Beschreibung
Verfahren zum Herstellen einer schaumförmigen Metallstruktur, Metallschäum sowie Anordnung aus einem Trägersubstrat und ei- nem Metallschaum
Die Erfindung betrifft ein Verfahren zum Herstellen einer schaumförmigen Metallstruktur, einen Metallschaum sowie eine Anordnung aus einem Trägersubstrat und einem Metallschaum.
Die Herstellung einer schaumförmigen Metallstruktur, die auch Metallschaum genannt wird, ist bislang nur unter großen technischen Schwierigkeiten sowie unter großem finanziellen Aufwand möglich.
Ein bekanntes Herstellungsverfahren besteht darin, Aluminium auf sein ca. l,5faches Volumen aufzuschäumen. Die dabei entstehende schaumförmige Metallstruktur ist geschlossenporig, weist also eine große Anzahl an Poren pro Volumeneinheit auf. Die Herstellung dieser schaumförmigen Metallstruktur aus Aluminium ist außerordentlich teuer und darüber hinaus aus ökologischen Gründen fragwürdig.
Ein anderes bekanntes Verfahren besteht darin, ein nicht- leitendes Kunststoff-Substrat , das eine geschäumte, d. h. Poren aufweisende, Struktur hat, mit Metall zu bedampfen. Das Kunststoff-Substrat muß dabei in Plattenform vorliegen und darf eine Dicke von 1 - 2 mm nicht übersteigen. Das Bedampfen erfolgt dabei von beiden gegenüberliegenden Hauptseiten des Substrates her. Nur bei dieser geringen Dicke ist sichergestellt, daß auch die Oberfläche des Kunststoff-Substrats in Innenbereichen mit einer Metallschicht versehen werden kann. Nach dem Bedampfen wird das solchermaßen vorbehandelte Kunststoff-Substrat in eine Galvanisiereinrichtung eingebracht, wodurch sich die dünne, auf der Oberfläche des geschäumten Substrates befindliche Metallschicht galvanisch verstärkt. Aufgrund des außerordentlich großen Herstellungsaufwandes
findet die derart hergestellte schaumförmige Metallstruktur wegen ihrer hohen Kosten derzeit keine breite Anwendung im industriellen Einsatz. Nachteilig ist insbesondere, daß die Dicke und die Form (Plattenform) des Kunststoff-Substrates aufgrund der Herstellungstechnologie beschränkt ist.
Die Aufgabe der vorliegenden Erfindung besteht deshalb darin, ein Verfahren zum Herstellen einer schaumförmigen Metallstruktur anzugeben, welches die Fertigung eines kostengünsti- gen und beliebig ausgestalteten Metallschaumes erlaubt. Ferner soll ein Metallschaum sowie eine Anordnung aus einem Trägersubstrat und einem Metallschaum angegeben werden, die eine beliebige Form aufweisen können und für die Anwendung in den verschiedensten industriellen Applikationen geeignet sind.
Das erfindungsgemäße Verfahren zum Herstellen einer schaumförmigen Metallstruktur ist durch die Merkmale des Anspruchs 1 angegeben. Der erfindungsgemäße Metallschaum ist durch die Merkmale des Anspruches 21 beschrieben. Die erfindungsgemäße Anordnung aus einem Trägersubstrat und einem Metallschaum ist durch die Merkmale des Anspruches 33 wiedergegeben. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich jeweils aus den abhängigen Ansprüchen.
Zur Herstellung der schaumförmigen Metallstruktur wird, wie beim Stand der Technik, auf ein Galvanisierverfahren zurückgegriffen. Dies bedeutet, bevor der Schritt des Galvanisie- rens vorgenommen werden kann, muß die Oberfläche eines nichtleitenden Substrates mit geschäumter, d. h. Poren aufweisen- der Struktur, mit einer leitfähigen Oberfläche versehen worden sein.
Wie aus den nachfolgend beschriebenen Verfahrensschritten deutlich wird, wird man durch das erfindungsgemäße Verfahren in die Lage versetzt, eine homogene, leitfähige Oberfläche auch dann in Innenbereichen zu erzeugen, wenn das Substrat eine große Dicke oder eine ansonsten beliebige Form aufweist.
Darüber hinaus schafft das erfindungsgemäße Verfahren eine Möglichkeit, mit der eine Galvanisierung in Innenbereichen des Substrates mit geschäumter Struktur zuverlässig erzielbar ist.
