WO2004047178A1 - 裏面入射型ホトダイオードアレイ、その製造方法及び半導体装置 - Google Patents

裏面入射型ホトダイオードアレイ、その製造方法及び半導体装置 Download PDF

Info

Publication number
WO2004047178A1
WO2004047178A1 PCT/JP2003/014676 JP0314676W WO2004047178A1 WO 2004047178 A1 WO2004047178 A1 WO 2004047178A1 JP 0314676 W JP0314676 W JP 0314676W WO 2004047178 A1 WO2004047178 A1 WO 2004047178A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
photodiode array
illuminated photodiode
semiconductor
array according
Prior art date
Application number
PCT/JP2003/014676
Other languages
English (en)
French (fr)
Inventor
Katsumi Shibayama
Masayuki Ishida
Takafumi Yokino
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to AU2003280857A priority Critical patent/AU2003280857A1/en
Priority to DE60336580T priority patent/DE60336580D1/de
Priority to JP2004553197A priority patent/JP4482455B2/ja
Priority to EP03772879A priority patent/EP1569275B1/en
Publication of WO2004047178A1 publication Critical patent/WO2004047178A1/ja
Priority to IL168681A priority patent/IL168681A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors

Definitions

  • the present invention relates to a back illuminated photodiode array, a method of manufacturing the same, and a semiconductor device such as a radiation detector including the back illuminated photodiode array.
  • a CT (computed tomography) device has a plurality of back-illuminated photodiode arrays.
  • a plurality of back-illuminated photodiode arrays are arranged, if the electronic circuit for the back-illuminated photodiode array is arranged on an extension of the thickness direction of the semiconductor substrate, the density of the back-illuminated photodiode array per unit area Can be increased.
  • a back-illuminated photodiode array includes a semiconductor substrate having a back surface functioning as a light incident surface, a plurality of pn junctions formed inside the semiconductor substrate, and electrodes formed on the surface of the semiconductor substrate. ing.
  • Carriers generated in the semiconductor substrate move to each pn junction, and are extracted outside via the electrode.
  • the distance between each: n junction and the light incident surface is large, carriers generated in the semiconductor substrate recombine in the process of moving to the pn junction and cannot be taken out as a signal. Therefore, it is preferable that the distance between the pn junction and the light incident surface be as small as possible.
  • FIG. 42 is a schematic diagram showing a cross-sectional configuration of a conventional back illuminated photodiode array.
  • This back-illuminated photodiode array is described, for example, in Japanese Patent Application Laid-Open No. Hei 7-333334.
  • This back-illuminated photodiode array uses an n-type semiconductor substrate.
  • the semiconductor device includes a prismatic p-type diffusion region 105 formed in a plate, and the p-type diffusion region 105 extends in a direction from the front surface to the back surface of the semiconductor substrate. Therefore, the interface (pn junction) between the p-type diffusion region 105 and the inside of the n-type layer 103 is close to the back surface (light incident surface) of the semiconductor substrate, and between the light incident surface Z pn junction. The distance becomes smaller. Disclosure of the invention
  • the p-type diffusion region 105 is formed by implanting impurities, the p-type impurity region 105 is formed uniformly to a thickness sufficient for obtaining sufficient sensitivity. It is difficult.
  • the back-illuminated photodiode array has a disadvantage that it is difficult to manufacture.
  • the present invention has been made in view of such a problem, and has been developed in consideration of a back-illuminated photodiode array that can be easily manufactured while maintaining high detection sensitivity, a method of manufacturing the same, and a radiation detector. It is an object to provide a semiconductor device.
  • a back illuminated photodiode array has a first surface having a light incident surface (back surface) and an opposite surface having a plurality of concave portions located on the opposite side of the light incident surface.
  • the semiconductor device includes a semiconductor substrate of a conductivity type (eg, n-type) and a plurality of semiconductor regions of a second conductivity type (eg,!) Spatially separated from each other at the bottom of the concave portion.
  • the semiconductor region forms a Pn junction with the semiconductor substrate.
  • the second conductivity type semiconductor region is provided at the bottom of the concave portion formed on the opposite surface, the gap between the light incident surface of the semiconductor substrate and the semiconductor region is provided.
  • the distance can be shortened.
  • recombination in the movement process of the carrier caused by the incidence of the light to be detected is suppressed, and the detection sensitivity of the back-illuminated photodiode array can be maintained high.
  • the recesses can be arranged in an array.
  • the region of the semiconductor substrate between the plurality of recesses forms a frame portion having a greater thickness than the recesses.
  • the opposite surface of the semiconductor substrate has an array of recesses Since each of the concave portions is formed in an array, each concave portion is surrounded by a semiconductor substrate (frame portion) thicker than the thickness of the semiconductor substrate in the concave portion. Due to the presence of this frame, the mechanical strength of the back-illuminated photodiode array can be made practically sufficient.
  • the semiconductor substrate may be formed of a single semiconductor substrate integrally formed. In this case, since a plurality of semiconductor substrates are not required, manufacturing is simplified.
  • the distance between the incident surface of the light to be detected and the semiconductor region of the second conductivity type, that is, the surface on which the photodiode exists is determined by the thickness of the first semiconductor substrate.
  • the thickness of the first semiconductor substrate can be reduced while maintaining the mechanical strength by the presence of the frame portion surrounding the concave portion, and the moving distance of the carrier generated inside the semiconductor substrate is shortened. Accordingly, since the recombination of carriers is suppressed, the detection sensitivity of the back illuminated photodiode array can be maintained high.
  • the mechanical strength of the back-illuminated photodiode array is not sufficient. Therefore, by bonding the second semiconductor substrate to the first semiconductor substrate and performing necessary and sufficient etching, the semiconductor region is exposed and the semiconductor region of the second conductivity type is separated from the second semiconductor substrate. By enclosing with a frame part, the mechanical strength of the back-illuminated photodiode array can be made practically sufficient. Further, since the thickness of the second conductivity type semiconductor region can be made smaller than the thickness of the above-described conventional semiconductor region, the diffusion depth can be small, and the second conductivity type semiconductor region can be reduced. It can be easily formed by thermal diffusion of two conductivity type impurities. Therefore, back-illuminated photodiode arrays can be manufactured more easily and more accurately than before. be able to.
  • Back-thinned photodiode array is less likely to break down. That is, since the frame portion has high mechanical strength, even when stress is applied to the electrode pad during connection (mounting) to the wiring board, the back-illuminated photodiode array is less likely to be broken.
  • a back-illuminated photodiode array is provided with an electrical insulating layer provided on the frame portion and a conductive layer provided on the electrical insulating layer for electrically connecting the second conductive type semiconductor region and the electrode pad.
  • This is a connection method further including a conductive member.
  • the electrical insulating layer maintains the conductive member and the underlying substrate in an insulated state, and the conductive member forms the electrode pad and the second conductive type.
  • W Read semiconductor area. In this case, it is not necessary to form electrode pads in four parts having low mechanical strength, and the bottom of the recess can be protected from mechanical damage.
  • the electric insulating layer preferably has a contact hole for connecting one end of the conductive member to the semiconductor region of the second conductivity type.
  • the conductive member extends from the electrode pad to the vicinity of the semiconductor region of the second conductivity type while being insulated from the substrate, and is connected to the semiconductor region through the contact hole.
  • a signal from the photodiode is transmitted from the second conductivity type semiconductor region to the electrode pad by a conductive member (for example, aluminum wiring or the like), and is output to the outside via the electrode pad.
  • the second conductivity type semiconductor region extends from the bottom to the side surface of the M portion. That is, the semiconductor region of the second conductivity type of the second conductivity type is provided to extend from the bottom to the boundary between the concave portion and the frame portion. In this case, the area extends by extending to the side surface of the concave portion. Therefore, the area for receiving the carriers generated inside the semiconductor substrate due to the incident light to be detected increases. That is, the detection sensitivity of the photodiode increases.
  • the second conductivity type semiconductor region is provided so as to extend to this boundary portion, unnecessary carriers can be trapped by the second conductivity type semiconductor region.
  • the concave portion having a low mechanical strength can be protected. And the process in the step of forming the conductive member is facilitated.
  • the semiconductor region of the second conductivity type extends from the bottom to the side of the concave portion to reach the top of the frame portion. Preferably, it extends to the surface. That is, the semiconductor region of the second conductivity type reaches a part of the frame portion.
  • the back illuminated photodiode array is provided on the frame portion, and has an electrical insulating layer having a contact hole facing the top surface thereof, and an electrode pad electrically connected to the semiconductor region via the contact hole.
  • an electrical insulating layer having a contact hole facing the top surface thereof, and an electrode pad electrically connected to the semiconductor region via the contact hole.
  • the semiconductor region and the electrode pad can be electrically connected on the top surface of the frame portion, it is not necessary to form the wiring on the bottom portion or the side wall of the concave portion. That is, since the wiring only needs to be formed on the frame portion, the wiring forming process can be easily performed.
  • the opening diameter of the concave portion is smaller at a deeper position of the concave portion.
  • the concave portion is formed so that the opening dimension is gradually reduced from the opposite surface side to the light incident surface side.
  • the side surface of the concave portion forms a slope that obliquely intersects the bottom. Therefore, the semiconductor region of the second conductivity type and the conductive member can be easily formed on the side surface of the concave portion.
  • the surfaces of the first semiconductor substrate and the second semiconductor substrate facing each other have different crystal plane orientations.
  • the etching rate when forming the recess Since it changes depending on the direction, the depth of the concave portion can be precisely controlled.
  • the semiconductor substrate has a different crystallographic orientation between the incident surface side and the opposite surface side at a predetermined depth from the opposite surface, and the concave portion allows the semiconductor substrate to be positioned from the opposite surface side. It is formed by etching until at least the plane where the crystal orientations intersect is exposed. In this case, when forming the concave portion, the etching can be completed on the surface having a different crystal orientation, and the depth of the concave portion can be easily managed.
  • a semiconductor device includes the above-described back-illuminated photodiode array, and a wiring substrate that supports the back-illuminated photodiode array, and the (wiring) substrate is provided with a back-illuminated photodiode array via an electrode pad. It is characterized by being electrically connected to
  • a semiconductor device such as a radiation detector according to the present invention includes a scintillator provided on a light incident surface side of a semiconductor substrate.
  • the scintillator is arranged on the incident surface side of the semiconductor substrate, the semiconductor substrate is mechanically reinforced, and the occurrence of warpage and distortion of the semiconductor substrate is suppressed.
  • the wiring board is electrically connected to the back illuminated photodiode array via an electrode pad provided on the frame portion. Fluorescence generated by the scintillator is converted into an electric signal by a photodiode array, and the electric signal is transmitted to a wiring board via an electrode pad.
  • the gap between the wiring substrate and the opposite surface of the semiconductor substrate is filled with resin or air.
  • a back illuminated photodiode When the gap between the wiring substrate and the opposite surface of the semiconductor substrate is an air layer, the heat insulation between the wiring substrate and the semiconductor substrate is improved, and the flow of heat from the wiring substrate to the semiconductor substrate is suppressed. it can.
  • a plurality of concave portions are arranged in an array by reducing the thickness of a surface of a semiconductor substrate of a first conductivity type opposite to an incident surface of light to be detected. And a step of forming a semiconductor region of the second conductivity type at the bottom of the concave portion.
  • the manufacturing method includes the following steps. Preferably, it is provided.
  • Such a manufacturing method includes a recess forming step of forming a recess by etching a recess corresponding region on the opposite surface of the second semiconductor substrate.
  • the semiconductor region of the second conductivity type is surrounded by the frame portion made of the second semiconductor substrate, and the mechanical strength of the back illuminated photodiode array becomes practically sufficient. Further, since the thickness of the second conductivity type semiconductor region can be made smaller than that of the conventional technology, the semiconductor region can be easily formed by thermal diffusion of the second conductivity type impurity and the like. The incident type photodiode array can be manufactured more easily than before.
  • the etching in the concave portion forming step is performed until the etching stop layer or the insulating layer interposed between the first and second semiconductor substrates is exposed, whereby the etching depth can be precisely controlled.
  • the etching can be completed by this etching stop layer, and control of this step can be performed. It will be easier.
  • the etching is performed at least until the etching stop layer is exposed.
  • etching can be completed using the insulating layer. Process control becomes easy.
  • the etching is performed at least until the insulating layer is exposed.
  • a semiconductor region of the second conductivity type is formed at the bottom of the recess.
  • the etching in the recess forming step is performed at least until the opposite surface of the first semiconductor substrate is exposed. It is characterized by being performed. In this case, since the etching rate changes depending on the plane orientation of the crystal, the etching depth can be precisely controlled.
  • the bonding step when the first semiconductor substrate and the second semiconductor substrate are bonded so that the crystal orientations of the second semiconductor substrate are different from each other, the second semiconductor substrate is etched to expose the semiconductor region.
  • the etching can be completed at the bonding surface (the surface having a different crystal orientation) between the first semiconductor substrate and the second semiconductor substrate, and the control of this step is facilitated.
  • the second semiconductor substrate has a different crystal orientation from the first semiconductor substrate and has a higher etching rate than the first semiconductor substrate.
  • the step of forming the semiconductor region of the second conductivity type can be performed before or after the formation of the concave portion. That is, the method of manufacturing a back illuminated photodiode array according to the present invention includes the steps of: adding an impurity to the bottom of the concave portion after the concave portion forming process, thereby forming a second conductive type semiconductor region; or And a pre-addition step of preliminarily adding an impurity on the opposite surface of the first semiconductor substrate.
  • the manufacturing method including the pre-addition step comprises: a first conductive type first semiconductor substrate in which a plurality of second conductive type semiconductor regions are arranged in an array on the surface opposite to the incident surface of the light to be detected. Preparing a plate, bonding a second semiconductor substrate of the first conductivity type to the opposite surface, and forming a region (recess-corresponding region) corresponding to the semiconductor region of the second conductivity type on the second semiconductor substrate. Etching to expose the semiconductor region.
  • the method of manufacturing a back-illuminated photodiode array may further include a step of forming the accumulation layer having a higher impurity concentration than the semiconductor substrate on the light incident surface side. In this case, the accumulation layer may be provided. Performs the functions described above.
  • FIG. 1 is a plan view of the back illuminated photodiode array of the first embodiment.
  • FIG. 2 is a schematic diagram showing a configuration of a cross section taken along the line II-II of FIG.
  • FIG. 3 is a schematic diagram showing a cross-sectional configuration of a first modification of the first embodiment.
  • FIG. 4 is a schematic diagram showing a cross-sectional configuration of a second modification of the first embodiment.
  • FIG. 5 is a process chart showing a method for manufacturing the back-illuminated photodiode array of the first embodiment.
  • FIG. 6 is a process chart showing a method for manufacturing the back-illuminated photodiode array of the first embodiment.
  • FIG. 7 is a process chart showing a method for manufacturing the back illuminated photodiode array of the first embodiment.
  • FIG. 8 is a process chart showing a method for manufacturing the back illuminated photodiode array of the first embodiment.
  • FIG. 9 is a process chart showing a method of manufacturing the back-illuminated photodiode array of the first embodiment.
  • FIG. 10 is a schematic diagram showing a cross-sectional configuration of a back illuminated photodiode array of the second embodiment.
  • FIG. 11 is a flowchart showing a method for manufacturing the back illuminated photodiode array of the second embodiment.
  • FIG. 12 is a process diagram showing a method for manufacturing the back illuminated photodiode array of the second embodiment.
  • FIG. 13 shows a method of manufacturing the back illuminated photodiode array of the second embodiment.
  • FIG. 15 is a process diagram showing a method for manufacturing the back illuminated photodiode array of the second embodiment.
  • FIG. 16 is a process diagram showing a method for manufacturing the back illuminated photodiode array of the second embodiment.
  • FIG. 17 is a process diagram showing a method for manufacturing the back illuminated photodiode array of the second embodiment.
  • FIG. 18 is a flow chart showing a method for manufacturing the back illuminated photodiode array of the second embodiment.
  • FIG. 20 is a view for explaining a method of manufacturing the back illuminated photodiode array according to the third embodiment.
  • FIG. 23 is a view for explaining a method of manufacturing the back-illuminated photodiode array according to the third embodiment.
  • FIG. 24 is a view for explaining a method of manufacturing the back illuminated photodiode array according to the third embodiment.
  • FIG. 25 is a view for explaining a method of manufacturing the back illuminated photodiode array according to the third embodiment.
  • FIG. 28 is a view for explaining a method of manufacturing the back illuminated photodiode array according to the fourth embodiment.
  • FIG. 29 is a view for explaining a method of manufacturing the back illuminated photodiode array according to the fourth embodiment.
  • FIG. 30 is a view for explaining a method of manufacturing the back illuminated photodiode array according to the fourth embodiment.
  • FIG. 32 is an illustration for explaining the method of manufacturing the back illuminated photodiode array according to the fourth embodiment.
  • FIG. 33 is a view illustrating a method for manufacturing the back illuminated photodiode array according to the fourth embodiment.
  • FIG. 34 shows a cross-sectional configuration of a back illuminated photodiode array according to the fifth embodiment.
  • FIG. 35 shows a cross-sectional configuration of a back illuminated photodiode array according to the sixth embodiment.
  • FIG. 36 is a schematic view showing a configuration of a cross section of the semiconductor device.
  • FIG. 37 is a schematic diagram showing a cross-sectional configuration of a first modified example of the semiconductor device.
  • FIG. 39 is a schematic diagram showing a cross-sectional configuration of the radiation detector.
  • FIG. 40 is a schematic diagram showing a cross-sectional configuration of the radiation detector.
  • FIG. 41 is a schematic diagram showing a cross-sectional configuration of the radiation detector.
  • Fig. 42 is a schematic diagram showing the cross-sectional configuration of a conventional back illuminated photodiode array. You.
  • FIG. 1 is a plan view of a back illuminated photodiode array 1 according to the first embodiment.
  • the back illuminated photodiode array 1 has a “light incident surface (back surface)” and an “opposite surface (front surface)” opposite to the light incident surface. Is shown from the opposite side.
  • the back illuminated photodiode array 1 includes an n-type semiconductor substrate 3.
  • the opposite surface of the semiconductor substrate 3 has a plurality of recesses 4 arranged in a regular array.
  • the peripheral region of each recess 4 in the semiconductor substrate 3 forms a frame portion 6, and these frame portions 6 maintain the mechanical strength of the semiconductor substrate 3.
  • a P ⁇ junction is provided at the bottom of each recess 4, a P ⁇ junction is provided.
