WO2004048306A1 - カルボニル化合物の製造法 - Google Patents

カルボニル化合物の製造法 Download PDF

Info

Publication number
WO2004048306A1
WO2004048306A1 PCT/JP2002/012262 JP0212262W WO2004048306A1 WO 2004048306 A1 WO2004048306 A1 WO 2004048306A1 JP 0212262 W JP0212262 W JP 0212262W WO 2004048306 A1 WO2004048306 A1 WO 2004048306A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
palladium
catalyst
reaction
carrier
Prior art date
Application number
PCT/JP2002/012262
Other languages
English (en)
French (fr)
Inventor
Hideki Omori
Mitsuru Takeuchi
Satoshi Kakuta
Kazuhiko Haba
Takuro Furukawa
Original Assignee
Maruzen Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co., Ltd. filed Critical Maruzen Petrochemical Co., Ltd.
Priority to AU2002349706A priority Critical patent/AU2002349706A1/en
Priority to PCT/JP2002/012262 priority patent/WO2004048306A1/ja
Publication of WO2004048306A1 publication Critical patent/WO2004048306A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0254Nitrogen containing compounds on mineral substrates

Definitions

  • the present invention relates to a method for producing a carbonyl compound, and more particularly, to an analysis of a catalyst component.
  • the present invention relates to a method for producing a carbonyl compound which can prevent the deactivation of the catalyst due to effluent, stably maintain the catalytic activity at a high level, and economically and stably produce the carbonyl compound.
  • Carbonyl compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone are useful as solvents and chemical raw materials.
  • the production method involves direct oxidation of olefins with molecular oxygen. It has been known. Typical oxidation process, P d C 1 2 - but C u C 1 Wakka method Ru using 2 catalyst are well known in the Wa Tsu force of the Act, the carbon number of the feedstock Orefi emissions increases As a result, the reaction rate was remarkably reduced, and the reactivity of the internal olefin was low.
  • a method of producing a carbonyl compound by reacting water having 4 or more carbon atoms with water in the presence of an organic phosphorus compound is known. It has been proposed (see Japanese Patent Application Laid-Open No. Hei 7-17891). However, in this method, the precipitation of palladium is suppressed, but the activity per palladium is low, and there is a problem that a separate catalyst regeneration step is required for regeneration of the catalyst. In addition, since chlorine compounds were used, problems such as corrosion of equipment and by-products of chlorinated substances were not solved.
  • a number of catalyst systems comprising a palladium compound and a polyoxodione compound have been studied.
  • a palladium-polyoxodione catalyst and an organic solvent are mixed in an oxygen-based solvent or a mixed solvent of a sulfur-containing solvent and water.
  • a method for producing a carbonyl compound by reacting olefin and an oxygen-containing gas in the presence of a phosphorus compound or an iron-containing compound JP-A-6-48974 and JP-A-7-191) No.
  • a method of supporting a catalyst component on a carrier is also being studied.
  • a method of supporting palladium on a cyano-containing polyimide (“Macromolecules”, 1989, ed. No. 29, p. 4164-4165)
  • a method for producing a carbonyl compound using a catalyst in which a palladium compound and a heteropolyacid are supported on activated carbon see " Tet rahedron Letters ”, 2000, No. 41, ⁇ ⁇ 99—102, and Japanese Patent Application Laid-Open No. 11-222,418. Have been.
  • an object of the present invention is to prevent catalyst activity from deteriorating due to precipitation of a catalyst component, and to stably maintain catalyst activity and a reaction rate at a high level for a long time, whereby an economical and stable carbonyl compound can be obtained. It is an object of the present invention to provide a method for producing a compound which can be produced at a high speed. Disclosure of the invention
  • the present inventors have conducted intensive studies and have found that when an oxidation reaction of olefin is carried out using a catalyst system comprising a palladium compound and a heteropolyacid, the presence of an imine compound in the reaction system. As a result, it was found that the precipitation of palladium can be suppressed, the palladium catalyst can be recycled, the reactivity does not decrease, and as a result, the desired carbonyl compound can be obtained economically and stably. And conducted further research to complete the present invention.
  • the present invention provides a method for producing a carbonyl compound, which comprises reacting olefin and molecular oxygen in the presence of (a) a palladium compound, (b) a heteropolyacid, and (c) an imine compound. Is what you do.
  • the present invention also provides a method for producing a carbonyl compound in which the above reaction is carried out using a solid catalyst in which (a) a palladium compound and (b) an imine compound are immobilized on a carrier.
  • the present invention provides a solid catalyst for producing a carbonyl compound, wherein at least a palladium compound and an imine compound are immobilized on a carrier.
  • the palladium compound is not particularly limited as long as it is a compound containing divalent palladium ( ⁇ ) that can be easily converted to palladium (0), and various known compounds can be used.
  • Specific examples of the palladium compound include palladium chloride, Halides such as palladium bromide; inorganic acids such as palladium sulfate and palladium nitrate; tetrahalopalladium salts such as sodium tetrachloropalladium, sodium tetrabromopalladate, potassium tetrachloropalladium, potassium tetrabromopalladate
  • Inorganic compounds such as palladium hydroxide and palladium oxide
  • organic acid salts such as palladium acetate
  • organic complexes such as bis (benzonitrile) dichloropalladium.
  • These palladium compounds may be any of an anhydride, a hydrate and a solvate, and may be used alone or in combination of two or more.
  • the palladium compound can be used in the form of a solution or suspension of water or an organic solvent, or in a form supported on a solid carrier.
  • it is preferable to carry the imine compound of (c) on a carrier on which the imine compound (c) is immobilized, as described later.
  • the amount of the palladium compound used is not particularly limited, but it is better to use a very small amount, which is an effective amount as a catalyst.
  • the molar ratio of palladium to 1 mol of starting olefin is 0.0001 to 0.1, Particularly, the range of 0.0002 to 0.01 is preferable.
  • Heteropolyacids act as oxidants to reoxidize reduced palladium (0) to palladium (H) in the catalytic cycle. Therefore, the reduced palladium (0) can be easily reoxidized to palladium ( ⁇ ), and the resulting reduced heteropolyacid itself can be easily converted to molecular oxygen.
  • various known heteropolyacids represented by the following general formula (1) can be used.
  • the central atom X represents an element of group 13 to 15 of the periodic table such as P, Si, B, C, Al, N, etc.
  • k represents an integer of 1 to 5
  • M represents Mo
  • W represents one or more transition metal elements selected from transition metals such as Nb, Ta, and Cr
  • n is 5 to 2
  • An integer of 0, y represents an integer of 15 to 80
  • e represents an integer determined by a combination of the central atom X, the transition metal M and k, n, and y.
  • the composition of the corresponding polyoxoanion moiety is: ⁇ 12 ⁇ 4 . , ⁇ 1 () 0 34, ⁇ 12 0 42, ⁇ " ⁇ 39, ⁇ 10 ⁇ 40, XM 9 0 3 XM 6 0 24, X 2 M 18 0 56, X 2 M 12 0 42, ⁇ 2 ⁇ 17 ⁇ ⁇ , XM s O m, and the like.
  • m represents an integer of 15-80.
  • particularly preferred correct composition among these are XM 12 0 4., as the central atom X P, Si and B are preferred, and Mo, W, and V are preferred as transition metals M.
  • the transition metal contained as M is not limited to one type, and may include two or more types. good. Poriokisoa two on composition XM 1 2 O 4 examples of heteropoly acids represented by., the Li down molybdate (H 3 PM oi 2 0 4 .), Li down tungstic acid (H 3 PW 12 O 40 ), Gay molybdate (H 4 S iMo 12 O 40 ), Kei tungstate (H 4 S iW 12 ⁇ 4.), H 4 PVM 0ll 0 4., H 5 PV 2 M 0l .Rei 4., H 6 PV 3 Mo 9 O 40 , H 7 PV 4 Mo 8 0 4., H 9 PV 6 Mo 6 0 4., H "PV 8 Mo 4 0 4.
  • Phosphorus banner stuttering Bude phosphate etc. H 4 PVW U ⁇ 4. , H 5 PV 2 W 10 O 40, H 6 PV 3 W 9 0 4. , H 7 PV 4 W 8 0 4. , H 9 PV 6 W 6 ⁇ 4Q, H n PV 8 W 4 ⁇ 4.
  • Phosphovanadotungstic acid etc. H 3 PMo 6 W S 0 4.
  • Phosphorus evening can be mentioned ring strike molybdate etc., particularly preferred among these is, H 6 PV 3 Mo 9 0 4. And H 7 PV 4 Mo 8 0 4 . It is.
  • These heteropolyacids may be anhydrides or hydrates, and may be used alone or in combination of two or more.
  • the amount of the heteropolyacid used is not particularly limited, but is usually 0.5 to 500 times, preferably 1 to 300 times, particularly 1 to 100 times the mol of the palladium compound. If the amount is less than 0.5 mole, reoxidation of the palladium compound in the catalyst cycle becomes insufficient, and the catalyst activity may not be maintained. On the other hand, if the molar ratio exceeds 500 times, by-products are likely to be generated, which is economically disadvantageous.