Die Schwierigkeit bestand bislang darin, daß die von einer Anode einer Galvanisiereinrichtung abgeschiedenen Ionen nichts zur Metallisierung, der sogenannten galvanischen Verstärkung, in den Innenbereichen des Substrates beitragen. Der Elektrolyt verarmt nämlich derart in den Innenbereichen des Substrates, daß sich keine freien Ionen mehr an der metallisierten Oberfläche des geschäumten Substrates anlagern können. Bei den aus dem Stand der Technik bekannten Verfahren war es deshalb bislang nur möglich, plattenförmige Substrate mit einer Dicke bis zu 3 mm zu einer schaumförmigen Metallstruktur zu verarbeiten.
Das erfindungsgemäße Verfahren zum Herstellen einer schaumförmigen Metallstruktur weist diese Einschränkungen nicht mehr auf und umfaßt die folgenden Schritte:
Bereitstellen eines nicht-leitenden Substrates mit geschäumter Struktur,
Aufbringen von leitfähigen Partikeln auf das Substrat, so daß diese an der gesamten Oberfläche des Substrates, und insbesondere an jeder einzelnen Pore, fixiert sind, Einbringen des vorbehandelten Substrates in eine Galvanisiereinrichtung, in der auf den leitfähigen Partikeln eine homogene Metallschicht ausgebildet wird.
Im Gegensatz zum Bedampfen des Substrates als Vorbehandlungs- schritt für die Ausbildung der Metallschicht im Stand der Technik ist vorgesehen, leitfähige Partikel derart auf das Substrat aufzubringen, daß diese über die gesamte Oberfläche des Substrates, in mechanischem und damit auch in elektrischem Kontakt zueinander stehen. Hierdurch ist es im Unterschied zum Stand der Technik möglich, eine homogene, also
vollständig durchgehende Metallschicht zu erzeugen. Darüber hinaus ist man nicht auf den Einsatz einer galvanischen Metallisierung beschränkt.
Bei dem Substrat kann es sich um einen handelsüblichen Schaumstoff, z. B. aus Polyurethan, handeln. Das Substrat kann als Endlosware, als Plattenware oder beliebig geformt vorliegen.
Die Fixierung der leitfähigen Partikel an der Oberfläche des Substrates erfolgt vorzugsweise durch einen Haftvermittler, der vor dem Schritt des Aufbringems der leitfähigen Partikel auf die gesamte Oberfläche des Substrates aufgebracht wird. Als Haftvermittler wird vorzugsweise ein Kleber verwendet, der dünnflüssig genug ist, daß er in die Poren des Substrates eindringt und dort die Oberfläche jedes einzelnen Porensteges bedeckt .
Das Aufbringen des Haftvermittlers auf das Substrat kann bei- spielsweise durch Tränken desselben in dem Haftvermittler erfolgen. Damit die Poren des Substrates nicht vollständig mit dem Haftvermittler ausgefüllt sind, wodurch ein Anlagern der leitfähigen Partikel an der Oberfläche in den Poren des Substrates verhindert werden würde, wird der nicht an der Ober- fläche des Substrates anhaftende Haftvermittler vorzugsweise wieder abgetragen. Dies kann beispielsweise auf einfache Weise durch Auspressen des zunächst flexiblen, nicht-leitenden Substrats erfolgen.
Weiterhin ist es vorteilhaft, wenn der an der Oberfläche des
Substrates anhaftende Haftvermittler getrocknet oder zumindest angetrocknet wird. Auch in diesem Fall muß jedoch sichergestellt sein, daß die adhäsiven Eigenschaften des Haftvermittlers unvermindert erhalten bleiben, so daß die später aufgebrachten leitfähigen Partikel über den Haftvermittler an der Oberfläche des Substrates fixiert werden können.
Das Aufbringen der leitfähigen Partikel, bei denen es sich beispielsweise um Kupfer, Silber, ein beliebiges anderes leitfähiges Material, eine Legierung oder einen Polymer handeln kann, erfolgt beispielsweise durch Aufblasen (z. B. mit- tels einer Düse) oder indem das mit Haftvermittler versehene Substrat in ein Behältnis mit leitfähigen Partikeln eingetaucht wird. Das Aufbringen der leitfähigen Partikeln kann dabei, sofern es sich um ein flächiges Substrat handelt, von einer Hauptseite oder von beiden gegenüberliegenden Hauptsei- ten gleichzeitig oder nacheinander erfolgen. Handelt es sich um ein beliebig geformtes Substrat mit einer dreidimensionalen Form, so ist es vorteilhaft, das Aufbringen der leitfähigen Partikel von verschiedenen Seiten her vorzunehmen, um sicherzustellen, daß in jede Pore leitfähige Partikel gelangen.
