WO2004046244A1 - Composition de resine de polyoxymethylene pour marquage au laser - Google Patents

Composition de resine de polyoxymethylene pour marquage au laser Download PDF

Info

Publication number
WO2004046244A1
WO2004046244A1 PCT/KR2003/002476 KR0302476W WO2004046244A1 WO 2004046244 A1 WO2004046244 A1 WO 2004046244A1 KR 0302476 W KR0302476 W KR 0302476W WO 2004046244 A1 WO2004046244 A1 WO 2004046244A1
Authority
WO
WIPO (PCT)
Prior art keywords
dihydrazide
composition
parts
laser marking
weight
Prior art date
Application number
PCT/KR2003/002476
Other languages
English (en)
Inventor
Tak-Kyu Kim
Chung-Ryol Jeong
Tae-Gon Kang
Original Assignee
Korea Engineering Plastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Engineering Plastics Co., Ltd. filed Critical Korea Engineering Plastics Co., Ltd.
Priority to AU2003282406A priority Critical patent/AU2003282406A1/en
Publication of WO2004046244A1 publication Critical patent/WO2004046244A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • C08K5/25Carboxylic acid hydrazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/02Polyacetals containing polyoxymethylene sequences only

Definitions

  • the present invention relates, generally, to laser marking polyoxymethylene resin compositions, and, more specifically, to a polyoxymethylene resin composition for laser marking, wherein a dihydrazide compound is used as a thermal stabilizer, whereby the thermal stability of molded articles for laser marking is enhanced, and emission of formaldehyde is minimized during the processing.
  • thermoplastic resin by being exposed to a laser.
  • the laser marking method is advantageous in terms of rapid marking on small lot runs requiring frequent changeover, no need for pre-treatment and post- treatment, and a simplified process without additional materials and processes.
  • the marking designs may be freely modified through the connection with auto cads, thus requiring relatively a low investment.
  • the laser marking process is unsuitable for use in wide multi-colored articles, compared to the printing process.
  • the laser for use in the laser marking techniques includes an Nd:YAG (neodymium : yttrium aluminum garnet) laser.
  • Nd:YAG neodymium : yttrium aluminum garnet
  • the use of the Nd:YAG laser provides the laser marking on metals, plastics, silicon, woods, paper, leather and glass, according to a marking material. Further, the Nd:YAG laser is used to cut the material or mark the surface.
  • the above laser-markable surface may be embossed or engraved according to a surface-marking manner. That is, the processing surface is dug to form an engraved surface, or the surface of the target is faded to perform the marking process, or the processing surface is embossed to obtain marking effects.
  • the marking type there are the manners of engraving for use in night designs of an electric switch and plastic marking by completely removing burrs by evaporation of the laser-irradiated portion; engraving and fading for use in plastic marking and most metals with the exception of copper and aluminum by simultaneously engraving and fading the beam-irradiated marking surface while some burrs remain on the irradiated surface; and fading and bleaching for use in plastics marking such as keyboards or fading-markings of a metal surface using a high frequency by changing only the color by inducing the instant chemical change rather than the engraving on the marking surface.
  • Japanese Patent Laid-open Publication No. Sho. 58-67496 discloses a relatively simple marking process which provides a desired marking by using physical changes of a laser-processing surface, that is, a thermal processing method.
  • Japanese Patent Laid-open Publication Nos. Sho. 63-216790 and Sho. 61-41320, and Japanese Patent Laid-open Publication No. Hei. 1-306285 disclose a laser marking process by the addition of a filler capable of fading and decoloring.
  • the above laser marking process using such a filler is characterized in that a substrate colored with pigments is subjected to a marking process by use of a color different from that of the substrate.
  • a substrate colored with pigments is subjected to a marking process by use of a color different from that of the substrate.
  • research on laser marking compositions to obtain white marks having high contrast on a black substrate has been vigorously performed.
  • Japanese Patent Laid-open Publication No. Hei. 11-140271 discloses a laser marking resin composition including polyoxymethylene and carbon black having a particle size of 17-90 nm and a DBP (dibutyl phthalate) oil absorption of 70-200 ml/100 mg.
  • a DBP dibutyl phthalate
  • the use of the above marking resin composition leads to white marks having high contrast and better brightness on a black substrate.
  • molded articles from the above composition are decreased in thermal stability, attributed to the carbon black and pigments contained in the composition, thus resulting in decoloration and decreased mechanical properties.
  • 5,218,041 there is disclosed a polyoxymethylene composition including polyoxymethylene, an endocopolymer, a phenol type antioxidant and carbon black so as to solve the above problems and to decrease the emission of formaldehyde upon processing of the composition at high temperatures.