  • a Schiff base having a —C R N— bond is obtained by a condensation reaction of a primary amine with a carbonyl compound such as an aldehyde or ketone.
  • Typical carbonyl compounds used in the condensation reaction include aromatic hydroxy aldehydes such as salicylaldehyde, 1-hydroxy 2-naphthaldehyde, and 2-hydroxy-11-naphthaldehyde; and aliphatic hydroxy aldehydes such as 2-hydroxypropionaldehyde.
  • Aldehydes Aldehydes; diketones such as acetylacetone (2,4-butanedione) and biacetyl (2,3-butanedione); 2_pyridinepyridine, 2,6-pyridinedicarbaldehyde, and 2-thiopheninecarbaldehyde And other heterocyclic carbaldehydes.
  • the primary amine include monoamines such as methylamine, ethylamine, propylamine, butylamine, and aniline; ethylenediamine, propylenediamine, 1,3-propanediamine, 1,4-butanediamine, and 1,2-cycloamine.
  • Diamines such as xanthamine; triamines such as ethylenetriamine; amino alcohols such as 2-aminoethanol; 2-aminophenol; amino acids and the like.
  • Schiff bases obtained by the condensation reaction of these compounds include N-salicylidenemethylamine, N, N'-bis (salicylidene) ethylenediamine, N, N'-bis (3,5-di- — Tert-butylsalicylidene) —1,2-cyclohexanediamine and N-salicylideneamine derivatives such as N-salicylidenealine; N, N, —dimethylbutane-1,2,3-diimine, N, N, —G tert-butylbutane-2,3-dimine, N, N'-diphenylbutane 1,2,3-dimine, N, N'-bis- (2,6-dimethyl-phenyl) -butane -2,3-Dimine, N, N'-Dimethylpentane_2,4-Dimine, N, N'-Di-tert-butylpentane-2,4-Dimine,
  • the imine compound may be used alone or in combination of two or more.
  • the imine compound can be used in the form of a solution or suspension in water or an organic solvent, or in the state of being supported on a carrier. It is more preferable to use the imine compound after fixing it on the carrier.
  • the amount of the imine compound used is not particularly limited, but is usually about 1 to about 50 times, preferably about 1 to 10 times the mol of the palladium compound. If the amount is less than equimolar, the effect of suppressing the deposition of palladium may be insufficient, and the catalytic activity may not be maintained. In addition, even if a large excess is used relative to palladium, there is no change in the effect, which is economically disadvantageous.
  • a solid carrier having a hydroxyl group of silanol As a method for immobilizing the imine compound on a carrier, a solid carrier having a hydroxyl group of silanol is used. First, an alkoxysilane containing an amino group represented by the following general formula (2) is converted to a hydroxyl group of silanol present in the carrier. And immobilizing the aminoalkoxysilanes on the carrier by this bond, and then subjecting the introduced amino group to a ketone or aldehyde condensation reaction to obtain an imine compound immobilized on the carrier. Can be mentioned.
  • R 1 and R 2 may be the same or different, and each independently represents an alkyl group having 1-3 carbon atoms.
  • Examples of the aminoalkoxysilanes represented by the general formula (2) include aminodimethylmethoxysilane, aminomethyldimethylisopropoxysilane, aminomethyltriethoxysilane, aminopropyltriethoxysilane, and aminoprovirt. Limethoxysilane and the like can be mentioned.
  • the carrier to be immobilized preferably has a hydroxyl group of silanol and is insoluble in the reaction mixture under the reaction conditions.
  • examples of such carriers include silica gel; complex oxides of silicon, such as metal complex oxides such as silica alumina and silica titania, aluminogates such as zeolite, and the like; layered compounds of silicon such as montmorillite, mica And the like.
  • a silicic acid gel is particularly preferred because of its large specific surface area and easy handling.
  • the reaction for immobilizing the aminoalkoxysilane on the carrier and the condensation reaction between the carbonyl compound and the amine can be performed in the presence of a solvent.
  • a solvent an organic solvent having a boiling point of 50 to 150 ° C. under normal pressure is preferable.
  • saturated hydrocarbons such as n-hexane, cyclohexane, and isooctane
  • Linear or cyclic ethers such as ter, dibutyl ether, tetrahydrofuran, and dioxane
  • aromatic hydrocarbons such as benzene, toluene, and xylene.
  • aromatic hydrocarbons such as benzene, toluene, and xylene are preferable because of the ease of controlling the reaction conditions.
  • the aminoalkoxysilane is reacted with the carrier under the reflux condition of toluene for 2 to 24 hours, preferably 4 to 12 hours, and the formed alcohol is removed by distillation.
  • Silanes can be immobilized on a carrier.
  • the condensation reaction between the carbonyl compound and the amines can be carried out by refluxing with dehydration for 1 to 24 hours, preferably 2 to 12 hours, under reflux conditions of toluene. In the condensation reaction, the condensation reaction proceeds by removing water produced as a by-product from the reaction system, and the reaction is completed.
  • the amount of the imine compound immobilized on the carrier is not particularly limited, but is usually per 1 g of the carrier.
  • It is about 0.01 to 1 mmol, preferably about 0.05 to 1 mmol.
  • silanol remaining on the carrier surface may be used.
  • the affinity between the starting olefin and the catalyst can be improved by modifying the hydroxyl group with an alkoxysilane represented by the following general formula (3).
  • R 1 and R 2 may be the same or different, and each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alkoxysilanes represented by the general formula (3) examples include dimethyldimethoxysilane, dimethyldiisopropoxysilane, methyltriethoxysilane, propyltriethoxysilane and the like.
  • the silanol residue can be modified in the same manner as in the reaction between the carrier and the aminoalkoxysilane.
  • the method for supporting the palladium compound by complex formation involves dissolving the palladium compound in an appropriate solvent. Then, it is only necessary to impregnate the carrier with the imine compound immobilized in the solution and stir the mixture.
  • the solvent used here may be appropriately selected from water, alcohols, ethers, aliphatic hydrocarbons, aromatic hydrocarbons, octogenated hydrocarbons, and other organic solvents depending on the palladium compound used. Can be. These solvents may be used alone or as a mixed solvent.
  • an organic acid salt such as palladium acetate is particularly preferable among the above compounds from the viewpoint of solubility in a solvent and the like.
  • the reaction proceeds easily in a temperature range of 0 to 200 ° C, preferably room temperature to 150 ° C.
  • the supported amount of palladium in the solid catalyst in which the palladium compound and the imine compound are immobilized on a carrier is usually 0.01 to 30% by weight, preferably 0.1 to 10% by weight.
  • an oxidation reaction may be promoted by adding (d) a transition metal compound in addition to (a) the palladium compound, (b) the heteropolyacid, and (c) the imine compound.
  • a transition metal compound examples include Cu, Fe, Co, Mn, and Ni.
  • compounds containing these include halides such as chloride, iodide and bromide; inorganic acid salts such as sulfates and nitrates; organic acid salts such as acetates; and organic complexes such as acetyl acetate.
  • transition metal compounds may be any of anhydrides, hydrates, and solvates, and may be used alone or in combination of two or more.
  • the transition metal compound can be used in the form of a solution or suspension of water, an organic solvent, or the like, or in a form supported on a solid carrier. It is preferable that the immobilized imine compound is supported on the immobilized carrier as in the case of the palladium compound.
  • the amount of the transition metal compound used is not particularly limited. When the transition metal compound is used in the form of a solution or a suspension, it is generally 2 to 300 mol, preferably 5 to 100 mol, per mol of the palladium compound. Mol, more preferably 10 to 50 mol.
  • the transition metal compound when the transition metal compound is supported on a support on which the imine compound is immobilized together with the palladium compound, it is preferable to use the solution or suspension prepared in the above ratio to support the transition metal compound.
  • the amount of the supported transition metal compound in the obtained solid catalyst is usually 0.01 to 30% by weight, preferably 1 to 10% by weight.
  • C C
  • the olefin may be a chain olefin or a cyclic olefin, and the olefinic double bond may be at the terminal of the molecule or inside the molecule.
  • the carbon number of the above-mentioned olefin is not particularly limited as long as it has 2 or more carbon atoms, but usually, it is preferably an olefin having about 2 to 12 carbon atoms, and particularly preferably an olefin having about 4 to 8 carbon atoms. Olefins having more than 12 carbon atoms have extremely low solubility in water contained in the reaction system, so that a sufficient reaction rate may not be obtained.
  • the chain olefin may be any of linear or branched olefins. Specifically, ethylene, propylene, butene, isobutene, pentene, isopentene, hexene, isohexene, neohexene Linear or branched monoolefins, such as, heptene, isoheptene, octene, isooctene, nonene, isononene, decene, isodecene, pendecene, dodecene; linear or branched, such as pentadiene, hexadiene, hebutadiene, octadiene, decadiene; And the like.