  • an electrode pad (bump electrode) 13b electrically connected to each ⁇ junction is provided on each frame portion 6, an electrode pad (bump electrode) 13b electrically connected to each ⁇ junction is provided.
  • a pn junction (photodiode) 2 is formed at each bottom 4 a of each recess 4, and the photodiodes are spatially separated.
  • a plurality of photodiodes arranged in a two-dimensional manner constitute the back-illuminated photodiode array 1 as a whole.
  • An accumulation layer 8 is formed on the light incident surface IN side of the semiconductor substrate 3.
  • the accumulation layer 8 is formed by diffusing an n-type impurity into the semiconductor substrate 3 and has an impurity concentration in the range of 1 ⁇ 10 15 to 1 ⁇ 10 20 / cm 3 .
  • the n-type impurity concentration in the accumulation layer 8 is set higher than the impurity concentration of the n-type semiconductor substrate 3.
  • the thickness of the accumulation layer 8 can be set to, for example, about 0.1 to several ⁇ .
  • an anti-reflection (AR) film 9 for suppressing reflection of the detection light L is formed on the light incident surface IN side of the semiconductor substrate 3.
  • the AR film 9 covers the accumulation layer 8.
  • ap + -type impurity diffusion region 5 is formed on the other side OUT side of the semiconductor substrate 3.
  • the plurality of semiconductor regions 5 of the second conductivity type are spatially separated at each bottom 4 a of the recess 4 .
  • Each recess 4 has, for example, an opening dimension of at most lmm X lmm, and the opposite surface O
  • the aperture size is formed so as to gradually decrease from the UT side toward the light incident surface IN side.
  • the recess 4 has a side surface 4b.
  • the side surface 4b of the recess 4 is a slope, and these slopes form a truncated pyramid shape. Therefore, it becomes easy to form the semiconductor region 5 of the second conductivity type along the side surface 4 b of the concave portion 4 and to form a conductive member on the side surface 4 b.
  • each recess 4 is 2 ⁇ or more, and the interval between adjacent recesses 4 is, for example, about 1.5 mm.
  • a p + -type impurity diffusion region 5 is provided at the bottom 4 a of the plurality of recesses 4, and a p + -type (second conductivity type) impurity diffusion region 5 and an n-type (first conductivity type) impurity diffusion region 5 are provided.
  • the interface with the semiconductor substrate 3 forms a pn junction (photodiode) 2.
  • the impurity concentration in the p + type impurity diffusion region 5 is 1 ⁇ 10 15 to 1 ⁇ 10 2 ° Zcm 3 It is about.
  • the distance between the light incident surface IN of the semiconductor substrate 3 and the above-mentioned interface of the pn junction 2 provided at the bottom 4 a of the recess 4 is about 10 to 100 Aim.
  • the thickness of the frame 6 surrounding each recess 4 is greater than the thickness of the semiconductor substrate 3 at the bottom 4 a of each recess 4.
  • An n + -type separation region 7 for electrically separating the photodiodes from each other is provided in the frame portion 6.
  • the impurity concentration in the isolation region 7 is about 1 ⁇ 10 15 to 1 ⁇ 10 20 / cm 3 , and the depth of the isolation layer 7 is set to, for example, 1 to several / zm.
  • the p + -type impurity diffusion region 5, the n-type semiconductor substrate 3, and the n + -type accumulation layer 8 are sequentially located along the substrate thickness direction.
  • the n-type semiconductor substrate 3 and the n + -type isolation region 7 are electrically connected. Therefore, in order to apply a reverse bias voltage to the pn junction 2, a negative potential is applied to the p + -type impurity diffusion region 5, and the separation region 7 and the semiconductor substrate 3 such as Z or the accumulation layer 8 are connected. What is necessary is just to apply a positive potential to the n-type region having an electrical connection relationship. Note that the terms negative potential and positive potential are used to define a relative potential.
  • the semiconductor substrate 3 can be made to be an n-type with a low impurity concentration and the photodiode can function as a PIN photodiode. .
  • the function of the PIN photodiode is excellent in that the depletion layer spreads uniformly in the semiconductor substrate 3.
  • the opposite surface OUT of the semiconductor substrate 3 is a SiO 2 film (electric insulating layer) which is an insulating film.
  • An electrode pad 13 for outputting a signal from the photodiode to the outside is electrically insulated from the semiconductor substrate 3 on the frame 6, that is, provided via the Si 0 2 film 10. Have been.
  • the electrode pad 13 includes an under bump metal 13 (hereinafter referred to as UBM) 13 a and a bump electrode 13 b.
  • UBM under bump metal 13
  • An aluminum wiring 12 is formed on the SiO 2 film 10 provided on the opposite surface OUT of the semiconductor substrate 3.
  • S i ⁇ 2 film 10 is electrically connected to p + -type impurity diffusion region 5.
  • the aluminum distribution spring 12 and the semiconductor substrate 3 are electrically insulated.
  • a contact hole 11 is formed in a portion of the SiO 2 film 10 that covers the bottom 4 a of the recess 4.
  • One end of aluminum wiring 12 is electrically connected to p + -type impurity diffusion layer 5 through contact hole 11.
  • the aluminum wiring 12 is provided so as to extend over a portion of the SiO 2 film 10 that covers the bottom 4 a and the side surface 4 b of the recess 4.
  • the other end of the anode wiring 12 is provided with an electrode pad 13. Is electrically connected to
  • the aluminum wiring 12 as a conductive member electrically connects the p + -type impurity diffusion layer 5 and the electrode pad 13.
  • an electrode for applying a bias potential to the n-type semiconductor substrate 3 is also formed on the frame 6.
  • the back illuminated photodiode array 1 of the first embodiment is provided with the p + -type impurity diffusion region 5 at the bottom 4 a of the concave portion 4 formed on the opposite surface OUT side.
  • the distance between the light incident surface IN of the semiconductor substrate 3 of the mold and the interface of the pn junction 2 of the photodiode can be shortened (for example, 10 to 100 111). As a result, recombination in the movement process of carriers generated by the incidence of the detection light L is suppressed, and the detection sensitivity of the back-illuminated photodiode array 1 can be maintained high.
  • the detection sensitivity of the back illuminated photodiode array 1 can be kept high.
  • the back-illuminated photodiode array 1 has a practically acceptable detection sensitivity without providing the accumulation layer 8.
  • FIG. 3 is a partial cross-sectional view of the back illuminated photodiode array 1 showing a first modification of the back illuminated photodiode array 1 according to the first embodiment.
  • the separation region 7 is provided over the entire top surface 6 b of the frame portion 6.
  • FIG. 4 is a partial cross-sectional view of the back illuminated photodiode array 1 showing a second modification of the back illuminated photodiode array 1 according to the first embodiment.
  • the back illuminated photodiode array 1 according to the second modification is different from the back illuminated photodiode array 1 shown in FIG. 3 only in that the area of the p + -type impurity diffusion region 5 is larger. And the other configurations are the same.
  • the p + -type impurity diffusion region 5 extends from the bottom 4 a of the recess 4 to the side surface 4 b of the recess 4 so as not to overlap with the isolation region 7. That is, the impurity diffusion region 5 is also formed under the side surface (slope) 4 b of the concave portion 4.
  • the area of the p + -type impurity diffusion region 5 can be increased, so that the area receiving carriers generated by the incidence of the detection light L increases, and the detection sensitivity of the photodiode increases. Can be increased. Further, similarly to the first modification, the separation region 7 traps unnecessary carriers, so that generation of dark current can be suppressed.
  • FIG. 5 shows a method of manufacturing the back-illuminated photodiode array of the first embodiment. First, a first semiconductor substrate 3a is prepared.
  • the conductivity type of the first semiconductor substrate 3a is n-type, and the impurity concentration is 1 ⁇ 10 12 to 1 ⁇ .
  • the thickness is about 10 15 / cm 3 , and the thickness is about 10 to 200 ⁇ .
  • p- type impurities such as polon are diffused on the surface OUT of the first semiconductor substrate 3a opposite to the surface on which the light L to be detected is incident, so that the p + -type impurity diffusion regions 5 are arrayed. Formed.
  • a plurality of pn junctions 2 arranged in an array, that is, a region to be a photodiode is formed on the surface opposite to the surface on which the detection light L is incident.
  • the thickness of the p + -type impurity diffusion region 5 is Can be made thinner than the conventional technology, so that the p + -type impurity diffusion region 5 can be formed by thermal diffusion of the type impurity, etc., and the back-illuminated photodiode array 1 is easier than before. Can be manufactured.
  • the conductivity type of the second semiconductor substrate 3 b is n-type, and the impurity concentration is
  • the impurity concentration range of 3a (about 1 ⁇ 10 12 to 1 ⁇ 10 15 / cm 3 ), and the thickness is about 2 to 500 ⁇ m.
  • the impurity concentrations of the semiconductor substrates 3a and 3b are basically the same.
  • FIG. 6 shows a back-illuminated photodiode array after bonding the semiconductor substrate.
  • an n-type semiconductor substrate 3 including the first semiconductor substrate 3a and the second semiconductor substrate 3b is obtained.
  • the n-type semiconductor substrate 3b can be formed to a predetermined thickness by grinding or polishing after bonding. That is, the thickness of the semiconductor substrate 3 b is set to a thickness such that the deep portion of the concave portion can reach the impurity diffusion region 5 at the time of etching when forming the concave portion.
  • the recess 4 is formed by the above-described etching, and the p + -type impurity diffusion region 5 is exposed. This etching step will be described in detail.
  • a plasma CVD chemical vapor deposition
  • low-pressure CVD low-pressure CVD
  • An etching mask SiNx film is formed by D) or the like.
  • a region of the semiconductor substrate 3 facing the SiNJ huge impurity diffusion region 5 is removed by etching to form an opening.
  • the second semiconductor substrate 3b in the opening of the etching mask is brought into contact with an etching solution to etch the second semiconductor substrate 3b.
  • an alkaline etchant such as potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) can be used.
  • KOH potassium hydroxide
  • TMAH tetramethylammonium hydroxide
  • the concave portions 4 whose opening dimensions gradually decrease from the opposite surface OUT to the light incident surface IN are formed in an array.
  • a p + -type impurity diffusion region 5 is exposed at the bottom 4 a of each recess 4, and a space between the recesses 4 is defined by a frame 6.
  • a covering element such as an isolation region 7 and an insulating film is formed.
  • FIG. 8 shows a back-illuminated photodiode array in which the separation region 7 and the covering element are formed.
  • an isolation region 7 for electrically isolating the photodiodes is formed by introducing an n-type impurity such as phosphorus into a predetermined portion of the top surface 6b of the frame 6 by thermal diffusion, ion implantation, or the like. I do.
  • an accumulation layer is formed by diffusing an n- type impurity such as arsenic to a depth of about 0.1 to several / m so as to cover the entire light incident surface IN.
  • the semiconductor substrate The third light incident surface on IN, to form the AR film 9 composed of S I_ ⁇ 2 film.
  • FIG. 9 shows a back-illuminated photodiode array on which aluminum wiring 12 is formed.
  • a contact hole 11 is formed by removing a part of the SiO 2 film 10 present on the bottom 4 a of the recess 4. Subsequently, a step of forming an aluminum wiring 12 on the SiO 2 film 10 provided on the surface side is performed.
  • the conductive member is not limited to the aluminum wiring 12, but may be a wiring made of a conductive material, for example, a copper wiring, a gold wiring, or the like.
  • FIG. 2 shows a back-illuminated photodiode array on which electrode pads are formed.
  • a passivation film 14 is formed on the opposite surface OUT of the n-type semiconductor substrate 3.
  • the Passhibeshiyon film 14, S i N x film and S i 0 2 film formed by plasma CVD or may be a composite material including polyimide Ya acrylic, epoxy, urethane Nya these.
  • the passivation film 14 in the region where the electrode pad 13 of the frame portion 6 is formed is removed, and the electrode pad 13 is connected to the aluminum wiring 12. That is, the UBM 13a is formed on the aluminum wiring 12 formed on the top surface 6b (see FIG. 9) of the frame 6, and the bump electrode 13b is formed on the UBM13a.
  • UBM13a is the bonding property between aluminum wiring 12 and bump electrode 13b. It is provided to improve. In other words, when solder is used as the bump electrode 13b, the aluminum wiring 12 and the bump electrode 13b are bonded via the UBM 13a because the solderability to the aluminum wiring 12 is poor.
  • UBM13a forms Ni-Au by an electroless plating method, but can also be obtained by forming Ti-Pt-Au or Cr-Au by a lift-off method.
  • the bump electrode 13b is obtained by forming solder on the UBM 13a portion by a solder pole mounting method or a printing method and reflowing.
  • the bump electrodes 13 are not limited to solder, and may be conductive bumps including metals such as gold bumps, nickel bumps, copper bumps, and conductive resin bumps.
  • FIG. 10 is a schematic diagram showing a cross-sectional configuration of a back illuminated photodiode array 20 of the second embodiment.
  • the p + -type impurity diffusion region 5 is formed by utilizing the side surface 4 b of the concave portion 4, from the bottom portion 4 a of the four portion 4 to the side surface 4 b of the concave portion 4.
  • the difference from the first embodiment is that the frame 6 extends to the edge 6 a of the frame 6. That is, in the back-illuminated photodiode array 20, the p + -type impurity diffusion region 5 extends from the bottom 4a to a part of the top surface 6b of the frame 6 and is generated in the semiconductor substrate 3. The area that receives a carrier that has been destroyed has increased.
  • the front surface is covered with the SiO 2 film 10.
  • the S I_ ⁇ 2 film 1 0 that covers the p + -type impurity diffusion area 5, contact holes reaching the impurity diffusion region 5 of the p + -type 1 1 is provided.
  • An aluminum wiring 12 as a conductive member for outputting a signal from the photodiode to the outside is provided in the frame portion 6, and is electrically connected to the p + -type impurity diffusion region 5 through the contact hole 11. Connected I have.
  • the aluminum wiring 12 is interposed between the electrode pad 13 provided on the frame 6 and the p + -type impurity diffusion region 5.
  • the other configuration of the back illuminated photodiode array of the second embodiment is the same as the configuration of the first embodiment.
  • the back illuminated photodiode array 20 of the second embodiment is provided with the p + -type impurity diffusion region 5 in the region including the bottom 4 a of the concave portion 4 formed on the front surface side.
  • the distance between the light incident surface of the n-type semiconductor substrate 3 on which the detection light L is incident and the ⁇ junction 2 (interface) of the photodiode can be shortened. As a result, recombination in the process of moving the carrier caused by the incidence of the detection light L is suppressed, and the detection sensitivity of the back-illuminated photodiode array 20 can be maintained high.
  • the cut with be thinner than the thickness of the p + -type impurity diffusion region 5 of the prior art, the p + -type impurity diffusion region 5 it is possible to form by thermal diffusion of p-type impurity
  • the back illuminated photodiode array 20 can be manufactured more easily than before.
  • a plurality of recesses 4 are formed in an array on the surface of the n-type semiconductor substrate 3, and the recesses 4 have a thickness greater than the thickness of the n-type semiconductor substrate 3 at the bottom 4 a of the recess 4.
  • Frame portion 6 Due to the presence of the frame 6, the mechanical strength of the back-illuminated photodiode array 20 can be made sufficiently strong for practical use.
  • the accumulation layer 8 when the detection light L (especially light having a short wavelength) is incident on the n-type semiconductor substrate 3 from the rear surface side, the carrier generated near the rear surface is changed to the surface or the AR coating.
  • the back-illuminated photodiode array 1 has a practically acceptable detection sensitivity even without the accumulation layer 8.
  • the photo- The diodes are electrically separated from each other, and crosstalk between the photodiodes is reduced.
  • the back-illuminated photodiode array 1 has a practically acceptable detection sensitivity without providing the separation region 7.
  • the contact hole 11 is formed on the top surface 6b of the frame portion 6. Can be installed. As a result, it is not necessary to form the aluminum wiring 12 for electrically connecting the p + -type impurity diffusion region 5 and the electrode pad 13 on the bottom 4 a and the side wall 4 b of the recess 4, and the Since it is sufficient to form only aluminum, the process of forming aluminum distribution and wire 12 becomes easy.
  • the P + -type impurity diffusion region 5 is formed to extend to the edge 6a of the frame 6 having low mechanical strength.
  • unnecessary carriers due to these stresses are formed at the edge of the frame 6 that is easily subjected to mechanical stress through the electrode pads 13 during mounting and the frame 6 that is easily subjected to stress during etching.
  • unnecessary carriers can be trapped and ⁇ current generation can be suppressed.
  • FIG. 11 shows a semiconductor substrate
  • FIG. 13 shows a semiconductor substrate on which the isolation region 7 and the gettering layer 22 are formed.
  • an opening is formed by photolithography on the opposite side OUT side of the ⁇ -type semiconductor substrate 3 in the SiO 2 film 21 a (see FIG. 12) corresponding to the isolation region 7.
  • the removal of S i 0 2 film 2 lb see Figure 12).
  • the impurity concentration is 1 ⁇ 10 15 to 1 ⁇ 10 2 by thermally diffusing phosphorus into a plurality of regions on the opposite surface OUT of the n-type semiconductor substrate 3 and the entire surface of the light incident surface IN.
  • An isolation region 7 of about Zcm 3 and a gettering layer 22 are formed. Further, by thermally oxidizing the semiconductor substrate 3, the opposite surface OUT on the separation region 7 side and the light incident surface on the gettering layer 22 side are formed.
  • the S i 0 2 films 23 a and 23 b respectively covering 1 N and 1 N are formed.
  • a diffusion wafer in which the .n-type impurity concentration is diffused in advance to about 1 ⁇ 10 15 to 1 ⁇ 10 2 ° Zcm 3 may be used.
  • FIG. 14 shows a semiconductor substrate on which the impurity diffusion regions 24 are formed.
  • a p-type impurity such as boron is diffused on the opposite side OUT side of the n-type semiconductor substrate 3 to form a p + -type impurity diffusion region 24.
  • the p + type impurity diffusion region 24 is formed adjacent to the isolation region 7 at a predetermined interval.
  • the impurity diffusion region 24 is etched in the step of forming the concave portion 4 (see FIG. 16) which will be performed later, and the p + existing from the side surface 4 b of the round portion 4 to the region including the edge portion 6 a of the frame portion 6 is formed. It becomes the impurity diffusion region 5 of the type.
  • the manufacturing process will be described specifically.
  • an opening for forming an impurity diffusion layer is formed in the SiO 2 film 23a (see FIG. 13) by performing a photolithography process.
  • a p + -type impurity diffusion region 24 having an impurity concentration of about 1 ⁇ 10 15 to 1 ⁇ 10 20 / cm 3 is formed.
  • the SiO 2 O 25 b and the gettering layer 22 are removed.
  • FIG. 15 shows a semiconductor substrate on which the SiN x films 26a and 26b are formed.
  • Si NJ 2626a and 26b are formed by LP-CVD. Then, the SiN x film 26a and the SiO 2 film 25a in the region where the concave portion 4 is to be formed in a later step are removed by an etching process (removal step).
  • FIG. 16 shows the semiconductor substrate in which the recess 4 is formed.
  • alkali etching using an aqueous solution of potassium hydroxide or the like is applied to the surface area on the OUT side opposite to the semiconductor substrate 3 from which the SiN x film 26 a and the SiO 2 film 25 a have been removed.
  • the concave portion 4 and the frame portion 6 are formed by performing anisotropic etching by the method.
  • the etching depth by anisotropic etching is set to at least 2 ⁇ or more.
  • a recess 4 whose opening dimension is gradually reduced from the opposite surface OUT side to the light incident surface IN side is formed on the opposite surface side of the semiconductor substrate 3.
  • unnecessary carriers are likely to be generated due to the stress at the frame 6 that is easily subjected to mechanical stress during mounting and at the edge of the frame 6 that is easily subjected to stress during etching. .
  • the p + -type impurity diffusion region 5 is provided to extend from the bottom 4 a to the edge 6 a between the recess 4 and the frame 6, unnecessary carriers are trapped and dark current generation is suppressed. can do.
  • the thickness of the p + -type impurity diffusion region 5 can be made smaller than that of the conventional technology, the p + -type impurity diffusion region 5 can be formed by thermal diffusion of the p-type impurity.
  • the back-illuminated photodiode array 20 (see FIG. 10) can be manufactured more easily than before.
  • FIG. 17 shows the semiconductor substrate 3 on which the accumulation layer 8 is formed.
  • the SiN x films 26 a and 26 b (see FIG. 16) used as the etching mask were removed, and an oxide film was formed on the light incident surface IN side of the n-type semiconductor substrate 3. Thereafter, arsenic is ion-implanted into the semiconductor substrate 3 through the oxide film, and subsequently, the semiconductor substrate 3 is thermally oxidized. Through these steps, the accumulation layer 8 is formed.
  • the light incident surface is thermally oxidized again to form an AR composed of Si 2.
  • the film 9 is formed.
  • FIG. 18 shows the semiconductor substrate on which the aluminum wiring 12 is formed.
  • the p + type is located on the top surface 6 b of the frame 6 in the Si 0 2 film 27 a.
  • a contact hole 11 reaching the impurity diffusion region 5 is formed.
  • the aluminum wiring 12 is patterned on the frame 6.
  • the thickness is small, it is not necessary to putter jungle on the concave portion 4 having low mechanical strength, so that stress is reduced.
  • the back-illuminated photodiode array according to the third embodiment is the same as the back-illuminated photodiode array 1 according to the first or second embodiment, except that the semiconductor substrate 3 comprises two semiconductor substrates 3a and 3b.
  • an n-type first semiconductor substrate 3a having a crystal plane (1 1 1) is prepared, and an n-type second semiconductor substrate 3b having a crystal plane (1 00) or (1 10) is converted to an n-type first semiconductor substrate. Assume that it is bonded to the semiconductor substrate 3a.
  • the n-type second semiconductor substrate 3 b is alkali-etched.
  • the (111) plane is formed on the n-type first semiconductor substrate 3a because the etching rate is much slower than the (100) plane and the (110) plane. Etching can be easily stopped at the stage where the formed p + -type impurity diffusion region 5 is exposed.
  • the crystal orientation of the n-type semiconductor substrate 3 intersects between the front surface side and the back surface side, and the recess 4 is n
  • the backside illuminated photodiode array 1 can be obtained by etching the semiconductor substrate 3 and then performing the same steps.
  • the two semiconductor substrates 3a and 3b in the first embodiment have different plane orientations.
  • one semiconductor substrate 3 in the second embodiment is formed of two semiconductors, and in the method of manufacturing the back illuminated photodiode array 20 in the second embodiment, the first A silicon bonding (bonding) substrate as described in the embodiment is used.
  • the manufacturing method of the third embodiment basically, it is possible to easily control the etching depth as in the first embodiment, but the semiconductor device having a different plane orientation from the first embodiment can be used.
  • the semiconductor substrate on which the PN junction 2 has been formed is bonded in advance, whereas when a semiconductor substrate having a different plane orientation is applied to the second embodiment, the recess is formed by etching after bonding both substrates. Then, a step of forming the p + -type impurity diffusion layer 5 is performed.
  • SOI Silicon icon on insulator
  • SOS silicon on silicon
  • the method of manufacturing the back-illuminated photodiode array is simply a method of manufacturing the semiconductor substrates 3a and 3b. Just by changing the plane orientation is there.
  • FIGS. a method of manufacturing a back illuminated photodiode array when the semiconductor substrate in the back illuminated photodiode array of the second embodiment is composed of two semiconductor substrates as described above is described in FIGS. This will be described using 6. In this manufacturing method, the following steps (1) to (9) are sequentially performed.
  • FIG. 19 is a view for explaining a method of manufacturing the back illuminated photodiode array according to the third embodiment.
  • first and second semiconductor substrates 3a and 3b are prepared.
  • the first semiconductor substrate 3 a is an n-type (1 1 1) silicon substrate
  • the second semiconductor substrate 3 b is an n-type (1
  • a silicon substrate That is, the semiconductor substrates 3a and 3b have different crystal plane orientations of the surfaces facing each other.
  • FIG. 20 shows a semiconductor substrate 3 including the semiconductor substrates 3a and 3b.
  • the first and second semiconductor substrates 3a and 3b After activating the opposing surfaces of the first and second semiconductor substrates 3a and 3b, the first and second semiconductor substrates 3a and 3b are heated as necessary, and pressure is applied in the thickness direction thereof. And bonding these together.
  • the surface activity can be performed by irradiating the opposite surface of the semiconductor substrate with ions under vacuum.
  • the substrate surface is etched in a vacuum with a beam of an inert gas such as argon (Ar)
  • the surface layer of the substrate can be removed.
  • the new surface of the semiconductor substrate from which the surface layer has been removed becomes an active state having a strong bonding force with other atoms.
  • This method is called Surface Activated Bonding (SAB).
  • FIG. 21 shows a semiconductor substrate on which an isolation region and an impurity diffusion region are formed.
  • an n-type isolation region 7 is formed on the opposite side OUT side of the semiconductor substrate 3.
  • the removal of S I_ ⁇ 2 film in the light incident surface IN side of the n-type semiconductor substrate 3, the removal of S I_ ⁇ 2 film.
  • phosphorus is thermally diffused on the opposite side OUT side of the n-type semiconductor substrate 3 to form an isolation region 7 having an impurity concentration of about 1 ⁇ 10 15 to 1 ⁇ 10 2 ° Zcm 3 .
  • an SiO 2 film covering the substrate opposite surface OUT on the isolation region 7 side is formed.
  • the isolation region 7 electrically isolates the adjacent impurity diffusion regions 24. That is, a p-type impurity such as boron is diffused on the opposite side OUT side of the n-type semiconductor substrate 3 to form a p + -type impurity diffusion region 24.
  • the p + -type impurity diffusion region 24 is formed adjacent to the isolation region 7 at a predetermined interval. Thereafter, annealing or thermal diffusion is performed to form a SiO 2 film 25a on the opposite surface OUT.
  • FIG. 22 shows a semiconductor substrate on which the SiN x films 26a and 26b are formed.
  • SiN x films 26 a and 26 b are formed on the opposite surface OUT and the light incident surface IN of the semiconductor substrate 3 by LP-CVD. Then, the SiN x film 26a and the SiO 2 film 25a in the region where the concave portion 4 is to be formed in a later step are removed by an etching process (removal step).
  • FIG. 23 shows a semiconductor substrate in which the recess 4 is formed.
  • FIG. 24 shows a semiconductor substrate on which the impurity diffusion region 5 is formed.
  • a p-type impurity such as boron is added to the bottom 4a and the side surface 4b of the concave portion 4 exposed by the anisotropic etching by using a thermal diffusion method or an ion implantation method.
  • the p + -type impurity diffusion region 5 is formed from the force of the edge 6 a of the frame 6 to the bottom 4 a of the recess 4 via the side surface 4 b of the recess 4.
  • the added impurities are activated by annealing at the appropriate time.
  • a region to be a photodiode is formed by this step. Since the p + -type impurity diffusion region 5 is provided to extend from the bottom 4 a to the edge 6 a between the recess 4 and the frame 6, unnecessary carriers are trapped and dark current generation is suppressed. Can be.
  • the SiN x films 26 a and 26 b (see FIG. 22) used as the etching mask have been removed, but after that, the oxidation proceeds on the light incident surface IN side of the n-type semiconductor substrate 3.
  • arsenic is ion-implanted into the semiconductor substrate 3 through the oxide film, and then the semiconductor substrate 3 is thermally oxidized. Through these steps, the accumulation layer 8 is formed.
  • the SiO 2 film formed on the rear surface of the n-type semiconductor substrate 3 is once removed by thermal oxidation, and then the light incident surface IN is thermally oxidized again to form the AR film 9.
  • FIG. 26 shows a semiconductor substrate on which aluminum wiring 12 is formed.
  • a contact hole 11 reaching the p + -type impurity diffusion region 5 is formed in a portion existing at the bottom 4 a of the SiO 2 film 27 a. Subsequently, the aluminum wiring 12 is patterned on the frame 6.
  • a passivation film 14 is formed on the opposite surface of the n-type semiconductor substrate 3 except for a region where the UBM 13a is to be formed. .
  • UBM 13 a is formed on the aluminum wiring 12 provided in the frame portion 6, and the bump electrode 13 b is formed on the UBM 13 a, whereby the back-illuminated type photomask according to the third embodiment is formed.
  • a contact hole may be provided in the insulating film 27a located on the top surface of the frame portion 6, and the impurity diffusion region 5 and the bump electrode 13b may be connected via the contact hole.
  • the depth of the recess is controlled by the insulating layer (etching stop layer) instead of controlling the depth of the recess formed by etching based on the difference in the substrate plane orientation described above.
  • the SiO 2 film serving as an insulating layer is not subjected to alkali etching.
  • the etching stop layer is resistant to a specific etchant (for example, an aqueous KOH solution).
  • a specific etchant for example, an aqueous KOH solution.
  • the concave portion 4 is formed from the front surface side. It can be formed by etching the semiconductor substrate 3, and after removing the SiO 2 film at the bottom 4a, the same process is performed to obtain the back illuminated photodiode array 1. .
  • the semiconductor substrate in the back illuminated photodiode array of the first embodiment is composed of two semiconductor substrates as described above, and a method of manufacturing a back illuminated photodiode array in which an insulating layer is interposed therebetween is simply described. However, only an insulating layer is interposed on the bonding surface of one semiconductor substrate.
  • FIG. 27 is a view for explaining a method of manufacturing the back illuminated photodiode array according to the fourth embodiment.
  • the first and second semiconductor substrates 3a and 3b are prepared.
  • the first semiconductor substrate 3 a is an n-type (100) silicon substrate, and the second semiconductor substrate 3 b is an n-type (1
  • a silicon substrate 0 0
  • An insulating layer (etching stop layer) E is formed on the opposite surface of one semiconductor substrate 3a.
  • the semiconductor substrates 3a and 3b of these semiconductor substrates may have different crystal plane orientations of the surfaces facing each other.
  • FIG. 28 shows a semiconductor substrate 3 including the semiconductor substrates 3a and 3b.
  • the first and second semiconductor substrates 3a and 3b After activating the opposing surfaces of the first and second semiconductor substrates 3a and 3b, the first and second semiconductor substrates 3a and 3b are activated. While heating the semiconductor substrates 3a and 3b as required, a pressure is applied in the thickness direction thereof, and they are bonded and joined. The method of this surface activity is as described above.
  • FIG. 30 shows a semiconductor substrate on which the SiN x films 26a and 26b are formed. This step is the same as the step of forming the isolation region and the impurity diffusion region in the third embodiment, and includes a step of partially removing the SiN x film 26a and the SiO 2 film 25a.
  • FIG. 31 shows the semiconductor substrate in which the recess 4 is formed.
  • the recess 4 and the frame 6 are formed by performing anisotropic etching. Note that all of the exposed SiNx films 26a and 26b are removed. This etching stops when the surface of the insulating layer E is exposed.
  • the etching depth by the anisotropic etching is set to the thickness of the second semiconductor substrate 3b (at least 2 ⁇ or more).
  • a concave portion 4 whose opening dimension is gradually reduced from the opposite surface OUT side to the light incident surface IN side is formed on the opposite surface OUT side of the semiconductor substrate 3.
  • FIG. 32 shows a semiconductor substrate on which the impurity diffusion region 5 and the accumulation layer 8 are formed.
  • the insulating layer E on the bottom 4a of the recess 4 is removed by etching.
  • a p-type impurity such as boron is added to the bottom 4a and the side surface 4b of the recess 4 exposed by the anisotropic etching by a diffusion method or an ion implantation method.
  • the added impurities are annealed at the appropriate time.
  • ap + -type impurity diffusion region 5 is formed from the edge 6 a of the frame 6 to the bottom 4 a of the recess 4 via the side surface 4 b of the four part 4.
  • the p + -type impurity diffusion layer 5 is provided so as to extend from the bottom 4 a to the edge 6 a between the recess 4 and the frame 6, thereby trapping unnecessary carriers and suppressing dark current generation. be able to.
  • the SiN x films 26 a and 26 b (see FIG. 30) used as the etching mask have been removed, but an oxide film is formed on the light incident surface side of the n-type semiconductor substrate 3.
  • arsenic is ion-implanted into the semiconductor substrate 3 through the buffer oxide film, and then the semiconductor substrate 3 is thermally oxidized to form the accumulation layer 8 and the AR film 9.
  • This accumulation layer forming step is the same as the accumulation layer forming step in the third embodiment.
  • FIG. 33 shows a semiconductor substrate on which aluminum wiring 12 is formed. This wiring forming step is the same as the wiring forming step in the third embodiment.
  • FIG. 2 shows a back illuminated photodiode array with the description of the insulating layer E omitted.
  • a contact hole is also provided on the insulating film 27 a located on the top surface of the frame portion 6 because of the insulating layer, and the contact hole is provided through the contact hole. It is necessary to connect the impurity diffusion region 5 and the bump electrode 13b.
  • the impurity diffusion region 5 may be formed only at the bottom of the recess 4. In that case, the contact hole on the top surface of the frame 6 becomes unnecessary.
  • the n-side electrode can be taken out by forming a contact hole in the insulating film 27a at the position of the bump electrode 7 shown in FIG. .
  • FIG. 34 shows a cross-sectional configuration of a back illuminated photodiode array according to the fifth embodiment.
  • the first and second semiconductor substrates 3a and 3b are bonded via a bonding surface J, and the third embodiment described with reference to FIGS.
  • the area of the impurity diffusion region 5 is smaller than that of the photodiode according to the embodiment.
  • the impurity diffusion region 5 is formed only at the bottom 4 a of the recess 4.
  • the present invention may have such a configuration.
  • FIG. 35 shows a cross-sectional configuration of a back illuminated photodiode array according to the sixth embodiment. Show.
  • the first and second semiconductor substrates 3a and 3b are attached via an etching stop layer (insulating layer) E, and FIG. 27 to FIG.
  • the area of the impurity diffusion layer 5 is smaller than that of the photodiode according to the fourth embodiment described above. That is, in this example, the impurity diffusion layer 5 is formed only at the bottom of the recess 4.
  • the present invention may be of course configured as such.
  • the semiconductor substrate a semiconductor substrate formed by joining two semiconductor substrates whose crystal orientations intersect, a semiconductor substrate formed by joining two semiconductor substrates via an etching stop layer, or A semiconductor substrate formed by joining two semiconductor substrates via an insulating layer can be used.
  • the etching depth can be easily controlled.
  • the recess may be formed after the semiconductor substrate on which the PN junction 2 has been formed in advance, and the PN junction may be formed after the recess is formed as in the second embodiment. 2 may be formed.
  • FIG. 36 is a schematic view showing a configuration of a cross section of the semiconductor device 30.
  • the gap S between the opposite surface of the n-type semiconductor substrate 3 and the mounting wiring board K is an air layer.
  • connection between the bump electrode 13 b and the wiring board side electrode pad 31 of the mounting wiring board K is flip-chip bonding, and the bump electrode 13 b used in this case is a solder bump, a gold bump, or nickel.
  • Bumps, copper bumps, conductive resin bumps Any metal-containing conductive bump can be employed.
  • the gap S is an air layer, the heat insulation between the mounting wiring board K and the n-type semiconductor substrate 3 can be improved.
  • a signal processing circuit 51 or the like may be provided on a surface of the mounting wiring board that is not connected to the n-type semiconductor substrate 3 (see FIG. 41), and the signal processing circuit 51 emits the signal processing circuit 51.
  • the heat reaches the p + -type impurity diffusion region 5 (photodiode) of the n-type semiconductor substrate 3 via the mounting wiring board K, and may deteriorate the S / N ratio of the photodiode.
  • the gap S is an air layer as in this embodiment, the flow of heat from the mounting wiring board K into the p + -type impurity diffusion region 5 (photodiode) can be minimized.
  • the / N ratio is improved, and the generation of dark current can be suppressed.
  • FIG. 37 shows a first modification of the semiconductor device.
  • the gap S between the mounting wiring board K and the n-type semiconductor substrate 3 includes an underfill resin 3 made of epoxy, silicone resin, urethane, acrylic, or a composite material containing them. 2 are filled.
  • the resin By filling the resin into the gap S in this manner, the n-type semiconductor substrate 3 is reinforced, and is bonded to the mounting wiring board K with excellent mechanical strength. In other words, according to the powerful configuration, it is possible to suppress the occurrence of warpage and distortion of the semiconductor substrate 3.
  • anisotropic conductive film ACF
  • anisotropic conductive paste method ACP
  • non-conductive you may use the adhesion by a strike (NCP) method.
  • FIG. 38 shows a second modification of the semiconductor device.
  • the connection between the ⁇ -type semiconductor substrate 3 and the mounting wiring board K (the connection between the bump electrode 13 b and the wiring board electrode pad 31) is covered with the underfill resin 32.
  • the space inside the gap S is an air layer.
  • connection between the n-type semiconductor substrate 3 and the mounting wiring board K is reinforced by the underfill resin 32, so that the strength of this connection can be improved.
  • the gap S is an air layer, the flow of heat from the mounting wiring board K to the p + -type impurity diffusion region 5 (photodiode) can be minimized.
  • a scintillator 41 that emits light upon incidence of radiation is bonded to the light incident surface IN of the back-illuminated photodiode array 20 of the second embodiment.
  • the radiation detector 40 of the fourth embodiment can be formed. can get.
  • the scintillator 41 generally has a higher mechanical strength because it is thicker than the n-type semiconductor substrate 3.
  • the scintillator 41 Capturing and suppressing warpage and distortion of n-type silicon substrate Can be.
  • the back surface of the n-type semiconductor substrate 3 is flat, so that the coupling resin 42 can be easily applied.
  • the scintillator 41 is bonded, It is possible to reduce the possibility that air bubbles and the like are mixed in the bonding surface.
  • the radiation detector of the present embodiment can also be obtained by growing the scintillator 41 on the light incident surface of the n-type semiconductor substrate 3.
  • FIG. 40 shows a cross-sectional configuration of another radiation detector 50 as a semiconductor device.
  • the radiation detector 50 is configured such that a scintillator 41 that emits light upon incidence of radiation is joined to the light incident surface IN side of the back illuminated photodiode array 20 of the second embodiment.
  • a mounting wiring board K to be supported is provided, and the mounting wiring board K is connected to the back-illuminated photodiode array 20 via bump electrodes 13 b provided on a frame 6 existing on the surface of the n-type semiconductor substrate 3. It is connected.
  • the scintillator 41 emits light when the detected light L such as X-rays enters.
  • the fluorescent light from the scintillator 41 enters the n-type semiconductor substrate 3 from the light incident surface side.
  • Carriers are generated in the n-type semiconductor substrate 3 according to the incidence of light.
  • the generated carriers are detected by a photodiode formed between the p + -type impurity diffusion region 5 and the n-type semiconductor substrate 3.
  • the detected signal is output to the mounting wiring board K via the bump electrodes 13 b provided on the frame 6. Since the scintillator 41 is attached to the light detection surface of the n-type semiconductor substrate 3, the radiation detector 50 has excellent mechanical strength. Furthermore, since an air layer is provided in the gap S between the mounting wiring board K and the n-type semiconductor substrate 3, the flow of heat from the mounting wiring board K to the p + -type impurity diffusion region 5 (photodiode) is minimized. Can be minimized.
  • the gap S may be filled with an underfill resin 32 (see FIG. 37).
  • the connection between the bump electrode 13b and the mounting wiring board K can be covered with an underfill resin (see FIG. 38). According to these configurations, the back-illuminated photodiode The mechanical strength of the array 20 can be improved.
  • FIG. 41 is a schematic diagram showing a cross-sectional configuration of still another radiation detector 60 as a semiconductor device.
  • the radiation detector 60 differs from the radiation detector 50 only in that a signal processing circuit 51 and a signal extraction unit 52 are provided.
  • the signal processing circuit 51 is provided on a surface of the mounting wiring board K that is not connected to the n-type semiconductor substrate 3 and is connected to the mounting wiring board K by flip chip connection or wire connection. Further, the signal extraction section 52 may be a pin type, a lead frame, a flexible wiring board, or the like.
  • the radiation detector 60 has excellent mechanical strength because the scintillator 41 is attached to the light incident surface of the n-type semiconductor substrate 3. Further, since an air layer is provided in the gap S between the mounting wiring board K and the n-type semiconductor substrate 3, the heat generated in the signal processing circuit 51 and the p + -type impurity through the mounting wiring board K Inflow to diffusion zone 5 (photodiode) can be minimized.
  • a back-illuminated photodiode array that can be easily manufactured while maintaining high detection sensitivity, a method for manufacturing the same, a semiconductor device, and a radiation detector can be obtained.
  • the back illuminated photodiode array includes the semiconductor substrate 3 made of the semiconductor of the first conductivity type, and a plurality of semiconductor substrates 3 are provided on the surface OUT of the semiconductor substrate 3 opposite to the incident surface IN of the light to be detected.
  • bottom 4 second conductivity type semiconductor region 5 made of a semiconductor of a second conductivity type in a is formed, Hotoda Iodo are arranged in an array.
  • the present invention can be used for a back-illuminated photodiode array, a method for manufacturing the same, and a semiconductor device such as a radiation detector including the back-illuminated photodiode array.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 第1導電型の半導体からなる半導体基板3を備え、当該半導体基板3における被検出光Lの入射面の反対面側に複数のホトダイオードが形成された裏面入射型ホトダイオードアレイ1であって、半導体基板3の反対面側には、複数の凹部4がアレイ状に配列して形成されており、複数の凹部4の底部4aに第2導電型の半導体からなる第2導電型の半導体層5が形成されることにより、ホトダイオードがアレイ状に配列している。

Description

明細書
裏面入射型ホトダイォードアレイ、 その製造方法及び半導体装置
技術分野
本発明は、 裏面入射型ホトダイオードアレイ、 その製造方法、 当該裏面入射型 ホトダイオードアレイを備えた放射線検出器等の半導体装置に関する。
背景技術
C T (computed tomography) 装置は、複数の裏面入射型ホトダイオードアレイ を備えている。 複数の裏面入射型ホトダイオードアレイを並べる場合に、 裏面入 射型ホトダイォードアレイ用の電子回路を半導体基板の厚み方向の延長線上に配 置させると、 単位面積当たりの裏面入射型ホトダイオードアレイの密度を増加さ せることができる。
すなわち、 C T用裏面入射型ホトダイオードアレイを実装する際には、 3次元 方向への実装が必要である。 このように、 3次元実装を行う場合、 被検出光の入 射する面の反対側より出力信号を出力する必要がある。
裏面入射型ホトダイオードアレイは、 光入射面として機能する裏面を有する半 導体基板と、 半導体基板の内部に形成された複数の p n接合部と、 半導体基板の 表面上に形成された電極とを有している。
半導体基板内で発生したキャリアは、 各 p n接合部に移動し、 電極を介して外 部に取り出される。ここで、各: n接合部と光入射面との,間の距離が大きい場合、 半導体基板内で発生したキャリアは、 p n接合部までの移動過程で再結合し、 信 号として取り出せなくなる。したがって、 p n接合部と光入射面との間の距離は、 可能な限り小さい方が好ましい。
図 4 2は、 従来の裏面入射型ホトダイォードアレイの断面構成を示す概略図で ある。
この裏面入射型ホトダイオードアレイは、 例えば、 特開平 7— 3 3 3 3 4 8号 公報に記載されている。 この裏面入射型ホトダイオードアレイは、 n型半導体基 板内に形成された角柱状の p型拡散領域 1 0 5を備えており、 この p型拡散領域 1 0 5は、 半導体基板の表面から裏面に向かう方向に延びている。 したがって、 p型拡散領域 1 0 5と n型層 1 0 3内との界面 (p n接合部) は、 半導体基板の 裏面(光入射面)に近づいており、光入射面 Z p n接合部間の距離は小さくなる。 発明の開示
し力 しながら、 この 型拡散領域 1 0 5は、 不純物を注入することにより形成 されているため、 充分な感度が得られるための厚さにまで p型不純物領域 1 0 5 を均一に形成するのは困難である。
このように、 上記裏面入射型ホトダイォードアレイは製造が困難であるという 欠点がある。
本発明は、 このような問題点に鑑みなされたものであり、 高い検出感度を維持 しつつ、 容易に製造することが可能な裏面入射型ホトダイオードアレイ、 その製 造方法、 及び放射線検出器等の半導体装置を提供することを目的とする。
上述の課題を解決するため、本発明に係る裏面入射型ホトダイォードアレイは、 光入射面(裏面)、及び、光入射面の反対側に位置し複数の凹部を有する反対面を 有する第 1導電型 (例えば n型) の半導体基板と、 凹部の底部毎に空間的に離隔 した複数の第 2導電型 (例えば!)型) の半導体領域とを備えている。 また、 半導 体領域は、 半導体基板と共に P n接合を構成する。
本発明に係る裏面入射型ホトダイォードアレイでは、 反対面に形成された凹部 の底部に第 2導電型の半導体領域を設けているので、 半導体基板の光入射面と半 導体領域との間の距離を短くすることができる。 これにより、 被検出光の入射に より発生するキヤリァの移動過程における再結合が抑制され、 裏面入射型ホトダ ィオードアレイの検出感度を高く維持することができる。 なお、 凹部はアレイ状 に配置することができる。
また、 複数の凹部間の半導体基板の領域は、 凹部よりも大きな厚みを有する枠 部を構成している。 換言すれば、 半導体基板の反対面には、 複数の凹部がアレイ 状に配列して形成されているので、 各凹部は、 凹部の半導体基板の厚みよりも厚 い半導体基板 (枠部) により囲まれることとなる。 この枠部の存在により、 裏面 入射型ホトダイォードアレイの機械的強度を実用上充分なものとすることができ る。
また、 半導体基板は、 一体的に形成された単一の半導体基板からなることとし てもよく、 この場合には、 複数の半導体基板を必要としないため、 製造が簡単に なる。
しかしながら、 半導体基板が、 光入射面を有する第 1の半導体基板と、 第 1の 半導体基板に貼り合わせられ凹部の側壁を有する第 2の半導体基板とを備える場 合には、 第 1及び第 2半導体基板の選択によって凹部の形成を精密に行うことが できる。
すなわち、 被検出光の入射面と第 2導電型の半導体領域、 すなわちホトダイォ ードが存在する面との距離は、 第 1の半導体基板の厚さによって決定される。 凹 部が囲まれる枠部の存在によって、 第 1の半導体基板の厚さは機械的強度を保つ たまま薄くすることができ、 半導体基板内部で発生するキャリアの移動距離が短 くなる。 したがって、 キャリアの再結合が抑制されるので、 裏面入射型ホトダイ オードアレイの検出感度を高く維持することができる。
第 1の半導体基板だけでは、 裏面入射型ホトダイォードアレイの機械的強度が 充分ではない。 したがって、 第 1の半導体基板に第 2の半導体基板を接合し、 必 要かつ充分なエッチングを行うことで、 半導体領域を露出させると共に、 第 2導 電型の半導体領域を第 2の半導体基板からなる枠部により囲むことで、 裏面入射 型ホトダイォードアレイの機械的強度を実用上充分なものとすることができる。 また、 第 2導電型の半導体領域の厚さを上記従来技術の半導体領域の厚さに比 ベて薄くすることができるので、 拡散深さも浅くてすみ、 第 2導電型の半導体領 域を第 2導電型不純物の熱拡散等により容易に形成することが可能となる。 した がって、 裏面入射型ホトダイォードアレイを従来よりも容易且つ精密に製造する ことができる。
裏面入射型ホトダイォードアレイが、 第 1の半導体基板と第 2の半導体基板と の間に介在し、 第 2の半導体基板に対する特定のエッチング液に対する耐性を有 するエッチングストップ層又は絶縁層を更に備えている場合、 これらの層によつ てエッチングの進行が停止する。 したがって、 凹部の深さを精密に制御すること ができる。
換言すれば、 半導体基板は、 反対面から所定の深さの位置にエッチングストツ プ層又は絶縁層を有しており、 凹部は、 半導体基板を反対面側から少なくともェ ツチングス トップ層又は絶縁層までエッチングすることにより形成されているこ とが好ましい。 この場合、 凹部を形成する際に、 エッチングス トップ層又は絶縁 層でエッチングを終了させることができるので、凹部の深さの管理が容易になる。 裏面入射型ホトダイオードアレイを基板に実装する際には、 半導体基板が機械 的ダメージを受け易くなる。しかしながら、裏面入射型ホトダイォードアレイが、 枠部のそれぞれの頂面上に形成され、 第 2導電型の半導体領域に電気的にそれぞ れ接続された複数の電極パッドを備えている場合、 裏面入射型ホトダイォードア レイが破壌しにくくなる。 すなわち、 枠部は、 機械的強度が高いので、 配線基板 への接続(実装)時において、電極パッドにストレスを印加した場合においても、 裏面入射型ホトダイオードアレイが破壊しにくくなる。
なお、 裏面入射型ホトダイォードアレイと配線基板とは、 電極パッドによって 電気的に接続されているので、 裏面入射型ホトダイオードアレイからの検出信号 を配線基板を介して外部に取り出すことが可能となる。
このような接続には複数の方式が考えられる。
1つには、 裏面入射型ホトダイオードアレイが、 枠部上に設けられた電気絶縁 層と、 電気絶縁層上に設けられ、 第 2導電型の半導体領域と電極パッドとを電気 的に接続する導電性部材とを更に備えた接続方式である。 電気絶縁層は、 導電性 部材と下地基板と絶縁状態を維持し、 導電性部材が、 電極パッドと第 2導電型の W 半導体領域を接読する。 この場合、 機械的強度が低い四部に電極パッドを形成す る必要がなく、 凹部の底部を機械的ダメージから保護することができる。
また、 電気絶縁層は、 導電性部材の一端を第 2導電型の半導体領域に接続する ためのコンタクトホールを有していることが好ましい。 導電性部材は、 基板との 絶縁がとれた状態で、電極パッドから、第 2導電型の半導体領域の'近傍まで延び、 コンタクトホールを通って半導体領域に接続する。ホトダイオードからの信号は、 導電性部材 (例えば、 アルミニウム配線等) により第 2導電型の半導体領域から 電極パッドに伝えられ、 電極パッドを介して外部に出力される。
また、 第 2導電型の半導体領域は、 底部から M部の側面まで延びていることが 好ましい。 すなわち、 第 2導電型の第 2導電型の半導体領域は、 底部から凹部と 枠部との境界部分に延出して設けられている。 この場合、 凹部の側面まで延びる ことで、 その面積が広くなる。 したがって、 被検出光の入射により半導体基板内 部で発生するキャリアを受ける面積が大きくなる。 すなわち、 ホトダイオードの 検出感度が高くなる。
更に、 この構成によれば、 第 2導電型の半導体領域は、 凹部と枠部との境界部 分 (エッジ部) にまで設けられることとなる。 この境界部分は、 凹部のエツチン グ加ェの際にス トレスを受け易く、 また、 凸型に突出している枠部は、 実装時に 機械的ダメージを受け易く、 不要なキヤリァの発生源になり易い。
第 2導電型の半導体領域は、 この境界部分にまで延出するように設けられてい るので、 不要なキャリアを第 2導電型の半導体領域によってトラップすることが 可能となる。
また、 この構成によれば、 電極パッドと第 2導電型の半導体領域とを電気的に 接続する導電性部材を枠部にのみ設ければよいので、 機械的強度が低い凹部を保 護することができると共に、 導電性部材を形成する工程におけるプロセスが容易 になる。
また、 第 2導電型の半導体領域は、 底部から凹部の側面を超えて、 枠部の頂上 面まで延びていることが好ましい。 すなわち、 第 2導電型の半導体領域は枠部の 一部に達している。
この場合、 裏面入射型ホトダイオードアレイは、 枠部上に設けられ、 その頂上 面に対向するコンタクトホールを有する電気絶縁層と、 このコンタクトホールを 介して半導体領域に電気的に接続された電極パッドとを備えることができる。 か かる構成によれば、 枠部の頂上面において、 半導体領域と電極パッドとを電気的 に接続することができるため、 配線を凹部の底部や側壁に形成する必要が無くな る。 すなわち、 配線を枠部上にのみ形成すれば良いので、 配線の形成プロセスが 谷易になる。
また、 枠部は、 半導体基板よりも高い不純物濃度を有する第 1導電型の分離領 域を有することが好ましい。 このように構成することにより、 凹部に形成された ホトダイオード同士が、 電気的に分離されることとなるので、 ホトダイオード間 におけるクロストークを低減することが可能となる。
凹部の開口径は、 凹部の深い位置ほど小さいことが好ましい。 換言すれば、 凹 部は、 反対面側から光入射面側にかけて開口寸法が次第に縮小するように形成さ れている。 この構成では、 凹部の側面は、 底部に対して斜めに交差する斜面を構 成することとなる。 したがって、 凹部の側面上に第 2導電型の半導体領域や導電 性部材を容易に形成することができる。
半導体基板の光入射面側には、 半導体基板よりも高い不純物濃度を有する第 1 導電型のアキュムレーシヨン層が設けられていることが好ましい、 この構成によ れば、 半導体基板の光入射面に被検出光 (特に短波長光) が入射することによつ て、 光入射面近傍で発生する信号キャリアが、 A Rコートとの界面でトラップさ れることを抑制できる。 これにより、 裏面入射型ホトダイオードアレイの検出感 度を高く維持することができる。
また、 第 1の半導体基板及び第 2の半導体基板の互いに対向する面は、 結晶の 面方位が異なることが好ましい。 この場合、. 凹部形成時のエッチング速度が、 面 方位によって変化するため、 凹部の深さを精密に制御することができる。
換言すれば、 半導体基板は、 反対面から所定の深さの位置において、 入射面側 の部分と反対面側の部分とでその結晶方位が異なっており、 凹部は、 半導体基板 を反対面側から少なくとも結晶方位が交差する面が露出するまでエッチングする ことにより形成されている。 この場合、 凹部を形成する際に、 結晶方位が異なつ た面でェッチングを終了することができ、 凹部の深さの管理が容易になる。 本発明に係る半導体装置は、 上述の裏面入射型ホトダイオードアレイと、 裏面 入射型ホトダイオードアレイを支持する配線基板とを備え、 (配線) 基板は、電極 パッドを介して、 裏面入射型ホトダイォードアレイと電気的に接続されているこ とを特徴とする。
この場合、 電極パッドからの検出信号を、 配線基板に伝達することができる。 本発明に係る放射線検出器などの半導体装置は、 半導体基板の光入射面側に配 置されたシンチレータを備えることを特徴とする。 この場合、 半導体基板の入射 面側にシンチレータが配置されているので、 半導体基板は機械的に補強されるこ ととなり、 半導体基板の反りや歪の発生が抑制される。 なお、 配線基板は、 枠部 に設けられた電極パッドを介して、 裏面入射型ホトダイォードアレイと電気的に 接続されていることが好ましい。 シンチレータで発生した蛍光は、 ホトダイォー ドアレイで電気信号に変換され、 この電気信号は電極パッドを介して配線基板に 伝達される。
また、 配線基板と半導体基板の反対面との間隙には、 樹脂又は空気が充填され ていることが好ましい。 半導体基板の反対面と配線基板とを、 樹脂を介して貼り 合わせると、 半導体基板の機械的強度を向上させることができ、 半導体基板の反 りや歪の発生を抑制できる
配線基板と半導体基板の反対面との間の間隙を空気層とする場合、 配線基板と 半導体基板との間の断熱性が良好となり、 配線基板から半導体基板への熱の流入 を抑制することができる。 本発明に係る裏面入射型ホトダイオードの製造方法は、 第 1導電型の半導体基 板の被検出光の入射面の反対面を薄型化することにより、 複数の凹部をァレイ状 に配列して形成する工程と、 凹部の底部に第 2導電型の半導体領域を形成するェ 程とを備えているが、 半導体基板が、 第 1及び第 2の半導体基板を備える場合の 製造方法は、 以下の工程を備えることが好ましい。
まず、 この製造方法が、 第 1の半導体基板に、 第 2の半導体基板を貼り合わせ る工程を備えることである。 上述のように、 貼り合わせによって、 凹部の精度を 精密に制御することができる。
また、 このような製造方法では、 第 2の半導体基板の反対面における凹部対応 領域をェッチングして凹部を形成する凹部形成工程を備える。
これにより、 第 2の半導体基板には、 複数の凹部がアレイ状に配列して形成さ れる。 よって、 第 2導電型の半導体領域は、 第 2の半導体基板からなる枠部によ り囲まれることとなり、 裏面入射型ホトダイォードアレイの機械的強度が実用上 充分なものとなる。 また、 第 2導電型の半導体領域の厚さを従来の技術に比べて 薄くすることができるので、 第 2導電型の不純物の熱拡散等により半導体領域を 容易に形成することが可能となり、 裏面入射型ホトダイオードアレイを従来より も容易に製造することができる。
この凹部形成工程におけるエッチングは、 第 1及び第 2の半導体基板間に介在 するエッチングストップ層又は絶縁層が露出するまで行われ、 これらによって、 エツチング深さを精密に制御することができる。
なお、 上記貼り合わせ工程において、 第 1の半導体基板と第 2の半導体基板と の間にエッチングストップ層を設けると、 このエッチングストップ層で、 エッチ ングを終了することができ、 この工程の制御が容易になる。 ここで、 エッチング は、 少なくともエッチングストップ層が露出するまで行われる。
なお、 上記貼り合わせ工程において、 第 1の半導体基板と第 2の半導体基板と の間に絶縁層を設けると、 この絶縁層でエッチングを終了することができ、 この 工程の制御が容易になる。 ここで、 エッチングは、 少なくとも絶縁層が露出する まで行われる。
なお、 凹部の底部には、 第 2導電型の半導体領域が形成される。
また、 第 1の半導体基板及び第 2の半導体基板の互いに対向する面の結晶の面 方位が異なる場合、 凹部形成工程におけるエッチングは、 少なくとも第 1の半導 体基板の反対面が露出するまで行われることを特徴とする。 この場合、 結晶の面 方位に依存して、 エッチング速度が変化するため、 エッチング深さを精密に制御 することができる。
換言すれば、 貼り合わせ工程において、 第 1の半導体基板と第 2の半導体基板 の結晶方位が異なるように両半導体基板が接合された場合、 第 2の半導体基板を エッチングして、 半導体領域を露出させる工程において、 第 1の半導体基板と第 2の半導体基板との接合面 (結晶方位が異なる面) でエッチングを終了すること ができ、 この工程の制御が容易になる。 なお、 第 2の半導体基板は、 第 1の半導 体基板と異なる結晶方位を有し且つ第 1の半導体基板よりもエツチング速度が大 さい。
また、 第 2導電型の半導体領域を形成する工程は、 凹部形成の前後のいずれか に実行することができる。 すなわち、 本発明に係る裏面入射型ホトダイオードァ レイの製造方法は、 凹部形成工程の後に、 凹部の底部に不純物を添加することに よって、 第 2導電型の半導体領域を形成する後添加工程、 又は、 第 1の半導体基 板の反対面上に予め不純物を添加しておく前添加工程のいずれかを備えることを 特徴とする。
前添加工程を備える製造方法は、 被検出光の入射面の反対面側に複数の第 2導 電型の半導体領域がァレイ状に配列して形成された第 1導電型の第 1の半導体基 板を準備する工程と、反対面に第 1導電型の第 2の半導体基板を接合する工程と、 第 2の半導体基板における第 2導電型の半導体領域に対応する領域 (凹部対応領 域) をエッチングして、 半導体領域を露出させる工程とを備える。 また、 裏面入射型ホトダイオードアレイの製造方法においては、 光入射面側に 半導体基板よりも不純物濃度の高い前記アキュムレーション層を形成する工程を 更に備えることもでき、 この場合には、 アキュムレーシヨン層が前述の機能を奏 する。
図面の簡単な説明
図 1は第 1実施形態の裏面入射型ホトダイォードアレイの平面図である。 図 2は図 1の I I— I I断面の構成を示す概略図である。
図 3は第 1実施形態の第 1変形例の断面の構成を示す概略図である。
図 4は第 1実施形態の第 2変形例の断面の構成を示す概略図である。
図 5は第 1実施形態の裏面入射型ホトダイォードアレイの製造方法を示す工程 図である。
図 6は第 1実施形態の裏面入射型ホトダイォードアレイの製造方法を示す工程 図である。
図 7は第 1実施形態の裏面入射型ホトダイォードアレイの製造方法を示す工程 図である。
図 8は第 1実施形態の裏面入射型ホトダイォードアレイの製造方法を示す工程 図である。
図 9は第 1実施形態の裏面入射型ホトダイォードアレイの製造方法を示す工程 図である。
図 1 0は第 2実施形態の裏面入射型ホトダイォードアレイの断面構成を示す概 略図である。
図 1 1は第 2実施形態の裏面入射型ホトダイォードアレイの製造方法を示すェ 程図である。
図 1 2は第 2実施形態の裏面入射型ホトダイォードアレイの製造方法を示すェ 程図である。
図 1 3は第 2実施形態の裏面入射型ホトダイォードアレイの製造方法を示すェ 程図である。
図 1 4は第 2実施形態の裏面入射型ホトダイォードアレイの製造方法を示すェ 程図である。
図 1 5は第 2実施形態の裏面入射型ホトダイォードアレイの製造方法を示すェ 程図である。
図 1 6は第 2実施形態の裏面入射型ホトダイォードアレイの製造方法を示すェ 程図である。
図 1 7は第 2実施形態の裏面入射型ホトダイォードアレイの製造方法を示すェ 程図である。
図 1 8は第 2実施形態の裏面入射型ホトダイォードアレイの製造方法を示すェ 程図である。
図 1 9は、 第 3実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 0は、 第 3実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 1は、 第 3実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 2は、 第 3実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 3は、 第 3実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 4は、 第 3実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 5は、 第 3実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 6は、 第 3実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 7は、 第 4実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 8は、 第 4実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 2 9は、 第 4実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 3 0は、 第 4実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 3 1は、 第 4実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
図 3 2は、 第 4実施形態に係る裏面入射型ホトダイオードアレイの製造方法に ついて説明するための図である。 . 図 3 3は、 第 4実施形態に係る裏面入射型ホトダイオードアレイの製造方法に ついて説明するための図である。
図 3 4は、 第 5実施形態に係る裏面入射型ホトダイオードアレイの断面構成を 示す。
図 3 5は、 第 6実施形態に係る裏面入射型ホトダイォードアレイの断面構成を 示す。
図 3 6は半導体装置の断面の構成を示す概略図である。
図 3 7は半導体装置の第 1変形例の断面の構成を示す概略図である。
図 3 8は半導体装置の第 2変形例の断面の構成を示す概略図である。
図 3 9は放射線検出器の断面の構成を示す概略図である。
図 4 0は放射線検出器の断面構成を示す概略図である。
図 4 1は放射線検出器の断面構成を示す概略図である。
図 4 2は従来の裏面入射型ホトダイォードアレイの断面構成を示す概略図であ る。
発明を実施するための最良の形態
以下、 本努明の実施形態について説明する。 尚、 以下の図面において、 同一要 素には同一符号を用い、 重複する説明は省略する。
(第 1実施形態)
図 1は、 第 1実施形態の裏面入射型ホトダイオードアレイ 1の平面図である。 尚、 裏面入射型ホトダイオードアレイ 1は、 「光入射面 (裏面)」 と、 光入射面と は反対側の 「反対面 (表面)」 を備えており、 同図は裏面入射型ホトダイオードァ レイ 1を反対面側から見た図を示している。
裏面入射型ホトダイオードアレイ 1は、 n型の半導体基板 3を備えている。 半 導体基板 3の反対面は、 規則的なアレイ状に配置された複数の凹部 4を備えてい る。 半導体基板 3における各凹部 4の周辺領域は、 枠部 6を構成しており、 これ ら枠部 6は、 半導体基板 3の機械的強度を維持している。 各凹部 4の底部には、 P η接合部が設けられている。 それぞれの枠部 6上には、 それぞれの ρ η接合部 に電気的に接続される電極パッド (バンプ電極) 1 3 bが設けられている。
図 2は、 図 1に示した裏面入射型ホトダイオードアレイ 1の I I— I I矢印断 面図である。 同図に示すように、 被検出光 Lは、 半導体基板 3の光入射面 I N上 に入射し、 半導体基板 3の内部で発生したキャリアは、 反対面 O U T側に形成さ れた各!) n接合部 2で検出される。
すなわち、 それぞれの凹部 4の底部 4 a毎に、 それぞれ p n接合部 (ホトダイ オード) 2が形成されており、 各ホトダイオードは、 空間的に離隔している。 こ のように、 それぞれの凹部 4毎に、 ホトダイオードが形成されているので、 二次 元状に配列した複数のホトダイォードが、 全体として裏面入射型ホトダイォード アレイ 1を構成している。
半導体基板 3は、 1 0 0〜3 5 0 /z m程度の厚さ、 1 X 101 2〜: L X 101 5/ c m 3 程度の不純物濃度 (ri型) を有している。 半導体基板 3の光入射面 I N側には、 アキュムレーシヨン層 8が形成されてい る。アキュムレーシヨン層 8は、 n型の不純物を半導体基板 3内に拡散してなり、 1 X 1015〜1 X 1 O20/cm3の範囲の不純物濃度を有する。 アキュムレーショ ン層 8内の n型不純物濃度は、 n型の半導体基板 3の不純物濃度よりも高く設定 される。 アキュムレーシヨン層 8の厚さは、 例えば、 0. 1〜数 μπι程度に設定 することができる。
半導体基板 3の光入射面 I N側には、 被検出光 Lの反射を抑制するための反射 防止 (AR) 膜 9が成膜されている。 AR膜 9はアキュムレーシヨン層 8を被覆 している。 AR膜 9の材料としては、 S i 02や S i Nxを用いることができる。 AR膜 9の構造としては、 S i 02や S i Nxの単独膜、 又は、 これらの膜の積層 膜を用いることも可能である。
半導体基板 3の反対面 O U T側には、 p +型の不純物拡散領域 5が形成されてい る。 複数の第 2導電型の半導体領域 5は、 凹部4の底部4 a毎に空間的に離隔し ている。
各凹部 4は、 例えば、 最大で lmm X lmm程度の開口寸法を有し、 反対面 O
UT側から光入射面 I N側に向かうに従って、 開口寸法が次第に縮小するように 形成されている。 この構成では、 凹部 4は、 側面 4 bを有する。 この凹部 4の側 面 4 bは斜面であって、これらの斜面は角錐台形状を構成している。したがって、 この凹部 4の側面 4 bに沿って第 2導電型の半導体領域 5を形成したり、 側面 4 b上に導電性部材を形成することが容易になる。
各凹部 4の深さは、 2 μΐη以上であり、 隣接する凹部 4の間隔は、 例えば 1. 5mm程度である。 これら複数の凹部 4の底部 4 aには、 p+型の不純物拡散領域 5が設けられており、 p+型 (第 2導電型) の不純物拡散領域 5と n型 (第 1導電 型) の半導体基板 3との間の界面部分が p n接合部 (ホトダイォード) 2を構成 している。
p+型の不純物拡散領域 5内の不純物の濃度は、 1 X 1015〜 1 X 102°Zc m3 程度である。 ここで、 半導体基板 3の光入射面 I Nと、 凹部 4の底部 4 aに設け られた p n接合部 2の上記界面との間の距離は、 1 0〜 1 0 0 Ai m程度である。 各凹部 4を囲む枠部 6の厚みは、 各凹部 4の底部 4 aにおける半導体基板 3の 厚みよりも大きい。 枠部 6内には、 ホトダイオード同士を電気的に分離する n + 型の分離領域 7が設けられている。
分離領域 7内の不純物濃度は、 1 X 1 0 15〜 1 X 1 0 20/ c m 3程度であり、 分 離層 7の深さは、 例えば、 1〜数 / z mに設定されている。
上述のように、 基板厚み方向に沿って、 p +型の不純物拡散領域 5、 n型の半導 体基板 3、 n +型のアキュムレーシヨン層 8が順次位置している。 n型の半導体 基板 3と、 n +型の分離領域 7とは電気的に接続されている。 したがって、 p n 接合部 2に逆バイァス電圧を印加するためには、 p +型の不純物拡散領域 5に負電 位を与えると共に、 分離領域 7及び Z又はアキュムレーシヨン層 8等の半導体基 板 3と電気的接続関係を有する n型領域に正電位を与えればよい。 なお、 負電位 及び正電位なる用語は、 相対的な電位を規定するために用いる。
分離領域 7の深さを大きくし、 分離領域 7とアキュムレーシヨン層 8とを電気 的に接続すれば、 半導体基板 3を低不純物濃度の n型として、 ホトダイォードを P I Nホトダイオードとして機能させることもできる。 この場合、 半導体基板 3 内において空乏層が均一に広がる点で、 P I Nホトダイォードの機能として優れ ることになる。
また、 半導体基板 3の反対面 O U Tは、 絶縁膜である S i 02膜 (電気絶縁層)
1 0によって覆われている。 そして、 枠部 6上には、 ホトダイオードからの信号 を外部に出力するための電極パッド 1 3が、 半導体基板 3と電気的に絶縁して、 つまり、 S i 02膜 1 0を介して設けられている。 この電極パッド 1 3は、 アンダ 一バンプメタル(以下、 U B Mと称する) 1 3 aとバンプ電極 1 3 bとからなる。 半導体基板 3の反対面 O U T上に設けられた S i 02膜 1 0上には、アルミ-ゥ ム配線 1 2が形成されている。 S i〇2膜 1 0は、 p +型の不純物拡散領域 5と電 極パッド 1 3の間の経路において、 アルミユウム配 f泉 1 2と半導体基板 3とを電 気的に絶縁している。
S i 02膜 1 0における凹部 4の底部 4 aを被覆する部分には、コンタクトホー ノレ 1 1が形成されている。 アルミニウム配線 1 2の一端部は、 このコンタクトホ ール 1 1で p +型の不純物拡散層 5と電気的に接続されている。アルミニウム配線 1 2は、 S i 02膜 1 0における底部 4 a及び凹部 4の側面 4 bを覆う部分の上に 延出して設けられ、 ァノレミニゥム配線 1 2の他端部は、 電極パッド 1 3と電気的 に接続されている。
このように、導電性部材としてのアルミニウム配線 1 2は、 p +型の不純物拡散 層 5と電極パッド 1 3との間を電気的に接続している。 また、 図示しないが、 n 型の半導体基板 3にバイァス電位を与えるための電極も、 同様に枠部 6上に形成 されている。
そして、 電極パッド 1 3の設けられる領域を除いて、 半導体基板 3の反対面 O U T上には、 S i 02又は S i Nxあるいはポリイミドゃァクリレート、 エポキシ などからなるパッシベーシヨン膜 1 4が成膜されている。
このように、 第 1実施形態の裏面入射型ホトダイォードアレイ 1は、 反対面 O U T側に形成された凹部 4の底部 4 aに、 p +型の不純物拡散領域 5を設けている ので、 n型の半導体基板 3の光入射面 I Nとホトダイオードの p n接合部 2の界 面との間の距離を短くすることができる (例えば、 1 0〜1 0 0 111)。 これによ り、 被検出光 Lの入射により発生するキャリアの移動過程における再結合が抑制 され、 裏面入射型ホトダイオードアレイ 1の検出感度を高く維持することができ る。
また、 P +型の不純物拡散領域 5の厚さを、従来の技術に比べて薄くすることが できるので、 p +型の不純物拡散領域 5が p型不純物の熱拡散やイオン注入等の方 法によって、 容易に形成可能となり、 裏面入射型ホトダイオードアレイ 1を従来 よりも容易に製造することができる。 また、 枠部 6の厚みは、 凹部 4の底部 4 aにおける n型の半導体基板 3の厚み よりも大きいので、 裏面入射型ホトダイォードアレイ 1は実用上十分な機械的強 度を有することができる。
また、 アキュムレーシヨン層 8の存在により、 裏面側から被検出光 L (特に短 波長の光) が n型半導体基板 3に入射した際に、 光入射面近傍で発生するキヤリ ァカ S、表面や ARコートとの界面でトラップされることを抑制でき、効果的にキヤ リアが p n接合部 2方向へと送り出される。 したがって、 裏面入射型ホトダイォ 一ドアレイ 1の検出感度を高く維持することができる。 尚、 アキュムレーシヨン 層 8を設けなくとも、 裏面入射型ホトダイオードアレイ 1は実用上許容できる程 度の検出感度を有する。
更に、 枠部 6に分離領域 1を形成することにより、 各凹部 4に形成されたホト ダイオード同士が電気的に分離され、 ホトダイオード同士のクロストークが低減 される。 尚、 分離領域 7を設けなくとも、 裏面入射型ホトダイォードアレイ 1は 実用上許容できる程度の検出感度を有する。
図 3は、 第 1実施形態に係る裏面入射型ホトダイォードアレイ 1の第 1変形例 を示す裏面入射型ホトダイオードアレイ 1の部分断面図である。 本例では、 分離 領域 7は、 枠部 6の頂上面 6 bの全面に渡って設けられている。
裏面入射型ホトダイォードアレイ 1を回路基板上に実装する場合、 枠部 6は、 電極パッド 1 3を介して機械的なストレスを受けやすい。 また、 凹部 4と枠部 6 との境界部分(以下エッジ部 6 aと称する)は、凹部 4のエッチング加工の際に、 ストレスを受けやすくなる。 これらのストレスは、 不要なキャリアを発生させや すい。
し力 しながら、 分離領域 7が枠部 6の頂上面 6 bの全面を覆っている場合、 す なわち、 分離領域 7が枠部 6のエッジ部を含んでいる場合、 上記ス トレスに起因 する不要なキャリアを分離領域 7がトラップすることができ、 暗電流発生を抑制 できる。 図 4は、 第 1実施形態に係る裏面入射型ホトダイォードアレイ 1の第 2変形例 を示す裏面入射型ホトダイォードアレイ 1の部分断面図である。
第 2変形例に係る裏面入射型ホトダイオードアレイ 1は、 図 3に示した裏面入 射型ホトダイォードアレイ 1と比較して、 p +型の不純物拡散領域 5の面積が大き くなつた点のみが異なり、その他の構成は同一である。 p +型の不純物拡散領域 5 は、 凹部 4の底部 4 aから、 分離領域 7と重複しない程度に、 凹部 4の側面 4 b まで延びている。 すなわち、 不純物拡散領域 5は、 凹部 4の側面 (斜面) 4 b下 にも形成されている。
この裏面入射型ホトダイォードアレイ 1においては、 p +型の不純物拡散領域 5 の面積を広げることができるので、 被検出光 Lの入射により発生するキャリアを 受ける面積が大きくなり、 ホトダイオードの検出感度を高めることができる。 ま た、 第 1変形例と同様に、 分離領域 7が不要なキャリアをトラップするので、 暗 電流発生を抑制できる。
次に、 図 2に示した第 1実施形態の裏面入射型ホトダイォードアレイ 1の製造 方法について、 図 5〜図 9を参照して説明する。 この製造方法では、以下の (1 ) 〜 (6 ) の工程を順次実行する。
( 1 ) 基板準備工程
図 5は第 1実施形態の裏面入射型ホトダイォードアレイの製造方法を示す。 まず、 第 1の半導体基板 3 aを準備する。
第 1の半導体基板 3 aの導電型は n型であり、 不純物濃度は 1 X 1 0 12〜 1 X
1 0 15/ c m3程度、 厚さは 1 0〜2 0 0 μ πι程度である。 次に、 第 1の半導体基 板 3 aの被検出光 Lが入射する面の反対面 O U T側に、 ポロン等の p型不純物を 拡散させることにより、 p +型の不純物拡散領域 5をアレイ状に形成する。 これに より、 被検出光 Lが入射する面の反対面側には、 複数のアレイ状に配列した p n 接合部 2、 すなわち、 ホトダイオードとなる領域が形成される。
このように、本実施形態の製造方法によれば、 p +型の不純物拡散領域 5の厚さ を、従来の技術に比べて薄くすることができるので、 p+型の不純物拡散領域 5を 型不純物の熱拡散等により形成することが可能となり、 裏面入射型ホトダイォ 一ドアレイ 1を従来よりも容易に製造することができる。
次に、 第 2の半導体基板 3 bを準備する。
第 2の半導体基板 3 bの導電型は n型であり、 不純物濃度は第 1の半導体基板
3 aの不純物濃度範囲 ( 1 X 1 012〜1 X 1 015/c m3程度) と同一の範囲から 選択され、 厚さは 2〜500 μ m程度である。 本例では、 半導体基板 3 a, 3 b の不純物濃度は、 基本的には同一であるものとする。
しかる後、第 1の半導体基板 3 aにおける p+型の不純物拡散領域 5が形成され た面と、第 2の n型半導体基板 3 bとを接合する (図 5参照)。 ここでは、 それぞ れの半導体基板の表面活性を行った後、 これらを貼り合わせることとする。
(2) 基板接合工程
図 6は半導体基板接合後の裏面入射型ホトダイォードアレイを示す。
上述の接合によって、 第 1の半導体基板 3 aと第 2の半導体基板 3 bとからな る n型の半導体基板 3が得られる。 尚、 n型の半導体基板 3 bは接合後に研削や 研磨により所定の厚みにすることも可能である。 すなわち、 半導体基板 3 bの厚 みは、 凹部形成時のェツチング時に凹部の深部が不純物拡散領域 5まで到達でき る厚みに設定する。
(3) 凹部形成工程
続いて、 p+型の不純物拡散領域 5に対応 (対向) する第 2の半導体基板 3 bの 領域をエッチングする。
図 7はェツチング後の裏面入射型ホトダイォードアレイを示す。
上述のエッチングによって、 凹部 4が形成され、 p+型の不純物拡散領域 5が露 出する。 このエッチング工程について詳説する。
まず、第 2の半導体基板 3 bの表面(被検出光 Lが入射する面の反対面 OUT) 上に、 プラズマ CVD (chemical vapor deposition) や低圧 CVD (L P— CV D) 等によって、 エッチングマスク (S i Nx膜) を形成する。
次に、この S i NJ莫の不純物拡散領域 5に対向する半導体基板 3の領域をエツ チングにより除去し、 開口を形成する。
そして、 エッチングマスクの開口内の第 2の半導体基板 3 bに、 エッチング液 を接触させることで、 第 2の半導体基板 3 bをエッチングする。 エッチング液と しては、 水酸化カリウム (KOH) や、 水酸化テトラメチルアンモニゥム (TM AH) 等のアルカリ性のエッチング液を用いることができる。 このアルカリエツ チングにより、 第 2の半導体基板 3 に (結晶) 異方性エッチングが施され、 そ の結果、 p+型の不純物拡散領域 5が露出する。
しかる後、 このエッチングマスク (S i Nx膜) を除去する。
以上のようにして、 半導体基板 3 (第 2の半導体基板 3 b) には、 反対面側 O UTから光入射面 I N側にかけて開口寸法が次第に縮小する凹部 4がアレイ状に 形成される。各凹部 4の底部 4 aには p+型不純物拡散領域 5が露出し、各凹部 4 の間は枠部 6により画成される。
(4) 分離層及び被覆要素形成工程
次に、 分離領域 7及び絶縁膜等の被覆要素を形成する。
図 8は、 分離領域 7及び被覆要素が形成された裏面入射型ホトダイォードアレ ィを示す。
まず、 リン等の n型不純物を、 熱拡散やイオン注入等によって、 枠部 6の頂上 面 6 bの所定個所に導入することにより、 各ホトダイオード間を電気的に分離す る分離領域 7を形成する。
続いて、 薄い熱酸化膜を形成した後に、 光入射面 I Nの全面を覆うように、 砒 素等の n型不純物を 0. 1〜数 / m程度の深さまで拡散させることにより、 アキ ュムレーション層 8を形成する。
その後、熱酸化や CVDによって、表面の保護膜となる S i〇2膜(電気絶縁層)
10を、 半導体基板 3の反対面 OUT上に成膜する。 また、 同時に、 半導体基板 3の光入射面 I N上に、 S i〇2膜からなる AR膜 9を形成する。
(5) 配線形成工程
次に、 アルミニウム配線 1 2を形成する。
図 9は、 アルミニウム配線 12が形成された裏面入射型ホトダイオードアレイ を示す。
まず、凹部 4の底部 4 aに存在する S i 02膜 10の一部を除去することで、 コ ンタクトホール 1 1を形成する。続いて、表面側に設けられた S i 02膜 10上に アルミ-ゥム配線 1 2を形成する工程を行う。
ァノレミ-ゥム配線 1 2は、一端部がコンタクトホール 1 1を介して p+型の不純 物拡散領域 5と接し、 凹部 4の底部 4 a及び凹部 4の側面 4 bを経て、 その他端 部は、 枠部 6の頂上面 6 bに至るようにパターニングされる。 ここで、 導電性部 材はアルミニゥム配線 1 2に限定されず、導電性材料からなる配線であればよく、 例えば銅配線、 金配線等を用いることができる。
(6) 電極パッド形成工程
次に、 電極パッドを形成する。
図 2は、 電極パッドが形成された裏面入射型ホトダイォードアレイを示す。 まず、 n型の半導体基板 3の反対面 OUT上に、 パッシベーシヨン膜 14を形 成する。 ここで、 パッシベーシヨン膜 14としては、 プラズマ C V Dで形成され た S i Nx膜や S i 02膜、 あるいは、 ポリイミドゃアクリル、 エポキシ、 ウレタ ンゃこれらを含む複合材料を用いることができる。
続いて、 枠部 6の電極パッド 1 3が形成される領域のパッシベーシヨン膜 14 を除去し、 電極パッド 1 3をアルミニウム配線 1 2と接続する。 すなわち、 枠部 6の頂上面 6 b (図 9参照) 上に形成されたアルミニウム配線 12上に、 UBM 1 3 aを形成し、 この UBM1 3 a上にバンプ電極 1 3 bを形成する。 このよう な工程を経て、 第 1実施形態の裏面入射型ホトダイオードアレイ 1が得られる。 なお、 UBM1 3 aは、 アルミニウム配線 1 2とバンプ電極 1 3 bとの接合性 を改善するために設けられているものである。 つまり、 バンプ電極 1 3 bとして 半田を用いる場合、 アルミニウム配線 1 2に対する半田の接合性が悪いために、 U B M 1 3 aを介してアルミニウム配線 1 2とバンプ電極 1 3 bとを接合する。 U B M 1 3 aは無電解メツキ法で N i一 A uを形成するが、 リフトオフ法で T i — P t— A uや C r一 A uを形成することでも得られる。
また、 バンプ電極 1 3 bは、 半田ポール搭載法や印刷法により、 U B M 1 3 a 部分に、 半田を形成し、 リフローすることにより得られる。 バンプ電極 1 3 と しては、 半田に限らず、 金バンプ、 ニッケルバンプ、 銅バンプ、 導電性樹脂バン プ等の金属を含む導電性バンプでも良い。
(第 2実施形態)
図 1 0は、 第 2実施形態の裏面入射型ホトダイォードアレイ 2 0の断面構成を 示す概略図である。
以下、 第 2実施形態の裏面入射型ホトダイオードアレイ 2 0と第 1実施形態の 裏面入射型ホトダイォードアレイ 1との相違点について説明する。
第 2実施形態の裏面入射型ホトダイオードアレイ 2 0は、 凹部 4の側面 4 bを 利用して、 p +型の不純物拡散領域 5が、 四部 4の底部 4 aから凹部 4の側面 4 b を経て枠部 6のエッジ部 6 aにまで延出して設けられている点が、 第 1実施形態 と異なっている。 つまり、 裏面入射型ホトダイオードアレイ 2 0では、 p +型不純 物拡散領域 5は、 底部 4 a力 ら枠部 6の頂上面 6 bの一部にまで延びており、 半 導体基板 3内において発生したキヤリアを受ける面積が大きくなっている。
裏面入射型ホトダイォードアレイ 2 0においては、表面は S i 02膜 1 0により 覆われている。枠部 6のエッジ部 6 aにまで延出した部分の; p +型の不純物拡散領 域 5を覆う S i〇2膜 1 0には、 この p +型の不純物拡散領域 5に至るコンタクト ホール 1 1が設けられている。 そして、 ホトダイオードからの信号を外部に出力 するための導電性部材としてのアルミニウム配線 1 2が、 枠部 6に設けられて、 コンタクトホール 1 1を介して、 p +型の不純物拡散領域 5と電気的に接続されて いる。 このアルミニウム配線 1 2は、 枠部 6に設けられた電極パッド 1 3と; p + 型不純物拡散領域 5との間に介在している。
なお、 第 2実施形態の裏面入射型ホトダイオードアレイにおける他の構成は、 第 1実施形態の構成と同一である。
このように、 第 2実施形態の裏面入射型ホトダイォードアレイ 2 0は、 表面側 に形成された凹部 4の底部 4 aを含む領域に p +型不純物拡散領域 5を設けてい るので、 被検出光 Lが入射する n型の半導体基板 3の光入射面と、 ホトダイォー ドの ρ η接合部 2 (界面) との間の距離を短くすることができる。 これにより、 被検出光 Lの入射により発生する'キヤリァの移動過程における再結合が抑制され、 裏面入射型ホトダイオードアレイ 2 0の検出感度を高く維持することができる。 また、 p +型の不純物拡散領域 5の厚さを従来の技術に比べて薄くすることがで きるので、 p +型不純物拡散領域 5を p型不純物の熱拡散等により形成することが 可能となり、 裏面入射型ホトダイォードアレイ 2 0を従来よりも容易に製造する ことができる。
また、 n型の半導体基板 3の表面には、 複数の凹部 4がアレイ状に形成されて おり、 凹部 4は凹部 4の底部 4 aにおける n型の半導体基板 3の厚みよりも大き い厚みを有する枠部 6となっている。 この枠部 6の存在により、 裏面入射型ホト ダイォードアレイ 2 0の機械的強度を実用上充分な強度とすることができる。 また、 アキュムレーシヨン層 8の存在により、 裏面側から被検出光 L (特に短 波長の光) が n型の半導体基板 3に入射した際に、 裏面近傍で発生するキャリア が表面や A Rコートとの界面でトラップされるのを抑制でき、 効果的にキャリア が p n接合部 2方向へと送り出されるので、 裏面入射型ホトダイオードアレイ 2 0の検出感度を高く維持することができる。 尚、 アキュム ^一シヨン層 8を設け なくとも、 裏面入射型ホトダイオードアレイ 1は実用上許容できる程度の検出感 度を有する。
また、 枠部 6に分離領域 7を形成することにより、 各凹部 4に形成されたホト ダイオード同士が電気的に分離され、 ホトダイオード同士のクロストークが低減 される。 尚、 分離領域 7を設けなくとも、 裏面入射型ホトダイオードアレイ 1は 実用上許容できる程度の検出感度を有する。
また、 P +型不純物拡散領域 5が枠部 6のェッジ部 6 aにまで延出して、頂上面 6 b上に形成されているので、 コンタクトホール 1 1を枠部 6の頂上面 6 bに設 けることができる。 その結果、 p +型不純物拡散領域 5と電極パッド 1 3とを電気 的に接続するアルミユウム配線 1 2を凹部 4の底部 4 aや側壁 4 bに形成する必 要が無くなり、 枠部 6上にのみ形成すれば良いので、 アルミユウム配,線 1 2の形 成プロセスが容易になる。
更に、 裏面入射型ホトダイォードアレイ 2 0においては、 機械的強度が低い枠 部 6のエッジ部 6 aに P +型不純物拡散領域 5が延出して形成されている。これに より、 実装時に電極パッド 1 3を介して機械的なストレスを受けやすい枠部 6や エッチング加工の際にス トレスを受けやすくなる枠部 6のエッジ部でこれらス ト レスにより不要なキャリアが発生しやすいが、その不要なキヤリアをトラップし、 喑電流発生を抑制できる。
(第 2実施形態の裏面入射型ホトダイォードアレイの製造方法)
次に、 図 1 0に示した第 2実施形態の裏面入射型ホトダイォードアレイ 2 0の 製造方法について、 図 1 1〜図 1 8を参照して説明する。 この製造方法では、 以 下の (1 ) 〜 (9 ) の工程を順次実行する。
( 1 ) 基板準備工程
図 1 1は半導体基板を示す。
まず、 不純物濃度が、 1 X 1 ◦ 12〜: L X 1 0 15Z c m3程度で、 厚さが 3 0 0〜 6 0 0 μ m程度の n型の半導体基板 3を準備する。
( 2 ) 絶縁膜形成工程
図 1 2は絶縁膜が形成された半導体基板を示す。
次に、 n型の半導体基板 3を熱酸化することにより、 半導体基板 3の反対面 O UT及び光入射面 I N上に、 それぞれ絶縁膜(S i 02膜) 21 a, 21 bを形成 する。絶縁膜 21 a, 21 bは CVD法やスパッタ法等を用いて形成してもよい。
( 3 ) 分離領域及びゲッタリング層形成工程
図 13は分離領域 7及びゲッタリング層 22が形成された半導体基板を示す。 まず、 η型の半導体基板 3の反対面 OUT側においては、 分離領域 7に対応す る部分の S i 02膜 21 a (図 12参照) に、 ホトリソグラフィプロセスにより開 口を形成する。 同様に、 n型の半導体基板 3の光入射面 I N側においては、 S i 02膜 2 l bを除去する (図 12参照)。
次に、 n型の半導体基板 3の反対面 OUTの複数領域と、 光入射面 I Nの全面 にリンを熱拡散させることで、 不純物濃度が 1 X 1015〜1 X 102。Zcm3程度 の分離領域 7とゲッタリング層 22とを形成する。 更に、 半導体基板 3を熱酸化 することで、 分離領域 7側の反対面 O U Tと、 ゲッタリング層 22側の光入射面
1 Nとをそれぞれ覆う S i 02膜 23 a, 23 bを形成する。 尚、 ゲッタリング層
22を形成する代わりに、 予め、. n型の不純物濃度が 1 X 1015〜1 X 102°Zc m3程度に拡散されている拡散ウェハを用いても良い。
以上のように、 n型の半導体基板 3の反対面 OUT側に、 ホトダイオード同士 を分離する分離領域 7を、 光入射面 I N側に n型の半導体基板 3の結晶欠陥を取 り込むためのゲッタリング層 22をそれぞれ形成する。
(4) 不純物拡散層形成工程
図 14は不純物拡散領域 24が形成された半導体基板を示す。
まず、 n型の半導体基板 3の反対面 OUT側に、 ボロン等の p型不純物を拡散 させ、 p+型不純物拡散領域 24を形成する。 p+型の不純物拡散領域 24は、 分 離領域 7と所定の間隔を空けて隣接して形成される。 なお、 不純物拡散領域 24 は、後に行われる凹部 4を形成する工程(図 16参照)においてエッチングされ、 回部 4の側面 4 bから枠部 6のエッジ部 6 aを含む領域にかけて存在する p+型 不純物拡散領域 5となる。 具体的に製造プロセスを記載する。 n型の半導体基板 3の反対面 OUT側にお いて、 S i 02膜 23 a (図 1 3参照) に、 ホトリソグラフィプロセスを施すこと により、 不純物拡散層形成用の開口を形成する。 この開口からボロン等の p型不 純物を半導体基板 3内に拡散させることで、不純物濃度が 1 X 1015〜1 X 1020 /cm3程度の p +型不純物拡散領域 24を形成し、 半導体基板 3を熱酸化するこ とにより、 不純物拡散領域 24の表面及びゲッタリング層 22をそれぞれ覆う S ] 02膜25 &, 25 bを形成する。
続いて、 半導体基板 3の光入射面 I N側を研磨することで、 S i Oj 25 b 及びゲッタリング層 22を除去する。
(5) S i Nx膜形成工程
図 15は S i Nx膜 26 a, 26 bが形成された半導体基板を示す。
まず、 半導体基板 3の反対面 OUT及び光入射面 I N上に、 LP— CVD法に より S i NJ莫 26 a, 26 bを成膜する。 そして、後の工程で凹部 4となる予定 領域の S i Nx膜 26 aと S i 02膜 25 aとをエッチングプロセスにより除去す る (除去工程)。
(6) 凹部形成工程
図 16は凹部 4が形成された半導体基板を示す。
まず、 上記除去工程において、 S i Nx膜 26 aと S i 02膜 25 aとが除去さ れた半導体基板 3の反対面 OUT側表面領域に、 水酸化カリゥム水溶液等を用い たアルカリエッチング法によって、 異方性エッチングを施し、 凹部 4及び枠部 6 を形成する。
ここで、 異方性ェツチングによるエツチング深さは、 少なくとも 2 μιη以上に 設定される。 これにより、 半導体基板 3の反対面側に、 反対面 OUT側から光入 射面 I N側に向けて開口寸法が次第に縮小する凹部 4が形成される。
そして、 異方性ェツチングにより露出した凹部 4の底部 4 a及び側面 4 bに、 ボロン等の p型不純物を拡散させ、 しかる後、 熱酸化を行う。 これにより、 枠部 6のエッジ部 6 aから凹部 4の側面 4 bを経て凹部 4の底部 4 aにかけて、 p + 型の不純物拡散領域 5が形成され、 その表面は S i 0 2膜 2 7 aで被覆されるこ ととなる。 つまり、 この工程によりホトダイオードとなる領域が形成されること となる。
上述のように、 実装時に機械的なス トレスを受けやすい枠部 6や、 エッチング 加工の際にストレスを受けやすくなる枠部 6のエッジ部で、 これらストレスによ り不要なキャリアが発生しやすい。 しかしながら、 p +型の不純物拡散領域 5は、 底部 4 aから凹部 4と枠部 6のとのエッジ部 6 aにまで延出して設けられるので、 不要なキャリアをトラップし、 暗電流発生を抑制することができる。
また、 p +型不純物拡散領域 5の厚さを、従来の技術に比べて薄くすることがで きるので、 p +型不純物拡散領域 5を p型不純物の熱拡散等により形成することが 可能となり、 裏面入射型ホトダイオードアレイ 2 0 (図 1 0参照) を従来よりも 容易に製造することができる。
( 7 ) アキュムレーシヨン層形成工程
図 1 7はアキュムレーシヨン層 8が形成された半導体基板 3を示す。
まず、エッチングマスクとして用いられていた S i Nx膜 2 6 a , 2 6 b (図 1 6参照) を除去し、 n型の半導体基板 3の光入射面 I N側に、 酸化膜を形成した 後、 この酸化膜を介して半導体基板 3内に砒素をイオン注入し、 続いて、 半導体 基板 3を熱酸化する。 これらの工程により、 アキュムレーシヨン層 8が形成され る。
更に、熱酸ィ匕により半導体基板 3の光入射面 I N側に形成された S i 02膜を一 度除去した後に、再び光入射面を熱酸化することにより、 S i〇2からなる A R膜 9を形成する。
( 8 ) 配線形成工程
図 1 8はアルミニウム配線 1 2が形成された半導体基板を示す。
まず、 S i 02膜 2 7 aにおける枠部 6の頂上面 6 bに存在する部分に、 p +型 の不純物拡散領域 5に至るコンタクトホール 1 1を形成する。 続いて、 枠部 6上 に、 アルミニウム配線 1 2をパターユングする。
このように、本実施形態の製造方法によれば、 p+型の不純物拡散領域 5が枠部 6の頂上面 6 bにまで延出して設られているので、 コンタクトホール 1 1を枠部 6に形成することができる。 よって、 コンタクトホール 1 1やアルミニウム配線
12を枠部 6のみにパターエングすることができるので、 凹部 4の底部 4 aや側 面 4 bへのホトリソグラフィプロセスが不要となり、 プロセスが非常に容易にな る。
また、 厚さが薄いために機械的強度が低い凹部 4へのパターユングが不要とな るので、 ストレスが減少する。
(9) 電極形成工程
最後に、 図 10に示すように、 n型の半導体基板 3の反対面 OUT側に、 UB Ml 3 aが形成される領域を除いて、 パッシベーシヨン膜 14を成膜する。 そし て、 枠部 6に設けられたアルミニウム配線 1 2上に UBM13 aを形成し、 UB Ml 3 a上にバンプ電極 1 3 bを形成することで、 第 2実施形態の裏面入射型ホ トダイォードアレイ 20を得る。
(第 3実施形態)
第 3実施形態に係る裏面入射型ホトダイォードアレイは、 第 1又は第 2実施形 態に係る裏面入射型ホトダイオードアレイ 1において、 半導体基板 3が 2枚の半 導体基板 3 a, 3 bからなることとしたものであり、 第 1の n型半導体基板 3 a と第 2の n型半導体基板 3 bの結晶方位が異なるように両半導体基板 3 a, 3 b を貼り合わせてなる裏面入射型ホトダイオードアレイである。
例えば、 結晶面 (1 1 1) の n型の第 1半導体基板 3 aを準備し、 結晶面 (1 00) 又は (1 10) の n型の第 2半導体基板 3 bを n型の第 1半導体基板 3 a に貼り合わせたとする。
このようにすることにより、 n型の第 2半導体基板 3 bをアルカリエッチング する際に、 (1 1 1 ) 面は、 (1 0 0 ) 面や (1 1 0 ) 面に比べて、 エッチング速 度が非常に遅いために、 n型の第 1半導体基板 3 aに形成された p +型不純物拡散 領域 5が露出した段階でェツチングを容易に停止することができる。
第 3実施形態のホトダイオードによれば、表面から所定の深さの位置において、 表面側と裏面側とで n型半導体基板 3の結晶方位が交差しており、 凹部 4は、 表 面側から n型半導体基板 3をエッチングし、 その後、 同様の工程を行うことによ り裏面入射型ホトダイオードアレイ 1を得ることができる。
すなわち、 第 3実施形態では、 第 1実施形態における 2つの半導体基板 3 a , 3 bの面方位を異ならせる。
また、 第 3実施形態では、 第 2実施形態における 1つの半導体基板 3を 2つの 半導体から構成すると共に、 第 2実施形態における裏面入射型ホトダイォードア レイ 2 0の製造方法において、 シリコン基板として、 第 1実施形態で示したよう なシリコンの接合 (貼り合わせ) 基板を用いる。
第 3実施形態の製造方法によれば、 基本的には第 1実施形態と同様にェッチン グの深さの制御を容易にすることが可能となるが、 第 1実施形態に異なる面方位 の半導体基板を適用する場合、予め、 PN接合部 2を形成した半導体基板を接合す るのに対し、 第 2実施形態に異なる面方位の半導体基板を適用する場合、 両基板 を接合した後にエッチングにより凹部 4を形成し、 その後、 p +型不純物拡散層 5 を形成する工程を行う。
このシリコンの接合基板には、 例えば SOI (Sil icon on insulator) ウェハや
SOS (Sil icon on silicon) ウェハや結晶方位が交差したシリコンウェハの貼り合 せ、 シリコンェピウェハとシリコンウェハの貼り合せなどを用いることができ る。
第 1実施形態の裏面入射型ホトダイォードアレイにおける半導体基板を、 上述 のように 2つの半導体基板から構成した場合における裏面入射型ホトダイォード アレイの製造方法は、 単に、 半導体基板 3 a , 3 bの面方位を異ならせるだけで ある。
また、第 2実施形態の裏面入射型ホトダイォードアレイにおける半導体基板を、 上述のように 2つの半導体基板から構成した場合における裏面入射型ホトダイォ 一ドアレイの製造方法については、 図 1 9〜図 2 6を用いて説明する。 この製造 方法では、 以下の (1 ) 〜 (9 ) の工程を順次実行する。
( 1 ) 基板準備工程
図 1 9は、 第 3実施形態に係る裏面入射型ホトダイォードアレイの製造方法に ついて説明するための図である。
まず、 第 1及び第 2の半導体基板 3 a , 3 bを用意する。 第 1の半導体基板 3 aは n型の(1 1 1 ) シリコン基板であり、第 2の半導体基板 3 bは、 n型の(1
0 0 ) シリコン基板である。 すなわち、 半導体基板 3 a, 3 bは、 互いに対向す る面の、 結晶の面方位が異なっている。
( 2 ) 基板貼り合わせ工程
図 2 0は、 半導体基板 3 a, 3 bからなる半導体基板 3を示す。
第 1及び第 2の半導体基板 3 a, 3 bの対向面を活性化した後、 第 1及び第 2 の半導体基板 3 a , 3 bを必要に応じて加熱しつつ、 これらの厚み方向に圧力を 加え、 これらを貼り合わせて接合する。
なお、 この表面活性は、 真空下において、 半導体基板の対向面にイオン照射を 行うことなどによって、 行うことができる。 真空中において、 基板表面をァルゴ ン (Ar) 等の不活性ガスのビームによって、 エッチングすると、 基板の表面層を 除去することができる。 表面層が除去された半導体基板の新たな表面は、 他の原 子との強い結合力を持つ活性な状態となる。 第 1及び第 2の半導体基板の表面同 士を、 真空中で重ね合わせると、 接合が可能になる。 この方法は表面活性化接合 (Surface Activated Bonding: SAB) と呼ばれている.
( 3 ) 分離領域及び不純物拡散領域形成工程
図 2 1は、 分離領域及び不純物拡散領域が形成された半導体基板を示す。 半導体基板 3の反対面 OUT側に、 n型の分離領域 7を形成する。 n型の半導 体基板 3の反対面 OUT側においては、分離領域 7に対応する部分の S i〇2膜に、 ホトリソグラフィプロセスにより開口を形成する。 同様に、 n型の半導体基板 3 の光入射面 I N側においては、 S i〇2膜を除去する。 次に、 n型の半導体基板 3 の反対面 OUT側に、 リンを熱拡散させることで、 不純物濃度が 1 X 1015〜1 X 102°Zcm3程度の分離領域 7を形成し、 更に、 半導体基板 3を熱酸化するこ とで、 分離領域 7側の基板反対面 OUTを覆う S i 02膜を形成する。
しかる後、 この S i〇2膜の所定領域をエッチングし、 これをマスクとして p + 型の不純物拡散領域 24を形成し、続いて、光入射面を研磨する。分離領域 7は、 隣接する不純物拡散領域 24間を電気的に分離している。 すなわち、 n型の半導 体基板 3の反対面 OUT側に、 ボロン等の: p型不純物を拡散させ、 p+型の不純物 拡散領域 24を形成する。 p+型の不純物拡散領域 24は、分離領域 7と所定の間 隔を空けて隣接して形成される。 しかる後、 ァニールや熱拡散を行い、 反対面 O UT上に S i 02膜 25 aを形成する。
(4) S i Nx膜形成工程
図 22は S i Nx膜 26 a, 26 bが形成された半導体基板を示す。
まず、 半導体基板 3の反対面 OUT及び光入射面 I N上に、 LP— CVD法に より S i Nx膜 26 a, 26 bを成膜する。 そして、 後の工程で凹部 4となる予定 領域の S i Nx膜 26 aと S i 02膜 25 aとをエッチングプロセスにより除去す る (除去工程)。
(5) 凹部形成工程
図 23は凹部 4が形成された半導体基板を示す。
まず、 上記除去工程において、 S i Nx膜 26 aと S i 02膜 25 aとが除去さ れた半導体基板の表面領域に、 水酸化力リゥム水溶液等を用いたアルカリエッチ ング法によって、異方性エッチングを施し、凹部 4及び枠部 6を形成する。なお、 露出した S i Nx膜 26 a, 26 bは全て除去する。 ここで、 異方性エッチングによるエッチング深さは、 少なくとも 2 μ ιη以上に 設定される。 これにより、 半導体基板 3の反対面 O U T側に、 反対面 O U T側か ら光入射面 I N側に向けて開口寸法が次第に縮小する凹部 4が形成される。
( 6 ) 不純物拡散層形成工程
図 2 4は、 不純物拡散領域 5が形成された半導体基板を示す。
異方性ェツチングにより露出した凹部 4の底部 4 a及び側面 4 bに、 ボロン等 の p型不純物を、 熱拡散法又はイオン注入法を用いて、 添加する。 これにより、 枠部 6のェッジ部 6 a力 ら凹部 4の側面 4 bを経て凹部 4の底部 4 aにかけて、 p +型の不純物拡散領域 5が形成される。 添加された不純物は、適当な時期におけ るァニールによって活性化される。
つまり、 この工程によりホトダイオードとなる領域が形成されることとなる。 p +型の不純物拡散領域 5は、底部 4 aから凹部 4と枠部 6のとのエツジ部 6 aに まで延出して設けられるので、 不要なキャリアをトラップし、 暗電流発生を抑制 することができる。
( 7 ) アキュムレーシヨン層形成工程
図 2 5はアキュムレーシヨン層 8が形成された半導体基板を示す。
半導体基板 3の熱酸化を行うと、 その表面は S i 0 2膜 2 7 aで被覆されるこ ととなる。
エッチングマスクとして用いられていた S i Nx膜 2 6 a, 2 6 b (図 2 2参照) は除去されているが、 しかる後、 n型の半導体基板 3の光入射面 I N側に、 酸化 膜を形成した後、 この酸化膜を介して半導体基板 3内に砒素をイオン注入し、 続 いて、 半導体基板 3を熱酸化する。 これらの工程により、 アキュムレーシヨン層 8が形成される。
更に、熱酸化により n型半導体基板 3の裏面側に形成された S i 02膜を一度除 去した後に、 再び光入射面 I Nを熱酸化することにより、 A R膜 9を形成する。
( 8 ) 配線形成工程 図 2 6はアルミニゥム配線 1 2が形成された半導体基板を示す。
まず、 S i 02膜 2 7 aにおける底部 4 aに存在する部分に、 p +型の不純物拡 散領域 5に至るコンタクトホール 1 1を形成する。 続いて、 枠部 6上に、 アルミ ェゥム配線 1 2をパターニングする。
( 9 ) 電極形成工程
最後に、 図 2に示されているのと同じように、 n型の半導体基板 3の反対面側 に、 U B M 1 3 aが形成される領域を除いて、 パッシベーシヨン膜 1 4を成膜す る。 そして、 枠部 6に設けられたアルミニウム配線 1 2上に U BM 1 3 aを形成 し、 U B M 1 3 a上にバンプ電極 1 3 bを形成することで、 第 3実施形態の裏面 入射型ホトダイォードアレイ 2 0を得る。 なお、 枠部 6の頂上面に位置する絶縁 膜 2 7 aにコンタクトホールを設け、 このコンタクトホールを介して不純物拡散 領域 5とバンプ電極 1 3 bとを接続してもよい。
(第 4実施形態) '
第 4実施形態に係る裏面入射型ホトダイォードアレイは、 第 1又は第 2実施形 態に係る裏面入射型ホトダイォードアレイ 1において、 第 1の半導体基板 3 aと 第 2の半導体基板 3 bとの間に、 S i 02等の絶縁層 (エッチングストップ層) を 設けたものである。 例えば、 第 2の半導体基板 3 bが表面に絶縁層を有すること とし、 半導体基板 3は、 この絶縁層を介して、 第 2の半導体基板 3 bを第 1の半 導体基板 3 aに接合してなる。すなわち、接合面上には絶縁層が形成されている。 なお、 第 1の半導体基板 3 aの接合面上に絶縁層が形成されていてもよい。
本例では、 上述の基板面方位の違いによって、 エッチングによって形成される 凹部の深さを制御するのではなく、 絶縁層 (エッチングス トップ層) によって、 凹部の深さを制御する。
ここで、 絶縁層である S i 02膜はアルカリエッチングされない。 換言すれば、 エッチングストップ層は、 特定のエッチング液 (例えば、 K O H水溶液等) に対 して耐性を有する。 この場合、 上述の凹部形成工程において、 第 2の半導体基板 3 bをアルカリエツチングする場合、 S i 02膜がアルカリエッチングされないた めに、 エッチングを s i o2膜で容易に停止することができる。
第 4実施形態によれば、 裏面入射型ホトダイオードアレイが、 表面から所定の 深さの位置において、 S i 02膜(エッチングストップ層) を有しているので、 凹 部 4は、 表面側から半導体基板 3をエッチングすることにより形成することがで き、底部 4 aの S i 02膜を除去した後、 同様の工程を行うことにより、裏面入射 型ホトダイォードアレイ 1を得ることができる。
第 1実施形態の裏面入射型ホトダイォードアレイにおける半導体基板を、 上述 のように 2つの半導体基板から構成し、 その間に絶縁層を介在させてなる裏面入 射型ホトダイオードアレイの製造方法は、 単に、 一方の半導体基板の接合面上に 絶縁層が介在しているだけである。
また、第 2実施形態の裏面入射型ホトダイォードアレイにおける半導体基板を、 上述のように 2つの半導体基板から構成し、 その間に絶縁層を介在させてなる裏 面入射型ホトダイオードアレイの製造方法は、図 2 7〜図 3 3を用いて説明する。 この製造方法では、 以下の (1 ) 〜 (9 ) の工程を順次実行する。
( 1 ) 基板準備工程
図 2 7は、 第 4実施形態に係る裏面入射型ホトダイオードアレイの製造方法に ついて説明するための図である。
まず、 第 1及び第 2の半導体基板 3 a, 3 bを用意する。 第 1の半導体基板 3 aは n型の(1 0 0 ) シリコン基板であり、第 2の半導体基板 3 bは、 n型の(1
0 0 ) シリコン基板である。 一方の半導体基板 3 aの対向面上には、 絶縁層 (ェ ツチングストップ層) Eが形成されている。 なお、 これらの半導体基板の半導体 基板 3 a , 3 bは、 互いに対向する面の、 結晶の面方位が異なっていてもよい。
( 2 ) 基板貼り合わせ工程
図 2 8は、 半導体基板 3 a, 3 bからなる半導体基板 3を示す。
第 1及び第 2の半導体基板 3 a, 3 bの対向面を活性化した後、 第 1及び第 2 の半導体基板 3 a, 3 bを必要に応じて加熱しつつ、 これらの厚み方向に圧力を 加え、 これらを貼り合わせて接合する。 なお、 この表面活性の手法は前述の通り である。
(3) 分離領域及び不純物拡散領域形成工程
図 29は、分離領域 7及び不純物拡散領域 24が形成された半導体基板を示す。 この工程は、 第 3実施形態における分離領域及び不純物拡散領域形成工程と同じ である。
(4) S i Nx膜形成工程
図 30は S i Nx膜 26 a, 26 bが形成された半導体基板を示す。この工程は、 第 3実施形態における分離領域及び不純物拡散領域形成工程と同じであり、 S i Nx膜 26 aと S i 02膜 25 aの部分的な除去工程を備える。
(5) 凹部形成工程
図 31は凹部 4が形成された半導体基板を示す。
まず、 上記除去工程において、 3 11^膜26 &と3 102膜25 &とが除去さ れた半導体基板の表面領域に、 水酸化力リゥム水溶液等を用いたアル力リエツチ ング法によって、異方性エッチングを施し、凹部 4及び枠部 6を形成する。なお、 露出した S i Nx膜 26 a, 26 bは全て除去される。 このエッチングは、絶縁層 Eの表面が露出した時点で停止する。 ここで、 異方性エッチングによるエツチン グ深さは、 第 2の半導体基板 3 bの厚み (少なくとも 2 μπα以上) に設定される こととなる。
この工程では、 半導体基板 3の反対面 OUT側に、 反対面 OUT側から光入射 面 I N側に向けて開口寸法が次第に縮小する凹部 4が形成される。
(6) 不純物拡散領域形成工程
図 32は、 不純物拡散領域 5及びァキュムレーシヨン層 8が形成された半導体 基板を示す。 拡散に先立ち、 凹部 4の底部 4 aの絶縁層 Eはエッチングにより除 去しておく。 異方性ェッチングにより露出した凹部 4の底部 4 a及び側面 4 bに、 ボロン等 の p型不純物を拡散法又はイオン注入法によって、 添加する。 添加された不純物 は適当な時期にァニールされる。 これにより、 枠部 6のエッジ部 6 aから四部 4 の側面 4 bを経て凹部 4の底部 4 aにかけて、 p +型の不純物拡散領域 5が形成さ れる。 つまり、 この工程によりホトダイオードとなる領域が形成されることとな る。 p +型の不純物拡散層 5は、底部 4 aから凹部 4と枠部 6のとのエッジ部 6 a にまで延出して設けられるので、 不要なキャリアをトラップし、 暗電流発生を抑 制することができる。
( 7 ) アキュムレーシヨン層形成工程
半導体基板 3の熱酸化を行うと、 その表面は S i 0 2膜 2 7 aで被覆されるこ ととなる。
まず、エッチングマスクとして用いられていた S i Nx膜 2 6 a, 2 6 b (図 3 0参照) を除去されているが、 n型の半導体基板 3の光入射面側に、 酸化膜を形 成した後、 このバッファ酸化膜を介して半導体基板 3内に砒素をイオン注入し、 続いて、 半導体基板 3を熱酸化して、 アキュムレーシヨン層 8及び A R膜 9を形 成する。 このアキュムレーシヨン層形成工程は、 第 3実施形態におけるアキュム レーション層形成工程と同一である。
( 8 ) 配線形成工程
図 3 3はアルミニゥム配線 1 2が形成された半導体基板を示す。 この配線形成 工程は、 第 3実施形態における配線形成工程と同一である。
まず、 S i 02膜 2 7 aにおける不純物拡散領域 5 (又は枠部 6の頂上面 6 b ) が存在する部分に、: +型の不純物拡散領域 5に至るコンタクトホール 1 1を形成 する。 続いて、 枠部 6の頂上面にコンタクトホールを形成し、 枠部 6上にアルミ ニゥム配線 1 2をパターニングする。
( 9 ) 電極形成工程
最後に、 図 2に示されるのと同じように、 n型の半導体基板 3の反対面側に、 U B M l 3 aが形成される領域を除いて、 パッシベーシヨン膜 1 4を成膜する。 そして、 枠部 6に設けられたアルミニウム配線 1 2上に U B M 1 3 aを形成し、 U B M 1 3 a上にバンプ電極 1 3 bを形成することで、 第 4実施形態の裏面入射 型ホトダイオードアレイを得る。 なお、 本実施形態に関しては、 図 2は、 絶縁層 Eの記載を表記を省略して裏面入射型ホトダイオードアレイを示すものとする。 なお、 不純物拡散領域 5を凹部 4の側面にも設けた場合は、 絶縁層のため、 枠 部 6の頂上面に位置する絶縁膜 2 7 aにもコンタクトホールを設け、 このコンク クトホールを介して不純物拡散領域 5とバンプ電極 1 3 bとを接続することが必 要となる。
なお、 不純物拡散領域 5を凹部 4の底部のみとしてもよい。 その場合には、 枠 部 6の頂上面のコンタクトホールは不要となる。 また、 n側電極の取り出しは、 他の実施形態と同様に、 図 1に示されているバンプ電極 7の位置で、 絶縁膜 2 7 aにコンタクトホールを開けて、 バンプ電極を形成すればよい。 但し、 第 1及び 第 2の半導体基板を電気的に接続するために、 4つのフォトダイオードに囲まれ た電極 7のような位置に小さな凹部を作製して、 アルミニウムの配線で接続する ことが本実施例では必要になる。
(第 5実施形態)
図 3 4は、 第 5実施形態に係る裏面入射型ホトダイォードアレイの断面構成を 示す。
この裏面入射型ホトダイオードアレイは、 第 1及び第 2の半導体基板 3 a, 3 bが接合面 Jを介して接合されており、 図 1 9〜図 2 6を用いて説明された第 3 の実施形態に係るホトダイォードと比較して、 不純物拡散領域 5の面積が小さく なっている。 本例では、 不純物拡散領域 5は、 凹部 4の底部 4 aのみに形成され ている。 本発明は、 このような構成としても勿論よい。
(第 6実施形態)
図 3 5は、 第 6実施形態に係る裏面入射型ホトダイオードアレイの断面構成を 示す。
この裏面入射型ホトダイォードアレイは、 第 1及び第 2の半導体基板 3 a , 3 bがエッチングス トップ層 (絶縁層) Eを介して貼り付けられており、 図 2 7〜 図 3 3を用いて説明された第 4の実施形態に係るホトダイオードと比較して、 不 純物拡散層 5の面積が小さくなつている。 すなわち、 本例では、 不純物拡散層 5 は、 凹部 4の底部のみに形成されている。 本発明は、 このような構成としても勿 論よい。
以上のように、 半導体基板はとしては、 結晶方位が交差する 2枚の半導体基板 を接合してなる半導体基板、 エッチングストップ層を介して 2枚の半導体基板を 接合してなる半導体基板、 又は、 絶縁層を介して 2枚の半導体基板を接合してな る半導体基板を用いることができ、 この場合、 エッチング深さを容易に制御する ことができる。 また、 第 1実施形態のように、 予め、 PN接合部 2を形成した半導 体基板を接合した後で凹部を形成してもよく、 第 2実施形態のように、 凹部形成 後に P N接合部 2を形成してもよい。
(半導体装置)
図 3 6は、 半導体装置 3 0の断面の構成を示す概略図である。
半導体装置 3 0は、 第 2実施形態の裏面入射型ホトダイォードアレイ 2 0を、 実装配線基板 Kに、 電気的に接続したものである。 すなわち、 半導体装置 3 0に おいては、 実装配線基板 Kは、 枠部 6上に設けられ、 n型の半導体基板 3の反対 面上に存在するバンプ電極 1 3 bを介して、 裏面入射型ホトダイオードアレイ 2 0に接続されている。
また、 第 3実施形態の半導体装置 3 0においては、 n型の半導体基板 3の反対 面と実装配線基板 Kとの間の間隙 Sは、 空気層となっている。
バンプ電極 1 3 bと実装配線基板 Kの配線基板側電極パッド 3 1との接続は、 フリップチップボンディングであり、 この際に用いられるバンプ電極 1 3 bとし ては、 半田バンプ、 金バンプ、 ニッケルバンプ、 銅バンプ、 導電性樹脂バンプな どの金属を含む導電性バンプを採用することができる。
本実施形態の半導体装置 3 0では、 n型の半導体基板 3において、 機械的強度 に優れた枠部 6 (肉厚の部分) に設けられたバンプ電極 1 3 bにより実装配線基 板 Kとの接続が行われるので、 実装工程において、 n型の半導体基板 3が機械的 ダメージを受け難い。 これにより、 機械的ダメージに由来する不要なキャリアの 発生が抑えられ、 暗電流の発生が抑制される。
また、 間隙 Sを空気層としているので、 実装配線基板 Kと n型半導体基板 3と の断熱性を高めることができる。 半導体装置 3 0においては、 実装配線基板 の n型半導体基板 3と接続していない側の面に信号処理回路 5 1等を設けることが あり (図 4 1参照)、信号処理回路 5 1から発する熱は実装配線基板 Kを介して n 型半導体基板 3の p +型不純物拡散領域 5 (ホトダイォード) に達し、 ホトダイォ ードの S /N比を悪化させる虞がある。 本実施形態のように、 間隙 Sを空気層と すれば、 実装配線基板 Kから p +型の不純物拡散領域 5 (ホトダイォード) への熱 の流入を最小限に抑えることができるので、ホトダイオードの S / N比が向上し、 暗電流の発生を抑制することが可能となる。
(半導体装置の第 1変形例)
図 3 7は、 上記半導体装置の第 1変形例を示す。
この半導体装置 3 0の第 1変形例では、 実装配線基板 Kと n型半導体基板 3と の間隙 S内に、 エポキシ、 シリコーン樹脂、 ウレタン、 アクリル、 それらを含む 複合素材等からなるアンダーフィル樹脂 3 2を充填している。 このように樹脂を 間隙 S内に充填することにより、 n型の半導体基板 3が補強されることとなり、 機械的強度に優れた状態で、 実装配線基板 Kに貼り合わされることとなる。 すな わち、 力かる構成によれば、 半導体基板 3の反りや歪の発生を抑制することがで さる。
尚、 フリップチップボンディング後に樹脂を充填する工程の代わりに、 異方性 導電性フィルム (A C F )、 異方性導電性ペースト方式 (A C P )、 非導電性ぺー スト (N C P ) 方式による接着を用いてもよい。
(半導体装置の第 2変形例)
図 3 8は、 上記半導体装置の第 2変形例を示す。
本例では、 η型の半導体基板 3と実装配線基板 Kとの間の接続部 (バンプ電極 1 3 bと配線基板側電極パッド 3 1との接続部) のみが、 アンダーフィル樹脂 3 2で覆われており、 間隙 S内は空気層とされている。
この構成によれば、 n型の半導体基板 3と実装配線基板 Kとの接続部がアンダ 一フィル樹脂 3 2で補強されることとなるので、 この接続部の強度を向上させる ことができる。
また、 間隙 Sは空気層となっているので、実装配線基板 Kから; p +型不純物拡散 領域 5 (ホトダイォード) への熱の流入を最小限に抑えることができる。
上述のように、 アンダーフィル樹脂 3 1は、 異方 1"生導電 1"生フィルム (A C F )、 異方性導電性ペースト方式(A C P )、非導電性ペースト (N C P )方式による実 装などで実現できる。
(放射線検出器)
図 3 9は、 半導体装置としての放射線検出器 4 0の断面の構成を示す概略図で あ 。
この放射線検出器 4 0は、 第 2実施形態の裏面入射型ホトダイォードアレイ 2 0の光入射面 I N側に、 放射線の入射により発光するシンチレータ 4 1を接合さ せたものである。
例えば、 シンチレータ 4 1を n型半導体基板 3の裏面にシンチレータ 4 1と略 等しい屈折率を有するカップリング樹脂 4 2によりシンチレータ 4 1を接合する ことにより、 第 4実施形態の放射線検出器 4 0が得られる。
シンチレータ 4 1は、 一般的に n型半導体基板 3よりも厚いために機械的強度 に優れており、 n型半導体基板 3をシンチレータ 4 1と接合することにより、 n 型半導体基板 3を機械的に捕強し、 n型シリコン基板の反りや歪を抑制すること ができる。 また、 シンチレータ 4 1を貼り合わせる場合、 n型の半導体基板 3の 裏面は平面であるので、 カップリング樹脂 4 2を容易に塗布することが可能であ り、 シンチレータ 4 1を貼り合わせる際に、 貼り合わせ面に気泡等が混入する可 能性を小さくすることができる。 尚、 シンチレータ 4 1を n型の半導体基板 3の 光入射面に成長させることによつても本実施形態の放射線検出器が得られる。
(放射線検出器の第 1変形例)
図 4 0は、 半導体装置としての別の放射線検出器 5 0の断面構成を示す。
放射線検出器 5 0は、 第 2実施形態の裏面入射型ホトダイォードアレイ 2 0の 光入射面 I N側に、 放射線の入射により発光するシンチレータ 4 1を接合させ、 更に、 裏面入射型ホトダイオードアレイを支持する実装配線基板 Kを備え、 実装 配線基板 Kは、 n型の半導体基板 3の表面に存在する枠部 6に設けられたバンプ 電極 1 3 bを介して、 裏面入射型ホトダイオードアレイ 2 0と接続されている。 本実施形態の放射線検出器 5 0は、 X線等の被検出光 Lが入射すると、 シンチ レータ 4 1が発光する。 シンチレータ 4 1からの蛍光は、 光入射面側から n型の 半導体基板 3に入射する。 光の入射に応じて、 n型の半導体基板 3中でキャリア が発生する。発生したキャリアは、 p +型の不純物拡散領域 5と n型の半導体基板 3との間で形成されるホトダイオードによって検出される。 検出された信号は、 枠部 6に設けられたバンプ電極 1 3 bを介して実装配線基板 Kに出力される。 この放射線検出器 5 0は、 n型半導体基板 3の光検出面にシンチレータ 4 1が 貼り付けられているので、 機械的強度に優れている。 更に、 実装配線基板 Kと n 型半導体基板 3との間隙 Sには、 空気層が設けられているので、 実装配線基板 K から p +型不純物拡散領域 5 (ホトダイォード) への熱の流入を最小限に抑えるこ とができる。
尚、 間隙 Sにアンダーフィル樹脂 3 2を充填することもできる (図 3 7参照)。 また、 バンプ電極 1 3 bと実装配線基板 Kとの接続部をアンダーフィル樹脂で覆 うこともできる (図 3 8参照)。 これらの構成によれば、裏面入射型ホトダイォー ドアレイ 2 0の機械的強度を向上させることができる。
(放射線検出器の第 2変形例)
図 4 1は、 半導体装置としての更に別の放射線検出器 6 0の断面構成を示す概 略図である。
放射線検出器 6 0は、 信号処理回路 5 1と信号取り出し部 5 2とが備えられて いる点のみが、 上記放射線検出器 5 0と異なっている。
信号処理回路 5 1は、 実装配線基板 Kの n型の半導体基板 3と接続していない 側の面に設けられており、 実装配線基板 Kとフリップチップ接続又はワイヤ接続 されている。 また、 信号取り出し部 5 2は、 ピンタイプ、 リードフレーム、 フレ キシブル配線基板等であってもよい。
放射線検出器 6 0は、 n型の半導体基板 3の光入射面にシンチレータ 4 1が貼 り付けられているので、 機械的強度に優れている。 更に、 実装配線基板 Kと n型 半導体基板 3との間隙 Sには、 空気層が設けられているので、 信号処理回路 5 1 で発生する熱の実装配線基板 Kを介しての p +型不純物拡散領域 5 (ホトダイォー ド) への流入を最小限に抑えることができる。
本発明によれば、 高い検出感度を維持しつつ、 容易に製造することが可能な裏 面入射型ホトダイォードアレイ、 その製造方法、 半導体装置及び放射線検出器が 得られる。
以上、 説明したように、 本発明に係る裏面入射型ホトダイオードアレイは、 第 1導電型の半導体からなる半導体基板 3を備え、 半導体基板 3における被検出光 の入射面 I Nの反対面 O U T側に複数のホ小ダイォードが形成された裏面入射型 ホトダイオードアレイであって、 半導体基板 3の反対面 O U T側には、 複数の凹 部 4がアレイ状に配列して形成されており、 複数の凹部 4の底部 4 aに第 2導電 型の半導体からなる第 2導電型の半導体領域 5が形成されることにより、 ホトダ ィォードがアレイ状に配列している。
産業上の利用可能性 本発明は、 裏面入射型ホトダイオードアレイ、 その製造方法、 当該裏面入射型 ホトダイォードアレイを備えた放射線検出器などの半導体装置に利用することが できる。

Claims

請求の範圏
1 . 裏面入射型ホトダイオードアレイにおいて、
光入射面、 及び、 前記光入射面の反対側に位置し複数の凹部を有する反対面を 有する第 1導電型の半導体基板と、
前記凹部の底部毎に空間的に離隔した複数の第 2導電型の半導体領域と、 を備え、
前記半導体領域のそれぞれは、 前記半導体基板と共に p n接合を構成すること を特徴とする、
裏面入射型ホトダイォードアレイ。
2 . 複数の前記凹部間の前記半導体基板の領域は、前記回部よりも大き な厚みを有する枠部を構成していることを特徴とする、
請求の範囲第 1項に記載の裏面入射型ホトダイォードアレイ。
3 . 前記半導体基板は、一体的に形成された単一の半導体基板からなる ことを特徴とする、
請求の範囲第 1項に記載の裏面入射型ホトダイォードアレイ。
4 . 前記半導体基板は、
前記光入射面を有する第 1の半導体基板と、
前記第 1の半導体基板に貼り合わせられ前記凹部の側壁を有する第 2の半導体 基板と、
を備えることを特徵とする、
請求の範囲第 1項に記載の裏面入射型ホトダイォードアレイ。
5 . 前記第 1の半導体基板と前記第 2の半導体基板との間に介在し、前 記第 2の半導体基板に対する特定のエッチング液に対する耐性を有するエツチン グストップ層を更に備えることを特徴とする、
請求の範囲第 4項に記載の裏面入射型ホトダイォードアレイ。
6 · 前記第 1の半導体基板と前記第 2の半導体基板の間に介在する絶縁 層を更に備えることを特徴とする、
請求の範囲第 4項に記載の裏面入射型ホトダイォードアレイ。
7 . 前記枠部のそれぞれの頂面上に形成され、前記半導体領域に電気的 にそれぞれ接続された複数の電極パッドを備えることを特徴とする、
請求の範囲第 2項に記載の裏面入射型ホトダイォードアレイ。
8 . 前記枠部上に設けられた電気絶縁層と、
前記電気絶縁層上に設けられ、 前記半導体領域と前記電極パッドとを電気的に 接続する導電性部材と、
を更に備えることを特徴とする、
請求の範囲第 7項に記載の裏面入射型ホトダイォードアレイ。
9 .前記電気絶縁層は、前記導電性部材の一端を前記半導体領域に接続す るためのコンタクトホールを有していることを特徴とする、
請求の範囲第 8項に記載の裏面入射型ホトダイォードアレイ。
1 0 .前記半導体領域は、前記底部から前記凹部の側面まで延びているこ とを特徴とする、
請求の範囲第 2項に記載の裏面入射型ホトダイォードアレイ。
1 1 . 前記半導体領域は、前記底部から前記凹部の側面を超えて、前記枠 部の頂上面まで延びていることを特徴とする、
請求の範囲第 2項に記載の裏面入射型ホトダイォードアレイ。
1 2 . 前記枠部上に設けられ、その頂上面に対向するコンタクトホール を有する電気絶縁層と、
前記コンタクトホールを介して前記半導体領域に電気的に接続された電極パッ ド、と、
を備えることを特徴とする、
請求の範囲第 1 1項に記載の裏面入射型ホトダイオードアレイ。
1 3 .前記枠部は、前記半導体基板よりも高い不純物濃度を有する第 1導 電型の分離領域を有することを特徴とする、
請求の範囲第 2項に記載の裏面入射型ホトダイォードアレイ。
1 4 . 前記凹部の開口径は、前記凹部の深い位置ほど小さいことを特徴と する請求の範囲第 1項に記載の裏面入射型ホトダイォードアレイ。
1 5 . 前記半導体基板の前記入射面側には、当該半導体基板よりも高い不 純物濃度を有する第 1導電型のアキュムレーション層が設けられていることを特 徴とする、
請求の範囲第 1項に記載の裏面入射型ホトダイォードアレイ。
1 6 .前記第 1の半導体基板及び前記第 2の半導体基板の互いに対向する 面は、 結晶の面方位が異なることを特徴とする、
請求の範囲第 4項に記載の裏面入射型ホトダイォードアレイ。
1 7 . 請求の範囲第 7項に記載の裏面入射型ホトダイォードアレイと、 前記裏面入射型ホトダイォードアレイを支持する配線基板とを備え、 前記配線基板は、 前記電極パッドを介して、 前記裏面入射型ホトダイオードァ レイと電気的に接続されていることを特徴とする半導体装置。
1 8 . 前記半導体基板の前記光入射面側に配置されたシンチレ一タを備 えることを特徴とする請求の範囲第 1 7項に記載の半導体装置。
1 9 . 前記配線基板と前記半導体基板の前記反対面との間隙には、樹脂 又は空気が充填されていることを特徴とする請求の範囲第 1 7項に記載の半導体
2 0 . 請求の範囲第 4項に記載の裏面入射型ホトダイォードアレイの製 造方法において、
前記第 1の半導体基板に、 前記第 2の半導体基板を貼り合わせる工程を備える ことを特徴とする、
裏面入射型ホトダイォードアレイの製造方法。
2 1 . 前記第 2の半導体基板の前記反対面における凹部対応領域をエツ チングして前記凹部を形成する凹部形成工程を備えることを特徴とする、 請求の範囲第 2 0項に記載の裏面入射型ホトダイォードアレイの製造方法。
2 2 . 前記凹部形成工程におけるエッチングは、前記第 1及び前記第 2 の半導体基板間に介在するエッチングストップ層又は絶縁層が露出するまで行わ れることを特徴とする、
請求の範囲第 2 1項に記載の裏面入射型ホトダイォードアレイの製造方法。
2 3 .前記第 1の半導体基板及び前記第 2の半導体基板の互いに対向する 面は、 結晶の面方位が異なり、
前記凹部形成工程におけるエッチングは、 少なくとも前記第 1の半導体基板の 反対面が露出するまで行われることを特徴とする、
請求の範囲第 2 1項に記載の裏面入射型ホトダイォードアレイの製造方法。
2 4 . 前記半導体領域を形成する工程は、
前記凹部形成工程の後に、 前記回部の底部に不純物を添加することによって前 記半導体領域を形成する後添加工程、 又は、
前記凹部形成工程の前に、 前記第 1の半導体基板の反対面上に予め不純物を添 加しておく前添加工程の!/、ずれかを備えることを特徴とする、
請求の範囲第 2 1項に記載の裏面入射型ホトダイォードアレイの製造方法。
2 5 . 請求の範囲第 1 5項に記載の裏面入射型ホトダイォードアレイの 製造方法において、
前記光入射面側に前記半導体基板よりも不純物濃度の高い前記アキュムレーシ ョン層を形成する工程を更に備えることを特徴とする裏面入射型ホトダイォード )製造方法。
PCT/JP2003/014676 2002-11-18 2003-11-18 裏面入射型ホトダイオードアレイ、その製造方法及び半導体装置 WO2004047178A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003280857A AU2003280857A1 (en) 2002-11-18 2003-11-18 Backside-illuminated photodiode array, method for manufacturing same, and semiconductor device
DE60336580T DE60336580D1 (de) 2002-11-18 2003-11-18 Von hinten beleuchtete photodiodenanordnung, herstellungsverfahren dafür und halbleitervorrichtung
JP2004553197A JP4482455B2 (ja) 2002-11-18 2003-11-18 裏面入射型ホトダイオードアレイ、その製造方法及び半導体装置
EP03772879A EP1569275B1 (en) 2002-11-18 2003-11-18 Backside-illuminated photodiode array, method for manufacturing same, and semiconductor device
IL168681A IL168681A (en) 2002-11-18 2005-05-18 Back illuminated photodiode array, manufacturing method and semiconductor device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-334326 2002-11-18
JP2002334326 2002-11-18

Publications (1)

Publication Number Publication Date
WO2004047178A1 true WO2004047178A1 (ja) 2004-06-03

Family

ID=32321726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014676 WO2004047178A1 (ja) 2002-11-18 2003-11-18 裏面入射型ホトダイオードアレイ、その製造方法及び半導体装置

Country Status (8)

Country Link
EP (1) EP1569275B1 (ja)
JP (1) JP4482455B2 (ja)
KR (1) KR101004243B1 (ja)
CN (1) CN100446261C (ja)
AU (1) AU2003280857A1 (ja)
DE (1) DE60336580D1 (ja)
IL (1) IL168681A (ja)
WO (1) WO2004047178A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066690A1 (de) * 2004-12-15 2006-06-29 Austriamicrosystems Ag Bauelement mit halbleiterübergang und verfahren zur herstellung
JP2006339360A (ja) * 2005-06-01 2006-12-14 Hamamatsu Photonics Kk エネルギー線検出素子
JP2008294414A (ja) * 2007-04-27 2008-12-04 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2014078548A (ja) * 2012-10-09 2014-05-01 Asahi Kasei Electronics Co Ltd 量子型赤外線センサ及びその製造方法
WO2015194249A1 (ja) * 2014-06-20 2015-12-23 オリンパス株式会社 半導体装置および半導体装置の製造方法
US20150380580A1 (en) * 2013-02-13 2015-12-31 Hamamatsu Photonics K.K. Backside-illuminated energy ray detection element
WO2019203128A1 (ja) * 2018-04-16 2019-10-24 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
JP2019186480A (ja) * 2018-04-16 2019-10-24 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
WO2019203119A1 (ja) * 2018-04-16 2019-10-24 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
EP3955302A4 (en) * 2019-09-12 2023-02-08 Hamamatsu Photonics K.K. BACK INCIDENCE IMAGING ELEMENT

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007007584A1 (de) 2006-12-29 2008-07-03 Osram Opto Semiconductors Gmbh Halbleiterdetektoranordnung und Herstellungsverfahren für eine Halbleiterdetektoranordnung
US7737409B2 (en) 2008-06-12 2010-06-15 Analog Devices, Inc. Silicon detector and method for constructing silicon detectors
JP2016012905A (ja) * 2014-06-02 2016-01-21 ソニー株式会社 撮像素子、撮像方法、および電子機器
WO2019019052A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. RADIATION DETECTOR AND METHOD FOR MANUFACTURING SAME
KR102161593B1 (ko) 2018-11-19 2020-10-05 한국에너지기술연구원 고저항 에피탁시 기판을 이용한 반도체 수광 소자 및 이를 제조하는 방법
CN115064612B (zh) * 2022-07-21 2023-07-25 杭州海康微影传感科技有限公司 一种光电探测器的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461964A (en) * 1987-09-02 1989-03-08 Mitsubishi Electric Corp Semiconductor device
JPH0265181A (ja) * 1988-08-30 1990-03-05 Fujitsu Ltd 赤外線検知装置
JPH05150049A (ja) * 1991-11-30 1993-06-18 Shimadzu Corp 放射線検出器
JPH10223873A (ja) * 1997-02-10 1998-08-21 Hamamatsu Photonics Kk 半導体装置
JP2001291892A (ja) * 2000-04-04 2001-10-19 Hamamatsu Photonics Kk 放射線検出器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814847A (en) * 1986-11-21 1989-03-21 Bell Communications Research, Inc. Ingaas semiconductor structures
JPH07333348A (ja) * 1994-06-03 1995-12-22 Toshiba Corp 放射線検出器およびこれを用いたx線ct装置
DE10037103A1 (de) * 2000-07-27 2002-02-14 Aeg Infrarot Module Gmbh Multispektrale Photodiode
JP4455996B2 (ja) * 2002-08-09 2010-04-21 浜松ホトニクス株式会社 フォトダイオードアレイ、その製造方法、及び放射線検出器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461964A (en) * 1987-09-02 1989-03-08 Mitsubishi Electric Corp Semiconductor device
JPH0265181A (ja) * 1988-08-30 1990-03-05 Fujitsu Ltd 赤外線検知装置
JPH05150049A (ja) * 1991-11-30 1993-06-18 Shimadzu Corp 放射線検出器
JPH10223873A (ja) * 1997-02-10 1998-08-21 Hamamatsu Photonics Kk 半導体装置
JP2001291892A (ja) * 2000-04-04 2001-10-19 Hamamatsu Photonics Kk 放射線検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1569275A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066690A1 (de) * 2004-12-15 2006-06-29 Austriamicrosystems Ag Bauelement mit halbleiterübergang und verfahren zur herstellung
US7898052B2 (en) 2004-12-15 2011-03-01 Austriamicrosystems Ag Component with a semiconductor junction and method for the production thereof
JP2006339360A (ja) * 2005-06-01 2006-12-14 Hamamatsu Photonics Kk エネルギー線検出素子
JP2008294414A (ja) * 2007-04-27 2008-12-04 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2014078548A (ja) * 2012-10-09 2014-05-01 Asahi Kasei Electronics Co Ltd 量子型赤外線センサ及びその製造方法
US20150380580A1 (en) * 2013-02-13 2015-12-31 Hamamatsu Photonics K.K. Backside-illuminated energy ray detection element
US10573769B2 (en) * 2013-02-13 2020-02-25 Hamamatsu Photonics K.K. Backside-illuminated energy ray detection element
WO2015194249A1 (ja) * 2014-06-20 2015-12-23 オリンパス株式会社 半導体装置および半導体装置の製造方法
US9954027B2 (en) 2014-06-20 2018-04-24 Olympus Corporation Image pickup device and manufacturing method for image pickup device by stacking/bonding of crystalline silicon substrates
WO2019203119A1 (ja) * 2018-04-16 2019-10-24 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
JP2019186480A (ja) * 2018-04-16 2019-10-24 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
JP2019186481A (ja) * 2018-04-16 2019-10-24 浜松ホトニクス株式会社 半導体光検出素子
JP2019186482A (ja) * 2018-04-16 2019-10-24 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
WO2019203128A1 (ja) * 2018-04-16 2019-10-24 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
US11239266B2 (en) 2018-04-16 2022-02-01 Hamamatsu Photonics K.K. Back-illuminated semiconductor photodetection element
JP7034816B2 (ja) 2018-04-16 2022-03-14 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
US11276794B2 (en) 2018-04-16 2022-03-15 Hamamatsu Photonics K.K. Backside illuminated semiconductor photodetection element
JP7089930B2 (ja) 2018-04-16 2022-06-23 浜松ホトニクス株式会社 半導体光検出素子
JP7148261B2 (ja) 2018-04-16 2022-10-05 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
JP7433393B2 (ja) 2018-04-16 2024-02-19 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
EP3955302A4 (en) * 2019-09-12 2023-02-08 Hamamatsu Photonics K.K. BACK INCIDENCE IMAGING ELEMENT
US11862659B2 (en) 2019-09-12 2024-01-02 Hamamatsu Photonics K.K. Backside incident-type imaging element

Also Published As

Publication number Publication date
EP1569275A1 (en) 2005-08-31
CN1714454A (zh) 2005-12-28
EP1569275B1 (en) 2011-03-30
IL168681A (en) 2010-12-30
KR101004243B1 (ko) 2010-12-24
KR20050072488A (ko) 2005-07-11
JP4482455B2 (ja) 2010-06-16
JPWO2004047178A1 (ja) 2006-03-23
AU2003280857A1 (en) 2004-06-15
DE60336580D1 (de) 2011-05-12
EP1569275A4 (en) 2006-01-25
CN100446261C (zh) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4455996B2 (ja) フォトダイオードアレイ、その製造方法、及び放射線検出器
US7810740B2 (en) Back illuminated photodiode array, manufacturing method and semiconductor device thereof
US7420257B2 (en) Backside-illuminated photodetector
TWI345304B (en) Back incidence type light detection component and its manufacturing method
US8497534B2 (en) Chip package with heavily doped regions and fabrication method thereof
KR101152568B1 (ko) 포토 다이오드 어레이 및 그 제조방법 및 방사선 검출기
JP4478012B2 (ja) 裏面照射型ホトダイオードアレイ及びその製造方法
WO2004047178A1 (ja) 裏面入射型ホトダイオードアレイ、その製造方法及び半導体装置
WO2004030102A1 (ja) フォトダイオードアレイ及びその製造方法
US20080073740A1 (en) Backside-Illuminated Photodetector
JP4220818B2 (ja) ホトダイオードアレイおよびその製造方法並びに放射線検出器
JP4443981B2 (ja) 半導体光検出素子及び光検出装置
JP4220819B2 (ja) 放射線検出器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004553197

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 168681

Country of ref document: IL

Ref document number: 1020057008954

Country of ref document: KR

Ref document number: 20038A35826

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003772879

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057008954

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003772879

Country of ref document: EP