WO2004021651A1 - パケット送信スケジューリング方法および基地局装置 - Google Patents

パケット送信スケジューリング方法および基地局装置 Download PDF

Info

Publication number
WO2004021651A1
WO2004021651A1 PCT/JP2003/010109 JP0310109W WO2004021651A1 WO 2004021651 A1 WO2004021651 A1 WO 2004021651A1 JP 0310109 W JP0310109 W JP 0310109W WO 2004021651 A1 WO2004021651 A1 WO 2004021651A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
bucket
packet
base station
remaining time
Prior art date
Application number
PCT/JP2003/010109
Other languages
English (en)
French (fr)
Inventor
Takenobu Arima
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/495,875 priority Critical patent/US20040258070A1/en
Priority to AU2003254885A priority patent/AU2003254885A1/en
Priority to EP03791202A priority patent/EP1443719A1/en
Publication of WO2004021651A1 publication Critical patent/WO2004021651A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • H04L47/2433Allocation of priorities to traffic types
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/38Flow control; Congestion control by adapting coding or compression rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/56Queue scheduling implementing delay-aware scheduling
    • H04L47/564Attaching a deadline to packets, e.g. earliest due date first
    • H04L47/566Deadline varies as a function of time spent in the queue
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to a scheduling method in bucket control of a wireless communication system, and a wireless base station apparatus that performs packet control by the scheduling method.
  • HSDPA High Speed Downlink Packet Access
  • the QoS requirement values include an error rate requested from an upper layer, an allowable delay time, a transmission rate, fluctuation, a packet discard rate, and the like.
  • a typical example of the above control technique is a bucket scheduling technique.
  • Scheduling is a technique for deciding which communication terminal is currently assigned a downlink channel, and performs control to determine the priority order for transmission of packets in one or more transmission buffers. Since this scheduling has a significant effect on the throughput of the wireless communication system, various measures have been taken.
  • Max C / I method the Maximum CIR method
  • RR method the Hound Robin method
  • PF method Proportional Fairness method
  • a transmission opportunity is assigned with higher priority to an MT (mobile station) having better radio link quality.
  • the RR scheme allocates transmission opportunities equally to all MTs.
  • the PF scheme uses (instantaneous radio link quality) / (average radio link quality) as a metric, and assigns a transmission opportunity with higher priority to an MT with a larger metric.
  • FIG. 1 is a diagram showing a scheduling method of the wireless base station device.
  • This radio base station has a queue that temporarily holds packets for each MT. If MT uses QoS guarantee service and Best's FTE (BE) service at the same time, it has a queue for each service class.
  • BE service indicates a service that does not guarantee delay time.
  • the service class indicates the level of the QoS that is guaranteed.
  • the radio base station identifies the MT and the service class from the input packet, and inserts a bucket in the corresponding queue.
  • the queue of MTs whose offered QoS level does not have the required level belongs to the QoS critical group, and belongs to the QoS non-critical group if the QoS level is satisfied by + minutes.
  • MT queues that do not require QoS are classified into BE groups.
  • transmitters are assigned with the highest priority to the queues of the QoS critical group. For this reason, the selection of the QoS critical group and other groupings is performed using the PRR (Priority Round Robin) method. That is, if there is a packet waiting to be transmitted in the queue of the QoS critical group, the transmission opportunity is always assigned with priority even if the service of the queue belonging to another group is interrupted. Within the QoS critical group, transmission opportunities are distributed according to the current QoS guarantee realization status and the like. The selection of the QoS non-critical group and the BE group is based on the policy of surplus bandwidth distribution for the QoS guarantee service and the BE service, and weights and schedules using the Weighted Round Robin (WRR) method. .
  • WRR Weighted Round Robin
  • the QoS is already guaranteed, so in order to increase the system capacity as much as possible, schedule using the MaxXZI method.
  • the bucket queue in the BE group is weighted according to the quality of the radio link with the MT, and is scheduled by the PF scheme.
  • the Max CI method, RR method, and PF method are selectively used depending on the service class of the packet, so the scheduling algorithm in packet control becomes complicated, and the amount of processing operation and processing time are increased. There is a problem of increasing. At this time, since the time from when the reception quality of the mobile station is notified to the time when the base station transmits data becomes longer, the change in the propagation path environment due to the movement of the mobile station during that time cannot be ignored. . As a result, it is not possible to perform communication in which the propagation path environment is sufficiently considered, which may cause a decrease in the throughput of the communication system. Disclosure of the invention
  • An object of the present invention is to reduce the processing amount and processing time of scheduling in bucket control and increase the throughput of a communication system.
  • the purpose is to determine the priority uniformly by weighting the data considering the QoS and the BE data by the priority obtained using the reciprocal of the remaining time with respect to the specified transmission time. And a packet transmission schedule that realizes scheduling in packet control with a simple algorithm. It is solved by the jouleing method.
  • FIG. 1 is a diagram showing a conventional scheduling method of a wireless base station device
  • FIG. 2 is a block diagram showing an example of a configuration of a wireless base station device according to Embodiment 1 of the present invention
  • FIG. 3 is a block diagram showing an example of the internal configuration of the scheduler according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart showing a procedure of the scheduling method according to Embodiment 1 of the present invention.
  • FIG. 5 is a conceptual diagram for explaining the configuration of the priority queue and the outline of the priority calculated from the timer and the scheduler according to Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram illustrating an example of a configuration of a radio base station apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 is a block diagram showing an example of the internal configuration of the scheduler according to Embodiment 2 of the present invention.
  • FIG. 8 is a block diagram showing an example of the internal configuration of the scheduler according to Embodiment 3 of the present invention.
  • FIG. 9 is a block diagram showing an example of the internal configuration of the scheduler according to Embodiment 4 of the present invention.
  • FIG. 2 is a block diagram showing an example of a configuration of the radio base station apparatus according to Embodiment 1 of the present invention.
  • the radio base station apparatus receives transmission data from the upper station (RNC) 101, performs scheduling, and communicates with the mobile station (UE) 106.
  • RNC upper station
  • UE mobile station
  • Iub represents an interface between the upper station and the base station
  • Uu represents an interface between the base station and the mobile station.
  • the wireless base station apparatus shown in FIG. 2 has a MAC-hs (Medium Access Control used for high speed) unit 102, a modulation unit 103, a radio transmission and reception unit 104, an antenna 105, and a demodulation unit 10 With 7.
  • the MAC-hs section 102 is composed of a priority 'queue (queue with priority) 1 1 1, a timer 1 1 2, a scheduler 1 1 3, a switch 1 1 4, and a TB (transport' block) creation section 1 1 5, and HARQ section 1 16.
  • the priority 1 queue 1 1 1 1 1 has a circuit corresponding to the number of mobile stations that can be accommodated by this radio base station apparatus.
  • the priority queue 111 receives packet data to be transmitted to the mobile station (UE) 106 from the RNC 101 via the Iub. Then, the transmission packet data is stored in a plurality of queues provided for each priority class (service class) of each transmission data. This priority class is notified from RNC 101 at the same time as the transmission data.
  • Each of the above queues has a specified time ⁇ corresponding to an allowable delay time (permissible delay time) when transmitting a packet. Then, the priority 1 queue 1 11 notifies the timer 1 12 of the packet storage time t s , the stored queue priority class, and the stored queue specified time TL for each packet.
  • the timers 112 have timers corresponding to the respective packet data, and the packet data has a priority.
  • Output R to scheduler 1 1 3 Note that bucket data may be grouped so that a timer is provided for each group.
  • the specified time of the queue in which the packet is stored is set as the initial value of the timer, and the remaining time is decremented as time elapses. From the storage time t s and the current time t P , calculate the time elapsed since the packet was stored (t P — t s ) and calculate this.
  • the specified time 1 is not decremented, and the remaining time t R is fixed. At this time, the specified time is automatically set to a value less than or equal to the maximum value of all specified times already specified in other queues.
  • the allowable delay time of the packet may be set directly.
  • the scheduler 1 13 uses the remaining time output from the timer 1 12 and the reception quality of the signal received by the mobile station,
  • Calculate the priority for each bucket according to the following formula, select the queue storing the bucket with the highest priority, and output it to switch 114.
  • the reception quality of the signal received by the mobile station is reported from the mobile station, and is obtained from the received data demodulated by the demodulation unit 107.
  • As the remaining time t R a value corresponding to the oldest bucket at the time stored in the queue is used.
  • the scheduler 113 further determines transmission conditions such as a modulation method and a coding rate according to the obtained priority, and generates control signals C 11, C 12, C 13, C 14, and C Using TB 15, the TB creation unit 115, the HARQ unit 116, the modulation unit 103, and the wireless transmission / reception unit 104 are respectively controlled.
  • the internal configuration of this scheduler 113 will be described later in detail.
  • the switch 114 selects the output terminal corresponding to the queue selected by the scheduler 113 from the plurality of output terminals corresponding to the queues of the priority queues 111, and from the priority 'queue 111'. Switch the output packet.
  • the TB creation unit 1 15 sends a plurality of buckets from the bucket output from the queue 1 11 1 according to the TB size specified by the control signal CI 1 output from the scheduler 1 13 via the switch 1 14 -Create TB, which is a unit for transmission as a unit, and output it to HARQ section 116.
  • HARQ section 116 outputs TB (transmission data) output from TB creating section 115 to modulation section 103 while performing encoding and retransmission control according to control signal C12. If a NACK signal is received and the device waits for retransmission, the packet in the HARQ buffer is temporarily stored in a buffer in the HARQ, and when the ACK signal is returned, the retransmission of this packet is given top priority and transmitted immediately. Also, in the HARQ process, if all the buckets that can be transmitted are waiting for transmission, the processing after the above priority calculation is stopped.
  • Modulation section 103 performs modulation processing on the transmission data output from HARQ section 116 using the modulation method specified by control signal C 13, and further modulates the number of codes specified by control signal C 14. , And outputs the result to wireless transmission / reception section 104.
  • the wireless transmission / reception unit 104 transmits the modulated transmission data output from the modulation unit 103.
  • a predetermined radio transmission process such as up-comparison is performed on the data, and transmission is performed via the antenna 105. Further, a signal received via the antenna 105 is subjected to predetermined radio reception processing such as down-comparison and output to the demodulation unit 107.
  • Demodulation section 107 performs demodulation processing on the reception data output from wireless transmission / reception section 104 to obtain reception data. Also, the mobile station extracts reception quality from the reception data and outputs it to the scheduler 113.
  • FIG. 3 is a block diagram showing an example of the internal configuration of the scheduler 113.
  • the scheduler 113 includes a reception quality detection unit 121, a priority calculation unit 122, a queue selection unit 123, and a transmission control unit 124.
  • Reception quality detection section 122 detects reception quality from CQI (Channel Quality Indicator) which is channel quality information on the mobile station side extracted from the reception data demodulated in demodulation section 107.
  • the CQI is information for notifying the base station in communication of the transmission rate that the mobile station can receive, and the like, and is determined based on the reception quality at the mobile station.
  • the reception quality used on the base station side may be an estimated CIR or the like, or a CQI value of 30 levels may be directly used.
  • A-DPCH Associated -Transmission power of Dedicated Physical Channel
  • the transmission power can be used because when the reception quality of the mobile station is poor, the transmission power of the base station also increases according to the request of the mobile station.
  • the priority calculation section 122 is notified of the remaining time t R from the timer 112 and the reception quality from the reception quality detection section 122. Therefore, the expression
  • the priority is calculated for each bucket and output to the queue selector 123.
  • the queue selection unit 1 2 3 determines the highest priority from the notified priority for each packet. Then, the switch 114 and the transmission control section 124 are notified of the queue storing the bucket.
  • the transmission control unit 124 is notified of the reception quality from the reception quality detection unit 122, the ACK / NACK signal from the demodulation unit 107, and the selected queue from the queue selection unit 123. Then, based on the queue selected by the queue selection unit 123, the transmission conditions, that is, the TB size, HARQ retransmission control, modulation method, and transmission power are determined, and the TB control signal C is transmitted to the TB generation unit 115. 11, the retransmission control signal C 12 in the HARQ section 116, the modulation control signal C 13 and the coding control signal C 14 in the modulation section 103, and the transmission power control signal C 15 in the radio transmission and reception section 104, respectively. Feed and control each circuit.