  • the cyclic olefins may be any of monocyclic, polycyclic and condensed cyclic olefins, and specific examples thereof include cyclic monoolefins such as cyclopentene, cyclooctene, cyclodecene and cyclododecene; Cyclic diolefins such as cyclohexene and dicyclopentadiene; and cyclic compounds condensed with an aromatic ring such as indene.
  • a compound in which the chain olefin is substituted with a cycloalkyl group or an aromatic group, or a compound in which the cyclic olefin is substituted with an alkyl group or the like can also be used.
  • the chain olefin having a cycloalkyl group or an aromatic group as a substituent include compounds having a styrene skeleton such as styrene, ⁇ -methylstyrene, and] 3-methylstyrene, vinylcyclohexane, and vinylcyclohexene. And aryl cyclohexane.
  • cyclic olefin having an alkyl group or the like as a substituent examples include methylcyclohexene and ethylhexene. These olefins can be pure or mixtures of two or more isomers. For example, when producing methylethyl ketone using butene as a raw material, one of butene, cis-2-butene, trans-2-butene may be used alone, or a mixture of two or more may be used as a raw material. It can be used as an olefin. Also, saturated hydrocarbons that do not affect the oxidation reaction, such as methane, ethane, propane, and n-butane, may coexist in the above-mentioned olefin.
  • molecular oxygen is preferable.
  • an oxidizing gas containing this pure oxygen gas or air, or a mixed gas diluted with an inert gas such as nitrogen, helium, argon, or methane can be used.
  • the amount of molecular oxygen to be used is not particularly limited, but is usually 1 to 100 mol, preferably 1 to 50 mol, per mol of olefin.
  • the oxidation reaction of the present invention is carried out in the presence of water.
  • the amount of water to be used is not particularly limited, but is usually in the range of 10 to 1000 mol per mol of palladium.
  • the oxidation reaction can be carried out without a solvent.
  • a solvent for example, alcohols such as methanol and ethanol; linear or cyclic ethers such as dimethoxyethane and tetrahydrofuran; aromatic hydrocarbons such as benzene; n-octane; Saturated hydrocarbons such as decane can also be used as the solvent.
  • solvents may be used as a mixture of two or more solvents.
  • reaction system of the oxidation reaction there is no particular limitation on the reaction system of the oxidation reaction, and various systems such as a batch system, a semi-batch system, a semi-continuous system, a continuous flow system, and a combination thereof can be mentioned.
  • a batch method in a liquid phase in which a catalyst is obtained by mixing a catalyst with water, and further a solvent when a solvent is used, or a mixed liquid obtained by adding olefin to the catalyst A semi-batch system in which an oxidizing gas flows through the mixed solution; a semi-continuous system in which a gaseous olefin and an oxidizing gas flow through the catalyst solution; and a circulating of the catalyst solution, the olefin and the oxidizing gas simultaneously into the reaction region.
  • a continuous circulation system and the like can be mentioned.
  • the carrier When a catalyst immobilized on a catalyst is used, these reaction methods can be applied to a slurry method or a fixed bed method.
  • Reaction conditions are appropriately selected depending on the starting material used and the reaction system.
  • the reaction temperature is usually set in the range of 0 to 200 ° C, preferably 30 to 150 ° C. If the reaction temperature is lower than the above lower limit, the reaction rate may decrease, and if the reaction temperature exceeds the upper limit, side reactions tend to occur.
  • the reaction pressure can be appropriately selected from a wide range from normal pressure to high pressure, but is preferably from normal pressure to about 5 MPa from an economical point of view.
  • various carbonyl compounds can be efficiently and stably obtained corresponding to various olefins as raw materials.
  • the resulting carbonyl compound can be separated and purified by a known method. Unreacted raw materials can be recovered and recycled for use in the reaction system.
  • the used catalyst can be recycled because the precipitation of palladium is suppressed, and the reactivity does not decrease even after repeated use, so that a carbonyl nitrile compound can be obtained efficiently over a long period of time.
  • a solid catalyst in which a catalyst component is immobilized on a carrier the catalyst can be more easily separated and recovered, and can be recycled.
  • the amount of metal carried in the catalyst (wt%) and the concentration of metal in the solution (wt ppm) shown below were analyzed by ICP emission spectrometry, and the yield of the carbonyl compound (mol%) was analyzed by gas chromatography. It was calculated from the results.
  • methylethyl ketone may be abbreviated as MEK.
  • Silica gel 100 (specific surface area (BET method) 270 to 370 m 2 / g, pore volume 0.9 to 1.2 ml / g, dried in 10 Om 1 toluene at 200 ° C for 4 hours, After adding 20 g of a particle diameter (0.063 to 0.2 mm) and aminopropyltriethoxysilane 5.Omol (1.086 g), the mixture was refluxed for 12 hours, and then ethanol produced by a distillation operation was removed. After cooling, the solid content was recovered by filtration, the solid content was washed with toluene, and then dried to obtain the carrier (A).
  • BET method specific surface area
  • Carrier (B) was obtained in the same manner as in Reference Example A, except that the amount of aminopropyltriethoxysilane was changed to 2.Ommol (0.415 g).
  • the carrier (B) 1 ( ⁇ and 2,6-pyridinedicarbaldehyde 1.Ommol (0.135 g) obtained in Reference Example B was added to 5 Oml of toluene, and the mixture was refluxed for 2 hours while dehydrating. After adding ethylenediamine 1.Ommol (0.060 g) and refluxing for 2 hours while dehydrating, further adding salicylaldehyde 1.0 mmo1 (0.122 g) and refluxing for 2 hours while dehydrating After cooling, the solid content was recovered by filtration, the solid content was washed with toluene, and the solid content was dried.5 Om 1 of toluene and dimethyldimethoxysilane 8.32 mmo 1 (1.
  • Table 1 shows the supported amounts of palladium and copper in the catalysts (I) to 0V).
  • catalyst (I) 0. 334 g in 1, moisture content 2 4. 8 wt% of Li Nbana Domo Li Buden acid (H 6 PV 3 Mo 9 0 4.) 0 42 mm o 1 (0.932 g) and 3.87 g of water were charged to the autoclave, and then 2 g of 1-butene (35.7 mmo 1) and oxygen were supplied to maintain the internal pressure at 1.0 MPa. did.
  • the reaction was carried out at a reaction temperature of 65 ° C for 4 hours while maintaining the internal pressure by supplying oxygen.
  • the reaction product after the reaction was extracted three times with 1 Oml of cyclohexane to obtain a product.
  • Example 1 was repeated except that the catalyst ( ⁇ ) was used instead of the catalyst (I).
  • the reaction was performed by the same operation.
  • Table 2 shows the results.
  • the yield of cyclopentenonone was 15.0%, and 3.8% of 2-cyclopentenone and 1.2% of 2-cyclopentenol were confirmed as by-products.
  • the amount of cyclopentene non-produced (TO: turnover value) based on palladium was 47.1 (mo1 / mo1-Pd). No palladium deposition on the inner wall of the reaction vessel after the reaction was observed.
  • Example 1 the return product extracted later remaining catalyst phase (containing H 6 PV 3 Mo 9 0 4 .
  • Aqueous Contact and solid catalyst) in Otokure part again 1 one butene in the same conditions as in Example 1
  • Preparation and re-reaction were performed, and this operation was repeated 10 times.
  • Table 3 shows the reaction results. No palladium deposition on the inner wall of the reaction vessel after the reaction was observed. Analysis of the palladium concentration of palladium remaining and H 6 PV 3 Mo 9 0 4Q aqueous solution in the catalyst, palladium remaining in the catalyst is 2. 4 wt%, palladium H 6 PV 3 Mo 9 0 40 aqueous solution The concentration was 110 ppm by weight. When these were combined, the total amount of recovered palladium was almost equivalent to the charged amount of palladium, and it was confirmed that the entire amount of charged palladium was recovered.
  • Example 10 Production of methyl ethyl ketone (7) Using the catalyst phase remaining after the product extraction in Example 3, a reaction was carried out by recycling the catalyst under the same conditions as in Example 3. Table 3 shows the results.
  • Example 4 Using the catalyst phase remaining after product extraction in Example 4, a reaction was carried out by recycling the catalyst under the same conditions as in Example 4. Table 3 shows the results.
  • the oxidation method of the present invention does not cause precipitation of the catalyst component, allows repeated use of the catalyst, and maintains high activity even in the recovered catalyst. Can be manufactured. Further, by using a solid catalyst in which a catalyst component is immobilized on a carrier, the catalyst can be more easily separated and recovered, and can be recycled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

