WO2004023121A1 - 試験用具およびそれの製造方法 - Google Patents

試験用具およびそれの製造方法 Download PDF

Info

Publication number
WO2004023121A1
WO2004023121A1 PCT/JP2003/011462 JP0311462W WO2004023121A1 WO 2004023121 A1 WO2004023121 A1 WO 2004023121A1 JP 0311462 W JP0311462 W JP 0311462W WO 2004023121 A1 WO2004023121 A1 WO 2004023121A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
test device
coloring
color
layers
Prior art date
Application number
PCT/JP2003/011462
Other languages
English (en)
French (fr)
Inventor
Takeshi Matsuda
Akio Okubo
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to US10/526,297 priority Critical patent/US20050255602A1/en
Priority to AU2003262004A priority patent/AU2003262004A1/en
Priority to AT03794289T priority patent/ATE510206T1/de
Priority to EP03794289A priority patent/EP1548425B1/en
Priority to CN03821133.5A priority patent/CN1682107B/zh
Publication of WO2004023121A1 publication Critical patent/WO2004023121A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • the present invention relates to a test tool used for analyzing a specific component in a sample solution and a method for producing the same.
  • a dry test tool there is a dry test tool in which a plurality of coloring layers 91 are arranged in a matrix on a carrier 90 as shown in FIGS. Each of the coloring layers 91 is collectively covered with the spreading permeation layer 92.
  • the sample liquid is spotted on the spread permeable layer 92, the sample liquid permeates in the thickness direction while spreading in the plane direction of the spread permeable layer 92 in the spread permeable layer 92. I will do it. As a result, the sample liquid is supplied to the entire coloring layer 91.
  • the spreading liquid layer 92 can spread the sample liquid in the plane direction, so that a liquid junction occurs between the adjacent coloring layers 91, and these coloring layers are formed. Interference between 91 may occur. That is, a coloring material that has exuded from a certain coloring layer 91 may be mixed into the adjacent coloring layer 91 via the spreading penetrating layer 92 in some cases.
  • a partition 93 is provided between adjacent coloring layers 91 (for example, see Japanese Patent Application Laid-Open No. 2002-71684). It is also considered to provide a water-repellent layer between the adjacent color forming layers 91 (for example, see Japanese Patent Application Laid-Open No. 2001-349835).
  • An object of the present invention is to provide an analytical device having a plurality of color-forming layers, which can be advantageously manufactured at a low cost, and that suppresses mutual interference between adjacent color-forming layers while achieving a small test tool. It is an object.
  • An analysis tool provided by the first aspect of the present invention comprises: a permeable layer; and a plurality of color-forming layers that are in contact with the permeable layer.
  • a test device configured to supply to each of the coloring layers via a permeable layer, wherein the permeable layer mainly penetrates a liquid in a thickness direction or a substantially thickness direction of the permeable layer, and The liquid has a limited penetration in the plane direction.
  • the test device of the present invention may be configured such that a plurality of color-forming layers and a permeation layer are laminated on a carrier in this order.
  • a carrier formed of a non-water-absorbing material is preferably used.
  • the material for forming the non-water-absorbing carrier include resin materials such as ET and PC.
  • the permeation layer and the number of color-forming layers may be laminated on the water-absorbing carrier in this order.
  • the sample liquid supplied to the water-absorbing carrier is supplied to each color-forming layer via the permeable layer.
  • a porous body can be used.
  • the porous material for example, a paper-like material, a foam (foam), a woven fabric, a nonwoven fabric, a knit, a glass finoletter, and a gel-like material can be used.
  • the permeable layer for example, a permeable membrane having a plurality of pores extending in the thickness direction or substantially the thickness direction is used. The pore size of the plurality of pores is set to, for example, 0.1 to: 12 m, and the porosity of the permeable membrane is set to, for example, 4 to 20 vol%.
  • the permeable membrane it is preferable to use a track-etched membrane (Track Etched Membrane) formed by a track etching method.
  • the pore size (pore size) and porosity can be controlled by the neutron irradiation time and etching time.
  • those having a glass filter or a honeycomb structure can also be used.
  • the plurality of coloring layers are arranged, for example, in a matrix.
  • the plurality of coloring layers can be arranged in a shape.
  • the plurality of color-forming layers are formed inside the specific region, and the area of the specific region is set to, for example, 2.0 to: L5 mm X 2.0 to 15 mm.
  • the occupied area of each coloring layer in a specific region is set to, for example 2.0Iotaitaiotaita 2 below.
  • the analysis tool of the present invention is typically configured so that at least two or more of the plurality of color-forming layers contain mutually different color-forming components, so that a plurality of items can be measured.
  • a reagent solution containing a coloring component is applied on a carrier by a non-swordworm application device, and then the reagent solution is dried to form a plurality of coloring layers.
  • a method for manufacturing an analytical tool comprising: a first step; and a second step of adhering a permeable membrane so as to cover the plurality of color-forming layers, wherein the second step comprises:
  • a method for manufacturing a test device is described, in which a liquid is penetrated mainly in the thickness direction or substantially the thickness direction of the permeation layer, and a liquid whose permeation in the plane direction of the permeation membrane is restricted is used.
  • the same one as described in the first aspect described above can be used.
  • the non-deworming quantitative application apparatus for example, an apparatus employing an ink jet method is used.
  • an apparatus adopting a dispenser discharge method can be used.
  • a plurality of coloring layers are formed so as to be arranged, for example, in a matrix.
  • the plurality of coloring layers may be formed so as to be arranged in a row.
  • at least two or more of the plurality of color forming layers can be formed so as to include color forming components different from each other. That is, the present invention can be applied to the manufacture of an analytical tool capable of analyzing a plurality of items. it can.
  • the plurality of color-forming layers are formed inside a specific area having an area force of 0 to 15 mm X 2.0 to: 15 mm.
  • the area occupied by each coloring layer in the specific area is set to, for example, 2.0 mm 2 or less.
  • FIG. 1 is an overall perspective view of a test tool according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line II-IL of FIG.
  • FIG. 3 is a cross-sectional view for explaining an analysis method using the test tool shown in FIGS. 1 and 2.
  • FIG. 4 is a cross-sectional view for explaining an analysis method using the test tool shown in FIGS. 1 and 2.
  • FIG. 5 is an overall perspective view of a test tool according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view for explaining the operation of the test device shown in FIG.
  • FIG. 7 is an overall perspective view for explaining a conventional test tool.
  • FIG. 8 is a sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is an overall perspective view for explaining another example of a conventional test tool.
  • FIG. 10 is a cross-sectional view taken along line XX of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 and FIG. 2 are diagrams for explaining a test tool according to a first embodiment of the present invention.
  • the test utensil 1 is configured so that a plurality of items can be inspected from the same sample liquid, and has a carrier 2, a plurality of coloring layers 3 and a permeation layer 4.
  • the carrier 2 is made of a material having a low liquid permeability, such as a resin material such as "PET or PC.
  • the plurality of coloring layers 3 are arranged in a matrix.
  • a plurality of coloring layers 3 are arranged in 3 rows and 3 columns, indicating a total of 9 coloring layers 3.
  • the number of coloring layers 3 is a design matter and is limited to 9 Done ,.
  • Each coloring layer 3 reacts with a specific component in a sample liquid such as urine or blood, and develops a color corresponding to the amount of the specific component.
  • Each coloring layer 3 is formed in a circular shape having a diameter of about l mm using, for example, a non-swordworm quantitative coating device. In the drawing, the force in which each coloring layer 3 is formed in a circle.
  • Each coloring layer 3 may be formed in a shape such as a rectangle. However, the area of the coloring layer 3 is preferably set to 2.0 mm 2 or less.
  • an apparatus employing an ink jet system or a dispenser single discharge system can be used.
  • a reagent solution containing a target color-forming component is applied onto the carrier 2, and then the reagent solution is dried to form the color-forming layer 3.
  • each color-forming layer 3 can be formed into a target size by applying the sample liquid a plurality of times. For example, even if the color-forming layer 3 has a circular shape with a diameter of 1 mm, It can be easily formed by controlling the size of the reagent liquid droplet.
  • the permeation layer 4 has liquid permeability mainly in the thickness direction and has a limited liquid permeation in the plane direction, and is formed, for example, in a size of 2.0 to 15 mm X 2.0 to 15 mm.
  • the osmotic layer 4 is provided by, for example, adhering a permeable membrane to each color-forming layer 3 without any gap by a method such as thermal bonding.
  • a permeable membrane having a large number of pores 40 extending in the thickness direction or substantially the thickness direction is used as the permeable membrane.
  • each of the pores 40 is exaggerated, and each of the pores 40 does not necessarily have to extend in a thickness direction. Anything that can provide liquid permeability in the direction is acceptable.
  • Examples of such a permeable membrane include a glass finoleta, one having a honeycomb structure, and a track-etched membrane (Track Etched Membrane) formed by a track etching method.
  • Track Etched Membrane Track Etched Membrane
  • "CYCLO PORE" from Whatman Neural can be typically used.
  • the track etching method is a method in which, for example, a polymer film formed of polycarbonate / polyester is irradiated with neutrons, and then pores are formed by chemical etching.
  • the pore size (pore size) and porosity can be controlled by the neutron irradiation time and etching time. it can.
  • a permeable membrane having, for example, a pore size (pore size) force of 0.1 to 12 ⁇ and a porosity of 4 to 20% is used.
  • the sample solution S is first spotted on the osmotic layer 4 of the test device 1 as shown in FIG. If the size of the osmotic layer 4 is 5 ⁇ 5 mm3 ⁇ 4g, the amount of the sample liquid S deposited on the test utensil 1 is, for example, 4 to 6 ⁇ L (corresponding to a droplet having a diameter of 2 to 3 mm3 ⁇ 43 ⁇ 4).
  • the osmotic layer 4 is mainly formed of a permeable membrane having liquid permeability in the thickness direction
  • the sample liquid S spotted along the pores 40 is mainly in the thickness direction. Move down. As a result, the sample liquid S is guided to the respective color forming layers 3 by the plurality of pores 40, and the sample liquid S is supplied to the respective color forming layers 3.
  • a specific component in the sample solution was allowed to react with the coloring component for a certain period of time, and then the color development in each coloring layer 3 was observed by an optical method. Will be inspected. More specifically, light is emitted to each color-forming layer 3 using the light source 50, and the reflected light at that time is received by the light-receiving sensor 51. The degree of color development or the concentration of a specific component in the sample solution is calculated.
  • the sample liquid S is configured to penetrate in the thickness direction of the permeable layer 4 by the plurality of pores 40 and the like, and does not spread in the plane direction of the permeable layer 4. ing.
  • the coloring components of a certain coloring layer 3 are mixed into the coloring layer 3 which is ⁇ g, that is, I
  • the mutual interference of the coloring layer 3 can be suppressed.
  • Such suppression of mutual interference can be achieved only by forming a permeable layer 4 by closely adhering a permeable membrane characteristically having liquid permeability in the thickness direction.
  • the test utensil 1 can be manufactured at a cost advantage by using only an expensive device or performing a special treatment in order to suppress mutual interference. Further, if the mutual interference can be suppressed, it is possible to set a small distance between the color-forming layers 3 that come into contact with each other. As a result, the dimensions of the test device 1 as a whole, in particular, the area where the sample liquid is to be spotted or the area to which light is to be irradiated (light irradiation Area) can be set smaller. As a result, the required sample liquid
  • each coloring layer 3 is formed into a circle or a rectangle having a diameter of about 1 mm or one side by an ink jet method or the like, it is difficult to inspect a single item in a conventional manner. Since a plurality of coloring layers 3 can be aggregated to measure the above items, the amount of coloring components (reagents) and carriers to be used can be reduced.
  • the sample solution is analyzed based on the reflected light when light is irradiated from the permeation layer side.
  • the carrier is formed of a transparent material, and the carrier is formed based on the amount of transmitted light. It may be configured to analyze a sample liquid. Further, when the carrier is configured to be transparent, light may be irradiated from the back side of the carrier, and the sample liquid may be analyzed based on the amount of reflected light or transmitted light at that time.
  • the illustrated analysis tool 1B has a configuration in which a permeable layer 4B is formed on an absorbent carrier 2B, and a plurality of coloring layers 3B are arranged in a matrix on the permeable layer 4B. You.
  • the absorbent carrier 2B is formed, for example, in a porous manner, and is formed so as to have liquid permeability at least in the plane direction of the absorbent carrier 2B.
  • the absorbent carrier 2B is formed, for example, as a paper-like material, a foam (foam), a woven fabric, a nonwoven fabric, a knitted fabric, a glass finoletter, or a gel-like material.
  • the penetrating layer 4B and the coloring layer 3B are laminated on the absorbent carrier 2B in this order so as to cover a substantially half area of the absorbent carrier 2B.
  • the permeable layer 4B is formed by adhering a permeable membrane similar to that described in the first embodiment to the absorbent carrier 2B.
  • the coloring layer 3B is formed on the penetrating layer 4B by, for example, an inkjet method.
  • test device 1B In such a test device 1B, as shown in FIG.
  • the sample solution S When the sample solution S is spotted, the sample solution spreads on one surface of the absorbent carrier 2B by capillary action.
  • the sample solution S in the portion where the sword is penetrated by the osmotic layer 4 B is absorbed and raised by the osmotic layer 4 B combined so as to generate a stronger capillary phenomenon, and is supplied to each coloring layer 3 B. .
  • a plurality of items are inspected using an optical method.
  • test utensil 1B is provided with the penetrating layer 4B that allows the liquid to penetrate characteristically in the thickness direction, the mutual interference between the adjacent coloring layers 3B is suppressed as in the case of the first embodiment. At the same time, the size of the test tool 1B can be reduced in cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 本発明は、試料液中の特定成分を分析する際に使用される分析用具に関連する技術に関するものである。本発明では、浸透層(4)と、浸透層(4)に接触する複数の発色層(3)と、を備え、かつ、浸透層(4)に供給された試料液(S)を、浸透層(4)を介して各発色層(3)に供給するように構成された試験用具(1)が提供される。浸透層(4)は、主として浸透層(4)の厚み方向または略厚み方向に液体を浸透させ、浸透膜(4)の平面方向への液体の浸透が制限されたものである。

Description

明 細 書 試験用具およびそれの製造方法 技術分野
本発明は、 試料液中の特定成分を分析する際に使用する試験用具およびその製 造方法に関する。 背景技術
ドライ試験用具としては、 図 7および図 8に示したように担体 90上に、 複数の 発色層 91をマトリクス状に配置したものがある。 各発色層 91は、展延浸透層 92に より一括して覆われている。 このようなドライ試験用具 9では、 展延浸透層 92に 試料液を点着すれば、 展延浸透層 92において、 試料液が展延浸透層 92の平面方向 に展延しつつ厚み方向に浸透していく。 その結果、 発色層 91の全体に試料液が供 給される。
ドライ試験用具 9では、 試料液供給後において、 展延浸透層 92が平面方向に試 料液を展延させることができるために、 隣接する発色層 91の間が液絡し、 これら の発色層 91の間で干渉が起こることがある。 つまり、 ある発色層 91から染み出し た発色物質が、展延浸透層 92を介して隣接する発色層 91に混ざり込んでしまうこ とがある。
このような相互干渉を抑制するための方策としては、 たとえば隣接する発色層 91の間の距離を大きく確保することが考えられる。 しかしながら、 発色層 91の間 の距離を大きくすれば、 試験用具 9が大型ィ匕し、 また測定時に必要とされる試料 液の量も多くなつてしまう。
相互干渉を抑制するための別の方法としては、図 9および図 10に示したように、 隣接する発色層 91の間に仕切り 93を設けたり (たとえば日本国特開 2002-71684 号公報参照) 、 隣接する発色層 91の間に撥水層を設けることも考えられている ( たとえば日本国特開 2001-349835号公報参照) 。
しかしながら、 仕切り 93を設け、 あるいは撥水処理を施すことは、 試験用具の 製造において、 作業効率的にもコスト的にも不利である。 また、 試験用具を小型 化するためには、 各発色層 91を小さく形成する必要がある力 その ^には仕切 り 93の幅寸法も小さくする必要が生じる。 そのため、 各発色層 91を、 たとえば], mm角禾 MSの小さなものとして形成する^^には、 仕切り 93を形成するために高 価な装置を使用することが必要となり、 製造コスト的に不利である。 発明の開示
本発明は、 複数の発色層を備えた分析用具において、 コスト的に有利に製造で き、 試験用具の小型ィヒを達成しつつも隣接する発色層の間での相互干渉を抑制す ることを目的としている。
本発明の第 1の側面により提供される分析用具は、 浸透層と、 上記浸透層に接 触する複数の発色層と、 を備え、 力つ、 上記浸透層に供給された試料液を、 上記 浸透層を介して上記各発色層に供給するように構成された試験用具であって、 上 記浸透層は、主として当該浸透層の厚み方向または略厚み方向に液体を浸透させ、 上記浸透膜の平面方向への液体の浸透が制限されたものである。
本発明の試験用具は、 複数の発色層および浸透層が、 この順序で担体上に積層 形成されたものとして構成することができる。 担体としては、 非吸水性材料によ り形成されたものを使用するのが好ましい。 非吸水性担体を形成するための材料 としては、 たとえば ETや PCなどの樹脂材料を挙げることができる。
浸透層およ 数の発色層は、 この順序で、 吸水性担体上に積層形成してもよ レヽ。 この には、 吸水性担体に供給された試料液が浸透層を介して各発色層に 供給される。 吸水性担体としては、 たとえば多孔質体を使用することができる。 多孔質体としては、 たとえば紙状物、 フォーム (発泡体) 、 織布状物、 不織布状 物、 編物状物、 ガラスフイノレター、 およびゲル状物質を使用することができる。 浸透層としては、 たとえば厚み方向または略厚み方向に延びる複数の細孔が形 成された浸透膜が使用される。 複数の細孔のポアサイズは、 たとえばが 0.1〜: 12 mに設定され、 浸透膜の空孔率は、 たとえば 4〜20vol%に設定される。
浸透膜としては、 トラックエッチング法により形成されたトラック 'エッチド 膜 (Track Etched Membrane)を使用するのが好ましレヽ。 トラックェツチング法と は、 ポリマーフィルムに中性子を照射し、 薬品エッチングにより細孔を形成する 方法である。 この方法では、 中性子の照射時間やエッチング処理時間などにより 細孔サイズ(ポアサイズ)や空孔率をコント口ールすることができる。 もちろん、 浸透膜としては、 ガラスフィルタやノヽニカム構造を有するものを使用することも できる。
複数の発色層は、 たとえばマトリクス状に酉己置される。 複数の発色層は、 状に配置することもできる。 複数の発色層は、 特定領域の内部に形成されるが、 特定領域の面積は、 たとえば 2.0〜: L5mm X 2.0〜15mmに設定される。 この場合、 特定領域における各発色層の占有面積は、 たとえば 2.0ιηιη2以下に設定される。 本発明の分析用具は、典型的には、複数の発色層のうちの少なくとも 2以上が、 互レ、に異なる発色成分を含むことによって、 複数の項目を測定できるように構成 される。
本発明の第 2の側面にぉレ、ては、 非劍虫定量塗布装置により担体上に発色成分 を含んだ試薬液を塗布した後、 上記試薬液を乾燥させて複数の発色層を形成する 第 1工程と、上記複数の発色層を覆うようにして浸透膜を密着させる第 2工程と、 を含む、 分析用具の製造方法であって、 上記第 2工程においては、 上記浸透膜と して、 主として当該浸透層の厚み方向または略厚み方向に液体を浸透させ、 上記 浸透膜の平面方向への液体の浸透が制限されたものを使用する、 試験用具の製造 方法が #Wされる。
本側面における浸透膜としては、 上述した第 1.の側面において説明したものと 同様なものを使用することができる。
第 1工程においては、 非撤虫定量塗布装置として、 たとえばインクジェット方 式を採用したものが使用される。 非劍定量塗布装置としては、 ディ ペンサー 吐出方式を採用したものを使用することもできる。
第 1工程においては、 複数の発色層が、 たとえばマトリクス状に配置されるよ うに形成される。 複数の発色層は、 讓状に配置されるように形成してもよい。 第 1工程にぉレ、ては、 複数の発色層のうちの少なくとも 2以上が、 互レ、に異な る発色成分を含むものとして形成することができる。 すなわち、 複数の項目を分 析することができる分析用具を製造する におレヽて、 本発明を適用することが できる。
第 1工程においては、 複数の発色層は、 面積力 0〜15mm X 2.0〜: 15mmであ る特定領域の内部に形成される。 この 、 特定領域における各発色層の占有面 積は、 たとえば 2.0mm2以下に設定される。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態に係る試験用具の全体斜視図である。 図 2は、 図 1の II一 IL線に沿う断面図である。
図 3は、 図 1および図 2に示した試験用具を用レ、た分析手法を説明するための 断面図である。
図 4は、 図 1および図 2に示した試験用具を用いた分析手法を説明するための 断面図である。
図 5は、 本発明の第 2の実施の形態に係る試験用具の全体斜視図である。 図 6は、 図 5に示した試験用具の作用を説明するための断面図である。
図 7は、 従来の試験用具を説明するための全体斜視図である。
図 8は、 図 7の VIII— VIII線に沿う断面図である。
図 9は、 従来の試験用具の他の例を説明するための全体斜視図である。
図 10は、 図 9の X— X線に沿う断面図である。 発明を実施するための最良の形態
図 1および図 2は、 本発明の第 1の実施の形態に係る試験用具を説明するため のものである。 試験用具 1は、 同一の試料液から複数の項目を検査することがで きるように構成されたものであり、 担体 2、 複数の発色層 3および浸透層 4を有 している。
担体 2は、液浸透性の低レ、材料、たとえは "PETや PCなどの樹脂材料により形成 されている。
複数の発色層 3は、 マトリクス状に配置されている。 図においては、 複数の発 色層 3が 3行 3列に配置されて計 9個の発色層 3が示されている力 複数の発色 層 3の個数は設計事項であり、 9個には限定されなレ、。 各発色層 3は、 尿や血液などの試料液中の特定成分と反応し、 特定成分の量に 応じた色に発色するものである。 各発色層 3は、 たとえば非劍虫定量塗布装置を 用いて直径が l mm程度の円形に形成されている。 図においては、 各発色層 3が 円形に形成されている力 各発色層 3は矩形などの形状に形成してもよレヽ。 ただ し、 発色層 3の面積は、 2.0mm2以下に設定するのが好ましレ、。
非 ¾ 定量塗布装置としては、 ィンクジェット方式やディスペンサ一吐出方式 を採用したものを使用することができる。 インクジェット方式においては、 たと えば目的とする発色成分を含む試薬液を担体 2上に塗布した後、 試薬液を乾燥さ せることにより発色層 3が形成される。 このような手法によれば、 個々の発色層 3は、 複数回の試料液の塗布により目的とする大きさ 状に形成することがで き、 たとえば直径 1 mm禾 li の円形であっても、 試薬液の液滴の大きさを制御す ることによって容易に形成することができる。
浸透層 4は、 主として厚み方向に液浸透性を有し、 平面方向への液浸透が制限 されたものであり、 たとえば 2.0〜15mm X 2.0〜15mmの大きさに形成されてレヽ る。 この浸透層 4は、 熱 J£着などの手法により、 浸透膜を各発色層 3に接着する などして間隙無く密着させることにより設けられている。
浸透膜としては、 図 2に良く表れているように厚み方向または略厚み方向に延 びる多数の細孔 40を有するものが使用される。 ただし、 図 2においては、 各細孔 40は誇張して図示しており、 また各細孔 40は必ずしも厚み方向に獻泉的に延びる ものでなくても良く、 浸透膜に対して、 主として厚み方向に液浸透性を付与でき るものであればよレ、。 このような浸透膜としては、 ガラスフイノレタ、 ハニカム構 造を有するもの、 トラックエッチング法により形成されたトラック ·エッチド膜 (Track Etched Membrane)を例示することができる。 トラック 'エッチド膜と しては、 典型的には、 Whatmanネ ± の 「CYCLO PORE」 を使用することができ る。
トラックエツチング法とは、 たとえばポリカーボネートゃポリエステルにより 形成されたポリマーフィルムに対して中性子を照射した後、 薬品ェツチングによ り細孔を形成する方法である。 この方法では、 中性子の照射時間やエッチング処 理時間などにより細孔サイズ (ポアサイズ) や空孔率をコント口ールすることが できる。 本発明では、 浸透膜として、 たとえば細孔サイズ (ポアサイズ) 力 .1〜 12 μ ιη、 空孔率が 4〜20%のものが使用される。
試験用具 1を用レヽて試料液の分析を行う場合、 まず図 3に示したように試験用 具 1の浸透層 4に対して試料液 Sが点着される。 試験用具 1に対する試料液 Sの 点着量は、 浸透層 4の大きさが 5 X 5 mm¾gであれば、 たとえば 4〜 6 μ L ( 直径 2〜 3 mm¾¾の液滴に相当) とされる。
試験用具 1では、 浸透層 4が主として厚み方向に液浸透性を有する浸透膜によ り形成されているために、 点着された試料液 Sは、 各細孔 40に沿って、 主として 厚み方向の下方に向けて移動する。 これにより、 試料液 Sが複数の細孔 40によつ て各発色層 3に導力ゝれ、 各発色層 3に試料液 Sが供給される。
次レヽで、 図 4に示すように試料液中の特定成分と発色成分とを一定時間反応さ せた後、各発色層 3における発色の を光学的手法により観察することにより、 複数の項目が検査される。 より具体的には、 光源 50を利用して各発色層 3に対し て光を照射し、 そのときの反射光を受光センサ 51において受光した後、 その受光 量に基づいて、 各発色層 3の発色の程度、 あるいは試料液中の特定成分の濃度が 演算される。
本実施の形態にぉレ、ては、 複数の細孔 40などによつて試料液 Sが浸透層 4の厚 み方向に浸透し、 浸透層 4の平面方向には展延しないように構成されている。 そ のため、 «する発色層 3の相互間が液絡することを抑制することができる結果、 ある発色層 3の発色成分が^ gする発色層 3に混ざり込んでしまうこと、 すなわ ち I ^する発色層 3の相互干渉を抑制することができる。 このような相互干渉の 抑制は、 厚み方向に対して特徴的に液浸透性を有する浸透膜を密着させて浸透層 4を形成するだけで達成することができる。 言い換えれば、 従来と異なる浸透膜 を採用するのみで、 製造工程の追加を行うことなく、 相互干渉を抑制することが できる。 したがって、 試験用具 1は、 相互干渉を抑制するために、 高価な装置を 使用したり、特別な処理を施す必要がなレヽ分だけ、 コスト的に有利に製造できる。 また、 相互干渉を抑制できれば、 P舞接する発色層 3の相互間距離を小さく設定 することが可能となる。 これにより、 試験用具 1の全体としての寸法、 とくに試 料液を分析する際に試料液を点着させるべき領域や光を照射すべき領域 (光照射 エリア) の面積を小さく設定できるようになる。 その結果、 必要とされる試料液
Sの量を低減することができるため、 たとえば試料液 Sとして血液を使用する場 合などには使用者の採血負担が軽減される。 また、 光照射ェリァを小さくできれ ば、 このエリアからの反射光を C-MOSセンサや CCDセンサなどにより一括して 受光することが可能となり、 測定 «の小型ィ匕の達成も可能となる。 そして、 ィ ンクジヱット方式などにより各発色層 3を 1 mm程度の直径や一辺を有する円や 矩形に形成すれば、 従来であれば、 1つの項目し力検査できないような小ェリ了 に、 複数の項目を測定するために複数の発色層 3を集約することができるため、 使用すべき発色成分 (試薬) や担体の量を低減できるようになる。 これにより、 材料コス卜の低減を図りつつも、廃棄物の量を低減することができるようになる。 本実施の形態においては、 浸透層側から光を照射したときの反射光に基づいて 試料液を分析していたが、 担体を透明な材料により形成し、 透過光の光量に基づ レ、て試料液を分析するように構成してもよい。 また、 担体を透明に構成する場合 には、 担体の裏面側から光を照射し、 そのときの反射光や透過光の光量に基づい て試料液を分析するように構成してもよレ、。
次に、 本発明の第 2の実施形態に係る試験用具を図 5および図 6を参照して説 明する。 図示した分析用具 1 Bは、 吸収性担体 2 B上に浸透層 4 Bが形成され、 この浸透層 4 B上に複数の発色層 3 Bがマトリクス状に配置された構成を有して レ、る。
吸収性担体 2 Bは、 たとえば多孔質に形成されており、 少なくとも吸収性担体 2 Bの平面方向に液浸透性を有するものとして形成されている。 この吸収性担体 2 Bは、 たとえば紙状物、 フォーム (発泡体) 、 織布状物、 不織布状物、 編物状 物、 ガラスフイノレター、 あるいはゲル状物質として形成されている。
浸透層 4 Bおよび発色層 3 Bは、 この順序で、 吸収性担体 2 Bの略半分の領域 を覆うようにして吸収性担体 2 Bに積層形成されている。 浸透層 4 Bは、 第 1の 実施の形態にぉレヽて説明したのと同様な浸透膜を、 吸収性担体 2 Bに接着するこ とにより形成されている。 発色層 3 Bは、 たとえばインクジェットの手法により 浸透層 4 B上に形成されている。
このような試験用具 1 Bでは、 図 5に良く表れているように吸収性担体 2 Bに 試料液 Sを点着すれば、 毛細管現象により吸収性担体 2 Bの一面に試料液が展延 する。 浸透層 4 Bに劍虫する部分にある試料液 Sは、 たとえばより強い毛細管現 象が発生するように組み合わされた浸透層 4 Bにより吸レ、上げられ、 各発色層 3 Bに供給される。 その後は、 第 1の実施の形態と同様にして、 光学的手法を利用 して、 複数の項目について検査される。
試験用具 1 Bは、 厚み方向に特徴的に液を浸透させる浸透層 4 Bを備えている ので、 第 1の実施の形態の場合と同様に、 隣接する発色層 3 Bの相互干渉を抑制 しつつも、 コスト的に有利に試験用具 1 Bの小型化を図ることができる。

Claims

請 求 の 範 囲
1 . 浸透層と、 上記浸透層に接触する複数の発色層と、 を備え、 力つ、 上記浸透 層に供給された試料液を、 上記浸透層を介して上記各発色層に供給するように構 成された試験用具であって、
上記浸透層は、 主として当該浸透層の厚み方向または略厚み方向に液体を浸 透させ、 上記浸透膜の平面方向への液体の浸透が制限されたものである、 試験用 具。
2 . 上記複数の発色層および上記浸透層は、 この順序で担体上に積層形成されて レ、る、 請求項 1に記載の試験用具。
3 . 上記浸透層および上記複数の発色層は、 この順序で、 吸水性担体上に積層形 成されている、 請求項 1に記載の試験用具。
4 . 上記浸透層は、 上記厚み方向または略厚み方向に延びる複数の細孔を形成し た浸透膜により構成されている、 請求項 1に記載の試験用具。
5 . 上記複数の細孔は、 ポアサイズが 0.1〜: 12 μ ιηである、請求項 4に記載の試験 用具。 '
6 . 上記浸透膜は、 空孔率カ 〜20vol%である、 請求項 4に記載の試験用具。
7 . 上記浸透膜は、 トラックエッチング法により形成されたものである、 請求項 4に記載の試験用具。
8 . 上記浸透膜は、 ハニカム構造を有している、 請求項 4に記載の試験用具。
9 . 上記複数の発色層は、 マトリクス状に配置されてレ、る、 請求項 1に記載の試 験用具。
10. 上記複数の発色層のうちの少なくとも 2以上が、 互いに異なる発色成分を含 むことによって、 複数の項目を測定できるように構成されている、 請求項 1に記 載の試験用具。
11. 上記複数の発色層は、 特定領域の内部に形成されており、
上記特定領域の面積は、 2.0〜: 15mm X 2.0〜: 15mmである、 請求項 1に記載 の試験用具。
12. 上記特定領域における各発色層の占有面積は、 2.0mm2以下である、 請求項 11に記載の試験用具。
13. 非接触定量塗布装置により担体上に発色成分を含んだ試薬液を塗布した後、 上記試薬液を乾燥させて複数の発色層を形成する第 1工程と、
上記複数の発色層を覆うようにして浸透膜を密着させる第 2工程と、 を含む、 試験用具の製造方法であって、
上記第 2工程においては、 上記浸透膜として、 主として当該浸透層の厚み方 向または略厚み方向に液体を浸透させ、 上記浸透膜の平面方向への液体の浸透が 制限されたものを使用する、 試験用具の製造方法。
14. 上記第 1工程においては、 上記非劍虫定量塗布装置として、 インクジェット 方式を採用したものを使用する、 請求項 13に記載の試験用具の製造方法。
15. 上記第 1工程においては、 上記複数の発色層がマトリクス状に配置されるよ うに形成される、 請求項 13に記載の試験用具の製造方法。
16. 上記第 1工程にぉレ、ては、 上記複数の発色層のうちの少なくとも 2以上が、 互いに異なる発色成分を含むものとして形成される、 請求項 13に記載の試験用具 の製造方法。
17. 上記第 1工程においては、 上記複数の発色層が、 面積カ 0〜15 111 2.0〜 15mmである特定領域の内部に形成される、 請求項 13に記載の試験用具の製造方 法。
18. 上記特定領域における各発色層の占有面積は、 2.0mm2以下に設定される、 請求項 17に記載の試験用具の製造方法。
PCT/JP2003/011462 2002-09-09 2003-09-08 試験用具およびそれの製造方法 WO2004023121A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/526,297 US20050255602A1 (en) 2002-09-09 2003-09-08 Test kit and process for producing the same
AU2003262004A AU2003262004A1 (en) 2002-09-09 2003-09-08 Test kit and process for producing the same
AT03794289T ATE510206T1 (de) 2002-09-09 2003-09-08 Testkit
EP03794289A EP1548425B1 (en) 2002-09-09 2003-09-08 Test kit
CN03821133.5A CN1682107B (zh) 2002-09-09 2003-09-08 试验用具及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002262510A JP4283512B2 (ja) 2002-09-09 2002-09-09 試験用具、およびそれの製造方法
JP2002-262510 2002-09-09

Publications (1)

Publication Number Publication Date
WO2004023121A1 true WO2004023121A1 (ja) 2004-03-18

Family

ID=31973162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011462 WO2004023121A1 (ja) 2002-09-09 2003-09-08 試験用具およびそれの製造方法

Country Status (7)

Country Link
US (1) US20050255602A1 (ja)
EP (1) EP1548425B1 (ja)
JP (1) JP4283512B2 (ja)
CN (1) CN1682107B (ja)
AT (1) ATE510206T1 (ja)
AU (1) AU2003262004A1 (ja)
WO (1) WO2004023121A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473217B (zh) * 2006-06-16 2011-10-05 索尼达德克奥地利股份公司 用于指示天然产品的期龄或品质的光学传感器和方法
JP4770623B2 (ja) * 2006-07-21 2011-09-14 大日本印刷株式会社 検知紙
CN104502343B (zh) * 2015-01-23 2017-12-19 昆明泊银科技有限公司 一种特殊专用检测试纸的制备方法
CN111879768B (zh) * 2020-07-30 2022-03-18 上海化工研究院有限公司 一种多功能分段显色的酸碱梯度快速检测瓶及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213886A (ja) * 1993-01-13 1994-08-05 Fuji Photo Film Co Ltd 多項目分析方法
JP2000146959A (ja) * 1998-11-12 2000-05-26 Kdk Corp 検体分析用具
WO2000042430A1 (en) 1999-01-15 2000-07-20 Medtox Scientific, Inc. Lateral flow test strip
JP2001330606A (ja) * 2000-05-19 2001-11-30 Shinya Watanabe 試料チップ作製方法
JP2001349835A (ja) 2000-06-09 2001-12-21 Hirose Denshi System Kk 呈色物定量用の試験紙
JP2002071684A (ja) 2000-08-25 2002-03-12 Wako Pure Chem Ind Ltd 多項目生体成分測定用試験具及びその製造方法
WO2002063296A1 (en) 2000-12-28 2002-08-15 Fernandez De Castro Aurora L Test strip for simultaneous detection of a plurality of analytes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816224A (en) * 1980-08-05 1989-03-28 Boehringer Mannheim Gmbh Device for separating plasma or serum from whole blood and analyzing the same
DE3118381A1 (de) * 1981-05-09 1982-11-25 Boehringer Mannheim Gmbh, 6800 Mannheim Mehrschichtiges testmittel zum nachweis einer komponente einer fluessigen probe
US4839296A (en) * 1985-10-18 1989-06-13 Chem-Elec, Inc. Blood plasma test method
CN2047376U (zh) * 1989-01-30 1989-11-08 中国农业科学院茶叶研究所 菊酯农药鉴定板
DE3922495A1 (de) * 1989-07-08 1991-01-17 Miles Inc Analyseverfahren fuer substanzen aus biologischen fluessigkeiten, insbesondere vollblut
GB9002274D0 (en) * 1990-02-01 1990-03-28 Cranfield Biotech Ltd Colorimetric analysis
DE4202850A1 (de) * 1992-01-31 1993-08-05 Boehringer Mannheim Gmbh Analysenelement fuer immunoassays
US5708247A (en) * 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
US6036659A (en) * 1998-10-09 2000-03-14 Flexsite Diagnostics, Inc. Collection device for biological samples and methods of use
US20010028862A1 (en) * 2000-01-21 2001-10-11 Kenji Iwata Test device for a multi-items test and the method for producing the same as well as a measuring instrument for the test device
EP1459064B1 (en) * 2001-12-28 2008-02-13 Polymer Technology Systems, Inc. Test strip for determining concentration of triglycerides

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213886A (ja) * 1993-01-13 1994-08-05 Fuji Photo Film Co Ltd 多項目分析方法
JP2000146959A (ja) * 1998-11-12 2000-05-26 Kdk Corp 検体分析用具
WO2000042430A1 (en) 1999-01-15 2000-07-20 Medtox Scientific, Inc. Lateral flow test strip
JP2001330606A (ja) * 2000-05-19 2001-11-30 Shinya Watanabe 試料チップ作製方法
JP2001349835A (ja) 2000-06-09 2001-12-21 Hirose Denshi System Kk 呈色物定量用の試験紙
JP2002071684A (ja) 2000-08-25 2002-03-12 Wako Pure Chem Ind Ltd 多項目生体成分測定用試験具及びその製造方法
WO2002063296A1 (en) 2000-12-28 2002-08-15 Fernandez De Castro Aurora L Test strip for simultaneous detection of a plurality of analytes

Also Published As

Publication number Publication date
EP1548425A1 (en) 2005-06-29
CN1682107B (zh) 2010-09-22
EP1548425A4 (en) 2006-11-02
US20050255602A1 (en) 2005-11-17
CN1682107A (zh) 2005-10-12
AU2003262004A1 (en) 2004-03-29
JP2004101328A (ja) 2004-04-02
EP1548425B1 (en) 2011-05-18
JP4283512B2 (ja) 2009-06-24
ATE510206T1 (de) 2011-06-15

Similar Documents

Publication Publication Date Title
US5451350A (en) Test carrier for the determination of an analyte as well as a process for its production
US8506903B2 (en) Test sensor and method for manufacturing the same
CN1984716A (zh) 分析测试元件
CZ227697A3 (cs) Diagnostický zkušební nosič a jeho použití
WO2005106463A1 (ja) 検体分析用具
JPH0915232A (ja) 液体中の分析対象物測定用の多層分析エレメント
RU96115372A (ru) Вытянутая многослойная индикаторная полоска для измерения концентрации анализируемого вещества, способ измерения концентрации анализируемого вещества
FI90694C (fi) Analyysiväline biologiselle nesteelle
WO2004023121A1 (ja) 試験用具およびそれの製造方法
JPS62138758A (ja) 一体型多層分析要素
JPH1078431A (ja) 毛管間隙を有する診断試験用担体
JP5237368B2 (ja) 分析要素の製造方法
JPS62138756A (ja) 一体型多層分析要素
JPS62138757A (ja) 一体型多層分析要素
JPS6413458A (en) Whole blood analyzing element
CN102469969A (zh) 用于分析体液的测试元件
RU2418300C2 (ru) Нанесение реагента на матричный материал
JP2002071684A (ja) 多項目生体成分測定用試験具及びその製造方法
JP4761893B2 (ja) 分析用具およびその製造方法
JPH11326339A (ja) 診断用自動分析装置用試験具
JP2007064657A5 (ja)
JP2006275716A (ja) 試験紙
JP2008541107A5 (ja)
US20180345283A1 (en) Method for manufacturing a test element for detecting an analyte in a body fluid
AU5014799A (en) Assay devices with non-woven sample collection zone

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003794289

Country of ref document: EP

Ref document number: 10526297

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038211335

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003794289

Country of ref document: EP