Überall dort, wo die Oberfläche des Substrates mit dem Haft- vermittler versehen ist, werden die leitfähigen Partikel beim Aufbringen an dem Haftvermittler fixiert. Sobald ein Oberflächenbereich einer Pore mit den leitfähigen Partikeln versehen ist, bleiben die weiterhin aufgebrachten (z. B. aufgeblasenen) leitfähigen Partikel nicht mehr an der Oberfläche des Substrates haften, sondern verbleiben "frei liegend" in den Poren. Nach dem Schritt des Aufbringens der leitfähigen Partikel ist somit ein Teil der leitfähigen Partikel an dem Haftvermittler fixiert, während ein anderer Teil frei liegend oder frei beweglich in den Poren des Substrates eingelagert ist. Die letztgenannten werden nachfolgend als weitere leitfähige Partikel bezeichnet.
Abhängig davon, auf welche Weise die Ausbildung der homogenen
Metallschicht erfolgt, kann es vorteilhaft sein, nach dem Aufbringen der leitfähigen Partikel ein Auspressen des Substrates vorzunehmen, durch das zumindest ein Teil der weiteren leitfähigen Partikel aus dem Substrat entfernt wird und durch das die ein anderer Teil mit dem Haftvermittler in innigen Kontakt gebracht wird. Der andere Teil der leitfähigen Partikel wird durch die bereits an dem Substrat haftenden
Partikel und manche der „frei liegenden" Partikel gebildet. Das Auspressen des Substrates kann durch Rollen, die über das Substrat geführt werden, oder durch Ausklopfen oder Ausdrük- ken bewerkstelligt werden. Durch diesen Schritt soll einer- seits eine bessere mechanische Fixierung eines Teils der leitfähigen Partikel mit dem Haftvermittler erzielt werden, zum anderen soll sichergestellt werden, daß die Poren des Substrates nicht oder nicht vollständig mit nicht mit dem Haftvermittler fixierten weiteren leitfähigen Partikeln ge- füllt sind.
Wie aus der nachfolgenden Beschreibung der alternativ oder in Kombination eingesetzten Verfahren zur Herstellung der homogenen Metallschicht ersichtlich werden wird, kann im Fall ei- ner galvanischen Metallisierung mit Stromquelle durch den Anteil der freiliegenden, weiteren leitfähigen Partikel in den Poren des Substrates die Sättigung des Elektrolyten in den Innenbereichen des Substrates gesteuert werden. Wie viele der leitfähigen Partikel in den Poren freiliegend bleiben sollen, ist letztendlich abhängig vom eingesetzten Metallisierungsverfahren und darüber hinaus ein Optimierungsprozeß.
Es ist somit im Fall einer galvanischen Metallisierung mit Stromquelle zweckmäßig, wenn das Aufbringen der leitfähigen Partikel derart erfolgt, daß ein Überschuß an weiteren, nicht an dem Haftvermittler gebunden leitfähigen Partikeln in den Innenbereiches des Substrates vorherrscht, die in der Galvanisiereinrichtung ionisierbar sind. Im Fall einer (ausschließlich) stromlosen Metallisierung kann hingegen auf die weitere leitfähigen Partikel verzichtet werden.
Zur Erzeugung der homogenen Metallschicht über die gesamte Oberfläche des Substrates können, wie bereits angedeutet, stromlose (chemische) oder strombehaftete Verfahren einge- setzt werden. Unter dem Begriff der „gesamten Oberfläche" ist dabei nicht nur der sichtbare Teil des Substrates zu verstehen. Da das Substrat eine geschäumte Struktur aufweist, also
eine Vielzahl an durch Porenstege gebildete Poren aufweist, wird die „gesamte Oberfläche" somit durch Oberflächen sämtlicher Poren gebildet. Die „gesamte Oberfläche" umfaßt somit auch sämtliche Unterschneidungen, die äußerlich nicht sicht- bar sind.
Die Erzeugung kann gemäß einer ersten Variante durch stromlose Metallisierung mit einem Metall-Niederschlag auf den leitfähigen Partikeln durch Reduktion erfolgen. Das Substrat wird somit in ein chemisches Bad eingetaucht, wodurch ein redukti- ver chemischer Niederschlag, z.B. aus Cu oder Ni, resultiert. Mit diesem Verfahren ist auf einfache und schnelle Weise die Erzeugung hoher Schichtstärken - gemeint ist die Schichtstärke der homogenen Metallschicht - möglich. Da das Verfahren aus dem Stand der Technik an sich bekannt ist, wird auf eine genauere Beschreibun an dieser Stelle verzichtet.
Gemäß einer zweiten Variante kann die homogene Metallschicht durch eine stromlose Metallisierung mit einem Ionentauschver- fahren erfolgen. Dabei erfolgt ein Austausch von unedlen Ionen (z.B. Cu-Ionen) mit edlen Ionen (z.B. aus Ag) . Mit diesem Verfahren kann die Metallschicht sehr schnell erfolgen, allerdings sind keine großen Schichtstärken möglich.