カルボニル化合物の製造法
技術分野
本発明は、 カルポニル化合物の製造方法に関し、 更に詳しくは、 触媒成分の析 明
出による触媒の失活を防止し、 触媒活性を高いレベルに安定的に保持し、 カルボ ニル化合物を経済的かつ安定的に製造することができるカルポニル化合物の製造 方法に関する。
書 背景技術
アセトン、 メチルェチルケトン、 メチルイソプチルケトン、 シクロペンタノ ン、 シクロへキサノン等のカルポニル化合物は、 溶剤や化学原料として有用であ り、 その製造方法としては、 ォレフィンを分子状酸素により直接酸化する方法が 知られている。 代表的な酸化方法としては、 P d C 1 2 - C u C 1 2触媒を用い るヮッカー法がよく知られているが、 このヮッ力一法においては、 原料ォレフィ ンの炭素数が増加するにつれて反応速度が著しく低下すること、 内部ォレフィン の反応性が低いこと等の欠点があった。 特に、 炭素数が 4以上のォレフィンの酸 化においては、 反応速度が非常に遅く、 反応中にパラジウムの析出が起こり、 そ の結果、 反応性が低下し、 更に高価なパラジウム触媒のリサイクルができないと いう問題を有していた。 また、 塩素化合物を比較的多量に用いるため、 装置が腐 食したり、 塩素化物が副生する等の問題も有していた。 この様な問題を解決する ために、 近年、 触媒系や溶剤などを検討したヮッカー法の改良例が多数提案され ている。
パラジウム一塩化銅系触媒においては、 例えば、 有機リン化合物の存在下に炭 素数 4以上のォレフィンと水とを反応させてカルボニル化合物を製造する方法が 提案されている (特開平 7— 1 7 8 9 1号公報参照) 。 しかしながら、 この方法 においては、 パラジゥムの析出は抑制されるもののパラジウム当たりの活性が低 く、 さらに、 触媒再生のために別途触媒再生工程を要する等の問題があった。 ま た、 塩素化合物を用いることから、 装置の腐食や、 塩素化物の副生等の問題は解 決されていなかった。
また、 パラジウム化合物とポリオキソァ二オン系化合物からなる触媒系につい ても多数検討されており、 例えば、 酸素系溶媒または含硫黄系溶媒と水との混合 溶媒中でパラジウム一ポリオキソァ二オン系触媒と有機リン化合物の存在下、 ま たは鉄含有化合物の存在下に、 ォレフィンと酸素含有ガスとを反応させるカルボ ニル化合物の製造方法 (特開平 6— 4 8 9 7 4号公報および特開平 7— 1 4 9 6 8 5号公報参照) や、 パラジウム一へテロポリ酸系触媒の存在下、 溶剤としてァ ルコールを用いて酸素酸化により 3 , 3—ジメチルー 2—ブタノンを製造する方 法 (特公平 7— 5 9 5 2 9号公報参照) が開示されている。 これらの方法では、 溶媒量が少ないとパラジウム化合物の沈降が起こるため、 溶媒を大量に用いる必 要があり、 溶媒の保管、 循環のための設備を要したり、 大量の廃棄物が排出され る等の問題があった。
さらに、 触媒成分を担体に担持する方法も検討されており、 例えば、 パラジゥ ムー塩化銅系では、 パラジウムをシァノ含有ポリイミドに担持させる方法 ( 「マ クロモレキュルズ (Macromolecules) 」 , 1 9 9 6年, 第 2 9号, p . 4 1 6 4 - 4 1 6 5参照) が、 また、 パラジウム一へテロポリ酸系触媒では、 パラジウム 化合物とヘテロポリ酸を活性炭に担持した触媒を用いたカルポニル化合物の製法 ( 「テトラへドロン ·レターズ (Tet rahedron Let ters) 」 , 2 0 0 0年, 第 4 1号 ρ · 9 9— 1 0 2、 および特開平 1 1一 2 2 6 4 1 8号公報参照) が開示 されている。 しかしながら、 これらの担持触媒を用いた方法においてもパラジゥ ムの析出を充分に抑制することはできず、 触媒の再使用において問題を残してい る。 従って、 本発明の目的は、 触媒成分の析出による触媒活性の劣化を防止し、 触 媒活性および反応速度を高いレベルで長時間安定に維持でき、 これにより、 カル ポニル化合物を経済的かつ安定的に製造することができる力ルポ二ルイヒ合物の製 造方法を提供することにある。 発明の開示
力 ^かる実情において、 本発明者らは鋭意検討を重ねた結果、 パラジウム化合物 とへテロポリ酸からなる触媒系を用いてォレフィンの酸化反応を行うに当り、 反 応系にイミン化合物を存在させることにより、 パラジウムの析出を抑制でき、 パ ラジウム触媒のリサイクルが可能となること、 反応性が低下しないこと、 その結 果、 目的のカルポニル化合物を経済的かつ安定的に得ることが出来ることを見い 出し、 更に研究を行い、 本発明を完成させた。
即ち、 本発明は、 (a ) パラジウム化合物、 (b ) ヘテロポリ酸、 および ( c ) ィミン化合物の存在下に、 ォレフィンと分子状酸素とを反応させることを 特徴とするカルポニル化合物の製造方法を提供するものである。
また、 本発明は、 (a) パラジウム化合物および (b ) ィミン化合物を担体に 固定化した固体触媒を用いて、 上記反応を行うカルポニル化合物の製造方法を提 供するものである。
さらに本発明は、 少なくともパラジウム化合物およびイミン化合物を担体に固 定化した、 カルポニル化合物製造用の固体触媒を提供するものである。 発明を実施するための最良の形態
( a ) パラジウム化合物
パラジウム化合物としては、 容易にパラジウム (0 ) へと変換されうる 2価の パラジウム (Π ) を含有する化合物であれば特に制限がなく、 公知の各種化合物 を挙げることができる。 パラジウム化合物の具体例としては、 塩化パラジウム、 臭化パラジウム等のハロゲン化物;硫酸パラジウム、 硝酸パラジウム等の無機酸 塩;テトラクロ口パラジウム酸ナトリウム、 テトラブロモパラジウム酸ナトリウ ム、 テトラクロ口パラジウム酸カリウム、 テトラブロモパラジウム酸カリウム等 のテトラハロパラジウム酸塩;水酸化パラジウム、 酸化パラジウム等の無機系化 合物;酢酸パラジウム等の有機酸塩;ビス (ベンゾニトリル) ジクロロパラジゥ ム等の有機錯体等を挙げることができる。
これらのパラジウム化合物は、 無水物、 水和物、 溶媒和物の何れであってもよ く、 1種を単独で使用しても、 2種以上を併用してもよい。 また、 パラジウム化 合物の使用形態は、 水や有機溶媒等の溶液または懸濁液の状態、 あるいは、 固体 担体に担持した形態をとることができる。 担体に担持する場合は、 後述するよう に、 (c) のィミン化合物を固定化した担体上に担持することが好ましい。 パラジウム化合物の使用量は特に限定されないが、 触媒として有効な量であつ てなるベく少量使用する方がよく、 一般に、 原料ォレフィン 1モルに対するパラ ジゥムのモル比で 0. 0001〜0. 1、 特に 0. 0002〜0. 01の範囲が 好ましい。
(b) ヘテロポリ酸
ヘテロポリ酸は、 触媒サイクルにおいて還元されたパラジウム (0) をパラジ ゥム (H) へ再酸化する酸化剤として作用する。 従って、 還元されたパラジウム (0) をパラジウム (Π) へと容易に再酸ィ匕することができ、 かつ、 それによつ て生じた還元型へテロポリ酸自身が分子状酸素によつて容易に再酸化され得るも のであれば特に制限がなく、 下記一般式 (1) で表される公知の各種へテロポリ 酸を用いることができる。
He(XkMnOy … (1)
(式中、 中心原子 Xは P、 S i、 B、 C、 Al、 N等の周期表第 13〜15族の 元素を示し、 kは 1〜5の整数を示し、 Mは Mo、 W、 V、 Nb、 Ta、 C r等 の遷移金属から選ばれる 1種または 2種以上の遷移金属元素を示し、 nは 5〜 2 0の整数を示し、 yは 15〜80の整数を示し、 eは中心原子 X, 遷移金属 Mお よび k、 nおよび yの組み合わせによって決まる整数を示す。 )
好適なヘテロポリ酸の例として、 対応するポリオキソァニオン部分 (XMnOy) の組成を挙げると、 ΧΜ124。、 ΧΜ1()034、 ΧΜ12042、 ΧΜ„〇39、 ΧΜ10Ο40、 XM903 XM6024, X2M18056, X2M12042、 Χ2Μ17Οη, XMsOm等 が挙げられる。 ここで、 mは 15〜 80の整数を示す。 これらの中でも特に好ま しい組成は XM1204。であり、 また、 中心原子 Xとしては P、 S i、 Bが好まし く、 遷移金属 Mとしては Mo、 W、 Vが好ましい。 なお、 Mとして含まれる遷移 金属は 1種類に限定されるものではなく、 2種類以上が含まれていてもよい。 ポリオキソァ二オン組成が X M 12 O 4。で示されるヘテロポリ酸の具体例として は、 リ ンモリブデン酸 ( H 3 P M o i 204。) 、 リ ンタングステン酸 (H3PW12O40) 、 ゲイモリブデン酸 (H4S iMo12O40) 、 ケィタングステン酸 (H4S iW124。) 、 H4PVM0ll04。、 H5PV2M0l。〇4。、 H6PV3Mo9O40、 H7PV4Mo804。、 H9PV6Mo604。、 H„P V8Mo404。等のリンバナドモリブデ ン酸、 H4PVWU4。、 H5PV2W10O40, H6PV3W904。、 H7PV4W804。、 H9P V6W64Q、 HnP V8W44。等のリンバナドタングステン酸、 H3PMo 6WS04。等のリン夕ングストモリブデン酸等を挙げることができ、 これ らの中でも特に好ましいのは、 H6PV3Mo904。および H7PV4Mo804。である。 これらのヘテロポリ酸は、 無水物であっても、 水和物であってもよく、 1種単 独で使用しても、 2種以上を併用してもよい。 ヘテロポリ酸の使用量には特に制 限はないが、 通常、 パラジウム化合物に対して、 0. 5〜 500倍モルであり、 好ましくは 1〜 300倍モル、 特に 1〜 100倍モルである。 前記使用量が 0. 5倍モル未満であると、 触媒サイクルにおけるパラジゥム化合物の再酸化が不十 分となり、 触媒活性が維持できない場合がある。 また、 500倍モルを超えると 副生物が生成し易くなり、 経済的にも不利となる。
(c) ィミン化合物 ィミン化合物としては、 一 C R = N—結合をもつ化合物 (一般に、 シッフ塩基 といわれる) を挙げることができる。 本発明の触媒系においては、 この一 C R = N—結合の窒素が配位子として作用し、 前記パラジウム化合物と錯体を形成する ことにより、 パラジウムの触媒活性が高められるとともに、 パラジウムの析出が 抑止されると考えられる。
一般に、 —C R N—結合をもつシッフ塩基は、 アルデヒドまたはケトン等の 力ルポニル化合物と第一級ァミンとの縮合反応により得られる。 縮合反応に用い られる代表的なカルポニル化合物としては、 サリチルアルデヒド、 1ーヒドロキ シー 2—ナフトアルデヒド、 2—ヒドロキシー 1一ナフトアルデヒド等の芳香族 ヒドロキシアルデヒド類; 2—ヒドロキシプロピオンアルデヒド等の脂肪族ヒド ロキシアルデヒド類;ァセチルァセトン ( 2, 4一ペン夕ンジオン) 、 ビアセチ ル (2, 3一ブタンジオン) 等のジケトン類; 2 _ピリジンカルバルデヒド、 2 , 6—ピリジンジカルバルデヒド、 2—チォフェニンカルバルデヒド等の複素 環式カルバルデヒド類が挙げられる。 また、 第一級ァミンとしては、 メチルアミ ン、 ェチルァミン、 プロピルアミン、 プチルァミン、 ァニリン等のモノアミン 類;エチレンジァミン、 プロピレンジァミン、 1 , 3—プロパンジァミン、 1 , 4 _ブタンジァミン、 1 , 2—シクロへキサンジァミン等のジァミン類;ジェチ レントリアミン等のトリアミン類; 2—アミノエ夕ノール等のァミノアルコール 類; 2—ァミノフエノール;アミノ酸等が用いられる。
これらの化合物の縮合反応により得られるシッフ塩基の具体例としては、 N— サリチリデンメチルァミン、 N, N ' —ビス (サリチリデン) エチレンジアミ ン、 N, N ' —ビス (3 , 5—ジ— t e r t—プチルサリチリデン) —1 , 2— シクロへキサンジァミン、 N—サリチリデンァ二リン等の N—サリチリデンアミ ン誘導体; N, N, —ジメチルブタン一 2 , 3—ジィミン、 N, N, —ジー t e r t—ブチルブタン— 2, 3—ジィミン、 N, N ' —ジフエニルブタン一 2 , 3—ジィミン、 N, N ' 一ビス— (2, 6—ジメチル一フエニル) 一ブタン - 2 , 3—ジィミン、 N, N ' —ジメチルペンタン _ 2 , 4—ジィミン、 N, N ' —ジー t e r t—プチルペンタン— 2, 4—ジィミン、 N, N ' —ジフエ二 ルペンタンー2, 4ージィミン、 N, N ' —ビス一 (2 , 6—ジメチル一フエ二 ル) 一ペンタン一 2 , 4—ジィミン等の αまたは ;3—ジィミン類; N, N ' —ビ ス (2—ピリジリデン) エチレンジァミン、 2 , 6—ビス (N—メチルイミノメ チル) 2—ピリジン等の N—ピリジリデンアミン誘導体等が挙げられる。
これらのィミン化合物は、 1種単独で使用しても、 あるいは 2種以上を併用し てもよい。 また、 ィミン化合物は、 水や有機溶媒等の溶液または懸濁液の状態 で、 あるいは担体に担持した状態で使用することができるが、 担体に固定ィ匕して 使用することがより好ましい。 ィミン化合物の使用量には特に制限はないが、 通 常、 パラジウム化合物に対して約 1〜約 5 0倍モル、 好ましくは約 1〜 1 0倍モ ル用いる。 前記使用量が等モル未満であると、 パラジウムの析出抑止効果が不十 分となり触媒活性が維持できない場合がある。 また、 パラジウムに対して大過剰 量を使用しても効果に変化はなく、 経済的に不利となる。
ィミン化合物を担体に固定化する方法としては、 シラノールの水酸基を有する 固体担体を用い、 まず、 下記一般式 (2 ) で表されるアミノ基を含むアルコキシ シラン類を担体中に存在するシラノールの水酸基と反応させ、 この結合によって アミノアルコキシシラン類を担体に固定ィ匕し、 ついで、 導入されたァミノ基とケ トンまたはアルデヒドを縮合反応させることにより、 担体に固定化されたィミン 化合物を得る方法を挙げることができる。
NH2 (C H2)„S i R 'm(O R2) 3-m … ( 2 )
(式中、 nは 0〜3であり、 mは 0〜2であり、 R1および R2は同じであっても 異なっていてもよく、 各々独立して炭素数 1〜3のアルキル基を示す。' ) 一般式 ( 2 ) で表されるアミノアルコキシシラン類の例としては、 アミノジメ チルメトキシシラン、 アミノメチルジメチルイソプロボキシシラン、 アミノメチ ルトリエトキシシラン、 ァミノプロピルトリエトキシシラン、 ァミノプロビルト リメトキシシラン等が挙げられる。
固定化する担体としては、 シラノールの水酸基を有し、 反応条件において反応 混合物に不溶なものが好ましい。 このような担体としては、 シリカゲル;珪素の 複合酸化物、 例えばシリカアルミナ、 シリカチタニア等の金属複合酸化物ゃゼォ ライト等のアルミノゲイ酸塩等;珪素の層状化合物、 例えばモンモリ口ナイト、 雲母等の層状ケィ酸塩等が挙げられるが、 特に、 比表面積の大きさや取り扱いの 簡便さからシリ力ゲルが好ましい。
担体にアミノアルコキシシラン類を固定ィ匕する反応、 及び、 カルボニル化合物 とァミン類との縮合反応は、 溶媒の存在下に行うことができる。 溶媒としては、 常圧下での沸点が 5 0〜 1 5 0 °Cである有機溶媒が好ましく、 具体例として、 n 一へキサン、 シクロへキサン、 イソォク夕ン等の飽和炭化水素類;ジプロピルェ 一テル、 ジブチルエーテル、 テトラヒドロフラン、 ジォキサン等の鎖状または環 状エーテル類;ベンゼン、 トルエン、 キシレン等の芳香族炭化水素類を挙げるこ とができる。 これらの溶媒は 1種単独、 又は 2種以上の混合溶媒として用いるこ とができる。 これらの溶媒のなかでも、 反応条件の制御のしゃすさからべンゼ ン、 トルエン、 キシレン等の芳香族炭化水素類が好ましい。
例えば反応溶媒としてトルエンを用いる場合、 トルエン還流条件下、 2〜2 4 時間、 好ましくは 4:〜 1 2時間、 担体とアミノアルコキシシラン類を反応させ、 生成したアルコールを蒸留により除くことでアミノアルコキシシラン類を担体上 に固定化することができる。 また、 カルポニル化合物とァミン類の縮合反応は、 トルエン還流条件下、 1〜2 4時間、 好ましくは 2〜1 2時間、 脱水しながら還 流させることにより実施することができる。 縮合反応においては、 副生する水を 反応系から除去することで縮合反応が進行し、 反応が完結する。
担体へのィミン化合物の固定量は特に限定されないが、 通常担体 1 gに対して
0 . 0 1〜1ミリモル、 好ましくは 0 . 0 5〜1ミリモル程度である。
また、 ィミン化合物が固定化された担体において、 担体表面に残存するシラノ —ル基を下記一般式 ( 3 ) で表されるアルコキシシラン類で修飾する事により、 原料ォレフィンと触媒との親和性を改善することができる。
S i R'n, (O R2) 4.m … ( 3 )
(式中、 mは 0〜3であり、 R 1および R2は同じであっても異なっていてもよ く、 各々独立して炭素数 1〜3のアルキル基を示す。 )
一般式 (3 ) で表されるアルコキシシラン類の例としては、 ジメチルジメトキ シシラン、 ジメチルジイソプロボキシシラン、 メチルトリエトキシシラン、 プロ ピルトリエトキシシラン等が挙げられる。 シラノール残基の修飾方法は、 担体と アミノアルコキシシラン類との反応と同様の方法で行うことができる。
上記の方法によりイミン化合物を担体に固定化した場合、 反応溶液中のパラジ ゥム化合物は、 一 C R =N—結合の窒素を配位子として担体上のイミン化合物と 錯体を形成し、 担体上に強固に固定化されるため、 その析出抑制効果は非常に高 いものとなる。 パラジウム化合物と担体に固定化したィミン化合物との錯形成反 応は容易に進行するため、 反応に用いる際は、 とくに前処理を施さなくとも反応 系内で錯体が形成される。 しかしながら、 取り扱い上の利便性から、 反応に供す る前にパラジウム化合物を予め担体に担持しておくことがより好ましい。
前述したとおり、 パラジウム化合物と担体に固定化したィミン化合物との錯形 成反応は容易に進行するので、 パラジウム化合物を錯形成により担持する方法と しては、 適当な溶媒に該パラジウム化合物を溶解し、 その溶液中にイミン化合物 を固定ィ匕した担体を含浸し、 撹拌するだけでよい。 ここで用いる溶媒は、 使用す るパラジウム化合物により水、 アルコール類、 エーテル類、 脂肪族炭化水素類、 芳香族炭化水素類、 八ロゲン化炭化水素類等の有機溶媒のいずれかから適宜選択 することができる。 これらの溶媒は単独で用いても '良いし、 混合溶媒として用い ることも出来る。 パラジウム化合物としては、 溶媒に対する溶解性等の点から、 前記化合物の中でも特に酢酸パラジウム等の有機酸塩が好ましい。 反応は、 0〜 2 0 0 °C, 好ましくは室温〜 1 5 0 °Cの温度範囲で容易に進行する。 パラジウム化合物およびィミン化合物を担体に固定した固体触媒中のパラジゥ ム担持量は、 通常 0 . 0 1〜3 0重量%、 好ましくは 0 . 1〜 1 0重量%であ る。