  • the above patent is advantageous in terms of reduced emission of formaldehyde, but suffers from decreased mechanical properties of the polyoxymethylene resin by using the endocopolymer.
  • a polyoxymethylene resin composition for laser marking including 100 parts by weight of polyoxymethylene, 0.01-3.0 parts by weight of carbon black, and 0.01-5.0 parts by weight of a dihydrazide compound.
  • a polyoxymethylene resin composition for laser marking is characterized in that a dihydrazide compound is used as a thermal stabilizer, whereby thermal stability of molded articles for laser marking is enhanced and emission of formaldehyde is minimized during processing.
  • the laser marking composition of the present invention includes 100 parts by weight of polyoxymethylene, 0.01-3.0 parts by weight of carbon black, and 0.01- 5.0 parts by weight of dihydrazide.
  • the polyoxymethylene resin used in the present invention is a homopolymer consisting of an oxymethylene group as a main constitutive unit represented by the following Formula 1, or a copolymer obtained by random polymerization of the oxymethylene group of Formula 1 and a monomeric group represented by the following Formula 2:
  • Xi and X 2 are the same or different, each represents hydrogen, an alkyl group or an aryl group, and x is an integer of 2-6, provided that Xi and X 2 both are not hydrogen.
  • the polyoxymethylene resin has an average molecular weight of 10,000-200,000.
  • the oxymethylene homopolymer results from the polymerization of formaldehyde or cyclic oligomer thereof, that is, trioxane.
  • the oxymethylene copolymer comprising the oxymethylene group of Formula 1 and the monomeric group of Formula 2, is obtained by randomly copolymerizing formaldehyde or cyclic oligomer thereof, and a cyclic ether compound represented by the following Formula 3, or a cyclic formal compound represented by the following Formula 4:
  • X 3 , X , X 5 and X 6 are the same or different, each represents hydrogen or an alkyl group and may be linked to the same carbon or different carbon, and n and m are an integer of 2-6, respectively.
  • the cyclic ether compound is exemplified by ethylene oxide, propylene oxide, butylene oxide and phenylene oxide
  • examples of the cyclic formal compound include 1,3- dioxolane, diethyleneglycolformal, 1,3 -prop anediolformal, 1,4-butanediolformal,
  • 1,3-dioxepaneformal and 1,3,6-trioxocane Preference is given to using the comonomer selected from among ethylene oxide, 1,3-dioxolane, 1,4- butanediolformal, and mixtures thereof
  • the above comonomer is added to trioxane or formaldehyde in the presence of a Lewis acid catalyst to perform the random copolymerization, thereby obtaining the oxymethylene copolymer having two or more linked carbon atoms in the main chain, with a melting point of 150°C or higher.
  • a molar ratio of the oxymethylene polymer structure to the oxymethylene repeating unit ranges from 0.05 to 50, and, preferably, from 0.1 to 20.
  • the polymerization catalyst used for the formation of the oxymethylene polymer include BF 3 OH 2 , BF 3 OEt 2 , BF 3 OBu 2 , BF 3 CH 3 CO 2 H, BF 3 -PF 5 HF, BF 3 -10-hydroxyacetophenone, etc., in which Et means an ethyl group and Bu means a butyl group.
  • BF 3 OEt 2 and BF 3 OBu 2 are used.
  • the adding amount of the catalyst is preferably in the range of 2xl0 "6 -2xl0 "2 mole, based on 1 mole of trioxane.
  • the polymerization which is exemplified by bulk polymerization, suspension polymerization or solution polymerization is carried out at 0-100°C, and preferably, 20-80°C.
  • an inactivator for inactivating the catalyst remaining after the polymerization there are tertiary amines, such as triethylamine, cyclic sulfur compounds, such as thiophene, phosphor compounds, such as triphenylphosphine, and alkyl- substituted melamine compounds.
  • Such an inactivator is a Lewis base material having an unshared electron pair, and forms a complex salt with the catalyst.
  • a chain transfer agent for example, alkyl-substituted phenols or ethers.
  • alkylether including dimethoxymethane is preferably used.
  • the most preferable compound is a polyoxymethylene homopolymer or copolymer having a melting point of about 160°C or higher, a crystallization degree of 65-85% and an average molecular weight of 10,000-200,000.
  • carbon black is used as a material which absorbs laser-light to obtain better marking results by use of the laser with a lower energy level.
  • the laser marking to the carbon black-combined resin and blackness largely depend on an average particle size and a DBP oil absorption of the combined carbon black, that is, the size of respective carbon black particles and the article- coagulated structure, and the adding amount of carbon black.
  • the coloration, in particular, blackness, and laser marking run counter to each other by the adding amount of carbon black.
  • the carbon black having a particle size of 10-50 nm, and a DBP oil absorption of 40-100 cc/100 mg preference is given to using the carbon black having a particle size of 10-50 nm, and a DBP oil absorption of 40-100 cc/100 mg. If the particle size of carbon black is smaller than 10 nm, dispersiblity in the resin weakens. Meanwhile, if the particle size is larger than 50 nm, the coloration of the polyoxymethylene resin is decreased. In addition, when the DBP oil absorption of the carbon black is less than 40 cc/100 mg, the coloration of the polyoxymethylene resin is decreased. Whereas, when the DBP oil absorption exceeds 100 cc/100 mg, dispersibility in the resin is lowered. In particular, carbon black coated with -OH acts to increase the dispersiblity due to compatibility with the terminal group of the polyoxymethylene resin, therefore achieving desirable blackness even by the small amount of the carbon black.
  • the carbon black to be mixed with the marking composition is employed in cases where a black or dark substrate is subjected to a white marking process.
  • the small amount of carbon black may be used where a grey substrate is colored, or carbon black may be applied where being blended with other complicated colors.
  • the carbon black is used in the amount of 0.01-3.0 parts by weight, based on 100 parts by weight of polyoxymethylene. The use of carbon black less than 0.01 parts by weight results in undesirable blackness, while the use of carbon black exceeding 3.0 parts by weight leads to poor marking results.
  • titanium dioxide TiO 2
  • an inorganic pigment and an organic pigment may be selectively used, to improve the laser marking results.
  • the use of the polyoxymethylene molding material including carbon black and other pigments is disadvantageous in terms of deposition of the main shape or decreased releasing properties upon molding, decoloration and decreased mechanical properties due to low thermal stability, and offensive odor based on the emission of formaldehyde upon the processing at high temperatures.
  • a dihydrazide compound is used as a thermal stabilizer to provide the polyoxymethylene molding material having better color consistency and permanent brightness while exhibiting superior thermal stability during the processing at high temperatures.
  • the dihydrazide compound contains a reactive hydrogen, and produces an additive product together with an inorganic acid or organic acid, or produces a polymer product through polycondensation of the derivative by the reaction with a reactive compound, that is, an organic group or a radical.
  • the dihydrazide is utilized as an epoxy resin hardener, a crosslinking agent of acrylate ester, an improver of synthetic fiber or synthetic resin, a fiber treating agent, or a radical scavenger.
  • a decomposition inducing material of the polyoxymethylene resin attributed to the addition of carbon black and other pigments, is removed, by using the dihydrazide having strong reduction-inducing properties.
  • thermal stability of the polyoxymethylene resin composition for laser marking is enhanced, and the emission of formaldehyde is minimized upon processing at high temperatures.
  • the dihydrazide compound is preferably selected from the group consisting of oxalic dihydrazide, malonic dihydrazide, succinic dihydrazide, adipic dihydrazide, sebacic dihydrazide, dodecanoic dihydrazide, isophthalic dihydrazide, piperazine N,N' -dihydrazide, m-benzene-dihydrazide, and p-benzene-dihydrazide.
  • the dihydrazide compound is used in the amount of 0.01-5.0 parts by weight, based on 100 parts by weight of polyoxymethylene. If the above amount is smaller than 0.01 parts by weight, enhancement of thermal stability is undesirable. Meanwhile, if the amount exceeds 5.0 parts by weight, the polyoxymethylene resin composition has low thermal stability and is decreased in the properties, due to the side reactions.
  • titanium dioxide is selectively used.
  • titanium dioxide is used in the amount less than 5.0 parts by weight, based on 100 parts by weight of the laser marking resin composition.
  • an inorganic pigment is used to show the predetermined color.
  • the inorganic pigment is preferably selected from the group consisting of cobalt green, cobalt blue, chrome oxide green, cadmium pigments, nickel/chrome titanates, ultramarine blue, and mixtures thereof.
  • the inorganic pigment is used in the amount less than 10 parts by weight, based on 100 parts by weight of the polyoxymethylene resin composition for laser marking.
  • an organic pigment is selectively used to show the certain color.
  • the organic pigment is selected from the group consisting of anthra quinoids, phthalocyanine blue, phthalocyanine green, chromophthal red, and mixtures thereof.
  • the organic pigment is used in the amount less than 10 parts by weight, based on 100 parts by weight of the polyoxymethylene resin composition for laser marking.
  • known additives or fillers may be further used within the range of not decreasing the marking properties by laser irradiation.
  • a laser marking process may be easily performed by irradiating the laser to a predetermined portion of the molded article formed from the resin composition.
  • a laser marking process may be easily performed by irradiating the laser to a predetermined portion of the molded article formed from the resin composition.
  • Examples of the usable laser include carbonic acid gas laser, ruby laser, semiconductor laser, argon laser, excimer laser, YAG laser, etc. Of them, an Nd:YAG laser is preferable. As such, although a continuous wave or a normal pulse may be used, preferable is a high power pulsed Nd: YAG laser in the scanning manner using a Q-switch by the continuous wave.
  • the laser marking resin composition of the present invention is used, thereby increasing thermal stability of the molded article. Further, during the processing, the emission of formaldehyde is minimized, and durability problems, resulting from abrasion of molded articles subjected to conventional printing methods, may be overcome. As well, aging problems, attributed to the decrease of chemical resistance upon oil or solvent immersion, may be solved.
  • the inventive resin composition has superior laser marking results, and is sufficiently maintained in fundamental properties as acetal, that is, mechanical properties, chemical resistance and fatigue resistance, and thus can be applied for parts requiring abrasion resistance.
  • the molded article obtained from the laser marking polyoxymethylene resin composition is subjected to laser marking with the Nd:YAG laser, thereby realizing rapid printing treatment, no need for pre- and post-treatment, and free design modifications through the connection with auto cads, resulting in a desired quality of the article.
  • the multi-colored articles in addition to white articles can be displayed by white or multi-colored bar-codes, numbers, logos, designs and two- dimensional symbols.
  • the laser marking resin composition of the present invention can be widely applied for fields immersing printed articles in various oils or solvents; parts requiring the display of multi-colored bar-codes, numbers, logos, designs and two-dimensional symbols; parts causing the abrasion of the printed portion of the printed articles; and parts requiring high abrasion resistance and laser marking properties.
  • parts requiring high abrasion resistance and laser marking properties there are keyboard keytop parts, mobile-phone keypad parts, automotive interior/exterior parts, automotive fuel parts, buckles, zippers, souvenirs, toys, etc.
  • the polyoxymethylene resin was melted and kneaded with carbon black and titanium dioxide by use of a twin- extruder, and the melt from the die of the extruder was cooled through a cooling bath, to prepare a polyoxymethylene composition in the form of a pellet.
  • a polyoxymethylene composition was injection-molded using an injection molding machine, to give an injection-molded material.
  • Example 1 Using an Nd:YAG laser of 1064 nm, a 'KEPITAL' logo was marked on a square substrate of 10x20 mm.
  • the L-ratio which was L-white/L-black, was determined at an angle of 10° under a light source of D65 by use of SP88 Spectrophotometer purchased from X-Rite Co. The higher the ratio, the better the results.
  • Example 1 Using an Nd:YAG laser of 1064 nm, a 'KEPITAL' logo was marked on a square substrate of 10x20 mm.
  • the L-ratio which was L-white/L-black, was determined at an angle of 10° under a light source of D65 by use of SP88 Spectrophotometer purchased from X-Rite Co. The higher the ratio, the better the results.
  • test piece was prepared in the same manner as in Example 1, with the exception that 0.5 parts by weight of an inorganic pigment (ultramarine blue) was further used. Such a test piece was measured for physical properties according to the above measuring methods. The results are shown in Table 2, below.
  • test piece was prepared in the same manner as in Example 1, with the exception that 0.5 parts by weight of an organic pigment (phthalocyanine blue) was further used. Such a test piece was measured for physical properties according to the above measuring methods. The results are shown in Table 2, below.
  • test piece was prepared in the same manner as in Example 1, with the exception that titanium dioxide was not used. Such a test piece was measured for physical properties according to the above measuring methods. The results are shown in Table 2, below.
  • test piece was prepared in the same manner as in Example 1, with the exception that oxalic dihydrazide was not used, and the amount of carbon black was changed as shown in Table 2, below. Such test pieces were measured for physical properties according to the above measuring methods. The results are shown in Table 2, below.
  • the present invention provides a polyoxymethylene resin composition for laser marking, from which the molded articles having better laser marking results and increased abrasion resistance, durability, chemical resistance and fatigue resistance can be obtained, by using the dihydrazide as a thermal stabilizer so that thermal stability of the molded articles is enhanced and emission of formaldehyde is minimized during the processing.
  • such molded articles are subjected to laser marking with an Nd:YAG laser, whereby white or multi-colored shapes can be displayed on multi-colored articles, and as well, the laser marking process can be more rapidly performed, with no requiring pre- and post-treatment, compared to conventional printing methods.
  • designs can be freely modified through the connection with auto cads, and thus the molded articles for laser marking have desired quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

La présente invention concerne une composition de résine de polyoxyméthylène pour marquage au laser, qui comprend 100 parts en poids de polyoxyméthylène, de 0,01 à 3,0 parts en poids de noir de carbone et, de 0,01 à 5 parts en poids de dihydrazide. Cette composition se caractérise en ce que l'utilisation du dihydrazide comme stabilisateur thermique entraîne une stabilité thermique renforcée d'articles moulés et réduit l'émanation de formaldéhyde. Cette composition de polyoxyméthylène peut ainsi présenter des résultats de marquage au laser supérieurs, améliorer la résistance à l'abrasion, la durabilité, la résistance chimique et la résistance à la fatigue. De plus, les articles moulés à partir de cette composition de polyoxyméthylène sont soumis au marquage au laser avec un laser Nd:YAG, des formes blanches ou multicolores pouvant être affichées sur des articles multicolores et des conceptions pouvant être librement modifiées via une connexion avec des progiciels auto cad, réalisant ainsi les qualités souhaitées de ces articles.
PCT/KR2003/002476 2002-11-18 2003-11-18 Composition de resine de polyoxymethylene pour marquage au laser WO2004046244A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003282406A AU2003282406A1 (en) 2002-11-18 2003-11-18 Polyoxymethylene resin composition for laser marking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2002-0071679 2002-11-18
KR10-2002-0071679A KR100496947B1 (ko) 2002-11-18 2002-11-18 레이저 마킹용 폴리옥시메틸렌 수지 조성물

Publications (1)

Publication Number Publication Date
WO2004046244A1 true WO2004046244A1 (fr) 2004-06-03

Family

ID=32322245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2003/002476 WO2004046244A1 (fr) 2002-11-18 2003-11-18 Composition de resine de polyoxymethylene pour marquage au laser

Country Status (4)

Country Link
KR (1) KR100496947B1 (fr)
AU (1) AU2003282406A1 (fr)
TW (1) TW200422343A (fr)
WO (1) WO2004046244A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110034610A1 (en) * 2009-08-07 2011-02-10 Ticona, Llc Low Formaldehyde Emission Polyacetal Composition
US8501148B2 (en) 2007-04-24 2013-08-06 Cabot Corporation Coating composition incorporating a low structure carbon black and devices formed therewith
WO2014093055A1 (fr) * 2012-12-13 2014-06-19 Ticona Llc Polyoxyméthylène dissipatif de façon électrostatique pouvant être soudé par laser basé sur des fibres d'acier inoxydable
WO2014081537A3 (fr) * 2012-11-21 2014-08-28 Ticona Llc Polyoxyméthylène plastifié, conducteur pour des applications de carburant
US8975313B2 (en) 2011-09-29 2015-03-10 Ticona Llc Polymer composition for producing articles having a metallic appearance
WO2017175698A1 (fr) * 2016-04-04 2017-10-12 大日本印刷株式会社 Film de stratification multicouche pour impression laser et corps d'encapsulation et corps d'impression formés ainsi, et composition d'encre pour impression laser utilisée pour celui-ci

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714365B1 (ko) * 2005-01-12 2007-05-02 제일모직주식회사 백색 레이저마킹용 열가소성 수지 조성물
KR20220056412A (ko) 2020-10-28 2022-05-06 코오롱플라스틱 주식회사 레이저 마킹용 폴리옥시메틸렌 수지 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063263A (en) * 1989-06-15 1991-11-05 E. I. Du Pont De Nemours And Company Polyacetal compositions containing a non-meltable polymer stabilizer improved with a minor amount of at least one meltable co-stabilizer and at least one primary antioxidant
US5128405A (en) * 1989-12-28 1992-07-07 Polyplastics Co., Ltd. Polyoxymethylene compositions containing amine polymer having pendant --NH2 functional groups
US5212222A (en) * 1991-02-04 1993-05-18 Polyplastics Co., Ltd. Melt-stable recyclable carbon black-laden polyacetal resin molding compositions and molded articles formed of the same
JPH07331029A (ja) * 1994-06-01 1995-12-19 Mitsubishi Eng Plast Kk ポリアセタール樹脂組成物
JPH08245857A (ja) * 1995-03-13 1996-09-24 Du Pont Kk ポリアセタール樹脂組成物およびそれらの成形品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138258A (ja) * 1987-07-15 1989-05-31 Asahi Chem Ind Co Ltd ポリオキシメチレン樹脂成形体とその製造方法
US5452586A (en) * 1994-09-19 1995-09-26 Huls America, Inc. Method for flushing a refrigeration system
JPH1036630A (ja) * 1996-07-30 1998-02-10 Polyplastics Co ポリオキシメチレン組成物
JP2000230062A (ja) * 1999-02-12 2000-08-22 Asahi Chem Ind Co Ltd 表面にマーキングを施したポリアセタール樹脂成形体
JP2001113830A (ja) * 1999-10-19 2001-04-24 Asahi Kasei Corp 樹脂組成物への複数色レーザーマーキング法及びそれによって得られた成形品
DE19961304A1 (de) * 1999-12-18 2001-06-21 Merck Patent Gmbh Lasermarkierbare Kunststoffe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063263A (en) * 1989-06-15 1991-11-05 E. I. Du Pont De Nemours And Company Polyacetal compositions containing a non-meltable polymer stabilizer improved with a minor amount of at least one meltable co-stabilizer and at least one primary antioxidant
US5128405A (en) * 1989-12-28 1992-07-07 Polyplastics Co., Ltd. Polyoxymethylene compositions containing amine polymer having pendant --NH2 functional groups
US5212222A (en) * 1991-02-04 1993-05-18 Polyplastics Co., Ltd. Melt-stable recyclable carbon black-laden polyacetal resin molding compositions and molded articles formed of the same
JPH07331029A (ja) * 1994-06-01 1995-12-19 Mitsubishi Eng Plast Kk ポリアセタール樹脂組成物
JPH08245857A (ja) * 1995-03-13 1996-09-24 Du Pont Kk ポリアセタール樹脂組成物およびそれらの成形品

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501148B2 (en) 2007-04-24 2013-08-06 Cabot Corporation Coating composition incorporating a low structure carbon black and devices formed therewith
US8574537B2 (en) 2007-04-24 2013-11-05 Cabot Corporation Low structure carbon black and method of making same
US9217944B2 (en) 2007-04-24 2015-12-22 Cabot Corporation Low structure carbon black and method of making same
US20110034610A1 (en) * 2009-08-07 2011-02-10 Ticona, Llc Low Formaldehyde Emission Polyacetal Composition
US8921471B2 (en) 2009-08-07 2014-12-30 Ticona Llc Low formaldehyde emission polyacetal composition
US8975313B2 (en) 2011-09-29 2015-03-10 Ticona Llc Polymer composition for producing articles having a metallic appearance
WO2014081537A3 (fr) * 2012-11-21 2014-08-28 Ticona Llc Polyoxyméthylène plastifié, conducteur pour des applications de carburant
WO2014093055A1 (fr) * 2012-12-13 2014-06-19 Ticona Llc Polyoxyméthylène dissipatif de façon électrostatique pouvant être soudé par laser basé sur des fibres d'acier inoxydable
US9991021B2 (en) 2012-12-13 2018-06-05 Ticona Llc Laser-weldable electrostatically dissipative polyoxymethylene based on stainless steel fibers
WO2017175698A1 (fr) * 2016-04-04 2017-10-12 大日本印刷株式会社 Film de stratification multicouche pour impression laser et corps d'encapsulation et corps d'impression formés ainsi, et composition d'encre pour impression laser utilisée pour celui-ci
JP2017185657A (ja) * 2016-04-04 2017-10-12 大日本印刷株式会社 レーザ印字用多層積層フィルム並びにそれよりなる包装体及び印字体、並びにこれらに用いられるレーザ印字用インキ組成物
US11098208B2 (en) 2016-04-04 2021-08-24 Dai Nippon Printing Co., Ltd. Multilayer lamination film for laser printing and package body and printing body formed thereby, and ink composition for laser printing used therefor

Also Published As

Publication number Publication date
KR20040043427A (ko) 2004-05-24
AU2003282406A1 (en) 2004-06-15
KR100496947B1 (ko) 2005-06-28
TW200422343A (en) 2004-11-01

Similar Documents

Publication Publication Date Title
JP4492522B2 (ja) レーザーマーキング用樹脂組成物およびそれを用いた成形品
WO2004046244A1 (fr) Composition de resine de polyoxymethylene pour marquage au laser
BRPI0710207A2 (pt) composição, processo para a produção de uma composição polimérica pigmentada, e, uso de um composto
ES2280051T3 (es) Composiciones polimericas marcables con laser.
US20060030631A1 (en) Laser markable polymers
CN101724259A (zh) 一种可激光标记的聚酰胺组合物及其制备方法
EP1124889A1 (fr) Composition pour le marquage par laser
US20020134771A1 (en) Flame-retarded laser-markable polyester composition
DE10162903B4 (de) Polyoxymethylenharzzusammensetzung und daraus hergestellte Formkörper
US20070235414A1 (en) Laser markable polymers
RU2336286C2 (ru) Добавка для термопластов, ее применение и способ ее изготовления, способ изготовления термопласта, содержащего такую добавку, и термопласт, изготовленный таким образом
JP5379338B2 (ja) 低放散性着色ポリオキシメチレン成形材料
KR930010238B1 (ko) 폴리아릴렌 술피드 수지조성물
KR920002151B1 (ko) 내후성 폴리옥시메틸렌 조성물 및 그의 성형제품
EP0760384A1 (fr) Composition de résins de polyarylène sulfide et d'esters d'acides aliphatiques polycarboxyliques et des d'alcools monohydroxyliques
CN112375347B (zh) 一种可激光标记蓝色字体的黑色pbt组合物及其制备
CA1064185A (fr) Polycarbonates aromatiques modifies
KR101779794B1 (ko) 레이저 마킹용 폴리옥시메틸렌 조성물
US20040242747A1 (en) Polyoxymethylene homopolymer with improved thermal stability
US20140179840A1 (en) Low Emission, UV Stabilized High Strength Acetal Copolymer
JP2001113830A (ja) 樹脂組成物への複数色レーザーマーキング法及びそれによって得られた成形品
JP2000230062A (ja) 表面にマーキングを施したポリアセタール樹脂成形体
JPH08127670A (ja) レーザーマーキング用樹脂組成物
JP4876024B2 (ja) ボタン
JP2005232404A (ja) ポリアセタール樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP