WO2004023039A1 - 廃棄物の処理方法及び処理装置 - Google Patents

廃棄物の処理方法及び処理装置 Download PDF

Info

Publication number
WO2004023039A1
WO2004023039A1 PCT/JP2003/011202 JP0311202W WO2004023039A1 WO 2004023039 A1 WO2004023039 A1 WO 2004023039A1 JP 0311202 W JP0311202 W JP 0311202W WO 2004023039 A1 WO2004023039 A1 WO 2004023039A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
waste
gas
furnace body
outlet
Prior art date
Application number
PCT/JP2003/011202
Other languages
English (en)
French (fr)
Inventor
Takaiku Yamamoto
Hirotaka Sato
Yoshinori Matsukura
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to AU2003264364A priority Critical patent/AU2003264364A1/en
Priority to JP2004534136A priority patent/JPWO2004023039A1/ja
Publication of WO2004023039A1 publication Critical patent/WO2004023039A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/085High-temperature heating means, e.g. plasma, for partly melting the waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention is intended to perform at least one of combustion, gasification, and melting on waste such as general waste and industrial waste (hereinafter, simply referred to as “waste”). And a waste disposal method.
  • the present invention recovers gas (hereinafter, also simply referred to as “energy gas”) that can be used as a fuel by gasifying organic substances contained in wastes, and reduces low-boiling metals contained in these wastes.
  • Ash and valuable metals (hereinafter simply referred to as “metals”) contained in these wastes are collected as molten slag and molten metal, respectively, and these treatments are stable on a commercial scale for a long time.
  • the present invention relates to a waste treatment method and a treatment device to be realized by realizing the method.
  • the waste includes, for example, municipal solid waste represented by garbage, plastic waste and iron waste, discarded automobile and home appliance shredder dust, incinerated ash, and earth and sand. Digging garbage, sludge, sludge, steel dust, medical waste, and waste wood. Background art
  • a furnace center lance that can be moved up and down to blow down the combustion supporting gas into the furnace along the furnace axis, and the combustion supporting gas.
  • the present invention has proposed a gasification and melting furnace and a gasification and melting method capable of preventing generation of a low-temperature region inside the furnace body and concentrating a flash point for performing a waste combustion treatment. According to the present invention, energy gas can be stably recovered in addition to high value-added molten slag and various metals.
  • the gasification and melting furnace has the following problems (a) to (g).
  • the basic gasification and melting furnace can be further improved, It has been found that it is possible to provide a waste treatment method and a waste treatment apparatus applicable to difficult-to-treat wastes.
  • the temperature of the gas in the upper part of the furnace body is set at 1000 ° C or higher and 1400 ° C or lower to discharge gas from the gas discharge port in order to suppress the emission of dioxins. Rapidly cool to 200 ° C or less with the exhaust gas cooling device. In particular, to completely suppress the generation of dioxins, it is desirable to raise the temperature of the upper part of the furnace body.
  • the gas temperature in the furnace is high, low-boiling substances contained in the waste evaporate in the furnace, and some of them may adhere to the inner surface of the duct and grow, blocking the duct.
  • the refrigerant is blown into the duct, a sufficient blockage suppression effect may not be obtained depending on the type of waste and the position where the refrigerant is blown. For example, even if a refrigerant is blown into the duct, the exhaust gas temperature remains high near the inlet of the duct, so low-boiling gaseous substances in the exhaust gas adhere to the vicinity of the inlet of the duct, and ultimately If this happens, the duct may be blocked.
  • mist when mist is blown into the duct, if the spread angle of the mist to be blown is not set properly with respect to the inner diameter of the duct, refrigerant such as mist collides or adheres to the inner wall of the duct and becomes unevaporated water, It may be difficult to control the gas cooling device installed downstream of the gasification furnace.
  • Japanese Patent Application Publication No. 2002-168433 discloses a drive shaft having a wiper blade inserted into a duct, and a drive means for rotating the drive shaft and reciprocating in the axial direction.
  • a duct cleaning device is disclosed.
  • the combustion temperature in the furnace inevitably passes through a temperature range of 200 to 600 ° C, which is said to easily generate dioxins, so chlorine, a constituent element of dioxins, If wastes with a high halogen content, such as, are charged from the furnace heating stage and stacked, dioxins will be generated when the gasification and melting furnace is started up.
  • part of the carbon contained in the input waste is scattered unused and passed through a duct, and then collected as dust by a dust remover.
  • the waste contains a large amount of water, the fluctuations in the gas immediately after the input of the waste increase, the operation becomes unstable, and the calories of the generated gas decrease due to the evaporation of water. Therefore, it is not preferable that the waste contains a large amount of water.
  • Japanese Unexamined Patent Publication No. 8-152181 discloses that the combustion temperature at the upper tuyere level is made lower than the melting temperature of the ash by supplying steam from the upper tuyere installed in the bed of waste. Pyrolysis residue at the upper blade level due to combustion of combustible gas There is disclosed an invention in which the generation of a semi-molten substance is suppressed to thereby prevent the semi-molten substance from adhering to the inner wall of the furnace. That is, the steam blown from the upper tuyere installed in the packed bed suppresses the combustion temperature at the height where the upper tuyere is installed, and suppresses the generation of semi-molten matter at this level.
  • the basic gasification and melting furnace is a vertical furnace that burns waste to gasify organic matter in waste and collects it as energy gas, and also collects ash and metal in waste as melt. is there.
  • This gasification and melting furnace has a gas outlet provided at an upper part of a furnace body, a molten slag and a molten metal outlet provided at a lower part of the furnace body, and a molten slag and a molten metal outlet provided at a lower part of the furnace body.
  • a waste load inlet provided between the furnace, a furnace center lance which is provided at the upper part of the furnace body and extends downward along the furnace axis, and which is capable of injecting combustible gas into the furnace;
  • One or more upper tuyeres provided in the furnace wall between the charging inlet and the gas outlet for injecting flammable gas, and between the waste inlet and the molten slag and molten metal outlet It has a lower tuyere installed at one or more stages on the furnace wall toward the inside of the furnace, for spraying the supporting gas or the supporting gas and the fuel in the axial direction of the furnace.
  • the gasification and melting furnace burns the expensive coke by burning the carbon content in the pyrolysis residue of the waste heated to a high temperature on the upper end surface of the waste charged in the furnace. Dissolves ash and metals in residue without using.
  • the composition of the waste is often not uniform and heterogeneous, and in some cases, it is considered that there is almost no carbon content in the pyrolysis residue.
  • most of the carbon contained in plastic waste and shredder dust is gasified by the pyrolysis reaction, so the carbon contained in the pyrolysis residue is extremely small. For this reason, In order to maintain the position of the upper end surface of the waste loaded in the furnace, it is necessary to frequently adjust the amount of the supporting gas blown from the lower tuyere and the center lance of the furnace. It costs.
  • Halogen such as chlorine and bromine contained in waste is a source of dioxins, but is a very high value-added substance, and it is desirable to efficiently recycle materials.
  • effective treatment and recycling methods for wastes with high chlorine content have not been established.
  • wastes containing halogens such as chlorine are incinerated by incinerators.
  • advanced gas treatment technology is required to control dioxins emissions.
  • Japanese Patent Application Laid-Open No. 2001-162248 also discloses that waste plastic containing vinyl chloride is thermally decomposed at 250 to 500 ° C, the exhaust gas containing chlorine is burned by a combustion device, and the combustion gas is used as a heat source to generate steam using a boiler.
  • a device is disclosed in which the combustion gas after generating steam is supplied to a cooling device for cooling, and the hydrogen chloride in the cooled gas is recovered by a chlorine recovery device. It is said that the temperature of the exhaust gas before the heat is maintained at 200 ° C or higher to suppress corrosion by hydrogen chloride.
  • dioxins may be resynthesized under the temperature condition of 200 ° C or more.
  • plastic waste containing halogen is subjected to pyrolysis gasification at a low temperature of 500 ° C or less, tar may be generated and pipes may be blocked.
  • Japanese Patent Application Laid-Open No. 2000-202419 discloses a method of treating waste containing halogen-containing flame retardant by removing generated hydrogen chloride with a gas water washing device. Detailed temperature control conditions, etc. are not described, and it is unknown.
  • Basic gasification and melting furnaces can detoxify medical waste and contaminated soil, as well as hazardous waste such as polychlorinated biphenyl (PCB).
  • PCB polychlorinated biphenyl
  • the harmful components having a low boiling point may be gasified, and the gasified harmful components may be discharged out of the furnace from the gas outlet before being sufficiently decomposed.
  • a molten metal slag and a molten metal basin having a space in which the molten metal can be temporarily accumulated before being discharged are provided. It has been disclosed. By providing this pool, the inside of the furnace becomes a dry hearth with no molten slag or molten metal stored in the furnace bottom, and the furnace operation is stabilized.
  • the gasification and melting furnace may be temporarily shut down with waste residue and slag remaining in the furnace in order to inspect the equipment.
  • waste and cold slag remaining inside the gasification and melting furnace may block the connection between the furnace and the basin, which is generated inside the basin. It is conceivable that the generated gas may not easily flow into the furnace body. In this case, the pressure in the hot water pool may increase, and the gas may leak from the molten slag and the molten metal outlet.
  • the present invention provides the following means for solving the above problems (a) to (g) relating to the basic gasification and melting furnace.
  • the temperature of the exhaust gas flowing into the duct is preferably low in order to suppress the blockage of the duct, but in order to suppress the resynthesis of dioxins, the temperature of the exhaust gas inside the duct is 800 or more, preferably It is desirable to maintain 850 ° C or higher.
  • the temperature at the inlet of the gas cooling device installed at the subsequent stage can be reduced, so that the amount of mist used in the gas cooling device can be reduced and the burden can be reduced.
  • the gas cooling device can be downsized.
  • a device for removing an obstruction that can mechanically remove the obstruction in a short time is disposed of. It is proposed as an object processing device.
  • a differential pressure gauge capable of monitoring the differential pressure between the inlet and the outlet of the duct is installed at the inlet and the outlet of the duct, and this differential pressure shows a tendency to increase more than at the start of operation. In this case, it is determined that the blockage has started, and the device for removing the blockage is operated. Alternatively, the blockage removal device may be operated periodically regardless of whether the duct is blocked.
  • the temperature can be increased without generating dioxins.
  • the burner combustion is performed during the heating of the basic gasification and melting furnace.
  • the charging time in the furnace can be shortened by charging the carbon material with a low total concentration of halogens and raising the height of the upper end surface of the charged material to a specified level.
  • the present invention proposes to reduce unused carbon by injecting steam into a portion above the packed bed. As a result, the steam contacts only the unused carbon scattered at the upper part of the furnace and gasifies. Since the injected steam does not come into contact with the pyrolysis residue carbon in the packed bed, the ash and metals contained in the waste are melted, and the molten slag and Z or molten metal are discharged stably. Be done.
  • the carbon in the waste is not completely gasified and is collected as unused carbon as dust by a dust removal facility, it can be re-input to the gasification and melting furnace.
  • the particle size of the dust is extremely small, 1 mm or less, if it is charged as it is, it may be scattered in the furnace.However, at the time of charging, the dust containing unused carbon is mixed and compacted together with the waste. Dust can be prevented from being scattered.
  • the position of the upper end face of the packed bed can be easily controlled by introducing a carbon material. Even with a basic gasification and melting furnace, it is possible to mix carbonaceous materials into waste and then compact and charge it into a single lump. In this case, even if a carbon material having a fine particle size is used, there is no fear of scattering and deterioration of gas permeability. In addition, in the basic gasification and melting furnace, there is no concern that the ignition point is concentrated in the center of the furnace, so that the liquid permeability of the molten material is deteriorated and stable slag cannot be discharged.
  • a charcoal containing pyrolysis residual carbon such as timber.
  • a charging device that has two valves arranged in series in the waste charging path for charging the waste into the furnace. This charging device supplies carbonaceous material to the space between the external valve and the internal valve with the external valve open and the internal valve closed, and closes the external valve. The carbon material can be charged into the furnace by opening the valve on the inner side of the furnace.
  • This charging device can be an external valve or an internal One of the valves on the side is always closed, so that a large amount of gas in the furnace passes through the charging device and leaks out of the furnace, or a large amount of air outside the furnace is sucked into the furnace. Is prevented.
  • the carbon material to be charged to solve this problem (d) is charged after the temperature in the furnace is increased to a condition for completely decomposing dioxins, so that the concentration of halogens in the carbon material is low. There is no problem even if it is high.
  • the exhaust gas guided through a duct connected to the gas outlet of the furnace body of the basic gasification and melting furnace is used for: (i) hydrogen halide gas contained in the exhaust gas that has been removed after dust removal; Recovering it as an acid by a recovery device and converting the recovered acid to halogen; and / or (ii) condensing the hydrogen halide gas contained in the cooled exhaust gas by cooling it to 100 ° C or less,
  • the recovered acid is converted to halogen by recovering the hydrogen halide contained in the acid as an acid.
  • halogen contained in waste can be materially recycled while suppressing emission of dioxins and corrosion of equipment.
  • FIG. 1 is a schematic diagram for explaining details of a waste gasification and melting furnace used in the embodiment.
  • FIG. 4 is an explanatory view schematically showing an attached matter removing device that is a waste treatment device that is removed by a conventional method.
  • FIG. 3 is an explanatory diagram showing a drive shaft having a fiberscope installed at a distal end portion.
  • FIG. 4 is an explanatory diagram showing a system flow for recovering halogen according to the embodiment.
  • FIG. 5 is an explanatory diagram showing a system flow for recovering halogen according to the embodiment.
  • FIG. 6 is an explanatory diagram showing a system flow for recovering halogen according to the embodiment.
  • FIG. 7 is an explanatory diagram showing a system flow for recovering halogen according to the embodiment.
  • FIG. 8 is an explanatory diagram schematically showing a partially simplified gasification and melting furnace provided with a pool for the gasification and melting furnace shown in FIG.
  • Fig. 9 is a graph showing the measurement results of the differential pressure between the inlet and outlet of the duct.
  • FIG. 10 is a graph showing the measurement results of the differential pressure between the inlet and outlet of the duct.
  • FIG. 11 is a graph showing the measurement results of the differential pressure between the inlet and outlet of the duct.
  • Fig. 12 is a graph showing the measurement results of the differential pressure between the inlet and outlet of the duct.
  • Fig. 13 is a graph showing the measurement results of the differential pressure between the inlet and outlet of the duct.
  • FIG. 14 is a graph showing the measurement results of the differential pressure between the inlet and outlet of the duct.
  • FIG. 1 is a schematic diagram for explaining details of a waste gasification and melting furnace 1 used in the present embodiment.
  • the furnace la of the gasification and melting furnace 1 of the present embodiment is lined with a refractory lining 2.
  • the furnace body la has a waste inlet 4 for charging the waste 3 and energy gas (hereinafter, also simply referred to as “exhaust gas”) generated and dust.
  • exhaust gas energy gas
  • a duct 6 communicating with the interior space of the furnace body la through the gas outlet 5.
  • a pusher 7 is attached to the waste loading port 4, and the carbon material 8 to be loaded is loaded together with the waste 3 from the waste loading port 4 in a compacted state.
  • Reference numeral 9 in FIG. 1 denotes a vertically movable furnace center lance which blows the oxidizing gas 9a downward along the furnace axis (furnace center axis).
  • Reference numeral 10 denotes an upper tuyere arranged at one or more stages (two stages in this example) on the furnace wall of the furnace body la so as to blow the supporting gas 10a in a direction shifted from the direction toward the furnace axis.
  • reference numeral 11 denotes that the supporting gas 11 a or the supporting gas 11 a and the fuel lib are protruded into the furnace so as to be sprayed in a direction toward the furnace axis, and are provided at one or more stages on the furnace wall. In this case, the lower tuyere is located.
  • a nozzle for injecting a refrigerant 12 composed of at least one of water, inert gas, process gas or steam 13 or more are installed.
  • the generated gas is once heated to 1000 ° C or more and held for more than 2 seconds to decompose dioxins.
  • the generated gas heated in the furnace at a temperature of 1000 ° C. or higher is cooled by the refrigerant 12 blown from the refrigerant blowing nozzle 13 installed near the exhaust gas outlet above the furnace la.
  • the temperature of the exhaust gas flowing into the duct 6 is preferably low in order to suppress the blockage of the duct 6, but in order to suppress the resynthesis of dioxins, the exhaust gas temperature in the duct 6 is 800 °. It is desirable to maintain the temperature at C or higher, preferably at 850 ° C or higher.
  • the gas maintained at 800 ° C or higher in duct 6 is rapidly cooled to 200 ° C or lower by a downstream exhaust gas cooling device (not shown).
  • a downstream exhaust gas cooling device not shown.
  • the refrigerant 12 blown into the inside of the furnace la from the nozzle 13 prevents low-boiling gaseous substances from adhering to the inner surface of the duct 6 if it is composed of at least one of water, inert gas, process gas and steam. Although it can be suppressed, it is desirable to use water.
  • an inert gas is used as the refrigerant 12
  • the high-power gas generated in the furnace causes a reduction in the power port.
  • gas 15 is blown from one or more nozzles 14 capable of injecting high-pressure gas into duct 6, and solid dust is injected into the inside of furnace body la and Clean the inside of duct 6 by blowing it off to Z or the downstream gas cooling unit.
  • blockage of duct 6 can be prevented by blowing refrigerant 12 before duct 6.
  • FIG. 2 is a diagram schematically showing a deposit removing device 16 which is a waste treatment device for removing a deposit on the inner wall of the duct 6 by a mechanical method in the gasification and melting furnace 1 of the present embodiment.
  • FIG. 2 is a diagram schematically showing a deposit removing device 16 which is a waste treatment device for removing a deposit on the inner wall of the duct 6 by a mechanical method in the gasification and melting furnace 1 of the present embodiment.
  • the degree of blockage due to the deposit 17 inside the duct 6 can be predicted from a change in the pressure difference between the pressure at the inlet 6a and the pressure at the outlet 6b of the duct 6.
  • the differential pressure change is continuously monitored by the differential pressure measuring device 18. In other words, when the absolute value of the differential pressure measured by the differential pressure measuring device 18 shows an increasing tendency compared to the initial value (at the start of operation), it is predicted that the blockage in the duct 6 is progressing. You.
  • the attached matter 17 is removed using the attached matter removing device 16.
  • the drive shaft 19-1 moves forward and backward, and then the drive shaft 19-2 moves forward and backward, so that the deposit 17 is separated and removed from the inner wall of the duct 6.
  • the drive shafts 19-1 and 19-2 are moved by the lifting device 20 in the direction in which the duct 6 extends.
  • the drive shafts 19-1 and 19-2 are cooled down to near the tip by water cooling. As a result, bending and damage due to the thermal load on the drive shafts 19-1 and 19-2 are suppressed.
  • the drive shafts 19-1 and 19-2 are provided with water supply / drainage pipes (not shown) for supplying and draining the cooling water 21 so that they can be used under high temperature conditions.
  • a gas leak prevention device 22 of the ground seal type is provided in the drive part of the drive shafts 19-1 and 19-2, so that the gas in the system is outside the system when the drive shafts 19-1 and 19-2 are operating. Leak Is prevented.
  • the drive shaft 19-1 be operated while the degree of blockage of the inner wall of the duct 6 is small. As long as the degree of blockage is small, there is no need to rotate the drive shafts 19-1 and 19-2 as disclosed in Japanese Patent Application Laid-Open No. 2002-168433. This is because the obstruction can be removed in a short time without applying a large load for removing the air. Therefore, there is no gas leak from the gas leak prevention device 22, and the life of the device is improved. For example, it is desirable to perform the measurement when the value of the differential pressure measuring device 18 has increased by 20 mniH 20 or more and 400 mmH 20 or less as compared with the average value up to 2 hours after the start of operation. Alternatively, it is also desirable to operate the obstruction removal device 16 periodically at a cycle of 1 hour or more and 24 hours or less.
  • the outer diameter d of the largest diameter portion of the drive shafts 19-1 and 19-2 be 50% or more of the inner diameter D of the duct 6. Further, it is desirable that the angle ⁇ ; of the stripping members 19-1a and 19-2a at the tips of the drive shafts 19-1 and 19-2 be 10 degrees or more and 150 degrees or less.
  • the length of the drive shafts 19-1 and 19-2 is three times the length L from the standby position of the drive shafts 19-1 and 19-2 to the forward limit of the drive shafts 19-1 and 19-2. It is desirable to make the following.
  • Drive shaft 19-1 and advance limit 26 of 19-2 In the case of moving forward into the furnace as in the case of the drive shaft 19-2 of 2, the position is preferably set to a position advanced by about 10 mm to 300 dragons below the gas discharge port 5. When the duct advances in the direction where the ducts intersect as in the case of the drive shaft 19-1 in Fig. 2, it is preferable that the duct advance by ⁇ 50mm with respect to the center axis of the intersecting duct. .
  • the drive shafts 19-1 and 19-2 can be monitored while obstructing the inside of the duct 6.
  • Driving is also effective. Basically, the state of blockage can be estimated from the differential pressure in the duct 6, but if the amount of the deposit 17 is extremely small, there is a possibility that the measurement result of the differential pressure does not show a remarkable tendency. If this small deposit 17 remains when the inside of the duct 6 is cleaned, the obstruction may grow again using the deposit as a nucleus. Therefore, it is effective to work while observing the inside of the duct 6 with a fiber-scope 27 or the like.
  • the carbonaceous material 32 having a halogen concentration of 0.1% or less such as chlorine is reduced to a predetermined height in the gasification and melting furnace 1.
  • the predetermined height means a height between the waste inlet 4 or the charging device 28 and the lower tuyere 11.
  • the temperature is raised by, for example, charging the charging device 28 into the furnace from the charging device 28 in which the double gate valve 29 is disposed, charging the ignition to the upper end surface of the carbon material 32 that has been previously stacked, and then turning on the valve 29a and the valve 29b. By closing it, the center lance 9 blows the supporting gas 9a. It starts with a very simple procedure, such as burning the previously charged carbonaceous material 32.
  • the combustion state of the carbonaceous material 32 can be constantly monitored through the furnace monitoring window 30 installed above the furnace body la.
  • combustion supporting gas 11 a is also blown from the lower tuyere 11, and the carbonaceous material 32 is also burned near the lower tuyere 11. Combustion at the front of the lower tuyere 11 can be checked visually from the monitoring window 31.
  • the upper end level of the packed bed of carbonaceous material 32 is measured sequentially, and the amount of carbonaceous material 32 supplied into the furnace is adjusted so that the upper end surface level can be maintained at the target level.
  • unused carbon is also included.
  • steam is blown into the furnace.
  • the blowing amount of the steam 34 can be easily controlled by a flow meter, it is possible to accurately supply the necessary amount of steam for the aqueous shift reaction.
  • the steam 34 is more uniformly blown in the circumferential direction of the furnace la, and the above-described aqueous shift reaction proceeds efficiently. Even if the carbon in the waste is not completely gasified and is collected as dust in the dust removal facility as unused carbon, it can be put into the gasification and melting furnace 1 again.
  • the dust particles may be scattered in the furnace due to the extremely small particle size of 1 mm or less.
  • the unused carbon is generated together with the waste 3 by the pusher 7 shown in Fig. 1. Since dust containing 35 can be mixed and charged, dust scattering in the furnace can be suppressed.
  • the gasification and smelting furnace 1 shown in Fig. 1 if the target is waste with a low amount of residual carbon from pyrolysis, the carbonaceous materials 8 and Z or the carbonaceous material 36 are charged to reduce the height of Control means, that is, means for easily controlling the position of the upper end face of the waste will be described.
  • the gasification and smelting furnace 1 shown in Fig. 1 is provided with the waste loading port 4 to which the pusher 7 is attached, and the carbonaceous material 8 is mixed and consolidated with the waste 3 into the furnace. Be charged. Thereby, scattering of the fine carbonaceous material 8 in the furnace is suppressed.
  • the double gate valve 29 for charging.
  • the charging device 28 provided with the double gate valve 29 opens the upper gate valve 29a to allow the carbon material 36 to freely fall between the upper gate valve 29a and the lower gate valve 29b, and thereafter, the upper gate valve 29a. After closing a, open the lower gate valve 29b and charge the carbonaceous material 36 into the furnace.
  • this charging means since it operates always with either the upper gate valve 29a or the lower gate valve 29b closed, a large amount of furnace gas leaks out of the furnace through the charging device 28. And a large amount of air outside the furnace is prevented from being sucked into the furnace.
  • Charcoal materials 8 and Z or carbon material 36 are charged after the furnace temperature is raised to a condition where dioxins hardly occur. Therefore, the concentration of halogens contained in the carbonaceous materials 8 and Z or the carbonaceous material 36 is not particularly limited.
  • FIGS. 4 to 7 are explanatory diagrams each showing a system front for recovering halogen according to the present embodiment.
  • waste 3 is charged into the gasification and melting furnace 1 of the present embodiment.
  • the organic matter contained in waste 3 is gasified to produce high calorie gas 40 that can be used as fuel.
  • Ash and valuable metals are converted to molten slag 38 and molten metal 39.
  • Gasification In the melting furnace 1, the temperature at the upper part is controlled to 1000 ° C or more and 1400 ° C or less to reduce the emission of dioxins, and waste 3 is heated to 500-1200 ° C or more.
  • the high-calorie gas 40 which is directly injected into the pyrolysis gasification zone in the area and maintained at a high temperature of 1000 ° C or more in the furnace for 2 seconds or more, is discharged outside the furnace through the duct 41
  • the gas is cooled to 120 ° C or more and 200 ° C or less by the mist 44 sprayed from the nozzle 43 by the gas cooling device 42.
  • the gas passing through the duct 45 at the outlet of the gas cooling device 42 includes hydrogen halide gas and the like together with carbon monoxide and hydrogen. These gases are guided to a halogen recovery device 48 after removing dust 47 contained in the dust removal device 46.
  • a high-calorie gas is cooled to 100 or less by spraying water 49 from a nozzle 50, and a mixed liquid of condensed water 51 and an acid 52 such as hydrochloric acid is formed by condensing the hydrogen halide gas contained therein. Then, the other energy gas 53 and the halogen are separated.
  • the mixture of the acid 52 and the condensed water 51 is circulated through the nozzle 54 to the halogen recovery unit 48 to concentrate and recover the acid 52.
  • the mixed liquid of the acid 52 and the condensed water 51 can be circulated by mixing with the water 49 from the nozzle 50 without using the nozzle 54.
  • the recovered acid 52 is converted to halogen 56 in a halogenation unit 55.
  • the dusts 47 and 57 separated from the gas by the dust removing device 46 and the gas cooling device 42, respectively, are re-input to the gasification and melting furnace 1 together with newly charged waste 3.
  • the gas cooled by the gas cooling device 42 is kept at 100 ° C. or more, preferably 120 ° C., from the viewpoint of preventing corrosion by hydrogen halide gas until it flows into the halogen recovery device 48. It is desirable that the temperature be at least ° C. In particular, it is effective to use an acid-resistant material such as Hastelloy for the dust remover 46 or lower where the temperature becomes low. Further, as a material used for the halogen recovery device 48, RP, etc., which is less susceptible to acid corrosion even at 100 or less, may be mentioned.
  • a method of recovering the acid As a method of recovering the acid, a method of recovering the acid after passing through the gas cooling device 42 as shown in FIG. Fig. 5 shows that the high-temperature, high-strength gas 40 with a temperature of 1000 to 1400 ° C generated in the gasification and melting furnace 1 is rapidly cooled to 100 ° C or less by the gas cooling device 42 and included in the energy gas 40 This is a method for recovering halogen.
  • the moisture contained in the gas 40 and the mist 44 sprayed by the gas cooling device 42 are condensed inside the gas cooling device 42 and collected from the lower portion of the gas cooling device 42.
  • the collected condensed water 58 contains acid and sludge 59.
  • the collected condensed water 58 is separated and removed from the sludge 59 by a filtration device 60, and then becomes condensed water 62 containing acid 61, and is converted by a halogenation device 55. Converted to halogen 56.
  • the temperature of the outlet gas of the gas cooler 42 is 100 or less, but most of the halogens migrate to the condensed water 58 collected under the gas cooler 42, and the equipment downstream of the gas cooler 42 is corroded. I will not. However, since a small amount of hydrogen halide gas is contained, water 72 containing caustic soda 71 is supplied to the exclusion column 65 to recover the acid 66, and the halogenation device together with the acid 61 recovered at the lower part of the gas cooling device 42 Halogenated at 55. Further, the sludge 59 can be re-charged into the gasification and melting furnace 1 and gasified and melted.
  • the halogen concentration in waste is wide, but the sample with higher halogen concentration has higher recovered acid concentration.
  • there are other advantages such as higher halogen recovery per waste disposal volume and higher recovery efficiency. Therefore, when treating waste having a low halogen concentration, it is effective to add waste having a high halogen concentration to concentrate the recovered acid.
  • FIG. 6 the gas passing through the duct 45 at the outlet of the gas cooling device 42 is shown in FIG. 4 described above until the dust 47 contained in the dust removing device 46 is removed and then guided to the halogen recovery device 48. The same as the system.
  • the halogen recovery device 48 cools the high-calorie gas 40 to 100 ° C or less by spraying water 49 from a nozzle 50, and condenses the hydrogen halide gas contained therein, thereby condensing the condensed water 51.
  • a mixed liquid of acid 52 is used to separate halogen from other energy gas 53.
  • the mixture of the acid 52 and the condensed water 51 is circulated through the nozzle 43 to the gas cooling device 42, and concentrates the concentration of the acid 52 recovered by the halogen recovery device 48.
  • the recovered acid 52 is converted to halogen 56 in a halogenation unit 55.
  • the amount of water 44 used in the gas cooling device 42 can be reduced.
  • the dusts 47 and 57 separated and removed from the gas by the dust remover 46 and the gas cooler 42 are re-input to the gasification and melting furnace 1 together with the waste 3.
  • the energy gas cooled by the gas cooling device 42 is kept at 100 ° C. or more, preferably 120 ° C. or more, from the viewpoint of preventing corrosion by hydrogen halide gas, before flowing into the halogen recovery device 48. It is desirable to do. In particular, it is effective to use an acid-resistant material such as hastelloy for the dust remover 46 or lower where the temperature becomes low. Examples of the material used for the halogen recovery device 48 include FRP and the like, which hardly cause acid corrosion even at 100 ° C. or less.
  • FIG. 7 shows an example in which a gas cooler method is used as an acid recovery method.
  • a gas cooler method is used as an acid recovery method.
  • FIG. 7 the gas passing through the duct 45 at the outlet of the gas cooling device 42 is shown by the above-described FIG. 6 until it is guided to the halogen recovery device 48 after the dust 47 contained in the dust removal device 46 is removed. Same as the system.
  • the halogen recovery device 48 cools the high-strength port gas 40 to 100 ° C or lower by a gas cooler method and condenses the contained hydrogen halide gas.
  • a mixture of condensed water 51 and acid 52 is used to separate halogen from other energy gas 53.
  • the acid 52 is converted to a halogen 56 in a halogenator 55.
  • the dusts 47 and 57 separated and removed from the gas by the dust remover 46 and the gas cooler 42 are re-introduced into the gasification and melting furnace 1 together with the newly charged waste 3.
  • the energy gas cooled by the gas cooling device 42 must be at least 100, preferably at least 120 ° C, from the viewpoint of preventing corrosion by hydrogen halide gas, before flowing into the halogen recovery device 48. Is desirable. In particular, it is effective to use an acid-resistant material such as hastelloy for the dust remover 46 or lower where the temperature becomes low.
  • Hazardous waste sealed in a closed container can be detoxified using the gasification and melting furnace 1 shown in Fig.1.
  • Furnace body la can be charged from charging device 29 of double gate valve system.
  • the charging device 29 of the double-gate valve system opens the upper gate valve 29a to allow the sealed container to freely fall between the upper gate valve 29a and the lower gate valve 29b, and then closes the upper gate valve 29a.
  • the lower gate valve 29b is opened from below, and the hermetically closed container is charged into the furnace. According to this, since either the upper gate valve 29a or the lower gate valve 29b can always be kept closed, a large amount of gas in the furnace leaks out of the furnace through the charging device, A large amount of air is prevented from being sucked into the furnace. It is desirable to control the pressure in the furnace below atmospheric pressure by installing an induction fan or the like downstream.
  • the hazardous waste is discharged from the closed container as pyrolyzed pyrolysis gas by the heat forming a hole in the closed container.
  • the harmful gas discharged from the closed container is completely decomposed in the furnace to pass a sufficient residence time under high temperature conditions, and is discharged out of the furnace.
  • the material and thickness of the sealed container may be appropriately determined so that no hole is formed until the closed container reaches the upper end surface of the packed bed.
  • FIG. 8 is an explanatory diagram schematically showing a partially simplified gasification and melting furnace 1-1 in which a water pool chamber 73 is provided in the gasification and melting furnace 1 shown in FIG.
  • a water pool chamber 73 is provided in the gasification and melting furnace 1 shown in FIG.
  • the gasification and melting furnace 1-1 is provided with a basin 73 in communication with the lower part of the furnace la.
  • the basin 73 is for temporarily storing the generated molten slag and molten metal such as molten metal in order to collect ash and valuable metals discharged from the gasification and melting furnace 1-1.
  • the combustion chamber gas 81a and the fuel 81b are blown from the tuyere chamber tuyere 81 to maintain the temperature of the pool chamber.
  • a gas discharge pipe 74 is installed at the upper part of the water pool 73 and connected between the upper end surface 76 of the waste inside the furnace body la and the gas discharge port 5.
  • the valve 75 is arranged and the operation is usually performed with the valve 75 closed.
  • the pressure inside the pool chamber 73 can be continuously measured by the pressure measuring device 77.
  • the value of the pressure measuring device 77 is set to operation at 0.5 times or less of the design pressure of the pool basin 73, but when this value exceeds 0.5 times of the design pressure,
  • the valve 75 is opened to discharge the gas generated inside the pool chamber 73 from the gas discharge port 5 to the outside of the furnace la.
  • the problems of the basic gasification and melting furnace are: (a) blockage of the duct 6, (b) filling time in the furnace, (c) emission of unused carbon, and (d) It is possible to control the position of the top surface of waste, (e) material recycling of halogens, ( ⁇ ) charging of hazardous waste, and (g) rising pressure inside the hot water chamber 73.
  • the performance of the basic gasification and melting furnace can be further improved.
  • the unit of the blowing amount (NmVhr) means m 3 (standard state) / hr.
  • a waste gasification and melting test was performed.
  • the dimensions of each part of the gasification and melting furnace 1, the upper tuyere 10, the lower tuyere 11, and the number and arrangement of other mounting parts are as follows.
  • the outlet for molten slag and Z or molten metal is abbreviated as the molten metal outlet.
  • Furnace diameter 2.0 m (inner diameter after refractory 2 is lined)
  • Furnace height 6.0 m (height from furnace bottom to furnace top after refractory 2 lining)
  • Lower tuyere 11 3 in circumferential direction, 1 step in furnace height direction
  • Lower tuyere 11 At equal intervals every 120 degrees in the circumferential direction, the tip protrudes from the surface of the refractory lining 2 and projects 100 inside the furnace
  • Upper tuyere 10 Installed at equal intervals every 120 degrees in the circumferential direction and offset by 45 degrees from the furnace axis direction
  • Furnace center lance 9 Furnace center (on furnace shaft) [ Molten discharge outlet 78: Located at the bottom end of the furnace
  • Position measuring device 79 Between the center lance 9 and the side wall The waste 3 used in the test is shredder dust and high-concentration chlorine-containing waste, and the composition is shown in Tables 1 to 3.
  • Table 1 shows the industrial analysis value (% by mass) of waste 3 and auxiliary materials
  • Table 2 shows the combustible composition (% by mass) of item 3 and auxiliary materials
  • Table 3 shows the composition of waste 3 and auxiliary materials. Shows the composition of non-combustible components (% by mass) excluding metal components.
  • thermocouple When the temperature measured by the thermocouple near the upper end face of the loaded waste 3 is 600 ° C or more, and the temperature measured by the thermocouple in the free-port space is 1000 ° C or more and 1400 ° C or less. The amount of oxygen blown from the furnace center lance 9, upper tuyere 10 and lower tuyere 11 was adjusted so as to always maintain it.
  • the lower tuyere 11 and possibly the furnace center The amount of oxygen blown from lance 9 was reduced.
  • the temperature near the upper end face of waste 3 was less than 600 ° C
  • the amount of oxygen blown from the central lance 9 was increased.
  • the temperature of the free space was lower than 1000 ° C
  • the amount of oxygen blown from the upper tuyere 10 was increased.
  • the temperature of the freeboard space exceeded 1400 ° C, the amount of oxygen blown from the upper tuyere 10 and, in some cases, the furnace center lance 9 was reduced.
  • N 2 gas (NmVhr) 0 90 0 Furnace center lance 9 80 80 80 Blast oxygen (NmVhr) Upper tuyere 10 80 80 80 80 Lower tuyere 11 60 60 60 LPG (NmVh) from lower tuyere 11 8 8 8 Furnace Internal purge N 2 (Nm 3 / h) 40 40 40 Furnace upper temperature (° C, measuring device 80) 1150 1150 1150 Duct 6 inlet temperature
  • Comparative Example 1 is a case where the refrigerant 12 was not injected from the refrigerant injection nozzle 13 shown in FIG.
  • the temperature of the generated energy gas was 1150 ° C with the temperature measuring device 80 at the upper part of the furnace, and about 1100 ° C with the temperature measuring device 81 at the entrance of the duct 6.
  • Figure 9 shows the measurement results of the differential pressure between the inlet and outlet of duct 6.
  • the vertical axis P indicates the pressure (IMH 20 )
  • the horizontal axis d indicates the number of operating days (days)
  • the symbol ⁇ indicates the duct 6 The pressure difference between the inlet side and the outlet side is indicated.
  • Example 1 of the present invention nitrogen gas was blown as the coolant 12 from the coolant blowing nozzle 13, and the generated energy gas was cooled before flowing into the duct 6.
  • the temperature of the energy gas was 1150 ° C in the temperature measuring device 80, and was approximately 950 ° C in the temperature measuring device 81 at the inlet of the duct 6.
  • the energy-gas temperature immediately before flowing into the downstream gas cooling device was about 850 ° C.
  • the calories of the recovered energy gas were slightly lower than in Comparative Example 1 due to the nitrogen gas injection.
  • Figure 10 shows the measurement results of the differential pressure between the inlet and outlet of duct 6. As shown in Fig. 10, no increase in the differential pressure between the inlet and outlet of duct 6 was observed. After the operation, the inside of duct 6 was observed, but no deposits were observed.
  • Example 2 of the present invention is a case in which atomized water (mist) having a particle diameter of 200 zm or less is blown from the coolant blowing nozzle 13 shown in FIG.
  • the temperature of the energy gas was 1150 ° C in the temperature measuring device 80, and was approximately 950 ° C in the temperature measuring device 81 at the inlet of the duct 9.
  • the energy gas temperature immediately before flowing into the gas cooling device at the subsequent stage was about 850 ° C.
  • Fig. 11 is a graph showing the measurement results of the differential pressure between the inlet and outlet of duct 6. As shown in Fig. 11, during operation, the pressure difference between the inlet and outlet of duct 6 did not increase, and the operation was terminated. When the inside of duct 6 was observed after the test, no deposits were observed. Further, the calorie of the recovered energy gas was the same as that of Comparative Example 1, indicating an advantage over Example 1 of the present invention in which an inert gas was blown as the refrigerant 12.
  • the amount of mist used in the subsequent gas cooling device was reduced by almost the same amount as the amount of mist blown from the nozzle 13.
  • Comparative Example 2 and Inventive Examples 3 and 4 illustrate the effects of the obstruction removal device 16 according to the present invention.
  • Table 5 shows the operation specifications and test results.
  • Zinc 20 20 20 Furnace pressure, inlet / outlet differential pressure in duct 6 Fig. 12 Fig. 13 Fig. 14 Operating conditions of drive shafts 19-1, 19-2 Furnace pressure ⁇ 50 Bandwidth Tact input / output differential pressure ⁇ 50 every 8 hours
  • Figure 13 shows the measurement results of the differential pressure between the inlet and outlet of duct 6. At point B in the graph of Fig. 13, the drive shafts 19-1 and 19-2 were moved up and down to remove the obstruction.
  • the drive shafts 19-1 and 19-2 were operated when the value of the differential pressure measuring device 18 increased by 50 mmH 20 or more with respect to the base (OMIH 20 ), and it took about 3 minutes. the value of the work in differential pressure constant device 18 returns to the base value (OmmH 2 0), was then also able to stable operation. Even if this operation was performed 300 times or more, there was no deformation of the drive shafts 19-1 and 19-2 and no gas leak in the furnace from the gas seal portion 22.
  • Example 4 of the present invention the drive shafts 19-1 and 19-2 shown in FIG. 2 were periodically raised and lowered once every eight hours regardless of the values of the differential pressure measuring device 18 and the furnace pressure.
  • Figure 14 shows the measurement results of the differential pressure between the inlet and outlet of duct 6. As shown in Figure 14, rather than the value of the differential pressure measuring device 18 is 10 mm H 2 0 or more, no blockage of the duct 6 be operated continuously for 100 days, the drive shaft 1 9 1, 1 No deformation of 9-2 and no gas leakage from the gas seal part 22 occurred.
  • Comparative Example 3 in which the furnace was heated by burning the burner, it took 48 hours to raise the temperature. After that, the loading of waste 3 was started, but it took another 48 hours to raise the height level of the top end of the charged material to the target value (control value) of 1.5 m. In other words, it took 96 hours from the start of heating to the completion of the adjustment of the height level of the upper end surface of the charge (filling time in the furnace).
  • Example 5 of the present invention the carbonaceous material was charged from the stage before the temperature increase, and the charging amount of the carbonaceous material was adjusted sequentially while measuring the height level of the upper end surface of the charge during the temperature increase.
  • the height level of the upper end face of the charge had reached the target level (control level) at the time of completion of the heating. Therefore, it took 48 hours from the start of heating to the completion of the adjustment of the height level of the upper end face of the charge and the start of heating, and the start of waste charging was 48 hours. In comparison, it was reduced by half.
  • the emission of dioxins during the temperature rise was able to be suppressed to an extremely low level.
  • Table 7 shows the test results of Comparative Example 4 and Inventive Example 6.
  • Example 6 of the present invention shows the test results when 18 kg / hr of steam was blown from the steam blow nozzle 33 shown in FIG.
  • the amount of unused carbon decreased to 3 kg-C / hr.
  • the amount of CO gas generated increased and the steam was converted to hydrogen, resulting in an increase in the calorific value of the generated gas per amount of waste 3 processed.
  • the calorific value of gas (dry gas) per Nm 3 of gas increased from 2058 kcal / Nm 3 to 2070 kcal / N m 3 .
  • steam was blown from the furnace center lance 9 or the upper tuyere 33 together with the supporting gas, and similar results were obtained.
  • Comparative Example 5 and Invention Example 7 show the results of controlling the height level of the packed bed by charging the carbonaceous material.
  • Table 8 summarizes the results.
  • the shredder dust was gasified and melted.
  • LPG was injected from the lower tuyere 11 to 8 Nni 3 / hr without inputting carbon materials such as waste wood.
  • the carbon content (fixed carbon) in the pyrolysis residue contained in the shredder dust is 5.4%, which is smaller than that of the municipal waste after drying.
  • Comparative Example 5 as a method of controlling the height level of the upper end surface of the waste 3, the amount of the supporting gas blown from the lower tuyere 11 was controlled. That is, when the height level of the upper end face became lower than the target, the amount of the supporting gas was reduced, and when the height level became higher than the target, the amount of the supporting gas was increased. In addition, the amount of oxidizing gas from the lower tuyere 11 was increased even when the discharge of molten slag and molten metal was reduced due to the reduction of the oxidizing gas from the lower tuyere 11.
  • Example 7 of the present invention is a case where waste wood was used as a carbon material.
  • the amount of the supporting gas from the lower tuyere 11 and the upper tuyere 10 was able to be controlled to the target control range with almost no change in the position of the upper end of the waste 3.
  • Invention Example 8 Invention Example 9 Hydrochloric acid recovery method After dust removal (Fig. 4) After gas cooling (Fig. 5) Plastic waste (kg / hr) 400 400 Total blast oxygen (Nm 3 / hr) 191 191 Lower tuyere 11 LPG (NmVh) 18 18 Furnace purge N 2 (Nm 3 / h) 60 60 Furnace gas volume (wet- NmVhr) 771 771 Furnace gas temperature (° C) 1150 1150
  • Example 8 of the present invention a chlorine recovery test was performed based on the flow chart shown in FIG. That is, the high-calorie gas 40 generated in the furnace of the gasification and melting furnace 1 is cooled by the gas cooling device 42, and the dust 57 is provided below the gas cooling device 42, and the dust 47 is provided by the dust removing device 46. After each dust removal, hydrochloric acid recovery was performed.
  • the plastic waste used here is a plastic waste containing a high concentration of chlorine as shown in Table 2.
  • Table 9 the total chlorine introduced into the gasification and melting furnace 1 was 191 kg-Cl / hr, but 189 kg-Cl / hr of chlorine passed through the halogen recovery unit 48 and the halogenation unit 55. After that, it was recovered.
  • the gas discharged from the gas cooling device 42 was maintained at 130: or more before being introduced into the octogen recovery device 48.
  • Hastello was used for the dust remover 46 and the subsequent piping
  • FRP was used as the material for the halogen recovery device 48. As a result, no corrosion of the equipment used was observed.
  • Example 9 of the present invention a chlorine recovery test was performed based on the flow chart shown in FIG. That is, the high-calorie gas 40 generated in the furnace was cooled to 100 ° C. or lower by the cooling device 42, and hydrochloric acid gas was condensed to recover hydrochloric acid.
  • the amount of chlorine introduced into the gasification and melting furnace 1 was 191 kg-Cl / hr, but was recovered as hydrochloric acid at the lower part of the gas cooling unit 42, and then converted to chlorine in the halogenation unit 55. 189 kg-Cl / hr of chlorine were recovered. Further, the plastic waste charged in the same manner as in Example 8 of the present invention was pyrolyzed and gasified at 1000 ° C. or higher inside the gasification and melting furnace 1 and the generated gas was rapidly cooled to 100 ° C. or lower by the gas cooling device 42. However, the concentration of dioxins contained in the exhaust gas 70 was kept at a low level.
  • the problems of the basic gasification and melting furnace specifically, (a) blockage of the duct, (b) filling time in the furnace, (c) emission of unused carbon, (d) Control of top position, (e) material recycling of halogens, (f) loading of hazardous waste, or (g)
  • the internal pressure rise in the basin can be solved, and the performance of the basic gasification and melting furnace can be further improved. Therefore, according to the present invention, a gasification melting operation can be stably continued for a long time on a commercial scale, and a truly practical waste treatment method and treatment apparatus are provided. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

(a) ダクトの閉塞、(b) 炉内填充時間、(c) 未利用炭素の排出、(d) 廃棄物の上端面位置の制御、(e) ハロゲン類のマテリアルリサイクル、(f)有害廃棄物の装入又は(g)湯溜まり室の内部圧力上昇を、解決することができる廃棄物の処理方法及び処理装置を提供する。廃棄物を、炉体と、炉体の上部に配置されたガス排出口と、炉体の下部に配置された溶融スラグ及び/又は溶融金属の排出口と、溶融スラグ及び/又は溶融金属の排出口とガス排出口との間に配置された廃棄物装入口と、炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込むための炉中心ランスと、廃棄物装入口とガス排出口との間の炉壁に1段以上配置された上部羽口と、廃棄物装入口と溶融スラグ及び/又は溶融金属の排出口との間の炉壁に1段以上配置された羽口とを備える廃棄物処理炉に装入して、廃棄物に燃焼、ガス化又は溶融の少なくとも1つの処理を行う際に、少なくとも1つの処理により生じる排ガスを、廃棄物処理炉の炉体に接続されて排ガスを炉体の外部へ導くダクトの入口の近傍の炉内で、冷却する。

Description

明 細 書 廃棄物の処理方法及び処理装置 技術分野
本発明は、 一般廃棄物や産業廃棄物等の廃棄物 (以下、 本明細書では単に 「廃 棄物」 と総称する) に燃焼、 ガス化又は溶融のうちの少なくとも一つの処理を行 うための廃棄物の処理方法及び処理装置に関する。 特に、 本発明は、 廃棄物に含 まれる有機物をガス化して燃料として使用することができるガス (以下、 単に 「 エネルギーガス」 ともいう) を回収し、 これら廃棄物に含まれる低沸点金属をダ ストとして回収し、 これら廃棄物に含まれる灰分及び有価金属 (以下単に 「金属 」 ともいう) を溶融スラグ及び溶融金属としてそれぞれ回収するとともに、 これ らの処理を商業的規模で長期的に安定して実現するための廃棄物の処理方法及び 処理装置に関する。
なお、 本発明においては、 廃棄物とは、 例えば生ゴミに代表される都市ごみを 主体とするもの、 プラスチック屑や鉄屑、 廃棄された自動車や家電製品のシユレ ッダーダスト、 焼却灰、 土砂を含む掘り起こしゴミ、 汚泥、 スラッジ、 製鉄ダス ト、 医療系廃棄物さらには廃材木を意味する。 背景技術
生活ごみ等の一般廃棄物や産業廃棄物等の一部の廃棄物は、 従来はその殆ど全 てが焼却処理されていた。 しかし、 これらの廃棄物を焼却処理する際に、 200 〜 600 °C、 特に 300 °C程度の処理温度ではダイォキシン類が発生する。 また、 焼却 灰の最終処分場の確保が難しくなるとともに、 資源有効利用の観点から廃棄物を 有効にリサイクルすることも要請されている。 このため、 従来の焼却による廃棄 物の処理では十分に対応できなくなつてきた。
そこで、 本出願人は、 先に、 国際公開第 TO00/45090号により、 炉軸に沿って下 方に向けて支燃性ガスを炉内に吹き込む昇降可能な炉中心ランス、 支燃性ガスを 吹き込む角度を炉軸方向からずらして配置した 1段以上の上部羽口、 支燃性ガス 又は支燃性ガス及び燃料を、 炉軸に向かって吹き付ける配置で、 炉内に突き出し て配置した 1段以上の下部羽口を有するガス化溶融炉を使用することにより、 ガ ス化溶融炉の炉体の内部における低温域の発生を防止でき、 廃棄物の燃焼処理を 行うための火点を集中することが可能なガス化溶融炉及びガス化溶融方法に係る 発明を提案した。 この発明によれば、 付加価値の高い溶融スラグ及び各種金属な らぴにエネルギーガスを安定して回収することができる。
発明の開示
しかし、 本発明者らは国際公開第 WO0O/4509O号により提案したガス化溶融炉 ( 以下、 「基本のガス化溶融炉」 という) のさらなる発展を図るべく鋭意検討を重 ねた結果、 基本のガス化溶融炉には以下に列記する課題(a) 〜(g) があり、 これ らの課題(a) 〜(g) を解決すれば、 基本のガス化溶融炉をさらに高性能化でき、 難処理性廃棄物にも適用できる廃棄物の処理方法及び処理装置を提供できること を知見した。
(a) ダクトの閉塞
近年、 廃棄物を燃焼、 ガス化又は溶融化する廃棄物の処理炉が多数利用されて いる。 しかし、 これらの処理炉は、 廃棄物の種類によっては処理に伴って発生す る排ガスを流すダクトの内壁にダストが付着及び堆積し、 ダクトの閉塞を招くお それがある。 例えば、 廃棄物に低沸点物質が多量に含まれていると、 これが炉内 で蒸発し、 蒸発した一部がダクトの内壁面に付着し、 その後成長してダクトを閉 塞する。 このような場合、 処理炉の運転停止を余儀なくされ、 長期間にわたって 安定した操業を行うことができなくなる可能性がある。
基本のガス化溶融炉では、 ダイォキシン類の排出を抑制するために、 炉体の上 部に存在するガスの温度を 1000°C以上 1400°C以下としてガス排出口からガスを排 出し、 後段の排出ガスの冷却装置で 200 °C以下まで急冷する。 特に、 ダイォキシ ン類の発生を完全に抑制するには、 炉体の上部の温度をより高くすることが望ま しい。 しかしながら、 炉内のガス温度が高いため、 廃棄物に含まれる低沸点物質 が炉内で蒸発し、 その一部がダクトの内面に付着して成長し、 ダクトを閉塞する おそれがある。
これまでにも、 かかるダクトの閉塞を防止するための技術として、 水やミスト 等の冷媒をダクトの内部へ吹き込むことにより排ガス中の低沸点ガス状物質を冷 却固化し、 ダクトへの付着を防止する発明 (特開 2001— 33027 号公報、 同 2002— 349841号公報、 特開平 7— 197046号公報及び同 8— 219436号公報等) や、 ダクト への付着物を機械的方法によって搔きとる発明 (特開 2002— 1 68433号公報等) が 知られている。 しかし、 これらの発明には以下に列記する問題がある。
すなわち、 ダクトの内部へ冷媒を吹き込むと、 廃棄物の種類や冷媒の吹き込み 位置によっては十分な閉塞抑制効果が得られないことがある。 例えば、 ダクトの 内部に冷媒を吹き込んでも、 ダクトの入口の近傍では排ガス温度が高い状態のま まであるため、 排ガス中の低沸点ガス状物質がダクトの入口の近傍に付着し、 最 終的にばダクトを閉塞するおそれがある。 また、 ダクトの内部にミストを吹く場 合、 吹き込むミストの広がり角度をダクトの内径に対して適正に設定しないと、 ミスト等の冷媒がダクトの内壁に衝突又は付着して未蒸発水となり、 ガス化溶融 炉の下流に設置されたガス冷却装置の制御が難しくなる可能性がある。
一方、 ダクトの内壁に低沸点ガス状物質が付着してダクトが閉塞した場合には 、 機械的な除去手段を用いてこれを除去することが最も有効である。 例えば、 特 開 2002— 1 68433号公報には、 ダクトの内部に挿入される搔きとり羽根を有する駆 動軸と、 この駆動軸を回転させかつその軸方向に往復運動させる駆動手段とを備 えるダクト清掃装置が開示されている。
この場合、 駆動軸は回転しながら往復運動するため、 炉内で発生したガスのガ スシール部からのリークや外部空気のダクト内への吸い込みを生じるおそれがあ る。 特に、 操業に伴って COガスを発生させる炉では、 外部への COガス漏れ等の危 険性がある。 また、 COガスをエネルギーとして再利用しょうとする場合には、 外 部空気を吸い込むことは得られるガスのカロリーの低下につながる。 また、 さら に、 駆動軸の中心軸付近に駆動軸冷却用の空気を流しているが、 ダクトの内部が 高温である場合には駆動軸の外表面が熱的損傷を受けることが考えられる。 特に 、 ダクトの内部が著しく閉塞している場合には、 駆動軸への負荷を大きくせざる を得なくなり、 これにより、 閉塞物の除去に要する時間が長時間化し、 熱的損傷 はさらに大きくなり、 装置の損傷やガスのリークがいずれも著しくなる。
(b) 炉内填充時間 廃棄物を、 基本のガス化溶融炉により処理する場合、 炉内に装入した廃棄物の 上端面の高さを所定のレベルに制御することが操業を安定化させるために重要で ある。 このガス化溶融炉の立ち上げでは、 バーナーの燃焼を利用して炉内温度が 所定温度に到達した後に廃棄物の装入を開始し、 その後、 徐々に廃棄物を積み上 げ、 廃棄物上端面の高さを目標レベルに調整する。 しかしながら、 廃棄物の上端 面の高さを所定のレベルまで上げるには、 かなりの長時間を要する。
また、 昇温の途中において、 炉内での燃焼温度がダイォキシン類が発生し易い といわれている 200 〜600 °Cの温度領域を不可避的に通過するため、 ダイォキシ ン類の構成元素である塩素等のハロゲン類含有量の高い廃棄物が炉昇温の段階か ら装入され、 積み上げられる場合には、 このガス化溶融炉の立ち上げの際にダイ ォキシン類を発生させる。
(c) 未利用炭素の排出
基本のガス化溶融炉の操業では、 投入された廃棄物に含まれる炭素の一部が未 利用のまま飛散してダクトを通過した後に、 除塵装置によりダストとして回収さ れる。 未利用炭素を低減するには、 水性シフト反応 (C +H20 = C0 + H2) を利用 して未利用炭素を COガスに転換することが考えられる。
この水性シフト反応を進行させるには H20 が必要である。 ここで、 廃棄物には 水分が含まれているものの、 廃棄物に含まれる水分の多くは、 廃棄物の上端面よ り下の位置で熱分解残渣炭素のガス化反応に消費されるものと考えられる。 その ため、 下部羽口の前で燃焼する熱分解残渣炭素の量が減少して、 下部羽口の前に おける燃焼温度を高く維持することが困難となり、 廃棄物に含まれる灰分及び金 属類の溶融化、 さらには溶融スラグや溶融金属の排出を安定して行うことができ なくなるおそれがある。 また、 廃棄物に水分が多量に含まれると、 廃棄物を投入 した直後のガス変動が大きくなり、 操業が安定せず、 また水の蒸発により発生ガ スのカロリーも低下する。 したがって、 廃棄物中に水分が多量に含まれることも 好ましくない。
特開平 8— 1 521 18号公報には、 廃棄物の充填層内に設置した上部羽口から蒸気 を供給することにより、 上部羽口レベルにおける燃焼温度を灰分の溶融温度以下 とし、 これにより、 上部羽ロレベルにおける熱分解残渣ゃ可燃性ガスの燃焼によ る半溶融物の生成を抑制することによって、 半溶融物が炉内壁に付着することを 抑制する発明が開示されている。 すなわち、 充填層内に設置した上部羽口から吹 き込まれる蒸気が上部羽口が設置された高さの燃焼温度を低く抑制し、 このレべ ルでの半溶融物の生成を抑制する。 また、 充填層内に蒸気を吹き込むことに付随 して、 水性シフト反応が進行し、 炭素のガス化の進佇も図ることができる。 しかしながら、 廃棄物の充填層内に蒸気を吹き込んで炭素のガス化を行うと、 熱分解残渣に含まれる炭素が蒸気との反応により消費される。 このため、 下部羽 口から供給される支燃性ガスによって燃焼される炭素の量が減少し、 下部羽口前 での燃焼温度を高く維持することが困難となる。 このため、 廃棄物に含まれる灰 分及び金属の溶融化、 さらには溶融スラグや溶融金属の排出を安定して行うこと ができなくなるおそれがある。
(d) 廃棄物の上端面位置の制御
基本のガス化溶融炉は、 廃棄物を燃焼させて廃棄物中の有機物をガス化してェ ネルギ一ガスとして回収するとともに、 廃棄物中の灰分及び金属を溶融物として 回収する竪型の炉である。 このガス化溶融炉は、 炉体の上部に設けられたガス排 出口と、 炉体の下部に設けられた溶融スラグ及び溶融金属排出口と、 溶融スラグ 及び溶融金属排出口とガス排出口との間に設けられた廃棄物装入口と、 炉体の上 部に炉軸に沿って下方に向けて設けられた、 支燃性ガスを炉内に吹き込む昇降可 能な炉中心ランスと、 廃棄物装入口とガス排出口との間の炉壁に 1段以上設けら れた支燃性ガスを吹き込むための上部羽口と、 廃棄物装入口と溶融スラグ及び溶 融金属排出口との間の炉壁に炉内へ向けて 1段以上設置された、 支燃性ガス又は 支燃性ガス及び燃料を炉軸方向へ向かって吹き付ける下部羽口とをそれぞれ備え る。 そして、 このガス化溶融炉は、 炉内に装入された廃棄物の上端面で高温に加 熱された廃棄物の熱分解残渣中の炭素分を燃焼させることによって、 高価なコ一 クスを使用しなくとも残渣中の灰分や金属を溶解させる。
しかしながら、 廃棄物の成分は一定でなく不均質な場合が多く、 場合によって は熱分解残渣中に炭素分が殆ど存在しないことも考えられる。 例えば、 プラスチ ック屑及びシュレッダーダスト等に含まれる炭素はその殆どが熱分解反応により ガス化されるため、 熱分解残渣に含まれる炭素は極僅かである。 このため、 炉内 に装入された廃棄物の上端面の位置を維持するには、 下部羽口及び炉中心ランス から吹き込む支燃性ガスの量を頻繁に調整する操作を行う必要があり、 その操業 に熟練を要する。
(e) ハロゲン類のマテリアルリサイクル
廃棄物に含まれる塩素や臭素等のハロゲン類は、 ダイォキシン類の発生源とな る一方で、 極めて付加価値の高い物質であって、 効率的にマテリアルリサイクル することが望まれる。 しかし、 塩素含有率が高い廃棄物の有効な処理方法及びリ サイクル方法は確立されていない。 現在、 塩素等のハロゲン類を含む廃棄物は焼 却炉により焼却処理されるが、 燃焼温度が低いため、 ダイォキシン類の排出を抑 制するには高度なガス処理技術が必要である。
基本のガス化溶融炉では、 高濃度の酸素を吹き込むことによって高温で廃棄物 をガス化溶融し、 発生した高温のガスをガス冷却装置で急冷するため、 ダイォキ シン類を殆ど排出することなく、 ハロゲン類を多く含む廃棄物も無害化処理する ことができる。 廃棄物に含まれる塩素は、 炉内で塩化水素ガス等のハロゲン化水 素ガスとなり、 ガス冷却設備の後段に設置された除塵設備に消石灰等の助剤を吹 込むことにより、 生成ガスから分離除去される。 この際、 ダイォキシン類の再合 成やハロゲンによる腐食を抑制するために、 ガス冷却装置の出口温度は 120 以 上 200 以下とし、 さらに除塵設備の内部の温度も 100 °C以上とする。
しかしながら、 ハロゲン類を多く含む廃棄物を対象とする場合、 塩素や臭素の ハロゲンを回収することは有効であるものの、 このガス化溶融炉では塩化力ルシ ゥム等としてハロゲンを固定化するため、 マテリアルリサイクルすることは難し い。 また、 発生するハロゲン化水素ガスが高濃度となるため、 設備の腐食も進行 し易くなる。
また、 特開 2001- 162248 号公報には、 塩化ビニルを含む廃プラスチックを 250 〜500 °Cで熱分解し、 塩素を含む排ガスを燃焼装置で燃焼し、 その燃焼ガスを熱 源としてボイラーで蒸気を発生させるとともに、 蒸気を発生させた後の燃焼ガス を冷却装置に供給して冷却し、 冷却されたガス中の塩化水素を塩素回収装置によ り回収する装置が開示されており、 冷却装置の前における排ガス温度は塩化水素 による腐食を抑えるために 200 °C以上に維持するとされている。 しかしながら、 200 °C以上の温度条件では、 ダイォキシン類の再合成のおそれ がある。 また、 ハロゲンを含有するプラスチック廃棄物は 500 °C以下の低温での 熱分解ガス化を行うとタールが発生し、 配管が閉塞するおそれもある。
また、 特開 2000— 202419号公報には、 発生する塩化水素をガス水洗装置で除去 することにより、 ハロゲン含有難燃材を含む廃棄物を処理する方法が開示されて いるが、 設備腐食を抑制するための詳細な温度管理条件等は記載されておらず、 不明である。
(f) 有害廃棄物の装入
基本のガス化溶融炉によれば、 医療系廃棄物や汚染土壌、 さらにはポリ塩化ビ フエニル (PCB) 等の有害廃棄物も無害化処理することができる。
これらの有害廃棄物は、 炉内へ装入された後に炉内を落下し、 廃棄物充填層の 上端面に到達するが、 炉内に装入された廃棄物が充填層の上端面に到達する前に 、 低沸点の有害成分がガス化してしまい、 ガス化した有害成分が十分に分解され ないうちにガス排出口から炉外へ排出されるおそれもある。
(g) 湯溜まり室の内部圧力上昇
国際公開第 TOOO/45090号では、 基本のガス化溶融炉の望ましい態様として、 溶 融スラグ及び溶融金属を排出する前にそれらを一旦蓄積できる空間を内部に有す る湯溜まり室を備えることが開示されている。 この湯溜まり室を設けることによ り、 炉内は常に、 炉底に溶融スラグや溶融金属が貯まっていない状態であるドラ ィハースとなり、 炉の操業は安定化する。
しかしながら、 設備の点検等を行うため、 炉内に廃棄物の残渣ゃスラグを残留 させた状態でこのガス化溶融炉を一時的に休止する場合がある。 その後の立ち上 げ操作においては、 ガス化溶融炉の内部に残留した廃棄物や冷えたスラグが炉と 湯溜まり室との接続部を閉塞してしまうおそれがあり、 湯溜まり室の内部で発生 したガスが炉体に流れ難くなることが考えられ、 この場合、 湯溜まり室内の圧力 が上昇し、 ガスが溶融スラグ及び溶融金属排出口から漏洩するおそれがある。 本発明は、 上述した基本のガス化溶融炉に係る課題(a) 〜(g) に対して以下に 解決手段を提供する。
(1) 課題(a) に対する解決手段 本発明では、 炉内で発生した高温の排ガスを、 例えば基本のガス化溶融;):戸等の 廃棄物処理炉の炉体からダクトへ流入する前の炉内に存在する段階で冷却する。 具体的には、 例えば、 炉の出口の近傍 (ダクトの入口の近傍の炉内) に水、 不活 性ガス、 プロセスガス又は蒸気の少なくとも一つにより構成される冷媒を吹き込 むことによって、 排ガスを、 ダクトの入口の近傍の炉内で冷却する。 これにより 、 ダクトの入口の近傍における排ガス中の低沸点ガス状物質の表面温度を、 ダク 卜の内壁に付着しない温度まで、 確実に低下することができる。
ダクトに流入する排ガスの温度は、 ダクトの閉塞を抑制するためには低い方が 好ましいが、 ダイォキシン類の再合成を抑制するためには、 ダクトの内部での排 ガス温度は 800 以上、 好ましくは 850 °C以上を維持することが望ましい。 また 、 炉体の出口の近傍へ冷媒を吹き込むと、 後段に設置されたガス冷却装置の入口 での温度を低下できるため、 ガス冷却装置において使用するミスト量を低減して その負担を軽減でき、 ガス冷却装置のコンパクト化を図ることもできる。
また、 本発明では、 ダクトの内壁に低沸点ガス状物質が付着してダクトが閉塞 した場合に、 短時間で閉塞物の機械的な除去を行うことができる閉塞物の除去装 置を、 廃棄物の処理装置として提案する。
まず、 閉塞物の機械的な除去作業を短時間で行うためには、 ダクトの閉塞の度 合いが小さい段階で閉塞物の除去装置を運転することが有効である。 そのために 、 本発明では、 ダクトの入口及び出口に、 ダクトの入側及び出側の差圧を監視す ることができる差圧計を設置し、 この差圧が運転開始時よりも上昇傾向を示した 場合には閉塞が開始されたものと判断して閉塞物の除去装置を運転する。 なお、 これとは異なり、 ダクトの閉塞の有無には関係なく、 閉塞物の除去装置を定期的 に運転するようにしてもよい。
(2) 課題(b) に対する解決手段
基本のガス化溶融炉の炉内に装入された装入物の上端面の高さを早急に操業時 の制御レベルまで上げるには、 炉の昇温段階から炭材を装入することが有効であ る。 また、 装入物の上端面のレベルを上げるために装入する炭材に含まれるハロ ゲン類の総濃度を 0. 1 %以下とすれば、 ダイォキシン類を発生させずに昇温でき る。 本発明によれば、 基本のガス化溶融炉の昇温中に、 バーナー燃焼を行うこと とともに、 ハロゲン類の総濃度が低い炭材を投入して装入物の上端面の高さを所 定レベルに上げることにより、 炉内の填充時間を短縮することができる。
(3) 課題(c) に対する解決手段
本発明では、 蒸気を充填層より上の部分に吹き込むことにより未利用炭素を低 減することを提案する。 これにより、 蒸気は、 炉上部に飛散した未利用炭素との み接触し、 ガス化する。 吹き込まれた蒸気は、 充填層内の熱分解残渣炭素とは接 触しないため、 廃棄物に含まれる灰分及び金属類の溶融化、 さらには溶融スラグ 及び Z又は溶融金属の排出が安定的に行われる。
たとえ、 廃棄物中の炭素が完全にガス化せずに未利用炭素として除塵設備でダ ストとして回収された場合には、 再度ガス化溶融炉に投入すればよい。 この場合 、 ダストの粒径は 1 mm以下と極めて小さいためにこのまま投入すると炉内で飛散 するおそれがあるが、 投入する際にこの未利用炭素を含むダストを廃棄物ととも に混合圧密してから装入すれば、 ダストの飛散を防止することができる。
(4) 課題(d) に対する解決手段
本発明では、 熱分解残渣炭素が少ない廃棄物を対象とする場合には炭材を投入 することにより、 充填層の上端面の位置の制御を容易に行うことができる。 基本 のガス化溶融炉であっても、 炭材を廃棄物に混合した後に圧密して 1つの塊とし て炉に装入することが可能である。 この場合、 細かい粒径の炭材を用いても飛散 もなくガス通気性悪化の懸念もない。 また、 基本のガス化溶融炉は、 火点を炉の 中心部に集中させるため溶融物の通液性が悪化して安定したスラグの排出ができ ないといった懸念もない。 したがって、 炭材として高価なコ一クスに限定する必 然性は全くなく、 材木等の熱分解残渣炭素が含まれる炭材を用いることもできる また、 予め篩い分けられた粒径が大きな炭材を装入する場合には、 廃棄物を炉 内に装入するための廃棄物装入路に直列に配置された二つのバルブを有する装入 装置を用いることが望ましい。 この装入装置は、 外部側のバルブを開くとともに 内部側のバルブを閉じた状態で炭材を外部側のバルブと内部側のバルブとの間の 空間に供給し、 外部側のバルブを閉じてから内部側のバルブを開くことによって 炭材を炉内に装入することができる。 この装入装置は、 外部側のバルブ又は内部 側のバルブのいずれかは常に閉じられているので、 大量の炉内ガスが装入装置を 通過して炉外へ漏洩したり、 あるいは炉外の空気が大量に炉内に吸い込まれるこ とが防止される。 また、 この課題(d) を解決するために投入される炭材は、 炉内 の温度条件がダイォキシン類を完全熱分解する条件に昇温した後に投入するので 、 炭材中のハロゲン類濃度は高くても問題ない。
(5) 課題(e) に対する解決手段
本発明では、 基本のガス化溶融炉の炉体のガス排出口に接続されたダクトを介 して導かれる排ガスを、 (i) 除塵した後に除塵された排ガスに含まれるハロゲン 化水素ガスを酸回収装置により酸として回収し、 回収された酸をハロゲンに転換 すること、 及び/又は、 (i i) 100 °C以下に冷却して冷却された排ガスに含まれる ハロゲン化水素ガスを凝縮させ、 排ガスに含まれるハロゲン化水素を酸として回 収することによって回収された酸をハロゲンに転換する。 これにより、 ダイォキ シン類の排出や設備の腐食を抑制しながら、 廃棄物に含まれるハロゲンをマテリ アルリサイクルすることができる。
(6) 課題(f) に対する解決手段
医療系廃棄物、 汚染土壌又はポリ塩化ビフエ二ル等を含む有害廃棄物を基本の ガス化溶融炉に装入する場合には、 これらの有害廃棄物を密閉容器に封入し、 こ の密閉容器を、 廃棄物装入路に直列に配置された二つのバルブを有する上述した 装入装置から投入することが有効である。 これにより、 発生する有害ガスは、 炉 内で充分な高温条件での滞留時間を経て、 完全に分解されて炉外へ排出される。
(7) 課題 (g) に対する解決手段
炉を一時的に休止した後の立ち上げの際に炉内に残留した廃棄物や冷えたスラ グ等が炉と湯溜まり室との接続部を閉塞することに起因して湯溜まり室の内部の 圧力が過剰に上昇することを防ぐため、 湯溜まり室内の圧力が上昇した場合、 湯 溜まり室で発生するガスを排出するための配管を設置することが有効である。 図面の簡単な説明
図 1は、 実施の形態で用いる廃棄物のガス化溶融炉の詳細を説明するための概 略図である。
図 2は、 実施の形態のガス化溶融炉において、 ダクトの内壁への付着物を機械 的な方法により除去する廃棄物の処理装置である付着物除去装置を模式的に示す 説明図である。
図 3は、 先端部にファイバースコープが設置された駆動軸を示す説明図である 図 4は、 実施の形態のハロゲンを回収するためのシステムフロ一を示す説明図 である。
図 5は、 実施の形態のハロゲンを回収するためのシステムフローを示す説明図 である。
図 6は、 実施の形態のハロゲンを回収するためのシステムフロ一を示す説明図 である。
図 7は、 実施の形態のハロゲンを回収するためのシステムフローを示す説明図 である。
図 8は、 図 1に示すガス化溶融炉に湯溜まり室を設けたガス化溶融炉を、 一部 簡略化して模式的に示す説明図である。
図 9は、 ダクトの入口部と出口部の差圧の測定結果を示すグラフである。 図 10は、 ダクトの入口部と出口部の差圧の測定結果を示すグラフである。 図 1 1は、 ダクトの入口部と出口部の差圧の測定結果を示すグラフである。 図 12は、 ダクトの入口部と出口部の差圧の測定結果を示すグラフである。 図 13は、 ダクトの入口部と出口部の差圧の測定結果を示すグラフである。 図 14は、 ダクトの入口部と出口部の差圧の測定結果を示すグラフである。 発明を実施するための最良の形態
以下、 本発明に係る廃棄物の処理方法及び処理装置の実施形態を、 添付図面を 参照しながら詳細に説明する。
図 1は、 本実施の形態で用いる廃棄物のガス化溶融炉 1の詳細を説明するため の概略図である。
同図に示すように、 本実施の形態のガス化溶融炉 1 の炉体 l aは、 内張り耐火物 2 により内張りされる。 また、 炉体 l aには、 廃棄物 3 を装入するための廃棄物装 入口 4 と生成するエネルギーガス (以下、 単に 「排ガス」 ともいう) 及びダス卜 を排出するためのガス排出口 5 と、 このガス排出口 5 を介して炉体 l aの内部空間 に連通するダクト 6 を有する。 廃棄物装入口 4 にはプッシヤー 7 が取り付けられ ており、 装入される炭材 8 は廃棄物 3 とともに廃棄物装入口 4 から圧密された状 態で装入される。
図 1における符号 9 は、 炉軸 (炉中心軸) に沿って下方へ向けて支燃性ガス 9a を炉内に向けて吹き込む昇降可能な炉中心ランスである。 符号 10は、 支燃性ガス 10a を炉軸に向かう方向からずらした方向へ吹き込むように炉体 l aの炉壁に 1 段 以上 (本例では 2 段) 配置された上部羽口である。 さらに、 符号 1 1は、 支燃性ガ ス 1 1 a 又は支燃性ガス 1 1 a 及び燃料 l i b を炉軸へ向かう方向へ吹き付けるように 炉内に突き出して炉壁に 1 段以上 (本例では 2 段) 配置された下部羽口である。 図 1のダクト 6 の手前、 すなわち炉体 l aの上部の排ガスの出口の近傍には、 例 えば水、 不活性ガス、 プロセスガス又は蒸気の少なくとも一つにより構成される 冷媒 12を吹き込むためのノズル 13が 1本以上設置される。
ガス化溶融炉 1 の炉体 l aの内部では、 生成したガスは一旦 1000°C以上に加熱さ れ、 2秒間以上保持されることによりダイォキシン類が分解される。 1000°C以上 に加熱されて炉内で生成した生成ガスは、 炉体 l aの上部の排ガスの出口の近傍に 設置された冷媒吹き込みノズル 13から吹き込まれる冷媒 12により冷却される。 ダク卜 6 の内部へ流入する排ガスの温度は、 ダクト 6 の閉塞を抑制するために は低い方が好ましいが、 ダイォキシン類の再合成を抑制するためにはダクト 6 内 での排ガス温度は 800 °C以上、 好ましくは 850 °C以上を維持することが望ましい 。 ダクト 6 内で 800 °C以上に維持されたガスは、 後段の排ガス冷却装置 (図示し ない) により 200 °C以下に急冷される。 これにより、 ダイォキシン類の再合成が 抑制され、 プロセス全体からのダイォキシン類の排出量が顕著に抑制される。 ノズル 13から炉体 l aの内部へ吹き込まれる冷媒 12は、 水、 不活性ガス、 プロセ スガス又は蒸気の少なくとも一つにより構成されていれば、 ダクト 6 の内面への 低沸点ガス状物質の付着を抑制できるが、 水を用いることが望ましい。 冷媒 12と して不活性ガスを使用した場合、 炉内で生成した高力口リ一ガスの力口リ一低下 が発生する。 また、 蒸気は、 水と比較すると蒸発潜熱がないため、 発生したガス の冷却原単位が高い。 そのため、 排ガスには不要な水が多量に入るため、 後処理 工程も含めて経済的でないという点で不利である。 したがって、 冷却効率が高く 、 後段の工程で生成した高カロリーガスとの分離が可能な水 (特にミスト状の水 ) が冷媒として望ましい。 水をミスト化するためにガスによって水を霧状化する 場合は、 不活性ガス等ではなくプロセスガスを使用し、 生成ガスカロリーの低減 を抑制することが望ましい。
また、 ダクト 6 に固体ダストが堆積する場合には、 ダクト 6 に高圧のガスを吹 き込むことが可能な 1つ以上のノズル 14からガス 15を吹き込み、 固体ダストを炉 体 l aの内部側及び Z又は後段のガス冷却装置側に吹き飛ばすことによって、 ダク ト 6 の内部を清掃する。
このように、 本実施の形態によれば、 ダクト 6 の手前へ冷媒 12を吹き込むこと により、 ダクト 6 の閉塞を防止することができる。
図 2は、 本実施の形態のガス化溶融炉 1において、 ダクト 6 の内壁への付着物 を機械的な方法により除去する廃棄物の処理装置である付着物除去装置 16を模式 的に示す説明図である。
ダクト 6 の内部への付着物 17による閉塞度合いは、 ダクト 6 の入口部 6aの圧力 と出口部 6bの圧力との差圧の変化から予測することができる。 差圧変化は差圧測 定装置 18により連続的に監視される。 すなわち、 差圧測定装置 18により測定され る差圧の絶対値が初期 (操業開始時) の値と比較して増加傾向を示す場合は、 ダ クト 6 内の閉塞が進行していると予測される。
本実施の形態では、 このような場合に付着物除去装置 16を用いて付着物 17の除 去を行う。 まず、 駆動軸 19- 1が前進及び後退し、 続いて駆動軸 19-2が前進及び後 退の動作をすることにより、 付着物 17をダクト 6 の内壁から剥離除去する。 駆動 軸 19- 1及び 19-2は昇降装置 20によりダクト 6 の延設方向へ沿って動作する。 また、 駆動軸 19- 1及び 19- 2は水冷方式により、 その先端付近まで冷却されてい る。 これによつて、 駆動軸 19-1及び 19- 2の熱的負荷による曲損や損傷が抑制され る。 駆動軸 19- 1及び 19- 2には冷却水 21を給水及び排水するための給排水管 (図示 しない) が設けられており、 高温条件下での使用にも対応できる。 また、 駆動軸 19 - 1及び 19- 2の駆動部分ではグランドシール方式のガスリーク防止装置 22を設け ることにより、 駆動軸 19- 1及び 19-2の動作時において系内のガスが系外に漏洩す ることが防止される。
駆動軸 19- 1を動作させるタイミングとしては、 ダクト 6 の内壁の閉塞の度合い が小さいうちに行うことが望ましい。 閉塞の度合いが小さいうちであれば、 駆動 軸 19-1及び 19- 2を特開 2002— 168433号公報のように回転させる必要がなく、 また 、 駆動軸 19- 1及び 19- 2に閉塞物を除去するための大きな負荷をかけることなく、 短時間で閉塞物を除去できるためである。 したがって、 ガスリーク防止装置 22か らのガスのリークもなく、 装置の寿命も向上する。 例えば、 差圧測定装置 18の値 が操業を開始してから 2時間までの平均値と比較して、 20mniH20 以上 400mmH20以 下増加した時点で行うことが望ましい。 あるいは、 閉塞物除去装置 16を 1時間以 上 24時間以下の周期で定期的に運転することも望ましい。
また、 ダクト 6 の閉塞がなく、 通常のガス化溶融操業を行っている間は、 駆動 軸 19-1、 19- 2を待機位置 24まで後退させ、 バルブ 23を閉の状態とすることによつ て、 炉内のガスの漏洩が完全に防止される。 バルブ 23を閉めることによって、 ガ ス化溶融炉 1 の操業中に付着物除去装置 16の点検等も行うことができる。
なお、 駆動軸 19-1、 19-2を運転しない時にも、 駆動軸 19- 1、 19- 2は待機位置 24 まで待機させ、 待機位置 24の手前に設けたバルブ 23を閉じておけば、 ガスのリー ク及び空気の吸い込みを防止できる。 バルブ 23を設置することにより、 駆動軸 19 -1、 19- 2を動かさない通常の操業では、 ガスリ一ク防止装置 22はダクト 6 内の熱 影響を殆ど受けないので、 ガスリーク防止装置 22の寿命も長くなる。 また、 駆動 軸 19- 1、 19- 2のくぼみ部分 25がガスリーク防止装置 22と接触することによつても ガスのシールが行われる。
駆動軸 19-1、 19- 2の最も径の大きい部分の外径 dは、 ダクト 6 の内径 Dの 50 % 以上とすることが望ましい。 また、 駆動軸 19- 1、 19- 2の先端の搔きとり部材 19-1 a 、 19-2a の角度 ο;は 10度以上 150 度以下とすることが望ましい。
また、 昇降装置 20等の設備を設置し、 かつ付着物 17を除去するためには、 十分 な長さの駆動軸 19-1、 19- 2を用いるべきであるが、 駆動軸 19- 1、 19- 2の長さが長 過ぎると建屋の高さを必要以上に高くとることとなる。 このため、 駆動軸 19 - 1、 19 - 2の長さは、 駆動軸 19- 1、 19- 2の待機位置から駆動軸 19- 1、 19- 2の前進限まで の長さ Lの 3倍以下とすることが望ましい。 駆動軸 19- 1、 19-2の前進限 26は、 図 2の駆動軸 19-2のように炉内に向かって前進する場合はガス排出口 5 より、 10mm 〜300龍程度下に前進させた位置とすることが望ましい。 また、 図 2における駆 動軸 19- 1のようにダク卜が交差している方向に向かって前進する場合は、 交差す るダクトの中心軸線に対して ± 50mm前進した位置とすることが望ましい。
また、 駆動軸 19- 1、 19- 2の先端部に、 図 3のようにファイバースコープ 27を設 置することにより、 ダクト 6 内の閉塞状況を監視しながら駆動軸 19-1、 19-2を運 転することも有効である。 基本的には、 ダクト 6 内の差圧により閉塞状況を推定 できるが、 付着物 17が極めて少量の場合は、 差圧の測定結果には顕著な傾向が現 れない可能性がある。 ダクト 6 内を清掃した時に、 このわずかな付着物 17が残る と、 それを核として閉塞物が再度成長する可能性がある。 したがって、 ファイバ —スコープ 27等でダクト 6 の内部を観察しながら作業を行うことが有効である。 常時ファイバースコープ 27により、 ダクト 6 内を観察していれば、 差圧測定をす る必要性はないものの、 駆動軸 19- 1、 19- 2をダクト 6 内に常時挿入しておく必要 があり、 駆動軸 19- 1、 19- 2が熱的に損傷する可能性が高くなる。 また、 ファイバ —スコープ 27にダスト等が付着するので長時間の観察は不可能である。 また、 バ ルブ 23を開のままにしておく必要があるので、 シール装置 22の寿命も短くなる。 先端部分 19-l a 、 19- 2a の交換や修理は、 待機位置 24に戻し、 待機位置 24の手前 のバルブ 23を閉じることにより操業中でも行うことができる。
次に、 本実施の形態で用いる廃棄物のガス化溶融炉 1 を示す図 1を参照しなが ら、 このガス化溶融炉 1 の昇温において、 炉内の装入物の上端面の高さを迅速に 操業時の制御レベルまで上げることによって炉内填充時間を短縮する方法を説明 する。
本実施の形態では、 ガス化溶融炉 1 の昇温を開始する前の段階から、 塩素等の ハロゲン濃度が 0. 1 %以下である炭材 32をガス化溶融炉 1 内の所定の高さまで装 入しておく。 ここで、 所定の高さとは、 廃棄物装入口 4又は装入装置 28と、 下部 羽口 11との間の高さを意味する。
昇温は、 例えば、 二重ゲート弁 29を配置する装入装置 28から炉内へ装入され、 予め積み上げられた炭材 32の上端面に火種を投入した後にバルブ 29a 及びノ又は バルブ 29b を閉めた状態とし中心ランス 9 から支燃性ガス 9aを送風することによ つて予め装入した炭材 32を燃焼させるといった極めて簡単な手順で開始する。 炭 材 32の燃焼状況は、 炉体 l aの上部に設置した炉内監視窓 30から常時行うことがで さる。
さらに、 下部羽口 1 1からも支燃性ガス 1 1 a を送風し、 下部羽口 1 1の近傍でも炭 材 32を燃焼する。 下部羽口 1 1の前面での燃焼の確認は監視窓 31から目視で確認で きる。 炭材 32の充填層の上端面レベルは逐次測定し、 上端面レベルを目標とする レベルに維持できるように炉内に供給する炭材 32の量を調整する。
このようにして、 炉内の装入物の上端面の高さを、 炉の昇温段階で操業時の制 御レベルまで上げることができ、 これにより、 炉内填充時間を短縮することがで さる。
次に、 本実施の形態において未利用炭素を低減する手段について説明する。 図 1に示すガス化溶融炉 1において、 ダクト 6から炉外へ飛散するダストには
、 未利用炭素も含まれる。 未利用炭素を低減する方法として、 本実施の形態では 炉内へ蒸気を吹き込む。
図 1に示すガス化溶融炉 1 内の廃棄物の上端面とガス排出口 5 との間に設置し たノズル 33、 炉中心ランス 9 又は上部羽口 10のいずれか少なくとも一つから蒸気
34を吹き込んで、 水性シフト反応 (C +H20 = C0+H2)により未利用炭素を COガス に転換する。
ここで、 蒸気 34の吹き込み量は流量計により容易に制御できるので、 この水性 シフト反応に必要な量の水蒸気を正確に供給することが可能である。 また、 吹き 込んだ蒸気 34により、 未利用炭素を効率的に COガスにするためには、 蒸気 34を広 角に吹き込むことが望ましい。 これにより、 蒸気 34が炉体 l aの周方向により均一 に吹き込まれることとなり、 上述した水性シフト反応が効率的に進行する。 たとえ廃棄物中の炭素が完全にガス化せずに未利用炭素として除塵設備でダス トとして回収された場合であっても、 再度、 ガス化溶融炉 1 に投入することが可 能である。 この際、 ダストの粒径は l mm以下と極めて小さいために炉内で飛散す ることが懸念されるが、 本例では、 図 1に示すプッシヤー 7 により廃棄物 3 とと もに未利用炭素 35を含むダストを混合圧密して装入することができるため、 炉内 でのダストの飛散は抑えられる。 次に、 図 1に示すガス化溶融炉 1 において、 熱分解残渣炭素が少ない廃棄物を 対象とする場合に、 炭材 8 及び Z又は炭材 36を投入することにより、 充填層の高 さの制御、 すなわち廃棄物の上端面の位置の制御を容易に行う手段を説明する。 上述したように、 図 1に示すガス化溶融炉 1 にはプッシヤー 7 が取り付けられ ている廃棄物装入口 4 が設置されており、 炭材 8 は、 廃棄物 3 とともに混合圧密 されて炉内に装入される。 これにより、 粒径の細かい炭材 8 の炉内における飛散 が抑えられる。
また、 予め選別された粒径が 5匪以上である炭材 36を装入する場合には、 二重 ゲート弁 29を用いて装入することが望ましい。 この場合、 炭材 36のみを二重ゲー ト弁 29を有する独立した装入装置 28から投入することが可能である。 二重ゲート 弁 29を備える装入装置 28は、 上部ゲ一卜弁 29a を開くことにより、 炭材 36を上部 ゲート弁 29a と下部ゲート弁 29b との間に自由落下させ、 その後上部ゲート弁 29 a を閉めてから、 下部ゲート弁 29b を開いて炭材 36を炉内に装入する。
この装入手段によれば、 常に上部ゲート弁 29a 又は下部ゲート弁 29b のいずれ かを閉めた状態で動作するため、 大量の炉内ガスがこの装入装置 28を通過して炉 外に漏れ出すことや、 炉外の空気を大量に炉内に吸い込むことがともに防止され る。
このようにして、 炭材 8 及び/又は炭材 36を炉内に投入することにより、 熱分 解残渣炭素が少ない廃棄物が対象であっても、 充填層の高さの制御を容易に行う ことができる。
炭材 8 及び Z又は炭材 36は、 炉内温度をダイォキシン類が殆ど発生しない条件 に昇温した後に投入する。 したがって、 炭材 8 及び Z又は炭材 36に含まれるハロ ゲン類の濃度は特に限定しない。
次に、 本実施の形態において、 ハロゲンのマテリアルリサイクルを行う状況を 説明する。
図 4〜7は、 いずれも、 本実施の形態のハロゲンを回収するためのシステムフ 口一を示す説明図である。 初めに、 図 4及び図 5により示されたシステムについ て説明してから、 図 6及び図 7により示されたシステムについて説明する。 図 4において、 廃棄物 3 は本実施の形態のガス化溶融炉 1 に投入される。 廃棄 物 3 に含まれる有機物がガス化して燃料として使用できる高カロリーガス 40を生 成する。 灰分及び有価金属は溶融スラグ 38及び溶融金属 39に転換される。 ガス化 溶融炉 1 内では、 ダイォキシン類の排出を低減するために、 その上部の温度は 10 00°C以上 1400°C以下に制御されており、 廃棄物 3 を 500〜1200°C以上の高温領域 の熱分解ガス化帯に直接投入し、 炉内で 1000°C以上の高温に 2秒間以上保持され た後、 炉外に排出される高温の高カロリーガス 40は、 ダクト 41を経由してガス冷 却装置 42でノズル 43から噴霧されるミスト 44によって 120 °C以上 200 °C以下に急 冷される。
これにより、 ハロゲン含有量の多い廃棄物 3 を処理する場合においても、 ダイ ォキシン類の再合成及び排出を確実に抑制することができ、 プロセス全体からの ダイォキシン類の排出量を低く抑えることが可能となる。 また、 ハロゲンを含有 するプラスチック類は低温での熱分解においてはタールが発生し、 配管等への付 着が問題となるが、 このガス化溶融炉 1 では高温での熱分解ガス化を行うため、 夕一ルも発生しない。
ガス冷却装置 42の出口のダクト 45を通過するガスとしては、 一酸化炭素及び水 素等とともにハロゲン化水素ガス等が含まれている。 これらのガスは、 除塵装置 46で含まれているダスト 47を除塵した後、 ハロゲン回収装置 48に導かれる。
ハロゲン回収装置 48では水 49をノズル 50から吹き付けることによって高カロリ 一ガスを 100 以下に冷却し、 含まれるハロゲン化水素ガスを凝縮することによ り凝縮水 51と塩酸等の酸 52の混合液とし、 他のエネルギーガス 53とハロゲンを分 離させる。 酸 52と凝縮水 51の混合液は、 ノズル 54を通してハロゲン回収装置 48に 循環され、 酸 52を濃縮し回収する。 酸 52と凝縮水 51の混合液はノズル 54を使用せ ず、 ノズル 50から水 49と混合して循環することも可能である。 回収された酸 52は 、 ハロゲン化装置 55でハロゲン 56に転換される。
また、 除塵装置 46、 ガス冷却装置 42でそれぞれガスと分離除去されたダスト 47 、 57は、 新たに装入される廃棄物 3 とともにガス化溶融炉 1 に再投入される。 こ こで、 ガス冷却装置 42で冷却されたガスは、 ハロゲン回収装置 48に流入するまで は、 ハロゲン化水素ガスによる腐食防止の観点から 100 °C以上、 好ましくは 120 °C以上とすることが望ましい。 特に温度が低くなる除塵装置 46以降では、 ハステ ロイ等の耐酸性材料を使用することが有効である。 また、 ハロゲン回収装置 48に 使用する材料としては、 100 以下でも酸腐食が発生しにくレ RP 等が挙げられ る。
また、 酸の回収方法としては、 図 5に示すようにガス冷却装置 42を通過した後 に回収する方法もあげられる。 図 5は、 ガス化溶融炉 1 で生成した 1000 以上 14 00°C以下の高温でかつ高力口リ一なガス 40をガス冷却装置 42で 100 °C以下に急冷 し、 エネルギーガス 40に含まれるハロゲンを回収する方式である。 この方式では 、 ガス 40に含まれている水分及びガス冷却装置 42で噴霧されたミスト 44をガス冷 却装置 42の内部で凝縮して、 ガス冷却装置 42の下部より回収する。 回収された凝 縮水 58には酸及びスラッジ 59が含まれるが、 回収された凝縮水 58は濾過装置 60で スラッジ 59を分離除去した後、 酸 61を含む凝縮水 62となり、 ハロゲン化装置 55で ハロゲン 56に転換される。
ガス冷却装置 42の出口ガスの温度は 100 で以下であるが、 ハロゲンの殆どはガ ス冷却装置 42の下で回収される凝縮水 58に移行するため、 ガス冷却装置 42の後段 の設備が腐食することはない。 ただし、 若干のハロゲン化水素ガスが含まれるの で、 除外塔 65に苛性ソーダ 71を含む水 72を供給して酸 66を回収し、 ガス冷却装置 42の下部で回収された酸 61とともにハロゲン化装置 55でハロゲン化される。 また 、 スラッジ 59はガス化溶融炉 1 に再投入してガス化溶融できる。
また、 廃棄物中のハロゲン濃度は広範囲であるが、 ハロゲン濃度の高いサンプ ルの方が、 回収酸濃度が高くなる。 さらには、 廃棄物処理量当たりのハロゲン回 収量が大きくなり、 回収効率が高くなる等の利点が考えられる。 そこで、 ハロゲ ン濃度が低い廃棄物を処理する場合、 ハロゲン濃度の高い廃棄物を添加して回収 される酸を濃縮することも有効である。
また、 廃棄物に含まれるハロゲン類の濃度が低い場合は、 除塵設備 46に消石灰 を吹き込みハロゲンを除去することが望ましい。 ハロゲン類濃度が低い場合は、 ハロゲン回収効率が低いためである。 除塵設備 46でハロゲンを固定化すれば、 ハ ロゲン類を水洗処理するハロゲン回収装置 55は必要なく、 そこから排出される水 の処理を行う必要がないためである。 次に、 図 6及び図 7により示されたシステムについて説明する。 なお、 以降の 説明では、 上述した図 4により示されたシステムと相違する部分を説明し、 共通 する部分の説明は省略する。
図 6において、 ガス冷却装置 42の出口のダクト 45を通過するガスが除塵装置 46 により含まれているダスト 47を除塵された後にハロゲン回収装置 48へ導かれるま では、 上述した図 4により示されたシステムと同じである。
本例では、 ハロゲン回収装置 48では水 49をノズル 50から吹き付けることによつ て高カロリーガス 40を 100 °C以下に冷却し、 含まれるハロゲン化水素ガスを凝縮 することで、 凝縮水 51と酸 52の混合液とし、 他のエネルギーガス 53とハロゲンを 分離させる。 酸 52と凝縮水 51の混合液は、 ノズル 43を通してガス冷却装置 42に循 環され、 ハロゲン回収装置 48で回収される酸 52の濃度を濃縮する。
回収された酸 52は、 ハロゲン化装置 55でハロゲン 56に転換される。 酸 52と凝縮 水 51の混合液をガス冷却装置 42に循環することによって、 ガス冷却装置 42で使用 する水 44の量を低減できる。 また、 除塵装置 46、 ガス冷却装置 42でガスと分離除 去されたダスト 47、 57は廃棄物 3 とともにガス化溶融炉 1 に再投入される。
本例においても、 ガス冷却装置 42で冷却されたエネルギーガスは、 ハロゲン回 収装置 48に流入するまでは、 ハロゲン化水素ガスによる腐食防止の観点から 100 °C以上、 好ましくは 120 °C以上とすることが望ましい。 特に温度が低くなる除塵 装置 46以降では、 ハステロィ等の耐酸性材料を使用することが有効である。 また 、 ハロゲン回収装置 48に使用する材料としては、 100 °C以下でも酸腐食が発生し にくい FRP 等が挙げられる。
また、 図 7は、 酸回収方法としてガスクーラー方式を採用した例である。 なお 、 以降の説明では、 上述した図 6により示されたシステムと相違する部分を説明 し、 共通する部分の説明は省略する。
図 7において、 ガス冷却装置 42の出口のダクト 45を通過するガスが除塵装置 46 により含まれているダスト 47を除塵した後にハロゲン回収装置 48へ導かれるまで は、 上述した図 6により示されたシステムと同じである。
本例では、 ハロゲン回収装置 48ではガスクーラー方式により高力口リーガス 40 を 100 °C以下に冷却し、 含まれるハロゲン化水素ガスを凝縮することによって、 凝縮水 51と酸 52との混合液とし、 他のエネルギーガス 53とハロゲンを分離させる 。 酸 52は、 ハロゲン化装置 55でハロゲン 56に転換される。 また、 除塵装置 46、 ガ ス冷却装置 42でガスと分離除去されたダスト 47、 57は、 新たに装入される廃棄物 3 とともにガス化溶融炉 1 に再投入される。
本例においても、 ガス冷却装置 42で冷却されたエネルギーガスは、 ハロゲン回 収装置 48に流入するまでは、 ハロゲン化水素ガスによる腐食防止の観点から 100 以上、 好ましくは 120 °C以上とすることが望ましい。 特に温度が低くなる除塵 装置 46以降では、 ハステロィ等の耐酸性材料を使用することが有効である。
次に、 本実施の形態のガス化溶融炉 1 を用いて医療系廃棄物、 汚染土壌又は PC B 等の有害廃棄物を処理する状況を説明する。
密閉容器に封入された有害廃棄物は、 図 1に示すガス化溶融炉 1 を用いて無害 化処理することができる。 炉体 l aへの装入は、 二重ゲート弁方式の装入装置 29か ら投入することが可能である。 二重ゲート弁方式の装入装置 29は、 上部ゲート弁 29a を開くことにより密閉容器を上部ゲート弁 29a と下部ゲート弁 29b との間に 自由落下させ、 その後上部ゲ一卜弁 29a を閉めてから下部ゲー弁 29b を開いて密 閉容器を炉内に装入する。 これによれば、 常に上部ゲート弁 29a 又は下部ゲー弁 29b のいずれかを閉めた状態を維持できるため、 大量の炉内ガスが装入装置を通 過して炉外に漏れることや、 炉外の空気を大量に炉内に吸い込むことが防止され る。 なお、 炉内の圧力は、 下流に誘引ファン等を設置することによって大気圧以 下に制御することが望ましい。
これにより、 密閉容器に封入されて炉内に装入された有害廃棄物から発生する 有害な熱分解ガスが密閉容器から排出されることなく、 有害廃棄物を充填層の上 端面に到達させることができる。 有害廃棄物は、 充填層の上端面に到達した後、 熱により密閉容器に孔があくことにより、 熱分解された熱分解ガスとして、 密閉 容器から排出される。 密閉容器から排出された有害ガスは、 高温条件下で十分な 滞留時間を経るために炉内で完全に分解されて、 炉外へ排出される。 この密閉容 器の材質及び厚みは、 密閉容器が充填層の上端面に到達するまでの間に孔があか ないように適宜決定すればよい。
さらに、 本実施の形態において、 湯溜まり室の内部の圧力上昇を解消する手段 を説明する。
図 8は、 図 1に示すガス化溶融炉 1 に湯溜まり室 73を設けたガス化溶融炉 1 - 1 を、 一部簡略化して模式的に示す説明図である。 なお、 以降のガス化溶融炉卜 1 の説明では、 ガス化溶融炉 1 と相違する部分を説明し、 共通する部分の説明は省 略する。
図 8に示すように、 このガス化溶融炉 1-1 には、 炉体 l aの下部の内部に連通し て、 湯溜まり室 73が設けられている。 この湯溜まり室 73はガス化溶融炉 1-1 から 排出される灰分及び有価金属を回収するために、 生成した溶融スラグ及び溶融金 属等の溶湯を一時的に溜めておくためのものである。 湯溜まり室羽口 81からは、 支燃性ガス 81 a 及び燃料 81 b を吹き込み、 湯溜まり室内温度を維持する。
本例では、 湯溜まり室 73の上部にガス排出用の配管 74を設置し、 炉体 l aの内部 の廃棄物の上端面 76とガス排出口 5との間に接続する。 その間には、 弁 75を配置 し、 通常は弁 75を閉じた状態で操業を行う。
湯溜まり室 73の内部の圧力は、 圧力測定装置 77により連続測定することが可能 である。 通常の操業においては、 圧力測定装置 77の値は、 湯溜まり室 73の設計圧 力の 0. 5 倍以下での操業とするが、 この値が設計圧力の 0. 5 倍を超えた場合には 、 弁 75を開いて、 ガス排出口 5より湯溜まり室 73の内部で発生したガスを、 炉体 l aの外部へ排出する。
これにより、 ガス化溶融炉 1 を一時的に休止した後の立ち上げの際に炉内に残 留した廃棄物や冷えたスラグ等が炉体 l aと湯溜まり室 73との接続部 78を閉塞する ことにより、 湯溜まり室 73の内部の圧力が過剰に上昇することが防止される。 このように、 本実施の形態により、 基本のガス化溶融炉が有する課題である、 (a) ダクト 6の閉塞、 (b) 炉内填充時間、 (c) 未利用炭素の排出、 (d) 廃棄物の 上端面位置の制御、 (e) ハロゲン類のマテリアルリサイクル、 (ί) 有害廃棄物の 装入、 (g) 湯溜まり室 73の内部の圧力上昇を、 解決することができ、 これにより 、 基本のガス化溶融炉をいっそう高性能化できる。 このため、 本実施の形態によ り、 長期間にわたって安定的にガス化溶融操業を商用的規模で継続することが可 能となり、 真に実用性が高い廃棄物の処理方法及び処理装置を提供できる。 実施例 さらに、 本発明を実施例を参照しながら具体的に説明する。 なお、 以降の説明 では、 吹込量の単位である(NmVhr)は、 m3 (標準状態)/ hrを意味する。
図 1に示すガス化溶融炉 1 を用い、 廃棄物のガス化溶融試験を行った。 ガス化 溶融炉 1 の各部の寸法、 上部羽口 10、 下部羽口 11その他取付部品の数量及び配置 は以下のとおりである。 なお、 溶融スラグ及び Z又は溶融金属の排出口は溶湯排 出口と略記する。
(1) 寸法
炉径: 2.0 m (但し、 耐火物 2を内張りした後における内径)
炉高: 6.0 m (伹し、 耐火物 2を内張りした後における炉底から炉頂までの高 さ)
溶湯排出口 78の上端から廃棄物装入口 4の下端までの高さ: 2.8 m
溶湯排出口 78の上端から下段の下部羽口 11の下端までの高さ : 0.8 m 溶湯排出口 78の上端から上段の下部羽口 11の下端までの高さ: 1.6 m 溶湯排出口 78の上端から下段の上部羽口 10までの高さ : 3.9 m
溶湯排出口 78の上端から上段の上部羽口 10までの高さ: 4.7 m
炉底から炉中心ランス 9 の先端までの高さ :標準 5.0 m (伹し上下に可変)
(2) 数量
下部羽口 11: 円周方向に 3個、 炉高方向に 1 段
上部羽口 10 : 円周方向に 3個、 炉高方向に 2 段
蒸気吹き込み羽口 33:円周方向に 3個、 炉高方向に 1 段
炉中心ランス 9 : 1個
溶湯排出口 78: 1個
装入廃棄物の上端面の位置を計測する位置計測装置 79: 1個
(3) 配置
下部羽口 11: 円周方向に 120 度毎の等間隔であって、 先端を内張り耐火物 2 の 表面より炉内側に 100讓突き出して設置
上部羽口 10 : 円周方向に 120 度毎の等間隔であって、 炉軸方向から 45度ずらし て設置
炉中心ランス 9 :炉中心 (炉軸上) 【 溶湯排出口 78:炉底端に配置
位置計測装置 79:炉中心ランス 9 と側壁の間 試験に使用した廃棄物 3 は、 シュレッダーダスト及び高濃度含塩素' ク屑であり、 その組成を表 1から表 3に示す。
すなわち、 表 1に廃棄物 3 及び副原料の工業分析値 (質量%) を、 表 2 物 3 及び副原料のうちの可燃分組成 (質量%) を、 表 3に廃棄物 3 及び副原料の うちの金属分を除く不燃分組成 (質量%) を示す。
Figure imgf000026_0001
φ 1 屑は高濃度塩素プラスチック使用 表 2
Figure imgf000026_0002
Φ 1 屑は高濃度塩素プラスチック使用 表 3
Figure imgf000027_0001
:プラスチック屑は高濃度塩素プラスチック使用
(処理条件の設定手順)
(a)炭材 32を装入装置 28から炉内に装入し、 高さ 1. 5 mまで積み上げた。
(b)炭材 32の充填層の上端面に火種を投入し、 炉中心ランス 9 からの支燃性ガス 9aにより炉内に積み上げられた炭材 32を着火した。
(c)下部羽口 11、 上部羽口 10からも順次に酸素を流した。
(d)支燃性ガスの送風量及び炭材 32の装入量を調整して炉内を所定の温度まで昇 温した。
(e)廃棄物 3 の投入を開始し、 炭材 32の装入を停止した。
(f)廃棄物 3 の燃焼に伴って装入された廃棄物 3 の上端面の位置が下がってくる ので、 その位置を 1. 5 mに維持するように廃棄物 3 を逐次装入した。
(g)装入された廃棄物 3 の上端面の近傍の熱電対により測定される温度が 600 °C 以上、 かつフリーポード空間の熱電対により測定される温度が 1000°C以上 1400°C 以下を常に維持するように、 炉中心ランス 9 、 上部羽口 10及び下部羽口 11から吹 き込む酸素量を調整した。
すなわち、 荷下がり速度が速く、 所定の廃棄物 3 の処理量では装入された廃棄 物 3 の上端面の位置を所定の位置に維持できない場合には、 下部羽口 11及び場合 によっては炉中心ランス 9 からの酸素吹き込み量を減少させた。 廃棄物 3 の上端 面近傍の温度が 600 °C未満の場合には、 炉中心ランス 9 からの酸素吹き込み量を 増加させた。 また、 フリーポ一ド空間の温度が 1000°Cより低い場合には、 上部羽 口 10からの酸素吹き込み量を増加させた。 逆に、 フリーボード空間の温度が 1400 °Cを越えた場合には、 上部羽口 10及び場合によっては炉中心ランス 9 からの酸素 吹き込み量を減少させた。 (h)溶湯排出口 78から排出される溶融スラグ及び溶融金属の温度を測定し、 所定 の温度 (少なくとも溶融スラグ及び溶融金属がいずれも固まらない温度であるが 、 本実施例では 1400 以上 1600°C以下とした) より低下した場合には、 下部羽口 11からの支燃性ガス 11 a の供給量を増加した。 また、 溶融スラグ及び溶融金属の 成分を分析し、 所定のスラグ塩基度になるように投入する石灰石量を調整した。
(i)上記の(f) から(h) の操作を繰り返し行った。
以下、 本実施例での(i) ダクト 6 の閉塞、 (i i)炉内填充時間、 (i i i) 未利用炭 素の低減、 (iv)廃棄物の上端面の位置の制御、 (V) ハロゲンのマテリアルリサイ クルについての試験結果を、 以下に列記する。
(0 ダクト 6 の閉塞
①排ガスへの冷媒 12の吹き込み
ダクト 6 内の閉塞物除去装置 16及び閉塞防止装置の効果をみるために、 鉛及び 亜鉛等の低沸点物質をシュレッダーダストに各々 20kg/hr 添加して、 ダクト 6 を 意図的に閉塞し易くした条件で試験を行った。 操業諸元及び試験結果を表 4にま とめて示す。
4
比較例 1 本発明例 1 本発明例 2 シュレッター 400 400 400 ダス卜
装入物(kg/hr) 鉛 20 20 20 亜鉛 20 20 20 図 9 図 10 図 11 炉圧、 ダクト 6の入一出差圧の変化 (閉塞発生) (閉塞なし) (閉塞なし ミスト(kg/hr) 0 0 40 炉出口部への冷媒
12 N2ガス(NmVhr) 0 90 0 炉中心ランス 9 80 80 80 送風酸素(NmVhr) 上部羽口 10 80 80 80 下部羽口 11 60 60 60 下部羽口 11からの LPG (NmVh) 8 8 8 炉内パージ N2(Nm3/h) 40 40 40 炉上部温度 (°C、 測定装置 80) 1150 1150 1150 ダクト 6 入口温度
( °C、 測定装置 81) 1100 950 950 排ガス量(wet_NmVhr) 643 733 691
CO 32.5 28.5 30.3
C02 14.9 13.1 13.9
H2 21.9 19.2 20.4 排ガス (%) H20 23.4 20.5 28.6
N2 6.2 17.7 5.8
H2S 0.1 0.1 0.1
HC1 1.0 0.9 0.9 ダク卜 6 出口ガスカロリ 2019 1706 2019 (kcal/dry-Nm3) (比較例 1 )
比較例 1は、 図 1に示す冷媒吹き込みノズル 13から冷媒 12の吹込みを行わなか つたケースである。 生成したエネルギーガスの温度は炉上部の温度測定装置 80で 1150°Cであり、 ダクト 6 の入口の温度測定装置 81で 1100°C程度を示した。
ダクト 6 の入口部と出口部の差圧の測定結果を図 9にグラフで示す。 なお、 図 9以降の各図 (図 9 〜14) において、 縦軸 P は圧力 (IMH20)を示し、 横軸 d は操 業日数 (日) を示し、 また、 符号〇はダクト 6 の入側及び出側間の差圧を示し、 △印は炉内圧を示す。
図 9に示すように、 この差圧は操業開始 20日後から増加し始めた。 ダクト 6 の 差圧が 300腿 H20 になった時点で炉を立ち下げ、 ダクト 6 の内部を観察した。 そ の結果、 ダクト 6 の内壁の全周に付着物が観察された。
(本発明例 1 )
本発明例 1では、 冷媒吹き込みノズル 13から冷媒 12として窒素ガスを吹き込み 、 生成したエネルギーガスがダクト 6 に流入する前に冷却した。 エネルギーガス の温度は、 温度測定装置 80では 1150°Cであり、 ダクト 6 の入口の温度測定装置 81 では 950 °C程度であった。 また、 後段のガス冷却装置に流入する直前のエネルギ 一ガス温度は 850 °C程度であった。 回収されるエネルギーガスのカロリーは、 窒 素ガス吹き込みにより、 比較例 1と比べ若干低下した。
ダクト 6 の入口部と出口部の差圧の測定結果を図 10にグラフで示す。 図 10に示 すように、 ダクト 6 の入口部と出口部の差圧の上昇はみられなかった。 また、 操 業終了後にダクト 6 の内部を観察したが、 付着物は観察されなかった。
(本発明例 2)
本発明例 2は、 図 1に示す冷媒吹き込みノズル 13から粒径が 200 zm以下の霧 状化した水 (ミスト) を吹き込んだケースである。 エネルギーガスの温度は、 温 度測定装置 80では 1150°Cであり、 ダクト 9 の入口の温度測定装置 81では 950 °C程 度であった。 また、 後段のガス冷却装置に流入する直前のエネルギーガス温度は 850 °C程度であった。
ダクト 6 の入口部と出口部の差圧の測定結果を図 11にグラフで示す。 図 11に示 すように、 操業中、 ダクト 6 の入口部と出口部の差圧の上昇はみられず、 操業終 了後にダクト 6 の内部を観察しても、 付着物は観察されなかった。 さらに、 回収 されるエネルギーガスのカロリーも、 比較例 1と同じ値であり、 冷媒 12として不 活性ガスを吹き込んだ本発明例 1に対する優位性が示された。
また、 後段のガス冷却装置において使用されるミスト量は、 ノズル 13から吹き 込まれたミスト量とほぼ同じ量だけ減少した。
②閉塞物の機械的除去
比較例 2及び本発明例 3〜 4は、 本発明に係る閉塞物除去装置 16の効果を説明 するものであり、 操業諸元及び試験結果を表 5に示す。
比較例 2 本発明例 3 本発明例 4 シュレツダー 400 400 400 ダスト
装入物 鉛 20 20 20 (kg/hr)
亜鉛 20 20 20 炉圧、 ダクト 6 の入一出差圧 図 12 図 13 図 14 駆動軸 19- 1、 19-2の動作条件 炉内圧≥ 50匪 タクト 入一出差圧≥50 8時間おきに
H20 で動作 匪 H20 で動作 定期的に動作 炉中心ランス 9 80 80 80 送風酸素 上部羽口 10 80 80 80 (NmVhr).
下部羽口 11 60 60 60 下部羽口 11からの LPG(Nm3/h) 8 . 8 8 炉内パ一ジ N2( 3/h) 40 40 40 炉出ガス量 (wet- Nm3/hr) 643 643 643
CO 32.5 32.5 32.5
CO 14.9 14.9 14.9
H2 21.9 21.9 21.9 ガス組成 H20 23.4 23.4 23.4 (%)
N2 6.2 6.2 6.2
H2S 0.1 0.1 0.1
HC1 1.0 1.0 1.0 作業時間 約 1時間 ,約 3分間 約 3分間 駆動軸 19- 1, 1回の操作で 300 回以上の操作を 300 回以上の操作を 結果 駆動軸変形 行っても変形なし 行っても変形なし
19 - 2耐久性
ガスシール '【生 作業中にシー 300 回以上の操作を 300 回以上の操作を ル部よりガス 行っても問題なし 行っても問題なし 漏れ発生 (比較例 2 )
比較例 2では、 図 2に示す差圧測定装置 18の値を無視して;!:戸内圧力をもとに閉 塞度合いを予測した。 そして、 駆動軸 19-1、 19- 2を昇降し、 閉塞物を除去した。 ダクト 6 の入口部と出口部の差圧の測定結果を図 12にグラフで示す。 図 12のグ ラフにおける A点において駆動軸 19- 1、 19- 2を昇降して閉塞物を除去した。
図 12に示すように、 ダクト 6 の入口と出口の差圧がベース(OmmH20 ) に対して 100mm H20 以上増加しても、 炉内圧力の上昇は見られなかった。 すなわち、 炉内 圧力の変化は、 この差圧に比較して、 ダクト 6 の閉塞に対する反応が鈍いことが 分かった。 炉内圧力が顕著に増加したのは、 ベース(OmniH20 ) に対して差圧測定 装置 18の値が 300mmH20以上増加してからであった。
この時点で駆動軸 19-1、 19- 2を動作させたが、 閉塞物を除去するために約 1時 間かかった。 また、 長時間の作業を継続した結果、 差圧測定装置 18のガスシール 部 22より炉内ガスがリークすることが確認された。 また、 この作業終了後、 駆動 軸 19-1、 19- 2を観察したところ、 変形していることが確認された。
閉塞物除去装置 16の寿命を向上させるためには、 ダクト 6 の閉塞の程度が軽い うちに駆動軸 19-1、 19- 2を動作させることが重要と考えられる。 そのためには、 炉内圧力を観察するよりも、 ダクト 6 の入口と出口の差圧を連続的に観察するこ とが、 ダクト 6 の内部の閉塞に対して早急に対応でき有効であると考えられる。 (本発明例 3)
本発明例 3では、 差圧測定装置 18の値に基づいて、 図 2に示す駆動軸 19- 1、 19 - 2を昇降し、 閉塞物を除去した。
ダクト 6 の入口部と出口部の差圧の測定結果を図 13にグラフで示す。 図 13のグ ラフにおける B点において駆動軸 19-1、 19- 2を昇降して閉塞物を除去した。
図 13に示すように、 差圧測定装置 18の値がベース(OMIH20)に対して 50mmH20 以 上増加した時点で駆動軸 19- 1、 19- 2を運転したところ、 約 3分間の作業で差圧測 定装置 18の値はベース値(OmmH20)に戻り、 その後も安定した操業ができた。 この 操作は、 300 回以上行っても駆動軸 19- 1、 19-2の変形、 及びガスシール部 22から の炉内ガス漏れはなかった。
すなわち、 ダクト 6 の差圧を観察し、 早急にダクト 6 の閉塞の兆候を検出する ために、 差圧測定装置 1 8を作動させることが有効である。
(本発明例 4 )
本発明例 4では、 差圧測定装置 18及び炉内圧の値とは無関係に 8時間に一度、 図 2に示す駆動軸 1 9- 1、 19- 2を定期的に昇降した。
ダクト 6 の入口部と出口部の差圧の測定結果を図 14にグラフで示す。 図 14に示 すように、 差圧測定装置 18の値が 10mmH20 以上となることはなく、 100 日間連続 して運転してもダクト 6 の閉塞はなく、 駆動軸 1 9- 1、 1 9-2の変形及びガスシール 部 22からのガス漏れも生じなかった。
( i i )炉内填充時間
表 6に示す比較例 3及び本発明例 5は、 いずれも、 炭材を用いた炉の昇温につ いて説明するものである。 表 6
Figure imgf000034_0001
(比較例 3 )
バーナーの燃焼により炉を昇温した比較例 3では、 昇温に 48時間要した。 その 後、 廃棄物 3 の装入を開始したが、 装入物の上端面の高さレベルを目標値 (制御 値) である 1 . 5 mまで上げるためにさらに 48時間を必要とした。 すなわち、 昇温 を開始してから装入物の上端面の高さレベルの調整完了までの時間 (炉内填充時 間) は 96時間を要した。
(本発明例 5 )
本発明例 5では、 昇温前の段階から炭材を装入し、 昇温途中も装入物の上端面 の高さレベルを計測しながら、 逐次、 炭材の装入量を調整した。 そのため、 昇温 完了の時点で装入物の上端面の高さレベルは、 目標レベル (制御レベル) に達し ていた。 したがって、 昇温開始から装入物の上端面の高さレベルの調整及び昇温 が完了し、 廃棄物装入開始となるまでに要した時間は 48時間となり、 比較例 3と 比較すると半減できた。 また、 炭材としてハロゲン濃度が 0.1 %以下であるもの を使用した結果、 昇温途中におけるダイォキシン類の排出量を極めて低いレベル に抑制することもできた。
(iii) 未利用炭素の低減
表 7は、 比較例 4及び本発明例 6の試験結果を示す。 表 7
比較例 4 本 明例 6
シュレツダーダスト (kg/hr) 400 400
炉中心ランス 9 80 80
送風酸素(NmVhr) 上部羽口 10 75 84
下部羽口 11 60 60
蒸気吹き込み (kg/hr) 0 18
下部羽口 11からの LPG (NmVh) 8 8
炉内パージ N2(Nm3/h) 40 40
炉頂ガス量(wet- NmVhr) 643 688
炉頂ガス温度 (°C) 1150 1150
CO 33.3 33.4
C02 14.1 14.
H2 22.8 22.9
ガス {%) H20 22.5 22.7
N2 6.2 5.8
H2S 0.1 0.1
HC1 1.0 0.9
実量(kg/hr) 3.2 3.2
メタル
温度 (°c) 1480 1480
実量 (kg/hr) 142 142
スラグ
温度 (°C) 1480 1480
未利用 C量 (kg- C/hr) 15 3
生成ガスカロリ一 (kcal/dry-Nm3) 2058 2070 (比較例 4 )
比較例 4は、 図 1に示すガス化溶融炉 1 における装入された廃棄物の上端から ガス排出口 5 の間に設置した炉中心ランス 9 、 上部羽口 10及び蒸気吹き込みノズ ル 33のいずれからも蒸気吹き込みを行わなかったケースである。 この時の未利用 炭素量は 15kg- C/hr であった。
(本発明例 6)
本発明例 6では、 図 1に示す蒸気吹き込みノズル 33から 18kg/hr の蒸気を吹き 込んだ時の試験結果を示す。 未利用炭素量は 3 kg- C/hr まで減少した。 また、 未 利用炭素の減少に伴って、 COガス発生量が増加すること、 及び蒸気が水素に転換 されることにより、 廃棄物 3 の処理量当たりの生成ガス発熱量は増加した。 また 、 ガス I Nm3 当たり (ドライガス) のガス発熱量も 2058kca l/Nm3から 2070kcal/N m3に増加した。 また、 炉中心ランス 9 又は上部羽口 33から支燃性ガスとともに蒸 気を吹き込んだが、 同様の結果が得られた。
(iv)廃棄物上端面位置の制御
比較例 5及び本発明例 7は、 炭材投入による充填層の高さレベルを制御した結 果を示すものである。 各々の結果を表 8にまとめて示す。
8
Figure imgf000037_0001
(比較例 5 )
比較例 5は、 シュレッダーダストをガス化溶融処理した。 燃料としては廃材木 等の炭材の投入は行わず下部羽口 1 1から 8 Nni3/hrの LPG を吹き込んだ。 表 1に示 すようにシュレッダーダストに含まれる熱分解残渣中の炭素分 (固定炭素) は 5. 4 %と乾燥後の都巿ごみと比較すると少ないものである。
比較例 5では、 廃棄物 3 の上端面の高さレベルを制御する方法として、 下部羽 口 1 1から送風する支燃性ガスの量を制御した。 すなわち、 上端面の高さレベルが 、 目標より低くなつた場合には支燃性ガスの量を低減し、 逆に目標より高くなつ た場合には支燃性ガスの量を増加した。 また、 下部羽口 1 1からの支燃性ガスの低 減に伴い、 溶融スラグ及び溶融金属の排出量が低下した場合にも下部羽口 1 1から の支燃性ガスの量を増加した。
表 8に示すように、 比較例 5では、 廃棄物 3 の上端面のレベルを目標値の 1450 匪〜 1550mmに維持するために、 頻繁に下部羽口 1 1からの支燃性ガス量、 及び上部 羽口 10からの支燃性ガスの量を操作する必要があり、 下部羽口 1 1からの支燃性ガ ス量は 20回ノ日、 上部羽口 10からの支燃性ガス量は 35回 Z日のペースで操作した
(本発明例 7 )
本発明例 7は炭材として廃材木を投入したケースである。 下部羽口 1 1及び上部 羽口 10からの支燃性ガスの量は、 殆ど変化させることなく、 廃棄物 3 の上端の位 置を目標制御範囲に制御できた。
すなわち、 特に固定炭素が少ない廃棄物 3 を対象とする場合、 炭材 8 及び Z又 は炭材 36の投入により廃棄物 3 の上端の位置の制御が容易になることがわかる。 表 9には、 図 4及び図 5に示すフローに基づき行ったハロゲン回収試験の諸元 及び結果を示す。 ここでは、 ハロゲンの代表的物質である塩素の回収を例にとつ て説明する。 9
本発明例 8 本発明例 9 塩酸回収方法 除塵後 (図 4) ガス冷却後 (図 5) プラスチック屑(kg/hr) 400 400 送風酸素総量(Nm3/hr) 191 191 下部羽口 11からの LPG (NmVh) 18 18 炉内パージ N2(Nm3/h) 60 60 炉頂ガス量 (wet- NmVhr) 771 771 炉頂ガス温度 (°C) 1150 1150
CO 42.2 42.2
CO 2 3.4 3.4
H2 25.6 25.6 ガス組成 (%) H20 5.3 5.3
N2 7.8 7.8
H2S 0.1 0.1.
HC1 15.6 15.6 実量 (kg/hr) 0.1 0.1 メタル
温度 (°C) 1460 1460 実量 (kg/hr) 13 13 スラグ
温度 C) 1460 1460 炉内投入塩素(kg- Cl/hr) 191 191 回収塩素量 (kg-Cl/hr) 189 189 (本発明例 8 )
本発明例 8では、 図 4に示すフロー図に基づき、 塩素回収試験を行った。 すな わち、 ガス化溶融炉 1 の炉内で生成した高カロリーガス 40をガス冷却装置 42で冷 却し、 さらにダスト 57をガス冷却装置 42の下部で、 ダス卜 47を除塵装置 46でそれ ぞれ除塵した後に、 塩酸回収を行った。
ここで使用したプラスチック屑は表 2に示すように高濃度の塩素を含有するプ ラスチック屑である。 表 9に示すようにガス化溶融炉 1 の内部に投入した全塩素 は 191kg- C l/hr であるが、 189kg- C l/hr の塩素がハロゲン回収装置 48及びハロゲ ン化装置 55を通過した後、 回収された。 また、 装入したプラスチック屑をガス化 溶融;!:戸 1 の内部で 1000°C以上で熱分解ガス化し、 生成したガスをガス冷却装置 42 で 170 に急冷した結果、 排ガス 53に含まれるダイォキシン類濃度は極めて低レ ベルに抑えられた。 また、 ガス冷却装置 42から排出されたガスは、 八ロゲン回収 装置 48に導入されるまでの間、 130 :以上に維持された。 さらに除塵装置 46及び その後の配管にはハステロィを用い、 ハロゲン回収装置 48の材料として FRP を用 いた。 その結果、 使用設備の腐食はみられなかった。
(本発明例 9 )
本発明例 9では、 図 5に示すフロ一図に基づき塩素回収試験を行った。 すなわ ち、 炉内で生成した高カロリーガス 40を冷却装置 42で 100 °C以下に冷却し、 含ま れる塩化水素ガスを凝縮することで塩酸回収を行った。
表 9に示すようにガス化溶融炉 1 の内部に投入した塩素は 191kg- Cl/hr である が、 ガス冷却装置 42の下部で塩酸として回収され、 その後、 ハロゲン化装置 55で 塩素に転換され、 189 kg-Cl/hrの塩素が回収された。 また、 本発明例 8と同様に 装入したプラスチック屑をガス化溶融炉 1 の内部で 1000°C以上で熱分解ガス化し 、 生成したガスをガス冷却装置 42で 100 °C以下に急冷した結果、 排ガス 70に含ま れるダイォキシン類の濃度は低レベルに抑えられた。
産業上の利用可能性
本発明によれば、 基本のガス化溶融炉が有する課題、 具体的には(a) ダクトの 閉塞、 (b) 炉内填充時間、 (c) 未利用炭素の排出、 (d) 廃棄物の上端面位置の制 御、 (e) ハロゲン類のマテリアルリサイクル、 (f) 有害廃棄物の装入、 又は (g) 湯溜まり室の内部圧力上昇を、 解決することができ、 これにより、 基本のガス化 溶融炉をいっそう高性能化できる。 このため、 本発明によれば、 長期間にわたつ て安定的にガス化溶融操業を商用的規模で継続することが可能となり、 真に実用 性が高い廃棄物の処理方法及び処理装置を提供できる。

Claims

請 求 の 範 囲
1 . 廃棄物を廃棄物処理炉に装入して、 該廃棄物に燃焼、 ガス化又は溶融の少な くとも 1つの処理を行う際に、 該少なくとも 1つの処理により生じる排ガスを、 該廃棄物処理炉の炉体に接続されて該排ガスを該炉体の外部へ導くダクトの入口 の近傍の炉内で、 冷却することを特徴とする廃棄物の処理方法。
2 . 廃棄物を、 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下部 に配置された溶融スラグ及びノ又は溶融金属の排出口と、 該溶融スラグ及び Z又 は溶融金属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前記 炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込む ための炉中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1段 以上配置された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び 又は溶融 金属の排出口との間の炉壁に 1段以上配置された羽口とを備える廃棄物処理炉に 装入して、 該廃棄物に燃焼、 ガス化又は溶融の少なくとも 1つの処理を行う際に 、 該少なくとも 1つの処理により生じる排ガスを、 該廃棄物処理炉の炉体に接続 されて該排ガスを該炉体の外部へ導くダクトの入口の近傍の炉内で、 冷却するこ とを特徴とする廃棄物の処理方法。
3 . 前記排ガスは、 前記ダクトの入口の近傍の炉内に、 水、 プロセスガス、 不活 性ガス又は蒸気の少なくなくとも一つにより構成される冷媒を吹き込むことによ り、 冷却される請求項 1又は請求項 2に記載された廃棄物の処理方法。
4 . 廃棄物を、 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下部 に配置された溶融スラグ及び/又は溶融金属の排出口と、 該溶融スラグ及び/又 は溶融金属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前記 炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込む ための炉中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1段 以上配置された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び/又は溶融 金属の排出口との間の炉壁に 1段以上配置された羽口とを備える廃棄物処理炉に 装入して、 該廃棄物に燃焼、 ガス化又は溶融の少なくとも 1つの処理を行う際に 前記炉体に接続されて前記少なくとも 1つの処理により生じる排ガスを該炉体 の外部へ導くダクトの少なくとも 1つの直線状部分の内部に往復移動自在に配置 されて該ダクトの内面の付着物を搔き取るための円錐状の外形からなる少なくと も 1つの搔きとり部材を、 該ダクトの入口部及び出口部の間の差圧の測定結果に より推定される該ダク卜の内部の閉塞状況に基づいて、 動作させること を特徴とする廃棄物の処理方法。
5 . 前記少なくとも 1つの搔きとり部材を、 前記差圧の測定結果が操業開始時に 比較して増加する傾向を示す塲合に、 動作させる請求項 4に記載された廃棄物の 処理方法。
6 . 前記少なくとも 1つの接き取り部材を、 1時間以上 24時間以下の範囲で予め 定めた時期に定期的に動作させる請求項 4に記載された廃棄物の処理方法。
7 . 炉体と、 該炉体の上部に配置されたガス排出口と、 該 ;1:戸体の下部に配置され た溶融スラグ及びノ又は溶融金属の排出口と、 該溶融スラグ及び Z又は溶融金属 の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前記炉体の上部 に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込むための炉中 心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1段以上配置さ れた上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び z又は溶融金属の排出 口との間の炉壁に 1段以上配置された羽口とを備える廃棄物処理炉を昇温する際 に、 含有するハロゲン類の総濃度が 0. 1 質量%以下である炭材を該廃棄物処理炉 に装入し、 該廃棄物処理炉の内部の装入物の上端面の高さレベルを昇温段階から 調整することを特徴とする廃棄物の処理方法。
8 . 前記廃棄物処理炉を昇温する前に、 前記炉体の内部に、 含有するハロゲン類 の総濃度が 0. 1 質量%以下である炭材を予め装入しておき、
廃棄物を炉内に装入するための廃棄物装入路に直列に配置された二つのパルプ を有し、 外部側のバルブを開くとともに内部側のバルブを閉じた状態で炭材を該 外部側のバルブと該内部側のバルブとの間の空間に供給し、 該外部側のバルブを 閉じてから該内部側のバルブを開くことによって炭材を炉内に装入する装入装置 から、 装入された該炭材の上端面に火種を投入し、
その後、 該外部側及び/又は内部側のバルブを閉じ、 前記炉中心ランスから支 燃性ガスを送風して、 装入された該炭材を燃焼させることによって、 該廃棄物処 理炉の昇温を開始する請求項 7に記載された廃棄物の処理方法。
9 . 廃棄物を、 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下部 に配置された溶融スラグ及び/又は溶融金属の排出口と、 該溶融スラグ及び Z又 は溶融金属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前記 炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込む ための炉中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1段 以上配置された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び z又は溶融 金属の排出口との間の炉壁に 1段以上配置された羽口とを備える廃棄物処理炉に 装入して、 該廃棄物に燃焼、 ガス化又は溶融のうちの少なくとも 1つの処理を行 う際に、
前記炉中心ランス、 前記上部羽口、 又は、 前記廃棄物装入口と前記ガス排出口 との間の炉壁に 1つ以上設置されたノズルのうちの少なくとも一つから、 蒸気を
、 前記炉体の下部へ向かう方向、 前記側壁から炉軸へ向かう方向、 又は前記側壁 から炉軸へ向かう方向からずらした方向へ向かう方向の少なくとも一の方向へ吹 き込むこと
を特徴とする廃棄物の処理方法。
1 0 . 廃棄物を、 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下 部に配置された溶融スラグ及び z又は溶融金属の排出口と、 該溶融スラグ及び z 又は溶融金属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前 記炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込 むための炉中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1 段以上配置された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び z又は溶 融金属の排出口との間の炉壁に 1段以上配置された羽口とを備える廃棄物処理炉 に装入して、 該廃棄物に燃焼、 ガス化又は溶融のうちの少なくとも 1つの処理を 行う際に、
前記少なくとも 1つの処理において未利用のまま前記廃棄物処理炉から排出さ れた炭素を廃棄物と混合して圧密してから、 該廃棄物処理炉に再度装入すること を特徴とする廃棄物の処理方法。
1 1 . 廃棄物を、 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下 部に配置された溶融スラグ及び/又は溶融金属の排出口と、 該溶融スラグ及びノ 又は溶融金属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前 記炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込 むための炉中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1 段以上配置された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び Z又は溶 融金属の排出口との間の炉壁に 1段以上配置された羽口とを備える廃棄物処理炉 に装入して、 該廃棄物に燃焼、 ガス化又は溶融のうちの少なくとも 1つの処理を 行う際に、
炭材を廃棄物と混合して圧密してから、 前記廃棄物処理炉に装入すること を特徴とする廃棄物の処理方法。
1 2 . 前記炭材は、 廃棄物を炉内に装入するための廃棄物装入路に直列に配置さ れた二つのバルブを有し、 外部側のバルブを開くとともに内部側のバルブを閉じ た状態で炭材を該外部側のバルブと該内部側のバルブとの間の空間に供給し、 該 外部側のバルブを閉じてから内部側のバルブを開くことによって炭材を炉内に装 入する装入装置を介して、 装入される請求項 1 1に記載された廃棄物の処理方法
1 3 . 廃棄物を、 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下 部に配置された溶融スラグ及び Z又は溶融金属の排出口と、 該溶融スラグ及び Z 又は溶融金属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前 記炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込 むための炉中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1 段以上配置された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び/又は溶 融金属の排出口との間の炉壁に 1段以上配置された羽口とを備える廃棄物処理炉 に装入して、 該廃棄物に燃焼、 ガス化又は溶融のうちの少なくとも 1つの処理を 行う際に、
炭材を、 廃棄物を炉内に装入するための廃棄物装入路に直列に設けられた二つ のバルブを有し、 外部側のバルブを開くとともに内部側のバルブを閉じた状態で 炭材を該外部側のバルブと該内部側のパルプとの間の空間に供給され、 該外部側 のバルブを閉じてから該内部側のバルブを開くことによって炭材を炉内に装入す る装入装置を介して、 装入すること
を特徴とする廃棄物の処理方法。
1 4 . 廃棄物を、 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下 部に配置された溶融スラグ及び Z又は溶融金属の排出口と、 該溶融スラグ及び/ 又は溶融金属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前 記炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込 むための炉中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1 段以上配置された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び Z又は溶 融金属の排出口との間の炉壁に 1段以上配置された羽口とを備える廃棄物処理炉 に装入して、 該廃棄物に燃焼、 ガス化又は溶融のうちの少なくとも 1つの処理を 行う際に、
前記廃棄物を密閉容器に封入し、 該密閉容器を、 廃棄物を炉内に装入するため の廃棄物装入路に直列に設けられた二つのバルブを有し、 外部側のバルブを開く とともに内部側のバルブを閉じた状態で該密閉容器を該外部側のバルブと該内部 側のバルブとの間の空間に供給され、 該外部側のバルブを閉じてから該内部側の バルブを開くことによって該密閉容器を炉内に装入する装入装置を介して、 前記 廃棄物処理炉に装入すること
を特徴とする廃棄物の処理方法。
1 5 . 廃棄物を、 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下 部に配置された溶融スラグ及び Z又は溶融金属の排出口と、 該溶融スラグ及び/ 又は溶融金属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前 記炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込 むための炉中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1 段以上配置された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び Z又は溶 融金属の排出口との間の炉壁に 1段以上配置された羽口と、 前記炉体の底部に配 置された生成した溶融スラグ及び溶融金属等の溶湯を一時的に溜めておくための 湯溜まり室とを備える廃棄物処理炉に装入して、 該廃棄物に燃焼、 ガス化又は溶 融のうちの少なくとも 1つの処理を行う際に、
前記湯溜まり室の内部のガス圧力が該湯溜まり室の設計圧力の 0. 5 倍以上とな つた場合に、 該湯溜まり室の内部に溜まったガスを前記ガス排出口を経由して排 出すること
を特徴とする廃棄物の処理方法。
1 6 . 廃棄物を、 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下 部に配置された溶融スラグ及び Z又は溶融金属の排出口と、 該溶融スラグ及び/ 又は溶融金属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前 記炉体の上部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込 むための炉中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1 段以上配置された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び Z又は溶 融金属の排出口との間の炉壁に 1段以上配置された羽口とを備える廃棄物処理炉 に装入して、 該廃棄物に燃焼、 ガス化又は溶融のうちの少なくとも 1つの処理を 行う際に、
前記炉体の外部へ前記ガス排出口に接続されたダクトを介して導かれる排ガス を、 除塵した後に除塵された該排ガスに含まれるハロゲン化水素ガスを酸回収装 置により酸として回収した後に回収された酸をハロゲンに転換すること、 又は、 前記ガス排出口に接続されたダクトを介して前記炉体の外部へ導かれる排ガスを 100 以下に冷却して冷却された該排ガスに含まれるハロゲン化水素ガスを凝縮 水に溶解させ、 該排ガスに含まれるハロゲン化水素を酸として回収した後、 回収 された酸をハロゲンに転換すること
を特徴とする廃棄物の処理方法。
1 7 . 前記廃棄物に、 含有するハロゲンの濃度が 10質量%以上である含塩素系廃 材を混合して前記廃棄物処理炉に装入する請求項 1 6に記載された廃棄物の処理 方法。
1 8 . 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下部に配置さ れた溶融スラグ及び Z又は溶融金属の排出口と、 該溶融スラグ及び/又は溶融金 属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前記炉体の上 部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込むための炉 中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1段以上配置 された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び/又は溶融金属の排 出口との間の炉壁に 1段以上配置された羽口と、 前記炉体の底部に配置された生 成した溶融スラグ及び溶融金属等の溶湯を一時的に溜めておくための湯溜まり室 とを備え、 廃棄物に燃焼、 ガス化又は溶融のうちの少なくとも 1つの処理を行う ための廃棄物の処理装置であって、 さらに
前記湯溜まり室の内部のガス圧力が該湯溜まり室の設計圧力の 0. 5 倍以上とな つた場合に、 該湯溜まり室の内部に溜まったガスを前記ガス排出口を経由して排 出するための排気装置を備えること
を特徴とする廃棄物の処理装置。
1 9 . 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下部に配置さ れた溶融スラグ及び/又は溶融金属の排出口と、 該溶融スラグ及び Z又は溶融金 属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前記炉体の上 部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込むための炉 中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1段以上配置 された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び Z又は溶融金属の排 出口との間の炉壁に 1段以上配置された羽口とを備え、 廃棄物に燃焼、 ガス化及 び溶融のうちの少なくとも 1つの処理を行うための廃棄物の処理装置であって、 さらに
前記炉体に接続されて、 前記少なくとも 1つの処理により生じる排ガスを該炉 体の外部へ導くダクトと、 該ダクトの入口の近傍の炉内に、 水、 プロセスガス、 不活性ガス又は蒸気の少なくとも一つにより構成される冷媒を吹き込むための供 給部とを備えること
を特徴とする廃棄物の処理装置。
2 0 . 炉体を備え、 廃棄物に燃焼、 ガス化又は溶融のうちの少なくとも 1つの処 理を行うための廃棄物の処理装置であって、 さらに
該少なくとも一つの処理により生じる排ガスを、 前記炉体に接続されて該炉体 の外部へ導くダクトと、 該ダクトの入口の近傍の炉内に設けられた、 水、 プロセ スガス、 不活性ガス又は蒸気の少なくとも一つにより構成される冷媒の供給部と を備えること
を特徴とする廃棄物の処理装置。
2 1 . 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下部に配置さ れた溶融スラグ及び/又は溶融金属の排出口と、 該溶融スラグ及び Z又は溶融金 属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前記炉体の上 部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込むための炉 中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に配置された 1 段以上の上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び/又は溶融金属の 排出口との間の炉壁に配置された 1段以上の羽口とを備え、 廃棄物に燃焼、 ガス 化又は溶融のうちの少なくとも 1つの処理を行うための廃棄物の処理装置であつ て、 さらに
前記ダクトの入口部及び出口部の間の差圧を測定するための差圧測定装置と、 前記少なくとも 1つの処理により生じる排ガスを 前記炉体に接続されて該炉体 の外部へ導くダクトの少なくとも 1つの直線状部分の内部に往復移動自在に配置 されて、 前記差圧測定装置の測定結果に基づいて該ダクトの内面の付着物を搔き 取るための円錐状の外形からなる少なくとも 1つの搔きとり部材とを備えること を特徴とする廃棄物の処理装置。
2 2 . 炉体と、 該炉体の上部に配置されたガス排出口と、 該炉体の下部に配置さ れた溶融スラグ及び/又は溶融金属の排出口と、 該溶融スラグ及び Z又は溶融金 属の排出口と前記ガス排出口との間に配置された廃棄物装入口と、 前記炉体の上 部に炉軸に沿って配置されて支燃性ガスを下方へ向けて炉内へ吹き込むための炉 中心ランスと、 前記廃棄物装入口と前記ガス排出口との間の炉壁に 1段以上配置 された上部羽口と、 前記廃棄物装入口と前記溶融スラグ及び/又は溶融金属の排 出口との間の炉壁に 1段以上配置された羽口とを備え、 廃棄物に燃焼、 ガス化又 は溶融のうちの少なくとも 1つの処理を行うための廃棄物の処理装置であって、 さらに
前記炉中心ランス、 前記上部羽口又は前記廃棄物装入口と前記ガス排出口との 間の炉壁に 1つ以上設置されたノズルのうちの少なくとも 1つから、 蒸気を、 前 記炉体の下部へ向かう方向、 前記側壁から炉軸へ向かう方向、 又は前記側壁から 炉軸へ向かう方向からずらした方向へ向かう方向の少なくとも一の方向へ、 吹き 込むことが可能な蒸気供給系を備えること
を特徴とする廃棄物の処理装置。
PCT/JP2003/011202 2002-09-04 2003-09-02 廃棄物の処理方法及び処理装置 WO2004023039A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003264364A AU2003264364A1 (en) 2002-09-04 2003-09-02 Method and apparatus for treating waste
JP2004534136A JPWO2004023039A1 (ja) 2002-09-04 2003-09-02 廃棄物の処理方法及び処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-259252 2002-09-04
JP2002259252 2002-09-04

Publications (1)

Publication Number Publication Date
WO2004023039A1 true WO2004023039A1 (ja) 2004-03-18

Family

ID=31973063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011202 WO2004023039A1 (ja) 2002-09-04 2003-09-02 廃棄物の処理方法及び処理装置

Country Status (6)

Country Link
JP (1) JPWO2004023039A1 (ja)
KR (2) KR100671769B1 (ja)
CN (3) CN101029734B (ja)
AU (1) AU2003264364A1 (ja)
TW (2) TWI276755B (ja)
WO (1) WO2004023039A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1148295A1 (en) * 1999-01-27 2001-10-24 Sumitomo Metal Industries, Ltd. Gasification melting furnace for wastes and gasification melting method
JP2007263514A (ja) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The 溶融炉における煙道配管の閉塞状況監視システム及び閉塞状況判定方法
JP2012002773A (ja) * 2010-06-21 2012-01-05 Ngk Insulators Ltd 放射性廃棄物溶融炉の運転方法及び煙道閉塞防止装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748761A (zh) * 2011-04-22 2012-10-24 江苏腾明环保科技有限公司 一种新型固体垃圾焚烧炉
JP5622686B2 (ja) * 2011-08-19 2014-11-12 大陽日酸株式会社 燃焼除害装置
WO2014132230A1 (en) * 2013-02-28 2014-09-04 How Kiap Gueh Molten metal gasifier
FR3010175B1 (fr) * 2013-08-27 2015-09-11 Degremont Four d'incineration de produits pateux, en particulier de boues de stations d'epuration
CN105090969A (zh) * 2015-06-02 2015-11-25 黄传贤 高炉式垃圾焚烧炉
CN107447065A (zh) * 2017-10-11 2017-12-08 中冶节能环保有限责任公司 一种冷态钢渣高效稳定化处理装置及方法
CN108330282A (zh) * 2018-03-08 2018-07-27 扬州晨光特种设备有限公司 危险废弃物熔融-冶金一体化的处理方法
CN110345495A (zh) * 2018-04-02 2019-10-18 江苏金牛环保工程设备有限公司 一种有机硅废液及废渣浆焚烧用喷枪
CN116461994A (zh) * 2023-03-29 2023-07-21 山东恒泰利华环境科技有限公司 一种含相变气体的粉体材料管道输送防堵塞装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310561A (en) * 1976-07-16 1978-01-31 Nippon Steel Corp Method of melting treatment for waste materials in use of shaft furnace
JPS5310562A (en) * 1976-07-16 1978-01-31 Nippon Steel Corp Method of melting treatment for products of thermal decomposition of waste materials
JPS5821729U (ja) * 1981-07-27 1983-02-10 大阪瓦斯株式会社 産業廃棄物溶融炉
JPH0996410A (ja) * 1995-09-29 1997-04-08 Nkk Corp 廃棄物の溶融炉
JPH09112848A (ja) * 1995-10-11 1997-05-02 Purometoron Technic Kk 廃棄物処理装置
JPH10267252A (ja) * 1997-03-27 1998-10-09 Hitachi Zosen Corp 排気ダクトのダスト除去装置
JPH10281437A (ja) * 1997-04-09 1998-10-23 Nippon Steel Corp 塩素含有プラスチックの処理方法及び装置
WO2000045090A1 (fr) * 1999-01-27 2000-08-03 Sumitomo Metal Industries, Ltd. Four de fusion a gazeification pour dechets et procede de fusion a gazeification
JP2001208332A (ja) * 2000-01-31 2001-08-03 Nkk Corp 溶融炉排ガスダクトの付着物除去装置
JP2002155287A (ja) * 2000-11-21 2002-05-28 Nobuaki Debari 産業廃棄物乾留ガス化溶融炉並びに乾留ガス利用のガスタービン発電装置及びその連続発電方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131464B4 (de) * 2001-06-29 2006-04-20 Bayer Industry Services Gmbh & Co. Ohg Verfahren zur korrosions- und emissionsarmen Mitverbrennung hochhalogenierter Abfälle in Abfallverbrennungsanlagen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310561A (en) * 1976-07-16 1978-01-31 Nippon Steel Corp Method of melting treatment for waste materials in use of shaft furnace
JPS5310562A (en) * 1976-07-16 1978-01-31 Nippon Steel Corp Method of melting treatment for products of thermal decomposition of waste materials
JPS5821729U (ja) * 1981-07-27 1983-02-10 大阪瓦斯株式会社 産業廃棄物溶融炉
JPH0996410A (ja) * 1995-09-29 1997-04-08 Nkk Corp 廃棄物の溶融炉
JPH09112848A (ja) * 1995-10-11 1997-05-02 Purometoron Technic Kk 廃棄物処理装置
JPH10267252A (ja) * 1997-03-27 1998-10-09 Hitachi Zosen Corp 排気ダクトのダスト除去装置
JPH10281437A (ja) * 1997-04-09 1998-10-23 Nippon Steel Corp 塩素含有プラスチックの処理方法及び装置
WO2000045090A1 (fr) * 1999-01-27 2000-08-03 Sumitomo Metal Industries, Ltd. Four de fusion a gazeification pour dechets et procede de fusion a gazeification
JP2001208332A (ja) * 2000-01-31 2001-08-03 Nkk Corp 溶融炉排ガスダクトの付着物除去装置
JP2002155287A (ja) * 2000-11-21 2002-05-28 Nobuaki Debari 産業廃棄物乾留ガス化溶融炉並びに乾留ガス利用のガスタービン発電装置及びその連続発電方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1148295A1 (en) * 1999-01-27 2001-10-24 Sumitomo Metal Industries, Ltd. Gasification melting furnace for wastes and gasification melting method
EP1148295A4 (en) * 1999-01-27 2008-01-23 Sumitomo Metal Ind GAZEIFICATION FUSION OVEN FOR WASTE AND GASIFICATION FUSION PROCESS
JP2007263514A (ja) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The 溶融炉における煙道配管の閉塞状況監視システム及び閉塞状況判定方法
JP2012002773A (ja) * 2010-06-21 2012-01-05 Ngk Insulators Ltd 放射性廃棄物溶融炉の運転方法及び煙道閉塞防止装置

Also Published As

Publication number Publication date
TW200419109A (en) 2004-10-01
CN1818471A (zh) 2006-08-16
CN1678869A (zh) 2005-10-05
TWI276755B (en) 2007-03-21
AU2003264364A1 (en) 2004-03-29
JPWO2004023039A1 (ja) 2005-12-22
KR100671765B1 (ko) 2007-01-19
CN100498068C (zh) 2009-06-10
TWI289644B (en) 2007-11-11
KR100671769B1 (ko) 2007-01-19
CN101029734B (zh) 2010-05-26
KR20060021418A (ko) 2006-03-07
KR20050057210A (ko) 2005-06-16
CN101029734A (zh) 2007-09-05
TW200630566A (en) 2006-09-01

Similar Documents

Publication Publication Date Title
CA2559875C (en) Method and apparatus for treating waste
JP5815503B2 (ja) 有機廃棄物のガス化方法およびその装置
JP3558039B2 (ja) 廃棄物のガス化溶融炉およびガス化溶融方法
WO2004023039A1 (ja) 廃棄物の処理方法及び処理装置
SK288020B6 (sk) Reactor and method for gasifying and/or melting materials
JP2002081624A (ja) 廃棄物ガス化溶融炉と同溶融炉の操業方法
KR100529826B1 (ko) 플라즈마 열분해에 의한 폐기물 처리 장치 및 방법
JP2018002808A (ja) 炭化物製造装置、炭化物製造方法、および炭化物製造システム
JP4007389B2 (ja) 廃棄物の処理方法
JP4007388B2 (ja) 廃棄物の処理方法
JP2006226671A (ja) 廃棄物の処理方法及び処理装置
JP2005098676A (ja) 廃棄物溶融炉の羽口構造及び可燃性ダストの吹き込み方法
JP3096623B2 (ja) 溶融炉
JPH04302909A (ja) 廃棄物処理方法およびその装置
JP2008285730A (ja) 鉄鋼材料分別回収装置及び方法
CN112393606A (zh) 等离子体炉连续排渣装置及连续排渣方法
JP2005076007A (ja) 塩素含有プラスチックを含む医療用廃棄物の熱分解方法と熱分解装置
JP2006112714A (ja) 廃棄物ガス化改質炉
WO2002103240A1 (fr) Dispositif de combustion et systeme de traitement de dechets
JP2004059949A (ja) 鉄スクラップの溶解方法及び溶解設備
JP2002168417A (ja) 廃棄物の処理設備および処理方法
JPH1119532A (ja) 粗大ごみの破砕処理方法
CZ18799U1 (cs) Zařízení na kontinuální ekologickou likvidaci odpadu z gumy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004534136

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038198711

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057003823

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057003823

Country of ref document: KR

122 Ep: pct application non-entry in european phase