( d ) 遷移金属化合物
本発明の触媒は、 前記 (a ) パラジウム化合物、 (b ) ヘテロポリ酸、 (c ) ィミン化合物に加えて、 (d ) 遷移金属化合物を添加することにより酸化反応が 促進される場合がある。 遷移金属元素としては、 C u、 F e、 C o , Mn、 N i 等が挙げられる。 これらを含む化合物としては、 塩化物、 ヨウ化物、 臭化物等の ハロゲン化物;硫酸塩、 硝酸塩等の無機酸塩;酢酸塩等の有機酸塩;ァセチルァ セトナ一ト等の有機錯体等が挙げられる。
これらの遷移金属化合物は、 無水物、 水和物、 溶媒和物の何れであってもよ く、 1種単独で使用しても、 2種以上を併用してもよい。 また、 遷移金属化合物 の使用形態は、 水や有機溶媒等の溶液または懸濁液の状態、 あるいは、 固体担体 に担持した形態をとることができる。 担体に担持する塲合は、 パラジウム化合物 の場合と同様に、 ィミン化合物を固定化した担体上に担持することが好ましい。 遷移金属化合物の使用量は特に限定されないが、 遷移金属化合物を溶液または 懸濁液の状態で用いる場合、 一般に、 パラジウム化合物 1モルに対して 2〜 3 0 0モル、 好ましくは 5〜1 0 0モル、 更に好ましくは 1 0〜 5 0モルである。 ま た、 遷移金属化合物を、 パラジウム化合物とともにィミン化合物を固定ィ匕した担 体上に担持する場合においても、 上記の比率で調製した溶液または懸濁液を用い て担持することが好ましい。 なお、 得られる固体触媒中の遷移金属化合物の担持 量は、 通常 0 . 0 1〜3 0重量%、 好ましくは 1〜1 0重量%である。
( e ) ォレフィン
酸化反応の原料として使用されるォレフィンは、 少なくとも 1個のォレフィン 性二重結合 (C = C) を有する化合物であれば特に制限はなく、 モノォレフィン および、 ジォレフィン等の複数のォレフィン性二重結合を有するォレフィンを用 いることができる。 前記ォレフィンは鎖状ォレフィンであっても環状ォレフィン であってもよく、 また、 そのォレフィン性二重結合は分子末端にあっても分子内 部にあってもよい。 前記ォレフィンの炭素数としては、 炭素数 2以上であれば特 に制限はないが、 通常、 炭素数 2〜1 2程度のォレフィンが好ましく、 特に、 炭 素数 4〜 8程度のォレフィンが好ましい。 炭素数が 1 2を超えるォレフィンは、 反応系に含まれる水への溶解度が著しく低いため、 十分な反応速度が得られない 場合がある。
前記鎖状ォレフィンは直鎖状または分岐状の何れのォレフィンであってもよ く、 具体的には、 エチレン、 プロピレン、 ブテン、 イソブテン、 ペンテン、 イソ ペンテン、 へキセン、 イソへキセン、 ネオへキセン、 ヘプテン、 イソヘプテン、 ォクテン、 イソォクテン、 ノネン、 イソノネン、 デセン、 イソデセン、 ゥンデセ ン、 ドデセン等の直鎖状又は分岐状モノォレフィン;ペンタジェン、 へキサジェ ン、 へブタジエン、 ォクタジェン、 デカジエン等の直鎖状または分岐状ジォレフ ィン等が挙げられる。 また、 前記環状ォレフィンは単環、 多環または縮合環式の 何れのォレフィンであってもよく、 具体例としては、 シクロペンテン、 シクロォ クテン、 シクロデセン、 シクロドデセン等の環状モノォレフィン;シクロペン夕 ジェン、 シクロへキサジェン、 シクロォク夕ジェン、 ジシクロペンタジェン等の 環状ジォレフィン、 ィンデン等の芳香環と縮合した環状化合物等が挙げられる。 更に、 前記鎖状ォレフィンにシクロアルキル基や芳香族基等が置換された化合 物や、 前記環状ォレフィンにアルキル基等が置換された化合物も用いることがで きる。 シクロアルキル基や芳香族基等を置換基として有する鎖状ォレフィンとし ては、 例えば、 スチレン、 α—メチルスチレン、 ]3—メチルスチレン等のスチレ ン骨格を有する化合物、 ビニルシクロへキサン、 ビニルシクロへキセン、 ァリル シクロへキサン等が挙げられる。 アルキル基等を置換基として有する環状ォレフ ィンとしてはメチルシクロへキセン、 ェチルシク口へキセン等が挙げられる。 これらのォレフィンは、 純品であつても 2種類以上の異性体の混合物であつて もよく、 例えば、 ブテンを原料としてメチルェチルケトンを製造する場合、 1一 ブテン、 c i s— 2—ブテン、 t r a n s— 2—ブテンのうちの 1種を単独で、 または 2種以上の混合物を原料ォレフィンとして用いることができる。 また、 上 記ォレフインに、 メタン、 ェタン、 プロパン、 n—ブタン等、 酸化反応に影響し ない飽和炭化水素類が共存していてもよい。
( f ) 酸化剤
ォレフィンの酸化反応に用いる酸化剤としては分子状酸素が好適である。 これ を含む酸化ガスとしては、 純粋な酸素ガスや空気のほか、 これらを窒素、 へリウ ム、 アルゴン、 メタン等の不活性ガスで希釈した混合ガスを用いることができ る。 分子状酸素の使用量は特に限定されないが、 ォレフィン 1モルに対して通常 1 - 1 0 0モル、 好ましくは 1〜 5 0モルの過剰量が使用される。
酸化反応
本発明の酸化反応は水の共存下に実施される。 水の使用量は特に限定されない が、 パラジウム 1モルに対して通常 1 0〜1 0 0 0 0モルの範囲である。
酸化反応は、 無溶媒で行うこともできるが、 例えば、 メタノール、 エタノール 等のアルコール類;ジメトキシェタン、 テトラヒドロフラン等の鎖状または環状 エーテル類;ベンゼン等の芳香族炭化水素類; n—オクタン、 デカン等の飽和炭 化水素類を溶媒として使用することもできる。 これらの溶媒は、 2種以上の混合 溶媒として用いてもよい。
酸化反応の反応方式としては、 特に制限はなく、 回分方式、 半回分方式、 半連 続方式、 連続流通方式、 あるいはこれらの組合せ等、 種々の方式が挙げられる。 具体的には、 触媒と水、 さらに溶媒を使用する場合は溶媒を混合して得られる触 媒液、 あるいはこれにォレフィンを加えた混合液を液相とする液相での回分方 式、 前記混合液に酸化ガスを流通させる半回分方式、 前記触媒液中へガス状ォレ フィンおよび酸ィ匕ガスを流通させる半連続方式、 前記触媒液とォレフィンと酸化 ガスとを同時に反応領域に流通させる連続流通方式等が挙げられる。 また、 担体 に固定化した触媒を用いる場合は、 スラリー法または固定床法等にこれらの反応 方式を適用することができる。
反応条件は、 用いる原料ォレフィンおよび反応方式により適宜選択される。 反 応温度としては、 通常、 0〜200°C、 好ましくは 30〜150°Cの温度範囲に 設定するのが適当である。 反応温度が、 上記の下限値未満であると反応速度が低 下することがあり、 上限値を超えると副反応が起こり易くなる。 反応圧力として は、 常圧〜高圧までの広い範囲の中から適宜に選定することができるが、 経済的 には、 常圧〜 5MP a程度が好ましい。
本発明によれば、 原料とする各種ォレフィンに対応して様々なカルボニル化合 物を効率よくかつ安定に得ることができる。 得られたカルポニル化合物は、 公知 の方法により分離 '精製することができる。 また、 未反応の原料は回収して反応 系にリサイクルして使用することもできる。 更に、 使用した触媒は、 パラジウム の析出が抑制されるのでリサイクル使用が可能であり、 繰り返しの使用によって も反応性が低下しないので、 長期にわたって安定してカルボ二ルイヒ合物を効率よ く得ることができる。 特に、 触媒成分を担体に固定化した固体触媒を用いること により、 触媒をより容易に分離 ·回収でき、 リサイクルすることができる。 実施例
次に、 実施例を挙げて本発明を更に説明するが、 本発明はこれら実施例に限定 されるものではない。 なお、 以下に示す触媒中の金属担持量 (w t %) および溶 液中の金属濃度 (wt ppm) は I CP発光分析法により、 カルポニル化合物 の収率 (モル%) はガスクロマトグラフ法により分析した結果から算出した。 ま た、 実施例中、 メチルェチルケトンを M E Kと略記する場合がある。
参考例 A:ァミノプロピルトリエトキシシラン修飾担体 (A) の調製
10 Om 1のトルエンに、 200°Cで 4時間乾燥させたシリカゲル 100 (比 表面積 (BET法) 270〜370m2/g、 孔体積 0. 9〜1. 2ml/g、 粒子径 0. 063〜0. 2 mm) 20 gとァミノプロピルトリエトキシシラン 5. Ommo l (1. 086 g) を加え、 12時間環流した後、 蒸留操作により 生成したエタノールを除去した。 放冷後、 濾過により固形分を回収し、 トルエン で固形分を洗浄した後乾燥することにより担体 (A) を得た。
参考例 B:ァミノプロピルトリエトキシシラン修飾担体 ( B ) の調製
参考例 Aにおいて、 ァミノプロピルトリエトキシシランの量を 2. Ommo l (0. 415 g) に変えた以外は同様の操作を行い、 担体 (B) を得た。
参考例 C:担体 (C) の調製
5 Omlのトルエンに、 参考例 Aで得られた担体 (A) 10 gと、 サリチルァ ルデヒド 2. 5mmo 1 (0. 305 g) を加え、 脱水しながら 2時間還流し た。 放冷後、 濾過により固形分を回収し、 トルエンで固形分を洗浄した後乾燥す ることにより、 ィミン化合物が固定された担体 (C) を得た。
参考例 D:担体 (D) の調製