Alternativ oder zusätzlich zu den eben beschriebenen Verfahren kann auch galvanische Metallisierung unter Verwendung einer Stromquelle erfolgen.
Dabei wird das oben beschriebene, vorbehandelte Substrat mit leitfähigen und weiteren leitfähigen - d.h. frei liegende, nicht an dem Haftvermittler oder der Oberfläche des Substrates fixierte - Partikel in eine Galvanisiereinrichtung eingebracht, in der die über den Haftvermittler an der Oberfläche des Substrates fixierten leitfähigen Partikel galvanisch ver- stärkt werden sollen. Die Galvanisiereinrichtung kann auf konventionelle Weise ausgeführt werden und weist zumindest eine Anodeneinrichtung auf, die in einem Elektrolyten gelegen
ist. Der Elektrolyt kann sauer oder zyanidisch sein. Das mit den leitfähigen Partikeln versehene Substrat wird kathodisch geschalten, so daß sich von der Anodeneinrichtung abgeschiedene Ionen zunächst an den Außenbereichen des Substrates an- lagern und die über den Haftvermittler an der Oberfläche fixierten leitfähigen Partikel galvanisch verstärken. Da sich die von der Anodeneinrichtung abgeschiedenen Ionen bereits in den Außenbereichen des Substrates an den leitfähigen Partikeln anlagern, verarmt der Elektrolyt im Inneren des Substra- tes, so daß die von der Anodeneinrichtung abgeschiedenen Ionen nichts zur galvanischen Verstärkung in dem Innenbereich des Substrates beitragen.
Es hat sich jedoch herausgestellt, daß sich die (nicht an dem Haftvermittler befestigten) weiteren leitfähigen Partikel in den Innenbereichen des Substrates während des Galvanisie- rungsvorganges in dem sauren oder zyanidischen Elektrolyten anlösen und sich unmittelbar danach sofort an den an dem Haftvermittler oder Substrat fixierten leitfähigen Partikeln anlagern. Hierdurch findet die gewünschte galvanische Verstärkung der an dem Haftvermittler fixierten leitfähigen Partikel in den Innenbereichen des Substrates statt. Die in den Poren des Substrates freiliegenden leitfähigen Partikel sättigen somit den Elektrolyten wieder an und werden unmittelbar danach an den kathodisch geschalteten, an dem Haftvermittler fixierten, leitfähigen Partikeln wieder abgeschieden. Es findet somit eine Selbstanreicherung des Elektrolyten statt.
Besonders vorteilhaft ist es, wenn der Elektrolyt der Galva- nisiereinrichtung dem Material der leitfähigen Partikel angepaßt ist. Bestehen die leitfähigen Partikel beispielsweise aus Kupfer, so sollte ebenfalls ein Kupfer-Elektrolyt verwendet werden, weil hier die freiliegenden Kupfer-Partikel in einem, z.B. schwefelsaueren, Bad, in Kupfersulfat übergehen und somit als elementares Metall in Ionenform abgeschieden werden können.
In der beschriebenen Variante können die Elektroden kontinuierlich mit Strom beaufschlagt werden. Es ist jedoch auch eine galvanische Metallisierung mit Stromquelle denkbar, die im Pulsverfahren geschalten ist.
In diesem Verfahren, das ebenfalls alternativ oder zusätzlich zu den oben genannten stromlosen Verfahren eingesetzt werden kann, kann auf die Selbstanreicherung des Elektrolyten verzichtet werden, indem das Substrat in vorgegebenen Abständen in eine Relativbewegung gegenüber dem Elektrolyt versetzt wird. Durch die Relativbewegung werden die Innenbereiche des Substrates von Bereichen mit verarmten Elektrolyten in Bereiche mit ausreichend angereichertem Elektrolyten gebracht. Die Relativbewegung kann durch eine Bewegung des Substrates in dem Elektrolyten oder eine in regelmäßigen Abständen erzeugte Strömung des Elektrolyten durch das Substrat bewirkt werden. Die Relativbewegung sollte dabei während der stromlosen Phase des Galvanisiervorganges stattfinden, so daß eine Anreicherung des Elektrolyten im Inneren des Substrates erfolgen kan .
Je nachdem, wie lange das vorbehandelte Substrat in der Galvanisiereinrichtung verbleibt, kann die Dicke der dann entstehenden homogenen Metallschicht gesteuert werden.
Das erfindungsgemäße Verfahren ermöglicht auf einfache Weise die Herstellung einer beliebigen schaumförmigen Metallstruktur, unabhängig von der Ausgestaltung des nicht-leitenden Ausgangssubstrates. Insbesondere ist es möglich, beliebig dicke schaumförmige Metallstrukturen herzustellen. Je nachdem, welche Verfahren zur Herstellung der homogenen Metall- Schicht eingesetzt werden, kann die Dicke der dann entstehenden homogenen Metallschicht, sowie die Schnelligkeit, mit der die Metallschicht erzeugt wird, gesteuert werden. Die schaum- förmige Metallstruktur läßt sich mit dem angegebenen Verfahren äußerst kostengünstig und schnell produzieren.
In einer weiteren bevorzugten Ausgestaltung wird auf das mit einer - sich über die gesamte Oberfläche erstreckenden - homogenen Metallschicht versehene Substrat eine weitere Metall- Schicht aufgebracht. Das Aufbringen der weiteren Metall- schicht bewirkt eine weitere Verbesserung der mechanischen Stabilität des Metallschaumes. Obwohl die Dicke der Metallschicht ebenso, wie oben beschrieben, mittels den stromlosen oder strombehafteten Verfahren erzeugt werden, könnte, ist es einfacher und kostengünstiger, eine weitere Metallschicht durch Eintauchen des Substrates in eine Schmelze des weiteren Metalls zu erzeugen. Das weitere Metall besteht vorzugsweise aus Aluminium, da dieses eine hohe mechanische Stabilität bei gleichzeitig geringem Gewicht gewährleistet. Denkbar ist jedoch auch die Verwendung eines jeden anderen beliebigen Me- talls oder einer Legierung.
Ein Vorteil dieses weiteren Verfahrensschrittes besteht darin, daß die weitere Metallschicht kostengünstig, weil in kürzester Zeit eine große Schichtdicke erzeugbar ist. Das Ein- tauchen des Substrates in eine Metallschmelze ist erst dadurch möglich geworden, daß das an sich nicht hitzebeständige Substrat aus einem nicht-leitenden Material (z.B. Polyurethan) mit einer hitzebeständigen, homogenen Metallschicht versehen wurde . Sofern die Erzeugung eines schaumför- migen Substrates aus einem hitzebeständigen Material möglich ist, könnte der beschriebene Verfahrensschritt natürlich auch ohne vorherige Erzeugung einer Metallschicht auf der Oberfläche des Substrates eingesetzt werden.
In einer Ausgestaltung des Verfahrens wird das mit dem Haft- vermittler versehene Substrat auf ein Trägersubstrat, z. B. aus einem Metall, einer Legierung oder einem nicht-leitenden Kunststoff, aufgebracht und anschließend von der dem Trägersubstrat abgewandten Seite der Schritt des Aufbringens der leitfähigen Partikel durchgeführt. Durch diesen Verfahrens- schritt entsteht eine Anordnung aus einem Trägersubstrat und
einem Metallschaum, bei der der Metallschaum durch die Galvanisierung mit dem Trägersubstrat fest verbunden ist.
Das Substrat wird zunächst auf dem Trägersubstrat über den Haftvermittler fixiert. Beim Aufbringen der leitfähigen Partikel bleiben diese sowohl an dem Haftvermittler auf bzw. in dem nicht-leitenden Substrat mit geschäumter Struktur als auch auf der Oberfläche des Trägersubstrates hängen. Beim anschließenden Einbringen der Anordnung aus dem Trägersubstrat und dem Substrat mit der geschäumten Struktur in eine Galvanisiereinrichtung entsteht eine homogene Metallschicht, die sich sowohl auf dem Trägersubstrat als auch auf und in dem nicht-leitenden Substrat mit geschäumter Struktur ausbildet. Aufgrund der Homogenität der Metallschicht entsteht eine Ein- heit zwischen dem Trägersubstrat und dem dann entstandenen Metallschaum. Sofern notwendig, kann zusätzlich die weitere Metallschicht durch Eintauchen in eine Metallschmelze erzeugt werden.
Derartige Anordnungen aus einem Trägersubstrat und einem Metallschaum können beispielsweise in der AutomobilIndustrie zum Hinterschäumen von Formteilen, z. B. Stoßstangen, Kotflügeln oder ähnlichem, eingesetzt werden. Eine solche Anordnung ist mechanisch äußerst belastbar, bei gleichzeitig geringem Gewicht. Die Fertigung ist, wie aus der vorherigen Beschreibung hervorgeht, außerordentlich einfach zu realisieren, wodurch die Kosten gering gehalten werden können. Darüber hinaus übernehmen solche Anordnungen im Bereich von Kraftfahrzeugteilen auch eine geräusch-dämmende Funktion.
Ein weiteres Einsatzgebiet könnte im Baubereich liegen, indem der Metallschaum zu Dämm- und Stabilisierungszwecken zwischen zwei Trägersubstraten angeordnet ist. Die Anordnung kann als Wand eingesetzt werden. Fertigungstechnisch läßt sich das Verfahren derart variieren, daß eine feste Verbindung zu den beiden gegenüberliegenden Trägersubstraten gewährleistet ist.
Bei dem erfindungsgemäßen Metallschaum mit einem nichtleitenden Substrat mit geschäumter, Poren aufweisender, Struktur ist die Oberfläche des Substrates mit leitfähigen Partikeln versehen, auf denen eine homogene Metallschicht an- geordnet ist. Das Substrat ist vorzugsweise offenporig ausgebildet und weist maximal 50 ppi (Poren per Inch) auf. Der Metallschaum kann jede beliebige Form aufweisen, die insbesondere von der Form des zugrunde liegenden Substrates abhängt. Insbesondere kann das Substrat eine Stärke von mehr als 3 mm aufweisen.
Die leitfähigen Partikel sind in einer bevorzugten Ausgestaltung über einen Haftvermittler an dem Substrat befestigt, bei dem es sich beispielsweise um einen Kleber handeln kann.
Die leitfähigen Partikel können mit oder ohne eine sie umgebende Einbettungsmasse auf dem Substrat bzw. dem Haftvermittler angeordnet sein. Bevorzugt wird auf die Einbettungsmasse verzichtet.
Denkbar ist auch, daß die leitfähigen Partikel in die Oberfläche des Substrates eingelassen sind. Dies könnte beispielsweise dadurch erfolgen, daß die leitfähigen Partikel bereits in das Ausgangsmaterial des zu fertigenden Substrates eingebracht werden. Nach der Fertigung des schaumförmigen
Substrates sind die leitfähigen Partikel in das Substrat eingelassen, von denen zumindest ein Teil an der Oberfläche gelegen ist.
In einer bevorzugten Ausgestaltung stehen die leitfähigen
Partikel in mechanischem und damit auch elektrischen Kontakt zueinander. Dabei ist der elektrische Kontakt nicht erst durch die auf den leitfähigen Partikeln aufgebrachte homogene Metallschicht hergestellt.
Bevorzugt sind die leitfähigen Partikel schuppenförmig zueinander angeordnet, wodurch sich einerseits eine in etwa glei-
ehe Dicke der durch die Partikel gebildeten Schicht ergibt und andererseits der gewünschte elektrische Kontakt zwischen den Partikeln hergestellt ist. Hierdurch wird eine besonders gleichförmige homogene Metallschicht ermöglicht. Die durch die leitfähigen Partikel gebildete Schicht weist vorzugsweise eine Dicke von weniger als 5 μm auf.
In einer weiteren bevorzugten Ausgestaltung ist auf der Metallschicht eine weitere Metallschicht angeordnet, die aus einem anderen Metall bestehen kann, aber nicht muß.
Die erfindungsgemäße Anordnung besteht aus einem Trägersubstrat und einem Metallschaum, bei der der Metallschaum über die bei der Herstellung des Metallschaumes entstehende homo- gene Metallschicht fest mit dem Trägersubstrat verbunden ist. Das Trägersubstrat kann aus jedem beliebigen Material, z.B. einem Metall, einer Legierung oder einem nicht-leitenden Material bestehen. Weiterhin kann das Trägersubstrat eine beliebige Form aufweisen, insbesondere eine flache oder belie- big gekrümmte dreidimensionale Oberfläche aufweisen.
Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert. Es zeigen:
Figur 1 ein Substrat mit geschäumter Struktur, das dem erfindungsgemäßen Verfahren zugrundegelegt werden kann,
Figuren 2, 2a einen vergrößerten Ausschnitt aus dem Substrat der Figur 1,
Figur 3 eine Galvanisiereinrichtung, mit der das erfindungsgemäße Verfahren durchgeführt werden kann,
Figur 4 eine Anordnung aus einem Trägersubstrat und einem Metallschaum in einer ersten Ausführungsform und
Figur 5 eine Anordnung aus einem Trägersubstrat und einem Metallschaum in einer zweiten Ausführungsform.
Die Figur 1 zeigt ein flächiges, nicht-leitendes Substrat 10, das eine geschäumte, d. h. Poren aufweisende, Struktur umfaßt. Das Substrat besteht beispielsweise aus Polyurethan, kann prinzipiell jedoch aus jedem beliebigen nicht-leitenden Material bestehen. Mit dem Bezugszeichen 11 sind Poren bezeichnet, wie sie bei jeder geschäumten Struktur vorkommen. Die Größe der Poren kann durch die Fertigung des nichtleitenden Substrates bestimmt werden. Substrate mit geschäumter Struktur werden grob in offen- oder geschlossenporige Schäume eingeteilt. Die Erfindung verwendet als Ausgangsmaterial offenporige Schäume mit vorzugsweise maximal 50 ppi . Solche Substrate können in Endlos- oder Plattenform gefertigt werden.
Das erfindungsgemäße Verfahren kann prinzipiell unabhängig von der Größe der Poren des Substrates sowie der Ausgestal- tung des Substrates eingesetzt werden. Dies bedeutet, es ist nicht zwangsläufig die in Figur 1 dargestellte quader- oder plattenfδrmige Form des Substrates 10 mit zwei gegenüberliegenden Hauptseiten 13, 14 notwendig.
Figur 2 zeigt einen vergrößerten Ausschnitt aus dem Substrat 10 der Figur 1. Die Figur 2 zeigt das Substrat 10 nach dem Aufbringen eines Haftvermittlers 15, der entlang der gesamten Oberfläche 12 jeder einzelnen Pore 11 angeordnet ist, sowie nach dem Aufbringen der leitfähigen Partikel 16 und weiterer leitfähiger Partikel 16a. Mit dem Bezugszeichen 16 sind dabei diejenigen leitfähigen Partikel bezeichnet, die an dem Haftvermittler 15, bei dem es sich beispielsweise um einen Kleber handeln kann, fixiert sind. Mit dem Bezugszeichen 16a sind diejenigen leitfähigen Partikel bezeichnet, die frei im Inne- ren der Poren 11 gelegen sind. Die leitfähigen Partikel 16a sind insbesondere nicht an dem Haftvermittler 15 fixiert.
Diese Unterscheidung ist bei der galvanischen Metallisierung mit Stromquelle von Bedeutung, da das gemäß Figur 2 vorbehandelte Substrat nach dem Einbringen in eine Galvanisiereinrichtung (Figur 3) kathodisch geschalten wird. Die leitfähi- gen Partikel 16, die an dem Haftvermittler 15 entlang der
Oberfläche 12 des Substrates 10 fixiert sind, sind somit aufgrund einer im wesentlichen eng aneinanderliegenden Anordnung kathodisch geschaltet. Die im Inneren der Poren 11 gelegenen weiteren leitfähigen Partikel 16a hingegen dienen zur Selbstanreicherung des Elektrolyten in den Innenbereichen des Substrates 10.
Mit dem Begriff "Innenbereiche" sind diejenigen Bereiche des Substrates 10 bezeichnet, die nicht im Bereich einer Haupt- seite 13 oder einer beliebigen anderen Seite des Substrates 10 gelegen sind. Demgemäß sind diejenigen Poren, die an die Hauptseite 13 oder eine andere Hauptseite des Substrates 10 angrenzen, als "Außenbereiche" des Substrates bezeichnet. Die Unterscheidung wird deshalb gemacht, da die galvanische Ver- Stärkung in den Außenbereichen des Substrates durch die von der Anodeneinrichtung 32 abgeschiedenen Ionen und Anlagerung an die leitfähigen Partikel 16 erfolgt. Wären in den Innenbereichen des Substrates 10 keine weiteren leitfähigen Partikel 16a vorhanden, so würde der Elektrolyt unmittelbar im Über- gangsbereich von den Außenbereichen zu den Innenbereichen verarmen, so daß in den Innenbereichen keine galvanische Verstärkung möglich wäre. Die weiteren leitfähigen Partikel 16a dienen nun dazu, diese Verarmung des Elektrolyten 34 auszugleichen und statt dessen eine temporäre Sättigung des Elek- trolyten in den Innenbereichen sicherzustellen. Die Sättigung erfolgt aufgrund einer Anlösung der weiteren leitfähigen Partikel 16a. Unmittelbar nachdem der Elektrolyt 34 gesättigt ist, scheiden sich die entstehenden Ionen unmittelbar an den leitfähigen Partikeln 16 in den Innenbereichen des Substrates 10 ab und sorgen somit für die gewünschte galvanische Verstärkung. Im Ergebnis entsteht somit eine homogene Metallschicht entlang der Oberfläche 12 des Substrates 10. Je nach-
dem, wie lange das vorbehandelte Substrat 10 gemäß Figur 2 in der Galvanisiereinrichtung gemäß Figur 3 behandelt wird, kann eine dickere oder dünnere homogene Metallschicht 17 erzielt werden. Weitere Parameter zur Steuerung der Dicke der Metall- schicht 17 sind die an der Anodeneinrichtung 32 anliegende Stromstärke sowie die Auswahl des Elektrolyten 34.
Das beschriebene Verfahren kann mit einer stromlosen Metallisierung mit Niederschlag durch Reduktion oder mit eine strom- losen Metallisierung mit lonentauschverfahren kombiniert werden, wobei diese Verfahren dann vor der beschriebenen Galvanisierung durchgeführt werden. Die Herstellung der homogenen Metallschicht ist natürlich auch nur mit den beiden eben aufgeführten Verfahren möglich.
Während das beschriebene Galvanisierungsverfahren kontinuierlich mit Gleichstrom arbeitet, ist die Herstellung der homogenen Metallschicht auch bei Verwendung eines Pulsverfahrens erzielbar. Hierbei wird der verarmte Elektrolyt durch ange- reicherten Elektrolyt ausgetauscht, indem das Substrat in eine Relativbewegung zu dem Elektrolyt versetzt wird. Die Relativbewegung findet immer dann statt, wenn die Elektroden nicht mit Strom beaufschlagt sind.
Zur Verstärkung der Metallschicht 17 kann der bereits vorliegende Metallschaum in eine Metallschmelze, z.B. aus Aluminium eingetaucht werden. Durch die Metallisierung des Substrates kann dieses den hohen Temperaturen der Schmelze ohne weiteres Stand halten. Nach dem Tauchvorgang entsteht auf der Metall- schicht 17 eine weitere Metallschicht 18, die eine noch bessere Stabilität des Metallschaumes bewirkt. Welches Material der weiteren Metallschicht zugrunde gelegt wird, hängt u.a. davon ob, wie gut sich dieses mit dem Material der Metall- schicht verbindet. Die weitere Metallschicht 18 ist in der Figur 2a lediglich zur Anschauung in einigen der Poren 11 eingezeichnet .
Die in Figur 3 dargestellte schematische Galvanisiereinrichtung 30 besteht in konventioneller Weise aus einer Wanne 31, die mit einem Elektrolyten 34 gefüllt ist. In dem Elektrolyten 34 ist eine Anodeneinrichtung 32 angeordnet, die im vor- liegenden Ausführungsbeispiel aus zwei gegenüberliegenden anodisch geschalteten Platten besteht, zwischen denen das vorbehandelte Substrat gemäß Figur 2 angeordnet ist. Wie bereits beschrieben, wird das vorbehandelte Substrat 10 kathodisch geschalten. Vorteilhaft ist es, wenn der Elektrolyt 34 in ei- ne Strömung versetzbar ist, so daß das Substrat 10 einem strömenden Elektrolyten 34 ausgesetzt werden kann. Die Erfindung funktioniert jedoch auch dann, wenn der Elektrolyt statisch vorliegt.
Die Figuren 4 und 5 zeigen schematisch zwei Anordnungen aus einem Trägersubstrat und einem Metallschaum, bei der der Metallschaum durch die Galvanisierung mit dem Trägersubstrat über die homogene Metallschicht fest verbunden ist. Die Anordnung kann dabei planar (Figur 4) oder dreidimensional (Fi- gur 5) ausgebildet sein.
Die feste Verbindung zwischen dem Substrat 10 und dem Trägersubstrat 20 entsteht dadurch, daß das Substrat 10 zunächst mit einem Haftvermittler versehen wurde und anschließend auf das Trägersubstrat 20 aufgebracht wird. Von der von dem Trägersubstrat abgewandten Seite 20 erfolgt nun das Aufbringen der leitfähigen Partikel, die beispielsweise in Pulverform vorliegen können. Das Aufbringen kann beispielsweise mittels Aufblasen erfolgen. Die leitfähigen Partikel bleiben somit nicht nur an den mit dem Haftvermittler versehenen Oberflächen des Substrates 10 hängen, sondern auch in den Bereichen des Trägersubstrates 20, die mit dem Haftvermittler benetzt sind.
Beim Einbringen der gesamten Anordnung in die Galvanisiereinrichtung gemäß Figur 3 entsteht somit eine homogene Metall- schicht, die sich entlang der Oberfläche des Trägersubstrates
20 zu der Oberfläche des Substrates 10 hin erstreckt. Derartige Anordnungen können vorzugsweise in der AutomobilIndustrie zum Hinterschäumen von Formteilen (z. B. Stoßstangen oder Kotflügeln) verwendet werden. Die derart hergestellten Anordnungen sind äußerst robust, leicht, kostengünstig herzustellen und führen darüber hinaus zu einem Dämmschutz. Insbesondere ist es möglich, jede beliebige Rundung eines Formteils (des Trägersubstrates 20) zu berücksichtigen, da das geschäumte Substrat 10 in seinem Ausgangszustand flexibel ist.
Bezugszeichenliste
10 Substrat
11 Poren 12 Oberfläche
13 erste Hauptseite
14 zweite Hauptseite
15 Haftvermittler
16, 16a leitfähige Partikel 17 Metallschicht
18 Metallschicht
20 Trägersubstrat
30 Galvanisiereinrichtung 31 Wanne 32 Anodeneinrichtung
33 Kathodeneinrichtung
34 Elektrolyt