  • FIG. 4 is a flowchart summarizing the procedure of the scheduling method used by the above-mentioned radio base station apparatus.
  • the above radio base station apparatus receives a transmission packet from RNC 101 (ST 1010) and stores it in priority 'queue 111' (ST 1 020). Their to simultaneously set the initial value of the timer 1 12 (ST 1 030), calculation of the remaining time t R, i.e., starts clocking (ST 1 040).
  • the signal transmitted from UE 106 is received by antenna 105 (ST 1 050), and wireless transmission / reception section 104 performs wireless reception processing (ST 1 060).
  • demodulation section 107 demodulates the received data (ST 1070), and detects information related to the reception quality on the mobile station side from this data (ST 1080).
  • the scheduler 113 calculates the priority of the transmission packet (ST 1 90), determines the bucket to be actually transmitted, and then determines the transmission bucket. Is determined (ST 1100). Then, based on this transmission condition, the radio base station apparatus transmits a transmission bucket to the mobile station (ST11110).
  • FIG. 5 is a conceptual diagram that outlines the configuration of the priority 'queue 1 11 1' and the priority calculated from the timer 1 1 2 and the scheduler 1 1 3 FIG.
  • the priority queue 1 1 1 1 is composed of priority queue 1 1 1—1 corresponding to UE # 1 and priority queue 1 1 1 1 2 corresponding to UE # 2.
  • the configuration of the priority queue 1 11 is not limited to this, and processing of two or more mobile stations can be performed. Also, the number of queues is not limited to five.
  • Priority Queues 1 1 1 Priority classes # 1 to # 5 are provided, from services that require strict real-time performance to BE-type services, with 5 queues # 1 to # 5 corresponding to each priority class. Exists.
  • Each queue has a specified time 1 based on the allowable delay time. The specified time 1 is set shorter for a service with a strong real-time property, while the specified time ⁇ ⁇ is set longer as the service approaches BE-type service (priority class 5).
  • the remaining time of the oldest stored packet among the buckets stored in queue #j of UE #i is t; that is, the remaining time is trichfor queues # 1 to # 5 of UE # 1. ⁇ t 15, UE # 2 queues # 1 to # 5 if the remaining time when the t 21 ⁇ t 25, Priority P ij of the packet stored in the queue # j of UE # i, the remaining time
  • the reception quality is CIR # i,
  • the scheduler 113 calculates the priority P ij for each of the priority queues 111 and selects the queue having the highest priority. Note that the remaining time t R of untransmitted packets is not reset at the next TTI (Transmission Timing Interval).
  • the scheduler 113 determines the priority at the time of packet transmission by a single method for packets belonging to any priority-class. More specifically, the priority calculation unit 122 21 Based on the reception quality of each mobile station detected by 1, a mobile station with higher reception quality gives higher priority to transmitted packets, and a packet with a shorter remaining time obtained by timer 1 12 has higher priority. Then, the priority of each bucket is determined by further increasing the priority as the remaining time of the bucket is closer to zero.
  • transmission data is sent from an upper station (RNC)
  • RNC upper station
  • transmission data is transmitted from a router. Is sent.
  • the specified time T is set in the priority queue 11 1 1
  • the information corresponding to the specified time is signaled from the upper station, and the scheduler 1 13 May be used to calculate the priority.
  • the HARQ process an example was described in which, when a NACK signal was received and a retransmission was waited, a retransmission waiting bucket was temporarily stored in a buffer in the HARQ, and immediately retransmitted when the ACK signal was returned. However, when waiting for retransmission, the priority calculation may be performed again to retransmit the bucket.
  • the timer value of the retransmission wait packet also the measurement of the remaining time t R of the timer value and the same as the other packets continuously, intends row comparison of priorities including other Baketsuto.
  • the scheduler 113 calculates the priority of the bucket data stored next to the same queue. Also, in the formula for calculating the priority, the number of retransmissions in the HARQ process can be used as a parameter indicating the same concept instead of the remaining time. This will be described in detail in Embodiment 4. (Embodiment 2)
  • FIG. 6 is a block diagram showing an example of the configuration of the radio base station apparatus according to Embodiment 2 of the present invention. Note that this radio base station apparatus has the same basic configuration as the radio base station apparatus shown in FIG. 2, and the same components are denoted by the same reference numerals and description thereof will be omitted.
  • a feature of the present embodiment is that it further has a throughput calculation unit 201, and the scheduler 113a determines the priority in consideration of the actual throughput of the mobile station.
  • the throughput calculation unit 201 monitors the output of the demodulation unit 107, calculates the actual throughput when the mobile station transmits data to the base station, and outputs it to the scheduler 113a.
  • As the actual throughput an average value in a predetermined period may be used, or another parameter indicating the same concept may be used.
  • the scheduler 1 13 a calculates the remaining time t R output from the timer 112, the reception quality of the mobile station output from the demodulator 107, and the actual throughput output from the throughput calculator 201. Using,
  • Priority Calculate priority for each bucket according to the formula of reception quality X1 / remaining time X1 / actual throughput.
  • the scheduler 113a also performs transmission control as in the first embodiment.
  • the difference from the first embodiment is that the TB control signal C 11 is also sent to the throughput calculation unit 201, and the throughput calculation unit 201 uses the TB size notified by this control signal. It is to calculate.
  • FIG. 7 is a block diagram showing an example of the internal configuration of the scheduler 113a.
  • the actual throughput output from the throughput calculator 201 is input to the priority calculator 122a, and the priority is calculated as in the first embodiment.
  • the reception quality is calculated for each UE, and the throughput is calculated for each queue.
  • the priority calculation unit 122 a in the scheduler 113 a calculates the priority based on the above equation, so that in addition to the effects of the first embodiment, Similar effects can be expected. This is because the (reception quality X 1 / actual throughput) part of the above equation is the same as the metric in the PF method.
  • the present embodiment it is possible to reduce the processing calculation amount and the processing time of the scheduling in the packet control, to increase the throughput of the communication system, and to consider the line quality.
  • the same effect as that of the PF scheme in which transmission opportunities are allocated in consideration of fairness of throughput can be obtained.
  • the radio base station apparatus has the same basic configuration as the radio base station apparatus shown in FIG. Therefore, the same components are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 8 is a block diagram showing an example of the internal configuration of the scheduler 113b.
  • the memory 301 outputs the stored coefficients ⁇ and to the priority calculation section 122 b. The values of and are described later.
  • the priority calculation section 1 2 2 b outputs the remaining time t R output from the timer 1 12, the mobile station side reception quality output from the demodulation section 107, and the output from the throughput calculation section 201. Using the actual throughput and the coefficient ⁇ ,] 3 output from the memory 301,
  • Priority reception quality X (XlZ remaining time) X (X1 ⁇ actual throughput)
  • ⁇ and] 3 are coefficients for the purpose of weighting the remaining time and the actual throughput in the above equation. For example, if the throughput requested by the mobile station to the base station differs depending on the type of packet (service), a value should be set according to the type of packet in order to set the priority in advance according to the type of packet. Weighting can be done.
  • the type of packet is, for example, a service class. Also, for example, the throughput required by the mobile station does not have to be satisfied in some cases, but considering the condition that the mobile station must always keep the specified time, it is possible to set a larger value for ⁇ than
  • the priority is calculated with emphasis on the specified time.
  • the priority is calculated by weighting the remaining time and the actual throughput. Therefore, by setting the value to an appropriate value in consideration of the weighting ratio, Appropriate priority calculation can be performed.
  • the specified time is set to a different value according to the priority ⁇ class has been described as an example, but according to the above equation, the specified time is set to the same value, and instead, You can set different values for] 3 above depending on the priority 'class.
  • the weighting factors of ⁇ ; and] 3 may be set by signaling from a higher-level device.
  • the time may be changed by the base station depending on traffic conditions and the like.
  • the residence time of the packet in the queue that is, the elapsed time from when the packet is stored in the buffer until it is actually transmitted. Can be selected as a parameter. In such a case, the magnitude relation is reversed.
  • Priority Receive quality X Dwell time Like this.
  • the scheduling result will be the same regardless of whether the priority is determined based on the remaining time or the priority based on the above residence time. Almost the same.
  • similar effects can be obtained between queues having different specified times by weighting each parameter according to the specified time, for example, as described in the third embodiment. .
  • the radio base station apparatus according to Embodiment 4 of the present invention has the same basic configuration as the radio base station apparatus shown in FIG. Therefore, the same components are denoted by the same reference numerals, and description thereof will be omitted.
  • the feature of the present embodiment is that the priority calculation unit 1 2 2 c in the scheduler 1 1 3 c calculates the priority based on the reception quality and the number of retransmissions of the transmission packet. In other words, instead of the remaining time t R used in the first embodiment, the present embodiment uses the number of packet retransmissions.
  • FIG. 9 is a block diagram showing an example of the internal configuration of the scheduler 113c.
  • the transmission control unit 124c counts the number of retransmissions of the transmission packet while controlling retransmission of the transmission bucket. Then, it outputs the number of retransmissions determined for each transmission bucket to priority calculation section 122c.
  • the priority calculation unit 1 2 2 c uses the number of retransmissions output from the transmission control unit 1 2 4 c and the reception quality output from the reception quality detection unit 1 2 1,
  • Priority reception quality X number of retransmissions
  • the priority is calculated for each packet according to the following equation.
  • buckets sent from the RNC 101 to the base station are stored in separate queues provided for each priority class.
  • Each queue has a specified time T corresponding to the delay time (permissible delay time) that can be tolerated when sending a packet, that is, the maximum time that a packet can stay in the queue. Is set. Then, the priority queue 111 discards the bucket if the bucket is not transmitted after the specified time 1 has elapsed. This is because, for example, if the transmission data is data having strong real-time properties, even if the data arrives at the receiving side after a predetermined time has elapsed, the data may be completely meaningless.
  • the transmission control section 124c controls the retransmission of the packet by outputting the control signal C12 to the HARQ section 116.
  • the transmission control unit 124c also counts the number of retransmissions of the bucket, and discards retransmission packets that exceed a predetermined number of retransmissions, that is, the maximum number of retransmissions allowed for retransmission. Is done. It can be said that the specified number of retransmissions also manages the time of the transmission data, similarly to the specified time. Meanwhile, the remaining time t R used in the first embodiment, a remainder time for the specified time TL at the time the packet has passed a predetermined time after being stored in the queue one.
  • the number of packet retransmissions after a certain time has elapsed since the packet was stored in the queue is defined as the specified number of retransmissions (maximum number of retransmissions).
  • the value subtracted from (number of times) corresponds to this. That is, it can be said that the remaining number of retransmissions relative to the specified number of retransmissions is a parameter expressing the same concept as the remaining time.
  • the priority expression is
  • Priority reception quality X 1 Z remaining retransmission count
  • the equation is almost the same as the equation shown in the first embodiment.
  • packets with the remaining number of retransmissions reduced can be preferentially transmitted.
  • the number of retransmissions can be simply selected as a parameter. In such a case, since the magnitude relationship is reversed, the formula for calculating the priority is
  • Priority reception quality X number of retransmissions
  • the priority is calculated based on the number of retransmissions of the packet and the reception quality, a packet having a high number of retransmissions and a high possibility of being discarded in the future is preferentially transmitted. can do.
  • the number of retransmissions is a parameter similar to the remaining time, but not exactly the same. Therefore, this embodiment can be combined with another embodiment.
  • the expression for obtaining the priority is shown by multiplication, but is not limited to this, and may be, for example, addition.
  • the present invention can be applied to a scheduling method in packet control of a wireless communication system, and a wireless base station apparatus that performs packet control by the scheduling method.

Abstract

プライオリティ・キュー(111)は、送信パケットを格納した格納時刻等をタイマ(112)に通知する。タイマ(112)は、各パケットデータの残り時間を算出し、スケジューラ(113)に出力する。スケジューラ(113)は、復調部(107)から移動局の受信品質を取得し、パケットごとに優先度(=受信品質×1/残り時間)を算出し、優先度が最大であるパケットの格納されているキューを選択する。さらに、優先度に従って、変調方式、符号化率等の送信条件を決定し、HARQ部(116)、変調部(103)等の各回路を制御する。スイッチ(114)は、プライオリティ・キュー(111)の出力を切り替える。これにより、パケット制御におけるスケジューリングの処理演算量および処理時間を低減し、通信システムのスループットを増大させることができる。

Description

明 細 書 バケツト送信スケジユーリング方法および基地局装置 技術分野
本発明は、 無線通信システムのバケツト制御におけるスケジユーリング方 法、 およびこのスケジューリング方法によりパケット制御を行う無線基地局 装置に関する。 背景技術
従来、 より高速な I M T— 2 0 0 0のパケット伝送方式として、 下りのピ ーク伝送速度の高速化、 低伝送遅延、 高スループット化等を目的とした H S D P A (High Speed Downlink Packet Access) と呼ばれる方式が検討され ている。
この高速バケツト無線通信システムでは、音声、動画、データ伝送等、様々 なアプリケーションによるサービスが予想されるため、 その多様な Q o S (Quality of Service) 要求を考慮したパケットの制御技術が必須となる。 Q o S要求値としては、 上位レイヤから要求されるエラーレイ ト、 許容遅延時 間、 伝送レート、 揺らぎ、 パケット廃棄率等がある。
上記の制御技術として代表的なものに、 バケツトスケジユーリング技術が ある。 スケジューリングとは、 どの通信端末に現在下りチャネルを割り当て るかを決定する技術であり、 単一もしくは複数の送信バッファ内のパケット に対し、 送信の際の優先順序を決定する制御を行う。 このスケジューリング は無線通信システムのスループットに大きな影響を与えるため、 種々の工夫 がなされている。
現在、 スケジユーリング技術として、 代表的なものに Maximum CIR 方 式 (以下、 M a x C / I方式と呼ぶ)、 Hound Robin方式 (以下、 R R方式 と呼ぶ)、 および Proportional Fairness方式 (以下、 P F方式と呼ぶ) の 3 種類がある。
M a x C Z I方式は、無線リンク品質が良い MT (移動局) ほど優先して 送信機会を割り当てる。 R R方式は、 全ての M Tに対し均等に送信機会を割 り当てる。 P F方式は、 (瞬時無線リンク品質) / (平均無線リンク品質) 等 をメ トリックとして使用し、 メ トリックが大きい M Tほど優先して送信機会 を割り当てる。
従来、スケジユーリングによりバケツト制御を行う無線基地局装置として、 電子情報通信学会の信学技報 MoMuC2002-3 (2002-05)に記載されているも のがある(信学技報 MoMuC2002-3 (2002-05)、電子情報通信学会)。図 1は、 この無線基地局装置のスケジユーリング方法を示す図である。
この無線基地局は、 M T毎にパケットを一時的に保持するキューを有する。 MTが Q o S保証サービスとベスト 'エフオート (B E ) サービスを同時に 利用する場合は、 サービスクラス毎にキューを有する。 ここで B Eサービス は、 遅延時間の保証をしないサービスを示している。 また、 サービスクラス とは、 保証する Q o Sの段階を示している。
無線基地局は、 入力されたパケットから M Tとサービスクラスを識別し、 該当するキューにバケツトを揷入する。 提供 Q o Sレベルが要求レベルに対 して余裕がない M Tのキューは Q o Sクリティカルグループに、 Q o Sレべ ルを+分に満たしている場合は Q o Sノンクリティカルグループに属する。 また、 Q o Sを要求しない M Tのキューは B Eグループに分類される。
まず、 Q o Sクリティカルグループのキューに対しては、 最優先で送信機 会を割り当てる。 このため、 Q o Sクリティカルグループと、 それ以外のグ ノレープの選択は P R R (Priority Round Robin) 方式で行う。 すなわち、 Q o Sクリティカルグループのキューに送信待ちパケットがあれば、 他のダル ープに属するキューのサービスに割り込んでも、 必ず優先して送信機会を割 り当てる。 Q o Sクリティカルグループの中では、 現在の Q o S保証実現具合などに 応じて送信機会を分配する。 Q o Sノンクリティカルグループと B Eグルー プの選択は、 Q o S保証サービスと B Eサービスに対する余剰帯域分配方針 に基づき、 重み付けをした上で W R R (Weighted Round Robin) 方式によ りスケジユーリングを行う。
Q o Sノンクリティカルグループ内のパケットキユーに対しては、 既に Q o S保証はされているので、 できるだけシステム容量を増加させるため、 M a X C Z I方式でスケジューリングする。
B Eグループ内のバケツトキユーに対しては、 M Tとの間の無線リンク品 質に応じて重み付けを行い、 P F方式によってスケジューリングする。
しかしながら、 従来の装置においては、 パケットのサービスクラスに応じ て、 M a x C I方式、 R R方式、 および P F方式を使い分けるため、 パケ ット制御におけるスケジューリングのアルゴリズムが複雑となり、 処理演算 量および処理時間が増大化するという問題がある。 このとき、 移動局側の受 信品質を通知されてから基地局がデータを送信するまでの時間が長くなるた め、 その間に移動局が移動することによる伝搬路環境の変化も無視できなく なる。 その結果、 伝搬路環境を充分に考慮した通信を行うことができないた め、 通信システムのスループットが低下する原因ともなる。 発明の開示
本発明の目的は、 バケツト制御におけるスケジューリングの処理演算量お よび処理時間を低減し、 通信システムのスループットを増大させることであ る。
この目的は、 Q o Sを考慮するデータについても B Eのデータについても、 規定送出時間に対する残り時間の逆数を用いて得られた優先度により重み付 けすることにより、 統一的に優先順位を決定し、 かつ、 パケット制御におけ るスケジユーリングを簡易なアルゴリズムにより実現するバケツト送信スケ ジユーリング方法により解決される。 図面の簡単な説明
図 1は、 従来の無線基地局装置のスケジューリング方法を示す図、 図 2は、 本発明の実施の形態 1に係る無線基地局装置の構成の一例を示す プロック図、
図 3は、 本発明の実施の形態 1に係るスケジューラの内部構成の一例を示 すブロック図、
図 4は、 本発明の実施の形態 1に係るスケジユーリング方法の手順を示す フロー図、
図 5は、 本発明の実施の形態 1に係るプライオリティ 'キューの構成およ びタイマとスケジューラから計算されるプライオリティの概要を説明するた めの概念図、
図 6は、 本発明の実施の形態 2に係る無線基地局装置の構成の一例を示す ブロック図、
図 7は、 本発明の実施の形態 2に係るスケジューラの内部構成の一例を示 すプロック図、
図 8は、 本発明の実施の形態 3に係るスケジューラの内部構成の一例を示 すプロック図、
図 9は、 本発明の実施の形態 4に係るスケジューラの内部構成の一例を示 すブロック図である。 発明を実施するための最良の形態
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。 なお、 ここでは、 H S D P A方式を採用している通信システムを例にとって 説明するが、 本発明のスケジューリング方法および無線基地局装置は、 他の 通信システムにも適用可能である。 (実施の形態 1)
図 2は、 本発明の実施の形態 1に係る無線基地局装置の構成の一例を示す ブロック図である。 ここでは、 無線基地局装置が、 上位局 (RNC) 1 0 1 から送信データを渡され、 スケジューリングを行い、 移動局 (UE) 1 06 と通信を行う場合を例にとって説明する。 図面中の点線のうち、 I u bは、 上位局と基地局間のインターフェースを、 Uuは、 基地局と移動局間のイン ターフェースを表している。
図 2に示す無線基地局装置は、 MA C - h s (Medium Access Control used for high speed) 部 1 0 2、 変調部 1 0 3、 無線送受信部 1 04、 アン テナ 10 5、 および復調部 1 0 7を有する。 そして、 MAC— h s部 1 02 は、 プライオリティ 'キュー (優先度付きキュー) 1 1 1、 タイマ 1 1 2、 スケジューラ 1 1 3、 スィッチ 1 1 4、 TB (トランスポート 'プロック)作 成部 1 1 5、 および HARQ部 1 1 6を有する。 ここで、 プライオリティ ■ キュー 1 1 1は、 この無線基地局装置が収容できる移動局の数に相当する分 の回路を有している。
MAC- h s部 102において、 プライオリティ ·キュー 1 1 1は、 移動 局 (UE) 1 06へ送信するパケットデータを RNC 1 0 1から I u bを介 し受け取る。 そして、 この送信パケットデータを、 各送信データのプライォ リティ ·クラス (サービスクラス) 毎に対応して設けられている複数のキュ —に格納する。 このプライオリティ ·クラスは、 送信データと同時に RNC 1 01から通知される。 上記の複数のキューは、 それぞれパケット送出時に 許容できる遅延時間 (許容遅延時間) に対応した規定時間 Ί が規定されて いる。 そして、 プライオリティ ■キュー 1 1 1は、 バケツトを格納した格納 時刻 t s、 格納したキューのプライオリティ 'クラス、 および格納したキュ 一の規定時間 TLをパケットごとにタイマ 1 1 2に通知する。
タイマ 1 1 2は、 各パケットデータにそれぞれ対応するタイマを有し、 パ ケットデータがプライオリティ ■キュー 1 1 1の中で滞留可能な残り時間 t Rをスケジューラ 1 1 3に出力する。 なお、 バケツトデータをグルーピング して、 グループ毎にタイマを有するようにしても良い。 タイマの初期値とし ては、 パケットが格納されているキューの規定時間がセットされ、 時間経過 と共に上記の残り時間がデクリメントされる。 格納時刻 t sおよび現在時刻 t Pから、 パケットが格納されてから経過した時間 (t P— t s ) を求め、 こ れを
t R = 1 L _ ( ΐ ρ _ s
のように、 規定時間 τ から減ずることにより、 残り時間 t Rを算出しても良 い。
なお、 プライオリティ · クラスが B Eの場合は、 規定時間 1 をデクリメ ントせず、 残り時間 t Rを一定とする。 このとき、 規定時間として、 既に他 のキューに規定されている全ての規定時間のうち、 最大の値を示すもの以下 の値を自動的に設定する。 なお、 パケットの許容遅延時間を直接セッ トして あよい。
スケジューラ 1 1 3は、 タイマ 1 1 2から出力された残り時間、 および、 移動局が受信した信号の受信品質を用いて、
優先度 - 受信品質 X 1 Z残り時間
の式に従ってバケツトごとに優先度を算出し、 優先度が最大であるバケツト の格納されているキューを選択し、 スィッチ 1 1 4に出力する。 移動局が受 信した信号の受信品質は、 移動局から通知され、 復調部 1 0 7によって復調 された受信データから得る。 また、 残り時間 t Rは、 キューに格納された時 刻の最も古いバケツトに対応する値を用いる。
上記の式を用いることにより、 少ない演算処理量で、 受信品質の良い移動 局ほど優先度を高く設定することができるので、 通信システムの伝送効率を 向上させることができる。 また、 残り時間の少ないパケットほど優先度を高 く設定するので、 Q o Sを保証しやすくなる。 さらに、 残り時間の逆数を用 いているので、 残り時間が 0に近付くと優先度が著しく高く (指数関数的に 高く) 設定されることとなり、 許容遅延時間を守りやすくなる。
そして、 スケジューラ 1 1 3はさらに、 求められた優先度に従って、 変調 方式、 符号化率等の送信条件を決定し、 制御信号 C 1 1、 C 1 2、 C 1 3、 C 1 4、 および C 1 5を用いて、 TB作成部 1 1 5、 HARQ部 1 1 6、 変 調部 103、 およぴ無線送受信部 104をそれぞれ制御する。 このスケジュ ーラ 1 1 3の内部構成については後に詳述する。
スィッチ 1 14は、 プライオリティ ■キュー 1 1 1の各キューに対応して 複数存在する出力端子から、 スケジューラ 1 1 3によって選択されたキュー に対応する出力端子を選択し、 プライオリティ 'キュー 1 1 1から出力され るパケットを切り替える。
TB作成部 1 1 5は、 スィッチ 1 14を介し、 プライオリティ ■キュー 1 1 1から出力されたバケツトから、 スケジューラ 1 1 3より出力された制御 信号 C I 1によって指定された TBサイズに従って、 複数バケツトをーまと まりにして伝送する際の単位である TBを作成し、 HARQ部 1 1 6に出力 する。
HARQ部 1 1 6は、 TB作成部 1 1 5から出力された T B (送信データ) を、 制御信号 C 1 2に従って、 符号化および再送制御しながら、 変調部 1 0 3に出力する。 NACK信号を受け取って再送待ちとなった場合、 HARQ 内のバッファに再送待ちのバケツトを一時保存し、 AC K信号が返ってきた 際にこのパケットの再送を最優先し、 すぐに送信する。 また、 HARQプロ セスにおいて、 送信可能な全てのバケツトが送信待ちの状態にある場合は、 上記の優先度演算以降の処理を停止する。
変調部 103は、 HARQ部1 1 6から出力された送信データに対し、 制 御信号 C 1 3によって指定された変調方式で変調処理を行い、 また、 制御信 号 C 14によって指定された符号数で符号化処理を行い、 無線送受信部 1 0 4に出力する。
無線送受信部 1 04は、 変調部 1 0 3から出力された変調後の送信データ にアップコンパ一ト等の所定の無線送信処理を施し、 アンテナ 1 0 5を介し て、 送信する。 また、 アンテナ 1 0 5を介し受信した信号にダウンコンパ一 ト等の所定の無線受信処理を施し、 復調部 1 0 7に出力する。
復調部 1 0 7は、 無線送受信部 1 0 4から出力された受信データに対し、 復調処理を施し、 受信データを得る。 また、 移動局側の受信品質を受信デー タから抽出し、 スケジューラ 1 1 3に出力する。
図 3は、 スケジューラ 1 1 3の内部構成の一例を示すブロック図である。 スケジューラ 1 1 3は、 受信品質検出部 1 2 1、 優先度演算部 1 2 2、 キュ 一選択部 1 2 3、 および送信制御部 1 2 4を有する。
受信品質検出部 1 2 1は、 復調部 1 0 7において復調された受信データか ら抽出された移動局側の回線品質情報である C Q I ( Channel Quality Indicator) から受信品質を検出する。 C Q Iは、 通信中の基地局に対して移 動局が受信可能な伝送レート等を通知する情報であり、 移動局における受信 品質に基づいて決定されている。 ここで、 基地局側で用いる受信品質は推定 した C I R等でも良いし、また、 3 0段階の C Q I値を直接使用しても良い。 回線品質情報としては、 移動局で測定された共通パイロットチャネル (C P I C H : Common Pilot Channel) の C I R (Carrier to Interference Ratio) に基づいた C Q Iの他に、 送信電力制御されている、 A— D P C H (Associated - Dedicated Physical Channel) の送信電力などを用いること ができる。 送信電力を用いることができるのは、 移動局側の受信品質が悪い 場合には、 基地局側の送信電力も移動局側の要求に従って増大するからであ る。
優先度演算部 1 2 2は、 タイマ 1 1 2から残り時間 t R、 受信品質検出部 1 2 1から受信品質を通知される。 そこで、 既述の式
優先度 - 受信品質 X 1 //残り時間
に従って、バケツトごとに優先度を算出し、キュー選択部 1 2 3に出力する。 キュー選択部 1 2 3は、 通知されたパケットごとの優先度から最大の優先 度を持つパケットを選択し、 そのバケツトの格納されているキューをスィッ チ 1 14および送信制御部 1 24に通知する。
送信制御部 1 24は、 受信品質検出部 1 2 1から受信品質、 復調部 1 0 7 から ACK/NACK信号、 キュー選択部 1 2 3から選択キューが通知され る。 そして、 キュー選択部 1 2 3で選択されたキューに基づいて送信条件、 すなわち、 TBサイズ、 HARQ再送制御、 変調方式、 および送信電力を決 定し、 TB作成部 1 1 5に TB制御信号 C 1 1、 HARQ部 1 1 6に再送制 御信号 C 1 2、 変調部 103に変調制御信号 C 1 3および符号化制御信号 C 14、 無線送受信部 1 04に送信電力制御信号 C 1 5をそれぞれ送り、 各回 路を制御する。
図 4は、 上記の無線基地局装置が使用するスケジューリング方法の手順を まとめたフロー図である。
上記の無線基地局装置は、 RNC 1 0 1より送信パケットを受理し ( S T 10 10)、 プライオリティ 'キュー 1 1 1に格納する (S T 1 020)。 そ して、 同時にタイマ 1 12の初期値をセットし (ST 1 030)、残り時間 t Rの算出、 すなわち、 計時を開始する (S T 1 040)。 一方、 UE 1 06か ら送信された信号をアンテナ 1 05で受信し(S T 1 050)、無線送受信部 104において無線受信処理を施す (ST 1 060)。 次に、復調部 107に おいて受信データを復調し(ST 1 0 70)、このデータの中から移動局側の 受信品質に関する情報を検出する (ST 1 080)。
残り時間 tRおよび受信品質を取得し終わった後、 スケジューラ 1 1 3内 は、送信パケットの優先度を演算し (ST 1 0 90)、 実際に送信するバケツ トを決定した後、 この送信バケツトに対する送信条件を決定する (ST 1 1 00)。そして、 この送信条件に基づいて無線基地局装置は送信バケツトを移 動局に送信する (ST 1 1 1 0)。
図 5は、 プライオリティ 'キュー 1 1 1の構成およびタイマ 1 1 2とスケ ジユーラ 1 1 3から計算されるプライオリティの概要を説明するための概念 図である。 ここでは、 プライオリティ ·キュー 1 1 1力 UE # 1に対応す るプライオリティ 'キュー 1 1 1— 1、 および、 UE # 2に対応するプライ オリティ ·キュー 1 1 1一 2から構成される場合を例にとって説明するが、 プライオリティ ■キュー 1 1 1の構成はこれに限定されず、 2以上の移動局 の処理を行うことが可能である。 また、 キューの数も 5個に限定されない。 プライオリティ ·キュー 1 1 1において、 リアルタイム性が厳しく要求さ れるサービスから B E型のサービスまで、 プライオリティ ·クラス # 1〜# 5が用意され、 各プライオリティ ■クラスに対応する 5つのキュー # 1〜# 5が存在する。 各キューには、 許容遅延時間に基づいて規定時間 1 が規定 される。 リアルタイム性の強いサービスほど規定時間 1 は短く設定される のに対し、 BE型サービス (プライオリティ 'クラス 5) に近付くほど、 規 定時間 Ί\は長く設定される。
UE # iのキュー # jに格納されているバケツトのうち、 最も古く格納さ れたパケットの残り時間を t;い すなわち、 UE # 1のキュー # 1〜 # 5な らば残り時間は t„〜 t 15、UE# 2のキュー # 1〜# 5ならば残り時間は t 21〜 t 25とすると、 UE # iのキュー # jに格納されているパケットの優 先度 P i jは、 残り時間を t iい 受信品質を C I R# i として、
Figure imgf000012_0001
で表される。 ここで、 受信品質として、 UEごとに算出された C I Rを用い る場合を例にとった。
スケジューラ 1 1 3は、プライオリティ ·キュー 1 1 1の各キューに対し、 この優先度 P i jを算出し、 最大の優先度を有すキューを選択する。 なお、 送 信されなかったパケッ トの残り時間 t Rは、 次の T T I (Transmission Timing Interval) においてもリセットされない。
以上の構成において、 スケジューラ 1 1 3は、 いずれのプライオリティ - クラスに属するパケットに対しても、 単一の方法により、 パケット送信時の 優先度を決定する。 具体的には、 優先度演算部 1 22は、 受信品質検出部 1 2 1によって検出された各移動局の受信品質に基づいて、 受信品質の良い移 動局ほど送信パケットの優先度を高め、 また、 タイマ 1 1 2によって求まつ た残り時間の少ないパケットほど優先度を高め、 さらに、 残り時間が 0に近 いバケツトほど更に優先度を高めることにより、 各バケツトの優先度を決定 する。
このように、 本実施の形態によれば、 パケット制御におけるスケジユーリ ングの処理演算量および処理時間を低減することができ、 通信システムのス ループットを増大させることができる。
なお、 ここでは、 上位局 (R N C ) から送信データが送られてくる場合を 例にとつて説明したが、 インターネットのような非階層構造をとるネットヮ ークの場合は、 ルータから送信デ一タが送られてくる。
また、 ここでは、 規定時間 T がプライオリティ ■キュー 1 1 1において 設定されている場合を例にとって説明したが、 上位局からこの規定時間に相 当する情報がシグナリングされ、 スケジューラ 1 1 3はこの情報を用いて優 先度を算出しても良い。
さらに、 H A R Qプロセスにおいて、 N A C K信号を受け取って再送待ち となった場合、 H A R Q内のバッファに再送待ちのバケツトを一時保存し、 A C K信号が返ってきた際にすぐに再送する場合を例にとって説明したが、 再送待ちの場合に再度優先度演算から実行し、 バケツトを再送しても良い。 この場合は、 再送待ちのパケットのタイマ値も他のパケットのタイマ値と同 様に残り時間 t Rの計測は継続し、 他のバケツトも含めた優先度の比較を行 う。 ただし、 再送待ちのパケットが選択されたとしても、 依然再送待ち状態 である場合は、 送信処理に移行しない。 このとき、 スケジューラ 1 1 3は、 同一キューの次に格納されているバケツトデータの優先度を計算する。 また、 優先度を計算する式において、 残り時間の代わりに同様の概念を示 すパラメータとして、 H A R Qプロセスにおける再送回数等を使用すること ができる。 これについては、 実施の形態 4で詳述する。 (実施の形態 2 )
図 6は、 本発明の実施の形態 2に係る無線基地局装置の構成の一例を示す ブロック図である。 なお、 この無線基地局装置は、 図 2に示した無線基地局 装置と同様の基本的構成を有しており、 同一の構成要素には同一の符号を付 し、 その説明を省略する。
本実施の形態の特徴は、 スループット算出部 2 0 1をさらに有し、 スケジ ユーラ 1 1 3 aが移動局の実績のスループットをも考慮して優先度を決定す ることである。
スループット算出部 2 0 1は、 復調部 1 0 7の出力を監視して、 移動局が 基地局に対しデータを送信する際の実績のスループットを算出し、 スケジュ ーラ 1 1 3 aに出力する。 この実績のスループットとしては、 所定期間にお ける平均値を用いても良いし、 同様の概念を示す別のパラメータであっても 良い。
スケジューラ 1 1 3 aは、 タイマ 1 1 2から出力された残り時間 t R、 復 調部 1 0 7から出力された移動局側の受信品質、 およびスループット算出部 2 0 1から出力された実績スループットを用いて、
優先度 = 受信品質 X 1 /残り時間 X 1 /実績スループット の式に従ってバケツトごとに優先度を算出する。
また、 スケジューラ 1 1 3 aは、 実施の形態 1と同様に送信制御も行う。 実施の形態 1と異なる点は、 T B制御信号 C 1 1がスループット算出部 2 0 1にも送られ、 この制御信号により通知された T Bサイズを用いて、 スルー プット算出部 2 0 1がスループットの算出を行うことである。
図 7は、スケジューラ 1 1 3 aの内部構成の一例を示すブロック図である。 スループット算出部 2 0 1から出力された実績スループットは、 優先度演算 部 1 2 2 aに入力され、実施の形態 1と同様に優先度が演算される。ただし、 受信品質は、 U Eごとに算出されたもの、 スループットは、 キューごとに算 出されたものを用いる。 以上の構成において、スケジューラ 1 1 3 a内の優先度演算部 1 2 2 aは、 上記の式に基づいて優先度を計算するため、 実施の形態 1の効果に加え、 さ らに P F方式と同様の効果をも期待することができる。 なぜなら、 上記の式 の (受信品質 X 1 /実績スループット) の部分は、 P F方式におけるメ ト リックと同じだからである。
このように、 本実施の形態によれば、 パケット制御におけるスケジユーリ ングの処理演算量および処理時間を低減することができ、 通信システムのス ループットを増大させることができると共に、 回線品質を考慮しつつ、 スル ープットの公平性も考慮して送信機会を割り当てるという P F方式と同様の 効果を奏すことができる。
(実施の形態 3 )
本発明の実施の形態 3に係る無線基地局装置は、 図 6に示した無線基地局 装置と同様の基本的構成を有している。 そのため、 同一の構成要素には同一 の符号を付し、 その説明を省略する。
本実施の形態の特徴は、 スケジューラ 1 1 3 bの内部にさらにメモリ 3 0 1を有することである。 図 8は、 スケジューラ 1 1 3 bの内部構成の一例を 示すプロック図である。
スケジューラ 1 1 3 bにおいて、 メモリ 3 0 1は、 記憶されている係数 α および を優先度演算部 1 2 2 bに出力する。 ひおよび の値については後 述する。
優先度演算部 1 2 2 bは、 タイマ 1 1 2から出力された残り時間 t R、 復 調部 1 0 7から出力された移動局側の受信品質、 スループット算出部 2 0 1 から出力された実績スループット、 およびメモリ 3 0 1から出力された係数 α、 ]3を用いて、
優先度 = 受信品質 X ( X l Z残り時間) X ( X 1 Ζ実績スル ープット)
の式に従ってバケツトごとに優先度を算出する。 ここで、 αおよび ]3は、 上記の式において残り時間および実績スループッ トに重み付けすることを目的とした係数である。 例えば、 移動局が基地局に 対し要求するスループットがパケットの種類 (サービス) によって異なる場 合、 にはパケットの種類に応じた値を設定することにより、 パケットの種 類に応じて優先度にあらかじめ重み付けをすることができる。 ここで、 パケ ッ トの種類とは、 具体的に言うと、 例えばサービスクラスのことである。 ま た、 例えば、 移動局が要求するスループットは場合によっては満たさなくて も良いが、 規定時間だけは必ず守りたいという条件を考えたとき、 |3に比べ αに大きい値を設定することにより、 優先度の計算において残り時間の寄与 が大きくなり、結果として規定時間を重視した優先度を算出したことになる。 このように、 本実施の形態によれば、 残り時間および実績スループットに 重み付けをして優先度の演算をするため、 重み付けの比率を考慮して妥当な 値に設定することにより、 状況に応じた適切な優先度演算をすることができ る。
なお、 ここでは、 規定時間がプライオリティ ■クラスに応じて異なる値が 設定されている場合を例にとって説明したが、 上記の式によれば、 規定時間 を全て同一の値に設定し、 代わりに、 プライオリティ 'クラスに応じて上記 の ]3に異なる値を設定することもできる。
また、 上記 ο;及び ]3の重み係数は、 上位装置からシグナリングにより設定 してもよい。 また、 トラフィック状況などによって、 基地局により時間的に 変化させてもよい。
さらに、 実施の形態 1から実施の形態 3を通じ、 上記の残り時間の代わり に、 キューにおけるパケットの滞留時間、 すなわち、 パケットがバッファに 格納された時点から実際に送信されるまでの間の経過時間をパラメータとし て選ぶことも可能である。 かかる場合、 大小関係が逆転するので、 優先度を 求める式は実施の形態 1であれば
優先度 = 受信品質 X 滞留時間 のようにする。 他の実施の形態においても同様である。 原理としては、 規定 時間がほぼ同じに設定されているキュー間では、 残り時間に基づいて優先度 を決定しても、 上記の滞留時間に基づいて優先度を決定してもスケジユーリ ングの結果はほとんど変わらない。 また、 規定時間が異なって設定されてい るキュー間においても、 例えば、 実施の形態 3で示したように各パラメータ に規定時間に応じた重み付けを施すことにより、 同様の効果を得ることがで きる。
(実施の形態 4 )
本発明の実施の形態 4に係る無線基地局装置は、 図 2に示した無線基地局 装置と同様の基本的構成を有している。 そのため、 同一の構成要素には同一 の符号を付し、 その説明を省略する。
本実施の形態の特徴は、 スケジューラ 1 1 3 c内の優先度演算部 1 2 2 c 力 受信品質および送信パケットの再送回数に基づいて優先度を演算するこ とである。 換言すると、 実施の形態 1において使用した残り時間 t Rの代わ りに、 本実施の形態ではパケットの再送回数を用いる。
図 9は、スケジューラ 1 1 3 cの内部構成の一例を示すプロック図である。 スケジューラ 1 1 3 cにおいて、 送信制御部 1 2 4 cは送信バケツトの再 送制御を行いつつ、 送信パケットの再送回数を計数する。 そして、 この送信 バケツトごとに求められた再送回数を優先度演算部 1 2 2 cに出力する。 優先度演算部 1 2 2 cは、 送信制御部 1 2 4 cから出力された再送回数、 および受信品質検出部 1 2 1から出力された受信品質を用いて、
優先度 = 受信品質 X 再送回数
の式に従ってパケットごとに優先度を算出する。
以上の構成において、 R N C 1 0 1から基地局に送られてきたバケツトは、 プライオリティ 'クラスごとに設けられた別々のキューに格納される。 各キ ユーには、 パケット送出時に許容できる遅延時間 (許容遅延時間) に対応し た規定時間 Tい すなわち、 パケットがキューの中で停留可能な最長時間が 設定されている。 そして、 プライオリティ ·キュー 1 1 1は、 バケツトがこ の規定時間 1 を経過しても送出されない場合、 このバケツトを廃棄する。 これは、 例えば、 送信データがリアルタイム性の強いデータであった場合、 所定時間経過後にデータが受信側に到着しても、 全く意味のないデータとな つてしまうことがあるためである。 一方、 送信制御部 1 2 4 cは、 H A R Q 部 1 1 6に制御信号 C 1 2を出力することにより、 パケットの再送制御を行 つている。 この制御の中で、 送信制御部 1 2 4 cは、 バケツトの再送回数も 計数しており、 予め設定された規定再送回数、 すなわち、 再送が許される最 大再送回数を越えた再送パケットは廃棄される。 この規定再送回数も、 上記 の規定時間と同様に、送信データの時間管理をしていると言うことができる。 ところで、 実施の形態 1で使用された残り時間 t Rとは、 パケットがキュ 一に格納されてから一定時間経過した時点での規定時間 T Lに対する残り時 間である。 この残り時間に対応するパラメータを上記の規定再送回数の場合 にあてはめて考えてみると、 パケットがキューに格納されてから一定時間経 過した時点でのパケットの再送回数を規定再送回数 (最大再送回数) から減 じた値がこれに相当する。すなわち、規定再送回数に対する残り再送回数が、 残り時間と同様の概念を表したパラメータであると言うことができる。 この とき、 優先度の式は、
優先度 = 受信品質 X 1 Z残り再送回数
のように、 実施の形態 1で示した式とほぼ同様な式となる。 これにより、 残 り再送回数の少なくなつたパケットを優先して送信することができる。
また、 上記の残り再送回数の代わりに、 単に再送回数をパラメータとして 選ぶこともできる。 かかる場合、 大小関係が逆転するので、 優先度を求める 式は
優先度 = 受信品質 X 再送回数
のようにする。 これにより、 再送回数の多くなつたパケットを優先して送信 することができる。 本実施の形態においては、 この再送回数を用いる場合の 具体例を示した。 しかし、 上記の規定再送回数に対する残り再送回数を用い ても良い。
このように、 本実施の形態によれば、 パケットの再送回数および受信品質 に基づいて優先度の演算をするため、 再送回数の多くなった将来廃棄されて しまうおそれの高いパケットを優先して送信することができる。
また、 再送回数は、 残り時間と同様のパラメータではあるが、 全く同一で はない。 よって、 本実施の形態を他の実施の形態と組み合わせることもでき る。 例えば、 実施の形態 1と組み合わせる場合、 優先度を求める式は、 優先度 = 受信品質 X 1Z残り時間 X 再送回数
のようになる。 他の実施の形態と組み合わせる場合も同様である。 これによ り、 より直接的に、 規定時間および規定再送回数の双方を満たすようなパケ ット送信スケジユーリングを実現することができる。
また、 以上において、 優先度を求める式を乗算で示してあるが、 これに限 定されず、 例えば加算としてもよい。
以上説明したように、 本発明によれば、 パケット制御におけるスケジユー リングの処理演算量および処理時間を低減することができ、 通信システムの スループットを増大させることができる。
本明細書は、 2 00 2年 8月 3 0日出願の特願 2 0 0 2— 2 5 3 5 1 5お よび 20 0 2年 1 2月 6日出願の特願 2 0 0 2 - 3 5 5 0 6 9に基づく。 こ の内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 無線通信システムのパケット制御におけるスケジューリング方 法、 およびこのスケジユーリング方法によりパケット制御を行う無線基地局 装置に適用することができる。

Claims

請求の範囲
1 . 基地局が移動局にバケツトを送信する際に許容される遅延時間に対す る残り時間に基づいて、 前記パケットの種類にかかわらず前記バケツトを送 信する際の優先度を演算する演算ステップ、 を有し、
前記演算ステップによつて演算された優先度を用いて前記パケットのパケ ット送信スケジユーリングを行うパケット送信スケジユーリング方法。
2 . 前記基地局と前記移動局間の回線品質を検出する検出ステップをさら に有し、
前記演算ステップは、
前記残り時間に加え、 検出された回線品質にさらに基づいて、 前記優先度 を演算する、
請求の範囲第 1項記載のバケツト送信スケジユーリング方法。
3 . 前記演算ステップは、
前記残り時間が少ないほど演算される優先度を増加させる、
請求の範囲第 2項記載のバケツト送信スケジユーリング方法。
4 . 前記演算ステップは、
前記残り時間が 0に近いほど演算される優先度を指数関数的に増加させる、 請求の範囲第 2項記載のバケツト送信スケジユーリング方法。
5 . 前記演算ステップは、
検出された回線品質を前記残り時間で除した比を使用して前記優先度を演 算する、
請求の範囲第 2項記載のバケツト送信スケジユーリング方法。
6 . 前記演算ステップは、
前記演算ステップにおいて使用された比にさらに前記移動局の過去のスル ープットの逆数を乗じた値を使用して前記優先度を演算する、
請求の範囲第 5項記載のバケツト送信スケジユーリング方法。
7 . 前記演算ステップは、
前記移動局が前記基地局に対し要求するスループットが前記パケットの種 類に応じて異なる場合、 前記移動局の過去のスループットの逆数に対し前記 バケツトの種類に応じて重み付けする、
請求の範囲第 6項記載のバケツト送信スケジューリング方法。
8 . 前記演算ステップは、
前記残り時間に対し重み付けする、
請求の範囲第 7項記載のバケツト送信スケジユーリング方法。
9 . 前記演算ステップは、
前記残り時間の代わりとして前記パケットがバッファに格納された時点か らの経過時間を使用する、
請求の範囲第 2項記載のバケツト送信スケジューリング方法。
1 0 . 前記演算ステップは、
前記残り時間の代わりとして、 前記パケットの再送回数または前記移動局 に前記バケツトを送信する際に許容される最大再送回数に対する残り再送回 数を使用する、
請求の範囲第 2項記載のバケツト送信スケジューリング方法。
1 1 . 移動局にバケツトを送信する際に許容される遅延時間に対する残り 時間に基づいて、 前記バケツトの種類にかかわらず前記バケツトを送信する 際の優先度を演算する演算手段、 を有し、
前記演算手段によって演算された優先度を用いて前記バケツトのバケツト 送信スケジユーリングを行う、
1 2 . 自局と前記移動局間の回線品質を取得する取得手段をさらに有し、 前記演算手段は、
前記残り時間に加え、 取得された回線品質にさらに基づいて、 前記優先度 を演算する、 請求の範囲第 1 2項記載の基地局装置。
1 3. 前記演算手段は、
前記残り時間が少ないほど演算される優先度を増加させる、
請求の範囲第 1 2項記載の基地局装置。
14. 前記演算手段は、
前記残り時間が 0に近いほど演算される優先度を指数関数的に増加させる- 請求の範囲第 1 2項記載の基地局装置。
1 5. 前記演算手段は、
取得された回線品質を前記残り時間で除した比を使用して前記優先度を演 算する、
請求の範囲第 1 2項記載の基地局装置。
1 6. 前記演算手段は、
前記演算手段において使用された比にさらに前記移動局の過去のスループ ットの逆数を乗じた値を使用して前記優先度を演算する、
請求の範囲第 1 5項記載の基地局装置。
1 7. 前記演算手段は、
前記移動局が要求するスループットが前記バケツトの種類に応じて異なる 場合、 前記移動局の過去のスループットの逆数に対し前記パケットの種類に 応じて重み付けする、
請求の範囲第 1 6項記載の基地局装置。 .
1 8. 前記演算手段は、
前記残り時間に対し重み付けする、
請求の範囲第 1 7項記載の基地局装置。
1 9. 前記移動局にパケットを送信する際に許容される遅延時間は、 自局 の上位局より通知される請求の範囲第 1 2項記載の基地局装置。
20. 前記演算手段は、
前記残り時間の代わりとして前記パケットがバッファに格納された時点か らの経過時間を使用する、
請求の範囲第 1 2項記載の基地局装置。
2 1 . 前記演算手段は、
前記残り時間の代わりとして、 前記パケットの再送回数または前記移動局 に前記パケットを送信する際に許容される最大再送回数に対する残り再送回 数を使用する、
請求の範囲第 1 2項記載の基地局装置。
2 2 . 基地局と移動局間の回線品質を検出する検出ステップと、
検出された回線品質および前記基地局が前記移動局にバケツトを送信する 際に許容される遅延時間に対する残り時間に基づいて、 前記パケットの種類 にかかわらず前記バケツトを送信する際の優先度を演算する演算ステップと、 を有し、
前記演算ステップによって演算された優先度を用いて前記バケツトのパケ ット送信スケジューリングをコンピュータに実行させるバケツト送信スケジ ユーリング ·プログラム。
PCT/JP2003/010109 2002-08-30 2003-08-08 パケット送信スケジューリング方法および基地局装置 WO2004021651A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/495,875 US20040258070A1 (en) 2002-08-30 2003-08-08 Packet transmission scheduling method and base station device
AU2003254885A AU2003254885A1 (en) 2002-08-30 2003-08-08 Packet transmission scheduling method and base station device
EP03791202A EP1443719A1 (en) 2002-08-30 2003-08-08 Packet transmission scheduling method and base station device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-253515 2002-08-30
JP2002253515 2002-08-30
JP2002355069A JP2004147275A (ja) 2002-08-30 2002-12-06 パケット送信スケジューリング方法および基地局装置
JP2002-355069 2002-12-06

Publications (1)

Publication Number Publication Date
WO2004021651A1 true WO2004021651A1 (ja) 2004-03-11

Family

ID=31980533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010109 WO2004021651A1 (ja) 2002-08-30 2003-08-08 パケット送信スケジューリング方法および基地局装置

Country Status (6)

Country Link
US (1) US20040258070A1 (ja)
EP (1) EP1443719A1 (ja)
JP (1) JP2004147275A (ja)
CN (1) CN1596527A (ja)
AU (1) AU2003254885A1 (ja)
WO (1) WO2004021651A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057462B (zh) * 2004-11-11 2011-12-21 皇家飞利浦电子股份有限公司 基于优先级的分组排队及组合方法

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100498390B1 (ko) * 2002-12-20 2005-07-01 엘지전자 주식회사 왕복동식 압축기를 채용한 냉장고의 운전제어장치 및 방법
US7369549B2 (en) * 2003-03-25 2008-05-06 Qualcomm Incorporated Adaptive rate prioritizing
JP4349050B2 (ja) * 2003-09-24 2009-10-21 日本電気株式会社 移動通信システム、無線基地局、スケジューリング装置及びそれに用いるスケジューリング方法
JP4301970B2 (ja) * 2004-02-23 2009-07-22 株式会社エヌ・ティ・ティ・ドコモ パケット送信制御装置及びパケット送信制御方法
KR101054611B1 (ko) * 2004-06-01 2011-08-04 텔레폰악티에볼라겟엘엠에릭슨(펍) 유휴 기간 동안 hsdpa 전송 방지 방법
US7710911B2 (en) * 2004-06-10 2010-05-04 Interdigital Technology Corporation Method and apparatus for dynamically allocating H-ARQ processes
FI20045253A0 (fi) * 2004-06-29 2004-06-29 Nokia Corp Pakettiradiojärjestelmä, tukiasema ja menetelmä pakettien ajoituksen kontrolloimiseksi
JP4355631B2 (ja) * 2004-08-11 2009-11-04 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム及び移動局
JP4718242B2 (ja) * 2004-09-01 2011-07-06 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置、無線通信システムおよび無線通信方法
DE102004044965A1 (de) * 2004-09-16 2006-03-30 Infineon Technologies Ag Mobilfunkeinrichtung, Mobilfunknetzwerk-Kontrolleinheit und Verfahren zum Auslesen von Daten aus einer Mehrzahl von Datensicherungsschicht-Protokoll-Pufferspeichern
GB0421353D0 (en) * 2004-09-24 2004-10-27 Nokia Corp Resource allocation in a communication system
DE102004047349A1 (de) * 2004-09-29 2006-04-06 Infineon Technologies Ag Datensicherungsschicht-Protokolleinheit, Mobilfunkeinrichtungen, Mobilfunknetzwerk-Kontrolleinheit und Verfahren zum Auslesen von Daten aus einer Mehrzahl von Datensicherungsschicht-Protokoll-Pufferspeichern
JP4544413B2 (ja) * 2004-10-26 2010-09-15 日本電気株式会社 無線基地局及び無線基地局におけるスケジューラアルゴリズム設定方法
US8289972B2 (en) * 2004-11-10 2012-10-16 Alcatel Lucent Gigabit passive optical network strict priority weighted round robin scheduling mechanism
JP2006157797A (ja) * 2004-12-01 2006-06-15 Kddi Corp 無線スケジューリング装置、無線スケジューリング方法および無線装置
GB0500588D0 (en) * 2005-01-12 2005-02-16 Koninkl Philips Electronics Nv Method of, and apparatus for, scheduling the transmission of data units in a communication system
JP4498941B2 (ja) * 2005-02-04 2010-07-07 Kddi株式会社 無線スケジューリング装置、無線スケジューリング方法および無線装置
WO2006095387A1 (ja) * 2005-03-04 2006-09-14 Fujitsu Limited スケジューリング方法及び基地局装置
EP1872540A4 (en) * 2005-04-11 2012-05-09 Nokia Corp METHOD AND DEVICE FOR ENABLING REAL-TIME PACKAGE IN A WIRELESS COMMUNICATION SYSTEM
EP1871030B1 (en) 2005-04-15 2012-12-19 NTT DoCoMo, Inc. Packet transmission control device, and packet transmission control method
JP2006303699A (ja) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd 無線通信システム及び帯域割り当て方法
KR101084134B1 (ko) * 2005-05-03 2011-11-17 엘지전자 주식회사 이동통신 시스템에서, 제어 정보 전송 방법
KR100704674B1 (ko) * 2005-06-27 2007-04-06 한국전자통신연구원 휴대 인터넷 시스템의 스케줄링 장치 및 그 방법
JP4864567B2 (ja) * 2005-06-30 2012-02-01 三菱電機株式会社 通信システムおよび基地局
DE602005004611T2 (de) * 2005-07-22 2008-06-05 Alcatel Lucent Verfahren zum Betreiben einer Ablaufsteuerung eines Kreuzvermittlungsschalters und Ablaufsteuerung
JP2009510972A (ja) * 2005-10-04 2009-03-12 テレフオンアクチーボラゲット エル エム エリクソン(パブル) ピコ基地局を有する無線アクセスネットワークの呼び出し
KR20070047720A (ko) 2005-11-02 2007-05-07 한국전자통신연구원 이동통신 시스템의 패킷 스케줄링 방법, 그리고 그 장치
WO2007057728A1 (en) * 2005-11-18 2007-05-24 Telefonaktiebolaget Lm Ericsson (Publ) A method and base station for schedulin hsdpa
JP4810254B2 (ja) * 2006-02-28 2011-11-09 株式会社日立製作所 基地局及び基地局制御装置
JP2007258803A (ja) * 2006-03-20 2007-10-04 Sony Corp 送信装置および方法、並びにプログラム
JP2007274336A (ja) * 2006-03-31 2007-10-18 Fujitsu Ltd 無線基地局及び無線端末
US7613444B2 (en) * 2006-04-28 2009-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic building of monitored set
US8228920B2 (en) * 2006-05-01 2012-07-24 Agere Systems Inc. High-throughput scheduler with guaranteed fairness for wireless networks and other applications
WO2008001481A1 (en) * 2006-06-29 2008-01-03 Mitsubishi Electric Corporation Communication system, base station, and mobile station
US20080049772A1 (en) * 2006-08-22 2008-02-28 Antonella Faniuolo Method of managing multiple traffic flows
US7760748B2 (en) 2006-09-16 2010-07-20 Mips Technologies, Inc. Transaction selector employing barrel-incrementer-based round-robin apparatus supporting dynamic priorities in multi-port switch
US7773621B2 (en) 2006-09-16 2010-08-10 Mips Technologies, Inc. Transaction selector employing round-robin apparatus supporting dynamic priorities in multi-port switch
US7990989B2 (en) * 2006-09-16 2011-08-02 Mips Technologies, Inc. Transaction selector employing transaction queue group priorities in multi-port switch
US7961745B2 (en) 2006-09-16 2011-06-14 Mips Technologies, Inc. Bifurcated transaction selector supporting dynamic priorities in multi-port switch
US8470445B2 (en) * 2006-09-20 2013-06-25 Mitsubishi Rayon Co., Ltd. Resin laminate, method for production thereof, and transfer film for use in the production of resin laminate
KR100758308B1 (ko) * 2006-09-21 2007-09-12 한국전자통신연구원 선택적 하이브리드 자동재전송요구 시스템에서의 패킷스케줄링 방법
CN101154988B (zh) * 2006-09-26 2011-03-30 大唐移动通信设备有限公司 传输冲突控制方法和系统
US8355403B2 (en) * 2006-11-13 2013-01-15 Fujitsu Semiconductor Limited Stale data removal using latency count in a WiMAX scheduler
KR101194090B1 (ko) 2006-11-20 2012-10-24 삼성전자주식회사 통신 시스템에서 데이터 송신 장치 및 방법
CN1972177B (zh) * 2006-11-29 2010-04-21 北京邮电大学 基于终端反馈的联合混合自动请求重传和调度算法的方法
CN101601322B (zh) * 2006-12-28 2012-10-31 三菱电机株式会社 通信系统、基站以及移动站
KR101389680B1 (ko) * 2007-02-06 2014-05-27 엘지전자 주식회사 무선 통신 시스템 및 이를 구성하는 단말장치와 베이스스테이션 그리고 이들의 채널 스케줄링 방법
KR100966074B1 (ko) * 2007-02-15 2010-06-28 삼성전자주식회사 무선통신시스템에서 재전송 장치 및 방법
CN101018265B (zh) * 2007-02-15 2010-07-07 杭州华三通信技术有限公司 逃生设备及其方法
US8145271B2 (en) 2007-03-01 2012-03-27 Ntt Docomo, Inc. Base station apparatus and communication control method
CN101669401B (zh) * 2007-03-01 2013-04-03 株式会社Ntt都科摩 基站装置和通信控制方法
JP5236626B2 (ja) * 2007-03-01 2013-07-17 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び通信制御方法
MX2009009235A (es) 2007-03-01 2009-09-08 Ntt Docomo Inc Aparato de estacion base y metodo de control de comunicacion.
WO2008105418A1 (ja) * 2007-03-01 2008-09-04 Ntt Docomo, Inc. 基地局装置及びユーザ装置並びに通信制御方法
KR101003922B1 (ko) * 2008-08-04 2010-12-30 인하대학교 산학협력단 멀티미디어 서비스를 제공하기 위한 스케쥴링 방법
CN101340390B (zh) * 2008-08-15 2012-07-25 中兴通讯股份有限公司 一种实时业务的调度装置及方法
JP4722175B2 (ja) * 2008-10-14 2011-07-13 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム及び上位ノード
CN101729228B (zh) 2008-10-31 2014-04-16 华为技术有限公司 丢包抑制重传的方法、网络节点和系统
JP5150520B2 (ja) * 2009-01-08 2013-02-20 株式会社エヌ・ティ・ティ・ドコモ 通信装置及び通信方法
CN102282550A (zh) * 2009-01-30 2011-12-14 莫维克网络公司 应用和使用以及无线链路感知传输网络调度程序
US9043467B2 (en) * 2009-01-30 2015-05-26 Movik Networks Adaptive chunked and content-aware pacing of multi-media delivery over HTTP transport and network controlled bit rate selection
US8184580B2 (en) 2009-02-12 2012-05-22 Telefonaktiebolaget L M Ericsson (Publ) Data packet communication scheduling in a communication system
JP2010193080A (ja) * 2009-02-17 2010-09-02 Ntt Docomo Inc 無線通信システム、無線基地局及び無線通信方法
JP5347836B2 (ja) * 2009-08-25 2013-11-20 富士通株式会社 通信装置および通信方法
US8755405B2 (en) * 2009-11-09 2014-06-17 Movik Networks, Inc. Burst packet scheduler for improved ran efficiency in UMTS/HSPA networks
WO2011107953A2 (en) * 2010-03-02 2011-09-09 Udayan Kanade Media transmission over a data network
US20110267948A1 (en) * 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
US9380597B2 (en) * 2011-08-25 2016-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for wireless communication baseband processing
JP5702255B2 (ja) * 2011-09-27 2015-04-15 株式会社日立製作所 アドホックネットワーク通信端末およびアドホックネットワーク通信端末の制御方法
WO2013088521A1 (ja) * 2011-12-13 2013-06-20 富士通株式会社 中継装置および中継方法
EP3170353B1 (en) * 2014-07-17 2018-12-26 Telefonaktiebolaget LM Ericsson (publ) Method and network element for scheduling a communication device
US9609660B2 (en) 2014-12-19 2017-03-28 Wipro Limited System and method for adaptive downlink scheduler for wireless networks
EP3035759B1 (en) * 2014-12-19 2017-10-18 Wipro Limited System and method for adaptive downlink scheduling for wireless networks
US10057915B2 (en) * 2016-03-11 2018-08-21 Wipro Limited Methods and systems for adaptive scheduling of packets in a wireless broadband network
CN107070620B (zh) * 2016-12-09 2019-10-18 深圳信息职业技术学院 一种无线通信系统资源分配方法及装置
US11523407B2 (en) 2018-04-06 2022-12-06 Nokia Technologies Oy Evaluation of DL IP scheduled throughput for inter eNB carrier aggregation
US10959131B2 (en) * 2019-03-11 2021-03-23 Cisco Technology, Inc. Dynamic prioritization of roam events based on latency
EP3799374A1 (en) * 2019-09-26 2021-03-31 Mitsubishi Electric R&D Centre Europe B.V. Method for transmitting data packets and apparatus for implementing the same
CN111835658B (zh) * 2020-06-23 2022-06-10 武汉菲奥达物联科技有限公司 一种基于lpwan的数据优先响应方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110370A (en) * 1980-02-05 1981-09-01 Hitachi Ltd Packet exchange system
JPH08186577A (ja) * 1994-12-28 1996-07-16 Matsushita Electric Ind Co Ltd セル多重方法およびセル転送網
JP2000165440A (ja) * 1998-11-24 2000-06-16 Fujitsu Ltd 優先転送制御装置
JP2000354065A (ja) * 1999-06-11 2000-12-19 Mitsubishi Electric Corp 通信制御装置
JP2002051375A (ja) * 2000-05-26 2002-02-15 Matsushita Electric Ind Co Ltd 基地局装置及びパケット送信方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501765B1 (en) * 1998-09-01 2002-12-31 At&T Corp. Distributed method and apparatus for allocating a communication medium
GB2371715B (en) * 2001-01-27 2004-06-02 Motorola Inc Communications system and method of transmitting information
US6990097B2 (en) * 2001-06-01 2006-01-24 4198638 Canada Inc. Cell-based switch fabric with inter-cell control for regulating packet flow
KR100841296B1 (ko) * 2001-07-10 2008-06-25 엘지전자 주식회사 무선 패킷 통신 시스템에서의 공유 채널 스케줄러 장치 및그를 이용한 공유채널 스케줄링 방법
US7194000B2 (en) * 2002-06-21 2007-03-20 Telefonaktiebolaget L.M. Ericsson Methods and systems for provision of streaming data services in an internet protocol network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110370A (en) * 1980-02-05 1981-09-01 Hitachi Ltd Packet exchange system
JPH08186577A (ja) * 1994-12-28 1996-07-16 Matsushita Electric Ind Co Ltd セル多重方法およびセル転送網
JP2000165440A (ja) * 1998-11-24 2000-06-16 Fujitsu Ltd 優先転送制御装置
JP2000354065A (ja) * 1999-06-11 2000-12-19 Mitsubishi Electric Corp 通信制御装置
JP2002051375A (ja) * 2000-05-26 2002-02-15 Matsushita Electric Ind Co Ltd 基地局装置及びパケット送信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057462B (zh) * 2004-11-11 2011-12-21 皇家飞利浦电子股份有限公司 基于优先级的分组排队及组合方法

Also Published As

Publication number Publication date
AU2003254885A1 (en) 2004-03-19
US20040258070A1 (en) 2004-12-23
EP1443719A1 (en) 2004-08-04
JP2004147275A (ja) 2004-05-20
CN1596527A (zh) 2005-03-16

Similar Documents

Publication Publication Date Title
WO2004021651A1 (ja) パケット送信スケジューリング方法および基地局装置
JP4397928B2 (ja) ワイヤレス通信ネットワークの資源を、ネットワークのチャネルを介してユーザ機器に送信すべきトラヒックに割り当てる方法
JP3828431B2 (ja) 基地局、制御装置、通信システム及び通信方法
CN101926133B (zh) 通信调度方法和系统
EP2041928B1 (en) Compressed delay packet transmission scheduling
KR100871736B1 (ko) 무선 통신 시스템에서의 적응 지연 관리 방법 및 장치
CN101390349B (zh) 用于多载波通信系统的分布式前向链路调度器
JP4510826B2 (ja) ユーザ装置の上りリンク送信をスケジューリングする方法及び基地局
KR101087882B1 (ko) 무선 데이터 네트워크에서의 전송을 스케쥴링하는 방법 및장치
CN101132370B (zh) 数据流入量控制装置以及数据流入量控制方法
EP2589190B1 (en) Prioritization of data packets
WO2003071740A1 (en) A method of priority control in wireless packet data communications
KR20050037494A (ko) 무선 통신 시스템에서 패킷 데이터 전송들을 스케줄링하기위한 방법 및 장치
EP2472981B1 (en) Method and apparatus for combined time and frequency domain scheduling
WO2008023644A1 (en) Radio base station, user equipment and method used in mobile communication system
CN1981489A (zh) 依赖于服务质量类别映射共享物理信道
US20080205275A1 (en) Communication Resource Scheduling
JP2008078788A (ja) データ流入量制御装置及びデータ流入量制御方法
Basukala et al. Impact of CQI feedback rate/delay on scheduling video streaming services in LTE downlink
JP2004187237A (ja) 基地局装置およびパケット送信スケジューリング方法
US20060114936A1 (en) Enhanced processing methods for wireless base stations
JP2005045561A (ja) パケット送信スケジューリング装置、その方法及び無線基地局装置
US11196676B2 (en) Encapsulation of data packets
Caldwell et al. HSDPA: An overview
KR100606898B1 (ko) 패킷 스케줄링을 위한 자원 활용 방법과, 그를 이용하는시스템

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003791202

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10495875

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038016559

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003791202

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003791202

Country of ref document: EP