5 Omlのトルエンに、 参考例 Bで得られた担体 (B) 10 gと、 ァセチルァ セトン 1. Ommo l (0. 100 g) を加え、 脱水しながら 2時間還流した。 放冷後、 濾過により固形分を回収し、 トルエンで固形分を洗浄した後乾燥するこ とによりイミン化合物が固定された担体 (D) を得た。
参考例 E:担体 (E) の調製
5 Omlのトルエンに、 参考例 Bで得られた担体 (B) 1 (^と2, 6-ピリジ ンジカルバルデヒド 1. Ommo l (0. 135 g) を加え、 脱水しながら 2時 間還流した。 その後、 エチレンジァミン 1. Ommo l (0. 060 g) を加 え、 脱水しながら 2時間還流した後に、 更に、 サリチルアルデヒド 1. 0 mmo 1 (0. 122 g) を加え脱水しながら 2時間還流した。 放冷後、 濾過に より固形分を回収し、 トルエンで固形分を洗浄した後乾燥させた。 この固形分 に、 5 Om 1のトルエンとジメチルジメトキシシラン 8. 32 mm o 1 (1. 0 g) を加え、 12時間還流した後、 蒸留操作により生成したメタノールを除去し た。 放冷後、 濾過により固形分を回収し、 トルエンで固形分を洗浄した後乾燥す ることにより、 ィミン化合物が固定された担体 (E) を得た。
製造例 1 :触媒 ( I ) の調製
5 Omlのエタノールに、 参考例 Cで得られた担体 (C) 2. O gと酢酸パラジ ゥム 0. 5mmo 1 (0. 112 g) を加え、 室温で 12時間攪拌した。 その 後、 酢酸銅 5. Ommo 1 (0. 998 g) を加え 2時間還流した。 放冷後、 濾 過により固形分を回収し、 エタノールで固形分を洗浄した後乾燥することにより 触媒 (I) を得た。 触媒中のパラジウム担持量は 2. 5wt%であった。 また、 銅担持量は 1. 9wt%であった。
製造例 2 :触媒 (Π) の調製
5 Omlのエタノールに、 参考例 Cで得られた担体 (C) 2. O gと酢酸パラジ ゥム 0. 5mmo 1 (0. 112 g) を加え、 室温で 12時間攪拌した。 放冷 後、 濾過により固形分を回収し、 エタノールで固形分を洗浄した後乾燥すること により触媒 (Π) を得た。 触媒中のパラジウム担持量は 2. 4wt%であった。 製造例 3 :触媒 (m) の調製
製造例 1において、 参考例 Cで得られた担体 (C) の代わりに担体 (D) を用 い、 酢酸パラジウムの量を 0. 2mmo 1 (0. 045 g) に変えて、 製造例 1 と同様の操作を行い、 触媒 (m) を得た。
製造例 4 :触媒 (IV) の調製
製造例 1において、 参考例 Cで得られた担体 (C) の代わりに担体 (E) を用 い、 酢酸パラジウムの量を 0. 2mmo 1 (0. 045 g) に変えて、 製造例 1 と同様の操作を行い、 触媒 (1\ を得た。
触媒 (I) 〜 0V) におけるパラジウム担持量および銅担持量を表 1に示す。 表 1
Figure imgf000018_0001
なお、 表中の略号の意味は以下の通りである。 APTES :ァミノプロピルト リエトキシシラン、 EDA:エチレンジァミン、 SAL:サリチルアルデヒド、 AC A:ァセチルアセトン、 PDA: 2, 6—ピリジンジカルバルデヒド 実施例 1 :メチルェチルケトンの製造 (1)
製造例 1で得られた触媒 (I) 0. 334 g (パラジウム 078mmo l を含む) 、 含水率 2 4. 8 重量% の リ ンバナ ドモ リ ブデン酸 (H6P V3Mo904。) 0. 42 mm o 1 ( 0. 932 g)、 水 3. 87 gをオート クレープに仕込み、 次いで 1—ブテン 2 g (35. 7mmo 1 ) と酸素を供給し て内圧を 1. 0 MP aに保持した。 酸素供給により内圧を保持したまま、 反応温 度 65°Cで 4時間反応させた。 反応後の反応生成液を 1 Omlのシクロへキサン で 3回抽出して生成物を得た。 メチルェチルケトンの収率は 14. 7%であり、 副生物は生成していなかった。 パラジウム基準のメチルェチルケトン生成量 (T 〇 :ターンオーバー値) は、 66. 9 (mo 1 Zmo 1— P d) であった。 ま た、 反応後の反応容器の内壁等へのパラジウムの析出は観察されなかった。 実施例 2 : メチルェチルケトンの製造 (2)
実施例 1において触媒 (I) の代わりに触媒 (Π) を用いた以外は実施例 1と 同様の操作により反応を行った。 結果を表 2に示す。
実施例 3 :メチルェチルケトンの製造 (3)
実施例 1において触媒 (I) の代わりに触媒 (ΠΙ) を用い、 H6PV3Mo904。 の量を 0. 17mmo 1とし、 水の量を 4. 45 gに変えた以外は実施例 1と同 様の操作により反応を行った。 結果を表 2に示す。
実施例 4 :メチルェチルケトンの製造 (4)
実施例 1において触媒 (I) の代わりに触媒 (IV) を用い、 H6PV3Mo940 の量を 0. 17mmo 1とし、 水の量を 4. 45 gに変えた以外は実施例 1と同 様の操作により反応を行った。 結果を表 2に示した。
実施例 5 :シクロペンタノンの製造
製造例 1で得られた触媒 (I) 0. 5 g (パラジウム 0. 117mmo lを含 む) と、 含水率 24. 8重量%のリンバナドモリブデン酸 (H6PV3Mo9O40) 0. 586 mmo 1 (1. 3 g)と、 水 4. O gとシクロペンテン 2. 5 g (36. 7 mmo 1) をオートクレープに仕込み、 酸素を供給して内圧を 0. 8 MP aに保持した。 酸素供給により内圧を保持したまま、 反応温度 65°Cで 8時 間反応させた。 反応後の反応生成液を 1 Omlのトルエンで 3回抽出して生成物 を得た。 その結果、 シクロペン夕ノン収率は 15. 0%であり、 副生物として 2 —シクロペンテノン 3. 8%、 2—シクロペンテノール 1. 2%を確認した。 パ ラジウム基準のシクロペン夕ノン生成量 (TO :ターンオーバー値) は、 47. 1 (mo 1/mo 1 -Pd) であった。 また、 反応後の反応容器の内壁等 へのパラジウムの析出は観察されなかった。
実施例 6 : 1一才クタノンの製造
原料ォレフィンとして 1ーォクテン 4. 1 g (36. 6 mm o 1 ) を用い、 実 施例 5と同様に反応を行った。 反応結果を表 2に示す。
実施例 7 :シクロォクタノンの製造
原料ォレフィンとしてシクロォクテン 4. 0 g (36. 4mmo 1 ) を用い、 実施例 5と同様に反応を行つた。 反応結果を表 2に示す。
表 2
Figure imgf000020_0001
実施例 8 :メチルェチルケトンの製造 (5)
実施例 1において、 生成物抽出後に残った触媒相 (H6PV3Mo904。水溶液お よび固体触媒を含む) をオートクレ一ブに戻し、 実施例 1と同じ条件で再び 1一 ブテンを仕込み、 再反応を行い、 この操作を 10回繰り返した。 反応成績を表 3 に示す。 また、 反応後の反応容器の内壁等へのパラジウムの析出は観察されなか つた。 触媒中のパラジウム残量および H6PV3Mo904Q水溶液中のパラジウム濃 度を分析したところ、 触媒中のパラジウム残量は 2. 4wt%、 H6PV3Mo90 40水溶液中のパラジウム濃度は 1 10重量 ppmであった。 これらを合わせる と、 回収されたパラジウムの総量はパラジウムの仕込量にほぼ相当しており、 仕 込んだパラジウムの全量が回収されたことが確認された。
実施例 9 :メチルェチルケトンの製造 (6)
実施例 2において生成物抽出後に残った触媒相を用い、 実施例 8と同様に触媒 のリサイクル使用による反応を行つた。 結果を表 3に示す。
実施例 10 :メチルェチルケトンの製造 (7) 実施例 3において生成物抽出後に残った触媒相を用い、 実施例 3と同じ条件で 触媒のリサイクル使用による反応を行つた。 結果を表 3に示す。
実施例 11 :メチルェチルケトンの製造 (8)
実施例 4において生成物抽出後に残った触媒相を用い、 実施例 4と同じ条件で 触媒のリサイクル使用による反応を行つた。 結果を表 3に示す。
比較例 1 :メチルェチルケトンの製造 (9)
P d C 12 0. 083 mmo 1 (0. 0 148 g) , H6P V3Mo9O40 0. 4 2 mm o 1 ( 0. 9 3 2 g)と、 C u C l 2 0. 8 3 mm o 1 (0. 142 g) と、 水 3. 87 gをオートクレープに仕込んだ。 次いで 35. 7mmo 1の 1ーブテンと酸素を供給し、 1. 0 MP aに保持して反応温度 6 5°Cで 4時間反応させた。 反応後、 10mlのシクロへキサンで 3回抽出し、 生 成物を得た後、 再び 1ーブテンを仕込み、 再反応を行い、 この操作を 10回繰り 返した。 反応成績を表 3に示す。 反応後の反応容器の内壁には、 全面にパラジゥ ムの析出が観察された。 触媒溶液を分析した結果、 触媒溶液中に残存するパラジ ゥムの濃度は 306 p pmであった。 これは、 仕込量の約 10 %にあたり、 約 90 %のパラジウムが析出していることが確認された。
表 3
Figure imgf000022_0001
産業上の利用可能性
以上の結果から、 本発明の酸化方法は触媒成分の析出がなく、 触媒の繰り返し 使用可能であり、 回収触媒においても高い活性が維持されるため、 力ルポニル化 合物を効率的かつ安定的に製造することができる。 更に、 触媒成分を担体に固定 化した固体触媒を用いることにより、 触媒をより容易に分離 ·回収でき、 リサイ クルすることができる。

Claims

請求の範囲
1. (a) パラジウム化合物、 (b) ヘテロポリ酸、 および (c) ィミン化合 物の存在下に、 ォレフィンと分子状酸素とを反応させることを特徴とするカルボ ニル化合物の製造方法。
2. (a) パラジウム化合物および (c) ィミン化合物を担体に固定ィ匕した固 体触媒を用いて反応を行う請求項 1に記載のカルポニル化合物の製造方法。
3. (c) ィミン化合物がシッフ塩基である請求項 1または 2に記載の力ルポ ニル化合物の製造方法。
4. (c) ィミン化合物が、 N—サリチリデンァミン誘導体、 ジィミン類およ び N—ピリジリデンアミン誘導体からなる群から選択された少なくとも 1種であ る請求項 1ないし 3のいずれか 1項記載のカルポニル化合物の製造方法。 '
5. 前記担体がシリカゲルである請求項 2〜 4のいずれか 1項記載の力ルポ二 ル化合物の製造方法。
6. 前記ォレフィンが炭素数 2〜12のォレフィンである請求項;!〜 5のいず れか 1項記載のカルポニル化合物の製造方法。
7. 遷移金属の共存下に反応を行う請求項 1〜 6のいずれか 1項記載のカルボ ニル化合物の製造方法。
8. 前記遷移金属が、 Cu、 Fe、 Co、 Mn及び N iからなる群から選択さ れた少なくとも 1種の元素である請求項 7記載のカルポニル化合物の製造方法。
9. パラジウム化合物およびィミン化合物を担体に固定化した、 カルボニル化 合物製造用の固体触媒。
10. 担体がシリ力ゲルである請求項 9に記載の固体触媒。
11. (a) パラジウム化合物、 (b) ヘテロポリ酸、 および (c) イミン化 合物の存在下に、 ブテンと分子状酸素とを反応させることを特徴とするメチルェ チルケトンの製造方法。
PCT/JP2002/012262 2002-11-25 2002-11-25 カルボニル化合物の製造法 WO2004048306A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002349706A AU2002349706A1 (en) 2002-11-25 2002-11-25 Process for producing carbonyl compound
PCT/JP2002/012262 WO2004048306A1 (ja) 2002-11-25 2002-11-25 カルボニル化合物の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/012262 WO2004048306A1 (ja) 2002-11-25 2002-11-25 カルボニル化合物の製造法

Publications (1)

Publication Number Publication Date
WO2004048306A1 true WO2004048306A1 (ja) 2004-06-10

Family

ID=32375597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012262 WO2004048306A1 (ja) 2002-11-25 2002-11-25 カルボニル化合物の製造法

Country Status (2)

Country Link
AU (1) AU2002349706A1 (ja)
WO (1) WO2004048306A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857180A1 (en) * 2005-02-28 2007-11-21 Nippon Sheet Glass Company Limited Article comprising fine noble metal particles carried thereon and method for preparation thereof
DE102010013204A1 (de) 2010-03-29 2011-09-29 Sumitomo Chemical Co. Ltd. Verfahren zur Herstellung eines cyclischen Ketons
CN103962181A (zh) * 2014-05-20 2014-08-06 武汉工程大学 杂多酸掺杂席夫碱大环双核锰配合物催化剂及其合成和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068866A1 (en) * 1981-07-01 1983-01-05 Toa Nenryo Kogyo Kabushiki Kaisha Method of manufacturing acetone or methyl ethyl ketone
JPH0691170A (ja) * 1992-09-10 1994-04-05 Nippon Petrochem Co Ltd パラジウム担持ヘテロポリ酸不溶性塩およびそれを用いる不飽和環状ケトンの製造方法
JPH07149685A (ja) * 1993-10-07 1995-06-13 Idemitsu Kosan Co Ltd カルボニル化合物の製造方法
EP0962440A1 (en) * 1998-06-01 1999-12-08 Daicel Chemical Industries, Ltd. Oxidation catalytic system and process for producing ketoisophorone using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068866A1 (en) * 1981-07-01 1983-01-05 Toa Nenryo Kogyo Kabushiki Kaisha Method of manufacturing acetone or methyl ethyl ketone
JPH0691170A (ja) * 1992-09-10 1994-04-05 Nippon Petrochem Co Ltd パラジウム担持ヘテロポリ酸不溶性塩およびそれを用いる不飽和環状ケトンの製造方法
JPH07149685A (ja) * 1993-10-07 1995-06-13 Idemitsu Kosan Co Ltd カルボニル化合物の製造方法
EP0962440A1 (en) * 1998-06-01 1999-12-08 Daicel Chemical Industries, Ltd. Oxidation catalytic system and process for producing ketoisophorone using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857180A1 (en) * 2005-02-28 2007-11-21 Nippon Sheet Glass Company Limited Article comprising fine noble metal particles carried thereon and method for preparation thereof
EP1857180A4 (en) * 2005-02-28 2009-01-21 Nippon Sheet Glass Co Ltd SUBJECT TO CASTED FINE PRECIOUS METAL PARTS AND ASSOCIATED METHOD OF MANUFACTURE
DE102010013204A1 (de) 2010-03-29 2011-09-29 Sumitomo Chemical Co. Ltd. Verfahren zur Herstellung eines cyclischen Ketons
CN103962181A (zh) * 2014-05-20 2014-08-06 武汉工程大学 杂多酸掺杂席夫碱大环双核锰配合物催化剂及其合成和应用
CN103962181B (zh) * 2014-05-20 2016-03-02 武汉工程大学 杂多酸掺杂席夫碱大环双核锰配合物催化剂及其合成和应用

Also Published As

Publication number Publication date
AU2002349706A1 (en) 2004-06-18

Similar Documents

Publication Publication Date Title
US20080254976A1 (en) Activated metathesis catalysts
EP0548974B1 (en) Process for the production of catalyst comprising noble metal supported on a base metal catalyst
JP5940053B2 (ja) 改良された混合金属酸化物アンモ酸化触媒
JP6726189B2 (ja) 有機還元剤による担持されたオレフィンメタセシス触媒の活性化
CN108570070A (zh) 用于制备三[3-(烷氧基甲硅烷基)丙基]异氰脲酸酯的方法
Xiang et al. In situ hydrogen from aqueous-methanol for nitroarene reduction and imine formation over an Au–Pd/Al 2 O 3 catalyst
Xu et al. Phosphovanadomolybdic acid catalyzed desulfurization–oxygenation of secondary and tertiary thioamides into amides using molecular oxygen as the terminal oxidant
Li et al. Polar hydrogen species mediated nitroarenes selective reduction to anilines over an [FeMo] S x catalyst
WO1999050215A1 (fr) Procede de production d'hinokitiol
WO2004048306A1 (ja) カルボニル化合物の製造法
CN108570069A (zh) 用于制备三[3-(烷氧基甲硅烷基)丙基]异氰脲酸酯的方法
HU180654B (en) Process for producing nitrozo-benzene
JP2001240561A (ja) 含酸素有機化合物製造用触媒および含酸素有機化合物の製造方法
US3526645A (en) Catalytic epoxidation of olefinic compounds
TW200948768A (en) Method for producing carbonyl compound
CN102850205A (zh) 一种生产1,2-环己二醇和己二酸的方法
JP4035611B2 (ja) シクロオクテンオキサイドの製造方法
JP4386675B2 (ja) タングステン種を用いる液相酸化反応
CN114733521B (zh) 一种双晶型载体的烷烃非氧化脱氢催化剂
US20200061587A1 (en) Metal powderdous catalyst for hydrogenation processes
JP6718247B2 (ja) アリルアルコール類の製造方法
JP7232459B2 (ja) 有機化合物のベンジル位の空気酸化方法及び空気酸化触媒
WO2024110633A1 (en) Oxidation of olefin into ketone
JP2005002027A (ja) 異種元素置換ヘテロポリオキソメタレート化合物
JP2003210993A (ja) 遷移金属錯体を固定化した酸化触媒及びこれを用いた炭化水素類の酸化方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP