fluctuates in the surface to be polished, such as a wafer, and the polishing rate undesirably fluctuates with time. Conversely, if it exceeds 100 m, the slurry holding performance tends to fluctuate on the surface to be polished, and the polishing speed varies greatly on the surface to be polished. Therefore, it becomes difficult to achieve highly accurate polishing.
  • the condition for obtaining a closed cell having an average cell diameter of 0.1 to 100 m, which is preferably used for polishing, is that a pressure atmosphere in which a foaming agent is dissolved and mixed in a resin is 1 OMPa or more. It is. If it is less than OMPa, the dissolving and mixing of the foaming agent does not proceed stably, and the foaming state of the obtained independent foam tends to fluctuate. When the blowing agent is dissolved and mixed at less than 1 OMPa, the cells contained in the obtained independent foam are coarse, and it is extremely difficult to obtain bubbles having an average cell diameter of less than 100 m. Accordingly, the pressure atmosphere in which the foaming agent is dissolved and mixed in the resin is preferably 1 OMPa or more.
  • the independent foam for polishing having an average cell diameter of 0.1 to 100 / Xm produced by the method of the first characteristic configuration exhibited excellent polishing performance. According to the efficient production method using the inexpensive foaming agent of the present invention, stable production of the independent foam for polishing at low cost can be expected. Therefore, there is provided a method for producing a polishing independent foam, which efficiently manufactures a polishing independent foam suitable for polishing and having small performance variations.
  • the second characteristic configuration is that the supply rate of the foaming agent to be injected into the extruder is 0.5 to 10% by weight of the discharge rate.
  • the supply rate of the foaming agent injected into the extruder is less than 0.5% by weight of the discharge rate, foaming hardly occurs or a desired foaming state is obtained. It is not preferable because it becomes difficult.
  • the number of blowing agents injected is more than 10% by weight of the discharge speed, the blowing agent becomes excessive with respect to the resin because / 0 is discrete during molding or remains dissolved in the resin without foaming.
  • the step of exposing to a pressure atmosphere lower than the pressure at which the blowing agent is dissolved and mixed tends to be unstable.
  • the supply rate of the foaming agent to be injected into the extruder is preferably 0.5 to 10% by weight of the discharge rate.
  • the third characteristic configuration is that a post-crosslinking agent is added to the hard-to-foam resin and melted by an extruder in order to produce a polishing independent foam having an average cell diameter of 0.1 to 100 ⁇ m, and the OMP
  • the melting agent is obtained by dissolving and / or mixing the blowing agent in the molten resin under a pressure atmosphere exceeding a and then exposing the molten resin to a pressure atmosphere lower than the pressure at the melting and / or mixing point. It is characterized in that the foam is crosslinked.
  • the pressure at the time of molding is reduced to facilitate molding, and by promoting the crosslinking, the quality can be stabilized.
  • the viscosity of the molten resin increases and the moldability decreases.
  • the post-crosslinking agent referred to here does not proceed with crosslinking during molding, lowers the viscosity of the molten resin by the plasticizing effect, and forms It refers to one in which crosslinking proceeds later. This is very useful because a network structure is formed in the resin by cross-linking, which contributes to the improvement of abrasion resistance, heat resistance, and chemical resistance and stabilizes quality.
  • the third characteristic configuration it has become possible to efficiently produce a foam of a hard-to-polish resin for polishing, which has been difficult by extrusion molding, and the polishing performance has also been improved. Therefore, there is provided a method for producing a polishing independent foam, which efficiently forms a foam of a difficult-to-polish resin for polishing having excellent polishing performance.
  • the fourth characteristic configuration is that the hard-to-foam resin has a hardness of 90 or more according to JIS K7111, and has a flow start temperature of 200 to 230 ° C.
  • the hard-to-foam resin has an A hardness of 90 or more according to JIS K7111.
  • a resin having a flow start temperature of 200 ° C. to 230 ° C. is preferable.
  • the fifth feature configuration is that the hard-to-foam resin is a thermoplastic elastomer, and the sixth feature configuration is that the thermoplastic elastomer is a polyurethane.
  • thermoplastic polyurethane elastomers are most preferable because the abrasion resistance, which is important for polishing, can be controlled in a relatively wide range. Since the thermal decomposition of polyurethane starts gradually at 230 ° C., it is preferable to adjust the flow starting temperature to 200 ° C. to 230 ° C.
  • the seventh characteristic configuration is that the post-crosslinking agent is contained in an amount of 0.1 to 40 parts by weight with respect to 100 parts by weight of the hardly foamable resin.
  • the amount of the post-crosslinking agent added is less than 0.1 with respect to 100 parts by weight of the resin, it does not contribute to a reduction in the molding pressure, and hardly exerts the effect as the crosslinking agent. vice versa
  • the addition amount of the post-crosslinking agent is preferably 0.1 to 40 parts by weight based on 100 parts by weight of the resin.
  • the eighth characteristic configuration is that a modifier for increasing the melt tension of the resin is added to the hard-to-foam resin
  • the ninth characteristic configuration is that the modifier is acrylic-modified.
  • it is a basic resin.
  • a modifier that increases the melt tension of the resin together with the post-crosslinking agent to the hard-to-foam resin, in addition to the effect of the post-crosslinking agent, the melt tension of the resin is increased.
  • foam breakage is suppressed, and the amount of foaming agent used can be reduced. At the same time, it suppresses the occurrence of dents, streaks, and burned foreign substances on the foam, improves the surface appearance quality, and contributes to the homogenization of foam.
  • acryl-modified fluororesin is preferable.
  • concentration is appropriate, an extruder that has a favorable effect on foam molding only at the time of molding without deteriorating polishing performance even if it is contained in the final product, and has general ability It is possible to mix well with resin.
  • an acryl-modified fluororesin has a high affinity for polyurethane and can be easily mixed.
  • carbon dioxide is used as a foaming agent, the dissolution and / or mixing of carbon dioxide in the molten resin is promoted because the acrylic-modified fluororesin has a high affinity for carbon dioxide. It produces an effect and is extremely suitable.
  • the tenth characteristic configuration is that the blowing agent is in a gaseous state at normal temperature and normal pressure, and the eleventh characteristic configuration is that the blowing agent is carbon dioxide.
  • a gas that is in a gaseous state at normal temperature and normal pressure is not particularly limited, and examples thereof include an inorganic gas, a front gas, and an organic gas such as a low-molecular-weight hydrocarbon.These gases are inert to the raw material resin and do not require gas recovery. Gas is preferred.
  • the inorganic gas is not particularly limited as long as it is an inorganic substance which is a gas at normal temperature and normal pressure and can be dissolved and mixed with the raw material resin, for example, carbon dioxide, nitrogen, argon, neon, helium, oxygen, etc. However, carbon dioxide is more preferable because it can be easily dissolved and mixed with the raw material resin, is easy to handle, and is inexpensive as compared with other blowing agents. (Foaming sheet for polishing)
  • a first characteristic configuration of the foamed sheet for polishing according to the present invention is as follows.
  • the average value of the equivalent circle diameter of the opening formed as a result of the included pores being opened is 1 to 50 m, and the number of openings of the equivalent circle diameter of 0.1 to 10 / ⁇ is at least 100.
  • the point is that 0 or more Z cm 2 is included.
  • the average value of the diameter of the opening is less than 1 m, agglomerates of abrasive grains contained in the polishing slurry and polishing debris generated with the progress of polishing are not easily discharged from the pores. Voids are easily clogged. As a result, the polishing rate is likely to vary within the surface of the workpiece, and the polishing rate is not easily changed over time. Conversely, if it exceeds 50 m, the slurry holding performance tends to vary within the workpiece surface, and the polishing rate varies greatly within the workpiece surface, so that highly accurate polishing can be realized very much. It will be difficult.
  • the opening having a diameter of 0.1 to 10 m contributes to improving the flatness of the surface of the workpiece after polishing, and further has a role of reducing a variation in polishing rate in the workpiece surface and a variation with time.
  • the number is less than 100 cm 2 , the proportion of the total opening is small and the effect of improving the uniformity is small, which is preferable. Therefore, at least 100 cm 2 or more is necessary.
  • the polishing rate is increased as compared with a conventional pad, and also the flatness of the device surface after polishing and the wafer surface thereof are polished.
  • the present invention provides a foamed sheet for polishing, in which the uniformity of the inside is significantly improved, high-precision polishing can be expected, and high-precision polishing performance can be stably exhibited over time.
  • the second characteristic configuration is that the ratio of the total area of all the openings on the polishing surface is 30 to 70% of the entire polishing surface.
  • the ratio of the total area of all the openings to the entire polished surface has a strong correlation with the polishing rate. If the ratio of the total area of all the openings is less than 30% of the entire polished surface, the polishing is performed. This is not preferable because not only does the slurry holding performance decrease, the polishing rate decreases, but also the dispersion in the surface of the workpiece tends to occur, and the fluctuation over time increases. If the content exceeds 70%, not only the mechanical strength in the thickness direction of the foam sheet is significantly reduced, but also the apparent surface hardness is reduced, which is a factor that causes a reduction in flatness of the surface of the workpiece after polishing. Therefore, it is not preferable. Therefore, all It is preferable that the ratio of the total area of the openings is 30 to 70% of the entire polished surface.
  • the third characteristic configuration is that the apparent compression ratio at 25 ° C is 5 to 15%.
  • the compression ratio is less than 5%, the polishing sheet cannot follow the undulation of the entire wafer, and the polishing rate and the polishing rate vary widely within the wafer surface, and the polishing rate also changes over time. It is not preferred. Conversely, if it is 15% or more, the apparent surface hardness decreases, which is a factor that may cause a decrease in flatness of the device surface after polishing, which is not preferable. Therefore, the range of apparent compressibility suitable for high-precision polishing is 5 to 15% in a 25 ° C atmosphere.
  • the fourth characteristic configuration is that the main component of the raw material forming the sheet is a thermoplastic elastomer having an A hardness of 70 or more according to JIS K-7111.
  • the polishing target is a relatively soft metal such as Cu
  • the A hardness according to JISK-731 1 Preferably, a thermoplastic elastomer of 70 or more is used.
  • the fifth characteristic configuration is that the hardness according to JIS K.7311 is 80 or more and the apparent compression ratio at 25 ° C is 3 to 15%.
  • the polishing layer It is not preferable because it cannot follow the entire undulation, the polishing rate varies greatly in the surface of the workpiece, and the uniformity decreases. Conversely, if it is more than 15%, not only is the polishing rate reduced, but also the flatness of the workpiece surface after polishing is reduced, which is not preferable.
  • the polishing speed is higher than that of a conventional pad, and the flatness of the device surface after polishing and the in-plane Achieving high-precision polishing with a good balance with uniformity can be expected. Further, by increasing the thickness of the polishing layer, an improvement in throughput can be expected.
  • the sixth characteristic configuration is that the average diameter of the bubbles contained in the sheet is 1 to 50 m.
  • the average diameter of the bubbles is 1 to 50;
  • the seventh characteristic configuration is that the main raw material of the sheet is a thermoplastic elastomer
  • the eighth characteristic configuration is the polishing foam sheet of the fourth or seventh characteristic configuration, wherein the thermoplastic elastomer is used.
  • the thermoplastic elastomer is used.
  • One is that it is polyurethane.
  • thermoplastic polyurethane elastomers are most preferable because the abrasion resistance, which is important for polishing, can be controlled in a relatively wide range.
  • the first characteristic configuration of the polishing laminate according to the present invention has a surface hardness of 80 or more in A hardness according to JISK7311, a compressibility of 1.5% or more, The point is that a molded article for polishing having a polishing layer having a thickness of 2 mm or less is laminated on a support layer having a compressibility smaller than that of the molded article for polishing.
  • the surface of a semiconductor wafer is polished, if the surface hardness of the polishing layer is less than 80 in A hardness, the flatness of the polished workpiece surface is unpreferably reduced.
  • the flatness of the surface of the workpiece after polishing is ensured with the flatness accuracy of the back surface of the support layer and the surface of the surface plate.
  • the thickness of the polishing layer is more than 2 mni, the influence of the backside of the support layer and the surface of the surface plate In this case, it becomes difficult to reach the surface to be processed, and as a result, flatness may be deteriorated, which is not preferable.
  • the abrasive compact is laminated on a support layer having a lower compressibility than the abrasive compact, even when a relatively soft material such as a film or an organic material is polished, the conventional polishing can be performed.
  • the flatness and uniformity of the surface of the workpiece can be ensured without generating the scratches that are likely to occur when using a pad, and the performance does not decrease even when polishing under low pressure and high speed conditions So highly preferred. Therefore, even when polishing is performed at a particularly low pressure, the flatness and uniformity can be achieved at the same time, and a polishing laminate used for a polishing pad having a polishing rate at a practical level is provided.
  • the second characteristic configuration is that a molded body for polishing having an initial thickness of 0.2 to 2 mm and a compression ratio of 1.5% or more has an apparent surface hardness of not less than that of the molded body for polishing. In that it is laminated to a support layer that is larger than the body.
  • the polishing rate is remarkably reduced, which is not preferable.
  • the polishing capacity decreases, and the life of the polishing pad decreases.
  • the number of wafers that can be polished with one polishing pad is reduced, which is not preferable.
  • the initial polishing The lower limit of the layer thickness is 0.2 mm.
  • the compression ratio of the polishing laminate is less than 1.5%, it is softer than an oxide film such as a copper film or an organic material alone or bonded to any substrate. If the surface of the material is polished, the surface of the workpiece is easily scratched, which is not preferable.
  • the polishing compact having a compression ratio of 1.5% or more was polished alone or was bonded to a so-called soft support layer having an apparent surface hardness smaller than that of the polishing compact. In such a case, there is a possibility that the polishing rate is reduced and the flatness of the surface of the workpiece is deteriorated.
  • the apparent surface hardness is used as an index for determining the rigidity of a material. Used, but with a compression ratio of 1.5% or more, a moderately cushioning abrasive molded body Force Apparent surface hardness is greater than that of the abrasive molded body, that is, laminated on a highly rigid support layer As a result, a desired polishing performance can be obtained when a high polishing speed is realized while maintaining uniformity without scratches.
  • a polishing laminate used as a polishing pad capable of maintaining uniformity without lowering the polishing rate even when polishing at a lower pressure than in the past.
  • the third characteristic configuration is that the apparent surface hardness of the support layer is not less than 88 in the A hardness.
  • the apparent surface hardness of the support layer is A8 or more in A hardness.
  • the fourth characteristic configuration is that the tensile elastic modulus of the support layer is larger than 2 OMPa.
  • the tensile elastic modulus could be an index, and in order to exhibit the function of supporting the formed body for polishing, the tensile strength of the support layer was determined.
  • the modulus of elasticity is greater than 2 OMPa.
  • the fifth characteristic configuration is that the polishing layer contains bubbles having an average diameter of 0.1 to 100 m, ⁇ ;
  • the polishing layer of the present invention holds polishing slurry or forms a surface state suitable for polishing by, for example, dressing with a dresser, it is more preferable that the polishing layer contains bubbles.
  • the average diameter of the bubbles is preferably from 0.1 to 100 °.
  • the sixth characteristic configuration is that the main raw material of the molded article for polishing is a thermoplastic elastomer, and the seventh characteristic configuration is that the thermoplastic elastomer is a polyurethane and the point is ⁇ .
  • thermoplastic elastomer is suitable because the physical properties such as hardness and compressibility, which greatly affect the polishing characteristics, can be relatively easily controlled.
  • thermoplastic polyurethane elastomers are most preferable because the abrasion resistance, which is important for polishing, can be controlled in a relatively wide range.
  • An eighth feature of the present invention resides in that a groove is formed on the surface of the molded article for polishing.
  • the polishing slurry may be held, if necessary, in a surface state suitable for polishing, and may have a groove serving as a flow path for Z or the polishing slurry. Is also good.
  • the polishing slurry can be more easily spread over the entire polishing surface, or when the polishing layer does not contain bubbles, the polishing slurry can be held and a surface state suitable for polishing can be obtained. Therefore, it is preferable in terms of securing uniformity, variation in polishing performance, and variation in polishing performance with time.
  • a first characteristic configuration of the polishing method according to the present invention is that the polishing laminate is fixed to a surface plate of a polishing machine to flatten the surface of a workpiece
  • the second characteristic configuration is a JISK 7 A molded article for polishing having a polishing layer having a surface hardness of 80 or more in A hardness according to 311, a compressibility of 1.5% or more, and an initial thickness of 2 mm or less is polished. Is fixed to the platen of the polishing machine through a support layer having a compression ratio smaller than the compression ratio of the compact for molding, and the surface of the workpiece is flattened.
  • a molded article for polishing having a polishing layer having a thickness of 0.2 to 2 mm and a compression ratio of 1.5% or more is provided via a support layer having an apparent surface hardness larger than that of the molded article for polishing. The point is that it is fixed to the surface plate of the polishing machine to flatten the surface of the workpiece.
  • the polishing method, the support layer having a smaller compression ratio than the polishing method, and the normal-shaped structure are used to obtain a copper film or an organic material. Even when a soft material is polished, the flatness and uniformity of the surface of the workpiece can be ensured without low pressure and high-speed conditions, without the occurrence of cracks that would easily occur when using a conventional polishing pad. Even if it is polished, the performance does not decrease.
  • a first characteristic configuration of the method for producing a polishing laminate according to the present invention includes disposing a plurality of polishing compacts on a support layer, and forming a gap formed at a joint between the polishing compacts in a polishing slurry.
  • the second characteristic configuration is that a plurality of polishing compacts are provided on the support layer, and a gap generated at a joint between the polishing compacts is enlarged. In that the polishing slurry is used as a flow path.
  • the third characteristic configuration is that the method for enlarging the gap is performed by machining. That is, the gap generated at the joint between the abrasive compacts can be enlarged by a simple machining method.
  • the method of arranging a plurality of polishing compacts on the support layer comprises: securing the plurality of polishing compacts; laminating the support layer; and securing after lamination. Release point V Close.
  • the support layer is laminated in a state in which the plurality of polishing molded bodies are fixed and temporarily fixed, and the plurality of polishing molded bodies are fixed at predetermined intervals, and after the lamination, the locking is released. This makes it possible to reliably remove a locking member that may interfere with polishing.
  • the fifth characteristic configuration is that the method of fixing the plurality of polishing compacts is by a stable method.
  • the stable provides a simple means for securing the shaped article for polishing, which can be easily removed after lamination.
  • the sixth characteristic configuration is that the abrasive compact contains bubbles
  • the seventh characteristic configuration is that the average diameter of the bubbles is 0.1 to 100 / z ra. is there.
  • the molded body for polishing contains bubbles for holding the polishing slurry and the like, and the average diameter of the contained bubbles is preferably 0.1 to 100 / ⁇ . Suitable. (Groove polishing pad)
  • a groove width (A) is 0.5. to 4 m m
  • the interval between the adjacent grooves and the groove (B) is in that it has one or more pairs at least the parallel groove of the straight is 5 to 1 O mm.
  • the groove width (A) when the groove width (A) is less than 0.5 mm, the grooves are likely to be clogged by agglomerates of abrasive grains and polishing debris contained in the polishing slurry. As a result, the polishing performance is reduced within the wafer surface, and This is not preferred because it tends to fluctuate over time. Conversely, if the groove width (A) is larger than 4 mm, the polishing slurry is discharged excessively, the amount of polishing slurry that does not contribute to polishing increases, and the amount of polishing slurry used increases significantly. In addition, the area contributing to polishing becomes small, which is not preferable. Since the polishing proceeds in the area between the grooves, in order to obtain the desired polishing performance, the width of the area must be set within an appropriate range. Of particular importance.
  • the polishing area that contributes to the polishing on the polishing pad becomes too small relative to the groove width, and the polishing rate decreases. It is not preferred. Conversely, if the distance between adjacent grooves is larger than 1 Omm, it becomes difficult for the polishing slurry to uniformly spread over the area. In other words, when the polishing performance is polished in the area, for example, in the case of polishing the device surface on a semiconductor wafer, the variability tends to occur in the wafer surface, and the uniformity is deteriorated.
  • the shape of the groove is preferably as simple as possible in view of the processing speed of the groove and the degree of difficulty of the processing, and at least a straight parallel groove in which adjacent grooves have a parallel relationship with each other. It is desirable to have at least one set.
  • the polishing speed is faster and the in-plane uniformity is higher than that of the conventional pad, and the variation with time of the polishing performance is reduced, and the inter-plane uniformity is improved.
  • the second characteristic configuration is that the groove depth (C) is 10 to 70% of the groove width (A).
  • the groove depth (C) force S and the groove width (A) are 70% or more, the polishing performance tends to fluctuate as the polishing progresses, for example, as the number of wafers to be polished increases, It is not preferable because the variation increases.
  • the present inventors presume that the reason is that the apparent bulk modulus of the polishing pad fluctuates.
  • the amount of the polishing slurry used increases because the discharge of the polishing slurry becomes excessive.
  • the groove depth (C) is 0.5 to 4 mni for the groove width (A), and the gap between adjacent grooves (5-1 O mm) (B) is the groove width (A). Is preferably 10 to 70%.
  • the third characteristic configuration is that the groove is open at the periphery of the pad. The grooves are preferably opened at the pad periphery for the purpose of discharging excessively large agglomerates of excessive polishing slurry, polishing debris, and abrasive grains contained in the polishing slurry. is there.
  • the fourth characteristic configuration is that the main component of the material constituting the pad is a thermoplastic elastomer having an A hardness of 70 or more according to JIS K7111.
  • the main component of the raw material constituting the polishing pad of the present invention is very easy to balance the flatness and uniformity of the surface to be polished after polishing, and in particular, the metal to be polished, such as Cu, is relatively soft.
  • the metal to be polished such as Cu
  • a urethane-based thermoplastic elastomer having an A hardness of 70 or more according to JISK7311 is preferable.
  • FIG. 1 is a cross-sectional view showing an example of a standard process of a chemical mechanical polishing method (CMP).
  • CMP chemical mechanical polishing method
  • FIG. 2 is a cross-sectional view showing another example of a standard process of the chemical mechanical polishing method (CMP).
  • CMP chemical mechanical polishing method
  • FIG. 3 is a schematic diagram of a closed-cell production facility used in the examples
  • FIG. 4 is a graph showing the change over time (profile) of the surface pressure in the measurement of the compression ratio.
  • FIG. 5 is a schematic diagram of the foam sheeting equipment used in the examples,
  • FIG. 6 is a cross-sectional view illustrating an example of a state in which the polishing laminate is attached to the surface plate.
  • FIG. 7 is a cross-sectional view illustrating an example of another state in which the polishing laminate is attached to the surface plate.
  • FIG. 8 is a cross-sectional view showing an example of another state in which the polishing laminate is attached to a surface plate.
  • FIG. 9 is a cross-sectional view showing an example of another state in which the polishing laminate is attached to a surface plate.
  • FIG. 10 is a schematic diagram of a polishing molded body manufacturing facility used in the example
  • FIG. 11 is a schematic diagram of a laminating facility used in the example.
  • FIG. 12 is a cross-sectional view showing one example of a polishing laminate.
  • FIG. 13 is an enlarged view of a circled part of FIG.
  • FIG. 14 is a schematic diagram of the laminating equipment used in the examples.
  • FIG. 15 is a cross-sectional view showing an example of groove processing of the polishing laminate of the embodiment, where (a) shows before the groove processing and (b) shows after the groove processing.
  • FIG. 16 is a cross-sectional view showing another example of the groove processing of the polishing laminate of the example, where (a) shows before the groove processing and (b) shows after the groove processing.
  • FIG. 17 is a sectional view showing an example of a conventional polishing pad used in a comparative example.
  • FIG. 18 is a sectional view showing an example of a grooved polishing pad of the present invention.
  • the figure is a plan view showing an example of a grooved polishing pad having one set of linear parallel grooves of the same pattern according to the present invention,
  • FIG. 20 is a plan view showing an example of a grooved polishing pad having two sets of straight parallel grooves of the same pattern according to the present invention.
  • FIG. 21 is a plan view showing an example of another grooved polishing pad having two sets of linear parallel grooves of the same pattern according to the present invention.
  • FIG. 22 is a plan view showing an example of a grooved polishing pad having straight parallel grooves having different groove widths and pitches according to the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a method for producing an independent foam for polishing, a foamed sheet for polishing, a laminate for polishing and a polishing method, a method for producing a laminate for polishing, and a grooved polishing pad according to the present invention will be described with reference to the drawings. I do.
  • Specific examples of the method for producing the independent foam for polishing according to the present invention include, for example, a solid pellet resin, a mixture of a solid pellet resin and a post-crosslinking agent, or a solid pellet resin, a post-crosslinking agent and a resin tension.
  • the mixture containing the increasing modifier is put into the extruder and sufficiently kneaded, the molten resin obtained by dissolving and mixing the foaming agent in the extruder under a pressure atmosphere of 1 OMPa or more is extruded.
  • One method is to extrude through a mold attached to the tip into the atmosphere, thereby exposing the foaming agent to a pressure lower than the pressure at which it was dissolved and mixed.
  • a desired foaming state suitable as an independent foam for polishing can be obtained almost instantaneously by exposing the foaming agent to a pressure lower than the pressure at which the foaming agent is dissolved and mixed. There is no need to heat the sheet again.
  • the pressure atmosphere lower than the pressure at which the blowing agent of the present invention is dissolved and mixed may be higher than the atmospheric pressure or conversely lower.
  • a feature of the present invention is that a mixture of a cross-linking agent can be extruded into the atmosphere to promote cross-linking to obtain a foam of a hard-to-polish resin for polishing, which is stable in quality. No impregnation of the agent is required.
  • a modifier for increasing the resin tension is mixed in addition to the crosslinking agent, the tension of the molten resin is increased to prevent foam breakage and reduce the amount of the foaming agent used.
  • a foam of a hard-to-polish resin for polishing can be efficiently formed by reducing the “eye-opening” phenomenon in which resin accumulates.
  • the temperature in the extruder is 100 ° C or higher and lower than 400 ° C, preferably 120 ° C or higher and lower than 300 ° C, more preferably 130 ° C or higher and lower than 250 ° C.
  • the pressure is 10 MPa or more and less than 7 OMPa, preferably 13 MPa or more and less than 5 OMPa, more preferably 15 MPa or more and less than 4 OMPa.
  • a single-screw extruder, a twin-screw extruder, or a so-called tandem-type extruder in which these extruders are connected by a connecting pipe is suitable. Can be selected and used.
  • the supply rate of the blowing agent to be injected into the extruder is not particularly limited, but is preferably 0.5 to 10% by weight of the discharge rate, more preferably 0.7 to 8% by weight. . /. Most preferably, it is 1.0 to 5% by weight.
  • the discharge speed was calculated from the weight of the independent foam recovered per unit time, and the foaming discrete in the step (B) of exposing the molten resin under a pressure lower than the pressure at which the foaming agent of the present invention was dissolved and mixed. The dosage is not taken into account.
  • the temperature is in the supercritical state of the gas.
  • the supercritical state means a state in which the temperature is equal to or higher than the critical temperature and critical pressure.
  • the temperature is 30 ° C or higher and 7.3 MPa or higher.
  • a post-crosslinking agent for example, as a post-crosslinking agent for polyurethane, a post-crosslinking agent (trade name: CROSNATE EM-30) manufactured by Dainichi Seika Kogyo Co., Ltd. may be mentioned.
  • the post-crosslinking agent blended with polyurethane is allowed to stand at room temperature or heat-treated, whereby the cross-linking proceeds.
  • the amount of the post-crosslinking agent to be added is preferably 0.1 to 40 parts by weight, more preferably 0.2 to 30 parts by weight, and still more preferably 0.3 to 20 parts by weight, based on 100 parts by weight of the resin. Parts, particularly preferably 0.4 to 10 parts by weight, most preferably 1 to 5 parts by weight.
  • the above-mentioned modifier for hard-to-foam resin for example, polyurethane
  • examples of the above-mentioned modifier for hard-to-foam resin, for example, polyurethane include modifiers manufactured by Asahi Glass Co., Ltd. (trade name: Fluon (Fluon is a registered trademark of Asahi Glass Co., Ltd .; same hereafter) PTFE) and the like.
  • Modified acrylic resin such as fluorine resin, a modifier for thermoplastic resin manufactured by Mitsubishi Rayon (trade name: methaprene (metaprene is a registered trademark of Mitsubishi Rayon Co., Ltd., same hereafter) A-3000) Fluororesin is mentioned.
  • the amount of the modifier added is preferably 0.5 to 10 parts by weight, more preferably 3 to 10 parts by weight, and still more preferably 3 to 7 parts by weight, based on 100 parts by weight of the resin. is there.
  • the hard-to-foam resin of the present invention has a surface hardness of 90 or more in A hardness according to a hardness test of, for example, JISK7311 (a test method for a polyurethane-based thermoplastic elastomer), The starting temperature is 200 ° C or more.
  • the main components of the raw materials are not particularly limited, polyurethane, polystyrene, polyester, polypropylene, polyethylene, nylon, polyvinyl chloride, polyvinylidene chloride, polybutene, polyacetal, polyphenylene oxide, polybutyl alcohol, polymethyl methacrylate, Polycarbonate, polyarylate, aromatic polysulfone, polyamide, polyimide, fluorine resin, ethylene-propylene resin, ethylene-ethyl acrylate resin, acrylic resin, norbornene-based resin, for example, vinyl polyisoprene-styrene Styrene copolymers represented by polymers, butadiene-styrene copolymer, ata- lonitrile-styrene-styrene copolymer, atarilonitrile-butadiene-styrene copolymer, or It is possible to use natural rubber, synthetic rubber, etc. These may be used alone, or may be mixed or
  • FIG. 3 shows a schematic diagram of the foam production equipment used in the example of the present invention.
  • a coat hanger type mold 13 having a lip width of 30 Omm was attached to the tip of the die extruder.
  • the independent foam 21 extruded from the mold 13 is taken by the take-up machine 20 and sent to the next step.
  • the blowing agent carbon dioxide was used. After being taken out of the cylinder 17, the carbon dioxide pressurized by the gas pump 18 was passed through the pressure regulating valve 19, and then fed to the single-screw extruder 11. The injection was performed into the extruder through an injection port 14 attached near the center.
  • zone (I) the zone upstream of the foaming agent inlet where melt-kneading progresses
  • zone (II) the side downstream of the foaming agent inlet where melting and mixing of the foaming agent progresses.
  • zone (II) the side downstream of the foaming agent inlet where melting and mixing of the foaming agent progresses
  • (1) and (II) in Figure 3.
  • the step (A) of dissolving and mixing the foaming agent with the resin under a pressure atmosphere exceeding OMPa corresponds to zone (II) in Fig. 3, and then the process is performed under a pressure atmosphere lower than the pressure at which the foaming agent is dissolved and mixed.
  • the exposing step (B) corresponds to the zone (III) shown in FIG. 3 in which the molten resin in which the blowing agent is dissolved and mixed is extruded from the inside of the mold to the atmospheric pressure atmosphere.
  • thermoplastic polyurethane elastomer (trade name: REZAMINE P-4250) manufactured by Dainichi Seika Kogyo Co., Ltd. at 100 ° C for 4 hours, the company's crosslinking agent (trade name: CROSNATE) A mixture of EM-30) was used.
  • Table 1 shows the manufacturing conditions.
  • the pressure in the zone (II) was 21.5 MPa.
  • the cross section of the foam layer of the obtained independent foam was observed with a scanning electron microscope (SEM) S-2400 manufactured by HITACHI, and the diameter of each cell was measured. For those with non-circular bubbles, the equivalent circle diameter was calculated. The average value of the obtained bubble diameters was calculated and is shown in Table 1.
  • the surface of the obtained independent foam was polished with a belt sander (trade name: MNW-610-C2) manufactured by Marugen Tetsusho Co., Ltd., and bubbles were opened by removing the non-foamed layer near the surface. .
  • a polishing pad was produced using the same raw materials as in Example 1 and using an independent foam produced under different production conditions.
  • Table 1 shows the foaming extrusion conditions and the average cell diameter of the obtained independent foam.
  • the pressure in zone (II) was 18.3 MPa.
  • thermoplastic polyurethane elastomer (trade name: REZAMINE P-4070EX) manufactured by Dainichi Seika Kogyo Co., Ltd., which was dried at 100 ° C for 4 hours, was used.
  • the company's crosslinking agent (trade name: CROSNATE EM-30) used in (Examples 1-1 and 1-2) was not used. Manufacturing conditions and average air quality of the obtained independent foam Table 1 shows the bubble diameter.
  • the pressure in zone (II) was 18.9 MPa.
  • a polishing pad was produced using the same raw materials as in Example 1 and using an independent foam produced under different production conditions.
  • Table 1 shows the production conditions and the average cell diameter of the obtained independent foam.
  • the pressure in the zone (II) was 8.3 MPa.
  • An open-ended IC 1000 made of Mouth Dale, which is a conventional independent foam for polishing, with a grid groove having a groove width of 2 mm and a groove depth of 0.6 mm was used.
  • the cross section was observed by SEM in the same manner as in Example 11-11, and the average bubble diameter was calculated to be 35 ⁇ m.
  • a 200 mm diameter Cu planket wafer was used as the object to be polished.
  • the polishing pad obtained in the above (Example) and (Comparative Example) was attached to the surface plate of a single-side polishing machine ARW-681 MS manufactured by MAT, and dressed using a diamond dresser. Polishing was performed while supplying a polishing slurry (trade name: iCue 5003). Table 2 shows the dressing conditions and polishing conditions. Table 2
  • the Cu film thickness at 49 points on the wafer surface is measured using a sheet resistance measuring instrument, and the average value of the polishing speed and the variation of the polishing speed on the wafer surface are calculated. did.
  • the variation of the polishing rate on the wafer surface the value obtained by subtracting the minimum value from the maximum value of the polishing rate at 49 points and dividing it by twice the average value was multiplied by 100. It can be determined that the larger the value is, the larger the variation is.
  • Table 3 shows the average polishing rate and the in-plane variation of the polishing rate.
  • the flatness of the device surface after polishing can be determined by the variation in the polishing rate within the wafer surface. The smaller the variation, the better the flatness.
  • the polishing independent foam produced by the production method of the present invention has a reduced polishing rate and surface-to-plane variation as compared with conventional products, and the polishing rate has been significantly improved.
  • the pressure-sensitive atmosphere in the process of dissolving and mixing the foaming agent into the resin is 1 OMPa or more (Example).
  • the closed cell foam is finer than l OMPa (Comparative Examples 1 and 1).
  • the dispersion of bubbles was small. As a result, in-plane and inter-plane variations in the polishing rate were reduced, and the polishing performance was good.
  • Examples 1-4 and Examples 15 will be described.
  • the conditions for the evaluation of the polishing performance are different from those in the examples 11 to 3. First, the conditions for the evaluation of the polishing performance will be described.
  • An object to be polished was prepared by forming a 10,000 A Cu film on a 3-inch silicon wafer by electrolytic plating.
  • a single-side polishing machine with a platen diameter of 200 mm was used for polishing.
  • a polishing pad is attached to the surface plate of the grinding machine with rain tape, and the load is 10 kPa, the rotation speed of the surface plate is 60 rpm, and the dressing disk holder is a diamond-plated dressing disk.
  • a polishing slurry (trade name: iCue5003) manufactured by Cabot Co. was flowed, and the C20u film was polished for 1 minute. did.
  • the polishing conditions the load applied to the wafer 34. 3 k P a (3 5 0 g_ cm 2), The rotation speed of the platen was set to 70 rpm, the rotation speed of the wafer was set to 70 rpm, and the flow rate of the polishing slurry was set to 200 ml / min.
  • the Cu film thickness was measured using a sheet resistance measuring machine, and the average polishing rate, the polishing rate variation in the wafer surface, and the flatness were compared with those of the conventional pad.
  • Polyurethane P—4250 (trade name: REZAMINE P) manufactured by Dainichi Seika Co., Ltd. with a hardness of 999 (listed in the catalog) according to JISK 7311 in a shelf-type dryer at 100 ° C for 4 hours After drying, 100 parts by weight of the resin pellet and 3.5 parts by weight of a cross-linking agent (trade name: CROSNATE EM-30) are added as a raw material, which is then put into an extruder hopper 15. Carbon dioxide was used as a blowing agent.
  • a cross-linking agent (trade name: CROSNATE EM-30)
  • the average temperatures of the single-screw extruder 11, the single-screw extruder 12 and the molding die 13 were set at 219 ° C, 195 ° C and 198 ° C, respectively.
  • the pressure inside the extruder immediately after the gas injection section was 17.7 MPa, and it was confirmed that carbon dioxide as a blowing agent was in a supercritical state in the zone where it was dissolved and / or mixed with resin. did.
  • the foam discharged from the molding die was passed through a cooling roll controlled at 10 ° C., and then taken out by a take-off machine to obtain a foam.
  • the obtained foam having a width of 275 mm and a thickness of 1.1 mm was cut with a force razor blade, and the cross section was observed with a scanning electron microscope S-2400 (manufactured by HI TACH I). It was confirmed that bubbles having a diameter of 15.5 ⁇ m were almost uniformly dispersed in the thickness and width directions of the foam.
  • Example 14 As in Example 1-4, polyurethane P-4250 (trade name: Rezamin?) Manufactured by Dainichi Seika Co., Ltd. was dried in a tray-type dryer at 100 for 4 hours, and then the resin pellet was weighed at 100 wt. 5 parts by weight of a modifier for increasing resin tension (trade name: Metaprene A-3000) manufactured by Mitsubishi Rayon Co., Ltd. were mixed in advance with a twin-screw extruder to prepare a pellet, and the pellet was added to 100 parts by weight.
  • Cross-linking agent (trade name: CROSNATE EM-30) was added as a raw material, and carbon dioxide was used as a foaming agent.
  • the average temperatures of the single-screw extruder 11, the single-screw extruder 12 and the molding die 13 were set at 2, 16 ° C, 190 ° C, and 200 ° C, respectively.
  • the pressure in the extruder immediately after the gas injection section was 16.7 MPa, and it was confirmed that carbon dioxide as a blowing agent was in a supercritical state in a zone that was dissolved and / or mixed with resin. .
  • the foam discharged from the molding die was passed through a cooling roll controlled at 10 ° C., and then taken out by a take-off machine to obtain a foam.
  • the obtained foam having a width of 285 mm and a thickness of lmm was cut with a razor blade, and its cross section was observed with a scanning electron microscope S-2400 (manufactured by HI TACH I). The average diameter was ⁇ ⁇ ⁇ . It was confirmed that the bubbles were substantially uniformly dispersed in the foam thickness direction and the width direction.
  • a disk having a diameter of 20 Oram was cut out from the obtained foamed sheet and used alone as a polishing pad to polish a Cu film.
  • the average temperatures of the single-screw extruder 11, the single-screw extruder 12 and the molding die 13 were 2 19 ° C., 1 95 ° C., and 1 98 ° C., respectively, as in Example 1.
  • Set to C. The pressure in the extruder immediately after the gas injection section was 28.3 MPa, and it was confirmed that carbon dioxide as a blowing agent was in a supercritical state in the zone where the resin was dissolved and mixed with the resin. After the start of operation, the internal pressure of the extruder gradually increased, and the discharge state changed accordingly, and a stable foam could not be obtained.
  • the pressure inside the extruder immediately after the gas injection section was 9.3 MPa, and it was confirmed that carbon dioxide as a blowing agent was in a supercritical state in the zone where the resin melted and mixed with the resin. .
  • the sheet exiting the molding die was passed through a cooling roll controlled at 1 ° C., and was taken off by a take-off machine to obtain a foam.
  • the obtained foam having a width of 250 mm and a thickness of 0.9 mm was cut with a force razor blade, and its cross section was observed with a scanning electron microscope S-240 (manufactured by HI TACH I). Bubbles having an average diameter of 105.6 / Zm were confirmed in the foam. However, the bubble shape was irregular and irregular, and some large ones had a bubble diameter of 300 ⁇ m or more. A disk having a diameter of 200 mm was cut out from the obtained foamed sheet and used alone as a polishing pad to polish the Cu film.
  • the Cu film was polished by using a pad (trade name: IC100) manufactured by Kuchidale as a polishing pad.
  • Comparative Examples 1-3 could not be molded.
  • Comparative Examples 1 to 4 although the cells could be formed, the bubbles were coarse as a whole, and the size of the bubbles varied widely, and the foaming state was poor.
  • Examples 14 to 15 and (Examples 15 to 15) were able to be molded without any problem, but in (Examples 15 to 15), the melting tension of the resin increased due to the addition of the modifier. Foam breakage was suppressed, and no phenomenon of resin accumulation in the vicinity of the exit of the molding die of the extruder was observed.
  • Examples 14 to 14 and (Examples 1 to 5) show that the polishing rate is improved and the polishing rate varies with respect to (Comparative Examples 14 to 14) and (Comparative Examples 1 to 5). Was reduced. In addition, the flatness was at a level where there was no practical problem, and good polishing performance was exhibited.
  • a suitable foaming state on a polished surface of a foamed polishing sheet used as a substrate for a polishing pad is defined.
  • an index of the polishing performance for example, when the object to be polished is a semiconductor device wafer, attention is focused on three items: a polishing speed, a variation in the polishing speed on the wafer surface, and a temporal change in the polishing speed.
  • the shape of the opening formed as a result of the opening of the holes included in the sheet on the polished surface does not need to be a perfect circle, but may be elliptical or distorted. It may be a square shape.
  • the diameter of the opening in the present invention is defined by the equivalent circle diameter of the opening.
  • the diameter of an opening means a circle equivalent diameter, and for simplicity, the circle equivalent diameter of an opening is described as an opening diameter.
  • the average value of the diameter of the opening formed as a result of the opening of the holes included in the sheet on the polished surface is preferably 1 to .50 ⁇ , more preferably 2 to 40 ⁇ m. Most preferably 3 to 30; zm, and the opening having a diameter of 0.1 to 10 tm is at least 1 000 cm 2 or more, more preferably 5 000 cm 2 or more, most preferably 1 000 cm 2 or more. / c ra 2 or more.
  • the average diameter of the bubbles contained in the sheet is from 1 to 50 / im, which is suitable for high-precision polishing, especially for CMP on the surface of a semiconductor die where high flatness and uniformity are required.
  • the ratio of the total area of all the openings to the entire polished surface has a strong correlation with the polishing rate, and is not particularly limited, but is preferably 30 to 70% of the entire polished surface, and more preferably. It is 35 to 65%, most preferably 40 to 60%.
  • the compression ratio is not particularly limited, but the range of the apparent compression ratio suitable for high-precision polishing is 5 to 15% in a 25 ° C atmosphere.
  • the apparent compressibility of the present invention is a value calculated from the amount of change in sheet thickness measured by a thermal stress strain measuring device (TMA). The thickness of the measurement sample sheet was 1 mm, and the change over time (profile) of the surface pressure is shown in Fig. 4. Specifically, the apparent compression ratio from 2 9. 4 k P a (3 0 0 g / cm 2) Thickness when multiplied 60 seconds the surface pressure of (T 1), subsequently 1 76. 4 k The value obtained by subtracting the thickness (T 2) when the surface pressure of P a (180 O g / cm 2 ) is similarly applied for 60 seconds, is divided by T 1, and further multiplying that value by 100 times. Value.
  • the main component of the raw material for the foamed sheet for polishing of the present invention is not particularly limited, the same resin (polyurethane or the like) as described in the section (1) [Method for producing independent foam for polishing] can be used. .
  • a thermoplastic elastomer of a urethane-based olefin having an A hardness of 70 or more according to JI SK-731 is suitable.
  • one of the important characteristics of a foamed sheet for polishing is one of the important properties.
  • the thermoplastic polyurethane elastomer is most preferred because it can control the abrasion resistance in a relatively wide range.
  • a groove can be formed on the sheet surface as necessary.
  • the shape of the groove is not particularly limited, for example, a parallel shape, a lattice shape, a concentric shape, and a spiral shape can be selected at any time.
  • FIG. 5 shows a schematic diagram of the equipment for forming a foamed sheet used in the embodiment, which is basically the same as the equipment shown in FIG. 3, except that the take-off machine 20 is omitted.
  • HIT ACH I scanning electron microscope (SEM) Observe the cross section of the sheet with S-2400, and determine the opening diameter, the number of openings of 0.1 to 10 / m per unit area of the polished surface, and the total opening. The ratio of the total area of the bubbles was calculated, and the diameter of each bubble included in the image at a magnification of 300 times was measured, and the average value of the diameters of all the bubbles was calculated.
  • the cross-sectional shape of the bubble is not a perfect circle, for example, an elliptical shape or a distorted polygonal shape
  • the diameter equivalent to the circle is defined as the diameter of the bubble.
  • Fig. 4 shows the profile of the surface pressure. From the state without load, 2 9. 4 k P a ( 3 0 0 g / cm 2) times the surface pressure, subsequently 1 7 6. 4 k P surface pressure of a (1 8 0 0 g / cm 2) A series of operations of removing the load after multiplying by 1 was taken as one cycle, and measurement was performed continuously for 5 cycles. The average of the five compression ratios in each cycle calculated from the thickness change was used as the apparent compression ratio.
  • the measurement was performed using an ASKER hardness tester manufactured by Kobunshi Keiki 0.
  • the raw material was prepared by pre-mixing a crosslinker (trade name: CROSNATE EM-30).
  • Table 4 shows the conditions for forming a foam sheet.
  • the surface of the obtained foam sheet is polished with a belt sander manufactured by Marugen Tetsusho Co., Ltd. (trade name: MNW-610-C2). Was opened to obtain a foamed polishing sheet having a thickness of 1.3 mm.
  • Table 4 shows data on the foaming state and compression ratio.
  • the sheets were cut into a disk shape to produce a polishing pad having a diameter of 600 mm ⁇ .
  • a polishing pad was produced in exactly the same manner as in (Example 2-1) except that the conditions for forming a foam sheet were changed.
  • Table 4 shows data on the conditions for forming the foamed sheet, the foaming state and the compression ratio.
  • the polishing pad surface obtained in (Example 2-1) has a groove width of 2 mm and a gap between adjacent grooves of 13 mm.
  • a groove having a groove depth of 0.6 mm was formed in a lattice shape.
  • JI SK A thermoplastic polymer with an A hardness of 90 (listed in the catalog) according to 7 3 1 1 Urethane elastomer (trade name: Rezamin P-4070 EX manufactured by Dainichi Seika Kogyo Co., Ltd.) was used as a raw material.
  • the company's cross-linking agent (trade name: CROSNATE EM-30) used in (Examples 2-1) to (Example 2-3) was not used.
  • Table 4 shows the data on the conditions for forming the foam sheet and the compression ratio of the foam state.
  • a polishing pad was produced in exactly the same manner as in (Example 2-1) except that the conditions for forming a foam sheet were changed.
  • Table 4 shows data on the conditions for forming the foamed sheet, the foaming state and the compression ratio.
  • thermoplastic polyurethane urethane elastomer (trade name: Rezamin P-4250) manufactured by Dainichi Seika Kogyo Co., Ltd.
  • a cross-linking agent (trade name: CROSNATE EM-3)
  • a closed foam with a thickness of 1.6 mm was prepared using a raw material premixed with 0).
  • Table 5 shows the conditions for forming a foam sheet. Put the obtained sheet surface on a bell made by Marugen Tetsusho
  • polishing independent foam having a thickness of 1.4 mm.
  • a 1.5-mm-thick closed-cell foam was prepared from thermoplastic polyurethane elastomer (trade name: Rezamine P-4070) manufactured by Dai-S Seika Industry Co., Ltd. Table 5 shows the foam sheeting conditions. The non-foamed layer was removed in the same manner as in Example 2-5 to obtain a polishing independent foam having a thickness of 1.4 mm. Subsequently, the same groove processing as in Examples 2 to 5 was performed to produce a polishing pad.
  • Example 2-5 An independent foam having a thickness of 1.4 mm was produced using the same raw materials as in Example 2-5 except that the conditions for forming the foam sheet were changed. Table 5 shows the conditions for forming a foam sheet. The non-foamed layer was removed in the same manner as in Example 2-5 to obtain a polishing independent foam having a thickness of 1.1 mm. Subsequently, the same groove processing as in Example 2-5 was performed to produce a polishing pad.
  • a Rodel IC 1 000 / Suba 400 2 with a grid groove with a groove width of 2 mm, a space between adjacent grooves of 13 mm, and a groove depth of 0.6 mm is provided.
  • a layer pad was used.
  • the thickness of the polishing layer, IC 1000, was 1.2 mm.
  • Table 6 shows the results of measuring the hardness, the compressibility at 25 ° C., and the average diameter of the bubbles of the polishing pads of the above (Example) and (Comparative Example).
  • a Cu planket wafer with a diameter of 200 mm was used as the object to be polished.
  • the polishing pad obtained in the above (Example) and (Comparative Example) is attached to the surface plate of a single-side polishing machine ARW-68 IMS made of MAT, dressed, and then a polishing slurry manufactured by Cabot Corporation (product) The polishing was performed while supplying the name: iCue 500 3).
  • the dressing conditions and polishing conditions are the same as in Table 2.
  • the Cu film thickness at 49 points 5 in the wafer surface was measured using a sheet resistance measuring instrument, and the average polishing speed was calculated. Raki was calculated. Since a blanket wafer was used in this evaluation, the flatness of the device surface after polishing can be determined by the variation in the polishing rate within the wafer surface. The smaller the variation, the better the flatness.
  • the value obtained by subtracting the minimum value from the maximum value of the 49 polishing rates minus the minimum value and dividing the resulting value by twice the average value was multiplied by 100 as the variation in the polishing rate within the wafer surface. The higher the value, the lower the uniformity.
  • Example 2— shows the evaluation results of the polishing performance of Nos. 2 to 4, and Table 8 shows the results of Comparative Examples 2-1 and 2-2. Table 7
  • Table 9 also shows the evaluation results of the polishing performance of Examples 2-5 to 2-6 and those of Comparative Examples 2-3 and 2-4, the performance evaluation results of the polishing pad, and the thickness of the polishing layer. Show.
  • the surface roughness after polishing of the wiring part with a line / space of 4.5 ⁇ m / 0.5 m and lOzmZlO / im was measured, and the flatness was measured. The flatness was evaluated.
  • Table 9 when the flatness is equal to or higher than Comparative Example 2 which is a typical example of the conventional pad, the result is indicated by ⁇ , and when the flatness is lowered, the result is indicated by X.
  • a polishing molded body having a surface hardness of 80 or more in A hardness, a compression ratio of 1.5% or more, and an initial thickness of the polishing layer of 2 mm or less is obtained.
  • a polishing laminate laminated on a support layer having a smaller compressibility than the polishing molded body is fixed on a platen of a polishing machine to flatten the surface of a workpiece, or the polishing molded body is flattened.
  • the molded product for polishing is fixed to a platen of a polishing machine through a supporting layer such as a double-sided tape or the like having no compressive material, such as an adhesive and a supporting substrate, or a supporting substrate. This is to flatten the object surface.
  • the abrasive compact and the abrasive layer are strictly distinguished.
  • a foamed layer is involved in polishing, for example, only the foamed layer is compatible with the polishing layer.
  • the non-foamed layer should be included in the polishing layer. Absent.
  • the support layer includes various cases.
  • the support layer refers to the entire double-sided tape, that is, the entire multilayer structure of the adhesive, the base material, and the adhesive.
  • the compression ratio of the bearing layer is the compression ratio of the entire double-sided tape.
  • the support layer indicates a single layer of the adhesive layer.
  • the surface hardness of the polishing layer is A hardness, preferably 80 or more, more preferably 82 or more, and most preferably 85 or more.
  • the compression ratio of the polishing layer is preferably at least 1.5%, more preferably at least 2%, and most preferably at least 2.5%.
  • the thickness of the polishing layer at the initial stage is preferably 2 mm or less, more preferably 1.5 mm or less, and most preferably 1 mm or less. .
  • the flatness of the surface of the workpiece after polishing is ensured with the flatness accuracy of the back surface of the support layer and the surface of the surface plate. Judging only from the viewpoint of the finished state, it is concluded that the thinner the polishing layer of the polishing laminated body of the present invention, the better, but actually, the throughput of the polishing step must be considered.
  • the lower limit of the thickness of the polishing layer is not particularly limited.
  • the thickness of the polishing layer is preferably around 1 mm.
  • the average diameter of the bubbles is not particularly limited, but is preferably 0.1 to 100 ⁇ m, more preferably 0.1 to 50 m, and most preferably. Is 0.:! ⁇ 30 m.
  • the main raw material of the polishing layer of the present invention is not particularly limited, the same resin (polyurethane or the like) as described in the section (1) [Method for producing independent foam for polishing] can be used.
  • the support layer of the present invention is not particularly limited as long as the compressibility is smaller than that of the polishing layer.
  • a flexible base material such as plastic, thermoplastic elastomer, or rubber can be used as appropriate. These may contain bubbles or may not contain bubbles. Further, glass fibers, carbon fibers, synthetic fibers, or those reinforced with a woven or nonwoven fabric thereof may be used. Furthermore, a thin metal plate having flexibility, typified by stainless steel, can also be used.
  • non-foamed base materials such as epoxy resins, polyurethane resins including thermoplastic polyurethane elastomers, polyethylene terephthalate, polyethylene terephthalate, and polycarbonate, and those reinforced with glass fibers are preferably used. This is not the case.
  • various adhesives, or a highly transparent double-sided tape in which an acrylic adhesive is applied to both sides of a PET substrate, for example, can be used as the support layer.
  • the method of laminating the polishing compact and the support layer is not particularly limited.
  • a medium such as an adhesive or a double-sided tape may or may not be used.However, in terms of cost and, in particular, suppressing factors of quality variation, for example, a medium such as an adhesive or a surface tape is used.
  • stacked without using is preferable.
  • a co-extrusion method, a method in which a support layer in a molten state is bonded to a molded article for polishing by a method usually called thermal lamination, or the like is preferable.
  • a method in which a molded body for polishing or a polishing layer is directly adhered to a surface plate of a polishing machine via a medium such as an adhesive or double-sided tape may be considered.
  • a medium such as the adhesive layer or the double-sided tape corresponds to the support layer of the present invention.
  • the polishing laminate of the present invention holds a polishing slurry to have a surface state suitable for polishing, and / or has a groove serving as a flow path of the polishing slurry
  • the shape of the groove is not particularly limited. , Lattice, concentric, spiral, etc. can be selected at any time. Alternatively, a large number of cylindrical through holes can be provided.
  • the groove size that is, the groove width, the distance between adjacent grooves, and the groove depth are not particularly limited.
  • the groove width refers to the distance A
  • the distance between adjacent grooves refers to the distance B
  • the groove depth refers to C.
  • a desired size can be selected.
  • a groove depth As for the roughness, a groove may be formed halfway through the polishing layer, or the groove may penetrate the polishing layer and reach the surface of the support layer. Further, a groove may penetrate the support layer and extend halfway through the support layer, or a groove may be formed only in the support layer.
  • the polishing laminate obtained by directly laminating the polishing molded body 30 and the support layer 31 by the thermal lamination method is fixed to the platen 34 of the polishing machine using the double-sided tape 35. It shows the state where it was turned on.
  • the laminated body for polishing in which the molded body for polishing 50 and the support layer 51 are bonded via the double-sided tape 54, is fixed to the platen 55 of the polishing machine using the double-sided tape 56. It shows the state of having done.
  • FIG. 8 shows a state in which the abrasive compact 60 is fixed to the platen 34 of the polishing machine via the thick adhesive layer 61, and in this case, the adhesive layer 61 is the support layer of the present invention.
  • FIG. 9 shows a state in which the molded body for polishing 70 is fixed to a surface plate 76 of a polishing machine via a double-sided tape 77.
  • the double-sided tape 77 is divided in more detail, it is divided into a base material 71 and adhesive layers 74 and 75.
  • the double-sided tape base material 71 corresponds to the support layer of the present invention. Note that FIGS.
  • FIGS. 6 and 7 show the case where the polishing laminate prepared by previously bonding the molded body for polishing and the support layer is pasted to the surface plate, so that both grooves are formed to a depth reaching the support layer. It is possible.
  • FIGS. 8 and 9 show the case where the molded body for polishing is directly attached to the surface plate through a medium such as an adhesive or a double-sided tape. Stopped in the middle of the body.
  • the polishing laminate of the present invention can obtain various shapes such as a desired size and a desired shape, for example, a disk shape, a pelt shape and the like.
  • FIG. 10 shows an outline of the manufacturing equipment for a molded article for polishing used in Examples of the present invention.
  • a first extruder 101 having the same configuration as the extruder shown in FIG.
  • a mold 109 having a lip width of 30 Omm was attached to the tip of a tandem extruder connected by a hollow single tube 107.
  • thermoplastic polyurethane elastomer (trade name: Rezamin: P-4250) manufactured by Dainichi Seika Kogyo Co., Ltd., with a cross-linking agent (trade name: CROSNATE EM-30) of the same company used.
  • the carbon dioxide pressurized by the gas booster pop 105 was injected through the inlet 104 attached near the center of the first extruder 101.
  • the pressure immediately before and immediately after the inlet 104 was measured with a pressure sensor attached to the barrel of the first extruder 101, and was found to be 24 MPa and 2 IMPa, respectively.
  • FIG. 11 shows an outline of the lamination equipment used in the examples.
  • the support plate 205 was set on the roller conveyor 203.
  • a 5 mm thick plywood was used as the support plate.
  • Three pieces of polishing compacts 206 with a width of 210 mm and a length of 630 mm are lined up on the support plate 205 so that the polished surface is in contact with the support plate and the joints of each are tight. Be, temporarily fixed the seam with a stapler.
  • thermoplastic polyurethane elastomer (trade name: Rezamin P-4038) manufactured by Daime Seika Kogyo Co., Ltd. was charged into a raw material hopper 208 and extruded from a mold 202.
  • the molten resin extruded from the mold 202 passes through the support plate 205 on which the molded body for polishing is placed under the mold 202 while sliding on the roller conveyor 203, and the molded body for polishing 206 Immediately after being laminated on the upper layer, the polishing layer 206 and the support layer 207 were pressure-bonded through a pinch roll 204.
  • the stapler needle was removed. Then, the polished surface side of the obtained 63 Omm square laminate is polished with a belt sander (trade name: MNW-610-C2) manufactured by Marugen Tetsue Co., Ltd. The non-foamed layer was removed to obtain a polishing laminate.
  • MNW-610-C2 belt sander
  • the groove interval was set by a program so that a groove was always formed between the adjacent polishing layers, and the groove depth was set so that the groove penetrated the polishing layer to reach the support layer.
  • a laminated pad (trade name: IC 1 000ZSUBA 400) manufactured by Mouth Dale having a diameter of 6100 mm was used as a comparative example.
  • the measurement was performed using an Asker hardness tester manufactured by Kobunshi Keiki.
  • Table 11 shows the physical property values of the example 3-1 and the comparative example 3-1 according to the present invention.
  • Example 3-1 satisfies the relationship of the size of the polishing molded body> the support layer
  • Comparative Example 3_1 satisfies the relationship of the size of the polishing molded body ⁇ the support layer. Polishing performance evaluation>
  • polishing performance of each of the polishing pad obtained in Example 3-1 and the polishing pad of Comparative Example 3-1 which is a typical example of the conventional product was the same as that described in (2) [Foaming sheet for polishing].
  • the Cu film thickness at 49 points on the wafer surface was measured using a four-probe resistance measuring instrument, and the average and the polishing rate at 49 points on the wafer surface were measured.
  • the in-plane variation was 100 times the value obtained by subtracting the minimum value from the maximum value of the polishing speed at 49 points in the wafer surface and dividing it by twice the average value of the polishing speed at 49 points. Values were used. The larger the value of the in-plane variation, the lower the uniformity.
  • Example 3-1 Using the polishing pads of Example 3-1 and Comparative Example 3-1, 50 wafers were polished under each of the polishing conditions (1) and (2).
  • Table 13 shows the polishing rates and average values of the in-plane variation of 50 wafers.
  • the polishing pad of the example has a higher polishing rate and in-plane variation than the polishing pad of the comparative example, which is a typical example of the conventional pad. It was confirmed that a good polishing performance was exhibited. ⁇ Checking the occurrence of scratches>
  • Example 3-1 Under the polishing condition (1), in Example 3-1 scratches were confirmed at one location. On the other hand, in Comparative Example 3-1, the occurrence of scratches was confirmed in three places, and one of them was clearly higher in contrast than the other scratches on the microscope image, and it was presumed to be a deep scratch. Is done.
  • Example 3-1 Under the polishing condition 2, no scratch was observed in Example 3-1. On the other hand, in Comparative Example 3-2, occurrence of scratches was confirmed at two places.
  • a layer that can be used for polishing in the polishing compact is defined as a polishing layer, and the polishing compact and the polishing layer are strictly distinguished.
  • FIG. 13 is an enlarged view of a portion surrounded by a circle in FIG. 12 which is an example of the polishing laminate of the present invention, in which the polishing compact 30 and the support layer 31 are bonded together.
  • the non-foamed layer 44 is present on the back surface of the polishing molded body 40 on the side bonded to the layer 41, and the surface has irregularities.
  • the non-foamed layer 44 is difficult to polish stably, it cannot be actually used for polishing. Therefore, the non-foamed layer 44 is a part of the molded article for polishing of the present invention, but is distinguished from the polishing layer 43.
  • the support layer is bonded to one surface of the polishing molded body of the present invention to support the polishing molded body. Is defined as a support layer.
  • a support layer it is clear when a base material having sufficient rigidity to support the molded body for polishing is attached in advance, for example, the molded body for polishing is bonded to a platen of a polishing machine using an adhesive medium such as a double-sided tape having the base material.
  • the support layer refers to a double-sided tape.
  • abrasive compact when the abrasive compact is attached to the surface plate via a double-sided tape or adhesive without a thin base material, which is judged not to exhibit sufficient rigidity to support the abrasive compact.
  • Layer refers to the surface plate.
  • a thickness of 200 m is used as a criterion for determining whether or not the adhesive medium can be a support layer. Specifically, if the thickness is more than 200 ⁇ m, it is treated as a support layer, and if the thickness is less than 200 m, the next layer is supported. Treat as a holding layer.
  • the first polishing laminate has a polishing layer having an initial thickness of 0.2 to 2 mm and a polishing molded body having a compression ratio of 1.5% or more.
  • the abrasive molded article is laminated on a support layer larger than the abrasive molded article. Examples of such an article include a laminated article in which a foamed polyurethane molded body is bonded to a non-foamed hard polyurethane substrate. Can be.
  • the apparent surface hardness in the present invention refers to a value measured using a sample having the same thickness as when actually used.
  • the thickness of the polishing layer at the initial stage is preferably 0.2 to 2 mm, more preferably 0.3 to 1.8 mm, and most preferably. 0.5 to 1.5 mm.
  • the compression ratio of the molded article for polishing of the present invention is preferably 1.5% or more, more preferably 2% or more, and most preferably 2.5% or more.
  • the apparent surface hardness of the support layer that supports the formed article for polishing is greater than that of the formed article for polishing.
  • the apparent surface hardness of the support layer is not particularly limited as long as it is larger than that of the polishing layer.
  • the A hardness is required. Is preferably 88 or more, more preferably 90 or more, and most preferably 95 or more.
  • the tensile elastic modulus of the support layer is not particularly limited, but in practical terms, the lower limit of the tensile elastic modulus for exhibiting the support function of the molded article for polishing is preferably 2 OMPa, more preferably 25 MPa. a.
  • the polishing layer is polished using a polishing laminate obtained by laminating a support layer having a tensile elastic modulus of 2 OMPa or less with the polishing molded body of the present invention
  • the polishing rate increases over time. Tended to fluctuate. Whether or not the fluctuation range is within an acceptable range in practical use is a case-by-case case.However, when extremely high precision is required, for example, when flattening the surface of a semiconductor depipe wafer, the tension of the support layer is required.
  • the modulus of elasticity is greater than 2 OMPa.
  • the material used for the support layer is not particularly limited as long as the apparent surface hardness is larger than that of the molded article for polishing, but depending on the polishing performance required, for example, plastic, thermoplastic resin, etc.
  • a flexible base material such as a rubber or rubber can be used as appropriate. These may contain bubbles or may be free of bubbles. Further, glass fibers, carbon fibers, synthetic fibers, or reinforced or woven fabrics thereof may be used. Further, a flexible metal thin plate typified by stainless steel can also be used.
  • non-foamed base materials such as epoxy resins, polyurethane resins including thermoplastic polyurethane elastomers, polyethylene terephthalate, polyethylene terephthalate, and polycarbonate, and those reinforced with glass fibers are preferably used. This is not the case.
  • various types of adhesives, or highly transparent side tapes, for example, in which an acryl-based adhesive is applied to both sides of a PET substrate, can also be used as the support layer.
  • the apparent surface hardness of the molded article for polishing used in the present invention is not particularly limited because it varies depending on the processing conditions, the target, the finished state, the finished precision, and the like, but is represented by, for example, flattening of a semiconductor device wafer.
  • the A hardness is preferably 80 or more, more preferably 82 or more, and most preferably 85 or more.
  • the polishing rate is remarkably reduced even when supported by the support layer of the present invention, which is not preferable.
  • the average diameter of the air bubbles is not particularly limited, but is preferably 0.1;! To 100/1 m, more preferably 0.1 to 50 ⁇ , Most preferably, it is 0.:!-30 tm.
  • the method of laminating the polishing compact and the support layer is not particularly limited.
  • a medium such as an adhesive or a double-sided tape may or may not be used.However, in terms of cost and in particular suppressing factors of quality variation, for example, a medium such as an adhesive or a surface tape is used.
  • stacked without using is preferable. Specifically, a co-extrusion method, a method in which a support layer in a molten state is bonded to a molded article for polishing by a method usually called thermal lamination, or the like is preferable.
  • a method is also possible in which the molded article for polishing of the present invention is directly adhered to a surface plate of a polishing machine considered as a support layer via a medium such as an adhesive or a double-sided tape.
  • the polishing laminate of the present invention has a groove serving as a flow path of the polishing slurry
  • the shape of the groove Although there is no particular limitation, for example, a parallel shape, a lattice shape, a concentric shape, and a spiral shape can be selected as needed. Alternatively, a large number of cylindrical through holes can be provided.
  • the present invention will be described specifically with reference to examples.
  • FIG. 1 An outline of the laminating equipment used in the example of the present invention is shown in FIG.
  • the pinch roll 203 is driven and has a structure through which a flyer passes.
  • the support layer material which is still in a soft state at a high temperature, was pressed through a pinch roll 203, so that the abrasive compact and the support layer were bonded to each other.
  • the polishing laminate 206 can be obtained.
  • thermoplastic polyurethane elastomer (trade name: Rezamin P-4070) manufactured by Dainichi Seika Kogyo Co., Ltd. is put into the raw material hopper 208 of the laminating equipment shown in FIG. It was bonded to the polishing compact 205 to obtain a polishing laminate 206. Note that three polishing bodies of 21 Omm width were sent out side by side at the same time and cut into 63 Omm lengths after laminating to form a 63 Omm opening polishing laminate with two seams. Obtained.
  • the polished surface side of the obtained laminate for polishing is polished with a belt sander (trade name: MNW-610-C2) manufactured by Marugen Tetsusho Co., Ltd. to remove the non-foamed layer near the surface of the molded body for polishing. Then, using a crosswise saw made by Shoda Techtron, a groove with a width of 2 mm was It was applied in a grid pattern over the entire polished surface at a pitch of mm. During the groove processing, the processing conditions were set so that a groove was always formed at the joint between adjacent polishing molded bodies, and the groove was made to penetrate through the polishing laminate to reach the support layer.
  • a double-sided tape in which an acrylic adhesive was coated on one side of a 25 ⁇ m-thick base material was attached to the support layer side of the obtained polishing laminate. After that, it was cut into a disk having a diameter of 6100 ⁇ and attached to a surface plate of a polishing machine to perform polishing.
  • the cross-sectional state is the same as that shown in FIG.
  • Example 3-2 The abrasive compact obtained in Example 3-2 was subjected to the same belt sander treatment and groove processing as in Example 3-2, and then an acrylic adhesive was applied to the back surface to form a support layer. It was affixed to a polishing machine surface plate and polished.
  • Example 3-2 Except that the foamed polyethylene base material having a thickness of 0.8 mm was used as a support layer and adhered to the molded article for polishing with an acryl-based adhesive, the same procedure as in Example 3-2 was carried out, with a fiber having a diameter of 6100m ⁇ . A polishing laminate was prepared and polished. .
  • Mouth Dale laminated pad with a diameter of 6 1 Omm (Product name: I C 1 000 / SUBA
  • test conditions are as follows.
  • Test piece JISK 7 1 1 3 No.2 test piece
  • Table 14 shows the physical property values related to the present invention for each of Examples 3-2 and 3-3 and Comparative examples 3-2 and 3-3. Table 14
  • the apparent surface hardness of the surface plate of the polishing machine is clearly 95 or more in A hardness. Therefore, from Table 14, the apparent surface hardness is shown in Examples 3-2 and 3-3. While the magnitude relation of the layers is established, it can be confirmed that the magnitude relation is reversed in Comparative Examples 3-2 and 3-3.
  • Example 3-3 and Comparative Example 3-2 50 wafers were polished under each of the polishing conditions (1) and (2). In Example 3-3 and Comparative Example 3-2, 50 wafers were polished only under the polishing condition (1). Table 15 shows the average values of the polishing rates and the in-plane variations of the 50 wafers obtained under the polishing conditions ⁇ . Examples 3-2 and Comparative Examples 3-3 were obtained under the polishing conditions 2. Table 16 shows the average values of polishing rates and in-plane variations of 50 wafers. [Confirmation of the occurrence of scratches]
  • Tables 15 and 16 show the results of the evaluation based on the three criteria of ⁇ , ⁇ , and X according to the following guidelines. O: There is no scratch at all. ⁇ : Small scratches slightly existed, but no problem in practical use. X: A level that poses a practical problem, such as the presence of relatively large scratches or many small scratches. Table 15
  • Example 3-2 and Example 3-3 no difference was observed in the occurrence of scratches as compared with Comparative Example 3-2, but both the polishing rate and the uniformity were higher. Good result was obtained.
  • Comparative Example 3-3 which has been conventionally used as a standard, there is also a difference in the state of occurrence of scratches, and the polishing laminate of the present invention exhibits higher performance than the conventional pad. Was confirmed. The same tendency was confirmed even at a lower wafer load, and it was found that the polishing laminate of the present invention would be useful in the future.
  • the polishing laminate by arranging a plurality of polishing compacts on the support layer, the quality variation of the polishing pad, whose size is increasing, is kept small, and stable polishing performance is exhibited.
  • a gap always occurs at the joint.
  • the gap formed at the joint has a problem that a step is generated or the polishing laminate is easily peeled.
  • the gap is actively used as a flow path (groove) of the polishing slurry. This solves these problems.
  • the spacing between the bodies for polishing and shaping there is no particular limitation on the spacing between the bodies for polishing and shaping, and the spacing may be provided in advance with the passage width of the polishing slurry or the gap may be enlarged by machining using a lathe, milling machine, laser, or the like. good.
  • the support layer is made of a stretchable material, it can be enlarged by stretching after disposing.
  • the thermoplastic resin may enter the gaps, and the support layer may become thicker at this portion.
  • the width of the slurry flow path may be adjusted while the thickness of the support layer is adjusted by stretching.
  • any number of the polishing laminates of the present invention may be provided, and a polishing laminate of a size that can be stably produced can be freely disposed.
  • a polishing laminate of a size that can be stably produced can be freely disposed.
  • the width of the final product is 600 mm
  • three pieces may be provided as long as it is a narrow polishing molded body having a width of 200 mm.
  • the description focuses only on the width direction, but it can be easily analogized that the same theory applies to the longitudinal direction (depth).
  • FIGS. 15 (a) and 15 (b) show four compacts for polishing that are arranged side by side. This shows a state after the support layer 21 is laminated on the side opposite to the polished surface 22 of FIG. Figure 15 (a) shows the result of applying grooves 3 3 that penetrate the polishing layer 20 from the polishing surface 22 side to the support layer 21 at the joints 23 of the adjacent narrow width polishing compacts. The state shown in Fig. 15 (b) is obtained.
  • Figs. 15 (a) and (b) show the case where the support layer is directly laminated on the abrasive compact.
  • the abrasive composite is formed on a preformed molded article such as a sheet or plate.
  • the features can also be bonded via an adhesive layer such as a double-sided tape or adhesive.
  • Figures 16 (a) and (b) show this state. 44 and 54 correspond to the deposition layer.
  • grooves having a desired size and shape such as a lattice shape, a radial shape, and a concentric shape, can be provided as necessary in addition to the grooves provided at the joints. All of these grooves may penetrate the polishing layer as well as the grooves provided at the joint, or may partially penetrate. Alternatively, as in the conventional polishing pad shown in FIG.
  • the material of the support layer used in the polishing laminate manufactured by the method of the present invention is not particularly limited. Depending on the required polishing performance, a flexible base material such as plastic, thermoplastic elastomer, or rubber can be used as appropriate. These may or may not include air bubbles, but when cushioning is required, a foam base material that includes air bubbles is more preferable.
  • glass fibers, carbon fibers, synthetic fibers, or woven or non-woven fabrics thereof may be used.
  • a thin metal plate having flexibility, such as stainless steel, can also be used.
  • the base material mainly used for ensuring the cushioning property a typical example of a conventional polishing pad, for example, a base material in which a nonwoven fabric is impregnated with a polyurethane resin, and foam beads are also used.
  • a base material dispersed in a polyurethane resin, a foamed polyurethane base material, a foamed rubber base material, or the like is suitably used.
  • equipment mainly used to support the polishing layer include non-foamed base materials such as epoxy resin, polyurethane resin, polyethylene terephthalate, polybutylene terephthalate, and polycarbonate, and reinforced with glass fibers. Those are preferably used, but are not limited thereto.
  • the polishing molded body may be processed by a single wafer.
  • the support layer may be formed by a roll-to-roll method. Lamination and groove processing are also possible, in which case very high productivity can be expected.
  • a polishing laminate having a desired size and a desired shape for example, a disk shape, a belt shape, and various shapes can be obtained.
  • polishing laminate obtained by the production method of the present invention can be used alone as a polishing pad, but if necessary, a cushion layer and a double-sided tape can be attached to the support layer side. .
  • a problem of a step which may cause a wafer to be caught at a joint at the joint during polishing for example, which may cause the wafer to be detached from the holder, and a dresser of a molded article for polishing in which a joint between the molded bodies for polishing remains.
  • the problem that the polishing layer is partially peeled off, which is caught at the joint is solved.
  • the most effective point of the present invention is that a polishing laminate having a desired size can be manufactured by using a polishing compact having a small variation in quality, which is manufactured with relatively small equipment. .
  • productivity is high, it is particularly useful when using an extrusion method, which is considered to be difficult to control the thickness and foaming state compared to the patch method or the injection molding method.
  • a high-temperature molten resin is directly laminated on a foam for polishing, a situation may occur in which joints are shifted due to thermal expansion or the like of the molded body. In such a case, it is preferable to temporarily fix the adjacent polishing compacts.
  • the method of fixing the temporary fixing is not particularly limited, but staples used with staples or the like are preferably used because they can be easily removed after lamination.
  • the abrasive compact used for the polishing layer of the present invention is not particularly limited.
  • the foamed foam containing air bubbles may be used for holding slurry or forming a surface state suitable for polishing by dressing using a dresser or the like. Is more preferable.
  • the average diameter of the cells is not particularly limited, but is preferably 0.1 to 100 / in, more preferably 0.1 to 50 m, and most preferably 0.1 to 30 m. ⁇ ⁇ .
  • the extrusion step includes a step of injecting a foaming agent in the extruder under a pressure atmosphere exceeding 1 OMPa and dissolving and mixing the foaming agent with the resin. Then, it is preferable to include a step of exposing the resin in which the foaming agent is dissolved and mixed to a pressure atmosphere lower than the pressure at which the foaming agent is dissolved and mixed.
  • grooves having a width of 2 mm were formed in a grid pattern over the entire polished surface so that the distance between adjacent grooves was 13 mm.
  • the groove width refers to the distance A
  • the distance between adjacent grooves refers to the distance B
  • the groove depth refers to C.
  • a highly transparent PET substrate tape with a thickness of 75 m is attached to the support layer of the obtained polishing laminate, and then cut into a disk having a diameter of 61 mm ⁇ to obtain a polishing pad.
  • Comparative Example 4 A laminated pad (trade name: IC1000ZSUBA400) manufactured by Mouth Dale having a cross-sectional structure shown in Fig. 17 and having a diameter of 610 mm was used as Comparative Example 4.
  • IC 1000 and SUBA400 correspond to 60 and 61 in FIG. 17, respectively.
  • a grid-like groove (63) having a width of 2 mm and an interval of 13 mm between adjacent grooves is provided on the entire polishing surface of the laminated pad of this comparative example.
  • polishing performance of each of the polishing pad obtained in Example 4 and the polishing pad of Comparative Example 4, which is a typical example of the conventional product, was measured under the same conditions (Table 12) as those of the polishing laminate of (3). However, polishing conditions were evaluated in 1).
  • Table 18 shows the polishing rates and average values of the in-plane variations of the 50 wafers. Table 18 Compared to the polishing pad of Comparative Example 4, which is a typical example of the conventional pad, the polishing pad of Example 4 has a higher polishing rate and a smaller in-plane variation, and exhibits better polishing performance. It was confirmed that.
  • FIG. 18 shows a cross section of the grooved polishing pad of the present invention cut so that the cut surface has the same shape.
  • FIGS. 19 to 22 show an example of the grooved polishing pad of the present invention.
  • FIG. 18 shows a cross section taken along a broken line in FIGS. 19 to 22.
  • the groove width (A), the distance between adjacent grooves (B), and the groove depth (C) in the present invention are as defined in FIG. 18, and the grooved polishing pad of the present invention has a groove width of (A) is 0.5 to 4 mm, and the distance between adjacent grooves (B) is 5 to 10 mm.
  • the grooves are preferably formed in a parallel relationship between adjacent grooves or in a lattice shape.
  • the grooves of the polishing pad of the present invention can be created by general cutting or the like. Although a groove with a complicated shape may be used, it is preferable that the shape is as simple as possible in view of the processing speed of the groove and the degree of difficulty of the processing, and from that point it is desirable to provide a straight parallel groove. Of course, it may be a lattice shape using straight parallel grooves, and if it is within the above-mentioned size range, the groove width may not be single and the pitch may not be evenly spaced.
  • the polishing slurry when higher polishing performance is required, the polishing slurry is sandwiched between the grooves in addition to the linear parallel grooves of at least 1 mm.
  • Concentric or helical textures or narrow grooves, or cylindrical holes, or notches may be additionally provided so that the distribution can be more evenly distributed in the formed area.
  • These can be machined using cutting tools, cutting tools, and the like, and the shape, number, and the like can be arbitrarily selected in the same manner as in the case of grooves, depending on the desired polishing performance.
  • the main component of the raw material constituting the grooved polishing pad of the present invention is not particularly limited, it is possible to use the same resin (polyurethane or the like) as described in the section of (1) [Method for producing independent foam for polishing]. it can.
  • the main raw material is a thermoplastic polyurethane elastomer manufactured by Dainichi Seika (trade name: REZAMINE P—425), a carbon dioxide is used as a foaming agent, and a die with a width of 30 mm is used. A 1.5 mm thick foamed sheet was produced by the extrusion molding.
  • the surface of the obtained foamed sheet corresponding to the polished surface was polished with a belt sander manufactured by Marugen Tetsusho Co., Ltd., and bubbles were opened by removing the skin layer which was a non-foamed layer near the sheet surface.
  • the sheet thickness after polishing was 1.3 mm. ⁇ Shiichito a 20 0 m m width, after the bonding to the double-sided tape of three one set which was cut into 60 Omm length, cut into a disk having a diameter of 6 0 Omm, to prepare a polishing pad substrate.
  • a 2 mm wide rotating blade is attached to a Shoda Techtron crosswise saw, and a straight groove of 2 mm wide, 9 mm between adjacent grooves and 0.6 mm in depth is spread over the entire surface of the polishing pad substrate.
  • the groove shape was a lattice shape, and the groove was opened at the periphery of the pad.
  • Example 5-2 A grooved polishing pad was produced in exactly the same manner as in (Example 5-1) except that the I-groove depth was changed to 1. Omni.
  • a 1 mm wide rotary blade was attached to a Shoudatektron crosswise saw, and a lmm wide, 5 mm gap between adjacent grooves and a 0.6 mm deep groove was applied over the entire surface of the polishing pad substrate.
  • a polishing pad with grooves was prepared.
  • the groove shape was a lattice shape, and the groove was opened at the periphery of the pad. '' (Example 5-5)
  • Groove processing was performed in exactly the same manner as in (Example 5-1) except that the distance between adjacent grooves was changed to 13 mm, to produce a grooved polishing pad.
  • a grooved polishing pad As a grooved polishing pad, an IC 1000 manufactured by Rodell with a lattice groove was used.
  • the groove width of the polishing pad used was 2 mm, the distance between adjacent grooves was 13 mm, and the groove depth was 0.6 mm.
  • a Cu planket wafer having a diameter of 20 Omm was used as an object to be polished.
  • the grooved polishing pad was affixed to a surface plate of a single-side polishing machine made of MAT ARW-68.1 MS. First, press the diamond dresser against the pad surface at 1.38 kPa (2 psi) while rotating the platen at 60 rpm and the dress head at 50 rpm, and then apply it to the pad surface for 30 minutes. A dressing treatment was applied. After that, the polishing film was switched to a polishing slurry manufactured by Kyapot (product name: iCue 5003), and the surface of the Cu film was polished for 1 minute. Polishing conditions were as follows: wafer pressurization 3.45 kPa (5 psi), platen rotation speed 70 rpm, wafer head rotation speed 72 rpm, and polishing slurry flow rate 200 ml / min.
  • Tables 19 and 20 show the evaluation results of the polishing performance.
  • Examples 5-1) to (Examples 5-5) show (Comparative Examples 5-1) to (Comparative Examples 5-3).
  • the polishing rate was also high.
  • a method for producing a polishing independent foam which can be suitably used for a polishing pad used for polishing semiconductors, various types of memory disk substrates, etc., and in particular, a surface flattening process for a semiconductor wafer such as an interlayer insulating film and metal wiring. It is possible to provide a polishing foam sheet and a polishing laminate used for a suitable polishing pad, a polishing method using the polishing laminate, a method for producing a polishing laminate, and a polishing pad with a mesh. .

Abstract

押出機中において10MPaを超える圧力雰囲気下で発泡剤を溶融樹脂に溶解混合する工程(A)と、その後、発泡剤を溶解混合した圧力より低い圧力雰囲気下に該溶融樹脂を曝す工程(B)とを含む、平均気泡径が0.1~100μmである研磨用独立発泡体の製造方法、および、この方法により製造された研磨用独立発泡体を用いた研磨用発泡シート、研磨用積層体、研磨用積層体を用いた研磨方法、研磨用積層体の製造方法、および溝付き研磨パッド。

Description

明 細 書 研磨用独立発泡体の製造方法、 研磨用発泡シート、 研磨用積層体と研磨方法、 研 磨用積層体の製造方法、 および溝付き研磨パッド 技術分野
本発明は、 半導体、 各種メモリーハードディスク用基板等の研磨に使用される 研磨パッ ドに好適に用いることのできる研磨用独立発泡体の製造方法、 特に層間 絶縁膜や金属配線等の半導体デバイスウェハの表面平坦化加工に好適な研磨パッ ドに用いられる研磨用発泡シートと研磨用積層体、 研磨用積層体を用いた研磨方 法、 研磨用積層体の製造方法、 および溝付き研磨パッ ドに関する。 背景技術
半導体のデパイスウェハの表面平坦化加工に用いられる、 代表的なプロセスで ある化学的機械的研磨法 (C M P ) の一例を第 1図、 第 2図に示す。 定盤 2、 試 科ホルダー 5を回転させ、 砥粒を含有する研磨スラリー 4をスラリー供給用配管 1 0を通して滴下しながら、 半導体ウェハ 1を研磨パッド 6表面に押しあてるこ とにより、 デパイス表面を高精度に平坦化するというものである。 図中、 7は駆 動用の回転軸である。 なお研磨中、 ドレッシングディスク 3を回転させながら研 磨パッ ド 6表面に押しあてることにより、研磨パッド 6の表面状態を整えている。 研磨条件はもとより、研磨パッド 6、 ドレッシングディスク 3、研磨スラリー 4、 ウェハ固定用治具 8およびパッキング材 9等、 各構成部材の特性が、 研磨速度、 研磨後のデバイス表面の平坦性とウェハ面内における平坦性ばらつき、 およぴそ れらの経時変動の指標となる、 ウェハ面間におけるばらつき等に代表される研磨 性能に影響を及ぼすが、 その中でも研磨パッド 6と研磨スラリー 5さらには研磨 スラリ一中に含まれる砥粒の及ぼす影響は極めて大きい。
従来から、 層間絶縁膜や金属配線等の研磨に用いられる研磨パッドとして、 使 用前、 使用中におけるドレッシング、 および研磨の進行に伴う研磨パッ ド表面の 磨耗等により、 スラリーを保持する機能を発現するような、 例えば空孔を内包し ている部材として、 特許第 3 0 1 3 1 0 5号に示されるように、 高分子マトリツ クス (マトリ ックス樹脂) 中に空隙スペースを有する中空高分子微小エレメント を含浸分散させた独立発泡体、 例えば、 口デール社製の I C 1 0 0 0 (商品名) が標準的に使用されてきた。 該マトリ ックス樹脂としては、 硬質でかつ圧縮率の 小さい、 熱硬化性ポリウレタン樹脂等が使用されてきた。
従来の独立発泡体の代表的な製造方法としては、 一般的に注型法と呼ばれる、 高分子マトリ ッタスの原料中に中空高分子微小エレメントを混合、 分散させた後 に、 金型に注ぎ込み硬化させ、 得られたコンパウンドをスライスする方法等が挙 げられる。
注型法で得られた独立発泡体は、 中空高分子微小エレメント自体のサイズのば らつきに加え、 硬化過程においてコンパウンド内で分布に偏りが生じ易く、 その 結果、 得られた独立発泡体の発泡状態が、 ロッ ト内およびロッ ト間においてばら つき、 最終的に研磨パッ ドになった際に、 研磨性能がばらつき易いといった問題 を有するものであった。
また、 一般的な物理発泡剤に比べて高価な中空高分子微小エレメントを用いる 上に、 例えば硬化に長時間を有する点、 コンパウンドをスライスする工程が必要 である等の点で、 生産性の低下を招き、 結果的に製品コス トが上昇するという問 題を有していた。
注型法以外には、 例えば公開特許公報 2 0 0 1— 2 6 1 8 7 4の 6頁— 7頁に 示されるように、 超臨界状態の非反応性ガスを含浸させた後、 常圧に戻し、 その 後さらに加熱することにより独立発泡体を製造する方法 (パッチ式超臨界発泡法 と呼ぶ) 等がある。 具体的には、 押出機で成形した無発泡シートを高圧容器中に 密閉し、 発泡剤である二酸化炭素を長時間にわたりシートに含浸させた後に圧力 を開放し、 取り出したシートを加熱して発泡させる方法である。 バッチ式超臨界 発泡法は、 注型法に比べて発泡ばらつきの小さい独立発泡体を得ることができる が、 その反面、 発泡剤の含浸に長時間を要するために生産性が低くなる。 さらに は大型の高圧設備が必要となるために、 設備投資額が非常に大きくなる等の問題 点があった。
一方、 発泡体を直接押し出す方法もあるが、 押出機圧力の上昇や気泡径の粗大 化といった問題があり、 研磨用に適する発泡体を得るのは困難であった。
エレク トロニクス業界の最近の著しい発展により、 トランジスター、 I c、 L
S I、 超 L S I と進化してきている。 これら半導体素子における回路の集積度が 急激に増大するにつれて、 半導体デバイスのデザインルールは、 年々微細化が進 み、 デパイス製造プロセスでの焦点深度は浅くなり、 パターン形成面の平坦性は ますます厳しくなつてきている。 それに伴い、 C M Pに求められる研磨精度も高 くなる、つまりは研磨パッ ドに要求される研磨性能レベルも著しく高まっており、 従来のパッドに比べて性能ばらつきの小さい研磨用独立発泡体の出現が大望され ているが、 併せて該独立発泡体の実用に耐えうる製造方法が求められている。 本発明に係る研磨用独立発泡体の製造方法は、上記事情に鑑み、第 1に、従来、 製造に長時間を要する上に、 得られた研磨パッドの性能がばらつく といった問題 を解決するためのもので、 その目的とするところは、 研磨に好適な、 性能ばらつ きの小さい研磨用独立発泡体を効率よく製造する研磨用独立発泡体の製造方法を 提供することにあり、 第 2に、 押出成形では困難であった難発泡樹脂を成形する もので、 その目的とするところは、 研磨性能の優れた研磨用難発泡樹脂の発泡体 を、 効率よく成形する研磨用独立発泡体の製造方法を提供することにある。
さらに、 従来の独立発泡体は、 使用前、 使用中における ドレッシング、 および 研磨の進行に伴う研磨パッド表面の摩耗により、 高分子微小エレメントのシェル が破れて空孔が開口し、研磨スラリ一の保持能力を発現するというものであった。 従来の独立発泡体においては、 研磨性能に大きく影響を及ぼすと考えられる、 研 磨面において開口した空孔の開口部のサイズ、 数および総面積等に言及している 文献、 報告書類等は非常に少なく、 高分子微小エレメントのサイズ、 数、 空隙率 等の記述に留まっているものが大部分であった。
また、 エレク トロニクス業界の発展により、 デザインルールの微細化とともに ウェハの大口径化も進行し、 加工するデバイスウェハ面内の平坦性のばらつきを いかに抑えるか、 つまりはウェハ面内での均一性をいかに向上させるかが大きな 課題となっている。
J I S K 7 3 1 1に準じた Α硬度で 8 0以上の、 硬質系に分類される高硬 度の、 かつ圧縮率の小さい研磨層を用いることにより、 平坦性向上は期待できる 力 S、 ウェハ全体の大きなうねりに沿うことは困難となり、 均一性は低下する。 逆 に圧縮率の大きい軟質系に属する研磨層を用いると、 均一性は保たれるが平坦性 の低下は免れない。 近年になり、 平坦性と均一性をいかに両立させるかというこ とが、 従来にも增して重要な課題となってきている。
平坦性と均一性を两立するために、 従来は、 例えば特開平 6— 2 1 0 2 8号公 報に示されるように、 硬質研磨層 6 (独立発泡体) をクッション性を有する軟質 基材 1 1 と貼り合わせ、 研磨パッド 1 2を二層構造にするという手法がこれまで の主流であった (第 2図参照)。 具体的には、 表面硬度が大きく、 圧縮率の小さい 独立発泡体 6で平坦性を、 圧縮率の大きいクッション性を有する基材 1 1で均一 性を保持するというコンセプトであった。 しかしながら、 従来の二層構造研磨パ ッ ドにおいては、 クッション層の効果を研磨に反映させる.必要があるために、 研 磨層である独立発泡体の厚みが制限され、 その結果としてパッドライフが制限さ れてしまうという点が大きな問題であった。
本発明に係る研磨用発泡シートは、 上記事情に鑑み、 第 1に、 従来の独立発泡 体を用いた研磨用パッドの、 例えば研磨速度を向上させ、 研磨性能ばらつきの問 題を解決することにより、 研磨性能の向上をはかるためのもので、 その目的とす るところは、 高精度の研磨性能を経時的にも安定に発現することのできる研磨用 発泡シートを提供することにあり、 第 2に、 従来の二層構造研磨パッ ドの、 均一 性を保持するために研磨層の厚みが制限されるという問題を解決することにより、 研磨層を厚くすることができ、 研磨パッ ド 1枚当たりのスループットを向上させ るというもので、 その目的とするところは、 平坦性と均一性を兼ね備えた、 ライ フの長い研磨用発泡シートを提供することにある。
さらに、 研磨パッ ドの研磨層としては、 従来から、 例えばポリウレタン発泡体 が代表的に用いられているが、 この場合、 研磨条件はもとより、 研磨パッ ドの表 面硬度、 圧縮率が、 また研磨層が発泡体である場合は、 研磨層に含まれる気泡の サイズや密度等が、 研磨後の被加工物の仕上がり状態に大きな影響を及ぼす。 また、 平坦性と均一性を両立するために硬質研磨層を軟質基材と貼り合わせた 前記二層構造の研磨パッドは、 被加工物が、 例えば酸化膜のような比較的硬質な 対象を研磨する場合は良好な研磨が実現できるが、 例えば銅膜や有機材料等、 酸 化膜に比ぺると柔らかい材料の表面を研磨した場合、 被加工物表面に、 一般にス クラツチと呼ばれる傷が入りやすいという問題があった。 スクラツチの発生を抑 制する主な手法としては、 例えば、 従来よりもウェハにかける荷重をより低圧に する、 ウェハの回転速度をより高速にする等の検討が続けられているが、 従来の パッド構成では、低圧になればなるほど、クッション層のクッション効果が薄れ、 その結果として、 被加工物表面の研磨後の仕 ±がり状態が、 ウェハ面內でばらつ き易い、 つまりは均一性が低下するという問題が顕在化してきた。 均一性の低下 に加え、 研磨速度が低下する点も大きな問題であった。
研磨層を構成する材料の物性や構造が固まり、 製造方法がほぼ確立されている という制約の中での従来の研磨パッドに対する改善は、 大きな困難を伴うもので あった。 研磨装置や研磨スラリーのサイ ドからも改善が試みられ、 スクラッチは ある程度までは低減されてきたとは言うものの、 従来の研磨パッドを使用してい る状況においては、 満足のいく レベルに至っていないというのが実状である。 本発明に係る研磨用積層体および研磨方法は、 上記事情に鑑み、 第 1に、 従来 の、 クッショ.ン層の上に研磨層を積層した研磨パッ ドで、 比較的柔らかい材料の 表面を研磨した場合に、 被加工物表面にスクラツチが入りやすいという問題を解 決することにより、 研磨パッドの性能の向上を図るというもので、 その目的とす るところは、 特に低圧で研磨する場合においても、 平坦性と均一性の両立がはか れ、 かつ研磨速度が実用的なレベルである研磨パッ ドに用いられる研磨用積層体 および研磨方法を提供することにあり、 第 2に、 比較的軟質なクッション層と研 磨用成形体を貼り合わせた従来の研磨パッドで、 例えば銅膜などの比較的柔らか い材料の表面を研磨した場合に、 被加工物表面にスクラツチが入りやすいという 問題点を主に解決するためになされたもので、 その目的とするところは、 従来よ りも低圧で研磨する場合においても、 研磨速度を低下させることなく、 均一性が 保持できる研磨パッ ドとして用いられる研磨用積層体および研磨方法を提供する ことにある。
さらに、 前記ウェハの大口径化の進行に伴い、 研磨パッ ドの品質ばらつき (気 泡密度ばらつき等) の低減とウェハの大口径化に対応したスケールアップの両立 が非常に大きな問題となっている。 従来から押出成形によって発泡成形体を製造する方法は公知であるが、 研磨パ ッドとして有用な発泡状態、 つまりは平均径が数〜数十ミクロンレベルである気 泡群を高密度に内包する発泡成形体を、 研磨パッ ドに応じたサイズで得ることの できる実用的な技術は、未だ確立されていない。研磨パッ ドに応じたサイズとは、 例えば直径 8インチ φのデバイスウェハの研磨に用いる研磨パッ ドとしては、 一 般的に直径 6 1 O mm程度が必要とされ、 当然のことながら、 一枚の成形体で研 磨パッドのサイズを賄うためには、 6 1 0 m m以上の幅が必要となる。
このサイズを有する発泡成形体をバッチ法で得るには、 非常に大型の耐圧容器 を必要とする上に、 発泡剤の溶解に長時間を要するために生産性が低い点等、 実 用面における問題点が山積している。 なお試験段階ではあるが、 将来的に研磨層 として無発泡成形体が用いられる場合も予測される。 この場合は発泡成形体を作 製する場合ほど品質ばらつきの問題がクローズアップされることはないが、 やは り無発泡成形体の場合でも、 スケールアップの問題、 つまりは今後のウェハの大 口径化に対応したパッ ドのますますの大判化に伴う問題が噴出するであろうこと は容易に推測される。
本発明に係る研磨用積層体の製造方法は、 上記事情に鑑み、 従来研磨パッ ドに 比べて、 品質ばらつきが小さく、 安定した研磨性能を発現する研磨用積層体を提 供するためのもので、 その目的とするところは、 ウェハの大口径化に対応したス ケールアップを伴う場合においても、 品質の低下を招かず、 安定した研磨性能を 発現できる研磨用積層体の製造方法を提供することにある。
さらに、 層間絶縁膜や金属配線等の研磨に標準的に使用されてきた従来の研磨 パッ には、 例えば特開平 8— 2 1 6 0 6 9号公報に示されるように、 研磨液層 の厚さを研磨面の全ての箇所においてほぼ同一にすることを目的とした溝が施さ れているが、 前述のエレク トロ二タス業界の発展によりパターン形成面の平坦性 が厳しくなるのに伴い、 研磨パッドに要求される研磨性能レベルが著しく高くな るとともに、 上記溝の役割もますます重要になってきており、 ウェハの大口径化 がこの傾向にさらに拍車をかけている。 したがって、 例えば半導体ウェハ上のデ パイス表面を高精度に研磨することができ、 さらには同じ研磨性能を長時間にわ たり持続できるパッ ドの溝条件 (溝幅、 溝間隔) を特定する必要がある。 本発明に係る溝付き研磨パッ ドは、 上記事情に鑑み、 従来の溝付き研磨パッ ド の研磨性能の改善をはかるためのもので、 その目的とするところは、 例えば研磨 速度と均一性のパランスが取れており、 また研磨性能の経時変動の小さい溝付き 研磨パッドを提供することにある。 発明の開示
(研磨用独立発泡体の製造方法)
本発明に係る研磨用独立発泡体の製造方法の第 1特徴構成は、平均気泡径が 0 . ;!〜 1 0 0 μ mの研磨用独立発泡体を作るべく、 押出機中において 1 O M P aを 超える圧力雰囲気下で発泡剤を溶融樹脂に溶解混合する工程 (A) と、 その後、 発泡剤を溶解混合した圧力より低い圧力雰囲気下に該溶融樹脂を曝す工程 (B ) とを含む点にある。
平均気泡径が 0 . 1 ~ 1 0 0 mである独立発泡体は、 高精度な研磨、 例えば 半導体デバイス表面の C M Pに好適である。 気泡の平均径が 0 . 未満であ ると、 研磨スラリー中に含まれる砥粒の凝集物おょぴ研磨の進行に伴い発生する 研磨屑等が、 開口した気泡内から排出されにく く、 空孔が目詰まりし易い。 その 結果、研磨速度のウェハ等の研磨対象面内におけるばらつきを引き起こしゃすく、 さらには研磨速度の経時変動が大きくなるので好ましくない。 逆に 1 0 0 mを 超えると、 研磨対象面內においてスラリーの保持性能がばらつき易く、 研磨速度 の研磨対象面內におけるばらつきが大きくなるため、 高精度な研磨の実現が困難 となる。
研磨に好適に用いられる、 平均気泡径が 0 . 1〜 1 0 0 mの独立発泡体を得 るための条件は、 発泡剤を樹脂に溶解混合する圧力雰囲気が 1 O M P a以上であ ることである。 l O M P a未満では、 発泡剤の溶解混合が安定に進行せず、 得ら れた独立発泡体の発泡状態がばらつき易くなるので好ましくない。 また、 発泡剤 を 1 O M P a未満で溶解混合した場合は、 得られた独立発泡体に含まれる気泡は 粗大で、 平均気泡径が 1 0 0 m未満の気泡を得ることは非常に困難となること からも、 発泡剤を樹脂に溶解混合する圧力雰囲気は 1 O M P a以上であることが 好ましい。 第 1特徴構成の方法で製造した平均気泡径が 0 . 1〜 1 0 0 /X mの研磨用独立 発泡体は良好な研磨性能を発現した。 本発明の安価な発泡剤を用いた、 効率良い 製造方法によれば、 該研磨用独立発泡体を安定に、 低コストで生産することが期 待できる。 したがって、 研磨に好適な、 性能ばらつきの小さい研磨用独立発泡体 を効率よく製造する研磨用独立発泡体の製造方法が提供される。
同第 2特徴構成は、 前記押出機に注入する前記発泡剤の供給速度が、 吐出速度 の 0 . 5〜: I 0重量%である点にある。
本発明のような発泡と成形を同時並行させる方法において、 押出機に注入する 発泡剤の供給速度が吐出速度の 0 . 5重量%未満では、 ほとんど発泡しない、 あ るいは所望の発泡状態を得ることが困難となるため好ましくない。 逆に発泡剤が 多い場合は、 注入した発泡剤の数。 /0が成形時に離散する、 あるいは発泡せず樹脂 中に溶解したままであるため、 発泡剤の供給速度が吐出速度の 1 0重量%より多 い場合は、 発泡剤が樹脂に対して過剰となり、 発泡剤を溶解混合した圧力より低 い圧力雰囲気下に曝す工程が不安定になりやすい。 その結果、 例えば独立発泡体 のシート表面が荒れやすくなり、 発泡が不均一になり易い等の問題が発生するの で好ましくない。 したがって、 押出機に注入する前記発泡剤の供給速度は、 吐出 速度の 0 . 5〜 1 0重量%であることが好適である。
同第 3特徴構成は、 平均気泡径が 0 . 1〜 1 0 0 μ mの研磨用独立発泡体を作 るべく、 難発泡樹脂に後架橋剤を添加し、 押出機により溶融させ、 l O M P aを 超える圧力雰囲気下でその溶融樹脂に発泡剤を溶解及び//又は混合した後、 該溶 解及び/又は混合した地点の圧力より低い圧力雰囲気下に該溶融樹脂を曝すこと で得られた発泡体を架橋させることを特徴とする点にある。
すなわち、 上記難発泡樹脂に後架橋剤を添加することで成形時の圧力が低下し て成形がし易くなり、 また架橋を進行させることで、 品質の安定化が図れる。 成 形中に架橋が進行すると、 溶融樹脂粘度が増加し成形性が低下するので、 ここで いう後架橋剤は、 成形中は架橋が進行せず可塑化効果により溶融樹脂粘度を低下 させ、 成形後に架橋が進行するようなものを指す。 架橋により樹脂中に網目構造 ができるために、 耐磨耗性、 耐熱性、 耐薬品性の向上に寄与し、 品質の安定化が 図れることから、 非常に有用である。 第 3特徴構成によれば、 押出成形では困難であった研磨用難発泡樹脂の発泡体 を効率良く生産することが可能となり、 研磨性能も向上した。 したがって、 研磨 性能の優れた研磨用難発泡樹脂の発泡体を、 効率よく成形する研磨用独立発泡体 の製造方法が提供される。
同第 4特徴構成は、 前記難発泡樹脂が J I S K 7 3 1 1に準じた Α硬度 9 0以上であり、 流動開始温度が 2 0 0 °C〜 2 3 0 °Cである点にある。
すなわち、 樹脂の硬度が研磨特性に大きく影響するので、 難発泡樹脂が J I S K 7 3 1 1に準じた A硬度 9 0以上であることが好ましい。 また髙温条件では 樹脂の熱分解が進むので、流動開始温度が 2 0 0 °C〜 2 3 0 °Cの樹脂が好ましい。 同第 5特徴構成は、 前記難発泡樹脂が熱可塑性エラストマ一である点にあり、 また、 同第 6特徴構成は、 上記熱可塑性エラストマ一がポリ ウレタンである点に ある。
すなわち、 研磨特性に大きな影響を及ぼす硬度や圧縮率等の物性を比較的容易 に制御できるという点から、 例えばウレタン系ゃォレフィン系の熱可塑性エラス トマ一が好適である。 その中でもさらに研磨に重要な耐摩耗性を、 比較的広い範 囲でコントロールすることが可能であるという点で、 熱可塑性ポリウレタンエラ ストマ一が最も好ましい。 ポリ ウレタンは熱分解が 2 3 0 °Cより徐々に始まるた め、 流動開始温度 2 0 0 °C〜 2 3 0 °Cに適合して好ましい。
同第 7特徴構成は、 前記難発泡樹脂 1 0 0重量部に対し、 前記後架橋剤 0 . 1 〜4 0重量部を含む点にある。
すなわち、 後架橋剤の添加量が樹脂 1 0 0重量部に対し架橋剤 0 . 1未満であ ると、 成形圧力の低下に寄与せず、 架橋剤としての効果が殆ど発現しない。 逆に
4 0重量部より大きいと、 架橋に寄与しないものが製品中に残存して不純物とな り、 あるいは製品性能を低下させる要因となるので好ましくない。 したがって、 後架橋剤の添加量は、 樹脂 1 0 0重量部に対し架橋剤 0 . 1〜4 0重量部が好適 である。
同第 8特徴構成は、 前記難発泡樹脂に樹脂の溶融張力を増加させる改質剤を添 加する点にあり、 また同第 9特徴構成は、 上記改質剤がアクリル変性を施したフ ッ素樹脂である点にある。 すなわち、 上記難発泡樹脂に後架橋剤と共に樹脂の溶融張力を增加させる改質 剤 (樹脂張力増加用改質剤) を添加することで、 上記後架橋剤による効果に加え て、 樹脂の溶融張力が増加して破泡が抑制され、 発泡剤の使用量が低減できる。 同時に、 発泡体の凹 ώ、 スジ、 焼け異物等の発生を抑制し、 表面外観品質を向上 させるとともに、 発泡の均質化にも寄与する。 特に、 前記後架橋剤と上記樹脂張 力増加用改質剤の両方を添加することにより、 押出し時に金型出口周辺に樹脂が 付着して 「目やに状に」 溜まる現象を低減させることができるという格別の効果 を奏する。
そして、上記改質剤としては、ァクリル変性を施したフッ素樹脂が好適である。 すなわち、 適正な濃度であれば、 最終製品に含まれていても研磨性能を低下させ ることなく、 成形時においてのみ、 発泡成形に好適な影響を及ぼし、 かつ一般的 な能力を有する押出機で樹脂と十分に混ぜ合わせることが可能である。 特に、 ァ クリル変性を施したフッ素樹脂はポリゥレタンとの親和性が高く、 容易に混ぜ合 わせることができる。 また、 アクリル変性を施したフッ素樹脂は二酸化炭素との 親和性が髙いので、 本発明において、 二酸化炭素を発泡剤として用いた場合は、 溶融樹脂に対する二酸化炭素の溶解及び/又は混合を促進する効果を発現し、 極 めて好適である。
同第 1 0特徴構成は、 前記発泡剤が常温 ·常圧で気体状態である点にあり、 ま た同第 1 1特徴構成は、 前記発泡剤が二酸化炭素である点にある。
本発明の製造方法においては、 常温 ·常圧で気体状態のガスを発泡剤とするこ とが好ましい。 このようなガスとしては、 特に制限はなく、 無機ガス、 フロンガ ス、 低分子量の炭化水素などの有機ガス等が挙げられるが、 原料樹脂に不活性で あり、 ガスの回収が不要という点で無機ガスが好ましい。 無機ガスとしては、 常 温 ·常圧で気体である無機物質であって、 原料樹脂に溶解混合できるものであれ ば特に制限はなく、 例えば二酸化炭素、 窒素、 アルゴン、 ネオン、 ヘリウム、 酸 素等が好ましいが、 原料樹脂に溶解混合し易く、 取り扱いが容易であり、 さらに は他の発泡剤と比べて安価であるという点等から二酸化炭素がより好ましい。 (研磨用発泡シート)
本発明に係る研磨用発泡シートの第 1特徴構成は、 研磨面において、 シートに 含まれる空孔が開口した結果生じた開口部の円相当直径の平均値が 1〜 5 0 m であり、 かつ円相当直径 0 . 1〜 1 0 /ί πιの開口部が少なく とも 1 0 0 0個 Z c m 2以上含まれている点にある。
すなわち、 開口都直径の平均値が 1 m未満であると、 研磨スラリ一中に含ま れる砥粒の凝集物や研磨の進行に伴い発生する研磨屑等が空孔内から排出されに く く、 空孔が目詰まり し易い。 その結果、 研磨速度の被加工物面内におけるばら つきを引き起こし易く、 さらには研磨速度の経時変動が大きくなるので好ましく ない。 逆に 5 0 mを超えると、 被加工物面内においてスラリーの保持性能がば らつき易く、 研磨速度の被加工物面内におけるばらつきが大きくなるため、 高精 度な研磨の実現が非常に困難となる。
また、 直径 0 . 1 ~ 1 0 mの開口部は、 研磨後の被加工物表面の平坦性向上 に寄与し、 さらには研磨速度の被加工物面内におけるばらつきおよび経時変動を 低減する役割を担うが、 1 0 0 0個ノ c m 2未満では、 全開口部に占める割合が 小さく、 均一性向上の効果が小さいので好ましいので、 少なく とも 1 0 0 0個 c? m 2以上必要である。
したがって、 本構成の研磨用発泡シートを用いて、 例えば半導体デバイスゥェ ハを研磨すれば、 従来パッドに比べて、 研磨速度が速くなるだけでなく、 研磨後 のデバイス表面の平坦性およびそれらのウェハ面内の均一性が著しく向上し、 高 精度な研磨の実現が期待でき、 高精度の研磨性能を経時的にも安定に発現するこ とのできる研磨用発泡シートが提供される。
同第 2特徴構成は、 前記研磨面において、 全開口部の総面積の割合が研磨面全 体の 3 0 ~ 7 0 %である点にある。
すなわち、 研磨面全体に占める全開口部の総面積の割合は、 研磨速度と強い相 関関係にあり、 全開口部の総面積の割合が研磨面全体の 3 0 %未満であると、 研 磨スラリーの保持性能が低くなり、 研磨速度が小さくなるだけでなく、 被加工物 面内におけるばらつきが生じやすく、 さらには経時変動が大きくなるので好まし くない。 また、 7 0 %を超えると、 発泡シートの厚み方向における機械的強度が 著しく低下するだけでなく、 見掛けの表面硬度が低下し、 研磨後の被加工物表面 の平坦性低下を引き起こす要因となることから、 好ましくない。 したがって、 全 開口部の総面積の割合が研磨面全体の 3 0〜 7 0 %であることが好適である。 同第 3特徴構成は、 2 5 °Cにおける見掛けの圧縮率が 5 ~ 1 5 %である点にあ る。
すなわち、 圧縮率が 5 %未満であると、 研磨用シートがウェハ全体のうねりに 追従しきれず、 研磨速度および研磨速度のウェハ面内におけるばらつきが大きく なり、 さらには研磨速度の経時変動が大きくなるので好ましくない。 逆に 1 5 % 以上では、 見掛けの表面硬度が低下し、 研磨後のデバイス表面の平坦性低下を引 き起こす要因となるため好ましくない。 したがって、 高精度な研磨に好適な見掛 けの圧縮率の範囲は、 2 5 °C雰囲気下で 5〜 1 5 %である。
同第 4特徴構成は、 前記シートを構成する原料の主成分が、 J I S K— 7 3 1 1に準じた A硬度で 7 0以上の熱可塑性エラストマ一である点にある。
すなわち、研磨後の被研磨面の平坦性と均一性のパランスが非常に取りやすく、 特に研磨対象が比較的柔らかい C uのような金属の場合では、 J I S K— 7 3 1 1に準じた A硬度で 7 0以上の熱可塑性エラストマ一が好適である。
同第 5特徴構成は、 J I S K . 7 3 1 1に準じた Α硬度が 8 0以上であり、 かつ 2 5 °Cにおける見掛けの圧縮率が 3〜 1 5 %である点にある。
すなわち、 A硬度が 8 0以上の表面硬度を有することにより、 研磨後の平坦性 を確保するとともに、 2 5 °Cにおける見掛けの圧縮率が 3 %未満の場合では、 研 磨層が被加工物全体のうねりに追従しきれず、 研磨速度の被加工物面内における ばらつきが大きくなり、 均一性が低下するので好ましくない。 逆に 1 5 %より大 きくなると、 研磨速度が遅くなるだけでなく研磨後の被加工物表面の平坦性低下 を引き起こす原因となるため好ましくない。
本構成の研磨用発泡シートを用いて、 例えば半導体デパイスウェハを研磨すれ ば、 従来パッ ドに比べて、 研磨速度が速くなるだけでなく、 研磨後のデバイス表 面の平坦性とそのウェハ面内の均一性とのバランスが良い、 高精度な研磨の実現 が期待できる。 さらには、 研磨層の厚みを厚くすることにより、 スループッ トの 向上が期待できる。
したがって、 平坦性と均一性を兼ね備えた、 ライフの長い研磨用発泡シート研 磨用発泡シートが提供される。 同第 6特徴構成は、 シートに含まれる気泡の平均径が 1〜 5 0 mである点に ある。
第 1特徴構成の研磨用発泡シートにおいて述ぺたように、 気泡の平均径が 1〜 5 0; であることが好適である。
同第 7特徴構成は、 前記シートの主原料が熱可塑性エラストマ一である点にあ り、同第 8特徴構成は、上記第 4又は第 7特徴構成の研磨用発泡シートにおいて、 前記熱可塑性エラストマ一がポリウレタンである点にある。
すなわち、 研磨特性に大きな影響を及ぼす硬度や圧縮率等の物性を比較的容易 に制御できるという点から、 例えばウレタン系ゃォレフィン系の熱可塑性エラス トマ一が好適である。 その中でもさらに研磨に重要な耐摩耗性を、 比較的広い範 囲でコントロールすることが可能であるという点で、 熱可塑性ポリウレタンエラ ストマ一が最も好ましい。
(研磨用積層体)
本発明に係る研磨用積層体の第 1特徴構成は、 J I S K 7 3 1 1に準じた A硬度で 8 0以上の表面硬度を有し、 圧縮率が 1 . 5 %以上で、 力つ初期の厚み が 2 m m以下の研磨層を有する研磨用成形体が、 該研磨用成形体の圧縮率より小 さい圧縮率を有する支持層に積層されている点にある。
例えば半導体デパイスウェハの表面研磨を行う場合、 研磨層の表面硬度が A硬 度で 8 0未満であると、 研磨後の被加工物表面の平坦性が著しく低下するので好 ましくない。
研磨層の圧縮率が 1 . 5 %未満の研磨用積層体を用いて研磨した際、 従来の硬 質な研磨用成形体単独で研磨した場合と同様に、 研磨速度のウェハ面内における ばらつきが大きくなる、 つまりは均一性が低下するが、 これはウェハ全体のうね りに追従しきれないためと考えられる。 さらには、 前述のように、 例えば銅膜や 有機材料等、 酸化膜等に比べると柔らかい材料の表面を研磨した場合、 被加工物 表面に、 スクラツチが入りやすくなるので好ましくない。
本発明の研磨用積層体の要点の一つとして、 支持層裏面、 さらには定盤表面の 平坦精度をもって、 被加工物表面の研磨後の平坦性を確保する。 例えば、 研磨層 の厚みが 2 mniより厚くなると、 支持層裏面、 さらには定盤表面の影響が研磨の 際に被加工面に及びにく くなり、 その結果、 平坦性の低下を招く原因となり得る ので好ましくない。
さらに、 研磨用成形体が、 該研磨用成形体よりも圧縮率の小さい支持層に積層 されることにより、 例えば鲖膜ゃ有機材料等、 比較的柔らかい材料を研磨した場 合でも、 従来の研磨パッドを用いた場合に発生し易かったスクラッチを発生させ ることなく、 被加工物表面の平坦性、 均一性を確保できるとともに、 低圧かつ高 速な条件で研磨した場合でも、 その性能が低下しないので非常に好ましい。 したがって、 特に低圧で研磨する場合においても、 平坦性と均一性の両立がは かれ、 かつ研磨速度が実用的なレベルである研磨パッドに用いられる研磨用積層 体が提供される。
同第 2特徴構成は、 初期の厚みが 0 . 2〜 2 m mの研磨層を有し、 かつ圧縮率 が 1 . 5 %以上である研磨用成形体が、 見掛けの表面硬度が該研磨用成形体より 大きい支持層に積層されている点にある。
すなわち、本発明の研磨用成形体において、研磨層の厚みが 2 m mより厚いと、 研磨速度が著しく低下するので好ましくない。 逆に研磨層の厚みが薄くなると、 研磨できる容量が低下し、 研磨パッ ドとしてのライフが短くなる。 具体的には、 半導体デバイスウェハを研磨する場合、 研磨パッ ド 1枚で研磨できるウェハ枚数 が少なくなるので好ましくない。 実際には、 研磨対象の種類、 研磨装置の構成、 研磨条件、 所望のスループッ ト等を考慮する必要があるが、 加工後の仕上がり状 態とライフの双方から総合的に判断すると、 初期の研磨層厚みの下限は 0 . 2 m mである。
また、 研磨用積層体の圧縮率が 1 . 5 %未満であると、 単独で、 あるいは何ら かの基材と貼り合わせて、 例えば銅膜や有機材料等の、 酸化膜等に比べると柔ら かい材料の表面を研磨すると、 被加工物表面にスクラッチが入りやすくなるので 好ましくない。 一方、 圧縮率が 1 . 5 %以上である研磨用成形体を単独で、 ある いは該研磨用成形体よりも見掛けの表面硬度が小さい、 いわゆる軟質の支持層と 貼り合わせて研磨を行った場合、 研磨速度の低下、 さらには被加工物表面の平坦 性の悪化を招く恐れがある。
さらに、 本発明では、 見掛けの表面硬度を材料の剛性を判定する一指標として 用いるが、 圧縮率が 1 . 5 %以上の、 適度にクッション性を有した研磨用成形体 力 見掛けの表面硬度が該研磨用成形体より大きい、 つまりは剛性の高い支持層 に積層されていることにより、 スクラッチがなく、 かつ均一性を保ちつつ高い研 磨速度を発現するといつた所望の研磨性能を発現する。
したがって、 従来よりも低圧で研磨する場合においても、 研磨速度を低下させ ることなく、 均一性が保持できる研磨パッドとして用いられる研磨用積層体が提 供される。
同第 3特徴構成は、 前記支持層の見掛けの表面硬度が前記 A硬度で 8 8以上で める^:にある。
研磨用成形体を支持するという機能を発現するために、 支持層の見掛けの表面 硬度が A硬度で 8 8以上であることが好適である。
同第 4特徴構成は、前記支持層の引張弾性率が 2 O M P aより大きい点にある。 研磨用積層体に用いる支持層の適性を判定する一手段として、 引張弾性率が一 つの指標となり得ることが確認され、 研磨用成形体を支持するという機能を発現 するために、 支持層の引張弾性率が 2 O M P aより大きいことが好適である。 . 同第 5特徴構成は、 研磨層は、 平均径が 0 . 1〜 1 0 0 mの気泡を内包して ヽる,^;にある。
本発明の研磨層は、 研磨スラリーを保持する、 又は研磨に適した表面状態を、 例えばドレッサーによる目立て処理等により形成する上で、 気泡を内包している ことがより好ましく、 気泡を内包する場合、 気泡の平均径は 0 . 1〜 1 0 0 ΙΠ が好適である。
同第 6特徴構成は、 研磨用成形体の主原料が熱可塑性エラストマ一である点に あり、 また、 同第 7特徴構成は、 上記熱可塑性エラストマ一がポリウレタンであ ο点にめる。
すなわち、 研磨特性に大きな影響を及ぼす硬度や圧縮率等の物性を比較的容易 に制御できるという点から、 例えばウレタン系ゃォレフイン系の熱可塑性エラス トマ一が好適である。 その中でもさらに研磨に重要な耐摩耗性を、 比較的広い範 囲でコントロールすることが可能であるという点で、 熱可塑性ポリウレタンエラ ストマ一が最も好ましい。 同第 8特徴構成は、 前記研磨用成形体の表面に溝を有する点にある。
本発明の研磨用積層体を研磨パッ ドとして用いる場合、 必要に応じて研磨スラ リーを保持し、 研磨に適した表面状態とする、 および Zまたは研磨スラリーの流 路となる溝を有してもよい。
すなわち、 溝を施すことにより、 研磨面全域に研磨スラリーがより行き渡り易 くなつたり、 研磨層に気泡を内包しない場合には、 研磨スラリーを保持し、 研磨 に適した表面状態とすることができるので、 均一性を確保するという点や、 研磨 性能ばらつき、 さらには研磨性能の経時変動の点で好適である。
(研磨方法)
本発明に係る研磨方法の第 1特徴構成は、 上記研磨用積層体を研磨機の定盤に 固定して、被加工物表面を平坦化する点にあり、 同第 2特徴構成は、 J I S K 7 3 1 1に準じた A硬度で 8 0以上の表面硬度を有し、圧縮率が 1 . 5 %以上で、 かつ初期の厚みが 2 mm以下の研磨層を有する研磨用成形体を、 該研磨用成形体 の圧縮率より小さい圧縮率を有する支持層を介して研磨機の定盤に固定し、 被加 ェ物表面を平坦化する点にあり、 また、 同第 3特徴構成は、 初期の厚みが 0 . 2 〜 2 m mの研磨層を有し、 かつ圧縮率が 1 . 5 %以上である研磨用成形体を、 見 掛けの表面硬度が該研磨用成形体より大きい支持層を介して研磨機の定盤に固定 し、 被加工物表面を平坦化する点にある。
すなわち、 上記いずれの特徴構成の研磨方法においても、 研磨用成形体、 該研 磨用成形体よりも圧縮率の小さい支持層、 常磐の構成を取ることにより、 例えば 銅膜や有機材料等、 比較的柔らかい材料を研磨した場合でも、 従来の研磨パッ ド を用いた場合に発生し易かったスクラツチを発生させることなく、 被加工物表面 の平坦性、 均一性を確保できるとともに、 低圧かつ高速な条件で研磨した場合で も、 その性能が低下しない。
(研磨用積層体の製造方法)
本発明に係る研磨用積層体の製造方法の第 1特徴構成は、 支持層上に複数枚の 研磨用成形体を配設し、 前記研磨用成形体同士のつなぎ目に生じる隙間を研磨ス ラリーの流路とした点にあり、 また、 同第 2特徴構成は、 支持層上に複数枚の研 磨用成形体を配設し、 前記研磨用成形体同士のつなぎ目に生じる隙間を拡大させ て研磨スラリ一の流路とした点にある。
すなわち、 支持層上に複数枚の研磨用成形体を配設することで、 大型化が進む 研磨パッドの品質ばらつきを小さくおさえ、 安定した研磨性能を発現させること ができるとともに、 複数枚の研磨用成形体を並べたときの研磨用成形体同士のつ なぎ目に生じる隙間を、 そのままあるいは所望の寸法に拡大して研磨スラリーの 流路とすることで、 研磨スラリーの研磨面への円滑な供給、 排出を実現すること ができる。
したがって、 ウェハ等の被加工物の大口径化に対応したスケールァップを伴う 場合においても、 品質の低下を招かず、 安定した研磨性能を発現できる研磨用積 層体の製造方法が提供される。
同第 3特徴構成は、 前記隙間を拡大させる方法が機械加工による点にある。 すなわち、 簡便な機械加工の方法により、 研磨用成形体同士のつなぎ目に生じ る隙間を拡大することができる。
同第 4特徴構成は、 前記支持層上に複数枚の研磨用成形体を配設する方法が、 複数枚の研磨用成形体を繋止した後、 前記支持層を積層し、 積層後繋止を解除す る点 Vしめる。
すなわち、 複数枚の研磨用成形体を繋止して仮止めした状態で支持層を積層し て、 複数枚の研磨用成形体を所定間隔で固定させるとともに、 積層後は繋止を解 除することで、 研磨時に邪魔になるおそれのある繋止部材を確実に除去すること ができる。
同第 5特徴構成は、 前記複数枚の研磨用成形体を繋止する方法がステーブルに よるものである点にある。
すなわち、 ステーブルにより、 積層後に容易に取り除くことができる研磨用成 形体の簡便な繋止手段が提供される。
同第 6特徴構成は、 前記研磨用成形体が気泡を内包している点にあり、 同第 7 特徴構成は、 前記気泡の平均径が 0 . 1〜 1 0 0 /z raである点にある。
既に述べたように、 研磨スラリーの保持等のために、 研磨用成形体が気泡を内 包することが好ましく、 また、 内包する気泡の平均径は 0 . 1〜 1 0 0 /ί ΐαが好 適である。 (溝付き研磨パッド)
本発明に係る溝付き研磨パッドの第 1特徴構成は、 第 1 8図に示すように、 研 磨面に溝加工が施されている研磨用パッ ドにおいて、 溝幅 (A) が 0 . 5〜4 m m、 隣り合う溝と溝との間隔 (B ) が 5〜1 O m mである直線の平行溝を少なく とも 1組以上有する点にある。
すなわち、 溝幅 (A) が 0 . 5 m m未満では、 研磨スラリー中に含まれる砥粒 の凝集物や研磨屑等により溝が詰まりやすくなり、 その結果、 研磨性能がウェハ 面内において、 さらには経時的に変動しやすくなるため好ましくない。 逆に溝幅 ( A) が 4 m mより大きくなると、 研磨スラリ一の排出が過剰となり、 研磨に寄与 しない研磨スラリー量が増え、 研磨スラリーの使用量が著しく増大する。 また研 磨に寄与する面積も小さくなるので好ましくない。 研磨は溝と溝とに挟まれたェ リアで進行するため、 所望の研磨性能を得るためには、 該エリアの幅は適切な範 囲に設定しなければならず、 溝の仕様のなかでも特に重要である。
また、 隣り合う溝と溝との間隔 (B ) が 5 mm未満であると、 研磨パッド上の 研磨に寄与する研磨^リアが溝幅に対して相対的に小さくなり過ぎ、 研磨速度が 低下するので好ましくない。 逆に隣り合う溝と溝との間隔が 1 O m mより大きく なると、 該エリアに研磨スラリーが均一にいきわたりにくくなる。 つまりは研磨 性能が該エリア内、 さらには、 例えば半導体ウェハ上のデバイス表面を研磨する 場合は、 ウェハ面内においてばらつきが生じやすくなり、 均一性が低下するため 好ましくない。
さらに、 溝形状は、 溝の加工速度や加工の難易度等の点から、 その形状は可能 な限り単純なものが好ましく、 隣り合う溝と溝とが平行関係にある直線の平行溝 を少なく とも 1組以上備えることが望ましい。
上記構成の溝付き研磨パッドを用いることにより、 従来パッ ドに比べて研磨速 度が速く、 面内均一性が高くなるとともに、 研磨性能の経時変動が低減し、 面間 均一性が向上した。
したがって、 研磨速度と均一性のバランスが取れており、 また研磨性能の経時 変動の小さい溝付き研磨パッドが提供される。
同第 2特徴構成は、溝深さ (C ) が溝幅 (A) の 1 0〜7 0 %である点にある。 溝深さ (C ) 力 S、 溝幅 (A) の 7 0 %以上では、 研磨の進行に伴い、 例えば研 磨するウェハ枚数が増加するに伴い、 研磨性能が変動しやすく、 ウェハ面間のば らつきが大きくなるので好ましくない。 要因として、 本発明者らは、 研磨パッド の見掛けの体積弾性率が変動するためであると推察している。 また研磨スラリ一 の排出が過剰となるため、 研磨スラリーの使用量が増大する点も好ましくない。 逆に 1 0 %未満の場合は、 研磨性能の経時変動は小さいが、 研磨スラリー中に 含まれる砥粒の凝集物や研磨屑の排出機能が低いだけでなく、 パッドライフいわ ゆるスループッ トが著しく低下するので好ましくない。
したがって、 溝深さ (C ) は、 0 . 5 ~ 4 mniの溝幅 (A)、 5〜1 O mmの隣 り合う溝と溝との間隔 (B ) に対して、溝幅 (A) の 1 0〜7 0 %が好適である。 同第 3特徴構成は、 前記溝がパッド周縁において開口している点にある。 溝は過剰な研磨スラリーや、 研磨屑、 研磨スラリー中に含まれている砥粒の、 比較的サイズの大きい凝集物の排出という目的から、 溝がパッド周縁において開 口していることが好適である。
同第 4特徴構成は、 パッドを構成する原料の主成分が、 J I S K 7 3 1 1 に準じた A硬度で 7 0以上の熱可塑性エラストマ一である点にある。
すなわち、 本発明の研磨パッドを構成する原料の主成分は、 研磨後の被研磨面 の平坦性と均一性のパランスが非常に取りやすく、 特に研磨対象が比較的柔らか い C uのような金属の場合では、例えばウレタン系ゃォレフィン系の、 J I S K 7 3 1 1に準じた A硬度で 7 0以上の熱可塑性エラストマ一が好適である。 図面の簡単な説明
第 1図は、 化学的機械的研磨法 (C M P ) の標準的なプロセスの一例を示す断 面図であり'、
第 2図は、 化学的機械的研磨法 (C M P ) の標準的なプロセスの他の一例を示 す断面図であり、
第 3図は、 実施例で使用した独立発泡体製造設備の概略図であり、
第 4図は、 圧縮率測定における面圧の経時変化 (プロファイル) を示すグラフ であり、 第 5図は、 実施例で用いた発泡シート化設備の概略図であり、
第 6図は、 研磨用積層体を定盤に貼り付けた状態の一例を示す断面図であり、 第 7図は、 研磨用積層体を定盤に貼り付けた他の状態の一例を示す断面図であ り、
第 8図は、 研磨用積層体を定盤に貼り付けた他の状態の一例を示す断面図であ り、
第 9図は、 研磨用積層体を定盤に貼り付けた他の状態の一例を示す断面図であ 、
第 1 0図は、 実施例で用いた研磨用成形体製造設備の概略図であり、 第 1 1図は、 実施例で用いた積層設備の概略図であり、
第 1 2図は、 研磨用積層体の一例を示す断面図であり、
第 1 3図は、 第 1 2図の丸で囲んだ部分の拡大図であり、
第 1 4図は、 実施例で用いたラミネート設備の概略図であり、
第 1 5図は、 実施例の研磨用積層体の溝加工の一例を示す断面図であり、 (a ) は溝加工前、 (b ) は溝加工後を示す。
第 1 6図は、 実施例の研磨用積層体の溝加工の他の一例を示す断面図であり、 ( a ) は溝加工前、 (b ) は溝加工後を示す。
第 1 7図は、 比較例で用いた従来研磨パッ ドの一例を示す断面図であり、 第 1 8図は、 本発明の溝付き研磨パッ ドの一例を示す断面図であり、 第 1 9図は、 本発明の同一パターンの直線の平行溝を 1組有する溝付き研磨パ ッ ドの一例を示す平面図であり、
第 2 0図は、 本発明の同一パターンの直線の平行溝を 2組有する溝付き研磨パ ッ ドの一例を示す平面図であり、
第 2 1図は、 本発明の同一パターンの直線の平行溝を 2組有する他の溝付き研 磨パッドの一例を示す平面図であり、
第 2 2図は、 本発明の溝幅、 ピッチの異なる直線の平行溝を有する溝付き研磨 パッドの一例を示す平面図である。 発明を実施するための最良の形態 以下, 本発明による研磨用独立発泡体の製造方法、 研磨用発泡シート、 研磨用 積層体と研磨方法、 研磨用積層体の製造方法、 溝付き研磨パッドにつき、 実施の 形態を図面に基づいて説明する。
( 1 ) 研磨用独立発泡体の製造方法
本発明の研磨用独立発泡体の製造方法の具体例としては、 例えば固体ペレツ ト 樹脂、 あるいは固体ペレッ ト樹脂と後架橋剤とを混合したもの、 あるいは固体ぺ レット樹脂と後架橋剤と樹脂張力増加用改質剤を混合したものを押出機中に投入 し十分に混練した後に、 同押出機中において発泡剤を 1 O M P a以上の圧力雰囲 気下で溶解混合した溶融樹脂を、 押出機先端部に取り付けた金型を通して大気中 に押し出すことにより、 発泡剤を溶解混合した圧力より低い圧力雰囲気下に曝す 方法が挙げられる。
発泡剤を溶解混合した圧力より低い圧力雰囲気下に曝すことで、 研磨用独立発 泡体として好適な所望の発泡状態をほとんど瞬時に得られることが本発明の特徴 であり、 発泡させるために押し出したシートを改めて加熱する必要はない。 本発 明の発泡剤を溶解混合した圧力より低い圧力雰囲気とは、 大気圧より高くても、 又逆に低くても良い。
架橋剤を混合したものでは、 大気中に押し出し、 架橋を進行させることで品質 の安定した研磨用難発泡樹脂の発泡体が得られることが本発明の特徴であり、 コ ンパウンドのスライス工程や発泡剤の含浸等は必要ない。 また、 架橋剤に加えて 樹脂張力増加用改質剤を混合したものでは、 溶融樹脂の張力を増加させて破泡を 防止し発泡剤の使用量を低減するとともに、 押出し時に金型出口周辺に樹脂が溜 まる 「目やに」 現象を低減させることで、 効率良く研磨用難発泡樹脂の発泡体を 成形できることも本発明の特徴である。
押出機内は、 温度が 1 0 0 °C以上 4 0 0 °C未満、 好ましくは 1 2 0 °C以上 3 0 0 °C未満、 より好ましくは 1 3 0 °C以上 2 5 0 °C未満であり、 圧力は 1 0 M P a 以上 7 O M P a未満、 好ましくは 1 3 M P a以上 5 O M P a未満、 より好ましく は 1 5 M P a以上 4 O M P a未満である。 押出機としては、 単軸押出機、 二軸押 出機、 又はこれらの押出機を連結管で接続した、 いわゆるタンデム型押出機を適 宜選択し、 使用することができる。
本発明の独立発泡体の製造方法において、 押出機に注入する発泡剤の供給速度 は特に限定しないが、 吐出速度の 0. 5〜 1 0重量%が好ましく、 より好ましく は 0. 7〜8重量。/。、 最も好ましくは 1. 0~5重量%でぁる。 なお、 吐出速度 は、 単位時間当たりに回収される独立発泡体の重量より算出し、 本発明の発泡剤 を溶解混合した圧力より低い圧力雰囲気下に溶融樹脂を曝す工程 (B) において 離散した発泡剤量は加味しない。
発泡剤である常温'常圧で気体状態のガスを、温度 1 00°C以上 400°C未満、 圧力 l OMP a以上 70MP a未満で樹脂に溶解及び/又は樹脂と混合する場合、 その温度 '圧力が該ガスの超臨界状態であることが好ましい。 超臨界状態とは、 臨界温度、臨界圧力以上の状態を意味し、例えば二酸化炭素の場合、 30°C以上、 7. 3 MP a以上である。 超臨界状態では、 液体状態よりも粘性が低くかつ拡散 性が高いという特性を有し、 また気体状態よりも密度が大きいことから、 樹脂中 に大量のガスを速やかに溶解、又は樹脂と混合させることができるので好ましい。 さらに、 難発泡樹脂に後架橋剤を添加する場合、 例えばポリウレタンに対する 後架橋剤としては、 大日精化工業 (株) 製の後架橋剤 (商品名 : クロスネート E M— 30) が挙げられる。 該後架橋剤をポリウレタンとブレンドしたものを常温 放置または熱処理することで架橋が進行する。
後架橋剤の添加量は、 樹脂 1 00重量部に対し架橋剤 0. 1〜40重量部が好 ましく、 より好ましくは 0. 2〜30重量部、 さらに好ましくは 0. 3〜20重 量部、特に好ましくは 0. 4〜 1 0重量部、最も好ましくは 1〜5重量部である。 また、 難発泡樹脂、 例えばポリウレタンに対する上記改質剤としては、 旭硝子 (株) 製の改質剤 (商品名 : Fluon (Fluon は旭硝子株式会社の登録商標である。 以下、 同じ) PTFE) 等のフッ素樹脂、 三菱レイヨン製の熱可塑性樹脂用改質剤 (商品名:メタプレン (メタプレンは三菱レイヨン株式会社の登録商標である。 以 下、 同じ) A— 3000) に代表されるアクリル変性を施したフッ素樹脂が挙げ られる。 上記改質剤の添加量は、 樹脂 1 00重量部に対し改質剤 0. 5〜 1 0重 量部が好ましく、 より好ましくは 3〜1 0重量部、 さらに好ましくは 3〜 7重量 部である。 本発明の難発泡樹脂は、 例えば J I S K 7 3 1 1 (ポリウレタン系熱可塑 性エラス トマ一の試験方法) の硬さ試験に準じた測定において、 A硬度 9 0以上 の表面硬度を有し、 流動開始温度が 2 0 0 °C以上である。 原料の主成分は特に限 定しないが、 ポリウレタン、 ポリスチレン、 ポリエステル、 ポリプロピレン、 ポ リエチレン、 ナイロン、 ポリ塩化ビュル、 ポリ塩化ビニリデン、 ポリブテン、 ポ リアセタール、 ポリフエ二レンォキシド、 ポリ ビュルアルコール、 ポリメチルメ タクリ レート、 ポリカーボネ^"ト、 ポリアリ レート、 芳香族系ポリサルホン、 ポ リアミ ド、 ポリイミ ド、 フッ素榭脂、 エチレン一プロピレン樹脂、 エチレンーェ チルアタ リ レート樹脂、 アクリル樹脂、 ノルボルネン系樹脂、 例えば、 ビニルポ リイソプレン一スチレン共重合体、 ブタジエン一スチレン共重合体、 アタ リ ロニ トリル一スチレン共重合体、 アタリロニトリル一ブタジエン一スチレン共重合体 等に代表されるスチレン共重合体、 あるいは天然ゴム、 合成ゴム等を用いること ができる。 これらは単独で用いても良いし、 混合あるいは共重合させてもよい。 以下に、 実施例により本発明の独立発泡体の製造方法を具体的に説明するが、 本発明は、 実施例の内容にな.んら限定されるものではない。
ぐ発泡体製造設備 >
本発明の実施例で使用した発泡体製造設備の概略図を第 3図に示す。
パレル径 5 0 mm、 L / D = 3 2の第一押出機 1 1 とパレル径 6 5 m m、 L / D = 3 6の第二押出機 1 2を中空の単管 1 6で連結したタンデム型押出機の先端 に、 リ ップ幅 3 0 O mmのコートハンガータイプの金型 1 3を取り付けた。
金型 1 3から押し出された独立発泡体 2 1は、 引取機 2 0により引き取られ、 次工程に送られる。
発泡剤としては、 二酸化炭素を用い、 ボンべ 1 7から取り出した後に、 ガスプ 一スターポンプ 1 8により昇圧した二酸化炭素を、 圧力調整弁 1 9を経由してか ら単軸押出機 1 1の中央前寄りに取り付けた注入口 1 4を通して押出機中に注入 した。
なお第一押出機において、 溶融混練が進行する発泡剤注入口より上流側をゾー ン ( I )、 発泡剤の溶解混合が進行する発泡剤注入口より下流側をゾーン ( I I ) と呼び、 第 3図中に (1 )、 ( I I ) で示す。 本実施例では、 押出機中において 1 OMP aを超える圧力雰囲気下で発泡剤を樹脂に溶解混合する工程 (A) は第 3 図中のゾーン ( I I ) に該当し、 その後、 発泡剤を溶解混合した圧力より低い圧 力雰囲気下に曝す工程 (B) は、 金型内部から大気圧雰囲気下へ、 発泡剤が溶解 混合された溶融樹脂が押し出される、 第 3図中に示したゾーン ( I I I ) に該当 する。
(実施例 1一 1 )
主原料である大日精化工業 (株) 製熱可塑性ポリウレタンエラストマ一 (商品 名 : レザミン P— 4250) を 1 00°Cで 4時間、 乾燥させた後、 同社の架橋剤 (商品名 :クロスネート EM— 30) を混合したものを使用した。 製造条件を表 1 に示す。 なお、 ゾーン ( I I ) の圧力は 2 1. 5 MP aであった。
得られた独立発泡体の発泡層断面を H I T ACH I製走査型電子顕微鏡(S EM) S— 240 0で観察し、 各気泡の直径を計測した。 気泡断面が円形でないものに ついては、 円相当直径を算出した。 得られた気泡径の平均値を算出し、 表 1に示 す。
得られた独立発泡体表面を丸源鐡ェ所製ベルトサンダー (商品名 : MNW— 6 1 0— C 2) で研磨し、 表面近傍の無発泡層を除去することにより気泡を開口さ せた。
該独立発泡体 3枚を両面テープと貼り合わせた後に、 直径 6 0 Omm φの円盤 状に切り取った。 その後、 ショーダテク トロン社製クロスワイズソーを用いて、 表面に溝幅 2mm、 溝深さ 0. 6 mmの格子溝を施し、 研磨パッ ドを作製した。 (実施例 1一 2 )
実施例 1 と同じ原料を使用し、 製造条件を変更して作製した独立発泡体を用い て研磨パッ ドを作製した。 発泡押出条件および得られた独立発泡体の平均気泡径 を表 1に示す。 なお、 ゾーン ( I I ) の圧力は 1 8. 3 MP aであった。
(実施例 1一 3)
原料として大日精化工業(株)製熱可塑性ポリウレタンエラストマ一 (商品名 : レザミン P— 40 70 EX) を 1 00°Cで 4時間、 乾燥させたものを使用した。 (実施例 1— 1)、 (実施例 1一 2) で用いた、 同社の架橋剤 (商品名: クロスネー ト EM— 3 0) は使用していない。 製造条件おょぴ得られた独立発泡体の平均気 泡径を表 1に示す。 なお、 ゾーン ( I I ) の圧力は 1 8. 9 MP aであった。 (比較例 1一 1 )
実施例 1 と同じ原料を使用し、 製造条件を変更して作製した独立発泡体を用い て研磨パッ ドを作製した。 製造条件おょぴ得られた独立発泡体の平均気泡径を表 1に示す。 なお、 ゾーン ( I I ) の圧力は 8. 3 MP aであった。
(比較例 1一 2)
溝幅 2mm、 溝深さ 0. 6 mmの格子溝が表面に施された、 従来の研磨用独立 発泡体である口デール製 I C 1 000を使用した。 なお実施例 1一 1 と同様に断 面を S EMで観察し、 平均気泡径を算出したところ 3 5 μ mであった。
Figure imgf000028_0001
<研磨性能評価 >
被研磨物として、 直径 200mmの Cuプランケットウェハを用いた。 上記 (実施例) および (比較例) で得られた研磨パッドを MAT製片面研磨機 ARW- 6 8 1 MSの定盤に貼り付け、 ダイヤモンドドレッサーを用いてドレツ シングを掛けた後に、 キヤボッ ト杜製研磨スラリ一(商品名: i C u e 5 00 3) を供給しながら研磨を実施した。 ドレス条件および研磨条件を表 2に示す。 表 2
Figure imgf000029_0001
研磨後のウェハを洗浄、 乾燥後、 シート抵抗測定機を用いてウェハ面内 4 9点 の C u膜厚を測定し、 ウェハ面内における研磨速度の平均値と、 研磨速度のばら つきを算出した。 研磨速度のウェハ面內ばらつきの算出方法としては、 4 9点の 研磨速度の最大値から最小値を引いた値を平均値の 2倍で除した値を 1 0 0倍し た。 その値が大きいほどばらつきが大きいと判断できる。 平均研磨速度と研磨速 度の面内ばらつきを表 3に示す。
なお本評価はプランケッ トウェハを用いたため、 研磨後のデバイス表面の平坦 性は、 研磨速度のウェハ面内におけるばらつきにより判定することができる。 ば らつきが小さいほど平坦性は良好であると判断できる。
さらに適宜ドレスをかけながら、 ウェハ 5 0枚を連続的に研磨し、 各ウェハの 平均研磨速度の面間ばらつきを、 面内ばらつきの算出機を用いて同様に算出し、 研磨性能の経時変動の判断指標とした。 面間ばらつきを表 3に示す。
表 3
Figure imgf000030_0001
本発明の製造方法で作製した研磨用独立発泡体は、 従来品に比べて研磨速度の 面內および面間のばらつきが小さくなった上に、 研磨速度が著しく向上した。
5 発泡剤を樹脂に溶解混合する工程の圧力雰囲気が 1 OMP a以上である(実施例) の独立発泡体は、 l OMP aより低い (比較例 1一 1) に比べて気泡が微細で、 かつ気泡のばらつきも小さかった。 その結果、 研磨速度の面内およぴ面間ばらつ きが小さくなり、 研磨性能が良好であった。
次に実施例 1— 4、実施例 1一 5について説明する。なお、この実施例 1 _ 4, 10 1— 5では、 研磨性能評価の条件が実施例 1一 1〜3と異なるので、 先ず、 研磨 性能評価の条件を記載する。
<研磨性能評価 >
被研磨物として、 3インチのシリコンウェハ上に、 電解メツキで 1 0000A の C uを製膜したものを準備した。
15 研磨には定盤径 200mmの片面研磨機を用いた。 研磨機の定盤には、 研磨パ ッドを雨面テープで貼り付け、 ダイヤモンドを電着したドレッシングディスクに より、 荷重 1 0 k P a、 定盤の回転数 6 0 r pm、 ドレッシングディスクホルダ —の回転数 50 r の条件で 2時間、研磨パッ ド表面をドレッシングした後に、 C a b o t社製研磨スラリ一 (商品名 : i Cu e 5 003) を流し、 1分間、 C 20 u膜を研磨した。
研磨条件としては、ウェハに加える荷重を 34. 3 k P a (3 5 0 g_ cm2)、 定盤の回転数を 70 r p m、 ウェハ回転数を 70 r p m、 研磨スラリ一の流量を 200m l /m i nとした。
研磨後のウェハを洗浄、乾燥後、シート抵抗測定機を用いて C u膜厚を測定し、 平均研磨速度およびウェハ面内における研磨速度ばらつき、 平坦性を従来パッド と比較した。
(実施例 1一 4 )
J I S K 73 1 1に準じた Α硬度で 9 9 (カタログ収載値) の大日精化製 ポリ ウレタン P— 4250 (商品名 : レザミン P) を 1 00°Cで 4時間、 棚段式 乾燥機中で乾燥させた後、 その樹脂ペレツ ト 1 00重量部に対し、 架橋剤 (商品 名 : クロスネート EM— 30) を 3. 5重量部添加したものを原料とし、 押出機 ホッパー 1 5に投入する。 発泡剤として二酸化炭素を使用した。
単軸押出機 1 1、 単軸押出機 1 2および成形用金型 1 3の平均温度は、 それぞ れ 2 1 9°C、 1 9 5°C、 および 1 98°Cに設定した。 なお、 ガス注入部直後の押 出機内圧力は 1 7. 7MP aであり、 樹脂に溶解及び/又は樹脂と混合するゾー ンにおいて、 発泡剤である二酸化炭素は超臨界状態であることを確認.した。 押出 機の内圧、 吐出状態が安定した後、 成形用金型を出た発泡体を、 10°Cに制御し た冷却ロールに通した後に引取機で引き取り、 発泡体を得た。
得られた発泡体幅 27 5 mm, 厚み 1. 1 mmの発泡体を力ミソリ刃により切 断し、 その断面を走査型電子顕微鏡 S— 2400 (H I TACH I製) で観察し たところ、平均径 1 5. 5 μ mの気泡が、発泡体厚み方向および幅方向において、 ほぼ均一に分散している状態が確認できた。
得られた発泡シートから、 直径 200mmの円盤を切り取り、 単独で研磨パッ ドとして用い、 C u膜を研磨した。
(実施例 1一 5 )
実施例 1一 4と同じく、 大日精化製ポリウレタン P— 4250 (商品名 : レザ ミン?) を 1 00 で 4時間、 棚段式乾燥機中で乾燥させた後、 その樹脂ペレツ ト 1 00重量部に対し、 三菱レイヨン製樹脂張力増加用改質剤 (商品名 : メタプ レン A— 3000) を 5重量部あらかじめ二軸押出機で混合してペレツトを作製 し、 そのペレツ ト 1 00重量部に対し架橋剤 (商品名:クロスネート EM— 30) を 3. 5重量部添加したものを原料とし、 発泡剤として二酸化炭素を使用した。 単軸押出機 1 1、 単軸押出機 1 2および成形用金型 1 3の平均温度は、 それぞ れ 2 1 6°C、 1 9 0°C、 および 200°Cに設定した。 なお、 ガス注入部直後の押 出機内圧力は 1 6. 7MP aであり、 樹脂に溶解及び/又は樹脂と混合するゾー ンにおいて、 発泡剤である二酸化炭素は超臨界状態であることを確認した。 押出 機の内圧、 吐出状態が安定した後、 成形用金型を出た発泡体を、' 1 0°Cに制御し た冷却ロールに通した後に引取機で引き取り、 発泡体を得た。
得られた発泡体幅 2 8 5 mm、厚み lmmの発泡体をカミソリ刃により切断し、 その断面を走査型電子顕微鏡 S— 2400 (H I TACH I製) で観察したとこ ろ、 平均径 Ι Ο μπιの気泡が、 発泡体厚み方向および幅方向において、 ほぼ均一 に分散している状態が確認できた。
得られた発泡シートから、 直径 20 Oramの円盤を切り取り、 単独で研磨パッ ドとして用い、 C u膜を研磨した。
(比較例 1一 3)
J I S K 7 3 1 1に準じた A硬度で 9 9 (カタログ収載値) の大日精化製 ポリウレタン P— 4 250 (商品名 : レザミン P) を 1 00°Cで 4時間、 棚段式 乾燥機中で乾燥させた後、 架橋剤は添加せずに押出機ホッパー 1 5に投入する。 発泡剤として二酸化炭素を使用した。
単軸押出機 1 1、 単軸押出機 1 2および成形用金型 1 3の平均温度は、 実施例 1と同様に、 それぞれ 2 1 9°C、 1 9 5°C、 および 1 9 8 °Cに設定した。 なお、 ガス注入部直後の押出機内圧力は 28. 3 MP aであり、 樹脂に溶解及びノ又は 樹脂と混合するゾーンにおいて、 発泡剤である二酸化炭素は超臨界状態であるこ とを確認した。 運転開始後、 押出機の内圧が徐々に上昇し、 それに応じて吐出状 態も変化し、 安定して発泡体が得られなかった。
(比較例 1一 4)
J I S K 73 1 1に準じた A硬度で 9 9 (カタログ収載値) の大日精化製 ポリウレタン P— 4 250 (商品名 : レザミン P) を 1 00°Cで 4時間、 棚段式 乾燥機中で乾燥させた後、 架橋剤は添加せずに押出機ホッパー 1 5に投入する。 発泡剤として二酸化炭素を使用した。 単軸押出機 1 1、 単軸押出機 1 2および成形用金型 1 3の設定温度は、 実施例 1よりも高く設定し、 それぞれ平均温度は 2 2 5 °C、 2 2 3 °C、 および 2 2 0 °C とした。 なお、 ガス注入部直後の押出機内圧力は 9. 3 MP aであり、 樹脂に溶 解及ぴノ又は樹脂と混合するゾーンにおいて、 発泡剤である二酸化炭素は超臨界 状態であることを確認した。 押出機の内圧、 吐出状態が安定した後、 成形用金型 を出たシ トを、 1 o°cに制御した冷却ロールに通した後に引取機で引き取り、 発泡体を得た。
得られた幅 2 5 0 mm, 厚み 0. 9 mmの発泡体を力ミソリ刃により切断し、 その断面を走査型電子顕微鏡 S— 2 4 0 0 (H I TACH I製) で観察したとこ ろ、 平均径 1 0 5. 6 /Z mの気泡が発泡体内に確認できた。 但し、 気泡形状がい びつで不均一であり、 大きいものでは気泡径 3 0 0 μ m以上のものも存在した。 得られた発泡シートから、 直径 2 0 0 mmの円盤を切り取り、 単独で研磨パッ ドとして用い、 C u膜を研磨した。
(比較例 1— 5 )
研磨パッドとして、 口デール社製パッ ド (商品名 : I C 1 0 0 0) を使用し、 C u膜を研磨した。
<評価結果 >
成形性について、 (比較例 1一 3 ) は成形できなかった。 (比較例 1一 4) は成 形できたが、 気泡が全体的に粗大であると同時に、 気泡サイズのばらつきが大き く、 発泡状態が不良であった。 (実施例 1一 4 ) および (実施例 1一 5 ) はいずれ も問題なく成形できたが、 (実施例 1一 5 ) では、 改質剤の添加により、 樹脂の溶 融張力が増加して破泡が抑制され、 押出機の成形用金型の出口付近に樹脂が目や に状に溜まる現象が見られなかった。
研磨性能について、 (実施例 1一 4 ) および (実施例 1 _ 5 ) は、 (比較例 1一 4 ) および (比較例 1 — 5 ) に対して、 研磨速度が向上し、 研磨速度のばらつき が低減した。 また、 平坦性も実用上問題のないレベルであり、 良好な研磨性能を 示した。
半導体デパイスウェハの表面研磨プロセスにおいては、 研磨パッドに代表され る使用部材から溶出した成分が原因となるような、 予期せぬ不良の発生を未然に 防ぐために、 添加剤等はできるだけ低濃度もしくは無添加が好ましいことから、 (実施例 1一 4) が好適である。
(2) 研磨用発泡シート
本発明において、 高精度の CMPを実現するために、 研磨パッ ド用基材として 使用される研磨用発泡シートの研磨面における好適な発泡状態を規定する。 そし て、 研磨性能の指標として、 例えば研磨対象が半導体デバイスウェハの場合、 研 磨速度、 研磨速度のウェハ面內におけるばらつき、 研磨速度の経時変動の 3項目 に着目する。
なお本発明の研磨用発泡シートにおいては、 研磨面において、 シートに含まれ る空孔が開口した結果生じた開口部の形状は真円である必要はなく、 楕円形、 も しくはいびつな多角形形状でも良い。 このため本発明における開口部の直径は、 開口部の円相当直径をもって規定する。 以後、 開口部の直径とは円相当直径を意 味し、 また簡単のため、 開口部の円相当直径を開口部径と記述する。
本発明の研磨用発泡シートにおいては、 研磨面において、 シートに含まれる空 孔が開ロレた結果生じた開口部径の平均値は、 好ましくは 1〜.50 μπι、 さらに 好ましくは 2〜40 ΠΙ、 最も好ましくは 3~30 ;zmであり、 かつ直径 0. 1 ~ 1 0 t mの開口部は少なく とも 1 000個 c m2以上、 さらに好ましくは 5 000個 c m2以上、最も好ましくは 1 0000個/ c ra2以上である。同様に、 シートに含まれる気泡の平均径は、 l〜50 /imが、 高精度な研磨、 特に平坦性 と均一性の両立が求められる半導体デパイス表面の CMPに好適である。
本発明の研磨用シートにおいて、 研磨面全体に占める全開口部の総面積の割合 は、 研磨速度と強い相関関係にあり、 特に限定しないが好ましくは研磨面全体の 30〜 70 %、 さらに好ましくは 3 5〜 6 5 %、 最も好ましくは 40〜 6 0 %で ある。
本発明において圧縮率は特に限定しないが、 高精度な研磨に好適な見掛けの圧 縮率の範囲は、 2 5°C雰囲気下で 5〜1 5%である。 なお本発明の見掛けの圧縮 率は、 熱応力歪測定装置 (TMA) により測定したシート厚みの変化量より算出 した値である。 測定サンプルシートの厚みは 1 mmとし、 面圧の経時変化 (プロ ファイル) を第 4図に示す。 具体的には、 見掛けの圧縮率は、 2 9. 4 k P a (3 0 0 g/cm2) の面圧 を 60秒間掛けたときの厚み (T 1 ) から、 引き続き 1 76. 4 k P a (1 80 O g/c m2) の面圧を同じく 6 0秒間掛けた時の厚み (T 2) を引いた値を T 1で除し、 さらにその値を 1 00倍することによる得られる値である。
本発明の研磨用発泡シート原料の主成分は特に限定しないが、 (1) 〔研磨用独 立発泡体の製造方法〕 の項で述べたと同様の樹脂 (ポリ ウレタン等) を用いるこ とができる。 具体的には、 ウレタン系ゃォレフィン系の、 J I SK— 73 1 1に 準じた A硬度で 70以上の熱可塑性エラストマ一が好適であるが、 その中でも研 磨用発泡シートの重要特性の一つである耐摩耗性を、 比較的広い範囲でコント口 —ルすることが可能であるという点で、 熱可塑性ポリ ウレタンエラストマ一が最 も好ましい。
なお本発明の研磨用発泡シートを研磨パッドとして用いる場合、 必要に応じて シート表面に溝加工を施すことができる。 溝の形状は特に限定しないが、 例えば 平行、 格子状、 同心円状、 さらには渦卷き状等、 随時選定することができる。 シ —ト表面に溝を施すことにより、 研磨面全域に研磨スラリーがより行き渡り易く なり、 本発明の研磨用発泡シートの性能がさらに引き出される。
<発泡シート化設備 >
実施例で使用した発泡シート化設備の概略図を第 5図に示すが、 基本的に第 3 図の設備と同一であるが、 引取機 20が省略されている点が異なる。
<シート物性評価 >
発泡状態及び気泡の平均径
H I T ACH I製走査型電子顕微鏡 (S EM) S— 2400でシート断面を観 察し、 開口部径、 研磨面単位面積当たりの直径 0. 1〜 1 0 / mの開口部個数、 および全開口部の総面積の割合を算出し、 また、 倍率 300倍の画像に含まれる 気泡一つ一つの直径を計測し、 全気泡の直径の平均値を算出した。 なお気泡の断 面形状が真円でなく、 例えば楕円形、 もしくはいびつな多角形形状の場合は、 円 相当直径をその気泡の直径とした。
圧縮率
セイコーインスツルメンッ (株) 社製 TMAを使用して、 研磨加工により厚み 1 mmに調整したシートの、 2 5°C雰囲気下における厚み変化を測定した。 面圧のプロファイルは第 4図の通りである。 負荷無しの状態から、 2 9. 4 k P a ( 3 0 0 g/ c m2) の面圧を掛け、 引き続き 1 7 6. 4 k P a ( 1 8 0 0 g /cm2) の面圧を掛けた後に荷重を取り除く という一連の操作を 1サイクルと して、 連続的に 5サイクル測定した。 厚み変化から算出した各サイクルにおける 圧縮率の 5回の平均値を、 見掛けの圧縮率として用いた。
硬度
高分子計器 0 製 A s k e r硬度計を用いて測定した。
(実施例 2 _ 1)
主原料である J I S K— 73 1 1に準じた A硬度で 9 9 (カタログ収载値) の 熱可塑性ポリウレタンエラストマ一 (商品名 : レザミン P— 4250大 S精化工 業 (株) 製) に、 同社の架撟剤 (商品名 : クロスネート EM— 30) をあらかじ め混合した原料を使用した。 発泡シート化条件を表 4に示す。
得られた発泡シート表面を、 丸源鐡ェ所製ベルトサンダー (商品名 : MNW— 6 1 0 -C 2) で研磨レ、 シート表面近傍の無発泡層であるスキン層を除去する ことにより気泡を開口させ、 厚み 1. 3 mmの研磨用発泡シートを得た。 発泡状 態および圧縮率に関するデータを表 4に示す。
該シート 3枚を两面テープと貼り合わせた後に、 円盤状に切り取り、 直径 6 0 0 mm φの研磨パッドを作製した。
(実施例 2— 2)
発泡シート化条件を変更した以外は、 (実施例 2 _ 1 )と全く同様にして研磨パ ッドを作製した。 発泡シート化条件、 発泡状態および圧縮率に関するデータを表 4に示す。
(実施例 2— 3 )
ショーダテク ト口ン社製クロスワイズソー (商品名 : CWS— 650 A) を用 いて、 (実施例 2— 1) で得た研磨パッド表面に溝幅 2mm、隣り合う溝と溝との 間隔 1 3mm、 溝深さ 0. 6 mmの溝を格子状に施した。
(実施例 2 _ 4 )
J I SK— 7 3 1 1に準じた A硬度で 90 (カタログ収載値) の熱可塑性ポリ ウレタンエラストマ一 (商品名 : レザミン P— 40 70 EX大日精化工業 (株) 製) を原料として使用した。 (実施例 2— 1) 〜 (実施例 2— 3) で用いた同社の 架橋剤 (商品名 : クロスネート EM— 3 0) は使用していない。 発泡シート化条 件、 発泡状態おょぴ圧縮率に関するデータを表 4に示す。
(比較例 2— 1 )
発泡シート化条件を変更した以外は、 (実施例 2— 1 )と全く同様にして研磨パ ッ ドを作製した。 発泡シート化条件、 発泡状態および圧縮率に関するデータを表 4に示す。
(比較例 2— 2 )
研磨パッドとして、溝幅 2 mm、隣り合う溝と溝との間隔 1 3 mm、溝深さ 0. 6 mmの格子溝が施された口デール社製 I C 1 0 00を使用した。 発泡状態およ び圧縮率に関するデータを表 4に示す。 表 4
Figure imgf000037_0001
(実施例 2— 5 )
主原料である大日精化工業 (株) 製熱可塑性ポリ ウレタンエラストマ一 (商品 名 : レザミン P— 4 250) に、 同社の架橋剤 (商品名 : クロスネート EM— 3
0) をあらかじめ混合した原料を使用し、 厚み 1. 6 mmの独立発泡体を作製し た。 発泡シート化条件を表 5に示す。 得られたシート表面を、 丸源鐡ェ所製ベル
1、サンダー (商品名 : MNW— 6 1 0— C 2) で研磨し、 シート表面近傍の無発 泡層を除去し、 厚み 1. 4 mmの研磨用独立発泡体を得た。
該シート 3枚を両面テープと貼り合わせた後に、 直径 6 0 Οηιιηφの円盤状に 切り取り、 その後、 ショーダテク トロン社製クロスワイズソーを用いて、 表面に 溝幅 2mm、 隣り合う溝と溝との間隔 1 3 mm、 溝深さ 0. 8 mmの格子溝を施 し、 研磨パッドを作製した。
(実施例 2— 6)
大 S精化工業 (株) 製熱可塑性ポリウレタンエラストマ一 (商品名 : レザミン P— 40 70) を原料として、 厚み 1. 5 mmの独立発泡体を作製した。 発泡シ ート化条件を表 5に示す。 実施例 2— 5と同様に無発泡層を除去し、 厚み 1. 4 mmの研磨用独立発泡体を得た。引き続き、実施例 2 _ 5と同様の溝加工を施し、 研磨パッ ドを作製した。
(比較例 2— 3 )
発泡シート化条件を変更した以外は、 実施例 2— 5と同じ原料を使用し、 厚み 1. 4 mmの独立発泡体を作製した。 発泡シート化条件を表 5に示す。 実施例 2 一 5と同様に無発泡層を除去し、 厚み 1. 1 mmの研磨用独立発泡体を得た。 引 き続き、 実施例 2— 5と同様の溝加工を施し、 研磨パッ ドを作製した。
(比較例 2— 4 )
研磨パッ ドとして、溝幅 2 mm、隣り合う溝と溝との間隔 1 3 mm、溝深さ 0. 6 mmの格子溝が施されたロデ一ル社製 I C 1 000/S u b a 400の 2層パ ッドを使用した。 研磨層である I C 1000の厚みは 1. 2 mmであった。
表 5
Figure imgf000039_0001
上記 (実施例) および (比較例) の研磨パッ ドの硬度、 25°Cにおける圧縮率 および気泡の平均径を測定した結果を表 6に示す。 表 6
Figure imgf000039_0002
<研磨性能評価 >
被研磨物として、 直径 200 mmの C uプランケッ トウェハを用いた。
0 上記 (実施例) および (比較例) で得られた研磨パッドを MAT製片面研磨機 ARW— 6 8 IMSの定盤に貼り付け、 ドレッシングを掛けた後に、 キャボッ ト 社製研磨スラ リー(商品名: i Cu e 500 3)を供給しながら研磨を実施した。 ドレス条件および研磨条件は表 2と同一である。
研磨後のウェハを洗浄、 乾燥後、 シート抵抗測定機を用いてウェハ面内 4 9点 5 の C u膜厚を測定し、 研磨速度の平均値おょぴ研磨速度のウェハ面内におけるば らっきを算出した。 なお本評価はブランケットウェハを用いたため、 研磨後のデ バイス表面の平坦性は、 研磨速度のウェハ面内におけるばらつきにより判定する ことができる。 ばらつきが小さいほど、 平坦性は良好であると判断した。
また適宜ドレスをかけながら、 ウェハ 5 0枚を連続的に研磨し、 研磨速度平均 値のばらつきを算出し、 研磨性能の経時変動の判断指標とした。
なお、 研磨速度のウェハ面内におけるばらつきとして、 4 9点の研磨速度の最 大値から最小値を引いた値を平均値の 2倍で除した値を 1 0 0倍した値を用いた。 その値が大きいほど均一性が低いことを意味する。
実施例 2—:!〜 2— 4の研磨性能の評価結果を表 7に、 比較例 2— 1、 2 - 2 のそれを表 8に示す。 表 7
Figure imgf000040_0001
表 8
Figure imgf000040_0002
実施例 2— 1〜2— 4は、 比較例 2— 1、 2— 2に比べ、 いずれも研磨速度が 大きくなり、 かつ研磨速度のウェハ面内ばらつきおよび研磨速度の経時変動とも に小さい値を示した。 本結果により、 研磨後の C u表面の平坦性も向上したもの と判断できる。
また、 実施例 2— 5〜 2— 6の研磨性能の評価結果及ぴ比較例 2— 3、 2 - 4 のそれ、 および、 研磨パッ ドの性能評価結果、 研磨層厚みを併せて表 9に示す。 なおパターン付きウェハについては、 ライン/スペースが 4 . 5 μ m/ 0 . 5 mと l O z mZ l O /i mの配線部の、 研磨後の表面粗さをそれぞれ測定し、 平 坦性を評価した。 表 9において、 従来パッドの代表例である比較例 2に対して、 平坦性が同等以上のものは〇、 低下したものは Xで示した。 表 9
Figure imgf000041_0001
実施例 2— 5〜2— 6は、 圧縮率の大きい比較例 2— 3に対し、 面內ばらつき が小さく均一性が、 併せて均一性がともに良好であった。
また従来パッドの代表例である比較例 2— 4に対しては、 均一性と平坦性のい ずれも同等以上であった。 但し研磨層の厚みが厚いため、 比較例 2— 4よりも溝 を深くすることができた。 つまりはパッドライフの延長とともに、 研磨工程での スループッ トの向上が期待できる。
なお本発明の研磨用独立発泡体が、 従来パッドに比べて、 圧縮率が大きいにも 関わらず研磨速度が向上している点は、 特筆すべき好ましい特性である。
( 3 ) 研磨用積層体および研磨方法
2種類の研磨用積層体について説明する。
( 3 ) - 1 第 1の研磨用積層体および研磨方法
第 1の研磨用積層体および研磨方法では、 A硬度で 8 0以上の表面硬度で、 圧 縮率が 1 . 5 %以上、 かつ初期の研磨層の厚みが 2 mm以下の研磨用成形体が、 該研磨用成形体より圧縮率の小さい支持層に積層されてい'る研磨用積層体を研磨 機の定盤に固定し、被加工物表面を平坦化するもの、あるいは該研磨用成形体を、 該研磨用成形体より圧縮率の小さい、 例えば接着剤、 および支持基材無し、 ある いは支持基材入りの両面テープ等の支持層を介して研磨機の定盤に固定し、 被加 ェ物表面を平坦化するものである。
本発明においては、 研磨用成形体と研磨層は厳密に区別する。 研磨用成形体の 中で、 例えば発泡している層が研磨に関与する場合は、 発泡層のみが研磨層に相 当する。 仮に研磨用成形体表面近傍に無発泡層があり、 被加工物の平坦化処理に 入る前にあらかじめドレス処理等で該無発泡層を除去する場合は、 該無発泡層は 研磨層には含めない。 一方、 支持層については、 様々なケースを包含する。 例え ば両面テープ等を用いて研磨用成形体を研磨機の定盤に固定する場合、 支持層と は両面テープ全体、 つまりは接着剤、 基材、 接着剤の多層構造体全体を指し、 支 持層の圧縮率とは、 両面テープ全体の圧縮率である。 例えば基材無しの两面テ一 プを介して研磨用成形体を定盤上に貼る場合は、 支持層は接着層単層を指す。 上記研磨用積層体において、 研磨層の表面硬度は、 A硬度で、 好ましくは 8 0 以上、 より好ましくは 8 2以上であり、 最も好ましくは 8 5以上である。
研磨層の圧縮率は、 好ましくは 1 . 5 %以上、 より好ましくは 2 %以上、 最も 好ましくは 2 . 5 %以上である。
さらに本発明の研磨用積層体においては、 初期の、 すなわち研磨開始直前にお ける研磨層の厚みは 2 m m以下が好ましく、 より好ましくは 1 . 5 m m以下、 最 も好ましくは 1 mm以下である。 本発明の研磨用積層体の要点の一つとして、 支 持層裏面、 さらには定盤表面の平坦精度をもって、 被加工物表面の研磨後の平坦 性を確保する。 仕上がり状態という観点のみから判断すると、 本発明の研磨用積 層体の研磨層の厚みは薄いほど良いという結論が導かれるが、 実際には研磨工程 のスループッ トを考慮しなければならない。 つまり、 同じ研磨条件においては、 厚みの薄いパッド程、ライフが短くなり、研磨工程のスループットを低下させる。 そこで本発明においては、 研磨層の厚みの下限は特に限定しないが、 実際の設 計に際しては、 研磨対象の種類、 研磨装置の構成、 研磨条件、 所望のスループッ ト等から総合的に決定する必要がある。 加工後の仕上がり状態と実用面の双方か ら総括的に判断すると、 研磨層の厚みは 1 mm前後が好適である。
本発明の研磨層は、 気泡を内包する場合、 気泡の平均径は特に限定しないが、 好ましくは 0 . 1 ~ 1 0 0 μ m、 より好ましくは 0 . 1〜 5 0 m、 最も好まし くは 0 . :!〜 3 0 mである。
本発明の研磨層の主原料は特に限定しないが、 (1 ) 〔研磨用独立発泡体の製造 方法〕 の項で述べたと同様の樹脂 (ポリウレタン等) を用いることができる。 本発明の支持層は、 圧縮率が研磨層よりも小さければ特に限定しない。 求める 研磨性能に応じて、 例えばプラスチック、 熱可塑性エラストマ一、 ゴム等の可撓 性基材を適宜用いることができる。 これらは気泡を内包していても良いし、 ある いは気泡を内包していなくても良い。 またガラス繊維、 炭素繊維、 合成繊維、 あ るいはこれらの織布、 不織布等で補強したものであっても良い。 さらにはステン レス鋼に代表される、 可撓性を有する金属の薄板等も用いることができる。 具体 的には、 エポキシ榭脂、 熱可塑性ポリウレタンエラス トマ一を含めたポリウレタ ン樹脂、 ポリエチレンテレフタレート、 ポリプチレンテレフタレート、 ポリカー ボネート等の無発泡基材およびこれらをガラス繊維で補強したものが好適に用い られるがこの限りではない。
あるいは、 各種接着剤や、 例えば、 P E T基材の両面にアクリル系の接着剤を 塗布してある、 透明性の高い両面テープ等を支持層として用いることができる。 本発明において、 研磨用成形体と支持層を積層する方法は特に限定しない。 接 着剤や両面テープ等の媒体を用いても良いし、用いなくても良いが、コスト面や、 特に品質パラツキの要因を抑えるという点において、 例えば、 接着剤や两面テ一 プ等の媒体を用いずに積層されている構造が好ましい。具体的には、共押出法や、 研磨用成形体に溶融状態にある支持層を、 通常サーマルラミと呼ばれる方法で貼 り合わせる方法等が好適である。
あるいは、 研磨用成形体あるいは研磨層を、 研磨機の定盤に接着剤や両面テー プ等の媒体を介して直接貼り付ける方法も考えられる。 その場合は、 該接着剤層 や両面テープ等の媒体が本発明の支持層に該当することは容易に類推されるであ ろう。
本発明の研磨用積層体に、 研磨スラリーを保持し、 研磨に適した表面状態とす る、 および または研磨スラリーの流路となる溝を有する場合、 溝の形状は特に 限定しないが、 例えば平行、 格子状、 同心円状、 さらには渦卷き状等、 随時選定 することができる。 あるいは円柱状の貫通孔を、 多数施すこともできる。
また溝サイズ、 つまりは溝幅、 隣り合う溝同士の間隔、 溝深さは特に限定しな い。 なお図 6において、 溝幅とは Aの距離を、 隣り合う溝と溝との間隔とは Bの 距離を、 また溝深さとは Cを指す。
本発明の溝においては、 所望のサイズを選定することが可能である。 特に溝深 さについては、 研磨層の途中まで溝が入っていても良いし、 あるいは研磨層を貫 通し、 支持層表面に達していても良い。 さらには支持層を貫通し、 支持層の途中 まで溝が入っていても良く、 支持層にのみ溝があっても良い。
溝の加工方法については特に限定しないが、 加工コストゃ加工精度等を加味し た実用的な観点からは、 旋盤やフライス、 レーザー等による機械加工が好適であ る。
なお、 第 6図では、 研磨用成形体 3 0と支持層 3 1をサーマルラミ法で直接貼 り合わせた研磨用積層体を、 両面テープ 3 5を用いて研磨機の定盤 3 4に固定し た状態を示している。
第 7図では、 研磨用成形体 5 0と支持層 5 1を両面テープ 5 4を介して貼り合 わせた研磨用積層体を、 両面テープ 5 6を用いて研磨機の定盤 5 5に固定した状 態を示している。
第 8図では、 研磨用成形体 6 0を、 厚塗りの接着層 6 1を介して研磨機の定盤 3 4に固定した状態であり、この場合は接着層 6 1が本発明の支持層に該当する。 第 9図では、 研磨用成形体 7 0を、 両面テープ 7 7を介して研磨機の定盤 7 6 に固定した状態である。 両面テープ 7 7をより詳細に分割すると、 基材 7 1 と接 着層 7 4 , 7 5とに分けられるが、 この場合は両面テープ基材 7 1が本発明の支 持層に該当する。 なお第 6図と第 7図はあらかじめ研磨用成形体と支持層を貼り 合わせて作製した研磨用積層体を定盤に貼り付ける場合であるため、 いずれも支 持層に達する深さまで溝を入れることが可能である。 一方、 第 8図と第 9図は、 研磨用成形体を、 接着剤や両面テープ等の媒体を介して定盤に直接貼り付ける場 合であり、 この場合はいずれも、 溝は研磨用成形体の途中で止まっている。 本発明の研磨用積層体は、 所望のサイズ、 所望の形状、 例えば円盤状、 ペルト 状他、 様々な形状を得ることができる。
以下に、 実施例により第 1の積層体について具体的に説明する。
(実施例 3— 1 )
<研磨用積層体の作製 >
本発明の実施例で使用した研磨用成形体の製造設備の概略を第 1 0図に示す。 第 2図に示した押出機と同一構成の第一押出機 1 0 1 と、 第二押出機 1 0 8を 中空の単管 1 07で連結したタンデム型押出機の先端に、 リップ幅 3 0 Ommの 金型 1 0 9を取り付けた。
主原料である大日精化工業 (株) 製熱可塑性ポリウレタンエラストマ一 (商品 名 : レザミン: P— 4250) に、 同社の架橋剤 (商品名 : クロスネート EM— 3 0) をあらかじめ混合した原料を使用した。
ボンべ 1 06から取り出した後に、 ガスブースターポ プ 1 0 5により昇圧し た二酸化炭素を、 第一押出機 1 0 1の中央前寄りに取り付けた注入口 1 04を通 して注入した。 なお第一押出機 1 0 1のバレルに取り付けた圧力センサーで注入 口 1 04の直前と直後の圧力を測定したところ、 それぞれ 24MP a、 2 IMP aであった。
そして、 押し出した直後にピンチロール 1 1 1でピンチするのとほぼ同時に水 槽 1 1 0中に入れて冷却し、発泡成形体を得た。得られた発泡体を幅 2 1 0 mm, 6 30 mm長に裁断し、 研磨用成形体 1 1 3を作製した。 図中、 1 1 2はピンチ ローラ、 1 1 3は吸水ローラである。 成形条件を表 1 0に示す。 表 1 0
Figure imgf000045_0001
実施例で使用した積層設備の概略を第 1 1図に示す。
パレル径 50mm、 LZD= 3 2の押出機 20 1の先端に、 リ ップ幅 8 00m mの金型 202を取り付けた。 ローラーコンベア 203上に支持板 20 5を設置 した。 支持板としては厚み 5 mmのベニヤ板を用いた。
幅 2 1 0 mm、 6 30 mm長の研磨用成形体 206を 3枚、 研磨面が支持板に 接するように、 また各々のつなぎ目がきっちりと合うように支持板 205上に並 ベ、 つなぎ目をホッチキスで仮止めした。
大目精化工業 (株) 製熱可塑性ポリウレタンエラス トマ一 (商品名 : レザミン P-403 8) を原料ホッパ 20 8に投入し金型 202から押し出した。 金型 2 0 2の下を、 研磨用成形体を載せた支持板 20 5を、 ローラーコンベア 203上 を滑らせながら通過させ、 金型 20 2より押し出された溶融樹脂が、 研磨用成形 体 206上に積層された直後に、 ピンチロール 204を通し、 研磨層 2 06と支 持層 20 7を圧着した。
支持層 20 7が十分に冷却した後に、 ホッチキスの針を外した。 その後、 得ら れた 6 3 Omm角の積層体の研磨面側を、丸源鐡ェ所製ベルトサンダー(商品名 : MNW- 6 1 0 -C 2) で研磨し、 研磨用成形体表面近傍の無発泡層を除去し、 研磨用積層体を得た。
<溝加工 >
ショーダテク トロン社製クロスワイズソーを用いて、 幅 2mmの溝を、 隣り合 う溝と溝との間隔が 1 3mmとなるように、 研磨面全域に格子状に施した。
溝加工の際、隣り合う研磨層同士の なぎ目には必ず溝が入るように溝間隔を、 また溝が研磨層を貫通して支持層まで達するように溝深さをプログラムで設定し た。
得られた研磨用積層体の支持層側に、 透明性の高い厚み 75 Ju InのP ET基材 両面テープを貼り付けた後、 直径 6 1 Οπιπιψの円盤状に切り取り、 研磨パッ ド を得た。
(比較例 3 _ 1)
直径 6 1 0 mmの口デール社製積層パッ ド (商品名 : I C 1 000ZSUBA 400) を比較例として使用した。
なお、本比較例の積層パッドの研磨面全域においては、実施例同様、幅 2 mm, 隣り合う溝と溝との間隔 1 3mmの格子状溝が施されている。
<表面硬度の測定 (研磨層) >
高分子計器製 A s k e r硬度計を用いて測定した。
ぐ圧縮率の測定 (研磨層、 支持層) >
ダイヤルゲージにより室温 (2 5°C) において測定した。 断面積 0. 2 c m2 の圧子を用いて、材料に 5. 8 8 k P a ( 6 0 g f ) の荷重を加えた際の厚み (T 1 ) と 3 5. 3 k P a ( 3 6 0 g f ) の荷重を加えた際の厚み (T 2 ) から、 次 式の算出式を用いて圧縮率を算出した。
圧縮率 = (T 1 - T 2 ) /Ύ 1 X 1 0 0
<研磨層の厚み計測および気泡の平均径算出 (研磨層) >
( 2 ) 〔研磨用発泡シート〕 で説明したものと同様の方法により計測した。 実施例 3— 1および比較例 3 — 1それぞれについて、 本発明に関わる物性値を 表 1 1に示す。
Figure imgf000047_0001
表 1 1より、 圧縮率については、 実施例 3— 1は研磨用成形体 >支持層、 比較 例 3 _ 1は研磨用成形体 <支持層の大小関係が成立していることが分かる。 ぐ研磨性能評価 >
実施例 3— 1で得られた研磨パッ ドと、 従来品の代表例である比較例 3— 1の 研磨パッド各々の研磨性能を、 (2) 〔研磨用発泡シート〕 で説明したものと同様 の方法で評価した。 なお、 ウェハを研磨した後、 次のウェハの研磨に入る前に、 ダイヤモンドドレッサーを用いて 1時間ドレスをかけた。 主なドレス条件おょぴ 研磨条件を表 1 2に示す。
表 1 2
Figure imgf000048_0001
研磨後のウェハを洗浄、 乾燥後、 四探針抵抗測定機を用いてウェハ面内 4 9点 の C u膜厚を測定し、 ウェハ面内 4 9点における研磨速度の平均値およびをゥェ ハ面内における研磨速度のばらつき、 つまりは面内ばらつきを算出した。
なお、 面内ばらつきとしては、 ウェハ面内 4 9点の研磨速度の最大値から最小 値を引いた値を、 研磨速度 4 9点の平均値の 2倍で除した値を 1 0 0倍した値を 用いた。 面内ばらつきの値が大きいほど均一性が低いことを意味する。
実施例 3— 1および比較例 3— 1の研磨パッドを用いて、 研磨条件①および研 磨条件②それぞれの条件下で 5 0枚のウェハを研磨した。
' 5 0枚のウェハの研磨速度および面内ばらつきの Ψ均値を表 1 3に示す。 表 1 3
Figure imgf000048_0002
ウェハ加圧が高い場合と低い場合のいずれにおいても、 従来パッドの代表例で ある比較例の研磨パッドと比べて、 実施例の研磨パッ ドの方が、 研磨速度が大き く、 かつ面内ばらつきが小さい、 良好な研磨性能を発現することが確認された。 <スクラツチの発生状況の確認 >
研磨を開始してから 1 0枚目、 2 0枚目、 3 0枚目、 4 0枚目、 5 0枚目の計 5枚のウェハを抜き出し、それぞれ研磨後の銅膜表面をレーザー顕微鏡で観察し、 スクラッチの有無、 大きさ等を確認した。
研磨条件①において、 実施例 3— 1では、 一箇所でスクラッチの発生が確認さ れた。一方、比較例 3— 1では 3箇所でスクラツチの発生が確認されるとともに、 その中の 1本は顕微鏡の画像上で他のスクラツチに比べて明らかにコントラスト が強く、 深いスクラッチであることが推測される。
研磨条件②において、実施例 3— 1では、スクラツチは全く観察されなかった。 一方、 比較例 3— 2では 2箇所でスクラッチの発生が確認された。
( 3 ) - 2 第 2の研磨用積層体および研磨方法
第 1の研磨用積層体の場合と同様に、 研磨用成形体の中で研磨に用いることが できる層を研磨層と定義し、 研磨用成形体と研磨層を厳密に区別する。 例えば図 1 3に示すように、 気泡を内包している部分が研磨に関与する場合は、 発泡して いる部分のみが研磨層に相当する。 図 1 3は、 研磨用成形体 3 0と支持層 3 1を 貼り合わせた、 本発明の研磨用積層体の一例である図 1 2の丸で囲んだ部分を拡 大したものであり、 支持層 4 1 と貼り合わせた側の、 研磨用成形体 4 0の裏面に は、 無発泡層 4 4が存在し、 かつその表面は凹凸を有している。 この例では、 無 発泡層 4 4は安定に研磨することが困難であるため、 実際には研磨に使用するこ とができない。 したがって、 無発泡層 4 4は本発明の研磨用成形体の一部ではあ るが、 研磨層 4 3とは区別するものとする。
一方、 支持層については様々なケースが想定されるため、 厳密な定義が困難で はあるが、 基本的には本発明の研磨用成形体の片面に貼り合わされ、 研磨用成形 体を支持する機能を有すると判断される層を支持層と定義する。 研磨用成形体を 支持できる程度の剛性を有する基材をあらかじめ貼り付けた場合は明確であるが、 例えば基材を有する両面テープ等の接着媒体を用いて研磨用成形体を研磨機の定 盤に直接固定するような場合、 支持層とは両面テープを指す。 一方、 研磨用成形 体を支持できる程度の剛性を発現しないと判断される、 厚みの薄い基材無しの両 面テープや接着剤を介して研磨用成形体を定盤に貼る場合については、 支持層は 定盤を指す。 接着媒体が支持層となり得るかどうかの目安として、 本発明におい ては厚み 2 0 0 mを判断基準とする。 具体的には、 厚みが 2 0 0 μ mより厚い と支持層として扱い、 厚みが 2 0 0 m以下である場合は、 その次にくる層を支 持層として扱う。
第 1の研磨用積層体は、 初期の厚みが 0 . 2〜2 mmの研磨層を有し、 かつ圧 縮率が 1 . 5 %以上である研磨用成形体が、 見掛けの表面硬度が該研磨用成形体 より大きい支持層に積層されているものであり、 このようなものとしては、 例え ば発泡ゥレタン成形体を無発泡の硬質ゥレタン基材と貼り合わせた積層体等を挙 げることができる。 なお本発明における見掛けの表面硬度とは、 実際に使用する 場合と同じ厚みのサンプルを用いて測定した値を指す。
本発明において用いられる研磨用積層体においては、 初期の、 すなわち研磨開 始直前における研磨層の厚みは 0 . 2〜 2 mmが好ましく、 より好ましくは 0 . 3 ~ 1 . 8 mm、 最も好ましくは 0 . 5〜 1 . 5 mmである。
本発明の研磨用成形体の圧縮率は、 好ましくは 1 . 5 %以上、 より好ましくは 2 %以上、 最も好ましくは 2 . 5 %以上である。
本発明の研磨用積層体においては、 研磨用成形体を支持する支持層の、 見掛け の表面硬度は、 該研磨用成形体よりも大きいことが必須要件である。
なお本発明において、 支持層の見掛けの表面硬度は、 研磨層のそれよりも大き ければ特に限定しないが、 本発明の研磨用成形体を支持するという機能を発現す るためには、 A硬度で 8 8以上であることが好ましく、より好ましくは 9 0以上、 最も好ましくは 9 5以上である。
また、 支持層の引張弾性率は特に限定しないが、 実用面において、 研磨用成形 体の支持機能を発現する引張弾性率の下限は、 好ましくは 2 O M P aであり、 よ り好ましくは 2 5 M P aである。
なお、 未だ原因は究明されていないが、 引張弾性率が 2 O M P a以下の支持層 を本発明の研磨用成形体と貼り合わせた研磨用積層体を用いて研磨した場合、 研 磨速度が経時的に変動しやすい傾向が確認された。 変動幅が実用面において許容 できる範囲であるか否かはケースパイケースであるが、 例えば半導体デパイスゥ ェハ表面を平坦化する場合等、 非常な高精度が求められる場合については、 支持 層の引張弾性率が 2 O M P aより大きいことが好適である。
支持層に用いられる材料は、 見掛けの表面硬度が研磨用成形体より大きければ 特に限定しないが、 求める研磨性能に応じて、 例えばプラスチック、 熱可塑性ェ ラス トマー、 ゴム等の可撓性基材を適宜用いることができる。 これらは気泡を内 包していても良いし、あるいは気泡がなくても良い。またガラス繊維、炭素繊維、 合成繊維、 あるいはこれらの織布、 不織布等で補強したものであっても良い。 さ らにはステンレス鋼に代表される、 可撓性を有する金属の薄板等も用いることが できる。 具体的には、 エポキシ樹脂、 熱可塑性ポリ ウレタンエラストマ一を含め たポリ ウレタン樹脂、 ポリエチレンテレフタレート、 ポリプチレンテレフタレー ト、 ポリカーボネート等の無発泡基材およびこれらをガラス繊維で補強したもの が好適に用いられるがこの限りではない。 あるいは、 各種接着剤や、 例えば、 P E T基材の両面にァクリル系の接着剤を塗布してある、 透明性の高い两面テープ 等も支持層として用いることができる。
本発明で用いる研磨用成形体の見掛けの表面硬度は、 加工する条件、 対象、 仕 上がり状態、 仕上がり精度等によって変動するため特に限定しないが、 例えば半 導体デバイスウェハの平坦化加工に代表される、 非常に高い精度を要求される研 磨においては、 A硬度で、好ましくは 8 0以上、より好ましくは 8 2以上であり、 最も好ましくは 8 5以上である。 例えば半導体デパイスウェハの表面研磨を行う 場合、 研磨用成形体の表面硬度が 8 0未満であると、 本発明の支持層で支持した 場合でも、 研磨速度が著しく低下するので好ましくない。
本発明の研磨層が気泡を内包する場合、 気泡の平均径は特に限定しないが、 好 ましくは 0 . ;!〜 1 0 0 /1 m、 より好ましくは 0 . 1〜5 0 μ πι、 最も好ましく は 0 . :!〜 3 0 t mである。
本発明において、 研磨用成形体と支持層を積層する方法は特に限定しない。 接 着剤や両面テープ等の媒体を用いても良いし、用いなくても良いが、コスト面や、 特に品質バラツキの要因を抑えるという点において、 例えば、 接着剤や两面テ一 プ等の媒体を用いずに積層されている構造が好ましい。具体的には、共押出法や、 研磨用成形体に溶融状態にある支持層を、 通常サーマルラミと呼ばれる方法で貼 り合わせる方法等が好適である。
あるいは、 本発明の研磨用成形体を、 支持層として考えられる研磨機の定盤に 接着剤や両面テープ等の媒体を介して直接貼り付ける方法も可能である。
本発明の研磨用積層体が研磨スラリーの流路となる溝を有する場合、 溝の形状 は特に限定しないが、 例えば平行、 格子状、 同心円状、 さらには渦巻き状等、 随 時選定することができる。 あるいは円柱状の貫通孔を、 多数施すこともできる。 以下、 実施例により本発明を具体的に説明する。
[研磨用成形体の製造設備]
第 1 0図と同様の製造設備により、 金型 1 0 9を出た直後、 比較的高温で未だ 柔らかい材料を、 ピンチロール 1 1 1を通すとほぼ同時に、 水槽 1 1 0に満たし た冷却水で冷却し、 厚みの整った研磨用成形体を得る。 なお冷却水中から引き上 げた研磨用成形体は、 吸水ロール 1 1 2を通すことにより、 除水された状態で次 工程に送られる。
[ラミネート設備]
本発明の実施例で使用したラミネート設備の概略を第 1 4図に示す。
バレル径 5 Omm, L/D= 3 2の押出機 20 1の先端に取り付けたリ ップ幅 800 mraの金型 202のほぼ真下に、 ピンチロール 203を設置した。 ピンチ ロール 20 3は駆動するとともに、 チラ一が通る構造となっている。 研磨用成形 体 20 5に、 金型 202を出た直後、 未だ高温で柔らかい状態にある支持層用材 料を、 ピンチロール 20 3を通して圧着することにより、 研磨用成形体と支持層 が貼り合わされた研磨用積層体 206を得ることができる。
(実施例 3 _ 2)
前記 (実施例 3— 1) と同様な成形条件 (表 1 0) により、 研磨用成形体 (癸 泡体) を得た。 得られた研磨用成形体を 2 1 Ommの幅に裁断した。
次に、 大日精化工業 (株) 製熱可塑性ポリウレタンエラストマ一 (商品名 : レ ザミン P— 40 70) を図 14のラミネ一ト設備の原料ホッパ 208に投入し金 型 20 2から押し出し、 上記研磨用成形体 20 5と貼り合わせ、 研磨用積層体 2 06を得た。 なお 2 1 Omm幅の研磨用成形体は、 横並びで 3本同時に送り出し て貼り合わせ後に 6 3 Omm長さで裁断することにより、つなぎ目が 2本入った、 6 3 Omm口の研磨用積層体を得た。
得られた研磨用積層体の研磨面側を、 丸源鐡ェ所製ベルトサンダー (商品名 : MNW- 6 1 0 -C 2) で研磨し、 研磨用成形体表面近傍の無発泡層を除去し、 次にショーダテク トロン社製クロスワイズソーを用いて、 幅 2mmの溝を、 1 5 mmのピッチで、 研磨面全域に格子状に施した。 なお、 溝加工の際、 隣り合う研 磨用成形体同士のつなぎ目には必ず溝が入るように加工条件を、 また溝が研磨用 積層体を貫通して支持層まで達するようにした。
得られた研磨用積層体の支持層側に、 厚み 25 μ mの Ρ ΕΤ基材の两面にァク リル系接着剤が塗られた両面テープを貼り付けた。 その後、 直径 6 1 0πιιηφの 円盤状に切り取り、 研磨機の定盤に貼り付けて研磨を実施した。 その断面状態は 第 6図に示すものと同様である。
(実施例 3— 3)
実施例 3— 2で得られた研磨用成形体に、 実施例 3— 2と同様のベルトサンダ 一処理、 溝加工を施した後、 裏面にアクリル系の接着剤を塗布し、 支持層である 研磨機の定盤に貼り付け研磨を実施した。
(比較例 3— 2 )
研磨用成形体に厚み 0. 8 mmの発泡ポリエチレン基材を支持層としてァクリ ル系接着剤で貼り付けた以外は、 実施例 3— 2と全く同様にして、 直径 6 1 0m ιηψの搆付き研磨用積層体を作製し、 研磨を実施した。 .
(比較例 3— 3) ■
直径 6 1 Ommの口デール社製積層パッ ド (商品名 : I C 1 000/SUBA
400) を比較例として使用した。 なお、 本比較例の積層パッ ドの研磨面全域に おいては、 実施例同様、 幅 2ram、 ピッチ 1 5 ramの格子状溝が施されている。
[表面硬度の測定] および [圧縮率の測定] は、 第 1の積層体の場合と同様の方法 により行った。
[引張弾性率の測定]
試験条件は次に示す通りである。
試験機 : (株) オリエンテック製 UCT 30 T型テンシロン
試験片 : J I S K 7 1 1 3 2号形試験片
チャック間距離: 4 5mm
引張り速度: 5 mm/分
繰り返し数: n = 3
[研磨層の厚み計測および気泡の平均径算出]は、第 1の積層体の場合と同様の方 法により行った。
実施例 3— 2 , 3— 3および比較例 3— 2, 3— 3それぞれについて、 本発明 に関わる物性値を表 1 4に示す。 表 1 4
Figure imgf000054_0001
研磨機定盤の見掛けの表面硬度は明らかに A硬度で 9 5以上であるため、 表 1 4より、 見掛けの表面硬度については、 実施例 3— 2, 3— 3では研磨用成形体 <支持層の大小関係が成立している一方、 比較例 3— 2, 3— 3では大小関係が 逆転していることが確認できる。
[研磨性能評価]
実施例 3— 2, 3— 3および比較例 3— 2で得られた研磨パッドと、 従来品の 代表例である比較例 3— 3の研磨パッド各々の研磨性能を、 第 1の研磨用積層体 と同様の表 1 2に示す方法で評価した。
実施例 3— 2および比較例 3 _ 3の研磨パッドについては、 研磨条件①および 研磨条件②それぞれの条件下で 5 0枚のウェハを研磨した。 また実施例 3— 3お よび比較例 3— 2については研磨条件①の条件のみで 5 0枚のウェハを研磨した。 研磨条件①において取得した、 5 0枚のウェハの研磨速度およぴ面内ばらつき の平均値を表 1 5に、 実施例 3— 2および比較例 3— 3については、 研磨条件② において取得した 5 0枚のウェハの研磨速度および面内ばらつきの平均値をその 結果を表 1 6に示す„ [スクラツチの発生状況の確認]
研磨を開始してから 1 0枚目、 2 0枚目、 3 0枚目、 4 0枚目、 5 0枚目の計 5枚のウェハを抜き出し、 それぞれ研磨後の銅膜表面をレーザー顕微鏡で観察し た。 優劣をつけるために、 スクラッチが存在する場所を積極的に取り出し、 その 本数や大きさ等を確認した。
以下の目安に従って〇、 △、 Xの 3段階で評価した結果を表 1 5および表 1 6 に示す。 O : スクラッチが全く存在しない。 △:小さなスクラッチがわずかに存 在するが、 実用上、 問題にならない。 X : 比較的大きなスクラッチが存在する、 あるいは小さいスクラツチが多数存在する等、 実用上問題となるレベル。 表 1 5
Figure imgf000055_0001
表 1 6
Figure imgf000055_0002
実施例 3 — 2および実施例 3 — 3は、 比較例 3— 2に比較し、 スクラッチの発 生状況については差が確認されなかったものの、 研磨速度、 均一性いずれも高い という良好な結果が得られた。 従来から標準的に用いられてきた比較例 3— 3に 対しては、 スクラッチの発生状況にも差が見られ、 本発明の研磨用積層体は、 従 来パッ ドを上回る性能を発現することが確認できた。 同様の傾向が、 より低圧な ウェハ荷重においても確認され、 本発明の研磨用積層体が将来的にも有用である ことが見出せた。
( 4 ) 研磨用積層体の製造方法
研磨用積層体は、 支持層上に複数枚の研磨用成形体を配設することで、 大型化 が進む研磨パッドの品質ばらつきを小さくおさえ、 安定した研磨性能を発現させ るものである。 複数枚の研磨用成形体を並べると、 そのつなぎ目には必ず隙間が 生じる。 このつなぎ目に生じる隙間は、 段差を生じさせたり、 研磨用積層体を剥 がれ易く させたりする問題があるが、 本発明はこの隙間を積極的に研磨スラリー の流路 (溝) として用いることで、 これらの問題を解決するものである。 研磨用 成形からだの配設間隔に関しては、 特に制限は無く、 あらかじめ研磨スラリーの 流路幅を空けて配設してもよいし、 旋盤やフライス、 レーザー等による機械加工 で隙間を拡大させても良い。また、支持層が延伸可能な材質の場合では、配設後、 延伸によって拡大させることも可能である。 例えば、 支持層に熱可塑性樹脂を用 い、 ラミネートや溶融キャス ト法などによって研磨用成形体を配設する場合、 隙 間に熱可塑性樹脂が入り込み、 この部分で支持層が厚くなることがあるが、 この 場合には、 延伸することで支持層の厚みを調節しつつスラリー流路の幅を調節す ればよい。 もちろん、 機械加工によって、 支持層を含めて切削 ·除去することも 可能である。
本発明の研磨用積層体は、 何枚配設しても良く、 安定して生産できるサイズの 研磨用積層体を自在に配設することも可能である。 例えば最終製品の幅が 6 0 0 m mである場合、 幅 2 0 O m mの狭幅の研磨用成形体であれば、 3枚を配設すれ ばよい。 なお本発明においては、 説明を簡潔にするため、 幅方向のみに着目した 記述となっているが、 長手方向 (奥行き) にも全く同じ理論が当てはまることは 容易に類推されよう。
本発明の研磨用積層体の一製造方法を図 1 5 ( a ) および (b ) に沿って具体 的に説明する。 図 1 5 ( a ) は、 狭幅の研磨用成形体 4枚を並べ、 研磨用成形体 の研磨面 2 2とは反対の面側に支持層 2 1を積層した後の状態を示している。 図 1 5 ( a ) の隣り合う狭幅の研磨用成形体のつなぎ目 2 3部分に、 研磨面 2 2側から研磨層 2 0を貫通し、 支持層 2 1まで達する溝 3 3を施した結果、 図 1 5 ( b ) の状態になる。
図 1 5 ( a ) および (b ) は、 研磨用成形体に直接支持層を積層した場合であ るが、 これ以外にも、 あらかじめ成形されたシートや板体等の成形体に研磨用成 形体を、 例えば両面テープや接着剤等の接着層を介して接着することもできる。 この状態を示したものが図 1 6 ( a ) および (b ) である。 4 4および 5 4がセ 着層に該当する。
本発明の方法で製造される研磨用積層体には、 つなぎ目に施した溝以外にも、 必要に応じて格子状、 放射状、 同心円状等、 所望のサイズ、 形状の溝を施すこと ができる。 それらの溝はつなぎ目に施した溝と同様に全て研磨層を貫通していて も良いし、 一部貫通していても良い。 あるいは図 1 7に示す従来研磨パッ ドのよ うに、 全て貫通していなくても良い。
本発明の方法で製造される研磨.用積層体に用いられる支持層の材質は特に限定 しない。求める研磨性能に応じて、例えばプラスチック、熱可塑性ェラス トマー、 ゴム等の可撓性基材を適宜用いることができる。 これらは気泡を内包していても 良いし、 あるいは気泡を内包していなくても良いが、 クッション性を必要とする 場合は、 気泡を内包する発泡基材がより好適である。
またガラス繊維、 炭素繊維、 合成繊維、 あるいはこれらの織布、 不織布等で捕 強したものであっても良い。 さらにはステンレス鋼に代表される, 可撓性を有す る金属の薄板等も用いることができる。
具体的には、 主にクッション性を確保することを目的に用いられる基材として は、 従来の研磨パッドに代表的に用いられる、 例えば不織布にポリウレタン樹脂 を含浸させた基材、 発泡ビーズを同じくポリウレタン樹脂中に分散させた基材、 あるいは発泡ポリ ゥレタン基材や発泡ゴム基材等が好適に用いられる。
一方、 主に研磨層を支持することを目的に用いられる機材としては、 エポキシ 樹脂、 ポリ ウレタン樹脂、 ポリエチレンテレフタレート、 ポリブチレンテレフタ レート、 ポリカーボネート等の無発泡基材およびこれらをガラス繊維で補強した ものが好適に用いられるがこの限りではない。
本発明の製造方法においては、 研磨用成形体を枚葉で加工してもよいし、 例え ば研磨用成形体をロール状で得ることが可能であれば、 ロール · ツー · ロールで 支持層と積層、 さらには溝加工することも可能であり、 その場合は非常に高い生 産性が期待できる。
本発明の製造方法においては、 所望のサイズ、 所望の形状、 例えば円盤状、 ベ ルト状他、 様々な形状の研磨用積層体を得ることができる。
また、 本発明の製造方法で得られた研磨用積層体は、 単独で研磨パッ ドとして 用いることもできるが、 必要に応じて支持層側にクッション層ゃ両面テープを貼 ることも可能である。
本発明の製造方法により、 研磨用成形体どうしのつなぎ目が残存する研磨用成 形体の、 例えば研磨の際、 つなぎ目にウェハがひっかかり、 ウェハがホルダーか らはずれる原因となり得る段差の問題や、 ドレッサーが同じくつなぎ目にひっか かり、 研磨層の一部が剥がれるといった問題が解消される。
本発明の最も有効な点は、 比較的小型の設備で製造した、 品質ばらつきの小さ い研磨用成形体を用いて、 所望サイズの研磨用積層体を作製することが可能とな る点である。 生産性は高いが、 厚みや発泡状態等の制御がパッチ法や射出成形法 に比べて困難と考えられている押出成形法を採用する場合には、特に有用である。 本発明において、 高温の溶融樹脂を研磨用発泡体に直接積層する場合は、 成形 体の熱膨張等により、 つなぎ目がずれるといった状況が発生する場合が考えられ る。 このような場合は、 隣り合う研磨用成形体同士を仮止めすると良い。 仮止め の繋止方法については特に限定しないが、 積層後に容易に取り除くことができる という点から、 ホッチキスの針等で用いられるステープルが好適に用いられる。 本発明の研磨層に用いる研磨用成形体は特に限定しないが、 気泡を内包した発 泡成形体が、 スラリーを保持する、 又は研磨に適した表面状態をドレッサー等に よる目立て処理により形成する上でより好ましい。 発泡成形体である場合、 気泡 の平均径は特に限定しないが、 好ましくは 0 . l〜 1 0 0 /i in、 より好ましくは 0 . 1〜 5 0 m、 最も好ましくは 0 . 1〜 3 0 μ πιである。
研磨用成形体を製造する方法は特に限定しないが、 押出機を用いて製造する方 法が生産性の面から好適である。 押出機を用いて発泡成形体を製造する場合は、 押出工程が、 押出機中にて 1 OMP aを超える圧力雰囲気下において発泡剤を注 入し、 発泡剤を樹脂に溶解混合する工程と、 その後、 発泡剤が溶解混合した樹脂 を、 発泡剤を溶解混合した圧力より低い圧力雰囲気下に曝す工程とを含むことが 好ましい。
以下に、 実施例により本製造方法を具体的に説明するが、 実施例の内容になん ら限定されるものではない。
(実施例 4)
ぐ研磨用成形体の作製 >
前記 (実施例 3— 1) と同様の条件 (表 1 0) で研磨用成形体を作製した。 ぐ積層体の作製 >
前記 (実施例 3— 1) と同様の積層設備 (第 1 1図) を用いて、 第 1 5図 (a) に示されるような積層体を得た。
く研磨用積層体の作製 (溝加工) >
前記 (実施例 3— 1) と同様の装置を用いて.、 幅 2 mmの溝を隣り合う溝と溝 との間隔が 1 3 mmとなるように、研磨面全域に格子状に施した。なお図 1 5 (b) において、 溝幅とは Aの距離を、 隣り合う溝と溝との間隔とは Bの距離を、 また 溝深さとは Cを指す。
く研磨パッドの作製 >
得られた研磨用積層体の支持層に、 透明性の高い厚み 75 mの P ET基材两 面テープを貼り付けた後、 直径 6 1 0 mm φの円盤状に切り取り、 研磨パッ ドを 得た。
(比較例 4) . 第 1 7図に示した断面構造を有する、 直径 6 1 0mmの口デール社製積層パッ ド (商品名 : I C 1 000ZSUBA400) を比較例 4として使用した。
I C 1 000および SUBA400はそれぞれ、 第 1 7図の 6 0および 6 1に 該当する。 なお、 本比較例の積層パッドの研磨面全域においては、 幅 2mm、 隣 り合う溝と溝との間隔 1 3mmの格子状溝 (6 3) が施されている。
ぐ研磨層の発泡状態観察 > 前記 (実施例 3— 1 ) と同様の測定方法により、 気泡の状態を測定した。 気泡 の総数おょぴ気泡の平均径を表 1 7に示す。 表 1 7
Figure imgf000060_0001
表 1 7に示す結果より、 研磨層の発泡状態において、 実施例 4の気泡は、 比較 例 4と比べて、 よりシャープに、 つまりはより均質に分布していることが確認さ れた。
<研磨性能評価 >
実施例 4で得られた研磨パッドと、 従来品の代表例である比較例 4の研磨パッ ド各々の研磨性能を、前記(3 ) の研磨用積層体と同様の表 1 2に示す条件(但、 研磨条件は①) で評価した。
実施例 4および比較例 4の研磨パッドそれぞれについて 5 0枚のウェハを研磨 した。 5 0枚のウェハの研磨速度およぴ面内ばらつきの平均値を表 1 8に示す。 表 1 8
Figure imgf000060_0002
従来パッ ドの代表例である比較例 4の研磨パッ ドと比べて、 実施例 4の研磨パ ッドの方が、 研磨速度が大きく、 かつ面内ばらつきが小さい、 良好な研磨性能を 発現することが確認された。
( 5 ) 〔溝付き研磨パッド) 本発明の溝付き研磨パッドを、 切断面が同じ形状となるように切断した断面を 第 1 8図に示す。 第 1 9図〜第 2 2図は本発明の溝付き研磨パッドの一例である が、 第 1 9図〜第 2 2図中の破線に沿って切断した断面が第 1 8図である。
本発明における溝幅 (A)、 隣り合う溝と溝との間隔 (B )、 溝深さ (C ) は第 1 8図に規定する通りであり、 本発明の溝付き研磨パッドは、 溝幅 (A) が 0 . 5〜4 m m、 隣り合う溝と溝との間隔 (B ) が 5〜 1 0 mmである直線の平行溝 を少なく とも 1組以上有するものである。
溝形状は、 隣り合う溝と溝とは平行関係、 あるいは格子状に施されていること が好適である。 本発明の研磨パッドの溝は、 一般的な切削加工等により作り出す ことができる。 複雑な形状の溝でも良いが、 溝の加工速度や加工の難易度等の点 から、 その形状は可能な限り単純なものが好ましく、 その点からも直線の平行溝 を備えることが望ましい。もちろん直線の平行溝を用いて格子状としても良いし、 上記寸法範囲内であれば、 溝幅が単一でなくても良く、 ピッチも等間隔でなく と も良い。
なお本発明の溝付き研磨パッドにおいては、 より高精度の.研磨性能が要求され る場合には、 少なく とも 1耝以上の直線の平行溝に加えて、 研磨スラリーが溝と 溝とに挟まれたエリアにより均一に行き渡り安くなるように、 同心円状や螺旋状 のきめ又は細溝、 あるいは円柱形状の穴、 さらには切り込み等を追加して備えて も良い。 これらは刃物類、 切削工具等を用いて加工することができ、 その形状や 本数等については、 所望する研磨性能に応じて、 溝の場合と同様に、 随意に選定 することができる。
本発明の溝付き研磨パッ ドを構成する原料の主成分は特に限定しないが、 (1 ) 〔研磨用独立発泡体の製造方法〕 の項で述べたと同様の樹脂 (ポリウレタン等) を 用いることができる。
以下に、 実施例により本発明の溝付き研磨パッドを具体的に説明するが、 本発 明は、 実施例の内容になんら限定されるものではない。
<溝付き研磨パッ ドの作製 >
大日精化製熱可塑性ポリウレタンエラストマ一 (商品名 : レザミン P— 4 2 5 0 ) を主原料とし、 二酸化炭素を発泡剤として用い、 3 0 O mm幅のダイを使用 した押出成形により厚み 1. 5 mmの発泡シートを作製した。
得られた発泡シートの、 研磨面にあたる表面を丸源鐡ェ所製ベルトサンダーで 研磨し、 シート表面近傍の無発泡層であるスキン層を除去することにより、 気泡 を開口させた。 研磨後のシ一ト厚みは 1. 3 mmであった。 該シ一トを 20 0 m m幅、 60 Omm長に切断したものを 3枚一組で両面テープと貼り合わせた後に、 直径 6 0 Ommの円盤状に切り取り、 研磨パッド基材を作製した。
(実施例 5— 1 )
ショーダテク トロン社製クロスワイズソ一に、 幅 2 mmの回転刃を取り付け、 研磨パッ ド基材の表面全域にわたり、 幅 2mm、 隣り合う溝と溝との間隔 9mm および深さ 0. 6mmの直線の溝を施し、 溝付き研磨パッドを作製した。 なお溝 形状は格子状とし、 溝はパッド周縁において開口させた。
(実施例 5— 2) I 溝深さを 1. Omniに変更した以外は、 (実施例 5— 1) と全く同様の溝加 tを 施し、 溝付き研磨パッドを作製した。
(実施例 5— 3 )
(実施例 5— 1) と全く同様の溝を第 1 9図に示すように、 平行に施し、 溝付 き研磨パッドを作製した。
(実施例 5— 4)
ショーダテク トロン社製クロスワイズソ一に、 幅 1 mmの回転刃を取り付け、 研磨パッド基材の表面全域にわたり、 幅 l mm、 隣り合う溝と溝との間隔 5 mm および深さ 0. 6mmの溝を施し、 溝付き研磨パッドを作製した。 なお溝形状は 格子状とし、 溝はパッド周縁において開口させた。 ' (実施例 5— 5)
実施例 5— 1で作製した溝付き研磨パッ ドの溝と溝とに挟まれたエリアに、 直 径 1. 5 mmのポンチを使って、直径 1 mmの穴を、平均 5個入るように穿った。 (比較例 5— 1 )
隣り合う溝と溝との間隔を 1 3 mmに変更した以外は、 (実施例 5— 1)と全く 同様の溝加工を施し、 溝付き研磨パッドを作製した。
(比較例 5— 2) 隣り合う溝と溝との間隔を 3mmに変更した以外は、 (実施例 5— 1)と全く同 様の溝加工を施し、 溝付き研磨パッドを作製した。
(比較例 5— 3)
回転刃を幅 0. 2 mmのものに交換し、 溝幅を 0. 2 mmに変更した。 溝幅以 外は、 (実施例 5— 1)と全く同様の溝加工を施し、溝付き研磨パッドを作製した。 (比較例 5— 4 )
溝付き研磨パッドとして、 格子溝が施されたロデ一ル社製 I C 1 000を使用 した。使用した研磨パッドの溝幅は 2 mm、隣り合う溝と溝との間隔は 1 3mm、 溝深さは 0. 6 mmであった。
ぐ研磨実験 >
被研磨物として、 直径 20 Ommの C uプランケットウェハを用いた。
溝付き研磨パッドを MAT製片面研磨機 ARW— 6 8 1 M Sの定盤に貼り付けた。 まず、 ダイヤモンドドレッサーを、 定盤 60 r pm、 ドレスへッ ド 5 0 r p mで 回転させながら、 1. 38 k P a (2 p s i ) でパッ ド表面に押しあて、 3 0分 間、パッド表面に目立て処理を施した。 その後、 キヤポット社製研磨スラリ一(商 品名 : i Cu e 5003) に切り替え、 1分間 Cu膜表面を研磨した。 研磨条件 は、 ウェハ加圧 3. 45 k P a (5 p s i )、 定盤回転数 70 r p m、 ウェハへッ ド回転数を 7 2 r p m、 研磨スラリ一流量 200m l /m i nとした。
ぐ研磨性能評価 >
前記 (3) の研磨用積層体と同様の表 1 2に示す条件 (伹、 研磨条件は①) で 評価した。
ウェハ 1 0枚を同じ研磨パッ ドを用いて連続的に研磨し、 同様の数式を用いて 算出した値をウェハ面間均一性とし、 研磨性能の経時変動の指標とした。
研磨性能の評価結果を表 1 9および表 20に示す。 表 1 9
Figure imgf000064_0001
表 2 0
Figure imgf000064_0002
(実施例 5— 1 ) 〜 (実施例 5— 5 ) は、 (比較例 5— 1 ) 〜 (比較例 5— 3 ) ίこ比べてウェハ面内おょぴウェハ面間均一性が良好で ¾り、特に(比較例 5— 2 ) に対しては、 研磨速度も速いという結果を得た。
(比較例 5— 4 ) については、 基材の基本物性が異なるため、 単純に研磨性能 の差が溝サイズのみによるものとは断定できないが、 従来パッドの代表例として 性能を評価した。 本発明の溝付き研磨パッ ドは、 代表的な従来パッドと比較し、 研磨速度が速く、 均一性も向上した。 産業上の利用可能性
半導体、 各種メモリー ドディスク用基板等の研磨に使用される研磨パッド に好適に用いることのできる研磨用独立発泡体の製造方法、 特に層間絶縁膜や金 属配線等の半導体デパイスウェハの表面平坦化加工に好適な研磨パッドに用いら れる研磨用発泡シートと研磨用積層体、 研磨用積層体を用いた研磨方法、 研磨用 積層体の製造方法、 およぴ搆付き研磨パッドを提供することができる。

Claims

請 求 の 範 囲
1. 押出機中において 1 OMP aを超える圧力雰囲気下で発泡剤を溶融樹脂に 溶解混合する工程 (A) と、 その後、 発泡剤を溶解混合した圧力より低い圧力雰 囲気下に該溶融樹脂を曝す工程 (B) とを含む、 平均気泡径が 0. 1 ~ 1 0 0 μ mである研磨用独立発泡体の製造方法。
2. 前記押出機に注入する前記発泡剤の供給速度が、 吐出速度の 0. 5〜1 0 重量%である請求項 1記載の研磨用独立発泡体の製造方法。
3. 難発泡樹脂に後架橋剤を添加し、 押出機により溶融させ、 l OMP aを超 える圧力雰囲気下でその溶融樹脂に発泡剤を溶解及び/又は混合した後、 該溶解 及び/又は混合した地点の圧力より低い圧力雰囲気下に該溶融樹脂を曝すことで 得られた発泡体を架橋させることを特徴とし、 発泡体断面の気泡の平均径が 0. 1 μ π!〜 1 0 0 mである研磨用独立発泡体の製造方法。
4. 前記難発泡樹脂が J I S K 7 3 1 1に準じた Α硬度 9 0以上であり、 流動開始温度が 2 0 0°C〜2 3 0°Cである、 請求項 3記載の研磨用独立発泡体の 製造方法。
5. 前記難発泡樹脂が熱可塑性エラストマ一である、 請求項 3又は 4記載の研 磨用独立発泡体の製造方法。
6. 前記熱可塑性エラストマ一がポリウレタンである、 請求項 5記載の研磨用 独立発泡体の製造方法。
7. 前記難発泡樹脂 1 0 0重量部に対し、 前記後架橋剤 0. 1〜4 0重量部を 含む請求項 3又は 4記載の研磨用独立発泡体の製造方法。
8. 前記難発泡樹脂に樹脂の溶融張力を増加させる改質剤を添加する請求項 3 又は 4記載の研磨用独立発泡体の製造方法。
9. 前記改質剤がアクリル変性を施したフッ素樹脂である、 請求項 8記載の研 磨用独立発泡体の製造方法。
1 0. 前記発泡剤が常温 ·常圧で気体状態である請求項 1記載の研磨用独立発 泡体の製造方法。
1 1 . 前記発泡剤が二酸化炭素である請求項 1記載の研磨用独立発泡体の製造 方法。
1 2. 研磨面において、 シートに含まれる空孔が開口した結果生じた開口部の 円相当直径の平均値が 1〜 50 mであり、 かつ円相当直径 0. 1 ~1 0 μ πιの 開口部が少なく とも 1 000個 c m 2以上含まれていることを特徴とする研磨 用発泡シート。
1 3. 前記研磨面において、 全開口部の総面積の割合が研磨面全体の 3 0〜7 0%である請求項 1 2記載の研磨用発泡シート。
1 4. 2 5 °Cにおける見掛けの圧縮率が 5 ~ 1 5 %である、 請求項 1 2又は 1 3記載の研磨用発泡シート。
1 5. 前記シートを構成する原料の主成分が、 J I S K— 73 1 1に準じた Α硬度で 70以上の熱可塑性エラストマ一である請求項 1 2又は 1 3記載の研磨 用発泡シート。
1 6. J I S K 73 1 1に準じた Α硬度が 80以上であり、 かつ 2 5 に おける見掛けの圧縮率が 3~ 1 5 %である研磨用発泡シート。
1 7. シートに含まれる気泡の平均径が 0. 1 ~ 1 00 μ mである請求項 1 6 記載の研磨用発泡シート。
1 8. 前記シートの主原料が熱可塑性エラストマ一である請求項 1 6又は 1 7 記載の研磨用発泡シート。
1 9. 前記熱可塑性エラストマ一がポリウレタンである請求項 1 5又は 1 8記 載の研磨用発泡シート。
20. J I S K 73 1 1に準じた A硬度で 80以上の表面硬度を有し、 圧 縮率が 1. 5%以上で、 かつ初期の厚みが 2 mm以下の研磨層を有する研磨用成 形体が、 該研磨用成形体の圧縮率より小さい圧縮率を有する支持層に積層されて いることを特徴とする研磨用積層体。
2 1. 初期の厚みが 0. 2〜2mmの研磨層を有し、 かつ圧縮率が 1. 5 %以 上である研磨用成形体が、 見掛けの表面硬度が該研磨用成形体より大きい支持層 に積層されていることを特徴とする研磨用積層体。
2 2. 前記支持層の見掛けの表面硬度が前記 A硬度で 8 8以上である請求項 2 1記載の研磨用積層体。
23. 前記支持層の引張弾性率が 20 MP aより大きい、 請求項 2 1又は 22 記載の研磨用積層体。
24. 前記研磨層は、 平均径が 0. 1〜 1 00 μ mの気泡を内包している請求 項 20記載の研磨用積層体。
2 5. 前記研磨用成形体の主原料が熱可塑性エラス トマ一である請求項 20記 載の研磨用積層体。
26. 前記熱可塑性エラス トマ一がポリウレタンである請求項 25記載の研磨 用積層体。
2 7. 前記研磨用成形体の表面に溝を有する請求項 20記載の研磨用積層体。
28. 請求項 20〜 27のいずれか 1項に記載の研磨用積層体を研磨機の定盤 に固定して、 被加工物表面を平坦化することを特徴とする研磨方法。
29. J I S K 73 1 1に準じた Α硬度で 80以上の表面硬度を有し、 圧 縮率が 1. 5%以上で、 かつ初期の厚みが 2mm以下の研磨層を有する研磨用成 形体を、 該研磨用成形体の圧縮率より小さい圧縮率を有する支持層を介して研磨 機の定盤に固定し、 被加工物表面を平坦化する^とを特徴とする研磨方法。
3 0. 初期の厚みが 0. 2~2minの研磨層を有し、 かつ圧縮率が 1. 5 %以 上である研磨用成形体を、 見掛けの表面硬度が該研磨用成形体より大きい支持層 を介して研磨機の定盤に固定し、 被加工物表面を平坦化することを特徴とする研 磨方法。
3 1. 支持層上に複数枚の研磨用成形体を配設し、 前記研磨用成形体同士のつ なぎ目に生じる隙間を研磨スラリーの流路としたことを特徴とする研磨用積層体 の製造方法。
3 2. 支持層上に複数枚の研磨用成形体を配設し、 前記研磨用成形体同士のつ なぎ目に生じる隙間を拡大させて研磨スラリ一の流路としたことを特徴とする研 磨用積層体の製造方法。
3 3. 前記隙間を拡大させる方法が機械加工による請求項 3 2記載の研磨用積 層体の製造方法。
34. 前記支持層上に複数枚の研磨用成形体を配設する方法が、 複数枚の研磨 用成形体を繋止した後、 前記支持層を積層し、 積層後繋止を解除する請求項 3 1 〜 3 3のいずれか 1項に記載の研磨用積層体の製造方法。
3 5. 前記複数枚の研磨用成形体を繋止する方法がステーブルによるものであ る請求項 34記載の研磨用積層体の製造方法。
3 6. 前記研磨用成形体が気泡を内包している請求項 3 1〜3 3のいずれか 1 項に記載の研磨用積層体の製造方法。
3 7. 前記気泡の平均径が 0. 1〜 1 00 /xmである請求項 36記載の研磨用 積層体の製造方法。
38. 研磨面に溝加工が施されている研磨用パッドにおいて、溝幅(A) が 0. 5 ~4mm, 隣り合う溝と溝との間隔 (B) が 5〜 1 0 mmである直線の平行溝 を少なく とも 1組以上有することを特徴とする溝付き研磨パッ ド。
3 9. 溝深さ (C) が溝幅 (A) の 1 0〜70%である請求項 38記載の溝付 き研磨パッド。
40. 前記溝がパッド周縁において開口している請求項 3 8又は 3 9に記載の 溝付き研磨パッド。
4 1. ノ ッドを構成する原料の主成分が、 J I S K 7.3 1 1に準じた Α硬 度で 70以上の熱可塑性エラストマ一である請求項 38又は 3 9に記載の溝付き 研磨パッド。
PCT/JP2003/014964 2002-11-25 2003-11-25 研磨用独立発泡体の製造方法、研磨用発泡シート、研磨用積層体と研磨方法、研磨用積層体の製造方法、および溝付き研磨パッド WO2004054779A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003284655A AU2003284655A1 (en) 2002-11-25 2003-11-25 Method for producing closed cell cellular material for use in polishing, cellular sheet for polishing, laminate for polishing and polishing method, method for producing laminate for polishing, and grooved polishing pad

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
JP2002340700 2002-11-25
JP2002-341240 2002-11-25
JP2002341240 2002-11-25
JP2002-340700 2002-11-25
JP2002361551 2002-12-13
JP2002-361551 2002-12-13
JP2002-363711 2002-12-16
JP2002363711A JP2004200222A (ja) 2002-12-16 2002-12-16 研磨用独立発泡体
JP2003091297 2003-03-28
JP2003-091297 2003-03-28
JP2003-158839 2003-06-04
JP2003158839A JP2004358596A (ja) 2003-06-04 2003-06-04 研磨用積層体の製造方法
JP2003169895A JP2005001083A (ja) 2003-06-13 2003-06-13 研磨用積層体および研磨方法
JP2003-169895 2003-06-13
JP2003299565A JP2005066749A (ja) 2003-08-25 2003-08-25 研磨用積層体および研磨方法
JP2003-299565 2003-08-25
JP2003360785A JP2004188584A (ja) 2002-11-25 2003-10-21 溝付き研磨パッド
JP2003-360785 2003-10-21
JP2003-373168 2003-10-31
JP2003373167A JP2004203024A (ja) 2002-12-13 2003-10-31 研磨用独立発泡体の製造方法
JP2003373168A JP2004188586A (ja) 2002-11-25 2003-10-31 研磨用発泡シート
JP2003-373167 2003-10-31

Publications (1)

Publication Number Publication Date
WO2004054779A1 true WO2004054779A1 (ja) 2004-07-01

Family

ID=32601280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014964 WO2004054779A1 (ja) 2002-11-25 2003-11-25 研磨用独立発泡体の製造方法、研磨用発泡シート、研磨用積層体と研磨方法、研磨用積層体の製造方法、および溝付き研磨パッド

Country Status (2)

Country Link
AU (1) AU2003284655A1 (ja)
WO (1) WO2004054779A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476328B2 (en) 2008-03-12 2013-07-02 Toyo Tire & Rubber Co., Ltd Polishing pad
US8602846B2 (en) 2007-01-15 2013-12-10 Toyo Tire & Rubber Co., Ltd. Polishing pad and a method for manufacturing the same
CN104105575A (zh) * 2011-11-29 2014-10-15 内克斯普拉纳公司 具有基层和抛光表面层的抛光垫
CN104511830A (zh) * 2013-10-01 2015-04-15 三芳化学工业股份有限公司 复合研磨垫及其制造方法
US9126303B2 (en) 2005-08-30 2015-09-08 Toyo Tire & Rubber Co., Ltd. Method for production of a laminate polishing pad

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004599A1 (en) * 1992-08-19 1994-03-03 Rodel, Inc. Polymeric substrate with polymeric microelements
JP2001232554A (ja) * 2000-02-22 2001-08-28 Toyobo Co Ltd 研磨パッド及びその製造方法
JP2001261874A (ja) * 2000-01-12 2001-09-26 Toyo Tire & Rubber Co Ltd 熱可塑性エラストマー微孔質発泡体、その製造方法および研磨シート
US6336855B1 (en) * 1999-05-17 2002-01-08 Riken Grindstone for ELID grinding and apparatus for ELID surface grinding
WO2002046283A1 (fr) * 2000-12-08 2002-06-13 Kuraray. Co., Ltd. Mousse de polyurethane thermoplastique, son procede de fabrication et tampons de polissage a base de cette mousse
JP2002201301A (ja) * 2000-10-18 2002-07-19 Mitsui Chemicals Inc ウレタン系熱可塑性エラストマー組成物発泡体及びその製造方法
JP2002264006A (ja) * 2001-03-13 2002-09-18 Toray Coatex Co Ltd 研磨パッド
JP2002307293A (ja) * 2001-04-09 2002-10-23 Rodel Nitta Co 研磨クロス
JP2003128910A (ja) * 2001-10-17 2003-05-08 Rodel Nitta Co 研磨パッド

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004599A1 (en) * 1992-08-19 1994-03-03 Rodel, Inc. Polymeric substrate with polymeric microelements
US6336855B1 (en) * 1999-05-17 2002-01-08 Riken Grindstone for ELID grinding and apparatus for ELID surface grinding
JP2001261874A (ja) * 2000-01-12 2001-09-26 Toyo Tire & Rubber Co Ltd 熱可塑性エラストマー微孔質発泡体、その製造方法および研磨シート
JP2001232554A (ja) * 2000-02-22 2001-08-28 Toyobo Co Ltd 研磨パッド及びその製造方法
JP2002201301A (ja) * 2000-10-18 2002-07-19 Mitsui Chemicals Inc ウレタン系熱可塑性エラストマー組成物発泡体及びその製造方法
WO2002046283A1 (fr) * 2000-12-08 2002-06-13 Kuraray. Co., Ltd. Mousse de polyurethane thermoplastique, son procede de fabrication et tampons de polissage a base de cette mousse
JP2002264006A (ja) * 2001-03-13 2002-09-18 Toray Coatex Co Ltd 研磨パッド
JP2002307293A (ja) * 2001-04-09 2002-10-23 Rodel Nitta Co 研磨クロス
JP2003128910A (ja) * 2001-10-17 2003-05-08 Rodel Nitta Co 研磨パッド

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9126303B2 (en) 2005-08-30 2015-09-08 Toyo Tire & Rubber Co., Ltd. Method for production of a laminate polishing pad
US8602846B2 (en) 2007-01-15 2013-12-10 Toyo Tire & Rubber Co., Ltd. Polishing pad and a method for manufacturing the same
US8476328B2 (en) 2008-03-12 2013-07-02 Toyo Tire & Rubber Co., Ltd Polishing pad
CN104105575A (zh) * 2011-11-29 2014-10-15 内克斯普拉纳公司 具有基层和抛光表面层的抛光垫
CN105773400A (zh) * 2011-11-29 2016-07-20 内克斯普拉纳公司 具有基层和抛光表面层的抛光垫
CN104511830A (zh) * 2013-10-01 2015-04-15 三芳化学工业股份有限公司 复合研磨垫及其制造方法

Also Published As

Publication number Publication date
AU2003284655A1 (en) 2004-07-09

Similar Documents

Publication Publication Date Title
TWI439349B (zh) Laminated mats
KR20090110818A (ko) 연마 패드 및 그 제조 방법
JP2007088464A (ja) 改善された付着性を有する水性研磨パッド及びその製造方法
JP4931133B2 (ja) 研磨パッド
JP6671908B2 (ja) 研磨パッド
JP2007260827A (ja) 研磨パッドの製造方法
JP2005120253A (ja) 発泡ポリウレタンおよびその製造方法
JP2005001083A (ja) 研磨用積層体および研磨方法
JP2005066749A (ja) 研磨用積層体および研磨方法
US20140213151A1 (en) Polishing pad
JP2005183708A (ja) Cmp用研磨パッド、及びそれを用いた研磨方法
JP2003220550A (ja) 研磨用パッドおよびその製造方法
WO2004054779A1 (ja) 研磨用独立発泡体の製造方法、研磨用発泡シート、研磨用積層体と研磨方法、研磨用積層体の製造方法、および溝付き研磨パッド
JP2008001809A (ja) 研磨パッドの製造方法及び研磨パッド
JP2008227252A (ja) 研磨パッド
TW200831236A (en) Method for producing long polishing pad
JP4873667B2 (ja) 研磨パッド
JP2008100331A (ja) 長尺研磨パッドの製造方法
JP2003209078A (ja) 研磨用プラスチック発泡シートおよびその製造方法
JP4591980B2 (ja) 研磨パッド及びその製造方法
JP4542647B2 (ja) 研磨パッド
JP2004358596A (ja) 研磨用積層体の製造方法
JP4869017B2 (ja) 長尺研磨パッドの製造方法
JP5146927B2 (ja) 長尺研磨パッドの製造方法
JP2006142440A (ja) 研磨パッドおよびこれを用いた研磨方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase