WO2004020138A1 - 部材接合方法、金属部材接合方法並びに放熱部材及びその製造方法、その製造用冶具並びにヒートシンク - Google Patents

部材接合方法、金属部材接合方法並びに放熱部材及びその製造方法、その製造用冶具並びにヒートシンク Download PDF

Info

Publication number
WO2004020138A1
WO2004020138A1 PCT/JP2003/010064 JP0310064W WO2004020138A1 WO 2004020138 A1 WO2004020138 A1 WO 2004020138A1 JP 0310064 W JP0310064 W JP 0310064W WO 2004020138 A1 WO2004020138 A1 WO 2004020138A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
fins
heat
copper
joining
Prior art date
Application number
PCT/JP2003/010064
Other languages
English (en)
French (fr)
Inventor
Hisashi Hori
Motoshi Hotta
Yoshimasa Kasezawa
Hisao Saito
Tsuyoshi Minamida
Shinya Makita
Takashi Eto
Harumichi Hino
Original Assignee
Nippon Light Metal Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002249983A external-priority patent/JP2004088014A/ja
Priority claimed from JP2003150205A external-priority patent/JP4222108B2/ja
Priority claimed from JP2003162488A external-priority patent/JP4211499B2/ja
Priority claimed from JP2003203752A external-priority patent/JP4337441B2/ja
Application filed by Nippon Light Metal Company, Ltd. filed Critical Nippon Light Metal Company, Ltd.
Priority to AU2003254859A priority Critical patent/AU2003254859A1/en
Publication of WO2004020138A1 publication Critical patent/WO2004020138A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • B23K20/103Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding using a roller

Definitions

  • the first group of the present invention relates to a method of joining metal members having different melting points by overlapping each other. Further, the present invention relates to a heat dissipating member excellent in joining strength and heat dissipating performance and a method for manufacturing a heat dissipating member excellent in joining efficiency.
  • the second group of the present invention relates to a member joining method in which a plurality of plate members spaced from each other are erected and joined on one surface of a base plate.
  • the present invention relates to a method for manufacturing a heat radiating member used as a heat radiating member for IC, a heat radiating member for Peltier element, a heat radiating member for motor, a heat radiating member for electronic control parts, and the like by using this method.
  • the present invention relates to a heat dissipating member manufactured by using the method and a jig for manufacturing a heat dissipating member used in the method.
  • the third group of the present invention relates to a heat sink for cooling various electronic components such as semiconductor elements.
  • the fourth group of the present invention relates to a method of joining metal members by overlapping each other. Further, the present invention provides a method of erecting and joining a plurality of metal plate members to a metal base plate, and further applying the method to a heat radiation member for an IC, a heat radiation member for a Peltier element, and a heat radiation member for a motor. The present invention also relates to a method of manufacturing a heat radiating member such as a heat radiating member for electronic control parts.
  • the fifth group of the present invention relates to a method of joining metal members by overlapping each other.
  • the present invention also relates to a heat radiating member for an IC, a radiating member for a Peltier element, a heat radiating member for a motor, a heat radiating member for an electronic control component, and a method of manufacturing the same, which are manufactured by applying the method.
  • the sixth group of the present invention relates to heat radiators for IC radiators, Peltier device radiators, motor radiators, electronic control component radiators, and the like, and to a method of manufacturing the same.
  • brazing or explosive welding is usually used as a method of joining two metal members having different melting points by overlapping each other.
  • Brazing is a method in which molten brazing material flows into the gap between the joints and is joined using the “wetting” and “flow” with the base material, and is performed by melting or reaction diffusion of the brazing material.
  • the resulting liquid phase fills the interfacial gap due to capillary phenomena, etc.
  • the joining is completed by following the process of solidification with cooling.
  • explosion welding is a method in which high-technical energy generated in the explosion of explosives is used in a very short time to join metals, and metal members are installed at appropriate intervals and one metal is installed.
  • One end of the explosive placed on the member was detonated by a primer and the two metal members collided at a high speed, and the metal flow at the collision point (metal jet) caused contamination of the metal surface.
  • the layers are eliminated and at the same time, they are closely adhered and joined at high pressure.
  • brazing has the disadvantage that the quality of the joint is not stable and the types of metals that can be joined are limited.
  • explosion welding has the disadvantage that it is expensive and cannot join large metal members to metal members with complex shapes.
  • the first group of the present invention can obtain stable joint quality when two metal members having different melting points are overlapped and joined to each other, and a large and complicated shape can be obtained. It proposes a joining method that can also join metal members. Also, the present invention uses such a method.
  • a heat radiating member to be manufactured and a manufacturing method thereof are proposed.
  • a method of manufacturing a heat dissipating member in which a plurality of fins spaced from each other are erected on one surface of a base plate is, for example, a method in which the entire heat dissipating member is integrally formed by extrusion of an aluminum. (See Japanese Patent Application Laid-Open No. 2001-38041).
  • a plurality of aluminum heat dissipating member constituent members extruded into an L-shaped or convex-shaped cross section with a rod-shaped portion and fins standing on the upper surface of the rod-shaped portion are arranged in parallel, and the rod-shaped portions are arranged in parallel.
  • a heat dissipating member made of aluminum is manufactured by brazing aluminum foils to each other (see Japanese Patent Application Laid-Open No. Hei 6-171,789).
  • copper with high thermal conductivity is used to enhance heat dissipation performance, and a plurality of aluminum fins are attached to one surface of a copper base plate.
  • Such a problem of the prior art widely applies not only to a method of manufacturing a heat radiation member but also to a case where a plurality of plate members spaced from each other are erected on one surface of a base plate and joined. is there.
  • the second group of the present invention firstly joins a plurality of plate members having a small thickness and a large height by simply standing upright on one surface of the base plate with a short pitch. It proposes a member joining method that can do this. Further, the present invention provides a heat radiation member capable of producing a heat radiation member having a high tong ratio at low cost. The present invention also proposes a manufacturing method, and also proposes a heat radiation member having high heat radiation performance manufactured by the method and a jig for manufacturing a heat radiation member used in the method. In addition, electronic components such as semiconductor devices mounted on various devices such as personal computers and electric and electronic devices such as electronic equipment are inevitable to generate a certain amount of heat by their use.
  • a cooling means for example, by thermally connecting a heat generating portion of an electronic component to a heat dissipating member, heat of the heat generating portion is heat-transferred to a fin of the heat dissipating member, and the heat is transferred by a fan.
  • Some heat sinks have a structure that forcibly cools and releases heat to the outside. If it is difficult to provide a structure that releases heat near the heat-generating part, such as a thin notebook computer, due to space limitations, connect the heat-generating part and the heat dissipating member with a heat pipe. As a result, heat sinks having a structure in which the heat dissipating member and the fan are separated from the heat generating portion on the housing body side and are disposed on the panel side where there is relatively room for space have begun to be adopted.
  • a heat dissipating member in such a heat sink a member in which a plurality of copper or aluminum fins are directly erected on a copper base plate or a member in which a plurality of fins are erected on a base plate are used. In some cases, they are integrally formed by extrusion of nickel, and are laminated and joined to a copper base plate. Brazing is used to join the copper base plate and the copper fin or aluminum fin in the former, and brazing or explosive welding is used to join the copper base plate and the aluminum base plate in the latter.
  • brazing is a method in which a molten brazing material flows into a gap between joints and is joined by using “wetting” and “flow” with a base material.
  • the liquid phase formed by interfacial gaps Bonding is completed by following the process of burying and solidifying with cooling.
  • explosion welding is a method in which high-technical energy generated in the explosion of explosives is used in a very short time to join metals, and metal members are installed at appropriate intervals and one metal is installed.
  • One end of the gunpowder placed on the member was detonated by a primer and the two metal members collided at a high speed, and the metal flow at the collision point (metal jet) caused a contaminated layer on the metal surface. It eliminates and simultaneously adheres and joins at high pressure.
  • brazing is disadvantageous in that it requires a step of heating and holding it in a vacuum furnace or the like for a predetermined period of time, so that the cost is high and the quality of the joint is not stable.
  • explosion welding has the disadvantage that it is expensive and cannot join large metal members to metal members with complex shapes.
  • the third group of the present invention has been made in view of such circumstances, and a heat radiating member in which a copper base plate and a copper or aluminum fin or an aluminum base plate are securely bonded at a low cost.
  • the purpose is to provide a heat sink with high heat dissipation performance.
  • Fig. 66 (a) a thin plate made of aluminum-palladium alloy is bent on the surface 462a of the base plate 462 made of copper alloy to form a base end 464a.
  • the fins 464 formed in a concavo-convex shape continuous with the heat-radiating surface 464b and the distal end 464c are in surface contact with the base ends 464a, 464a, ...
  • the circumferential surface of the tool body 4 63 a of the disc-shaped joining tool 4 63 rotating in the circumferential direction is fin By joining the fins 464 to the base plate 462 by moving along the surface of the base end 464a while pushing it into the surface of the base end 464a of 464 It is.
  • Such a joining method is called friction acoustic bonding.
  • the welding tool 463 (Fig. 67 (a)) with a flat peripheral surface of the tool body 463a, the peripheral surface of the tool body 463a,
  • the tool body 463B (Fig. 67 (b)) with a large number of strips 463b, 463b, ... formed parallel to the thickness direction of the tool body 463a, the tool body
  • a large number of quadrangular pyramid-shaped projections 4 63 c that protrude in the radial direction of the tool body 4 63 c on the peripheral surface of the 4 63 a are formed in a staggered joining tool 4 6 3 C (Fig.
  • a joining tool 46 d (FIG. 67 (d)) in which d,... are arranged in a zigzag pattern can be used.
  • the joining tools 4663B, 4663C and 4663D shown in Figs. 67 (b) to (d) have a smaller fin than the joining tool 4663 shown in Fig. 67 (a). This is for increasing the contact area between the base end portion 464 and the base plate 464a to more efficiently perform the frictional vibration welding between the fin 464 and the base plate 462.
  • the fin 464 made of an aluminum alloy whose melting point is lower than that of the copper alloy constituting the base plate 462 is pressed from the welding tool 463 from the side to perform frictional vibration welding.
  • the base end 4 6 4 a of the fin 4 6 4 The deformation resistance is reduced. Therefore, the pressing force of the welding tool 4 63 is applied to the base plate 4 62 and the fin 4 6 Insufficient transmission to the boundary surface with the base end 4 6 4 a of 4 may result in poor or no bonding.
  • the base end 464 a of the fin 464 is thin (for example, a thickness of 0.5 mm or less), the base end 464 a of the fin 464 is melted. There is a disadvantage.
  • the fourth group of the present invention has been made in view of such circumstances, and firstly, proposes a method for easily and surely joining metal members by overlapping each other. Also, the present invention provides a method for manufacturing a plurality of metal plate materials by using a metal base plate. And a method for simply and surely joining the fins to the base plate, and a method for easily manufacturing a heat dissipating member in which a plurality of fins are firmly erected and joined to the base plate by applying the method. Things. Conventionally, a substrate made of a copper alloy and a thin plate made of an aluminum alloy are superimposed on each other, and a rotating disc-shaped joining tool is pressed against an aluminum alloy thin plate whose melting point is lower than that of a copper alloy.
  • a method of joining a metal member to join a substrate and a thin plate is known (for example, Japanese Patent Application Laid-Open No. 200-314-39 ([00115] — [00118] , Fig. 69-13).
  • frictional heat generated by the contact between the rotating welding tool and the aluminum alloy sheet causes plasticization (fluidization) of the sheet and substrate in a solid state at the interface.
  • the plasticized (fluidized) aluminum alloy and copper alloy are cooled, the substrate and the thin plate are joined.
  • the metal members can be joined together with a small number of steps and in a short time.
  • the fifth group of the present invention has been made in view of such circumstances, and enables a metal member to be joined in a short time with a small number of man-hours, and a metal member to be joined with high strength.
  • Metal member joining method capable of It is an object of the present invention to provide a method of manufacturing a heat radiating member to which the metal member joining method is applied and a heat radiating member manufactured by using the metal member joining method.
  • Japanese Patent Application Laid-Open No. Hei 9-2012 / 395 discloses a copper base plate and an aluminum fin. A heat dissipating member joined by caulking, adhesive or brazing is disclosed.
  • This heat dissipating member pays attention to the characteristics of copper, which is relatively heavy but has extremely high thermal conductivity, and the characteristics of aluminum, whose thermal conductivity is slightly smaller than copper but weighs less than copper.
  • the sixth group of the present invention has been made in view of such circumstances, and has as its object to reduce the weight of a heat radiating member without lowering the heat radiating performance.
  • the present invention also proposes a method for manufacturing the heat dissipating member and a heat sink using the heat dissipating member. Disclosure of the invention
  • a plurality of metal members are arranged one on top of the other in the ascending order of melting point, and are rotated in the circumferential direction. Moving the metal member along the surface of the metal member while pushing it into the surface of the metal member having the highest melting point among the metal members. Therefore, there is provided a method for joining metal members, wherein the plurality of metal members are joined to each other.
  • the present invention provides a method in which two metal members having different melting points are arranged so as to overlap each other, and a peripheral surface of a disk-shaped joining tool that rotates in a circumferential direction is formed by a melting point of the metal members in the overlapping portion.
  • a metal member joining method characterized in that the two metal members are joined together by being moved along the surface of the one metal member while being pressed into the surface of the one metal member having a high metal content.
  • the member joining method is to eliminate the gap in the overlapping part of the metal members by the pressing force of the joining tool, and to eliminate the oxidation existing on the overlapping surface of the metal members by the vibration generated by the contact between the rotating joining tool and the metal member.
  • the overlapping area is heated by frictional heat and plastically deformed, thereby increasing the contact area between metal members and the diffusion speed.
  • a method of joining the overlapping portions referred to as friction vibration bonding here.
  • the metal members can be joined together.
  • the temperature of the overlapped portion rises to the temperature required for joining, the closer the metal member is to the joining tool, the higher its deformation resistance is, and the more efficiently the pressing force of the joining tool can be transmitted to the overlapping surface. High-strength joining without gaps between metal members is possible.
  • the present invention provides an aluminum member and a copper member which are superposed on each other, and presses a peripheral surface of a disk-shaped joining tool which rotates in a circumferential direction into a surface of the copper member at an overlapping portion. By moving along the surface of the copper member, joining the aluminum member and the copper member is performed. This is a characteristic method of joining metal members.
  • the joining tool is pushed from the copper member side with a high melting temperature to the aluminum member to perform frictional vibration joining, the overlapping portion of both members will reach the eutectic temperature or higher.
  • the deformation resistance of the copper member is relatively large, it is possible to perform a reliable joining while transmitting a sufficient pressing force to the overlapping surface.
  • the joining tool at the time of joining be rotated at a peripheral speed R (m / min) determined by the following equation (A).
  • peripheral speed of the welding tool during welding is less than 250 m / min, the heat generated by the frictional contact between the welding tool and the copper member is too small, and the overlapping surface of the copper member and the aluminum member Temperature is too low, resulting in poor bonding.
  • peripheral speed of the welding tool during welding is greater than 200 m "min, the amount of heat generated due to frictional contact between the welding tool and the copper member becomes unnecessarily large, and the driving energy of the welding tool is increased.
  • the pushing amount ⁇ of the welding tool onto the copper member surface during welding is smaller than 0.03 t, a gap will remain on the superposed surface of the copper member and the aluminum member, resulting in poor connection.
  • the pushing amount is larger than 0.3 t, no gap remains on the superposed surface of the copper member and the aluminum member, but the copper member surface is excessively pushed by the welding tool. Notably, dents remain on the surface, resulting in material opening.
  • the pushing amount ⁇ of the welding tool to the surface of the copper member during welding is 0.03 or more and 0.3 t or less, the pressing force of the welding tool becomes an appropriate value, and the copper member and the aluminum member It can be joined without creating a gap on the superposed surface of the copper member, and the dent on the copper member surface can be reduced.
  • the peripheral speed of the welding tool during welding increases, so even if the feed speed V of the welding tool is increased, the temperature of the overlapped part will decrease. It can be kept above a certain level.
  • the thickness of the copper member increases, Since it takes time to reach the above, if the feeding speed of the welding tool is set too high, the welding tool will pass before the overlapping part reaches a certain temperature or more, resulting in poor welding.
  • the present invention provides a heat sink material made of an aluminum member having a base plate and a heat radiation fin standing upright from one surface of the base plate; And a heat transfer plate made of a copper member overlapped and joined to the other surface.
  • Such a heat dissipating member is formed by friction vibration joining while pushing a joining tool from a heat transfer plate side made of a copper member having a higher melting point than an aluminum member. There is no gap, and the heat dissipating member is joined with higher strength.
  • the heat sink material is formed by extrusion of aluminum.
  • the heat sink material is formed by extruding aluminum heat sink material, the heat sink material has high processing accuracy.
  • the present invention provides a heat sink material made of an aluminum member having a base plate and a heat-radiating fin standing upright from one surface of the base plate, wherein the other surface of the base plate is made of a copper member.
  • Lay the heat transfer plates on top of each other A method of manufacturing a heat radiating member, comprising joining the base plate and the heat transfer plate by the metal member joining method.
  • the present invention is a method of joining a plurality of plate members spaced apart from each other by erection on one surface of a base plate, wherein the plurality of plate members are arranged at intervals from each other.
  • a plate material, a base plate, and a spacer are set at predetermined positions.
  • the material of these members is not particularly limited, and the plate materials, the spacers, the plate material and the spacer may be made of the same material, or may be made of several different materials. May be used.
  • the shape of the spacer is not particularly limited, and the spacers may be interconnected. At this time, since the spacers are sandwiched between the respective plate members, the positioning can be easily performed while accurately maintaining the interval between the plate members, and the plate members are reinforced by the spacers. It is possible to make it much thinner.
  • each spacer may not be in contact with the one surface of the base plate.
  • each spacer also be in contact with the one surface of the base plate in order to enhance the reinforcing effect of the plate material by the spacer.
  • each plate and the base plate are frictionally joined while pressing a joining tool against the other surface of the base plate. Therefore, it is not necessary to heat and hold for a predetermined time in a vacuum furnace or the like as in the case of soldering, so that the joining cost can be reduced.
  • the joining tool is moved on the back surface of the base plate (the other surface of the base plate) so as to cover the entire base end face of each plate. Although it is desirable to completely join each plate to the base plate, if reducing the joining cost is important, move the joining tool so that only a part of the base end face of each plate is covered. Good.
  • the base plate and each spacer may be joined when the base plate and each plate material are joined by frictional vibration.
  • the base plate may be removed. It is desirable to move the welding tool along a trajectory so that it does not join with each spacer.
  • the spacer is formed of a plate material and a base plate. It is desirable to use a material having a high melting point.
  • the rotation speed and the feed speed of the joining tool are set in a predetermined range, so that the spacer is formed.
  • the base plate is not joined to the base material and the base plate, so that only the base plate and the plate material can be easily joined.
  • the spacer since the spacer is not joined to the plate or base plate when the friction vibration joining process is completed, the spacer can be removed without any trouble in the final spacer detachment process. . For example, if the base material and spacer are lowered and the base plate is lifted up, only the plate material will be lifted together with the base plate while leaving the spacer. The plate material can be in a state of being erected and joined to one surface of the base plate.
  • the base plate is made of a material having a higher melting point than the plate material.
  • the deformation resistance of the base plate can be kept high when the interface between the plate material and the base plate is raised to a temperature required for joining the two, so that the pressing force of the joining tool is applied to the interface. High-strength joining without gaps between the plate and base plate can be performed while transmitting efficiently.
  • the present invention is a method for manufacturing a heat radiating member in which a plurality of metal fins spaced from each other are erected on one surface of a metal base plate, the method comprising manufacturing a heat radiating member having a space between each other.
  • a spacer detaching step of removing each of the spacers.
  • the fin, the base plate, and the spacer are set at predetermined positions in a member disposing step.
  • the material and shape of the spacer are not particularly limited. At this time, the spacers are sandwiched between the respective fins, so that the positioning can be easily performed while maintaining an accurate distance between the fins, and the fins are reinforced by the spacers. It is also possible to make the thickness of the film considerably thinner.
  • the spacing between the fins can be arbitrarily changed only by changing the thickness of the spacer, and by changing the height of the fins together, the heat radiation member with a particularly high tong ratio can be easily formed. Can be manufactured.
  • each spacer does not have to be in contact with the one surface of the base plate. Considering that the bending force acts on the fin due to the pressing force of the fin, each spacer should also be in contact with the one surface of the base plate in order to enhance the effect of capturing the fin by the spacer. Is desirable.
  • each fin and the base plate are subjected to friction vibration welding while pressing a welding tool against the other surface of the base plate. Therefore, it is not necessary to heat and hold the device in a vacuum furnace or the like for a predetermined time as in the case of soldering, so that the manufacturing cost can be reduced.
  • the joining tool In order to increase the joining strength between the base plate and the fins, the joining tool must be moved on the back surface of the base plate (the other surface of the base plate) so as to cover the entire base end face of each fin. It is desirable to completely bond each fin to the base plate, but if reduction in manufacturing cost is important, move the bonding tool so that only a part of the base end face of each fin is covered. Just do it.
  • the present invention is a method for manufacturing a heat radiating member in which a plurality of metal fins spaced from each other are erected on one surface of a metal base plate.
  • the method for manufacturing such a heat dissipating member is substantially the same as the above method for manufacturing a heat dissipating member, except that the step of disposing the fins (and the spacer) and the step of disposing the base plate are separated.
  • the base end face of each spacer is buried rather than the base end face of each fin (the end face on the base plate side) (the base end face of the fin projects more than the base end face of the spacer).
  • the base plate is pressed against the fins to bend the base end of the fins (the part protruding beyond the spacer).
  • the protruding length of the base of the fin from the base surface of the spacer is within the thickness of the spacer, even if the base of each fin is bent, these protrude from each other. There is no overlap. In this way, even when the thickness of the fin is extremely small, the base end of the fin can be brought into contact with the base plate while being superimposed on the base plate. As a result, the contact area between the fin and the base plate can be increased and both can be securely joined.
  • the spacer is made of a material having a higher melting point than the fins and the base plate.
  • the spacer is not joined to the fin base plate at the stage when the friction vibration joining process is completed, so it is necessary to remove the spacer without any trouble in the last spacer detachment process Can be.
  • the base plate is lifted up with the fins and spacers down, only the fins are lifted together with the base plate with the spacers left, so the spacers can be easily removed and heat dissipated The member can be completed.
  • the base plate is made of a material having a higher melting point than fins.
  • the deformation resistance of the base plate can be kept high when the interface between the fin and the base plate is raised to a temperature required for joining the two, so that the pressing force of the joining tool can be maintained. While efficiently transmitting the heat to the boundary surface, it is possible to perform high-strength joining without any gap between the fin and the base plate.
  • the fin is made of an aluminum alloy and the base plate is made of copper.
  • the present invention is a method of manufacturing a heat radiating member in which a plurality of metal fin components spaced apart from each other are erected on one surface of a metal base plate, the method comprising: A plurality of fin components each having a concave cross section formed by a pair of left and right fins and a base end connecting these ends, and a space between the fin components.
  • a friction vibration bonding step of bonding the base end portion wherein a manufacturing method of the heat radiating member, characterized in that it comprises a spacer leaving step of removing the respective spacer, the.
  • the method for manufacturing such a heat dissipating member is substantially the same as the method for manufacturing a heat dissipating member described above, except that a fin component having a concave cross section is used instead of the fin.
  • spacers of the same or different type are sandwiched between the fin components and between the left and right fins of the fin components. In this way, even when the fins on the left and right sides of the fin component are very thin, the base end of the fin component comes into contact with the base plate in a superimposed state, so that the fin is in contact with the base plate. Can be securely joined to the base plate.
  • the fin component can be easily formed by bending a spacer into a concave shape with a spacer in the center of a single thin metal plate.
  • the spacer is made of a material having a higher melting point than the fin constituent material and the base plate.
  • the melting point of the spacer is higher than the melting points of the fin constituent material and the base plate.
  • the spacer is not joined to the fin component material / base plate at the stage when the friction vibration joining process is completed, so the spacer is removed without any trouble in the final spacer detachment process be able to. For example, if the base plate is lifted up with the fin components and spacer down, only the fins are lifted together with the base plate while leaving the spacer, so the spacer can be easily removed to release heat The member can be completed.
  • the base plate is made of a material having a higher melting point than the fin constituent material.
  • the deformation resistance of the base plate can be kept high when the boundary surface between the fin constituent material and the base plate is raised to a temperature necessary for joining the two, so that the pressing force of the joining tool can be maintained.
  • the fin constituting material is made of an aluminum alloy and the base plate is made of copper.
  • a heat dissipating member having high heat dissipating performance utilizing the high thermal conductivity of copper can be manufactured.
  • the present invention is a heat dissipating member manufactured by the above method for manufacturing a heat dissipating member.
  • Such a heat dissipating member is manufactured by the method described above, it can be manufactured with high heat dissipating performance and at low cost.
  • the present invention provides a fin restraining portion for restraining a fin or a fin constituent material and a spacer in a state where the fin or the fin constituent material and the spacer are alternately overlapped, and one surface of the base plate. And a base plate restraining portion for restraining the base member by contacting the base member with the base end portion of the fin or the constituent member of the fin.
  • the present invention is a heat sink including a heat radiating member and a fan, wherein the heat radiating member is a copper base plate thermally connected to a heating element, and one of the copper base plates. And a plurality of copper fins or aluminum fins erected on the surface of the copper base plate at an interval from each other.
  • the copper base plate and each of the copper fins or each of the aluminum fins are frictionally vibration-welded by being moved along the surface thereof while being pressed against the copper base plate.
  • Such a heat sink is a high-performance heat sink equipped with a heat dissipating member and a fan.
  • the heat dissipating member is formed by joining a plurality of fins upright on one surface of the base plate at an interval from each other.
  • the base plate is made of copper having extremely high thermal conductivity, and the fins are also made of copper or copper. It is made of aluminum, which has a slightly lower thermal conductivity.
  • the base plate and the fin are friction-vibration welded.
  • frictional vibration welding is a type of joining method between metal members, and the contact force between the rotating joining tool and the metal member is reduced while eliminating the gap at the joint between the metal members by the pressing force of the joining tool.
  • the contact area at the joint and the diffusion rate are increased by increasing the temperature of the joint by plastic heat and plastic deformation by frictional heat.
  • the heat sink's heat dissipating member eliminates the gap between the butting portion of the base plate and the fin by the pressing force of the joining tool, and the vibration generated by the contact between the rotating joining tool and the base plate.
  • the base plate and the fin are joined while increasing the contact area and diffusion speed at the butt joint by splitting and breaking the oxide film present on the butt joint and raising the temperature of the butt joint by frictional heat and causing plastic deformation. It has been done.
  • the heat radiating member in which the base plate and the fin are joined to each other with higher strength can be reduced as compared with the case of the conventional brazing connection. It can be manufactured at low cost.
  • the fin is made of copper, it may be left as it is, but if a frictional vibration welding is performed by interposing a metal having a lower melting point than copper, such as aluminum or an aluminum alloy, between the base plate and the copper fin, the joining temperature will be low. Cost, equipment, power, etc. are economical. If the fins are made of aluminum whose melting point is lower than that of copper, aluminum fins are erected on one side of the copper base plate and the joining tool is pushed in from the other side of the copper base plate. contact combined, copper base plate and aluminum Fi ting the butt portion temperature required for bonding (eutectic temperature: 5 4.
  • the copper base plate still keeps its deformation resistance high and efficiently transfers the pressing force of the joint to the butt, so there is no gap in the butt and both are higher.
  • a heat-dissipating member that is strongly bonded can be used.
  • the present invention is a heat sink including a heat radiating member and a fan, wherein the heat radiating member overlaps a copper base plate thermally connected to a heating element and one surface of the copper base plate. And a plurality of aluminum fins erected at intervals on the aluminum base plate on a surface opposite to the copper base plate.
  • the aluminum fins are integrally extruded and
  • the copper base plate and the aluminum are moved by moving the circumferential surface of the disc-shaped joining tool rotating in the circumferential direction along the surface of the copper base plate while pressing the peripheral surface against the other surface. Characterized in that the base plate and the base plate are joined by friction vibration.
  • Such a heat sink is similar to the above-mentioned heat sink in that it is a high-performance heat sink having a heat radiating member and a fan, but is not a heat radiating member in which a fin is directly erected and joined to a copper base plate.
  • a difference is that an aluminum member is prepared in advance by integrally forming a fin on a base plate and extruded as a whole, and a heat dissipating member is used in which the base plate of this aluminum member is overlapped and joined to a copper base plate.
  • the heat sink of the heat sink is generated by the contact between the rotating joining tool and the copper base plate while eliminating the gap between the overlapping portions of the copper base plate and the aluminum base plate by the pressing force of the joining tool.
  • Oxidation film on the overlapping surface is broken and broken by vibration, and the contact area and diffusion speed at the overlapping portion are reduced by raising the temperature of the overlapping portion by frictional heat and plastically deforming it.
  • the copper base plate and the aluminum base plate are joined together.
  • the copper base plate and the aluminum base plate are friction-vibration bonded in this way, the copper base plate and the aluminum base plate are more likely to be joined together than by conventional welding or explosion welding.
  • High-strength heat-dissipating members can be manufactured at low cost.
  • the portion to be frictionally vibration-joined is the overlapped portion of the copper base plate and the aluminum base plate, and the joint area is large, the above heat sink in which the butted portion of the copper base plate and the aluminum fin is frictionally vibration-joined.
  • the heat dissipating member can be easily manufactured.
  • the heating element and the copper base plate are connected by a heat pipe.
  • the present invention provides a method according to the present invention, wherein a plurality of metal members are superposed on each other in the order of higher melting point, and the superposed portion is heated from the surface side of the metal member having the highest melting point among the metal members. And joining the plurality of metal members to each other by applying pressure.
  • a metal member joining method a plurality of metal members are arranged so as to overlap each other, and the overlap portion is heated and pressed from the outermost metal member side, thereby eliminating a gap in the overlap portion.
  • the oxide film existing at the boundary surface is broken and fractured, and the metal at the overlapped portion is heated by heat and plastically deformed, thereby increasing the contact area between metal members and the diffusion rate.
  • a plurality of metal members are placed one on top of the other with the highest melting point and are heated and pressurized from the side of the metal member with the highest melting point.
  • the metal member on the pressed side keeps its deformation resistance higher, the pressure is transmitted to the boundary surface more efficiently, and high-strength joining without gaps between the metal members becomes possible.
  • the overlapping portion is heated and pressurized from the copper member side.
  • the method of heating and pressurizing is not particularly limited, and a tool is brought into contact with the surface of the metal member having the highest melting point, and the frictional heat and the pressing force are applied to the overlapping portion by the tool.
  • a contact type such as transmitting or a non-contact type using electromagnetic induction may be used.
  • the present invention is a method of joining a plurality of metal plate members spaced apart from each other by standing upright on one surface of a base plate made of a metal having a higher melting point than the plate members.
  • a plurality of plate members arranged at intervals from each other, a spacer sandwiched between these plate members, and a base plate having the respective plate members erected on one surface.
  • a spacer detaching step of removing the spacers.
  • a plate material, a base plate, and a spacer are set at predetermined positions in a member arranging step.
  • the plate and base plate are made of metal, and the melting point of the base plate is higher than the melting point of the plate.
  • the material of the spacer is not particularly limited.
  • the shape of the spacer is not particularly limited, and the spacers may be interconnected.
  • each spacer may not be in contact with the one surface of the base plate. In consideration of the effect of stress, it is desirable that each spacer also be in contact with the one surface of the base plate in order to enhance the reinforcing effect of the spacer by the spacer.
  • each plate and the base plate are joined by heating and pressing the boundary surface between the base plate and each of the plate members from the other surface side of the base plate.
  • the principle of this joining is the same as the above-mentioned joining method of metal members.
  • the base plate and each spacer may be joined when the base plate and each plate material are joined. However, if the spacer is removed in the next process, the base plate and each spacer may be connected. It is better to keep the spacer from joining.
  • a plurality of metal fin components spaced apart from each other are erected on one surface of a base plate made of a metal having a high melting point.
  • This method of manufacturing a heat radiating member is an application of the above-described method of joining metal members, and uses a fin component having a concave cross section as a plate material.
  • spacers of the same type or different types are sandwiched between the fin components and between the left and right fins of the fin components.
  • the base end of the fin component contacts the base plate in a state of being superimposed on the base plate.
  • the bonding principle between the fin component and the base X-plate is as described above.
  • the fin component can be easily formed by bending a thin metal plate into a concave shape with a spacer at the center.
  • the heating and pressing may be performed while pressing a peripheral surface of a disk-shaped joining tool rotating in a circumferential direction against a surface of the metal member having the highest melting point. It is performed by moving along the surface of the member, and it is desirable that a concave groove which is slightly inclined with respect to the rotation direction and is continuous is formed on the peripheral surface of the joining tool.
  • the heating and pressurizing may be performed by pressing a peripheral surface of a disc-shaped joining tool rotating in a circumferential direction against the other surface of the base plate. It is performed by moving along the surface, and it is desirable that a concave groove which is slightly inclined with respect to the rotation direction and is continuous is formed on the peripheral surface of the joining tool.
  • the heating and the pressing may be performed such that a circumferential surface of a disk-shaped joining tool that rotates in a circumferential direction is formed on the other surface of the base plate. This is performed by moving the base along the surface of the base plate while pressing against the surface of the base plate. A continuous groove is formed on the peripheral surface of the joining tool so as to be slightly inclined and continuous with respect to the rotation direction. , It is desirable.
  • the metal member joining method is to move a circumferential surface of a disk-shaped joining tool rotating in a circumferential direction along a surface of the metal member while pushing the peripheral surface of the metal member having the highest melting point.
  • reliable joining can be expected with a simple device.
  • the groove on the peripheral surface of the welding tool should be continuous with the direction of rotation slightly inclined, that is, along the peripheral surface of the welding tool around the rotation axis of the welding tool. It is formed to draw a spiral trajectory. Therefore, as the welding tool rotates and moves, the plasticized metal accumulated inside the concave groove is sequentially sent out in the width direction of the welding tool, so the amount of dent remaining on the surface of the metal member after welding is minimized. It can be kept to a minimum.
  • the width w! the width of (mm) and the groove w 2 (mm), ⁇ ⁇ ⁇ ⁇ ⁇ One or [delta], and 1 ⁇ w 2 ⁇ 3, 0. 6 7 ⁇ ! It is desirable that / w 2 ⁇ 5.00 holds.
  • the width w! (mm) and the width w 2 (mm) of the groove One or l ⁇ w S, l ⁇ w 2 3, force, one, 0. e Y ⁇ W iZw o ⁇ S. 0 0 is child satisfied Is desirable.
  • the width (mm) of the flat portion between the grooves and the width w 2 (mm) of the grooves are 1 ⁇ wi ⁇ 5, and l ⁇ w It is preferable that 2 ⁇ 3 and 0. ST ⁇ Wi / ws ⁇ S.
  • the width w of the flat portion to the width w (mm) and the width w 2 of the groove (mm) and the width w 2 of the groove of the flat portion between the four grooves in the circumferential surface of the welding tool When the inventors for the ratio of the repeat experiment, the w 2 is too small, since the close status to have cut the surface of the metallic member at the bonding tool, the amount of frictional heat generated by the welding tool Although relatively large, and large summer Teshima cormorants this dent amount remaining on the surface of the metallic member after joining, whereas the W l / w 2 is too large, the peripheral surface is closer to the joining by off rats bonding tool As a result, the amount of frictional heat generated by the welding tool is reduced, and the amount of pushing of the welding tool to the surface of the metal member must be increased, and the mechanical load also increases.
  • the concave groove is inclined by 0.5 to 2.0 ° with respect to the rotation direction, and two or more grooves are formed along the entire circumference of the joining tool. It is desirable.
  • the concave groove is inclined by 0.5 to 2.0 ° with respect to the rotation direction, and extends over the entire circumference of the joining tool. It is desirable that at least two are formed.
  • the concave groove is inclined by 0.5 to 2.0 ° with respect to the rotation direction, and two or more grooves are formed along the entire circumference of the joining tool. It is desirable.
  • the inventors repeated experiments on the inclination angle of the groove on the peripheral surface of the joining tool.
  • the inside of the groove was The plasticized metal that has accumulated in the metal is not well sent out in the width direction of the welding tool, and burrs remain on the surface of the metal member after passing through the welding tool, while the inclination angle of the groove is 2.0 °. If it is large, the amount of chips discharged will be large, the dent remaining on the surface of the metal member will increase, and the mechanical load will also increase.
  • the inclination angle of the groove will be 0.5 to 2 In the case of 0 °, it was found that there was no such adverse effect.
  • the depth of the concave groove is 0.3 to 1.2 mm.
  • the depth of the concave groove is 0.3 to 1.2 mm.
  • the depth of the concave groove is 0.3 to 1.2 mni.
  • the inventors have repeated experiments on the depth of the ⁇ groove on the peripheral surface of the joining tool, and when the depth of the concave groove is smaller than 0.3 mm, the plasticized metal Is clogged in the concave groove, and the amount of frictional heat generated by the welding tool is reduced and sufficient welding cannot be performed.
  • the depth of the groove is larger than 1.2 mm, the situation is close to cutting the surface of the metal member with a welding tool, and the amount of frictional heat generated by the welding tool
  • the depth of the concave groove is 0.3 to 1.2 mm, such a case may occur. It turned out that there was no evil.
  • the metal member joining method according to the present invention includes a first step of superimposing a plate-shaped second metal member having a higher melting point than the first metal member on the first metal member. A second step of applying pressure from the second metal member to the first metal member and heating the second metal member to join the first and second metal members to each other.
  • the first and second metal members are arranged so as to overlap each other, and heating and pressing are performed from the second metal member side, thereby eliminating a gap in the overlapped portion, By separating and rupture the oxide film existing on the superposed surface, the metal in the superposed part is heated by heat and plastically deformed, thereby increasing the contact area and diffusion rate between the metal members.
  • this method of joining metal members is such that two metal members having different melting points, that is, a first metal member, and a second metal member having a higher melting point than the first metal member are superposed.
  • the second metal member having a high melting point is pressed toward the first metal member, and is heated.
  • the second metal member having a higher melting point reduces its deformation resistance. Keep it high, so second gold
  • the pressing force on the metal member is efficiently transmitted to the overlapping portion. Therefore, according to this metal member joining method, the first and second metal members can be joined with high strength without forming a gap between the first and second metal members.
  • the method of heating and pressurizing is not particularly limited, and a contact method in which a tool is brought into contact with the surface of the second metal member and the frictional heat and the pressing force generated thereby are transmitted to the overlapping portion.
  • a non-contact method using electromagnetic induction may be used.
  • the second step may include a step of moving a plate surface of a rotating disk-shaped joining tool along the surface ′ while pressing the plate surface against the second metal member. desirable.
  • a plate surface of a rotating disk-shaped joining tool (that is, a plane intersecting the rotation axis of the joining tool) is pressed against the surface of a second metal member having a higher melting point.
  • Heating and pressurization of the overlapped portion are performed by moving along the surface of the metal member. Therefore, according to this metal member joining method, reliable joining can be expected with a simple device. Further, in this metal member joining method, since the plate surface of the joining tool comes into contact with the surface of the second metal member, the larger the diameter of the joining tool, the larger the range of heating and pressing can be.
  • the method for manufacturing a heat dissipation member according to the present invention includes: a first step of superimposing a plate-shaped second metal member having a higher melting point than the first metal member on the first metal member; By applying pressure from the metal member to the first metal member and heating it together, a second step of joining the first and second metal members to each other, and forging the first metal member, A third step of erecting a plurality of radiation fins on the second metal member.
  • the method for manufacturing a heat dissipation member includes: a first step of superimposing a plate-shaped second metal member having a higher melting point than the first metal member on the first metal member; A second step of joining the first and second metal members to each other by applying pressure from the metal member to the first metal member and heating the same, and cutting the first metal member. A third step of forming a plurality of slits on the first metal member and erecting a plurality of heat radiation fins on the second metal member.
  • the first step and the second step are configured in the same manner as the first step and the second step in the metal member bonding method.
  • the first metal member is forged or cut out of the first and second metal members joined through the first and second steps. Thus, a radiation fin is formed.
  • the first and second metal members can be reliably joined by a simple device and the forging process can be performed, as in the above invention.
  • the heat radiation fin can be formed by a simple processing method such as cutting and cutting.
  • the heat dissipating member according to the present invention may further include a plurality of heat dissipating fins formed of a plate member having a U-shaped cross section as the first metal member by the metal member joining method. 2It is characterized in that it is joined to a base plate as a metal member.
  • the heat dissipating member according to the present invention may further include a plurality of heat dissipating fins formed of a plate member having an L-shaped cross section as the first metal member by the metal member joining method; It is characterized in that it is joined to a base plate as a member.
  • the heat radiating member according to the present invention is provided by the above metal member joining method.
  • the corrugated fin as the first metal member and the base plate as the second metal member are joined.
  • the plurality of heat radiating pillars as the first metal member and the base plate as the second metal member are bonded by the metal member bonding method. It is characterized by the following.
  • These heat radiating members are formed by joining a heat radiating fin, a corrugated fin as a first metal member, a heat radiating columnar body, and a base plate as a second metal member by the above metal member bonding method. It is. In other words, the base plate and the radiation fins are joined by applying heat and pressure from the base plate side. Therefore, these heat dissipating members have a structure capable of more securely joining the heat dissipating fins and the like to the base plate with a simple device as in the above invention.
  • the heat dissipating member since the heat dissipating fins and the base plate are joined by applying heat and pressure from the base plate side, the heat dissipating fins and the like having a complicated shape and structure are used. Also has a structure that can be manufactured with a simple device. Therefore, according to this heat radiating member, a heat radiating fin or the like having a complicated shape and a large structure with a larger heat radiating area can be arranged on the base plate.
  • the heat dissipation member according to the present invention includes a base plate to which a heating element is connected on one surface, and a plurality of fins which are erected and joined to the other surface of the base plate. A ridge connecting the fins is formed on the other surface of the base plate.
  • the base plate to which the heating element is connected plays a role of transmitting the heat of the heating element to each fin, generally, the thicker the base plate, the higher the heat radiation performance of the heat radiation member .
  • the weight of the heat radiation member is also increased. Rather than increasing the thickness of the base plate as a whole, the thickness of the base plate is increased only in the areas where the contribution of transferring the heat of the heating element to each fin is large, and the base is reduced in the areas where the contribution is small.
  • the heat of the heating element was more efficiently transmitted to each fin without changing the weight of the entire base. More specifically, by forming a ridge connecting the fins on the base plate, the heat radiation performance of the heat radiation member can be improved without increasing the weight.
  • the ridge may connect each fin every few sheets, but if the ridge is formed continuously so as to connect all the fins, the heat of the heating element may be at the end. Since the heat is transmitted to the fins more reliably, the heat radiation performance is further improved, and the formation of the ridges becomes easier, so that the manufacturing cost can be reduced.
  • the fins are formed in a direction perpendicular to each fin, the ridges can be easily formed, and the shape and structure of the joint between the base plate and each fin are simple. Therefore, the manufacturing cost of the heat radiation member can be suppressed.
  • the ridge is in a direction orthogonal to each fin, the overall length of the ridge can be reduced, so that the cross-sectional area of the ridge can be maximized, and the heat radiation performance can be further improved.
  • the cross-sectional shape of the ridge becomes smaller as the distance from the main body of the base plate increases. This is because the pressure loss, especially when used in combination with a fan, can be further reduced.
  • the ridge has a constant cross-sectional shape in the length direction. This is because the ridges can be easily formed on the base plate, and the shape and structure of the joint between the ridges and each fin become simple, so that the manufacturing cost of the heat radiation member can be reduced.
  • the sectional shape of the ridge is the aspect ratio (convex). It is desirable to set the ratio of the width of the ridge to the thickness of the ridge to 5 to 30 or the ratio of the thickness of the ridge to the total height of the heat radiation member to 0.1 to 0.3. As will be understood from the examples described later, if the thickness of the ridge is relatively large, the pressure loss increases and the heat radiation performance is rather reduced, and the thickness of the ridge becomes relatively large. If it is too small, it will approach the overall thickness of the base plate.
  • the ridge may have a cross-sectional area that decreases in a length direction from a position where the ridge is connected to the heating element. Since the amount of heat transmitted through the base plate decreases as the distance from the heating element increases, it is reasonable to reduce the cross-sectional area of the ridge in accordance with the amount of heat, and a heat-radiating member that dissipates heat more efficiently And
  • the base plate is preferably made of copper (including a copper alloy), and the fin is preferably formed of aluminum (including an aluminum alloy). Copper has an extremely high thermal conductivity, so the heat of the heating element can be transferred to each fin very efficiently. Aluminum has a relatively high thermal conductivity and is lightweight and easy to process. is there.
  • the fins are connected at a base end parallel to the base plate and formed as a pair of two fins. If the pair of fins and the base end connecting them have a substantially concave cross section in this way, the time required to join the fins to the base plate is reduced, and the fins are thin. However, the handling becomes easy, and a heat radiating member having a high tong ratio can be easily manufactured. It should be noted that a single fin and a base end may have a substantially L-shaped cross section, or a fin and a base end may have a corrugated cross section in which the fin and the base end are continuously connected in a bellows shape.
  • such a heat dissipating member may be used in a natural air-cooled type, but a forced air-cooled type, that is, a fan is attached, and the fan takes away heat from each fan. If used as a heat sink, higher heat dissipation performance can be obtained. In this heat sink, the angle at which the fan is attached to the heat dissipating member can be arbitrarily determined. However, if the fan is arranged so that the fan sends air from each side, a particularly high heat dissipating performance can be achieved. And the height is kept small, so that the installation space is not restricted.
  • the method of manufacturing such a heat dissipating member can be arbitrarily determined.
  • the copper base plate and each of the aluminum fins are heated and pressed from the other surface of the copper base plate by heating and pressing the interface between the copper base plate and each of the aluminum fins. It is desirable to join with aluminum fins.
  • the pitch and tongue ratio of the fins can be freely set, since the fins and the ridges do not hinder the heating and pressurization.
  • the base plate and the fin are made of copper and aluminum, respectively, and heating and pressurization are performed from the base plate side made of copper having a higher melting point than aluminum, the pressing force is applied to the boundary between the base plate and the fin. It is efficiently transmitted to the surface and the two are securely joined.
  • the method of heating and pressurizing can be arbitrarily determined.
  • a non-contact method using electromagnetic induction or the like may be used, but a contact method, that is, a disk-shaped rotating in the circumferential direction is used. It is preferable that the welding is performed by moving the joining tool along the surface while pressing the peripheral surface of the joining tool against the other surface of the copper base plate.
  • FIG. 1 (a) and 1 (b) are front sectional views showing respective steps of an embodiment of a metal member joining method according to the present invention, and (c) is a side view of (b).
  • FIG. 2 is a cross-sectional view showing, in chronological order, a state of plastic deformation of a superposed surface of the aluminum member and the copper member in FIG.
  • FIG. 3 is a front sectional view showing another embodiment of the metal member joining method according to the present invention.
  • FIG. 4 is a perspective view showing an embodiment of a heat radiation member according to the present invention.
  • FIG. 5 (a) is a bottom view showing another embodiment of the heat radiating member according to the present invention, and (b) and (c) are the same cross-sectional views.
  • FIG. 6 (a) and 6 (b) are front sectional views showing each step of an embodiment of a method for manufacturing a heat radiating member according to the present invention
  • FIG. 6 (c) is a sectional view of FIG. 6 (b).
  • FIG. 7 is a front sectional view showing another embodiment of the method for manufacturing a heat dissipation member according to the present invention.
  • Fig. 8 (a) and (b) are front sectional views showing each procedure of frictional vibration welding, and (c) is a side view of (b).
  • FIG. 9 is a cross-sectional view showing in chronological order plastic deformation of the superposed surface of the aluminum member and the copper member in FIG.
  • FIG. 10 is a front sectional view showing another example of the friction vibration joining of the metal member.
  • FIG. 11 is a view for explaining a first embodiment of a method for manufacturing a heat radiating member according to the present invention, and (a) and (b) are front sectional views showing a member arranging step.
  • FIG. 12 is a view for explaining a step following FIG. 11, wherein (a) is a front sectional view showing a friction vibration joining step, and (b) is a front sectional view showing a spacer detaching step.
  • FIG. 13 is an exploded perspective view showing an embodiment of a heat radiating member manufacturing jig according to the present invention.
  • FIG. 14 is a perspective view showing an embodiment of a heat radiating member according to the present invention.
  • FIG. 15 is a view showing each movement locus of the welding tool in the frictional vibration welding process shown in FIG. It is a perspective view showing an example.
  • FIG. 16 is a front sectional view showing another example of the frictional vibration joining process shown in FIG. 12 (a).
  • FIG. 17 is a front sectional view showing another embodiment of the heat radiating member according to the present invention.
  • FIG. 18 is a front sectional view for explaining a procedure for manufacturing the heat radiation member shown in FIG. 17, in which (a) is the first pattern, (b), (c) the force S Represents the second pattern.
  • FIG. 19 is a front sectional view for explaining a procedure for manufacturing the heat radiation member shown in FIG. 17, in which (a) to (c) are third patterns, and (d) to (d). g) represents the fourth pattern.
  • FIG. 20 is a view for explaining a second embodiment of the method for manufacturing a heat radiating member according to the present invention, wherein (a) to (c) are front sectional views showing a member arranging step, and (d). 3 is a front sectional view showing a friction vibration joining step, and FIG. 4 (e) is a front sectional view showing a spacer detaching step.
  • FIG. 21 is a view for explaining a third embodiment of the method for manufacturing a heat radiating member according to the present invention, wherein (a) is a front sectional view showing a fin arrangement step, and (b), (c) 3 is a front sectional view showing a base plate disposing step, and (d) is a partially enlarged view of (d).
  • FIG. 22 is a diagram for explaining a process following FIG. 21, wherein (a) is a front sectional view showing a frictional vibration joining process, and (b) is a process of removing a spacer.
  • FIG. 22 is a diagram for explaining a process following FIG. 21, wherein (a) is a front sectional view showing a frictional vibration joining process, and (b) is a process of removing a spacer.
  • FIG. 23 is a view for explaining the fourth embodiment of the method for manufacturing a heat radiation member according to the present invention, and (a) to (e) are front cross-sectional views illustrating a member disposing step.
  • FIG. 24 is a diagram for explaining a process following FIG. 23, wherein (a) is a front cross-sectional view showing a friction vibration joining process, and (b) is a front cross-sectional view showing a spacer detaching process.
  • FIG. 24 is a diagram for explaining a process following FIG. 23, wherein (a) is a front cross-sectional view showing a friction vibration joining process, and (b) is a front cross-sectional view showing a spacer detaching process.
  • FIG. 25 is a perspective view showing another embodiment of the heat radiation member according to the present invention.
  • FIG. 26 is a perspective view showing another embodiment of the heat radiation member according to the present invention.
  • FIG. 27 (a) is a partially enlarged sectional view showing a joint between a fin and a base plate of an actually manufactured heat radiating member
  • FIG. 27 (b) is a partially enlarged view of (a).
  • Fig. 28 (a) and (b) are front sectional views showing the procedure of frictional vibration welding, and (c) is a side view of (b).
  • FIG. 29 is a cross-sectional view showing, in chronological order, the state of plastic deformation of the superposed surface of the aluminum member and the copper member in FIG. 28 ''.
  • FIG. 30 is a front sectional view showing another example of the friction vibration joining of the metal member.
  • FIG. 31 is a perspective view illustrating an embodiment of a heat dissipation member.
  • FIG. 32 is a view for explaining a method of manufacturing the heat dissipating member of FIG. 31.
  • FIG. 33 is a perspective view showing each example of the movement trajectory of the welding tool in FIG. 32 (d).
  • FIG. 34 is a perspective view showing another embodiment of the heat radiation member.
  • FIG. 35 is a view for explaining a method of manufacturing the heat dissipating member of FIG. 34.
  • FIG. 36 (a) is an exploded perspective view of the first embodiment of the heat sink according to the present invention, and (b) is an assembled perspective view of the same.
  • Fig. 37 (a) is a plan view of the heat sink of Fig. 36, and (b) and (c) are side views of the same heat sink as viewed in the direction of arrows X and Y, respectively.
  • FIG. 38 is an assembled perspective view of the second embodiment of the heat sink according to the present invention.
  • FIG. 39 (a) is an exploded perspective view of a third embodiment of the heat sink according to the present invention, and (b) is an assembled perspective view of the same.
  • FIG. 40 (a) is a plan view of the heat sink of FIG. 39, and (b) and (c) are side views of the same heat sink as viewed in the direction of arrows X and Y, respectively.
  • FIG. 41 is an assembled perspective view of a fourth embodiment of the heat sink according to the present invention.
  • Fig. 42 (a) is an exploded perspective view of a fifth embodiment of the heat sink according to the present invention, and (b) is an assembled perspective view thereof.
  • FIG. 43 (a) is a plan view of the heat sink of FIG. 42
  • FIGS. 43 (b) and (c) are side views of the same heat sink as viewed in the direction of arrows X and Y, respectively.
  • FIG. 44 is an assembled perspective view of a sixth embodiment of the heat sink according to the present invention.
  • FIG. 45 (a) is an exploded perspective view of a seventh embodiment of the heat sink according to the present invention, and (b) is an assembled perspective view of the same.
  • FIG. 46 (a) is a plan view of the heat sink of FIG. 45
  • FIGS. 46 (b) and (c) are side views of the same heat sink as viewed in the direction of arrows X and Y, respectively.
  • FIG. 47 is an assembled perspective view of an eighth embodiment of the heat sink according to the present invention.
  • FIGS. 48 (a) and (b) are front sectional views showing each procedure of the first embodiment of the metal member joining method according to the present invention, and (c) is a side view of (b).
  • FIG. 9 is a cross-sectional view showing the plastic deformation of the superposed surface of the aluminum member and the copper member in FIG. 48 in a time-series manner.
  • FIG. 50 (a) is a partially enlarged view of the welding tool of FIG. 48, and (b) to (d) are partial cross-sectional views showing another example of the groove on the peripheral surface of the welding tool.
  • FIG. 51 is a front sectional view showing another example of the friction vibration joining of the metal member.
  • FIG. 52 is a view for explaining the second embodiment of the metal member joining method according to the present invention, and (a) and (b) are front sectional views showing a member arranging step.
  • FIG. 53 is a view for explaining a step following FIG. 52, in which (a) is a front sectional view showing a joining step, and (b) is a front sectional view showing a spacer detaching step. is there.
  • FIG. 54 is an exploded perspective view showing an embodiment of a jig for manufacturing a heat radiating member.
  • FIG. 55 is a perspective view showing an embodiment of a heat radiation member.
  • FIG. 56 is a perspective view showing each example of the movement trajectory of the welding tool in the welding process shown in FIG. 53 (a).
  • FIG. 57 is a front sectional view showing another example of the frictional vibration joining process shown in FIG. 53 (a).
  • FIG. 58 is a front sectional view showing another embodiment of the heat radiation member.
  • FIG. 59 is a front sectional view for explaining a procedure for manufacturing the heat radiating member shown in FIG. 58, wherein (a) is the first pattern, (b) and (c) are the first patterns. Represents the second pattern.
  • FIG. 60 is a front sectional view for explaining a procedure for manufacturing the heat radiation member shown in FIG. 58, wherein (a) to (c) are third patterns, and (d) to (d). g) represents the fourth pattern.
  • FIG. 61 is a view for explaining a third embodiment of the metal member joining method according to the present invention, wherein (a) to (c) are front sectional views showing a member arranging step, and (d).
  • FIG. 3 is a front sectional view showing a joining step
  • FIG. 4 (e) is a front sectional view showing a spacer detaching step.
  • FIG. 62 is a view for explaining the fourth embodiment of the member joining method according to the present invention, wherein (a) is a front sectional view showing a fin arrangement step, and (b) and (c) are sectional views.
  • FIG. 3D is a front cross-sectional view showing a base plate disposing step, and FIG.
  • FIG. 63 is a view for explaining a step following FIG. 62, in which (a) is a front sectional view showing a joining step, and (b) is a front sectional view showing a spacer detaching step. is there.
  • FIG. 64 is a view for explaining the first embodiment of the method for manufacturing a heat radiating member according to the present invention, and (a) to (e) are front sectional views showing a member arranging step.
  • FIG. 65 is a view for explaining a step following FIG. 64, in which (a) is a front sectional view showing a joining step, and (b) is a front sectional view showing a spacer detaching step. is there.
  • FIGS. 66 (a) and (b) are front sectional views showing the procedure of friction vibration joining disclosed in Patent Document 1, and (c) is a side view of (b).
  • FIGS. 67 (a) to (d) are partial perspective views of the joining tool disclosed in Patent Document 1.
  • FIG. 67 (a) to (d) are partial perspective views of the joining tool disclosed in Patent Document 1.
  • FIG. 69 is a cross-sectional view showing a time-series manner of plastic deformation of the overlapped portion of the aluminum member and the copper member in FIG.
  • FIG. 70 is a partially enlarged view of the joining tool in FIG. 68.
  • Fig. 71 (a) is a perspective view of a joining tool used in the metal member joining method according to the second embodiment, and (b) and (c) are used in the metal member joining method according to the second embodiment.
  • FIG. 10 is a bottom view showing another example of the joining tool to be performed.
  • FIGS. 72 (a) and (b) are perspective views showing another example of a joining tool used in the metal member joining method according to the second embodiment.
  • FIGS. 73 (a) and (b) are views for explaining a friction joining process in the metal member joining method according to the second embodiment.
  • FIG. 74 (a) is a perspective view of a heat radiating member, and (b) and (c) are diagrams illustrating a manufacturing process of the heat radiating member of (a).
  • FIGS. 75 (a) and (b) are diagrams for explaining the manufacturing process of the heat radiation member of FIG. 74 (a).
  • FIG. 76 is a cross-sectional view showing another example of the heat dissipation member.
  • FIG. 77 is a perspective view of a radiation fin constituting the heat radiation member of FIG.
  • FIG. 78 is a perspective view of a support device used when manufacturing the heat radiation member of FIG. 76.
  • FIGS. 79 (a), (b) and (c) are diagrams illustrating the steps of manufacturing the heat dissipating member of FIG. 76.
  • FIGS. 80 (a), (b), (c) and (d) are diagrams showing modified examples of the heat radiation member of FIG. 76.
  • FIG. 81 (a) is a perspective view showing a first embodiment of a heat dissipation member according to the present invention, and (b) is an exploded perspective view of the same.
  • FIG. 82 (a) is a sectional view taken along line AA of FIG. 81, (b) is a sectional view taken along line BB of FIG. 81, and (c) is a bottom view thereof.
  • FIG. 83 is a perspective view illustrating an example of a method for manufacturing the heat dissipation member of FIG. 81.
  • FIG. 84 (a) is a side view explaining the step following FIG. 83, and (b)
  • FIG. 85 is a perspective view illustrating a step following FIG. 84 (a).
  • FIG. 86 is a cross-sectional view for explaining another example of the method for manufacturing the heat radiation member of FIG. 81.
  • FIG. 87 is a cross-sectional view showing a step following FIG. 86.
  • FIGS. 88 (a) and (b) are perspective views showing a second embodiment and a third embodiment of a heat radiation member according to the present invention, respectively.
  • FIGS. 89 (a) to (c) are cross-sectional views showing fourth to sixth embodiments of the heat radiation member according to the present invention. '
  • FIGS. 90 (a) to 90 (c) are perspective views showing seventh to ninth embodiments of the heat radiation member according to the present invention, respectively.
  • FIGS. 91 (a) and (b) are perspective views showing a tenth embodiment and an eleventh embodiment of a heat radiation member according to the present invention, respectively.
  • FIGS. 92 (a) and (b) are perspective views showing a first embodiment and a second embodiment of a heat sink according to the present invention, respectively.
  • FIGS. 93 (a) and (b) are diagrams illustrating the cross-sectional shape and dimensions of each sample of Example 1, and (c) is a graph showing simulation results.
  • FIG. 9 is a graph showing a simulation result of Example 2.
  • Fig. 95 (a) to (c) are cross-sectional shapes and dimensions of each sample of Example 3, and (d) and (e) are graphs showing simulation results.
  • FIG. 96 is a graph showing the simulation results of Example 4.
  • FIG. 97 is a graph showing the simulation results of Example 4.
  • 'FIG. 98 is a view for explaining a first application example of the friction vibration joining method.
  • FIG. 99 is a view for explaining a second application example of the friction vibration joining method.
  • FIG. 100 is a diagram for explaining a third application example of the friction vibration joining method.
  • FIG. 101 is a view for explaining a fourth applied example of the friction vibration joining method.
  • FIGS. 102 (a) and (b) are diagrams illustrating a fifth applied example of the frictional vibration joining method.
  • FIGS. 103 (a) and (b) are diagrams illustrating a sixth applied example of the frictional vibration joining method.
  • FIG. 104 is a view for explaining a seventh application example of the friction vibration joining method.
  • FIGS. 105 (a) and (b) are diagrams illustrating an eighth applied example of the friction vibration joining method.
  • FIGS. 106 (a) and (b) are diagrams illustrating a ninth application example of the friction vibration joining method.
  • FIG. 107 is a diagram for explaining a tenth application example of the friction vibration joining method.
  • FIG. 108 is a diagram illustrating an eleventh applied example of the frictional vibration joining method.
  • FIG. 109 is a diagram illustrating a twelfth applied example of the frictional vibration joining method.
  • the figure is a diagram illustrating a thirteenth application example of the friction vibration joining method.
  • the figure is a diagram illustrating a fourteenth application example of the friction vibration joining method.
  • FIG. 2 is a diagram illustrating a fifteenth application example of the friction vibration joining method. 0064
  • FIG. 113 is a diagram illustrating a sixteenth application example of the friction vibration joining method.
  • FIG. 114 is a diagram illustrating a seventeenth application example of the friction vibration joining method.
  • FIG. 115 is a diagram illustrating an eighteenth application example of the friction vibration joining method.
  • FIG. 116 is a diagram illustrating a nineteenth application example of the friction vibration joining method.
  • the figure is a diagram illustrating a twentieth application example of the friction vibration joining method.
  • FIG. 118 is a diagram illustrating a twenty-first application example of the friction vibration joining method.
  • FIG. 119 is a view for explaining a twenty-second application example of the friction vibration joining method.
  • FIG. 120 is a view for explaining a twenty-third application example of the friction vibration joining method.
  • FIG. 121 is a view for explaining a twenty-fourth application example of the friction vibration joining method.
  • FIG. 122 is a diagram for explaining a twenty-fifth application example of the friction vibration joining method.
  • FIG. 123 is a diagram illustrating a twenty-sixth application example of the friction vibration joining method.
  • FIG. 124 is a view for explaining a twenty-seventh application example of the friction vibration joining method.
  • FIG. 125 is a diagram illustrating a twenty-eighth application example of the friction vibration joining method.
  • FIG. 1 (a) and 1 (b) are front sectional views showing each step of an embodiment of a method for joining metal members according to the present invention
  • FIG. 1 (c) is FIG. 1 (b).
  • FIG. 1 (a) an aluminum member 101 and a copper member 102 are placed on top of each other so that they are in surface contact, and fixed with a jig (not shown). I do.
  • the tool body 1 of the welding tool 103 which rotates at high speed at a peripheral speed R (m / min) in the circumferential direction around the rotating shaft 103b
  • the joining tool 103 is pushed into the surface 10 of the copper member 102 as shown in Fig. 1 (c), while pushing the peripheral surface of the member 103 vertically into the surface 102 of the member 102.
  • the aluminum member 101 and the copper member 102 are overlapped and joined by moving at a feed speed V (m / min) along 2a.
  • the joining tool 103 has a disk-shaped tool body 103a fixed to the tip of the rotating shaft 103b, and the tool body 103a is JIS: SKD61 etc. Made of tool steel.
  • the tool body 103a rotates around the rotation axis 103b in such a direction as to feed the copper member 102 in the advancing direction backward while holding down the surface 102a of the copper member 102.
  • the tool body 103a has a circumferential surface with a fixed amount of a (m) pressed into the surface 102a of the copper member 102. While rotating at a high speed in the direction, it moves along the surface 1.02a of the copper member 102. By pushing the tool body 103 a into the copper member 102, the tool body 10 that rotates at high speed while eliminating the gap between the overlapping surfaces of the aluminum member 101 and the copper member 102. The oxide film on the superposed surface of the aluminum member 101 and the copper member 102 is broken and broken by vibration caused by the contact between 3a and the member 102, as shown in Fig. 2 (b).
  • a predetermined region of the copper member 102 in contact with the tool body 103 a and a region near the predetermined region, and a predetermined region of the aluminum alloy 101 adjacent to these regions are defined by the tool.
  • the temperature is raised by the heat generated by the frictional contact between the main body 103a and the copper member 102, and each is plasticized (fluidized) in the solid state.
  • the copper member 102 and the aluminum member 101 flow and diffuse even at the interface between each other, and are plastically deformed from their initial surfaces.
  • the trace of the tool body 103 of the welding tool 103 passed through the surface 10 of the copper member 102 by the pressing force of the tool body 103a.
  • a pair of shallow steps 102b, 102b are formed in 2a.
  • the superposed surface of the aluminum member 101 and the copper member 102 is solidified with a convex cross section so that the plastically deformed aluminum member 101 and the copper member 102 are engaged with each other.
  • the copper member 102 and the aluminum member 101 are securely joined via the joint surface S.
  • the joining tool 103 is pushed in from the aluminum member 101 side, but the melting point of the aluminum member 101 is lower than the melting point of the copper member 102, and When the superposed surface of 101 and copper member 102 reaches the eutectic temperature (548 ° C) required for joining, the deformation resistance of aluminum member 101 is relatively small. As a result, the pressing force of the joining tool 103 is not sufficiently transmitted to the overlapping surface of the aluminum member 101 and the copper member 102, and a joining failure is likely to occur. On the other hand, If the aluminum alloy member 103 is pushed in from the side of the copper member 102, whose melting point is higher than that of the aluminum member 101, the aluminum member 101 and the copper member 102 can be superimposed.
  • the present metal member joining method is not limited to the overlap joining of an aluminum member and a copper member, but can be widely applied to the overlapping joining of metal members.
  • the shape of such a metal member may be any shape as long as it can overlap with each other and push the joining tool.
  • the number of superposed metal members is not limited to two, but may be three or more.
  • the metal member joining method shown as another embodiment in FIG. 3 includes three metal members (500-series aluminum member 101, 100-series aluminum member 101,. Copper members 1 0 2) are placed one on top of the other, and the frictional vibration welding is performed by pushing in the tool body 103 of the welding tool 103 from the side of the copper member 10 3 having the highest melting point among the three metal members. Is what you do.
  • the temperature at which the superposed portion of the metal members overlaps at the time of joining becomes higher than the eutectic temperature, and the deformation resistance of each metal member at that time increases the transmission efficiency of the pressing force by the joining tool to the superposed surface of the metal members.
  • the three metal members are arranged in the order of the melting point (here, the copper member 102, the 1000-based aluminum member 101, the 500-based aluminum member 101). ), And it is desirable to perform frictional vibration welding by pushing in the welding tool 103 from the surface of the metal member (copper member 102 in this case) with the highest melting point.
  • the three metal members are made of copper, aluminum, and magnesium, the copper, aluminum, and magnesium members It is only necessary to superimpose them in order and press the welding tool from the copper member side to perform frictional vibration welding.
  • FIG. 4 is a perspective view showing an embodiment of a heat radiation member according to the present invention.
  • the heat dissipating member 104 shown in the figure includes a heat sink member 105 made of an aluminum member and a heat transfer plate 106 made of a copper member.
  • the heat sink material 105 is composed of a base plate 105a and one surface of the base plate 105a.
  • the heat transfer plate 106 is superimposed on the other surface (the upper surface in the figure) of the base plate 105a, and the heat sink material 105 and the heat transfer plate 1 0 6 are joined.
  • the heat dissipating member 104 is made by friction vibration joining while pushing the joining tool from the heat transfer plate 106 made of a copper material having a higher melting point than the aluminum member. There is no gap in the superposed surface of the heat transfer plate 106 and the heat transfer plate 106, and they are joined with high strength.
  • the superposed surface of the base plate 105a and the heat transfer plate 106 may be frictionally and vibration-joined on the entire surface or may be partially friction-vibration-joined.
  • the one that has been joined has higher joining strength and heat dissipation performance.
  • the heat dissipating member according to the present invention is not limited to this, and the heat dissipating fins 105 b and 1 e standing from the base plate 105 a and one surface of the base plate 105 a may be used.
  • a heat sink material 105 made of an aluminum member having the following components: 05b, ... and the other surface of the base plate 105a by the metal member joining method relating to the frictional vibration joining described above.
  • the other points can be freely changed as long as they include a heat transfer plate 106 made of a copper member overlapped and joined.
  • the heat dissipating members 104 shown in FIG. 5 have a large surface area of the heat dissipating fins 105 b, 105 b,.
  • Fig. 5 (a) shows the radiation fins 105b, 105b, ... that run in a wavy shape in the longitudinal direction.
  • FIG. 6 (a) and 6 (b) are front sectional views showing each step of a method of manufacturing the heat radiation member 104 shown in FIG. 4 as one embodiment of the method of manufacturing the heat radiation member according to the present invention.
  • FIG. 6 (c) is a cross-sectional view of FIG. 6 (b).
  • the heat sink material 105 made of an aluminum member is placed on the joining table 107 with the heat dissipating fins 105b, 105b,. Fix it. Then, a heat transfer plate 106 made of a copper member is placed on the upper surface of the base plate 105 a of the heat sink material 105 so as to be in surface contact with each other, and fixed with a jig (not shown).
  • the circumferential surface of the tool body 103a of the welding tool 103 which rotates at high speed in the circumferential direction around the rotation axis 103b, is transmitted.
  • the joining tool 103 is moved along the surface 106a of the heat transfer plate 106 while being pressed vertically into the surface 106a of the heat plate 106.
  • the base plate 105 a of the heat sink material 105 and the heat transfer plate 106 are overlapped and joined.
  • the tool main body 103a is rotated around the rotation axis 103b in such a direction as to feed the heat transfer plate 106 in the traveling direction rearward while pressing down the surface 106a of the heat transfer plate 106.
  • the moving area of the joining tool 103 may be the entire surface of the heat transfer plate 106 or a part of the surface. However, by moving the entire region of the heat transfer plate 106, the heat transfer plate 106 can be moved. When the superposed surfaces of the base plate 105a and the base plate 105a are entirely joined, a heat dissipating member 104 having high joining strength and heat dissipating performance can be manufactured. In addition, the pushing force of the tool body 103 If the dents left on the surface 106 a of the heat transfer plate 106 are large, the surface 106 a of the heat transfer plate 106 is cut to a constant thickness to provide a beautiful heat-dissipating member 1 0 4 can be obtained.
  • the cross-sectional shape fits between the heat radiation fins 105b, 105b,....
  • the heat radiation fin support 108 is fixed on the joining table 107, and then the heat radiation fin support 105 is attached to the heat radiation fin support 108, as shown in FIG. If the frictional vibration welding is performed by inserting the fins 105b,..., The deformation of the radiating fins 105b due to the pushing force of the joining tool 103 can be surely prevented.
  • the tool bodies 103a, 103a, ... are fixed at predetermined intervals around the rotation axis 103b as shown in Fig. 7 (c). It is also possible to use the prepared joining tool 103 '. In this case, since friction vibration joining can be performed at many points at a time, the time required for joining can be reduced, and the joining efficiency is further improved.
  • the material peeling refers to a material in which both members are peeled (peeled off) on the superposed surface, and indicates that the bonding is performed with a little imperfection.
  • a material joint fracture is a fracture of a member other than the overlapped surface of the joint, and indicates that the joint is complete.
  • the driving energy loss of the welding tool was large, and the welding efficiency was poor. Therefore, if the welding tool at the time of welding is rotated at a peripheral speed of 250 to 2000 m / min, the amount of heat generated by the frictional contact between the welding tool and the copper material becomes an appropriate value, and It was found that a perfect bond could be made (2-1-1 to 2_17).
  • Joining tool shape 0.08m, 0.005m thickness
  • the pushing amount ⁇ of the welding tool into the surface of the copper member during welding is set to 0.3 to 0.3 t, the pressing force of the welding tool becomes an appropriate value, and the copper member and the aluminum It was found that bonding could be performed without creating gaps on the superposed surfaces of the rubber members, and that the dents on the copper member surface could be reduced.
  • Joining tool shape 00.08m, 0.01m thickness
  • the heat sink material is extruded aluminum and the base plate Thickness 0.05 m, width 0.06 m, length 0.2 m, radiation fin width 0.05 m, arrangement interval 0.02 m, high
  • the height was 0.015 m.
  • the thickness of the heat transfer plate was 0.005 m, and the width and length were the same as those of the heat sink base plate.
  • the welding tool used for friction vibration welding had a tool body diameter of 0.08 m and a thickness of 0.01 m, and the welding conditions were a tool body rotation speed of 300 rpm and a feed rate. Was set to 0.25 m / min, and the pushing amount to the heat transfer plate was set to 0.0005 m. After the friction vibration welding, the surface of the heat transfer plate was machined to a depth of 0.01 m.
  • Friction vibration joining of metal members means that the gap between the overlapping portions of the metal members is eliminated by the pressing force of the joining tool, and the overlapping surface of the metal members is caused by vibration generated by the contact between the rotating joining tool and the metal member.
  • a method of joining the overlapped parts while increasing the contact area between metal members and the diffusion speed by causing the overlapped part to become hot and plastically deformed by frictional heat while breaking the oxide film existing in It is.
  • FIGS. 8 (a) and 8 (b) are front sectional views showing each procedure of frictional vibration welding
  • FIG. 8 (c) is a side view of FIG. 8 (b).
  • the friction vibration welding first, as shown in FIG. 8 (a), the aluminum member 1 and the copper member 2 are arranged so as to be in surface contact with each other and fixed by a jig (not shown).
  • the tool body 200 of the welding tool 203 which rotates at a high peripheral speed R in the circumferential direction around the rotating shaft 203b.
  • the joining tool 203 is formed by fixing a disk-shaped tool body 203 a to the tip of the rotating shaft 203 b.
  • the tool body 203 a is made of JIS: SKD61 etc. Made of tool steel.
  • the tool body 203 a rotates around the rotation axis 203 b in such a direction as to feed the copper member 202 back in the traveling direction while holding down the surface 202 a of the copper member 202.
  • the tool body 203a is placed in the circumferential direction with its peripheral surface pressed into the surface 202a of the copper member 202 by a fixed amount ⁇ . While rotating at high speed, it moves along the surface 202 a of the copper member 202. Then, by pushing the tool body 203 a into the copper member 202, the gap between the superposed surfaces of the aluminum member 201 and the copper member 202 is eliminated, and Vibration generated by the contact between the tool body 203a rotating at high speed and the copper member 202 causes the oxide film on the superimposed surface of the aluminum member 201 and the copper member 202 to be broken and fractured. 9 As shown in Fig.
  • a predetermined area of the copper member 202 that comes into contact with the tool body 203a and its vicinity The region and the predetermined region of the aluminum alloy 201 adjacent to these regions are heated to a high temperature by the heat generated by the frictional contact between the tool body 203a and the copper member 202, and remain in a solid state, respectively. It is plasticized (fluidized). As a result, the copper member 202 and the aluminum member 201 plastically flow even at the interface between each other, and are plastically deformed from their initial surfaces.
  • the trace of the passing of the tool body 203a of the joining tool 203 is caused by the pressing force of the tool body 203a.
  • a pair of shallow steps 202b and 202b are formed in 2a.
  • the superposed surface of the aluminum member 201 and the copper member 202 was solidified in an uneven shape so that the plastically deformed aluminum member 201 and the copper member 202 engaged with each other.
  • a joining surface S is formed, and the copper member 202 and the aluminum member 201 are securely joined via the joining surface S.
  • the melting point of the aluminum member 201 is lower than the melting point of the copper member 202.
  • the superposed surface of the aluminum member 201 and the copper member 202 reaches the temperature required for joining (eutectic temperature: 548 ° C) or more, the aluminum member 201 Since the deformation resistance is relatively small, the pressing force of the joining tool 203 is not sufficiently transmitted to the superposed surface of the aluminum member 201 and the copper member 202, and the joint is likely to be defective. .
  • the joining tool 203 is pressed from the side of the copper member 202 having a higher melting point than the aluminum member 201, the joining of the aluminum member 201 and the copper member 202 can be achieved.
  • the overlapping surface reaches the temperature required for joining (eutectic temperature) or higher, the deformation resistance of the copper member 202 is kept relatively large, and the pressing force of the joining tool 203 is reduced to the aluminum member 201.
  • the copper member 202 can be sufficiently transmitted to the superimposed surface, so that high-strength joining without a gap between the two members can be performed.
  • the peripheral speed of the joining tool 203 during joining is 200 m / If it is larger than min, the amount of heat generated by the frictional contact between the welding tool 203 and the copper member 202 becomes larger than necessary, and not only the driving energy loss of the welding tool 203 but also The temperature of the copper member 202 that is in contact with the joining tool 203 becomes too high locally, causing plastic deformation of the portion, and the pressing force of the joining tool 203 is sufficiently applied to the overlapping surface. This is because there is a risk that a gap will be generated between both members without being transmitted.
  • the joining tool 203 during joining is rotated at a peripheral speed of 250 to 200 m / min, the amount of heat generated by the frictional contact between the joining tool 203 and the copper member 202 is reduced. It will be an appropriate value and good bonding can be performed.
  • the joining tool 203 (tool body 203 a) at the time of joining is expressed by the following equation (B). It is desirable to push the required pushing amount a (m) into the surface 202 a of the copper member 202.
  • the pushing amount ⁇ of the joining tool 203 to the surface of the copper member 202 at the time of joining is set to 0.03 1 or more and 0.3 t or less, the pressing force of the joining tool 203 is set to an appropriate value. Then, copper member 202 and aluminum member
  • Bonding can be performed without generating a gap on the superposed surface with the copper member 201, and the dent on the surface of the copper member 202 can be reduced.
  • the joining tool 203 during joining (tool body 200) is used.
  • the friction vibration joining of the metal members is not limited to the overlap joining of the aluminum-palladium member and the copper member, but can be widely applied to the overlap joining of the metal members.
  • the shape of such a metal member may be any shape as long as it can overlap with each other and press the joining tool.
  • the number of superposed metal members is not limited to two, but may be three or more.
  • three metal members (500-based aluminum member 201, 100-based aluminum member 201, and copper member 202) are placed on top of each other.
  • the frictional vibration welding is performed by pressing the tool body 203 a of the welding tool 203 from the side of the copper member 202 having the highest melting point among the three metal members.
  • the temperature at which the overlapped portion of the metal members becomes higher than a predetermined temperature, and the deformation resistance of each metal member at that time is affected by the transmission efficiency of the pressing force by the joining tool to the overlapping surface of the metal members.
  • the three metal members are placed in the order of higher melting point (here, copper member 202, 100-series aluminum member 201 ', 50,000-series aluminum member 2). It is desirable to perform frictional vibration welding by pressing the welding tool 203 from the surface of the metal member with the highest melting point (in this case, copper member 202). .
  • the three metal members are made of copper, aluminum, and magnesium, the copper member, the aluminum member, and the magnesium member may be overlapped in this order, and a welding tool may be pressed from the copper member side to perform frictional vibration welding.
  • the basic mechanism of frictional vibration joining of metal members has been described above. Next, a method of manufacturing a heat radiating member according to the present invention using the basic mechanism will be described.
  • FIGS. 11 and 12 are diagrams for explaining a first embodiment of a method for manufacturing a heat radiating member according to the present invention, wherein FIGS. 11 (a) and (b) are members arrangements.
  • FIG. 12 (a) is a front sectional view showing a friction vibration joining step
  • FIG. 12 (b) is a front sectional view showing a spacer detaching step.
  • FIG. 13 is an exploded perspective view showing an embodiment of a heat radiating member manufacturing jig according to the present invention.
  • fins 204, 204,... which are aluminum plate members, and spacers 20, which are iron plate members. ... are arranged alternately on the member set part 212 of the heat-dissipating member manufacturing jig 210 while alternately arranging 5, 205, ....
  • the heat-radiating member manufacturing jig 210 is a box-shaped jig main body 211 having an open upper surface, and four parts formed inside the jig main body 211.
  • the tip is pressed while penetrating the wall of the jig body 211 in a direction perpendicular to the pressing plate 2 13, which is slidable in the member set section 2 12, and the pressing plate 2 13.
  • Tightening bolts 2 1 4 fixed to the back of plate 2 13 and whose head is located outside the wall of jig body 2 1 1, and wall of jig body 2 1 1 in a direction parallel to pressing plate 2 1 3 It consists of a base fixing plate 2 15 spanned over the upper part of the body, and fastening bolts 2 16 for screwing both ends of the base fixing plate 2 15 to the upper part of the wall of the jig main body 2 11. ing.
  • the fins 204, 204,... And spacers 205, 205,... By tightening the fastening bolts 2 14 and pressing the pressing plate 2 13 against them, the pieces are restrained in close contact with each other. At this time Since the heights of the fins 204 and spacers 205 are all equal, the upper surface (base end face) of the fins 204, 204,. A horizontal plane is formed with the upper surface (base end surface) of 205, ....
  • the fins 204, 204,... And spacers 205, 2 erected in the member set part 212 are arranged.
  • the base plate 206 which is a copper plate-like member, is further placed on the upper surface of the base fixing plate 2 15, and the notch 2 1 formed on the lower surface of the base fixing plate 2 15 5
  • the fins 204, 204,... ⁇ Constrain the spacers 205, 205,... so that they do not move in the length direction (perpendicular to the paper surface).
  • the tightening port 2 16 is screwed from the port holes 2 15 b at both ends of the base fixing plate 2 15 into the port holes 2 1 1 a on the upper surface of the wall of the jig body 2 1 1. Fix the plate 206 to the top of the fin 204 and the spacer 205. Although not shown, if necessary, the base plate 206 is constrained so as not to move in the width direction (lateral direction on the paper). Thus, the fins and spacers 205 are positioned so that the base end surfaces of the fins 204 and spacers 205 come into contact with the lower surface (one surface) of the base plate 206. The step of vertically arranging on the base plate 206 is completed.
  • FIGS. 11 (a) and (b) are not necessarily the same, and the fines 204, 204,... .. And the base plate 206 are finally arranged at predetermined positions as shown in FIG. 11 (b). Therefore, for example, fins 204, 204,... (Or spacers 205, 205,...) Are arranged at intervals from each other, and are placed on their base end faces. After fixing the base plate 206, the spacers 205, 205,... (or spacers 205, 205,...) are finally placed between the spacers 205, 205,..., respectively. 2 0 5,... (or Fin 2 0, 2, 4 and 4) may be inserted.
  • the peripheral surface of the tool body 203a of the welding tool 203 rotating at high speed in the circumferential direction around the rotation axis 203b is By moving the joining tool 203 along the surface 206a of the base plate 206 while pressing the surface of the other surface of the base plate 206 perpendicularly to the surface 206a of the base plate 206, The fins 204, 204, ... are joined to 206. At this time, since the melting point of copper forming base plate 206 is higher than the melting point of aluminum forming fin 204, the boundary surface between fin 204 and base plate 206 is formed.
  • the deformation resistance of the base plate 206 can be kept high, and the pressing force of the joining tool 203 can be reduced.
  • a high-strength joint without any gap can be made between the fin 2 ⁇ 4 and the base plate 206 while efficiently transmitting to the boundary surface.
  • the melting point of iron forming the spacer 205 Since it is higher than the melting point of the aluminum that constitutes the fin 204 and the copper that constitutes the base plate 206, by setting the peripheral speed and feed rate of the welding tool 203 to a predetermined range, The base plate 206 and the fin 204 are connected so that the spacer 205 is not joined to the fin 204 or the base plate 206. Can be easily joined.
  • the heat dissipating member 250 can be manufactured in which 0 4,... Are spaced from each other and are erected and joined to one surface of the copper base plate 206.
  • the spacers 205, 205,... are sandwiched between the fins 204, 204,. Can be positioned side by side with the predetermined distances between them while keeping the distances between them accurate. Further, since the spacers 205 reinforce the fins 204, the thickness of the fins 204 is reduced despite the bending stress acting on the fins 204 in the frictional vibration joining process. It can be quite thin. In addition, by simply changing the thickness of the spacer 205, the arrangement interval of the fins 204 can be arbitrarily changed.
  • the , And thin and large fins 204, 204,... are erected on one surface of the base plate 206 at a short pitch and have a high tong ratio (for example, exceeding a tong ratio of 20).
  • the heat dissipating member 250 can be manufactured.
  • the spacer 205 is not limited to metal, but may be a ceramic or any other material in consideration of strength, workability, and the like.
  • the shape of 05 may be appropriately determined.
  • the spacers 205, 205,... Same height as... It is desirable that the base end surfaces of the spacers 205, 205,... Abut against the one surface of the base plate 206 by aligning them.
  • the fins 204, 204,... And the base plate 2 are not heated and held for a predetermined time in a vacuum furnace or the like like brazing. Since it can be bonded to the substrate, the manufacturing cost can be reduced.
  • FIG. 1 In order to increase the bonding strength between the base plate 206 and the fins 204, 204,... And also to enhance the heat dissipation performance of the heat dissipation member 250, FIG.
  • the joining tool 203 by moving the joining tool 203 on the back surface of the base plate 206 (the other surface of the base plate 206) so as to cover the entire base end surface of each fin 204, It is desirable to completely join the fins 204, 204,... to the base plate 206 (the shaded area in FIG. 15 indicates the trace of movement of the joining tool 203). ing. ) .
  • the joining tool should be designed so that only a part of the base end face of each fin 204 is covered instead of the entire surface. Just move 2 0 3. Also, when the base plate 206 and the fins 204, 204, ...
  • the base plate 206 and the spacers 205, 205, ... are simultaneously joined.
  • the spacers 205, 205,... May be removed from the base plate 206 or the fins 204 by some method.
  • the width of the tool body 203 of No. 3 is set to be equal to or less than the thickness of the fin 204, and the base plate 206 and the spacer 205 are formed as shown in FIG. 15 (c). , 205, ... are not joined together (in the case shown, only in the area immediately above the fins 204, 204, .
  • the force to move the joining tool 203, or the base plate Contact only the fins 204, 204,... to 206, and arrange so that the base plate 206, spacers 205, 205,... do not abut.
  • Force or the above embodiment I off the melting point of Unisupesa 2 0 5
  • the spacers 205, 205,... If they are not bonded to the fin 204, the spacers 205, 205,... will not be bonded to the base plate 206 or the fin 204 even after frictional vibration bonding.
  • the manufacturing cost can be reduced by eliminating the trouble in the detachment process.
  • the tool body 203 is provided at a predetermined interval around the rotating shaft 203b. a, 203 a, ... may be fixed by frictional vibration welding using a welding tool 203. In this case, since friction vibration joining can be performed at many points at once, the time required for joining can be reduced, and the joining efficiency is further improved.
  • another base plate 206 is joined to the tip surface of the fins 204, 204,...
  • a heat-dissipating member 250 'made by frictionally joining base plates 206, 206 to both end faces of fins 204, 204, ... spaced apart from each other is manufactured. You may do so.
  • the first pattern of the manufacturing procedure of the heat dissipating member 250 ′ shown in the same figure is a pattern between the fins 204, 204,.
  • the spacers 205, 205, ... are sandwiched between them, and the base plates 206, 206 'are arranged at both ends (upper and lower ends in the figure) of the fins 204, 204, ..., respectively.
  • friction vibration welding is performed.
  • the spacers 205, 205,... are extracted from the sides (in the direction perpendicular to the paper surface).
  • the second pattern of the manufacturing procedure of the heat dissipating member 250 ′′ is defined between the fins 204, 204,.
  • the welding tool 203 is pressed downward from the back surface (the upper surface in the figure) of one base plate 206 to perform frictional vibration welding.
  • the welding tool 203 is pressed downward from the back surface (the upper surface in the figure) of the other base plate 206 'to perform frictional vibration welding. Finally, the spacers 205, 205,... are extracted from the sides (in the direction perpendicular to the paper surface).
  • the third pattern of the manufacturing procedure of the heat dissipating member 250 ' is respectively between the fins 204, 204, ... that are spaced from each other. ... Sandwich the spacers 205, 205,... and place the base plate. 206 only at one end (upper end in the figure) of the fins 204, 204, ... The welding tool 203 is pressed downward from the back (top side in the figure) of 06 to perform frictional vibration joining. After that, while maintaining the positional relationship of each member, the fin 2Q4, spacer 205, and base plate 206 were turned upside down, and the fins were turned upside down as shown in Fig. 19 (b).
  • the base plate 206 is arranged at the other end (upper end in the figure) of 204, 204, ..., and further, as shown in Fig. 19 (c), the back of the base plate 206 '. (The upper surface in the figure), the welding tool 203 is pressed downward to perform frictional vibration welding. Finally, the spacers 205, 205,... are extracted from the sides (in the direction perpendicular to the paper surface).
  • the fourth pattern of the manufacturing procedure for the heat dissipating member 250 ' is shown in Fig. 19 (d).
  • spacers 205, 205, ... are sandwiched between fins 204, 204, ... spaced apart from each other, and fins 204, 204
  • the joining tool 203 is pressed downward from the back surface (upper surface in the figure) of the base plate 206 to perform frictional vibration joining.
  • the spacer 205 is removed by lifting up the base plate 206 and the fin 204, and the heat radiation member 250 is once completed. Let it.
  • the heat radiating member 250 is turned upside down, and as shown in FIG. 19 (f), the spacers 205, 200 are located between the fins 204, 204,. ..., And the base plate 206 is placed at the other end (upper end in the figure) of the fins 204, 204,. Further, as shown in FIG. 19 (g), the welding tool 203 is pressed downward from the back surface (the upper surface in the figure) of the base plate 206 to perform frictional vibration welding. Finally, the spacers 205, 205, ... are removed from the sides (in the direction perpendicular to the paper surface).
  • the present embodiment is substantially the same as the first embodiment, except that the heat radiation member manufacturing jig 210 is not used and the spacer jig 220 is used instead.
  • the spacer jig 220 has a comb-shaped cross section in which the tips (lower ends shown) of spacers 205, 205, ... are connected to each other. Jig. Then, in the member disposing step, after fixing the spacers 205, 205,... Of the spacer jig 220 upward, as shown in FIG. 20 (b), Insert fins 204, 204,... between spacers 205, 205,..., respectively, and as shown in Fig. 20 (c), fins 204, The base plate 206 is fixed so that the lower surface (one surface) of the base plate 206 abuts on the upper surface (base end surface) of 204,.
  • the welding tool 203 is pressed against the base plate 206 from the upper surface (the other surface) of the base plate 206, and then the base plate 206 is pressed. Fins 204, 204, ... are friction-vibration welded.
  • the spacer jig 220 is used as in this embodiment, the jig 210 for manufacturing the heat dissipating member becomes unnecessary, and the trouble of arranging the spacers 205, 205,... There is an advantage.
  • This embodiment is substantially the same as the first embodiment, except that the member arrangement step is divided into a fin arrangement step and a subsequent base plate arrangement step.
  • fins 204, 204,... and spacers 205, 205,... are alternately arranged. In parallel, these are erected and arranged in the member set portion 212 of the jig 210 for manufacturing the heat radiation member.
  • the height of the spacers 205, 205, ... is smaller than the height of the fins 204, 204, ... within the thickness of the spacer 205.
  • the spacers 205, 205,... have their base end faces (upper end face shown) wider than the base end faces of fins 204, 204,... (upper end face shown). It is buried within a thickness of 200 Pa.
  • the height of the fins 204, 204,... Is smaller than the height of the spacers 205, 205,... within the thickness of the spacer 205.
  • the base end faces of the fins 204, 204, ... are within the thickness of the spacer 205 from the base end faces of the spacers 205, 205, ... It protrudes with.
  • the base plates (top, top) of the fins 204, 204,... Display the base plate 206.
  • FIGS. 21 (c) and (d) by applying a downward pressing force toward the fins 204 to the base plate 206, the fins 204, 204, The base end of... (the part protruding beyond spacers 205, 205,...) 204a was bent to form fins 204, 204,... with an L-shaped cross section Fix in state.
  • the base end 204 of the bent fin 204 is not included. a do not overlap each other, and form a surface along one surface (the lower surface in the figure) of the base plate 206.
  • the peripheral surface of the tool body 203a of the welding tool 203 which rotates at high speed in the circumferential direction around the rotation axis 203b, is used as a base.
  • the joining tool 203 along the surface 206 a of the base plate 206 while pressing vertically on the surface 206 a of the other surface of the plate 206, 6 is joined with the base portion 204a of the fins 204, 204,....
  • the base end 204 a of the fin 204 bent at a right angle forms a surface along one surface of the base plate 206, compared with the first embodiment, As a result, the contact area between the base plate 206 and the fin 204 is large, and both can be securely joined. In other words, according to the present embodiment, even when the thickness of the fin 204 is considerably small, the fins 204, 204,... The heat dissipation member 250 thus manufactured can be manufactured.
  • This embodiment is also substantially the same as the first embodiment, except that a fin constituent member 230 having a concave cross section is used instead of the fin 204.
  • a space is formed at the center of one thin aluminum alloy plate material 231 so that the whole becomes an inverted T-shape.
  • the center of the plate member 231 is bent in the groove at the center of the fin component forming jig 240 having a concave cross section, as shown in Fig. 23 (b).
  • the spacer 205 is inserted into the groove at the center as shown in Fig. 23 (c) by inserting the spacer 205 while pushing the fin.
  • the fin component 230 is formed in a concave cross section by a pair of left and right fins 204, 204 and a base end 204a connecting these ends.
  • a plurality of fin constituent members 230 in which the spacer 205 is sandwiched between the pair of left and right fins 204, 204 are prepared, and these fin constituent members 2 ... And spacers 205 ′, 205 ′,... are arranged alternately, and as shown in Fig. 23 (d), they are connected to a jig for manufacturing a heat radiating member. It is placed upright on the member set part 212 of 210. At this time, the fin constituent member 230 has the spacer 205 sandwiched between the pair of left and right fins 204, 204, and the base end portion 204a faces upward. State.
  • the fin constituents 230, 230,... The height of the spacers 205,, 205,,... arranged is adjusted by a spacer sandwiched between a pair of left and right fins 204, 204 of the fin component 230.
  • the base end portion 204 a of the fin constituent member 230 becomes larger. It is desirable to form a horizontal upper surface with the base end of the spacer 205.
  • the fin constituent members 230, 230,... And spacers 205 arranged vertically on the member set part 212 are arranged.
  • the base plate 206 on top of, 205,,...
  • the base end portion 204 a of the fin component 230 and the base end surface of the spacer 205 abut on one surface (the lower surface in the figure) of the base plate 206.
  • the member arrangement step is completed.
  • the member arrangement steps shown in FIGS. 23 (a) to (e) are not necessarily the same, and the fin constituent members 230, 230,... , 205,... And spacers 205,, 205,,... Are finally arranged at predetermined positions as shown in FIG. Absent . Therefore, for example, the fin constituent members 230, 230,... Formed in advance in a concave shape in cross section are arranged at an interval from each other, and a pair of fins 204 , 204 are inserted between spacers 205, 205,..., Respectively, and spacers 205, 230,.
  • the base plate 206 may be arranged, or the fin components 230, 230,..., which are previously formed in a concave cross section, may be spaced from each other.
  • the base plate 206 is then arranged, and finally, a spacer 206 is provided between a pair of left and right fins 204 of each fin constituent member 230. 5, 205, ... are inserted, and spacers 205,, 205, ... are inserted between the fin constituents 230, 230, ... Good.
  • the tool body 203 of the welding tool 203 which rotates at high speed in the circumferential direction around the rotating shaft 203b, By moving the joining tool 203 along the surface 206 a of the base plate 206 while pressing the peripheral surface perpendicular to the surface 206 a of the other surface of the base plate 206. Then, the base ends 204 a of the fin constituents 230, 230,... Are joined to the base plate 206.
  • the base plate 204 differs from that of the first embodiment.
  • the contact area between 6 and the fin 204 is large, and the two can be securely joined. That is, according to the present embodiment, even when the thickness of the fins 204 is extremely small, the fins 204, .204,...
  • the joined heat dissipating member 250 can be manufactured.
  • a plurality of fins 204 'and 204' with a small height at the center in the longitudinal direction are reduced.
  • ... May be a heat dissipating member 25 1 erected together with a plurality of other fins 204, 204,.
  • the heat dissipating member 2 52 may be used as a heat radiating member 25 2 that is vertically connected to the base plate 206.
  • the heat dissipating member 255 has a significantly larger surface area of the fin than the heat dissipating member 250 shown in FIG. 14, the heat dissipating member has higher heat dissipating performance.
  • the fins of the heat dissipating member are not limited to the flat plate shape.
  • a plurality of thin cylindrical fins 204A, 2A having different diameters are provided. .. May be arranged concentrically at an interval from each other to form a heat dissipating member 25 3 erected upright on one surface of the disc-shaped base plate 206 A.
  • a plurality of plan view waveform fins 204B, 204B, ... are arranged at intervals from each other, and these are erected on one surface of the base plate 206.
  • the heat dissipating member 2 54 may be connected and connected.
  • the base plate of the heat dissipating member is not limited to a flat plate. As shown in FIG. 26 (c), the outer periphery of a base plate 206B made of a half-cylindrical cylinder having an arcuate vertical section is used.
  • the heat dissipating member 255 may be formed by fins 204, 204,...
  • the method of manufacturing a heat radiating member described above is an application of frictional vibration joining of a metal member, but it is also possible to use a member joining method in which an object to be joined is not limited to a metal member.
  • a member joining method in which a plurality of spaced plate members are erected on one surface of the base plate and joined.
  • the tongue ratio at this time is 26.
  • the spacer 205 was removed, and the structure of the joint between the fin 204 and the base plate 206 was observed. As shown in FIG. 27 (a), although the base plate 206 was slightly deformed, the fin 204 was not deformed such as bending or bending.
  • the reaction layer 207 hinders heat conduction from the base plate 206 to the fin 204, the extremely thin reaction layer 207 provides a heat radiation member having high heat radiation performance. ing. Next, embodiments of the third group of the invention will be described.
  • Friction vibration welding of metal members means that the metal members are overlapped by the vibration generated by the contact between the rotating welding tool and the metal member while eliminating the gap at the overlapped portion of the metal members by the pressing force of the welding tool.
  • a method in which the oxide film present on the mating surface is broken and fractured, and the overlapping portion is heated by frictional heat and plastically deformed, thereby joining the overlapping portions while increasing the contact area between metal members and the diffusion speed. is there.
  • FIGS. 28 (a) and (b) are front sectional views showing the procedure of frictional vibration welding
  • FIG. 28 (c) is a side view of FIG. 28 (b).
  • frictional vibration welding first, as shown in FIG. 28 (a), the aluminum member 301 and the copper member 302 come into surface contact. So as to overlap each other and fix them with a jig (not shown).
  • the tool body of the joining tool 303 that rotates at a high circumferential speed R in the circumferential direction around the rotating shaft 303b.
  • the joining tool 303 is moved along the surface 300 a of the copper member 302 at a feed rate V.
  • the joining tool 30'3 is formed by fixing a disk-shaped tool body 303a to the tip of the rotating shaft 300b, and the tool body 303a is JIS: SKD61 etc. Made of tool steel.
  • the tool body 303 a rotates around the rotation axis 303 b in such a direction as to feed the copper member 300 in the traveling direction rearward while pressing the surface 302 a of the copper member 302.
  • the tool body 303a is driven at high speed in the circumferential direction with its peripheral surface pressed into the surface 302a of the copper member 302 by a fixed amount ⁇ . While rotating, it moves along the surface 302 a of the copper member 302. Then, by pushing the tool body 303 a into the copper member 302, high-speed rotation is performed while eliminating the gap between the overlapping surfaces of the aluminum member 301 and the copper member 302. The oxide film on the superimposed surface of the aluminum member 301 and the copper member 302 is broken and broken by the vibration caused by the contact between the tool body 303 a and the copper member 302, and Fig.
  • the predetermined region of the copper member 302 in contact with the tool body 303 a and its vicinity and the predetermined region of the aluminum alloy 301 adjacent to these regions are The temperature is raised by the heat generated by the frictional contact between the tool body 303a and the copper member 302, and each is plasticized (fluidized) in the solid state. As a result, the copper member 302 and the aluminum member 301 plastically flow even at the interface between each other, and are plastically deformed from their initial surfaces.
  • a pair of shallow steps 302b, 302b are formed on the surface 302a of the copper member 302 by the negative pressure of the tool body 303a.
  • the overlapping surface of the aluminum member 301 and the copper member 302 is uneven in cross-section so that the plastically deformed aluminum member 301 and the copper member 302 engage with each other.
  • the joint surface S is solidified in shape, and the copper member 302 and the aluminum member 301 are securely joined via the joint surface S.
  • the melting point of the aluminum member 301 is lower than the melting point of the copper member 302.
  • the temperature required for joining eutectic temperature: 548 ° C
  • the deformation resistance of the aluminum member 301 is compared. Therefore, the pressing force of the joining tool 303 is not sufficiently transmitted to the overlapping surface of the aluminum member 301 and the copper member 302, and the joining is likely to be defective.
  • the joining tool 303 is pressed from the side of the copper member 302 having a higher melting point than that of the aluminum member 301, the overlapping surface of the aluminum member 301 and the copper member 302 can be reduced.
  • the temperature required for joining eutectic temperature
  • the deformation resistance of the copper member 302 is kept relatively large, and the pressing force of the joining tool 303 is reduced to the aluminum member 301 and the copper member 310. Since it can sufficiently transmit to the superimposed surface of No. 02, it is possible to perform high-strength joining with no gap between both members.
  • the welding tool 303 during welding (the tool body 303a) Is preferably rotated at a peripheral speed R (m / min) determined by the following equation (A).
  • the peripheral speed of the welding tool 303 during welding is less than 250 m / min.
  • the amount of heat generated by the frictional contact between the joining tool 303 and the copper member 302 is too small, the temperature of the superposed surface of the copper member 302 and the aluminum member 301 is low, and the joining is performed.
  • the peripheral speed of the joining tool 303 during joining is greater than 200 m / min, it is caused by frictional contact between the joining tool 303 and the copper member 302. If the amount of heat becomes unnecessarily large, not only the driving energy loss of the joining tool 303 is large, but also the temperature of the copper member 302 in contact with the joining tool 303 increases locally.
  • the joining tool 303 (tool body 303a) at the time of joining is expressed by the following equation (B). It is desirable to push the required pushing amount o; (m) into the surface 302 a of the copper member 302.
  • the welding tool 300 has a smaller pressing force ⁇ 0.03 t on the surface of the copper member 300 with the welding tool 3003 than the copper member 300 and the aluminum member 301. A gap remains on the mating surface, resulting in poor bonding.
  • the indentation amount ⁇ is larger than 0.3 t, and no gap remains on the overlapping surface between the copper member 302 and the aluminum member 301.
  • excessive press-in of the joining tool 303 causes significant dents to remain on the surface of the copper member 302, resulting in member loss.
  • the copper member 3 0 2 of the joining tool 3 0 3 during joining If the pushing amount ⁇ to the surface is set to 0.03 1; 0.3 t or less, the pressing force of the welding tool 303 becomes an appropriate value, and the copper member 302 and the aluminum member 310 Therefore, the bonding can be performed without generating a gap on the superposed surface of the copper member, and the dent on the surface of the copper member 302 can be reduced.
  • the joining tool 303 (tool body 303a) at the time of joining is expressed by the following equation ( It is desirable to move along the surface of the copper member 302 at the feed speed V (m / min) determined by C).
  • the frictional vibration joining of the metal members depends on the weight of the aluminum and copper members.
  • the present invention is not limited to joining and can be widely applied to overlapping joining of metal members.
  • the shape of such a metal member can be arbitrarily determined as long as the shape can overlap with each other and press the joining tool. Further, the number of superposed metal members is not limited to two, but may be three or more.
  • three metal members (500-based aluminum member 301, 100-based aluminum member 310 ', copper member 302) are placed on top of each other, Friction vibration welding is performed by pressing the tool body 303 a of the welding tool 303 from the side of the copper member 302 having the highest melting point among the three metal members.
  • the temperature at which the overlapping portion of the metal members overlaps at the time of joining becomes equal to or higher than the predetermined temperature, and the deformation resistance of each metal member at that time affects the transmission efficiency of the pressing force by the joining tool to the overlapping surface of the metal members.
  • the three metal members are arranged in the order of melting point (in this case, copper member 302, 1000 aluminum member 310,, 50,000 aluminum member 301).
  • the welding tool 303 it is desirable that frictional vibration welding be performed by pressing the welding tool 303 from the surface of the metal member with the highest melting point (here, the copper member 302).
  • the three metal members are made of copper, aluminum, and magnesium
  • the copper members, the aluminum members, and the magnesium members may be superposed in this order, and the welding tool may be pressed from the copper member side to perform frictional vibration welding.
  • FIG. 31 is a perspective view illustrating an embodiment of a heat radiation member.
  • the heat dissipating member 350 shown in the figure is composed of a plurality of aluminum fins 304, 3.04,... standing and joined to one surface of a copper base plate 350 with a space between each other. It was done.
  • One example of a method for manufacturing the heat dissipating member 350 uses a spacer jig 360.
  • the spacer jig 300 has a comb-shaped cross section in which the lower ends of spacers 300a, 300a,... It is a jig.
  • the height of the spacers 306a, 306a,... Is equal to the height of the fins 304, 304,.
  • fins 304, 304,... are inserted between spacers 360a, 300a,.
  • a horizontal plane is formed by the upper surfaces of the fins 304, 304,... And the upper surfaces of the spacers 306a, 306a,.
  • FIG. 32 (c) one surface (the lower surface in the figure) of the base plate 304 is brought into contact with the upper surface of the fins 304, 304,. Then, fix the base plate 305.
  • FIGS. 32 (b) and (c) the procedure of FIGS. 32 (b) and (c) is reversed, that is, after the base plate 300 is fixed on the upper surface of the spacer jig 300, the side ( It is also possible to insert fins 304, 304, ... from the direction perpendicular to the paper.
  • the fiber is attached to the base plate 304.
  • 340, 304, ... are subjected to frictional vibration welding.
  • the boundary surface between the fin 304 and the base plate 304 is both
  • the temperature is raised to the temperature required for joining (eutectic temperature: 548 ° C)
  • the deformation resistance of the base plate 305 can be kept high, and the pressing force of the joining tool 303 is applied to the boundary surface.
  • the melting point of iron forming spacer 303a is higher than the melting point of aluminum forming fin 304 and copper forming base plate 305, so that bonding is performed.
  • the base plate 304 is prevented from joining the spacer 303a to the fin 304 and the base plate 304. Only 5 and fin 304 can be easily joined.
  • the fins 304, 304,... can be positioned side by side while maintaining a precise spacing between the fins 304 and maintaining a predetermined spacing therebetween.
  • a bending stress acts on the fin 304 during frictional vibration welding, but the fin 304 is reinforced by the spacer 306 a, so that the thickness of the fin 304 is considerably reduced. It is possible to do.
  • the arrangement interval and thickness of the fin 304 can be adjusted.
  • the spacer jig 300 (spacer 300a) is not limited to metal, but may be made of ceramic or any other material in consideration of strength and workability. It can be.
  • the height of the spacers 300a, 306a,... Of the spacer jig 306 is made smaller than the height of the fins 304 so that the base plate is not subjected to frictional vibration welding.
  • Spacer on one side of 3 05 3 0 6 a, 306 a,... may not be in contact with each other.
  • the spacers 306a, 306a,... It is desirable that the height be the same as that of ...
  • the fins 304, 304,... And the base plate 300 are not heated and held for a predetermined time in a vacuum furnace or the like like brazing. Can be joined, so that manufacturing costs can be reduced.
  • FIG. As shown in (a), the back surface of the base plate (the other surface of the base plate) so that the base end (the upper surface in the figure) of each fin is completely covered It is desirable that the fins 304, 304,... Be completely bonded to the base plate 305 by moving the welding tool 303 in (the shaded area in FIG. 33). Shows the trace of the movement of the joining tool 303.) On the other hand, if emphasis is placed on reducing the joining cost, for example, as shown in Fig.
  • the base plate 300 and the spacer 300 a The trajectory is such that 3 0 6 a, ... are not joined (in the case shown, the fins 304, 3 Move the joining tool 303 only in the area directly above the base plate 304, or contact only the fins 304, 304,.
  • the spacers 300a, 306a,... Do not abut, or the melting point of the spacer 306a is finned as in the above embodiment.
  • the spacers 306a, 306a,... will remain even after the friction vibration welding. Since it is not joined to the spacer 304, it is possible to save the labor of detaching the spacer 303 a and reduce the manufacturing cost.
  • the depression remaining on the surface of the other surface of the base plate 300 is large due to the pushing force of the joining tool 303, by cutting the surface of the base plate 300 with a constant thickness, A heat radiation member 350 with a beautiful appearance can be obtained.
  • a joining tool (not shown) in which a plurality of tool bodies 30 3a, 30 3a,... Are fixed around the rotation axis 303 b at predetermined intervals. ) May be used to perform frictional vibration welding.
  • friction vibration joining can be performed at many places at once, the time required for joining can be reduced, and the joining efficiency is further improved.
  • FIG. 34 is a perspective view showing another embodiment of the heat radiation member.
  • the heat dissipating member 360 shown in the figure is a member in which an aluminum heat dissipating portion 307 is frictionally vibration-joined to one surface of a copper base plate 105.
  • the aluminum heat radiating portion 307 is composed of an aluminum base plate 307 a laid on one surface of the base plate 305 and a base plate 305 on a surface opposite to the base plate 305.
  • a plurality of aluminum fins 307 b, 307 b,... Erected at a distance from each other are integrally formed by extrusion.
  • the method for manufacturing the heat radiating member 360 is also the same as the method for manufacturing the heat radiating member 350. It is almost the same. That is, the spacer jig 300 having the cross-sectional shape shown in FIG. 35 (a) is fixed on the joining table, and the spacer jig 3 is fixed as shown in FIG. 35 (b).
  • the aluminum heat radiating part 307 is set so that the fins 307b, 307b,... are fitted between the spacers 306a, 306a,..., respectively. I do.
  • One of the base plates 305 is provided on the surface (upper surface in the drawing) opposite to the fins 307b, 307b, ... in the base plate 307a of the aluminum heat radiating part 307.
  • FIG. 36 (a) is an exploded perspective view of the first embodiment of the heat sink according to the present invention
  • FIG. 36 (b) is an assembled perspective view
  • 37 (a) is a plan view of the heat sink in FIG. 36
  • FIGS. 37 (b) and (c) are side views of the same heat sink as viewed in the directions of arrows X and Y, respectively.
  • the heat sink 31OA is a high-performance heat sink provided with a heat radiating member 350 and a fan 320.
  • the heat radiating member 350 is thermally connected to the heat generating element CPU 340 by a heat pipe 330.
  • projections 305a are formed on both sides of the base plate 305.
  • the lower surface of the base plate 350 is fitted with the end of the heat pipe 330.
  • a groove 305b is formed.
  • the fan 320 is for forcibly cooling the heat radiating member 350 and is attached to the heat radiating member 350 through the fan mounting member 321 to remove the heat of the heat radiating member 350. Discharge upward.
  • a motor (not shown) is connected to the fan 320.
  • the terminal mounting member 3 21 is composed of an upper plate portion 3 2 1 a and side plate portions 3 2 1 b and 3 2 1 b.
  • the fins 3 0 4 and 3 0 It is formed in a cross-section gate shape so as to include 4,.... Air holes 3 2 1c are formed in the center of the upper plate 3 2 a according to the position and size of the fan 3 0, and screw holes 3 are formed at the four corners of the upper plate 3 2 1a. 2 1 d is formed.
  • a mounting hole 3 21 e is formed at a position corresponding to the projection 3 05 a of the base plate 3 05 of the heat radiation member 350.
  • the fan mounting member 3 2 1 is attached to the heat dissipation member 3 50 .
  • the fan 320 is attached to the fan attaching member 3211. In this way, the fan 320 is attached to the heat radiating member 350.
  • the heat pipe 330 transports heat generated by the CPU 340 as a heating element to the heat radiating member 350, one end of which is to the heat radiating member 350, and the other end of which is to the CPU 340.
  • Each is thermally connected.
  • one end of the heat pipe 330 is fitted and pressed into the fitting groove 300b of the base plate 350 of the heat radiation member 350 by the mounting bracket 3311 and the screw. It is fixed to the base plate 305.
  • a fitting groove 341 a is formed on the upper surface of the heat receiving member 341, which is disposed on the CPU 340, similarly to the lower surface of the base plate 350 of the heat dissipating member 350.
  • the other end of the heat pipe 330 is 0064
  • the heat receiving member 341 is made of a material having a high thermal conductivity (eg, copper).
  • the socket 343 of the circuit board is arranged below the CPU 340.
  • a projection 343a is formed on a side surface of the socket 343. Socket
  • CPU 340 is superimposed on 343, and the heat receiving member 341 is superimposed on CPU340. Mounting holes at both ends 3 4
  • the above heat sink 31OA includes a heat radiating member 350 and a fan 320.
  • the heat generated by the CPU 340 which is a heat generating element, is sequentially transferred to the heat receiving member 341, the heat pipe 340, and the heat radiating member. Since it is transported to the member 350 and forcedly released to the outside by the fan 320, the heat radiation performance is high. Further, since the CPU 340 and the heat radiation member 350 are connected by the heat pipe 330, the heat radiation member 350 and the fan 320 can be arranged at a distance from the CPU 340. It is possible to use a structure that releases heat near the CPU 340, such as a thin notebook personal computer, even if space is difficult.
  • the heat sink member 350 of the heat sink 310 A is provided with a plurality of fins 304, 304,. Since they are vibration-bonded, the base plate and fins are bonded with higher strength than in the case of conventional brazing, and can be manufactured at low cost.
  • the fins 304 are made of aluminum having a lower melting point than copper, the copper base plate 304 is used as a welding tool during frictional vibration welding. The pressing force of 303 is efficiently transmitted to the butted portion, and there is no gap in the butted portion, and the two are joined with higher strength.
  • the fins 304 of the heat radiating member 350 are made of aluminum, they may be made of copper.
  • FIG. 38 is an assembled perspective view of a second embodiment of the heat sink according to the present invention.
  • All of the heat sink 310B are the same as the heat sink 310OA of the first embodiment except for the configuration of the heat radiation member.
  • the heat radiating member 360 of the heat sink 310B is formed by joining the aluminum heat radiating portion 307 to one surface of the copper base plate 305 by friction vibration.
  • the aluminum heat radiating portion 307 is composed of an aluminum base plate 307 a arranged on one side of the base plate 305 and a base 307 on a surface opposite to the base plate 305.
  • a plurality of aluminum fins 307b, 307b,... Erected on a plate 307a at an interval from each other are integrally formed by extrusion. '
  • the heat dissipating member 360 of the heat sink 310B is made of a copper base plate 350 and an aluminum base plate 307a by frictional vibration welding.
  • the base plates 305, 3-07a are joined with higher strength than when joined by explosive welding, and can be manufactured at low cost. Further, the portion to be subjected to frictional vibration joining is the overlapped portion of the base plate 305 and the base plate 307a, and the joining area is large. Therefore, the heat sink 310 of the heat sink 310A of the first embodiment is used. It is easier to manufacture than 50.
  • FIG. 39 (a) is an exploded perspective view of a third embodiment of the heat sink according to the present invention
  • FIG. 39 (b) is an assembled perspective view of the same
  • Fig. 40 (a) is a plan view of the heat sink in Fig. 39
  • Figs. 40 (b) and (c) are side views of the same heat sink as viewed in the direction of arrows X and Y, respectively. It is a side view.
  • This heat sink 310C is the same as that of the first embodiment except for the structure of the fan. 0064
  • the heat sink 3 22 OC fan 3 222 is directly attached to the heat radiating member 350 in a state of being placed beside the heat radiating member 350.
  • the fan 322 is located on the side of the fins 304, 304,... so as to face the fins 304, 304,... of the heat dissipating member 350.
  • the heat dissipating member 350 is disposed to dissipate heat upward.
  • the fan 3 22 2 has a fan-shaped cross-section fan case 3 that encompasses the fins 304, 304,....
  • a mounting hole 322 b is formed at a position corresponding to the projection 305 a of the base plate 305 of the heat radiation member 350. Then, after inserting the projections 305a into the mounting holes 322b, the fans 322 are attached to the heat radiation member 350 by crimping or bending the projections 305a.
  • the above heat sink 310C has a heat radiating member 350 and a fan 322, and the heat generated by the CPU 340, which is a heating element, is transferred in order to the heat receiving member 341 and the heat pipe 333. 0, high heat radiation performance because it is transported to the heat radiation member 350 and forced to be released to the outside by the fan 3222. Also, since the CPU 340 and the heat radiation member 350 are connected by the heat pipe 330, the heat radiation member
  • the heat sink can be provided.
  • the overall height of 310 C can be made smaller than the heat sink 31 OA of the first embodiment, and a structure that radiates heat near the CPU 340 like a thin notebook PC It is especially suitable when it is difficult to take space.
  • FIG. 41 is an assembled perspective view of a fourth embodiment of the heat sink according to the present invention. It is. All of the heat sinks 31 OD are the same as the heat sink 3 10 C of the third embodiment except for the configuration of the heat radiation member. That is, as described above, the heat sink 310 D of the heat sink 310 D is formed by joining the aluminum heat dissipating part 3 07 to one side of the copper base plate 350 by friction vibration. It is.
  • the aluminum heat radiating portion 307 is composed of an aluminum base plate 307 a laid on one surface of the base plate 305 and a base plate 307 on a surface opposite to the base plate 305. A plurality of aluminum fins 307 b, 307 b, ... standing upright at a distance from each other are integrally formed by extrusion.
  • FIG. 42 (a) is an exploded perspective view of a fifth embodiment of the heat sink according to the present invention
  • FIG. 42 (b) is an assembled perspective view
  • Fig. 43 (a) is a plan view of the heat sink in Fig. 42
  • Figs. 43 (b) and (c) are side views of the same heat sink as viewed in the direction of arrows X and Y, respectively. It is a side view.
  • This heat sink 310E is substantially the same as the heat sink 310A of the first embodiment, and is a high-performance heat sink including a heat radiating member 350 'and a fan 320.
  • the heat radiating member 350 is directly thermally connected to the CPU 340 without passing through the heat pipe 330.
  • the heat dissipating member 350 has substantially the same configuration as the heat dissipating member 350 of the heat sink 310 A of the first embodiment, except that aluminum fins 304, 304,.
  • a clip groove 304a into which the mounting clip 344 is inserted is formed so as to cross the ⁇ .
  • the CPU 340 and the base plate 305 of the heat radiating member 350 are superimposed on the socket 343 in this order. Insert the mounting clip 3 4 4 into the clip groove 3 0 4 a of the '3' and socket 3 4 3 into the mounting hole 3 4 4 a of the mounting clip 3 4 4 4 After inserting the projections 3 4 3 a, the sockets 3 4 3, the CPU 3 40, and the heat dissipating members 350 were pressed against each other by crimping or bending the projections 3 4 3 a. In this state, they are fixed together, and the CPU 340 as a heating element and the heat radiating member 350 'are thermally connected.
  • the above heat sink 310E includes a heat dissipating member 350 'and a fan 320 so that the heat generated by the CPU 340 can be directly dissipated without passing through the heat pipe. Since it is transmitted to 0 'and forcedly released to the outside by fan 320, it has particularly high heat dissipation performance.
  • FIG. 44 is an assembled perspective view of a sixth embodiment of the heat sink according to the present invention.
  • This heat sink 310F has the same structure as the heat sink except for the heat dissipating members.
  • the heat radiating member 360 'of the heat sink 310F is provided on one surface of the copper base plate 305 in the same manner as the heat radiating member 360 of the heat sink 310B of the second embodiment.
  • Reference numeral 07 denotes a member subjected to frictional vibration welding.
  • the aluminum heat radiating portion 307 is composed of an aluminum base plate 307 a disposed on one surface of the base plate 305 and a base plate 305 on a surface opposite to the base plate 305.
  • a plurality of aluminum fins 307b, 307b, ..., which are erected at a distance from each other on 7a, are integrally extruded.
  • Clip grooves (not shown) are formed in the same shape as in the fifth embodiment.
  • FIG. 45 (a) is an exploded perspective view of a seventh embodiment of the heat sink according to the present invention
  • FIG. 45 (b) is an assembled perspective view of the same
  • FIG. 46 (a) is a plan view of the heat sink in FIG. 45
  • FIGS. 46 (b) and (c) are side views of the same heat sink as viewed in the direction of arrows X and Y.
  • FIG. 46 (a) is a plan view of the heat sink in FIG. 45
  • FIGS. 46 (b) and (c) are side views of the same heat sink as viewed in the direction of arrows X and Y.
  • This heat sink 310G is substantially the same as the heat sink 310E of the fifth embodiment, and is a high-performance heat sink provided with a heat radiating member 350 'and a fan 320. .
  • the heat radiating member 350 is directly thermally connected to the CPU 340 without passing through a heat pipe.
  • the fan 320 is attached to the side of the heat radiating member 350 ', and the heat of the heat radiating member 350' is radiated to the side. Accordingly, the air hole 321c and the screw hole 321d of the fan mounting member 321 "of the heat sink 310G are formed on the side.
  • the above heat sink 310G includes a heat dissipating member 350 "and a fan 320, and directly dissipates heat generated by the CPU 340 without passing through a heat pipe. 0 ′, and forcibly discharge it to the outside with the fan 320. Therefore, the heat radiation performance is particularly high. Since the heat sink 310 is located, the height of the heat sink 31 OG as a whole can be reduced, and a structure that radiates heat near the CPU 340, such as a thin notebook PC. It is particularly suitable when space is difficult to do.
  • FIG. 47 is an assembled perspective view of an eighth embodiment of the heat sink according to the present invention.
  • This heat sink 310H is the same as the heat sink 31OG of the seventh embodiment except for the structure of the heat radiating member.
  • the heat radiation member 360 of the heat sink 310H is the same as the heat radiation member 360 'of the heat sink 310F of the sixth embodiment.
  • Aluminum fin thickness X depth X height 0.3 mm X 54 mm X I 0 mm
  • the metal members are overlapped with each other to perform frictional vibration joining.
  • Friction vibration welding of metal members means that the gap between the rotating welding tool and the metal member is eliminated by eliminating the gap in the overlapping portion of the metal member by the pressing force of the welding tool, and the boundary surface between the metal members.
  • frictional heat raises the temperature of the overlapped part and plastically deforms it, thereby increasing the contact area between metal members and the diffusion rate while increasing the contact area. It is a joining method.
  • FIGS. 48 (a) and (b) are front cross-sectional views showing respective procedures of friction vibration joining of metal members as a first embodiment of the metal member joining method according to the present invention.
  • FIG. 48 (c) is a side view of FIG. 48 (b).
  • the aluminum member 401 and the copper member 402 are arranged so as to be in surface contact with each other and fixed by a jig (not shown). I do.
  • a jig not shown.
  • the aluminum tool member 4.01 and the copper member 402 are overlapped and joined by moving the welding tool 400 along the surface 402a of the copper member 402 at a feed rate V. .
  • the joining tool 400 is formed by fixing a disk-shaped tool body 400 a to the tip of the rotating shaft 400 b, and the tool body 400 a is made of JIS: SKD61 etc. Made of tool steel.
  • Tool body 4 0 is made of JIS: SKD61 etc. Made of tool steel.
  • the reference numeral 3a rotates around the rotation axis 403b in such a direction as to feed the copper member 402 toward the rear in the traveling direction while pressing the surface 402a.
  • the tool body 400a is driven at a high speed in the circumferential direction with its peripheral surface pressed into the surface 402a of the copper member 402 by a fixed amount ⁇ . While rotating, it moves along the surface 402 a of the copper member 402. Then, by pushing the tool body 400 a into the copper member 402, the gap between the overlapping surface (boundary surface) of the aluminum member 401 and the copper member 402 is eliminated. Meanwhile, the oxide film on the overlapping surface (boundary surface) of the aluminum member 401 and the copper member 402 is broken by the vibration generated by the contact between the tool body 400a rotating at high speed and the copper member 402.
  • the oxide film on the overlapping surface (boundary surface) of the aluminum member 401 and the copper member 402 is broken by the vibration generated by the contact between the tool body 400a rotating at high speed and the copper member 402.
  • the predetermined area of the copper member 402 in contact with the tool body 4003a and the area in the vicinity thereof, and the predetermined area of the aluminum member 401 adjacent to these areas. Is heated by the heat generated by the frictional contact between the tool body 400 a and the copper member 402, and each is plasticized (fluidized) in a solid state.
  • the copper member 402 and the aluminum member 401 flow plastically even at the interface between each other, and are plastically deformed from their initial surfaces.
  • the trace of the passing of the tool body 400a of the joining tool 403 becomes the surface 4002 of the copper member 402 by the pressing force of the tool body 403a.
  • a pair of shallow step portions 402 b and 402 b are formed in a.
  • the overlapping surface (boundary surface) of aluminum member 401 and copper member 402 T thin 03/010064
  • Reference numeral 106 denotes a joint surface S which has been solidified in an uneven shape so that the plastically deformed aluminum member 401 and the copper member 402 come into contact with each other.
  • the 402 and the aluminum member 401 are securely joined.
  • the superposed surface (boundary surface) of the aluminum member 410 and the copper member 402 reaches the temperature required for joining (eutectic temperature: 548 ° C)
  • the aluminum member Since the deformation resistance of 401 is relatively small, the pressing force by the joining tool 400 is sufficient for the overlapping surface (boundary surface) of the aluminum member 410 and copper member 402.
  • the joining tool 400 is pressed from the copper member 402 having a higher melting point than the aluminum member 401, the aluminum member 401 and the copper member 402 are superimposed.
  • the surface (boundary surface) reaches or exceeds the temperature required for joining (eutectic temperature)
  • the deformation resistance of the copper member 402 is kept relatively large, and the pressing force of the joining tool 403 is reduced. Since it can sufficiently transmit to the superimposed surface (boundary surface) of the aluminum member 401 and the copper member 402, high-strength joining without a gap between the two members can be performed.
  • a concave groove 400c is formed on the peripheral surface of the tool body 400a of the joining tool 4003 in a direction substantially along the rotational direction. ing. Therefore, the contact area between the peripheral surface of the welding tool 400 and the surface 402 a of the copper member 402 becomes larger, and frictional heat is efficiently generated, and the copper member 402 and the aluminum are efficiently connected. -The rubber member 410 can be joined.
  • the groove 400 c is slightly inclined with respect to the direction of rotation so as to be continuous, that is, around the rotation axis 400 b of the joining tool 400 3, the groove of the tool body 400 a is formed. It is formed so as to draw a spiral trajectory along the peripheral surface. I 03010064
  • the plasticized metal accumulated inside the concave groove 403c is sequentially sent out in the width direction of the tool body 403a.
  • the amount of depression (the height of the step portion 402 b) remaining on the surface 402 a of the copper member 402 after bonding can be minimized.
  • the width of the flat part between the tool body of the welding tool and the flat surface between the tool body and the flat groove between the flat part and the groove The width w 2 (mm) of 3 c is set so that lw S force, 1 ⁇ w 2 ⁇ 3, force, 0, Q 1 ⁇ ⁇ 1 / V7 2 ⁇ . I have.
  • the concave groove 400c on the peripheral surface of the tool body 400a of the welding tool 403 is formed to be inclined with respect to the rotation direction of the tool body 403a, and the inclination angle 0 is It is set to 0.5 to 2.0 °.
  • M indicates a line parallel to the rotation direction.
  • two or more concave grooves 403c are formed in the width direction over the entire circumference of the tool body 403a. With the inclination angle ⁇ and the number of grooves 403 c set in this manner, the rotation of the tool body 400 a of the welding tool 403 causes the groove 403 to move.
  • the plasticized metal of the copper member 402 accumulated in the inside is sent out continuously continuously in the width direction of the tool body 400 a, and after passing through the tool body 400 a, the metal of the copper member 402 is removed. Pari and dents hardly remain on the surface 402a, and the mechanical load is reduced.
  • the depth d of the concave groove 400c on the peripheral surface of the tool body 400a of the welding tool 400 is set to 0.3 to 1.2 mm. Since the depth d of the concave groove 400c is set as described above, the plasticized copper member 4002 The metal does not clog the inside of the concave groove 403c, the amount of dent remaining on the surface 402a of the copper member 402 after bonding is reduced, and efficient bonding is possible.
  • the welding tool 400 at the time of welding (tool body 400a) is used. Is preferably rotated at a peripheral speed R (m / min) determined by the following equation (A).
  • the peripheral speed of the welding tool 403 during welding is lower than 250 m / rain, the amount of heat generated by frictional contact between the welding tool 403 and the copper member 402 is too small. As a result, the temperature of the superposed surface (boundary surface) of the copper member 402 and the aluminum member 401 is low, resulting in poor joining.
  • the peripheral speed of the joining tool 400 during joining becomes 2 If it is greater than 0 m / min, the heat generated by the frictional contact between the joining tool 400 and the copper member 402 becomes larger than necessary, and the driving energy loss of the joining tool 400 becomes large.
  • the temperature of the copper member 402 that is in contact with the welding tool 403 becomes too high locally and plastically deforms the part, and the pressing force of the welding tool 403 overlaps. Because it is not transmitted sufficiently to the mating surface (boundary surface), a gap may be created between both members. It is. Therefore, if the joining tool 400 at the time of joining is rotated at a peripheral speed of 250 to 200 m / min, the amount of heat generated by the frictional contact between the joining tool 400 and the copper member 402 is increased. This is an appropriate value, and good bonding can be performed.
  • the welding tool 400 (tool body 400 a) at the time of welding is expressed by the following equation (B). It is desirable to push the required pushing amount a (m) into the surface 402 a of the copper member 402.
  • the pushing amount ⁇ of the joining tool 400 to the surface 402 a of the copper member 402 at the time of joining is set to 0.03 1; 0.3 t or less, the joining tool 400 3
  • the copper member 402 and the aluminum member 401 can be joined to each other without creating a gap at the overlapping surface (boundary surface).
  • the dents on the surface 402 a can also be reduced.
  • the joining tool 400 (tool body 400 a) at the time of joining is expressed by the following equation. It is desirable to move along the surface 402 a of the copper member 402 at the feed speed V (m / min) determined by (C).
  • the width of the tool body 403a is 5 to 25 mm.
  • the width of the tool body 403 a is fixed to the intermediate part of the rotating shaft 403 b, so-called double-supported joint. It is desirable to use tool 400. If the width of the tool body 400 a is large, the rotating shaft 400 b will be radiused by the pressure acting on the joining tool 400, and the peripheral surface of the tool body 400 a will be made of copper. It is the force that makes it difficult to push perpendicularly to the surface 402a of the object.
  • the frictional vibration joining of the metal members is not limited to the overlap joining of the aluminum member and the copper member, but can be widely applied to the overlapping joining of the metal members.
  • the shape of such a metal member may be any shape as long as it can overlap with each other and press the joining tool.
  • the number of superposed metal members is not limited to two, but may be three or more.
  • Fig. 51 three metal members (500-based aluminum member 401, 100-based aluminum member 401 ', and copper member 402) are placed on top of each other, Copper with the highest melting point among the three metal members 2003/010064
  • the frictional vibration welding is performed by pressing the tool body 400 a of the welding tool 400 from the member 402 side.
  • the temperature of the overlapped portion of the metal members at the time of joining becomes equal to or higher than a predetermined temperature, and the deformation resistance of each metal member at that time is the pressing force of the joining tool on the overlapped surface (boundary surface) of the metal members.
  • the three metal members are arranged in the order of the melting point (here, copper members 402, 1000 aluminum alloy members 401 ', 50,000). Frictional vibration welding by pressing the welding tool 400 from the surface of the metal member with the highest melting point (in this case, copper member 402). It is desirable to do.
  • the three metal members are made of copper, aluminum, and magnesium
  • the copper members, the aluminum members, and the magnesium members may be superimposed in this order, and friction welding may be performed by pressing a welding tool from the copper member side.
  • the second embodiment of the metal member joining method according to the present invention is to produce a heat radiating member by erected a plurality of metal plate members on a metal base plate and performing frictional vibration joining. is there.
  • FIGS. 52 and 53 are views for explaining a method of manufacturing a heat dissipating member as a second embodiment of the metal member joining method according to the present invention.
  • FIGS. 52 and 53 are views for explaining a method of manufacturing a heat dissipating member as a second embodiment of the metal member joining method according to the present invention.
  • FIG. 53 (a) is a front sectional view showing the joining process
  • FIG. 53 (b) is a front sectional view showing the spacer detaching process. is there.
  • FIG. 54 is an exploded perspective view showing an embodiment of a jig for manufacturing a heat radiating member.
  • fins 404, 404,... which are aluminum plate members, and spacers 40, which are iron plate members, are provided. .. are arranged alternately, and they are placed upright on the member set section 412 of the heat dissipation member manufacturing jig 410. As shown in FIG. 52 (a), fins 404, 404,..., which are aluminum plate members, and spacers 40, which are iron plate members, are provided. .. are arranged alternately, and they are placed upright on the member set section 412 of the heat dissipation member manufacturing jig 410. As shown in FIG.
  • the heat-radiating member manufacturing jig 4 110 was formed inside a box-shaped jig body 4 11 1 with an open upper surface and inside the jig body 4 11 1
  • a pressing plate 413 which is slidably arranged in the member set portion 412 which is a concave portion, while penetrating the wall of the jig body 411 in a direction orthogonal to the pressing plate 413.
  • a clamping bolt 414 whose tip is fixed to the back of the pressing plate 413 and whose head is located outside the wall of the jig body 411, and is fixed in a direction parallel to the pressing plate 413
  • Base fixing plate 4 15 spanned over the upper wall of the fixture body 4 11, and fastening bolts for screwing both ends of the base fixing plate 4 15 to the upper wall of the jig body 4 1 1 4 1 6 and.
  • the fins 404, 404,... And the spacers 405, 405,... are arranged in parallel in the member set part 412 so that they are alternately erected. By screwing the tightening ports 4 14 on the stick and pressing the pressing 4 plates 13 against them, these are restrained in a state where they are in close contact with each other. At this time, since the fins 404 and the spacers 405 are all equal in height, the upper surface (base end face) of the fins 404, 404,... A horizontal plane is formed with the upper surface (base end surface) of 5, 405, ....
  • the fins 400, 404,... And spacers 405, 4 erected in the member set section 412 are set up.
  • the base plate 406, which is a copper plate, is placed on the upper surface of the base fixing plate 4 15, and the notch 4 formed on the lower surface of the base fixing plate 4 15.
  • the fins 404, 404,... and spacers 405, 405,... are constrained not to move in the length direction (the direction perpendicular to the paper surface).
  • the member arrangement steps shown in FIGS. 52 (a) and (b) are not necessarily the same, but the fins 404, 404,... .. And the base plate 406 are finally arranged at predetermined positions as shown in FIG. 52 (b). Therefore, for example, the fins 404, 404,... (Or spacers 405, 405,...) Are arranged at intervals from each other, and are placed on their base end faces. After fixing the base plate 406, the spacers are finally placed between the fins 404, 404, ⁇ (or spacers 405, 405, ⁇ ). 405, 405, ... (or fins 404, 404, ...) may be inserted.
  • the peripheral surface of the tool body 400a of the welding tool 4003, which rotates at high speed in the circumferential direction around the rotation axis 400b, is used as a base.
  • the joining tool 403 along the surface 406a of the base plate 406 while pressing vertically on the surface 406a of the other surface of the plate 406, the base plate 4
  • the fins 404, 404, ... are joined to 06.
  • a concave groove 403 c similar to that of the first embodiment is formed on the peripheral surface of the tool main body 403 a.
  • the boundary surface between fins 404 and base plate 406 is both When the temperature is raised to the temperature required for joining (eutectic temperature: 548 ° C), the deformation resistance of the base plate 406 can be kept high, and the pressing force of the joining tool 403 is reduced to the boundary surface. 4 0 TJP2003 / 010064
  • a high-strength joint without any gap can be made between the base plate 4 and the base plate 406.
  • the melting point of the iron that forms the spacer 405 is the aluminum alloy that forms the fin 404. Since it is higher than the melting point of the copper that forms the base plate and the base plate 406, by setting the peripheral speed and feed rate of the welding tool 403 to a predetermined range, the spacer 405 can be filtered. Therefore, only the base plate 406 and the fins 404 can be easily joined so as not to be joined to the base plate 404 and the base plate 406.
  • the spacers 405, 405,... are sandwiched between the fins 404, 404,..., respectively, so that the distance between the fins 404, 404 is kept accurately.
  • the fins 404, 404,... Can be positioned side by side with a predetermined space therebetween. Further, since the fins 404 are reinforced by the spacers 405, the thickness of the fins 404 is considerably reduced despite the bending stress acting on the fins 404 in the joining process. It is possible to do. In addition, the spacing between the fins 404 can be arbitrarily changed only by changing the thickness of the spacer 405.
  • Fins 404, 404,... which are thin and have a large height, are vertically erected on one surface of the base plate 406 with a short pitch to achieve a high tong ratio (for example, exceeding a tong ratio of 20).
  • the heat dissipating member 450 can be manufactured.
  • the spacer 405 is not limited to metal, but may be made of ceramic or any other material in consideration of strength, workability, and the like.
  • the shape of 5 can be determined appropriately.
  • the spacers 405, 405,... It is desirable to make the base end surfaces of the spacers 405, 405,... Abut against the one surface of the base plate 406 by making them the same height as.
  • the joining tool 400 is formed on the back surface of the base plate 400 (the other surface of the base plate 406) so as to cover the entire base end surface of each fin 404.
  • the width of the tool body 4003a of 4003 is set to be equal to or less than the thickness of the fin 404, and the base plate 406 and spacers 405 as shown in Fig. 56 (c). , 405,... are not joined (in the case shown, only in the area immediately above the fins 404, 404,...) by moving the joining tool 403 or the base plate.
  • the spacers 405, 405,... are not joined to the base plate 406 or the fins 404 regardless of the trajectory, the spacers 405, 4 05,... is the base plate 4 4 0 because 4 is not bonded, it is possible to decrease cutting manufacturing costs Save time in spacer withdrawal process. Also, if the depression remaining on the surface 406a of the other surface of the base plate 406 due to the pushing force of the joining tool 403 is large, the surface 406a of the base plate 406 is removed. By cutting with a constant thickness, a beautiful heat radiation member 450 can be obtained.
  • the tool body 400 a, 400 a, ... is fixed at predetermined intervals around the rotating shaft 400 b using a welding tool 400, which is fixed. It may be. In this case, since many parts can be joined at a time, the time required for joining can be reduced, and the joining efficiency is further improved.
  • another base plate 406 is joined to the distal end surface of the fins 404, 404,...
  • a heat dissipating member 450 in which base plates 406, 406 are joined to both end faces of fins 404, 404,. Is also good.
  • the first pattern of the manufacturing procedure of the heat dissipating members 450 shown in FIG.
  • the spacers 405, 405, ... are sandwiched between them, and the base plates 406, 406 'are arranged at both ends (upper and lower ends in the figure) of the fins 404, 404, ..., respectively.
  • the joining tools 400, 403 are pressed from the back of the base plate 406 (the upper surface in the figure) and the back of the base plate 406 '(the lower surface in the figure) to join them simultaneously.
  • the spacers 405, 405, ... are removed from the sides (in the direction perpendicular to the paper surface).
  • the second pattern of the manufacturing procedure of the heat dissipating member 450 ' is respectively located between the spaced fins 404, 404,....
  • the spacers 405, 405, ... are sandwiched, and the base plates 4.06, 406, are placed at both ends (upper and lower ends in the figure) of the fins 404, 404, ... respectively.
  • the joining tool 403 is pressed downward from the back surface (the upper surface in the figure) of one base plate 406 to join.
  • the fins 404, spacers 405, and base plates 406, 406 are turned upside down while maintaining the positional relationship of each member, and the results are shown in Fig. 59 (c).
  • the joining tool 403 is pressed downward from the back (the upper surface in the figure) of the other base plate 406 'to join.
  • the spacers 405, 405, ... are extracted from the sides (in the direction perpendicular to the paper surface).
  • the third pattern of the manufacturing procedure of the heat dissipating member 450 ' is set between the spaced fins 404, 404,....
  • the spacers 405, 405,... are sandwiched, and the base plate 406 is arranged only at one end (upper end in the figure) of the fins 404, 404,.... Press the welding tool 400 downward from the back of 06 (upper surface in the figure) to join.
  • the fins 404, spacers 405, and base plate 406 are turned upside down while maintaining the positional relationship of each member, and as shown in FIG.
  • a base plate 406 is arranged, and further, as shown in FIG. (The upper surface in the figure) and press the joining tool 403 downward to join. Finally, the spacers 405, 405, ... are removed from the sides (in the direction perpendicular to the plane of the paper).
  • the fourth pattern of the manufacturing procedure of the heat dissipating members 450 is located between the spaced fins 404, 404,....
  • the spacers 405, 405,... are sandwiched, and the base plate 406 is disposed only at one end (upper end in the figure) of the fins 404, 404,.... Press the joining tool 403 downward from the back side (the upper side in the figure) to join.
  • the spacer 405 is removed by lifting up the base plate 406 and the fins 404, and the heat dissipating member 450 is removed. Finalize. After that, the heat radiating member 450 is turned upside down, and as shown in FIG.
  • the spacers 405, 404,. ... Sandwich it, and place the base plate 406 ′ at the other end (upper end in the figure) of the fins 404, 404,.... Further, as shown in FIG. 60 (g), the joining tool 400 is pressed downward from the back surface (the upper surface in the figure) of the base plate 406 'to join. Finally, the spacers 405, 405, ... are extracted from the sides (in the direction perpendicular to the paper surface).
  • the third embodiment of the metal member joining method according to the present invention is the second embodiment This is substantially the same as that described above, except that the heat radiation member manufacturing jig 410 is not used and the spacer jig 420 is used instead.
  • the spacer jig 420 has a cross section in which the distal ends (lower ends shown) of the spacers 400, 405,... This is a comb-shaped jig. Then, in the member arranging step, after fixing the spacers 400, 405,... Of the spacer jig 420 upward, as shown in FIG. 61 (b), , Are inserted between spacers 405, 405,..., respectively, and as shown in Fig. 61 (c), fins are inserted. Fix the base plate 406 so that the lower surface (one surface) of the base plate 400 contacts the upper surface (base end surface) of 404, 404, .... It should be noted that the steps in FIGS.
  • the fins 400 are pressed against the base plate 406 while pressing the joining tool 403 from the upper surface (the other surface) of the base plate 406. 4, 404, ... are joined.
  • the spacer jig 420 When the spacer jig 420 is used as in the present embodiment, the jig 410 for manufacturing the heat radiating member becomes unnecessary, and the arrangement of the spacers 450, 405,... There is a ray advantage if it can be omitted.
  • the fourth embodiment of the metal member joining method according to the present invention is substantially the same as the second embodiment, except that the member arrangement step is divided into a fin arrangement step and a subsequent base plate arrangement step.
  • the first fin arrangement step as shown in FIG. 62 (a), fins 404, 404,... and spacers 405, 405,... are alternately arranged. In parallel, these are erected and arranged on the member set section 4 12 of the heat radiation member manufacturing jig 4 1 ⁇ .
  • the height of the spacers 405, 405,... is smaller than the height of the fins 404, 404,... within the thickness of the spacer 405.
  • the base plates (404, 404,... Place the base plate 400.
  • the fins 404, 404 ,... (The part protruding from spacers 405, 405,...) 404a is bent to form fins 404, 404,... with an L-shaped cross section And fix it.
  • the base portion 404 of the bent fin 404 is not included. 4a do not overlap each other and form a surface along one surface (the lower surface in the figure) of the base plate 406.
  • the peripheral surface of the tool body 400a of the welding tool 4003, which rotates at high speed in the circumferential direction around the rotation axis 400b, is used as a base. Moving the joining tool 403 along the surface 406a of the base plate 406, while pressing vertically on the surface 406a of the other side of the plate 406 , The base ends 404 a of the fins 404, 404,... Are joined to the base plate 406.
  • the base end portion 404a of the fin 404 bent at a right angle forms a surface along one surface of the base plate 406, compared with the second embodiment, As a result, the contact area between the base plate 406 and the fins 404 is large, and both can be securely joined. In other words, according to the present embodiment, even when the thickness of the fins 404 is extremely small, the fins 404, 404,... The joined heat dissipating member 450 can be manufactured. ⁇
  • FIG. 64 (a) the center of one thin aluminum alloy plate 431 is formed so that the whole becomes an inverted T-shape.
  • a spacer 405 is arranged at right angles to the part, and as shown in FIG. 64 (b), a plate member 43 is inserted into the groove at the center of the fin component material forming jig 440 having a concave cross section.
  • the spacer is inserted into the groove at the center as shown in Fig. 64 (c).
  • the fin constituent material 430 is formed in a circular shape in cross section by a pair of left and right fins 404, 404 and a base end 404a connecting these ends.
  • a plurality of fin constituent members 4300 in which the spacer 405 is interposed between the pair of left and right fins 404, 404 are prepared, and these fin constituent members 4 3 ... And spacers 405 ′, 405,... are alternately arranged, and as shown in Fig. 64 (d), these are radiated to a jig for manufacturing a heat radiating member. It is placed upright on the member set part 4 12 of 4 10.
  • the fin constituent material 430 is placed with the spacer 405 sandwiched between the pair of left and right fins 404, 404, and the base end portion 404a is positioned upward. It is in a state of facing. Also, the height of the spacers 405,, 405 ',... Arranged so as to be sandwiched between the fin constituent materials 430, 430,. The thickness of the base end portion 404 a of the fin constituent material 430 is larger than the height of the spacer 405 sandwiched between the pair of left and right fins 404 and 404. It is desirable to form a horizontal upper surface between the base end portion 404 a of the fin constituent member 430 and the base end portion of the spacer 405 ′ by increasing the size.
  • the fin constituent members 430, 430,... And spacers 405, Place the base plate 406 on the upper surface of 405,,... and fix it. In this state, the base end portion of the fin component 430 and the base end surfaces of the spacers 405 abut on one surface (the lower surface in the figure) of the base plate 406. Thus, the member arrangement process is completed.
  • FIGS. 64 (a) to (e) are not necessarily performed as described above, but the fin constituent members 43, 43,... If the spacers 405, ... and spacers 405, ..., 405 ', ... can be finally arranged in a predetermined position as shown in Fig. 64 (e), the procedure may be any. Absent . Therefore, for example, the fin constituent members 430, 430,... Formed in advance in a concave shape in cross section are arranged at an interval from each other, and a pair of fins 404 of the left and right sides of each fin constituent member 430 are arranged. , 404 are inserted between spacers 405, 405,..., Respectively, and spacers 405, 430,.
  • the base plate 406 may be arranged, or the fin components 430, 430,.
  • the base plate 406 is arranged at intervals, and finally, the spacers are placed between the pair of left and right fins 404, 404 of each fin component 430. , 405, ..., and spacers 405,, 405, ... between the fin constituent materials 430, 430, ... Good.
  • the circumferential surface of the tool body 400a of the welding tool 4003, which rotates at high speed in the circumferential direction around the rotation axis 400b, is used as a base.
  • the joining tool 403 along the surface 406a of the base plate 406 while pressing vertically on the surface 406a of the other surface of the plate 406, the base plate
  • the base end portion 404a of the fin components 430, 430, ... is joined to 406.
  • the base end portion 404 a of the fin constituent member 430 forms a surface along one surface of the base plate 406, the base plate 406 is smaller than that of the first embodiment.
  • the contact area between the fin and the fin is increased, and the two can be securely joined. That is, according to the present embodiment, even when the thickness of the fins 404 is considerably small, the fins 404, 404,...
  • the heat radiating member 450 can be manufactured.
  • the so-called friction vibration joining using the joining tool 403 has been exemplified, but the present invention is not limited to these.
  • a rotating welding tool 400 is pushed into a metal member having a high melting point, and the frictional heat and the pressing force generated thereby are transmitted to an interface between the metal members.
  • the method is not limited to the contact method as described above, but may be a non-contact method in which the interface between the metal members is heated and pressed from the side of the metal member having a high melting point using electromagnetic induction.
  • a joining tool that rotates a copper plate (copper plate) and an aluminum alloy (A150) plate (aluminum plate) at high speed Friction vibration welding was performed, in which the outer surface of the steel plate was moved while being pressed against the surface of the copper plate.
  • the copper plate had a thickness of 4 mm, a width of 70 min, and a length of 100 mm
  • the aluminum plate had a thickness of 0.5 mm, a width of 70 mm, and a length of 100 mm.
  • the welding tool had a diameter of 120 mm and a width of 24 mm
  • the rotation speed of the welding tool was 200 rpm (peripheral speed of 1507 m / min)
  • the feed speed was 0.75 m / min. .
  • Table 5 shows the results of an examination of the mechanical load.
  • Table 6 shows the results of examining the joint quality, appearance, and mechanical load by setting the angle of inclination and the number of grooves in the circumferential direction of the grooves on the peripheral surface of the welding tool.
  • the width of the welding tool was set to 10 mm only in Comparative Example 2-2.
  • the number of grooves formed over the entire circumference of the welding tool is two or more in the width direction.
  • the fact that the number of grooves is 0 indicates that there is no concave groove inclined in the rotation direction of the welding tool.
  • Table 7 shows the results of examining the joining quality, appearance, and mechanical load by setting the depth of the groove on the peripheral surface of the joining tool in various ways.
  • FIGS. 68 (a) and 68 (b) are front cross-sectional views showing each procedure of the friction joining of the metal member as the metal member joining method according to the first embodiment.
  • Figure (c) is the side view of Figure 68 (b), Figure 69 (a), Figure 69 (b) and Figure 69 (c) the figure in Figure 68 (b) Sectional view showing the state of plastic deformation of the overlapped portion of the aluminum member and the copper member in chronological order, FIG.
  • the figure is a partially enlarged view of the welding tool shown in Fig. 68 (b) and Fig. 68 (c).
  • an aluminum member 501 and a plate-shaped copper member 502 are placed on top of each other so as to make surface contact. At the same time, it is fixed with a jig (not shown).
  • the welding tool 503 which rotates at a high circumferential speed R in the circumferential direction around the rotating shaft 503b.
  • the joining tool 503 is moved along the surface 520a of the copper member 502.
  • the joining tool 503 has a disk-shaped tool body 503a fixed to the tip of the rotating shaft 503b, and the tool body 503a is a tool such as JIS: SKD61. Made of steel.
  • the tool body 503a rotates around the rotation axis 503b in such a direction as to feed the copper member 502 back in the traveling direction while holding down the surface 502a of the copper member 502.
  • the tool body 503a is fast moving in the circumferential direction with its peripheral surface pressed into the surface 502a of the copper member 502 by a fixed amount ⁇ . While rotating, it moves along the surface 502 a of the copper member 502. Then, by pushing the tool body 503a into the copper member 502, the high-speed rotation is performed while eliminating the gap between the overlapping portions of the aluminum member 501 and the copper member 502. Vibration caused by the contact between the tool body 503a and the copper member 502 causes the oxide film on the overlapped part of the aluminum member 501 and the copper member 502 to break and break.
  • the predetermined area of the copper member 502 and the area in the vicinity thereof, which is in contact with the tool body 503a, and the predetermined area of the aluminum member 501 adjacent to these areas are defined by the tool. It is generated by frictional contact between the main body 503 a and the copper member 502. The temperature is raised by the heat and plasticized (fluidized) in each solid state. As a result, the copper member 502 and the aluminum member 501 plastically flow even at the interface between each other, and are plastically deformed from their initial surfaces. Then, after the tool body 503a of the joining tool 503 has passed, it is cooled and, as shown in FIG. 69 (c), the aluminum member 501 and the copper member 502 are mutually connected. The joined joined body J is manufactured.
  • the tool body 503a applies a pressing force to the surface 502a of the copper member 502 of such a joined body J as shown in FIG. 69 (c).
  • the trace that passed while loading appears as a pair of shallow steps 502b and 502b.
  • the overlapped portion of the aluminum member 501 and the copper member 502 is formed by the plastically deformed aluminum member 501 and the copper member 502 being corrugated.
  • the joining surface S whose cross section is uneven is formed.
  • the copper member 502 and the aluminum member 501 are securely joined by the joint surface S.
  • step portions 502 b and 502 b formed on the surface 502 a of the copper member 502 by the pressing force of the joining tool 503 are made of aluminum member .501 and copper After the member 502 is joined, the surface 502 a of the copper member 502 may be cut to a certain thickness to smooth it.
  • the welding tool 503 is pressed from the aluminum-member member 501 side, but the melting point of the aluminum member 501 is higher than the melting point of the copper member 502. is low, secondary aluminum ⁇ arm member 5 0 1 and the copper member 5 0 2 superposition portion temperature required for bonding (eutectic temperature: 5 4 8 ° C) or more Aruminiumu member 5 0 1 upon reaching Since the deformation resistance is relatively small, the pressing force of the joining tool 503 is not sufficiently transmitted to the overlapping portion of the aluminum member 501 and the copper member 502, and the joining is likely to be defective.
  • the joining tool 503 is pressed from the copper member 502 having a higher melting point than the aluminum member 501, and the aluminum member 501
  • the overlapped portion of the copper member 502 and the temperature required for joining reaches or exceeds the deformation resistance of the copper member 502
  • the pressing force of the joining tool 503 is maintained.
  • the pressure can be sufficiently transmitted to the overlapping portion of the aluminum member 501 and the copper member 502. Therefore, according to the metal member joining method according to the present embodiment, high-strength joining without a gap between the two members 501 and 502 can be performed.
  • the joining tool 503 used in the metal member joining method according to the present embodiment substantially follows the circumferential surface of the tool body 503 a in the rotational direction. It is desirable that the groove 503 c is formed in the same direction. According to the metal member joining method using such a joining tool 503, the contact area between the peripheral surface of the joining tool 503 and the surface 502a of the copper member 502 becomes larger, and the efficiency is improved.
  • the copper member 502 and the aluminum member 501 can be efficiently joined by generating frictional heat.
  • the welding tool 503 is arranged so that the groove 503c is slightly inclined and continuous with respect to the rotation direction, that is, around the rotation axis 503b of the welding tool 503. It is more preferable that the shape is formed so as to draw a spiral trajectory along the circumference of 03. According to such a method of joining metal members using the joining tool 503, the plasticized metal accumulated inside the concave groove 503c as the joining tool 503 rotates and moves. Since it is sent out sequentially in the width direction of the joining tool 503, the amount of dent (the height of the stepped portion 502b) remaining on the surface 502a of the copper member 502 after joining can be minimized. Wear.
  • the concave groove 503 on the peripheral surface of the tool body 503 a of the welding tool 503 3 The width W l (mm) of the flat portion 503 d between the 503 c and the groove 503 5 0 3
  • the width w 2 (mm) of c should be 1 ⁇ x ⁇ 5 s force, 1 ⁇ w 2 ⁇ 3, force and 0.6 7 ⁇ w x / w 2 ⁇ 5.0. Desirably set.
  • the flat part 503 d and the concave groove 503 c are set as described above, so that the joining tool 503 to the surface 502 a of the copper member 502 is used.
  • a concave groove 503c on the peripheral surface of the tool body 503a is formed so as to be inclined with respect to the rotation direction of the tool body 503a. 0 is preferably set to 0.5 to 2.0 °. Also, it is desirable that the joining tool 503 has two or more concave grooves 503c formed over the entire circumference of the tool body 503a. With the inclination angle and the number of the grooves 500c set in this manner, the groove 500 is formed with the rotation and movement of the tool body 503a of the welding tool 503.
  • the metal of the plasticized copper member 502 accumulated in the inside is sent out continuously continuously in the width direction of the tool body 503a, and after passing through the tool body 503a, the copper member 502 Pari and dents hardly remain on the surface 502a of the surface, and the mechanical load is reduced.
  • the welding tool 503 is set to have a depth d force S O.3 to 1.2 mm of the concave groove 503 c on the peripheral surface of the tool body 503 a. Since the depth d of the concave groove 503c is set as described above, the metal of the plasticized copper member 502 is not clogged in the concave groove 503c, and after the joining, The amount of dents remaining on the surface 502 a of the copper member 502 is also small, and efficient joining is possible.
  • the peripheral speed of the welding tool 503 during welding is lower than 250 m / min, the amount of heat generated by frictional contact between the welding tool 503 and the copper member 502 is too small. Therefore, the temperature of the overlapped portion between the copper member 502 and the aluminum member 501 is low, resulting in poor bonding.
  • the peripheral speed of the bonding tool 503 at the time of bonding is 200 m / m2.
  • the temperature of the copper member 502 that is in contact with the welding tool 503 becomes too high locally, causing plastic deformation of the part, and the pressing force of the welding tool 503 overlaps. This is because they are not sufficiently transmitted to the parts, and a gap may be generated between the two members. Therefore, if the welding tool 503 at the time of welding is rotated at a peripheral speed of 250 to 200 m / min, the amount of heat generated by frictional contact between the welding tool 503 and the copper member 502 is reduced. It will be an appropriate value and good bonding can be performed.
  • the joining tool 503 (tool body 503a) at the time of joining is obtained by the following equation (B). It is desirable to push the copper member 502 into the surface 502 a by the pushing amount ⁇ (m).
  • the pushing amount ⁇ of the joining tool 503 into the surface 502 a of the copper member 503 at the time of joining is set to be between 0.03 t and 0.3 t, the pressing of the joining tool 503 can be performed.
  • the pressure becomes an appropriate value the copper member 502 and the aluminum member 501 can be joined to each other without generating a gap at the overlapped portion, and the surface 502a of the copper member 502 is formed.
  • the dents can be made smaller.
  • the joining tool 503 (tool body 503a) at the time of joining is expressed by the following equation (C ) Is desirably moved along the surface 502 a of the copper member 502 at the feed speed V (m / min) determined by the above.
  • V ⁇ RZ 5 . it has been confirmed 0 X 1 0 6 X t 2
  • V ⁇ RZ 5 . it has been confirmed 0 X 1 0 6 X t 2
  • bonding From the viewpoint that if the peripheral velocity V of the tool 503 is too small, the joining efficiency is reduced, and it has been confirmed by experiments that the joining efficiency is good when the condition of 0.1 is satisfied.
  • FIG. 71 (a) is a perspective view of a joining tool used in the metal member joining method according to the second embodiment
  • Figs. 71 (b) and 71 (c) show the second embodiment
  • FIGS. 72 (a) and 72 (b) show another example of a joining tool used for the metal member joining method according to the second embodiment
  • FIGS. 73 (a) and 73 (b) are perspective views showing another example of the welding tool used, and illustrate a friction welding process in the metal member welding method according to the second embodiment.
  • an aluminum member 501 and a plate-shaped copper member 502 are overlapped with each other so that they come into surface contact with each other in the same manner as the metal member joining method according to the first embodiment. (See Fig. 68 (a)).
  • the joining tool 503 instead of the joining tool 503 (see FIGS. 68 (b) and 68 (c) used in the metal member joining method according to the first embodiment, the following is used.
  • a joining tool is used.
  • the joining tool 504 used in this metal member joining method is composed of a disc-shaped tool body 504a and a rotating shaft 504b.
  • the rotating shaft 504b is fixed to the upper surface US of the tool body 504a.
  • a plurality of projections b are formed on the lower surface DS of the tool body 504a.
  • the projection b can be made of, for example, an abrasive such as diamond-like carbon (DLC) fixed to the lower surface DS.
  • the tongue main body 504 a of the joining tool 504 is provided on the lower surface DS.
  • a thin groove may be provided.
  • the narrow groove G may extend radially from the rotation center AX on the lower surface DS, as shown in FIG. (B), or may extend on the lower surface DS, as shown in FIG. 71 (c). It may extend in a lattice shape.
  • the narrow groove G may be curved.
  • the narrow groove G may have a scroll shape formed in a spiral shape on the lower surface DS.
  • a plurality of annular narrow grooves G having mutually different diameters may be arranged concentrically.
  • the tool of the welding tool 504 is used.
  • the main body 504a may have a curved rail (projecting ridge) on its lower surface DS instead of the projection b described above.
  • This rail may be of a scroll shape spirally formed on the lower surface DS (see Fig. 71 (a)) or may be formed of a plurality of annular rails of different sizes on the lower surface DS, which are concentric. May be arranged in the same manner.
  • a joining tool 5 that rotates at high speed about a rotating shaft 504b is used. While pressing the lower surface DS of the tool body 504 a of 0.4 on the front surface 502 a of the copper member 502, the joining tool 504 is moved along the surface 520 a of the copper member 502 The aluminum member 501 and the copper member 502 are joined by moving at the set feed speed V.
  • the tool body 504a is in a state where its lower surface DS is pressed into the surface 502a of the copper member 502 by the predetermined amount ⁇ as described above. While rotating at high speed, it moves along the surface 502 a of the copper member 502. By pushing the tool body 504a into the copper member 502, the tool body that rotates at a high speed while eliminating the gap between the overlapping portions of the aluminum member 501 and the copper member 502 is pressed. 5 0 4a and copper member 5 0 2 The oxide film at the overlapped part of the aluminum member 501 and the copper member 502 is broken and broken by the vibration caused by the contact with the aluminum member 501 and the tool body 504a, as shown in Fig.
  • the predetermined area of the copper member 502 and the area adjacent thereto and the predetermined area of the aluminum member 501 adjacent to these areas are brought into friction with the tool body 504a and the copper member 502.
  • the temperature is raised by the heat generated by the contact, and each is plasticized (flow 13 ⁇ 4) in the solid state.
  • the copper member 502 and the aluminum member 501 plastically flow at the boundary surface of each other, and are plastically deformed from their initial surfaces.
  • the trace of the passing of the tool body 504a of the welding tool 504 is made by the pressing force of the tool body 504a in the same manner as the metal member joining method according to the first embodiment.
  • a pair of shallow step portions 502 b and 502 b are formed on the surface 502 a of the substrate (see FIG. 69 (c)). Further, the overlapped portion of the aluminum member 501 and the copper member 502 is formed by the plastically deformed aluminum member 501 and the copper member 5 in the same manner as the metal member joining method according to the first embodiment. Thus, the copper member 502 and the aluminum member 501 are securely joined via the joint surface S (see FIG. 6). 9 See Figure (c).).
  • a bonded body J (a second metal member) composed of the aluminum member 501 (first metal member) and the copper member 502 (second metal member) obtained by the above-described metal member bonding method.
  • Fig. 74 (a) is a perspective view of the heat dissipating member, Figs. 74 (b) and 74 (c), and Figs. 75 (a) and 75 (b) 74 is a view for explaining a manufacturing process of the heat radiation member in FIG.
  • This heat dissipating member is used, for example, as a heat dissipating member for ICs, a heat dissipating member for Peltier elements, a heat dissipating member for motors, and a heat dissipating member for electronic control components.
  • the heat dissipating member 506 has a base plate 507 and a plurality of heat dissipating fins 508a.
  • the base plates 50 and 7 of the heat radiating member 506 correspond to the copper member 502 of the joined body J (see FIG. 69 (c)), and the heat radiating member 508 is described later.
  • the joint J is formed from a portion corresponding to the aluminum member 501 in the above procedure.
  • a method of manufacturing the heat radiation member 506 will be described.
  • a plurality of heat radiation fins 508a are erected on the copper member 502 by forging the aluminum member 501 of the above-mentioned joined body J.
  • a forging die used for this forging for example, as shown in FIG. 74 (b), an opening is formed in the same shape as the planar shape of the joined body J, and a flat bottom 509a is formed in that shape.
  • On the side facing 9a there is an upper forging die 510 in which a depression 510a shaped like the outer shape of the heat radiation fin 508a is formed.
  • the joined body J is disposed on the bottom 509a of the lower forging die 509. At this time, the joined body J is arranged such that the aluminum member 501 is opposed to the upper forging die 5110.
  • the upper forging die 510 is pushed down from the opening 509c of the lower forging die 509 toward the internal space 509b, as shown in Fig. 74 (c).
  • the aluminum member 501 enters into the recess 5101a formed in the upper forging die 51 ° by plastic deformation.
  • the upper forging die 5 5 10 is lifted and the upper forging die 5 5 10
  • the upper forging die 5 10 is lifted and the upper forging die 5 10
  • the method of manufacturing the heat radiating member 506 is not limited to such a forging process, but may be a cutting process as described below.
  • a plurality of slits are formed in the aluminum member 501 by cutting the aluminum member 501 of the joint body J, and the plurality of slits are formed on the copper member 502.
  • a plurality of heat radiation fins 508a are erected.
  • a plurality of cutting tools used in this cutting process have a disk-like shape, and have cutting teeth (not shown) formed on a peripheral surface thereof.
  • the cutters 5 1 1a, 5 1 1a ⁇ and the cutters 5 1 1a, 5 1 1a- ⁇ are arranged at equal intervals.
  • a cutting tool 5 11 composed of a rotating support shaft 5 1 1 b and the like.
  • the aluminum member 502 is divided by the plurality of slits 502c, 502c..., So that the radiation fins 508a arranged at a predetermined interval are formed.
  • the heat radiation member 506 shown in FIG. 74 (a) is manufactured.
  • the aluminum member 5 The step of erecting a plurality of radiating fins 508a on the copper member 502 by forging or cutting 01 corresponds to a "third step" in the claims.
  • the heat radiating member 506 having the heat radiating fins 508 a formed by forging or cutting the aluminum member 501 of the joined body J and the method of manufacturing the same have been described above.
  • the heat dissipating member is not limited to this, and as described below, a heat dissipating fin as the first metal member and a base plate as the second metal member are joined by a friction joining method (described above).
  • Other heat dissipating members joined to each other by the metal member joining method according to the first and second embodiments) may be used.
  • FIG. 76 is a cross-sectional view of another heat dissipating member
  • FIG. 77 is a perspective view of a heat dissipating fin constituting the heat dissipating member of FIG. 76
  • FIG. 78 is a heat dissipating member of FIG.
  • FIG. 79 (a) to FIG. 79 (c) are perspective views of a supporting device used for manufacturing the heat-radiating member shown in FIG. 76
  • FIG. FIGS. a) to 80 (d) are views showing a modification of the heat radiation member of FIG. 76.
  • the heat dissipating member 5 12 described here is composed of a heat dissipating fin 5 12 a (a first metal member) made of an aluminum plate and a base plate 5 1 made of copper. 2 b (second metal member).
  • the heat dissipating fins 5 12 a located at the outermost end are located on the base plate 5 1 2 b.
  • the length OS of the offset may be about 1 mm.
  • the radiating fins 5 1 2a, 5 1 2 & 5 are formed by extruding an aluminum material and have an L-shaped cross section, as is apparent from FIG. 77. It is composed of a plate material.
  • the heat radiating fins 5 12 a may be formed by bending a flat plate material into an L shape.
  • the thickness (plate thickness) of the heat radiation fins 512a may be about 0.2 to 0.8 ram.
  • the width W 5 of the heat radiating Fi down 5 1 2 a portion in contact with the base plate 5 1 2 b improves the bonding strength between The wider base 5 1 2 b
  • the number of heat radiating fins 5 12 a and 5 12 a-standing on the base plate 5 12 b is reduced, so the heat radiating area of the heat radiating member 5 12 is reduced. Is reduced. Therefore, in order to satisfy both securing heat radiation area and the bonding strength of the heat radiating Fi down 5 1 2 'a with respect to the base plate 5 1 2, the prior SL width W 5, 1. 2 ⁇ 2. 0 mm range It is desirable to set to.
  • each of the plurality of heat dissipating fins 5 12 a and 5 12 a- ⁇ ' is supported so as to be arranged at a predetermined interval.
  • a plurality of heat radiation fins 51 2 a, 51 2 a There is a method using a supporting device that supports at predetermined intervals.
  • a supporting device for example, as shown in FIG. 78, a plurality of slits 51 3 a for receiving the respective heat dissipating fins 51 2a, 51 2a ' , 513a... ′ are arranged in one direction at predetermined intervals, and are formed of block members.
  • Each of the heat sink fins 5 12 a and 5 1 2 a- is inserted into each of the slits 5 13 a and 5 13 a- After 0064
  • This support device 5 13 is fixed to a predetermined jig for manufacturing a heat radiating member.
  • the heat-radiating member manufacturing jig 5 14 is attached to a box-shaped jig body 5 14 a having an open upper surface and a wall constituting the jig body 5 14 a.
  • a fastening bolt 514 b for fixing the support device 513 housed in the jig body 514 a is provided.
  • the supporting device is arranged such that one of the bent edges 5 12 c of the heat-radiating fin 5 12 a faces the open upper side of the jig body 5 14 a.
  • 5 13 is housed in the jig body 5 14 a and a plurality of heat-radiating fins 5 1 2 a, 5 1 2 a ' ⁇ ⁇ is fixed.
  • the base plate 5 1 2c is attached to the edge 5 1 2c of the heat dissipating fin 5 1 2a facing the open upper side of the jig body 5 14a.
  • the base plate 512b is fixed on the edge 512c of the heat radiation fin 512a by a fixing jig (not shown).
  • the tool body which rotates at high speed in the circumferential direction around b, 503 Moves along the surface of base plate 5 1 2 while pressing the peripheral surface of 3 a vertically against the surface of base plate 5 1 2 b By doing so, the heat radiation fins 5 12 a, 5 12 a-.. Are joined to the base plate 5 12 b.
  • the pressing force of the joining tool 50 3 is applied to the overlapping portion of each of the heat dissipating fins 5 12 a, 5 12 a-and the base plate 5 12. Since the heat can be efficiently transmitted, no gap is formed between each of the heat radiating fins 5 12 a and 5 12 a and the base plate 5 12 b. 5 12 a, 5 12 & ⁇ ⁇ ⁇ and the base plate 5 12 b are joined with high strength.
  • the method of joining the metal members according to the first embodiment is used, but the joining between the radiation fins 512a and the base plate 512b is performed by using the metal according to the second embodiment. It goes without saying that a member joining method may be used.
  • the joining tools 50 3, 504, 50 0 are formed from the plate-shaped copper member 502 having a high melting point. 5 (Refer to Fig. 68 (b), Fig. 68 (c), Fig. 71 (a)-Fig. 71 (c), Fig. 72 (a), Fig. 72 (b) ),
  • the copper member 502 is deformed when the overlapping portion of the aluminum member 501 and the copper member 502 rises to the temperature required for joining. Keeping the resistance high, the pressure is transmitted efficiently to the overlap. Therefore, according to this metal member joining method, it is possible to perform high-strength joining between the aluminum member 501 and the copper member 502 without any gap by a simple device.
  • the aluminum part A joined body J in which the material 501 and the copper member 502 (base plate) are joined by the above-described metal member joining method is formed. Then, the aluminum member of the joined body J is formed. The part corresponding to 501 is machined to form a heat dissipation fin 508a (see Fig. 74 (a)), or a heat dissipation fin made of aluminum and a base made of copper are formed.
  • the heat radiating member 5 12 (see FIG. 76) is manufactured by joining the plate 5 12 b with the metal member joining method.
  • the gap between the heat radiating fin 512a and the base plate 512b can be formed by a simple device in the same manner as the metal member bonding method. No high-strength bonding is possible.
  • the heat dissipating fins 50a and 51a and the base plate 50a are not heated and held for a predetermined time in a vacuum furnace or the like like soldering. 7, 51 2b (see Fig. 74 (a) and Fig. 76) can be joined, so that manufacturing costs can be reduced.
  • the heat dissipating fins 512a and the base plate 512b When overlapping with each other, the plurality of heat dissipating fins 5 12a, 512a ⁇ are supported by the support device 5 13 (see Fig. 78). Therefore, according to the method of manufacturing the heat radiating member 5 12, each of the heat radiating fins 5 12 a and 5 12 a. Positioned.
  • the heat radiating fin 5 12 when the heat radiating fin 5 12 a and the base plate 5 12 b are joined by the metal member joining method, the heat radiating fin 5 12 a Bending stress is applied, but the radiating fins 5 1 2a are reinforced by supporting devices 5 • 13. Therefore, according to the method of manufacturing the heat radiating member 5 12, the thickness of the heat radiating fin 5 12 a can be considerably reduced. Also, in the method of manufacturing the heat radiating member 512, the heat radiating fin 5 When joining the base plate 5 1 2b with the metal member joining method, the heat radiating fins 5 1 2 a are reinforced by the supporting device 5 13, so that the height h 5 of the heat radiating fins 5 1 2 a (See Figure 76) can be made larger. Therefore, according to the method for manufacturing the heat dissipating member 5 12, the heat dissipating member 5 12 having a high tongue ratio (for example, exceeding the tongue ratio 20) can be manufactured.
  • a high tongue ratio for example, exceeding the tongue ratio 20
  • the heat dissipating member 5 1 2 is obtained by applying heat and pressure from the base plate 5 1 2 b side to join the heat dissipating fins 5 1 2 a and the base plate 5 1 2 b. It is. In other words, unlike the conventional product, it is not joined by applying heat and pressure from the heat radiation fin 512a side. Therefore, according to the heat radiation member 5 12, even if the heat radiation fin 5 12 a has a complicated shape and structure, it can be manufactured by a simple device. As a result, in the heat dissipating member 5 12, the heat dissipating fins 5 12 a having a complicated shape and structure having a larger heat dissipating area can be disposed on the base plate 5 12 b.
  • the rotating joining tools 503, 504, 505 (the 68 th) are rotated.
  • Fig. (B) Fig. 68 (c), Fig. 71 (a)-Fig. 71 (c), Fig. 72 (a), Fig. 72 (b)
  • the metal member joining method of the present invention is not limited to such a contact method, and a method of heating by electromagnetic induction instead of the contact method is used.
  • the aluminum member 501 is exemplified as the first metal member
  • the copper member 2 is exemplified as the second metal member.
  • the metal of the present invention P Kasumi 003/010064
  • the method of joining the members, the method of manufacturing the heat dissipating member, and the heat dissipating member are not limited to those using them, and metal members having different melting points from each other can be widely used.
  • the method using the joining tool 503 having the concave groove 503c on the peripheral surface of the tool main body 503a has been exemplified.
  • a joining tool provided with a tool body having a projection on the peripheral surface may be used instead of the joining tool 503, or the peripheral surface may be formed of a smooth surface.
  • the joining tool provided with the tool body to be used may be used.
  • the method using the joining tool 504 in which the projection b and the narrow groove G are formed on the lower surface DS of the tool main body 504a is exemplified.
  • a joining tool provided with a tool body having a lower surface DS formed of a smooth surface is used instead of the joining tool 504 used in the metal member joining method. It is good.
  • the heat radiating member according to the present embodiment, a heat radiating fin having an L-shaped cross section has been exemplified.
  • the present invention is not limited to this.
  • the heat-radiating fins 512a may have a U-shaped cross section.
  • the heat radiation member of the present invention has a corrugated fin in which the heat radiation fins 512a are made of corrugated plate material. It may be.
  • the waveform of the plate is not particularly limited, and may be a rectangular shape as shown in FIG. 80 (b) or a rectangular shape as shown in FIG. 80 (c). There may be.
  • the joint between the heat radiation fins 5 12 a and the base plate 5 12 b may be any part where the heat radiation fins 5 12 a and the base plate 5 12 b are in contact. And, for example, col It may be a part of the contact part, such as both ends of the gate fin.
  • the heat radiation fins 512a made of one plate material are exemplified.
  • the radiating fins used for the radiating member are not limited to this, but may be bent to form a waveform as shown in FIGS. 80 (b) and 80 (c).
  • the plate members may be arranged on the base plate, and the plate members may be individually radiated fins (not shown) joined to the base plate.
  • the width W 5 may be appropriately set within a range of 1.2 to 2.0 mm. 1 2 the height h 5 of a may be Re set appropriately in the range of. 8 to 1 6 mm.
  • the fin width P may be set to about 1.5 to 2.0 mm. Further, in the heat radiation fin 512a as shown in FIG. 80 (b), the fin width P may be set to about 1.5 to 1.8 mm.
  • the height h 5 of the heat radiating Huy down 5 1 2 a may be set appropriately in the range of. 8 to 1 6 mm.
  • the heat dissipating member according to the present embodiment, an example including the heat dissipating fins 508 a and 512 a (see FIGS. 74 (a) and 76) has been exemplified.
  • the member is not limited to this, and as shown in FIG. 80 (d), on the base plate 512b as the second metal member, as the first metal member A plurality of the heat radiation columnar members 5 1 2d may be connected.
  • the cross-sectional shape of the heat-dissipating columnar body 512 d there is no limitation on the cross-sectional shape of the heat-dissipating columnar body 512 d, and it may be a column or a prism.
  • the height 5 of the heat radiation column 5 12 d may be about 20 to 40 mm, and the arrangement interval P of the heat radiation column 5 12 d on the base plate 5 12 b is 1 8 to 2. O mm is enough.
  • the heat-dissipating column 5d is a column, its diameter may be about 2 mm.
  • FIG. 81 (a) is a perspective view showing a first embodiment of a heat radiation member according to the present invention
  • FIG. 81 (b) is an exploded perspective view thereof
  • Fig. 82 (a) is a sectional view taken along the line A-A of Fig. 81 (a)
  • Fig. 82 (b) is a sectional view taken along the line BB
  • Fig. 82 (c) is a bottom view of the same. It is.
  • the heat radiating member 601A is composed of a base plate 602 and fins 603, 603,...
  • the base plate 6 0 2 is made of copper, the width, length, respectively the thickness W 6, L, t.
  • the CPU 605 serving as a heating element is thermally connected to one surface 602 a of the base plate 602 via a heat spreader 604. Further, on the other surface 602b of the base plate 602, a ridge 62c having a thickness ts, a width Ws, and a length Ls is formed.
  • the width W s of the ridges 602 c is about the same as the width of the heat spreader 604.
  • the length L s of the ridges 62 c is equal to the length L of the base plate 602 here, but may be L s or L.
  • the fins 603, 603,... are made of aluminum, and are erected on the surface 602b of the base plate 602 so as to be parallel to each other.
  • the fins 603, 603 are formed by joining a pair of fins at a base end portion 603 a to form a fin constituent member 606.
  • a notch 606a having a shape corresponding to the ridge 602c of the base plate 602 is formed.
  • 60 3, ... are connected to all the fins 60 3, 60 3, ... when the ridges 60 2 c are erected on the surface 60 2 of the base plate 60 2 .
  • the ripening generated in the CPU 605 is first transmitted to the base plate 602 via the heat spreader 604, and then transmitted to the base plate 602 in the base plate 602. 8 2
  • the fins are transmitted to the fins 60 3, 60 3,... and are naturally cooled here, or are forcibly cooled by a fan or the like and then released into the air. Therefore, in general, the larger the thickness of the base plate 602, the more the thickness of the base plate 602 increases. It is easier to transfer the heat of 116 05 to the fins 60 3, 60 3, ... but in this case the weight of the base plate 60 2 naturally increases.
  • the thickness of the base plate 602 is not increased as a whole, but the heat of 0 to 116605 is applied to the fins 603, 603,...
  • the heat of the CPU 605 is more efficiently transmitted to the fins 603, 603,.... That is, by forming the ridges 62c on the base plate 602, a larger amount of heat flows in the direction of the arrow X than in the direction of the arrow Y in FIG.
  • the heat generated at 605 is more efficiently transmitted to the fins 603, 603, ....
  • the fact that the heat radiation performance can be increased without changing the overall weight of the base plate 62 means that the weight can be reduced without lowering the heat radiation performance.
  • the ratio of the width W s against in the thickness ts (the aspect ratio) of 5 to 3 0 or the total height of the heat radiating member h 6 It is desirable to set the ratio of the thickness ts of the ridges 62 c to 0.1 to 0.3 to 0.3. As can be seen from the examples described later, if the thickness of the ridges 62c is too large, the pressure loss will increase and the heat radiation performance will be reduced instead. If the thickness of 0 2 c is relatively small, the thickness of the base plate 60 2 approaches the overall thickness, and the meaning of forming the ridges 62 c becomes less significant. Because.
  • a spacer jig 607 made of iron or the like having a higher melting point than copper and aluminum is prepared. As shown in Fig. 83 (a), this spacer jig 607 has plate-shaped spacer portions 607a, 607a, ... arranged at equal intervals. It is formed upright. The width of the gap 607b between the spacer portions 607a, 607a is substantially equal to the thickness of the fin 603. Each of the spacer portions 607 a, 607 a,... Has a cutout 607 c having substantially the same shape as the ridge 602 c of the base plate 602.
  • a fin component material 606 was manufactured by bending a flat aluminum plate having a rectangular opening in the center into a concave cross section.
  • the fin component 606 is inserted into the spacer jig 607 from the side so as to surround the spacer portion 607a of the spacer jig 607.
  • the fins 603, 603 are respectively provided in the gaps 607b, 607b on both sides of the spacer portion 607a, and the upper surface of the spacer portion 607a is provided.
  • the fin constituent material 606 is inserted from the side so that the base end portion 603a is positioned at the side.
  • the fin components 606, 606,... Are successively connected to the spacer jig 607 so that the fins 603 fit in all the other gaps 607b, respectively.
  • the notch 600 of the fin constituent material 606 and the notch 607 of the fixing jig 607 are used to form the concave groove into which the protruding line 602 of the base plate 602 fits. Is formed. ,
  • the base plate 602 is covered from above the spacer jig 607 in which the fin constituent materials 606, 606, ... are set.
  • the surface 602 b (the lower surface in the figure) of the base plate 602 is in contact with the base end 603 a of the fin constituent material 606, and the surface of the spacer jig 607 is formed. There is no contact with the spacer section 6a.
  • the lower surface of the protruding line 602c of the base plate 602 is in contact with the fins 603, 603 in the notch 606a of the fin constituting material 606. Therefore, the spacer part 607a of the spacer jig 607 is not in contact with the spacer part 607a.
  • the width of the ridges of the base plate 602 the width of the notch of the fin component material, the width of the notch of the spacer jig, since they are substantially equal to each other, the ridges 62 c of the base plate 602 are positioned relative to the width of the base plate 602 and the fin component 606 in the width direction, and furthermore, the fin component. Also functions as a positioning part that accurately determines the position of 606 and 606 in the width direction.
  • the tool body 608 of the welding tool 608, which rotates at high speed in the circumferential direction around the rotating shaft 608b, While pressing the peripheral surface of a a perpendicularly to the surface 602a of the base plate 602, the joining tool 608 is moved at a predetermined feed speed along the surface 602a of the base plate 602.
  • the welding tool 608 is formed by fixing a disk-shaped tool body 608a to the tip of the rotating shaft 608b, and the tool body 608a is made of JIS: SKD61 etc. Made of tool steel.
  • the tool body 608a rotates around the rotation axis 608b in such a direction that the tool body 608a feeds backward in the traveling direction while holding down the surface 602a of the base plate 602.
  • the tool body 608a is placed in the circumferential direction with its peripheral surface pressed into the surface 602a of the base plate 602 by a certain amount ⁇ . While rotating at a high speed, it moves along the surface 62 a of the base plate 62. Then, by pushing the tool body 608a into the base plate 602, the gap between the base end portion 603a of the fin component material 606 and the boundary surface of the base plate 602 is formed.
  • the vibration between the tool body 608a, which rotates at high speed, and the base plate 602, and the boundary between the base end 603a of the blade component 606, and the base plate 602 The oxide film on the surface is divided and destroyed, and a predetermined area of the base plate 602 which is in contact with the
  • the base region 603 a is heated to a high temperature by the heat generated by the frictional contact between the tool main body 608 a and the base plate 602, and the base plate 602 (copper).
  • Eutectic melting of a part of the base end portion of the contacting part, 60 3a (aluminum).
  • an eutectic layer 609 is formed between the base plate 602 and the base end 603a.
  • the surface of the base plate 602 on which the tool body 608a passes while applying a pressing force to the surface 602a remains on the surface 602a. It is desirable to form a smooth surface.
  • the base plate 600 and the fin constituent material 606 are made of copper and aluminum, respectively, and the joining tool 6 is formed from the base plate 602 side made of copper whose melting point is higher than aluminum. 08 is pressed, so that the temperature at which the overlap between the base end 603 a of the fin constituent material 606 and the base plate 602 is required for joining (the eutectic temperature of copper and aluminum: (5 48 ° C) or more, the deformation resistance of the base plate 602 is kept relatively large, and the pressing force of the welding tool 608 can be sufficiently transmitted to the boundary surface. Securely joined. Also, the fins 603 and ridges 602c do not hinder the pressing of the joining tool 608, so the pitch and tongue ratio of the fins 603 and the shape of the ridges 602c Can be set freely.
  • a spacer 610 is placed in the center of a thin aluminum plate 603 'so that the whole is in an inverted T shape.
  • the fins were made to be orthogonally arranged, and as shown in Fig. 86 (b), the central part of the plate member 63 'was bent while the plate member 63' was bent in the groove at the center of the fin making jig 611.
  • a fin configuration with a concave cross-section with the spacer 610 inserted in the central groove as shown in Fig. 86 (c) Create timber 6 06.
  • the fin constituent material 606 is formed in a concave shape in cross section by a pair of fins 603, 603 and a base end portion 603a connecting them.
  • a plurality of fin constituent members 606 in which the spacer 610 is sandwiched between the pair of fins 603, 603 are prepared, and these fin constituent members 600 are prepared.
  • ... And spacers 610 ′, 610,..., are alternately arranged, and as shown in Fig. 86 (d), these are connected to a jig 61 It is placed upright on the member set part 6 1 2a.
  • the fin constituent material 606 has the spacer 610 sandwiched between the pair of fins 603, 603, and the base end portion 603a faces upward.
  • the height of the spacer 610 sandwiched between the pair of fins 603 and 603 is smaller than the height of the spacer 610 by the thickness of the base end 603 a of the fin component 606. By increasing the size, it is desirable to form a horizontal upper surface between the base end portion 63 a of the fin constituent member 606 and the base end portion of the spacer 610 ′.
  • the fin constituent members 606, 606,... And the spacers 610, which are arranged upright in the member set portion 612a, respectively.
  • the base end face of the fin component 606 comes into contact with the base end face of the spacer 610 a and the spacer 610 ′.
  • a circle centered on the rotation axis 608b While pressing the peripheral surface of the tool body 6 08 a of the joining tool 6 08 rotating at high speed in the circumferential direction against the surface 6 0 2 a of the base plate 6 2 a vertically, the joining tool 6 0 8 is moved to the base plate 6 0
  • the base end portion 603 a of the fin components 606, 606,... Is frictionally vibration-welded to the base plate 602 by moving the base member 602 along the second surface 602 a.
  • the heat dissipating member 60 1 B of the second embodiment shown in FIG. 88 (a) is obtained by dividing the ridges 62 c of the base plate 602 in the length direction, and all other components are the same. This is the same as the first embodiment. If the ridges 602c are divided in the length direction in this way, the route of heat transmitted from the CPU 605 is divided before reaching the terminal fins 603, so that The heat radiation performance is lower than that of the first embodiment in which the ridges 62c are continuous in the length direction, but the heat radiation performance is higher than that of the conventional heat radiating member without the ridges 602c.
  • the heat dissipating member 61 C of the third embodiment shown in FIG. 88 (b) is configured such that the ridges 62 c of the base plate 602 correspond to the respective fins 603, 603,. It is formed in an oblique direction, and all other features are the same as in the first embodiment. In this way, if the direction of the ridges 62c is oblique to the respective fins 603, 603, ..., the ridges 60 when the weight of the base plate 62 is the same is obtained. Since the cross-sectional area of 2 c becomes smaller, the ridges 60 2 c form the fines 60 3, 60 3, ... The heat radiation performance is lower than that of the first embodiment perpendicular to the first embodiment, but the heat radiation performance is higher with the conventional heat radiation member without the ridges 62c.
  • the cross-sectional shape of the ridge 62c is trapezoidal, triangular, or dome-shaped. In each case, the width of the ridges 62c becomes smaller as the distance from the main body of the base plate 62 becomes smaller, and the cross-sectional shape of the ridges 62c is particularly smaller than that of the rectangular shape. Thus, the pressure loss when forcibly cooling with a fan from the side is reduced.
  • the heat radiating member 600G of the seventh embodiment shown in FIG. 90 (a) is obtained by forming the ridges 602c on the base plate 602 while keeping the thickness of the ridges 602c constant.
  • the width is formed so as to decrease as the distance from the connection position of the CPU 605 in the length direction increases, and all other aspects are the same as in the first embodiment.
  • the heat radiating member 601H of the eighth embodiment shown in FIG. 90 (b) has the same thickness as the ridges 62c while keeping the width of the ridges 62c of the base plate 62 constant. Are formed so as to become smaller as the distance from the connection position of the CPU 605 in the length direction increases, and all other components are the same as those of the first embodiment. ⁇
  • the heat dissipating member 6001I of the ninth embodiment shown in FIG. 90 (c) has a configuration in which the width and thickness of the ridges 62c of the base plate 602 are longer than the connection position of the CPU 605.
  • the ridges 62c are formed so as to be smaller as they are further away from each other in the direction, that is, the ridges 602c are formed in a dome shape as a whole, and all others are the same as the first embodiment.
  • the heat radiating members 601 G to 601 I can perform more efficient heat radiating.
  • the heat dissipating member 601 J of the tenth embodiment shown in FIG. 91 (a) can be obtained by using the fins 603, 6 without using the fin constituent materials 606, 606,. Are directly connected to the base plate 62 in an upright manner, and all other components are the same as in the first embodiment.
  • the heat dissipating member 61 K of the H ⁇ -embodiment shown in FIG. 91 (b) is formed by dividing the fins 603, 603,. 2 and all other components are the same as in the tenth embodiment.
  • the fin constituent members 606, 606,... May be divided in the width direction.
  • the heat radiating member and the method of manufacturing the heat radiating member according to the present invention are not limited to those described above, and it is needless to say that appropriate changes can be made.
  • the ridges 602c need not be formed integrally with the main body of the base plate 602, but may be formed separately and then fixed to the main body of the base plate 602. .
  • the materials of the base plate 602 and the fins 603 can be changed to materials other than copper and aluminum, respectively.
  • the presence or absence and size of the heat spreader are arbitrary.
  • the shape of the heating element CPU 605 may be connected to the base plate 602 via a heat pipe or the like.
  • the welding method is limited to a contact method in which a rotating welding tool is pushed into a metal member having a high melting point, and the frictional heat and the pressing force generated thereby are transmitted to an interface between the metal members.
  • a non-contact type in which the interface between the metal members is heated and pressed from the side of the metal member having a high melting point using electromagnetic induction may be used.
  • the base plate 602 and the fins 603 are both made of copper, it is preferable to join them together by sandwiching an aluminum foil or the like on the boundary surface. Furthermore, the base plate 602 and the fin 603 may be joined by a known method such as caulking, an adhesive, or brazing.
  • the fan 614 sends the wind to the fins 603, 603,... From above the heat radiation member 601A.
  • the fan 614 is composed of the fins 603, 603 from the side of the heat radiation member 601A. ,....
  • the method of attaching the fan 614 and the direction of the wind are not limited to these, and may be set as appropriate according to the installation space of the heat sink.
  • the base plate is made of copper, and the fin is made of aluminum. The fins are erected on the base plate one by one in the manner shown in Fig. 91 (a). The cross-sectional shape of each sample is shown in Figs. 93 (a) and (b), and the graph showing the simulation results is shown in Fig. 93 (c). Table 8 shows the data values. Table 8 —
  • Width W Length length (mm) (° C /
  • Example 1 a simulation was performed on how the heat radiation performance of the heat radiation member changes depending on the presence or absence of the ridge.
  • Example 2 the wind speed was 3 m / s from above (in the direction from the fin toward the base plate). And the fins were forcibly cooled.
  • As an index of the heat dissipation performance of the heat dissipation member not only the heat resistance but also the pressure loss were determined. Others are the same as in the first embodiment. Graphs showing the simulation results are shown in Figs. 94 (a) and (b). Also Table 9: Difference in heat dissipation performance depending on the presence or absence of the convex stripes
  • Body width Body length
  • Body thickness Convex stripe width
  • Convex stripe length Convex stripe thickness Cross section Pitch
  • the pressure loss of the samples 3-2 and 3-3 with ridges is larger than the pressure loss of the sample 3-1 without ridges.
  • the pressure loss of Sample 3-3 having a trapezoidal cross section was smaller than the pressure loss of Sample 3-2 having a rectangular cross section.
  • the reason why the thermal resistance is small and the pressure loss is not so large is when the peak ratio of the ridge is set to 5 to 30. Or, when the thickness of the strip is 1.15 mm to 3.45 mm. In other words, when the aspect ratio of the ridge is 5 to 30, or when the ratio of the thickness of the ridge to the total height of the heat radiation member is set to 0.1 to 0.3, the balance of the ridge is improved. It was found that good heat radiation performance was obtained. Finally, an application example of the friction vibration joining method described above will be described.
  • foil J refers to a foil or thin plate made of aluminum or aluminum alloy.
  • the copper plate 701 becomes hot due to the frictional contact heat with the tool body 704a, and the aluminum foil 703 in contact with the copper plate 701 melts eutectic, which is cooled to form a eutectic.
  • the copper plate 70 1 and the copper plate 70 2 are joined via the layer.
  • the second copper plate 702 is arranged orthogonally to the first copper plate 701 so as to form a substantially T-shape, and the second copper plate 702 is connected from the outer surface of the copper plate 701.
  • the joint tool 704 is pressed. Also in this case, since the aluminum foil 703 is sandwiched between the copper plate 701 and the copper plate 702, the copper plate 701 and the copper The plate 70 2 can be joined.
  • a part of the copper plate 701 and a part of the aluminum plate 705 are placed one on top of the other, and the copper plate 701, which has a high melting point,
  • the eutectic layer is formed at the overlapped portion by applying a joining tool 704 to the joined portion, and the copper plate 701 and the aluminum plate 705 are joined.
  • FIG. 101 The fourth application example shown in FIG. 101 is a case where the aluminum plate 705 is arranged orthogonal to the copper plate 701, and the other points are the same as those of the third application example.
  • FIG. 2 shows a fifth application example, in which a copper plate 701 and an aluminum plate 705 form a single plate.
  • a fitting protrusion 701 a and a fitting recess 701 b are formed at an end of the copper plate 701
  • a fitting protrusion 701 is formed at an end of the aluminum plate 705.
  • 5a and a fitting recess 705b are formed.
  • the fitting protrusion 701a fits into the fitting recess 705b
  • the fitting protrusion 705a fits into the fitting recess 701b.
  • the copper plate 7 • 1 and the aluminum plate 705 are fitted in a form of mutual contact to form a single plate.
  • the joining tool 704 is applied to the fitting portion from the fitting convex portion 701 a side of the copper plate 701 having a higher melting point than the aluminum plate 705, and the copper plate 701 and the aluminum plate are joined together.
  • the plate 705 is joined.
  • the end face of the copper plate 701 and the end face of the aluminum plate 705 are inclined surfaces (tapered surfaces) which are opposite to each other.
  • the end surface of the copper plate 701 is a downward slope
  • the end surface of the aluminum plate 705 is an upward slope.
  • a joining tool 704 is applied to the copper plate 701 having a high melting point from the side of the copper plate 701 to the tapered portion, and the copper plate 701 and the aluminum plate 705 are separated.
  • a single plate is composed of the copper plate 701 and the aluminum plate 705.
  • a copper plate 70 1 and a copper plate It is joined in the same shape as the application example. Therefore, based on the same concept as in the first and second application examples, the aluminum foil 703 is sandwiched between the fitting part in (a) and the tapered part in (b), so that the copper plate 7 0 1 and the copper plate 70 2 are joined.
  • an aluminum plate 705 and an aluminum plate 706 are placed in abutment, and the butt portion is sandwiched between copper plates 701, 72 from above and below, respectively.
  • the joining tool 704 is used to join the copper plates 701 and 702 and the aluminum plates 705 and 706 from the sides of the 701 and 702 by applying the joining tool 704 to the overlapped portion.
  • the aluminum plate 705 and the aluminum plate 706 are arranged so as to abut each other.
  • a fitting recess 705 b is formed on one side of the end of the aluminum plate 705, and a fitting recess 706 b is formed on one side of the end of the aluminum plate 706.
  • a fitting recess is formed by the fitting recesses 705b and 706b, and a copper plate 701 is fitted into the fitting recess with a bite, and then a joining tool 7 is attached to the copper plate 701.
  • the copper plate 701 and the aluminum plates 705 and 706 are joined by the action of No. 04.
  • (B) is substantially the same as (a), in which copper plates 701, 702 are fitted on both sides of the ends of aluminum plates 705, 706, respectively.
  • the joining tools 704 may be performed sequentially or simultaneously.
  • a copper plate 70 1 and a copper plate 70 2 are joined in the same shape as in the eighth application example.
  • a fitting 00 portion 701b is formed on one side of the end of the copper plate 701
  • a fitting recess 702b is formed on one side of the end of the copper plate 702.
  • the aluminum plate 703 is laid in the fitting groove, and the copper plate 707 is fitted tightly.
  • the joining tool is attached to the copper plate 707.
  • the copper plate 707 and the copper plates 70 1 and 70 2 are joined by the action of 4.
  • (B) is substantially the same as (a), in which copper plates 707 and 708 are fitted on both sides of the ends of copper plates 71 and 72, respectively.
  • the eleventh application example shown in FIG. 108 is substantially the same as the tenth application example, except that cylindrical or cylindrical fitting projections are provided at the ends of the aluminum rods 709 and 710, respectively. 709 a and 710 a are formed in a protruding manner, and these are inserted into the inside of the copper ring 711 and butt against each other. In this state, the outer peripheral surface of the copper ring 711 coincides with the outer peripheral surface of the aluminum rod 70'9, 710. Others are the same as the tenth application example.
  • a copper plate 701 and an aluminum mesh 712 are overlapped, and a joining tool 704 is attached to the overlapped portion from the copper plate 711, which has a high melting point.
  • the copper plate 70 1 and the aluminum mesh 71 2 are joined by acting on them.
  • a hollow or solid aluminum rod 709 is placed upright on a copper plate 701, and the melting point is high for the contact part between them.
  • the copper plate 701 and the aluminum rod 709 are joined by operating the joining tool 704 from the copper plate 701 side.
  • the fourteenth application example shown in Fig. 11 is a hollow or solid copper rod 7 13 is placed in an upright state, and an aluminum foil 70 3 is placed between them. Then, by applying the joining tool 704 from the copper plate 701 side, the aluminum foil 703 in contact with the copper plate 701 is eutectic-melted, and the eutectic layer formed by cooling is obtained. The copper plate 70 1 and the aluminum rod 7 09 are joined together through the intermediary.
  • a single rod is formed by a cylindrical copper rod 714 and a cylindrical aluminum rod 715.
  • a ring-shaped fitting projection 714a and a fitting recess 714b located on the inner periphery thereof are formed.
  • a ring-shaped fitting convex portion 715a and a fitting concave portion 715b located on the outer periphery thereof are formed at the end of the aluminum rod 715.
  • the fitting protrusion 714a fits into the fitting recess 715b, and the fitting protrusion 715a fits into the fitting recess 714b.
  • the joining tool 704 is applied to the fitting portion from the fitting projection 714 a side of the copper bar 714 having a higher melting point than the aluminum bar 715 to form the copper bar 714.
  • a cylindrical copper rod 714 and a cylindrical copper rod 716 are joined in the same shape as the fifteenth application example. Therefore, the copper bars 714 and 716 are joined by sandwiching the aluminum foil 703 between the fitting portions.
  • the seventeenth application example shown in FIG. 114 is substantially the same as the fifteenth application example, except that the end faces of the copper rods 7 14 and the aluminum rods 7 15 are oppositely inclined ( (Tapered surface).
  • the end face of the copper rod 714 is a so-called mortar-shaped slope that is retracted toward the hollow part
  • the end face of the aluminum rod 715 is a slope that protrudes toward the hollow part. I have. Then, after such slopes are placed in contact with each other, the joining tool 704 is applied to the tapered part from the copper rod 7 14 having a high melting point, and the copper rod 7 14 and the aluminum rod 7 15 By joining the To achieve.
  • a cylindrical copper rod 714 and a cylindrical copper rod 716 are joined in the same shape as the + 7th application example. Therefore, copper rods 714 and 716 are joined by sandwiching aluminum foil 703 between the tapered surfaces.
  • the nineteenth application example shown in FIG. 116 relates to a method for manufacturing a semiconductor heat sink plate (packing plate).
  • a semiconductor heat sink plate packing plate
  • several concave grooves 7 17 a,. 7 17 a,... are formed, and such a heat sink plate 7 17 7 17 a, 7 17 a,..., side of copper lid plate 7 18, and heat sink plate 7 17 and lid plate 7 1.8
  • the heat sink plate 7 17 and the lid plate 7 1 8 are joined by applying a joining tool 7 04 from the side of the copper lid plate 7 1 8
  • Each groove 7 1 7a sealed in 8 is formed as a water cooling hole.
  • Such a method does not melt the joining material as in welding or the like, so that it has a small thermal strain and can produce a highly accurate product at low cost.
  • the twenty-first application example shown in FIG. 117 is substantially the same as the nineteenth application example, except that the materials of the heat sink plate and the cover plate are reversed.
  • the heat sink plate 7 19 has such grooves. 7 1 9 a, 7 1 9 a, ...
  • the aluminum lid plate 7 20 is superimposed on the side, and the heat sink plate 7 1 9 and the lid plate 7
  • the heat sink plate 7 19 and the lid plate 7 20 are joined by applying the joining tool 7 04 from the side of the high-heated copper heat sink plate 7 19
  • Each closed groove 7 19 a is formed as a water cooling hole.
  • Other points are the same as the nineteenth application example.
  • the twenty-first application example shown in FIG. 118 is substantially the same as the eighteenth application example and the nineteenth application example, except that the materials of the heat sink plate and the lid plate are both copper. It is different.
  • the copper heat sink 7 19 there are formed several concave grooves 7 19 a, 7 19 a,...
  • the copper cover plate 718 is superimposed on the groove 719 a, 711 a, ... side surface.
  • an aluminum foil 703 is sandwiched between the overlapping portions of the heat sink plate 7 19 and the lid plate 7 18.
  • the heat sink plate 7 19 and the cover plate 7 18 are joined by applying the joining tool 7 04 to the overlapping portion from the cover plate 7 18 side or the heat sink plate 7 19 side.
  • Each groove 7 19 a sealed with the lid plate 7 18 forms a water cooling hole.
  • the other points are the same as the nineteenth application example and the twentieth application example.
  • a stainless steel plate 7222 is joined to the bottom surface of an aluminum container 721, thereby forming an electromagnetic cooker.
  • the welding tool 72 3 may be the same as before, but here, the upper surface of the tool body 72 3 a that rotates at high speed in the circumferential direction around the rotating shaft 72 3 b (the rotating shaft 7
  • the surface of the stainless steel plate 722 is pressed against the surface of the stainless steel plate 722, and the tool body .723a is moved along the surface of the stainless steel plate 722 at a predetermined feeding speed.
  • the stainless plate 722 and the aluminum container 721 are joined via the eutectic layer thus formed.
  • the twenty-third application example shown in Fig. 120 is to produce a cylindrical basket cell by joining and joining a pair of left and right aluminum profiles 724 and 725 with a substantially U-shaped cross section. .
  • a basket cell is used to store spent nuclear fuel rods, and collectively constitute a basket that is part of a cask.
  • Aluminum profiles 7 24 and 7 25 are 20 weight percent Containing boron carbide (B4C).
  • B4C Containing boron carbide
  • a fitting projection 7 2 4 a and a fitting recess 7 2 4 b are formed.
  • a fitting projection 7 25 a and a fitting recess 7 25 b are formed.
  • the fitting convex portion 724a fits into the fitting concave portion 725b, and the fitting convex portion 725a fits into the fitting concave portion 224b '.
  • the fitting convex portion 724a is located outside the fitting convex portion 725a.
  • an aluminum foil 703 is sandwiched between the fitting portions of the aluminum profiles 724 and 725.
  • the joining tool 704 is operated from the outside of the fitting convex portion 724 a to join the aluminum members 724, 725.
  • a hollow cylindrical body is used here.
  • a bogie-type core 7 26 and a backing plate 7 2 7 are arranged in the section.
  • the backing plate 727 is a long plate arranged along the lower surface of the joint.
  • the bogie-type core 72 6 is made of a hollow cylindrical body with rollers 7 26 a while pressing the backing plate 7 27 against the lower surface of the joint from below with a jack 7 26 b that can expand and contract vertically. Part is moved in synchronization with the joining tool 704. Therefore, the lower surface of the joint where the welding tool 704 is pressed from above is always closed by being supported by the back plate 277, so that the joint hardly bends and the metal is No leakage.
  • the twenty-fourth application example shown in FIG. 121 is substantially the same as the twenty-third application example, but the shape of the fitting portion is different. That is, the end surface of the aluminum profile 724 is a downward slope (taper surface), and the end surface of the aluminum profile 725 is an upward slope (taper surface). Then, with the aluminum foil 703 sandwiched in the middle, the tapered surface of the aluminum profile 724 and the tapered surface of the aluminum profile 725 are brought into contact, and then the joining tool 704 is attached to the tapered surface from the outside. And join the aluminum profiles 7 2 4 and 7 2 5. In all other respects, it is the same as the 23rd application. In the twenty-fifth application example shown in Fig.
  • a cylindrical basket cell is manufactured by combining and joining aluminum profiles 728 and 729 having a substantially L-shaped cross section. All of the fittings with a substantially L-shaped cross section are located at the corners, and the vertical wall is located directly below the joining tool 704, so the bogie-type core as in the 23rd application example is Not required. In all other respects, it is the same as the 23rd application.
  • the twenty-second application example shown in FIG. 123 is substantially the same as the twenty-fifth application example, except that the shape of the force fitting portion is different.
  • the end face of the aluminum profile 728 is a downward slope (taper surface)
  • the end surface of the aluminum profile 729 is an upward slope (taper surface).
  • a mating projection 730a is formed outside the end of the aluminum profile 730, and is supported on the upper surface of the end of the aluminum profile 733.
  • the surface 7 33 a is formed.
  • An aluminum foil 703 is sandwiched between the fitting portions. The aluminum foil 703 is heated and pressurized by the tool body 704a of the joining tool 704 acting from outside the fitting projection 730a of the aluminum profile 730. Then, the aluminum profiles 730 and 733 are joined.
  • the downward pressing force from the joining tool 704 flows down the aluminum profiles 730, 733 and flows obliquely downward on both sides, and is finally received by the opening stopper jig 7334. Open or bend downward There is no problem.
  • Each of the four fitting portions has a point-symmetric shape with respect to the central axis of the cylindrical body. In other respects, all are the same as the 23rd application example and the 25th application example.
  • the twenty-eighth application example shown in FIG. 125 is substantially the same as the second + seventh application example, but the shape of the fitting portion is different.
  • the end face of the aluminum profile 730 is a downward slope (tapered surface), and the end face of the aluminum profile 733 is upward. It is a slope (tapered surface).
  • the aluminum foil 703 sandwiched in between the tapered surface of the aluminum profile 730 and the tapered surface of the aluminum profile 733 are brought into contact, and a joining tool 70 4 is applied to join the aluminum sections 730 and 733.
  • the aluminum profile is sequentially rotated, and all four tapered surface contact parts are joined. In all other respects, it is the same as the 27th application. Industrial applicability
  • the metal member closer to the joining tool keeps its deformation resistance higher. Since the pressing force of the welding tool can be efficiently transmitted to the overlapping surfaces, high-strength frictional vibration welding without gaps between metal members can be performed.
  • aluminum alloy members are friction-vibration-welded by pushing the joining tool from the copper member side with the higher melting temperature, so that even when the overlapping portion of the members reaches the eutectic temperature or higher,
  • the deformation resistance of the copper member is relatively large, and reliable welding can be performed while transmitting sufficient pressing force to the overlapping surface.
  • the amount of heat generated by frictional contact between the welding tool and the copper member is appropriate And good bonding can be achieved.
  • the pressing force of the joining tool becomes an appropriate value, and the joining can be performed without generating a gap on the overlapping surface of the copper member and the aluminum member, and the dent on the surface of the copper member can be reduced.
  • the feed speed, the peripheral speed of the welding tool, and the thickness of the copper member have an appropriate relationship, so that friction vibration welding with high welding strength can be efficiently performed.
  • the heat sink material is formed by extrusion of aluminum, the processing accuracy of the heat sink material is high.
  • the copper member that contacts the welding tool is not easily melted and the deformation resistance at high temperatures can be kept high, the allowable range of welding conditions (rotational speed of the welding tool, feed speed, etc.) is large, and welding efficiency is high. Is good.
  • a plurality of plate members spaced from each other can be easily erected on one surface of the base plate regardless of the material of the member, and particularly the thickness A thin, large plate can be firmly erected on the base plate at a short pitch.
  • a heat radiating member in which a plurality of fins spaced from each other are erected and joined to one surface of a base plate can be easily manufactured at low cost.
  • a heat dissipating member having a high tongue ratio and high heat dissipating performance can be easily manufactured at low cost.
  • the heat dissipating member is formed by frictionally joining the copper base plate and the copper or aluminum fin or the aluminum base plate, the cost is lower than that of the conventional product. Can be reliably manufactured.
  • the heat radiating member is forcibly cooled by the fan, the heat radiating performance is high.
  • the heat radiating member and the fan can be arranged at a distance from the heating element, so that a thin notebook PC can be used. It is possible to cope with the case where it is difficult to make the structure that releases heat near the heating element in terms of space.
  • the metal members can be easily and reliably joined by overlapping each other, and a plurality of metal plate members can be easily and reliably joined by standing on the metal base plate. it can.
  • a heat radiating member in which a plurality of fins are firmly erected and joined to a base plate can be easily manufactured.
  • the metal members can be joined in a short time with a small number of man-hours, and the metal members can be joined with high strength.
  • the heat dissipating member obtained by the method for manufacturing a heat dissipating member applying this metal member joining method is a member in which the heat dissipating fins and the like are more reliably joined to the base member with high strength in a short time with a small number of man-hours.
  • the ridge connecting the fins is formed on the base plate. Because of this, the base plate can more efficiently transmit the heat of the heating element to each fin, and the heat radiation performance is improved. Therefore, the weight of the heat radiating member can be reduced without lowering the heat radiating performance. Further, according to the heat sink according to the present invention, the heat radiation performance can be further improved.
  • the fins can be easily and reliably joined to the fins without hindrance, and the pitch and tongue ratio of the fins can be improved. Can be set freely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

明 細 書 部材接合方法、 金属部材接合方法並びに放熱部材及ぴその製造方法、 そ の製造用冶具並びにヒートシンク 技術分野
第一群の本発明は、 溶融点の異なる金属部材同士を互いに重ね合わせ て接合する方法に関する。 また、 接合強度や放熱性能に優れた放熱部材 及び接合効率に優れた放熱部材の製造方法に関する。
第二群の本発明は、 互いに間隔をあけた複数枚の板材をベース板の一 方の面に立設させて接合する部材接合方法に関する。 また、 この方法を 利用して、 I C用放熱部材、 ペルチェ素子用放熱部材、 モーター用放熱 部材、 電子制御部品用放熱部材等と して使用される放熱部材を製造する 方法に関し、 さらに、 該方法を用いて製造された放熱部材及ぴ該方法に 用いられる放熱部材製造用冶具に関する。
第三群の本発明は、 半導体素子等の各種電子部品を冷却するためのヒ ートシンクに関する。
第四群の本発明は、 金属部材同士を互いに重ね合わせて接合する方法 に関する。 また本発明は、 複数枚の金属製板材を金属製のベース板に立 設させて接合する方法、 さらに該方法を応用して、 I C用放熱部材、 ぺ ルチェ素子用放熱部材、 モーター用放熱部材、 電子制御部品用放熱部材 等の放熱部材を製造する方法にも関する。
第五群の本発明は、 金属部材同士を互いに重ね合わせて接合する方法 に関する。 さらに該方法を応用して製造した I C用放熱部材、 ペルチェ 素子用放熱部材、 モーター用放熱部材、 電子制御部品用放熱部材等の放 熱部材及びその製造方法にも関する。 第六群の本発明は、 I C用放熱器、 ペルチェ素子用放熱器、 モーター 用放熱器、 電子制御部品用放熱器等の放熱部材とその製造方法に関し、 さらに、 かかる放熱部材を用いたヒー トシンクに関する。 背景技術
溶融点の異なる二の金属部材を互いに重ね合わせて接合する方法と し ては、 通常、 ろう接や爆発圧接が用いられる。
ろう接とは、 溶融したろう材を接合部の間隙に流入させ、 母材との 「 ぬれ」 及び 「流れ」 を利用して接合する方法であって、 ろうの溶融ある いは反応拡散によつてできた液相が毛細現象等によつて界面間隙を埋め
、 やがて冷却に伴い凝固するという過程をたどって接合が完了するもの である。
また、 爆発圧接とは、 火薬の爆発時に生じる極短時間での高工ネルギ 一を金属間の接合に利用する方法であって、 金属部材同士を適当な間隔 をあけて設置し、 一方の金属部材の上に載せた火薬の一端を雷管によつ て起爆させて両金属部材を高速度で衝突させ、 その衝突点での金属の著 しい流動現象 (メタルジェッ ト) によって、 金属表面の汚染層を排除し 、 同時に高圧で密着 · 接合するものである。
しかしながら、 ろう接は、 接合部の品質が安定せず、 接合可能な金属 の種類が限定されるという欠点がある。
また、 爆発圧接は、 コス トが高く、 大きな金属部材ゃ複雑な形状の金 属部材を接合できないという欠点がある。
第一群の本発明はこのよ うな事情に鑑み、 溶融点の異なる二の金属部 材を互いに重ね合わせて接合する場合において、 安定した接合部品質を 得ることができ、 大型で複雑な形状の金属部材同士の接合も可能な接合 方法を提案するものである。 また、 本発明は、 このよ うな方法を用いて 製造される放熱部材及ぴその製造方法を提案するものである。 また、 互いに間隔をあけた複数枚のフィンをベース板の一方の面に立 設してなる放熱部材の製造方法と しては、 たとえば放熱部材全体をアル ミニゥムの押出によ り一体成形するものがある (特開 2 0 0 1— 3 8 4 1 6公報参照) 。 また、 棒状部と該棒状部の上面に立設されたフィンと で断面 L字形又は断面凸字形に押出成形されたアルミユウム製の放熱部 材構成部材を複数個並列状に配置し、 棒状部同士を互いにろう接するこ とによってアルミニゥム製の放熱部材を製造するものもある (特開平 6 一 1 7 7 2 8 9号公報参照) 。 さらに、 放熱性能を高めるために熱伝導 性の高い銅を用い、 銅製のベース板の一方の面に複数枚のアルミニゥム 製のフィンをろ う接するものもある。
しかしながら、 放熱部材全体をアルミユウムの押出によ り一体成形す る場合、 トング比 (フィ ン高さ/フィン間隔) による製造限界がある。 つまり、 トング比の高レ、 (ハイ トング比の) 放熱部材ほど放熱性能が高 いのであるが、 アルミニウムの押出成形では、 トング比 2 0を超えるも のを製造できず放熱部材の放熱性能向上に限界がある。
また、 ろう接による場合は、 真空炉中などで所定時間にわたり加熱保 持する工程が必要であり、 製造コス トが高いという問題がある。
そして、 このよ うな従来技術の問題は、 放熱部材の製造方法だけでな く 、 互いに間隔をあけた複数枚の板材をベース板の一方の面に立設させ て接合する場合について広く 当てはまるものである。
第二群の本発明はこのよ うな事情に鑑み、 まず、 板厚が薄く高さの大 きな複数枚の板材を、 ベース板の一方の面に短ピツチで簡単に立設させ て接合するこ とができる部材接合方法を提案するものである。 さ らに本 発明は、 ハイ トング比の放熱部材を低コス トで製造できる放熱部材の製 造方法を提案し、 併せて、 該方法によって製造された放熱性能の高い放 熱部材及び該方法に用いられる放熱部材製造用冶具を提案するものであ る。 また、 パソコン等の各種機器や電子設備等の電気 · 電子機器に搭載さ れている半導体素子等の電子部品は、 その使用によってある程度の発熱 が避けがたく、 その冷却は、 近年の電子部品の高出力化 · 高集積化に伴 つて極めて重要な技術課題となっている。 現在、 このよ うな冷却手段と しては、 たとえば電子部品の発熱部を放熱部材に熱的に接続することに より発熱部の熱を放熱部材のフィ ンに熱輸送し、 これをファ ンで強制的 に冷却して外部に熱を放出する構造のヒー トシンクがある。 また、 薄型 のノー トブックパソコ ンのよ うに発熱部の近傍で熱を放出する構造とす るこ とがスペース的に困難な場合には、 発熱部と放熱部材とをヒー トパ ィプで接続することにより、 放熱部材及ぴファンを筐体本体側の発熱部 から離して、 スペースに比較的余裕のあるパネル側に配置した構造のヒ 一トシンクが採用され始めている。
このようなヒートシンクにおける放熱部材と しては、 銅製のベース板 に複数枚の銅製又はアルミニゥム製のフィンを直接立設接合したものや 、 ベース板に複数枚のフィ ンを立設したものをアルミ ニウムの押出によ つて一体成形し、 これを銅製のベース板に重ねて接合したものがある。 そして、 前者における銅ベース板と銅フィン又はアルミニウムフィンと の接合にはろう接が用いられ、 後者における銅ベース板とアルミユウム ベース板との接合にはろう接や爆発圧接が用いられている。
なお、 ろう接とは、 溶融したろう材を接合部の間隙に流入させ、 母材 との 「ぬれ」 及び 「流れ」 を利用して接合する方法であって、 ろうの溶 融あるいは反応拡散によつてできた液相が毛細現象等によつて界面間隙 を埋め、 やがて冷却に伴い凝固するという過程をたどって接合が完了す るものである。
また、 爆発圧接とは、 火薬の爆発時に生じる極短時間での高工ネルギ 一を金属間の接合に利用する方法であって、 金属部材同士を適当な間隔 をあけて設置し、 一方の金属部材の上に載せた火薬の一端を雷管によつ て起爆させて両金属部材を高速度で衝突させ、 その衝突点での金属の著 しい流動現象 (メタルジエツ ト) によって、 金属表面の汚染層を排除し 、 同時に高圧で密着 ·接合するものである。
しかしながら、 ろう接は、 真空炉中などで所定時間にわたり加熱保持 する工程が必要であるためコス トが高く、 また接合部の品質が安定しな いという欠点がある。
また、 爆発圧接は、 コス トが高く、 大きな金属部材ゃ複雑な形状の金 属部材を接合できないという欠点がある。
第三群の本発明はこのような事情に鑑みてなされたものであり、 銅べ ース板と銅若しくはアルミニウムのフィン又はアルミニウムベース板と の接合を低コス トで確実に行った放熱部材を備え、 放熱性能の高いヒ ー トシンクを提供することを目的と している。 また、 特開 2 0 0 3 — 1 4 2 6 3 9号公報 ( [ 0 0 1 5 ] — [ 0 0 1 8 ] , 図 2 — 3, 5 ) に開示された従来の放熱部材の製造方法は、 第 6 6図 ( a ) に示すように、 銅合金からなるベース板 4 6 2の表面 4 6 2 aに、 アルミ -ゥム合金からなる薄板を折り曲げて基端部 4 6 4 a と放 熱面 4 6 4 b と先端部 4 6 4 c とで連続する凹凸断面形状に形成された フィ ン 4 6 4をその基端部 4 6 4 a , 4 6 4 a , …が面接触するよ うに 配置しておき、 第 6 6図 (b ) , ( c ) に示すように、 円周方向に回転 する円板状の接合ツール 4 6 3のツール本体 4 6 3 aの周面を、 フィン 4 6 4の基端部 4 6 4 aの表面に押し込みつつ該基端部 4 6 4 a の表面 に沿って移動させることによ り、 フィン 4 6 4をベース板 4 6 2に接合 するものである。 かかる接合方法は摩擦振動接合 ( F r i c t i o n A c o u s t i c B o n d i n g ) と呼ばれている。
摩擦振動接合用の接合ツールと しては、 ツール本体 4 6 3 a の周面が 平坦な接合ツール 4 6 3 (第 6 7図 ( a ) ) 、 ツール本体 4 6 3 aの周 面に、 ツール本体 4 6 3 aの厚み方向に平行な多数の細条 4 6 3 b, 4 6 3 b , …が形成された接合ツール 4 6 3 B (第 6 7図 (b ) ) 、 ツー ル本体 4 6 3 aの周面に、 ツール本体 4 6 3 a の径方向に突出する多数 の四角錘形状の突起 4 6 3 c , 4 6 3 c , …が千鳥状に配置形成された 接合ツール 4 6 3 C (第 6 7図 ( c ) ) 、 ツール本体 4 6 3 a の周面に 、 ツール本体 4 6 3 a の径方向に突出する多数の円弧形状の突起 4 6 3 d , 4 6 3 d , …が千鳥状に配置形成された接合'ツール 4 6 3 D (第 6 7図 ( d ) ) などを用いることができる。 第 6 7図 ( b ) 〜 ( d ) の接 合ツール 4 6 3 B , 4 6 3 C , 4 6 3 Dは、 第 6 7図 ( a ) の接合ツー ル 4 6 3 に比べて、 フィン 4 6 4の基端部 4 6 4 a との接触面積を大き く して、 よ り効率よく フィ ン 4 6 4 とベース板 4 6 2 とを摩擦振動接合 するためのものである。
しかしながら、 かかる従来の放熱部材の製造方法には、 以下のよ うな 問題がある。
( 1 ) ベース板 4 6 2を構成する銅合金よ り も溶融点の低いアルミニゥ ム合金からなるフィ ン 4 6 4側から接合ツール 4 6 3 を押し込んで摩擦 振動接合を行う ので、 フィ ン 4 6 4 との境界面近傍のベース板 4 6 2が 接合に必要な温度 (共晶温度 = 5 4 8 °C) に達する前にフィ ン 4 6 4の 基端部 4 6 4 aが高温化してその変形抵抗が小さく なつてしま う。 した がって、 接合ツール 4 6 3による押圧力をベース板 4 6 2 とフィ ン 4 6 4の基端部 4 6 4 a との境界面に充分に伝達できず、 接合不良又は接合 不能となることがある。 さ らに、 フィン 4 6 4の基端部 4 6 4 aが薄レヽ (たとえば厚さ 0 . 5 mm以下の) 場合には、 フィ ン 4 6 4の基端部 4 6 4 aが溶断されてしま う欠点がある。
( 2 ) フィ ン 4 6 4側から接合ツール 4 6 3を押し込むがゆえに、 フィ ン 4 6 4の構成と して基端部 4 6 4 a を省略することができず、 放熱部 材の形状や構造が限定されてしまう。
( 3 ) フィ ン 4 6 4側から接合ツール 4 6 3を押し込むがゆえに、 放熱 面 4 6 4 bの真下では基端部 4 6 4 a とベース板 4 6 2 とが未接合のま ま残ってしま うので、 放熱部材の放熱性能やフィ ンの接合強度が不充分 なことがある。
( 4 ) 高速回転する接合ツール 4 6 3を、 間隔の小さなフィン 4 6 4の 放熱面 4 6 4 b, 4 6 4 b間から注意深く基端部 4 6 4 aに押し込む必 要があり、 しかも接合ツール 4 6 3を放熱面 4 6 4 b, 4 6 4 bに接触 しないよ う に保持しながら移動させなければならないので、 接合作業が 煩雑かつ困難である。 このことは特に、 放熱部材の放熱性能を高めるベ く トング比 (フィ ン高さ/フィン間隔). を大きく した場合 (放熱面 4 6 4 b , 4 6 4 b , …の立設間隔を小さく したり、 放熱面 4 6 4 bの高さ を大きく した場合) に顕著である。
なお、 以上の問題は、 放熱部材を製造する場合だけでなく、 一般的に 複数枚の金属製板材を金属製ベース板に立設させて接合する場合につい て広く 当てはまる。 さ らに ( 1 ) 〜 ( 3 ) は、 一般的に金属部材同士を 互いに重ね合わせて接合する場合についても当てはまる。
第四群の本発明はかかる事情に鑑みてなされたものであって、 まず、 金属部材同士を互いに重ね合わせて簡易かつ確実に接合する方法を提案 するものである。 また本発明は、 複数枚の金属製板材を金属製ベース板 に立設させて簡易かつ確実に接合する方法、 さ らには該方法を応用して 、 複数枚のフィンをベース板に強固に立設接合した放熱部材を簡易に製 造する方法も提案するものである。 また、 従来、 銅合金からなる基板とアルミニウム合金からなる薄板と を重ね合わせると と もに、 銅合金に比較して溶融点の低いアルミニゥム 合金の薄板に回転する円板形の接合ツールを押し当てて、 基板と薄板と を接合する金属部材接合方法が知られている (例えば、 特開 2 0 0 3— 1 4 2 6 3 9号公報 ( [ 0 0 1 5 ] — [ 0 0 1 8 ] , 第 6 9図一 3 ) 参 照) 。 この接合方法では、 回転する接合ツールとアルミニウム合金の薄 板とが接触するこ とによって発生する摩擦熱で、 当該薄板と基板とが、 その境界面で固相状態のままで可塑化 (流動化) する。 そして、 可塑化 (流動化) したアルミニウム合金と銅合金とが冷却されると、 基板と薄 板とは接合される。 このよ うな金属部材接合方法によれば、 少ない工数 で、 しかも短時間で金属部材同士を接合するこ とができる。
しかしながら、 この金属部材接合方法では、 接合ツールをアルミニゥ ム合金の薄板側から押し込むため、 基板と薄板との重ね合わせ部 (境界 面) での温度が、 アルミニウム合金と銅合金との接合に必要な共晶温度 ( 5 4 8 °C ) 以上に達したときに、 アルミニウム合金、 つまり薄板の変 形抵抗が比較的小さ く なつてしま う。 したがって、 この金属部材接合方 法では、 接合ツールによる押圧力が基板と薄板との重ね合わせ部に充分 に伝達されないために、 基板と薄板とが高い強度で接合されない場合が ある。
第五群の本発明はこのよ う な事情に鑑みてなされたものであり、 少な い工数によって短時間で金属部材同士を接合することができ、 しかも金 属部材同士を高い強度で接合することができる金属部材接合方法及びこ の金属部材接合方法を応用した放熱部材の製造方法並びにこの金属部材 接合方法を使用して製造した放熱部材を提供するこ とを課題とする。 また、 特開平 9一 2 0 3 5 9 5号公報 ( [ 0 0 1 0 ] 一 [ 0 0 1 6 ] , 第 1 一 4図) には、 銅製のベース板とアルミニウム製のフィ ンとを、 かしめ、 接着剤又はろ う付けによつて接合した放熱部材が開示されてい る。 この放熱部材は、 重量は比較的大きいが熱伝導率は極めて高いとい う銅の特性と、 熱伝導率は銅よ り もやや小さいが重量は銅よ り も小さい というアルミニウムの特性に着目 し、 ベース板とフィ ンとをそれぞれに 適した異種金属で構成することによ り、 放熱性能向上と軽量化の双方を 満足させよ う と したものである。
と ころで、 かかる放熱部材の放熱性能を更に高めるには、 ベース板の 厚さを更に大きく したり 、 フィ ンの間隔を更に小さ く (フィンの枚数を 更に多く) することが考えられるが、 そうすると放熱部材全体の重量が 増加してしまい、 軽量化の要請に反する。 逆に言う と、 放熱性能を低下 させずに放熱部材を更に軽量化することには限界があった。
第六群の本発明はかかる事情に鑑みてなされたものであって、 放熱性 能を低下させることなく放熱部材をよ り軽量化するこ とを課題と したも のである。 また本発明は同時に、 この放熱部材の製造方法と、 この放熱 部材を用いたヒー トシンクも提案するものである。 発明の開示
第一群において、 本発明は、 複数の金属部材を、 溶融点の高い順に互 いに重ね合わせて配置し、 円周方向に回転す.る円板状の接合ツールの周 面を、 重ね合わせ部において前記金属部材のう ち最も溶融点の高い金属 部材の表面に押し込みつつ該金属部材の表面に沿って移動させることに よ り、 前記複数の金属部材を互いに接合することを特徴とする金属部材 接合方法である。
また、 本発明は、 溶融点の異なる二の金属部材を互いに重ね合わせて 配置し、 円周方向に回転する円板状の接合ツールの周面を、 重ね合わせ 部において前記金属部材のうち溶融点の高い一方の金属部材の表面に押 し込みつつ該一方の金属部材の表面に沿って移動させることにより、 前 記両金属部材同士を接合することを特徴とする金属部材接合方法である かかる金属部材接合方法は、 接合ツールの押圧力によって金属部材の 重ね合わせ部における隙間をなく しつつ、 回転する接合ツールと金属部 材との接触により生ずる振動によって金属部材の重ね合わせ面に存在す る酸化皮膜を分断破壌するとともに、 摩擦熱によって重ね合わせ部を高 温化して塑性変形させることにより、 金属部材同士の接触面積と拡散速 度を増大させながら重ね合わせ部を接合する方法であって、 ここでは摩 擦振動接合と称する。
そして特に、 複数の金属部材を、 溶融点の高い順に互いに重ね合わせ て配置しておき、 最も溶融点の高い金属部材側から接合ツールを押し込 みっつ接合するようにすれば、 金属部材同士の重ね合わせ部が接合に必 要な温度まで上昇したときに、 接合ツールに近い側の金属部材ほどその 変形抵抗を高く保って接合ツールの押圧力を重ね合わせ面に対して効率 よく伝達できるので、 金属部材間に隙間のない高強度の接合が可能とな る。
また、 本発明は、 アルミユウム部材と銅部材とを重ね合わせて配置し 、 円周方向に回転する円板状の接合ツールの周面を、 重ね合わせ部にお いて前記銅部材の表面に押し込みつつ該銅部材の表面に沿って移動させ ることにより、 前記アルミ -ゥム部材と前記銅部材とを接合することを 特徴とする金属部材接合方法である。
アルミニウム部材と銅部材とは C u A 1 2層を介して摩擦振動接合さ れるが、 このよ うな接合を実現するには、 両部材の重ね合わせ面を共晶 温度 ( 5 4 8 °C) 以上とする必要がある。 しかし、 銅部材より も溶融温 度の低いアルミ -ゥム部材側から接合ツールを押し込んで摩擦振動接合 すると、 両部材の重ね合わせ部が共晶温度以上に達したときにアルミ二 ゥム部材の変形抵抗が小さくなつてしま うので、 接合ツールによる押圧 力を重ね合わせ面に対して充分に伝達できず、 接合不良が生じやすい。 そこで、 アルミ二ゥム部材ょ り も溶融温度の高い銅部材側から接合ツー ルを押し込んで摩擦振動接合することにすれば、 両部材の重ね合わせ部 が共晶温度以上に達したときであっても銅部材の変形抵抗が比較的大き いので、 充分な押圧力を重ね合わせ面に伝達しながら確実な接合を行う ことができるのである。
上記金属部材接合方法においては、 接合時の接合ツールを、 次式 (A ) で求められる周速度 R (m/min) で回転させることが望ましい。
2 5 0≤ R≤ 2 0 0 0 ··· (A)
接合時の接合ツールの周速度が 2 5 0 m/min よ り小さいと、 接合ッ 一ルと銅部材との摩擦接触によって発生する熱量が小さすぎて、 銅部材 とアルミニウム部材との重ね合わせ面の温度が低く、 接合不良となって しま う。 一方、 接合時の接合ツールの周速度が 2 0 0 0 m "min よ り大 きいと、 接合ツールと銅部材との摩擦接触によって発生する熱量が必要 以上に大きく なって、 接合ツールの駆動エネルギー口スが大きいだけで なく、 接合ツールと接触している銅部材の温度が局所的に大き く なりす ぎて当該部分が塑性変形してしまい、 接合ツールの押圧力が重ね合わせ 面に充分に伝達されず、 両部材間に隙間が生じてしま うおそれがある。 したがって、 接合時の接合ツールを周速度 2 5 0〜2 0 0 0 m/min で 回転させれば、 接合ツールと銅部材との摩擦接触によって発生する熱量 が適正な値となって、 良好な接合を行う こ とができる。
また、 上記金属部材接合方法において、 接合時の接合ツールを、 次式 (B ) で求められる押込量 α (πι) だけ銅部材の表面に押し込むことが 望ましい。
0. 0 3 X t ≤ a≤ 0. 3 X t … ( B )
t : 重ね合わせ部における銅部材の厚み (m)
接合時の接合ツールの銅部材表面への押込量 αが 0. 0 3 t よ り も小 さいと、 銅部材とアルミ二ゥム部材との重ね合わせ面に隙間が残って接 合不良となり、 一方、 押込量ひが 0. 3 t よ り も大きいと、 銅部材とァ ルミ二ゥム部材との重ね合わせ面に隙間は残らないが、 接合ツールの押 し込み過大によつて銅部材表面に凹みが顕著に残ってしまい、 部材口ス が発生する。 したがって、 接合時の接合ツールの銅部材表面への押込量 αを 0. 0 3 以上 0. 3 t以下とすれば、 接合ツールの押圧力が適正 な値となって、 銅部材とアルミニウム部材との重ね合わせ面に隙間を発 生させずに接合することができ、 銅部材表面の凹みも小さ く できる。
また、 上記金属部材接合方法において、 接合時の接合ツールを、 次式 ( C ) によって求められる送り速度 V (m/min) で銅部材の表面に沿 つて移動させることが望ま しい。
0. 1 ≤ V≤ R/ ( 5. 0 X 1 0 7 X t 2) … ( C )
R : 接合時の接合ツールの周速度 (m/min)
t : 重ね合わせ部における銅部材の厚み (m)
接合時の接合ツールの周速度が大きく なれば、 接合ツールと鲖部材と の摩擦接触によって発生する熱量が大き く なるので、 接合ツールの送り 速度 Vを大きく しても、 重ね合わせ部の温度を一定以上に保つことがで きる。 しかし、 銅部材の厚みが大きく なる と、 重ね合わせ面が一定温度 以上に達するまでの時間がかかるので、 接合ツールの送り速度を大きく しすぎると、 重ね合わせ部が一定温度以上に達する前に接合ツールが通 過してしまい、 接合不良となってしま う。 つま り、 良好な摩擦振動接合 を行う には、 接合ツールの送り速度 V、 周速度 R、 銅部材の厚み t を相 互に調節する必要があり、 発明者らは実験の結果、 V≤ R Z ( 5 . 0 X 1 0 7 X t 2 ) を満足する ときに良好な接合が可能であるこ とを確認し た。
また、 接合ツールの周速度 Vが小さすぎると、 接合効率が低下すると いう観点から、 発明者らは、 0 . 1≤ Vを満足する ときに接合効率がよ いことを実験によって確認した。
また、 本発明は、 ベース板とこのベース板の一方の面から立設する放 熱フィ ンとを有するアルミ ニウム部材からなるヒー トシンク材と、 上記 金属部材接合方法によつて前記ベース板の,他方の面に対して重ね合わせ て接合された銅部材からなる伝熱板と、 を備えるこ とを特徴とする放熱 部材である。
かかる放熱部材は、 アルミ ニウム部材より も溶融点の高い銅部材から なる伝熱板側から接合ツールを押し込みつつ摩擦振動接合したものであ るので、 ベース板と伝熱板との重ね合わせ面に隙間がなく、 よ り高強度 で接合された放熱部材となる。
また、 上記放熱部材において、 ヒー トシンク材がアルミニウムの押出 成形によ り成形されていることが望ましい。
かかる放熱部材は、 ヒー トシンク材がアルミ ニウムの押出成形によ り 成形されているので、 ヒー トシンク材の加工精度が高い。
また、 本発明は、 ベース板とこのベース板の一方の面から立設する放 熱フィ ンとを有するアルミニウム部材からなるヒー トシンク材の前記べ ース板の他方の面に、 銅部材からなる伝熱板を重ね合わせて配置し、 上 記金属部材接合方法によって前記ベース板と前記伝熱板とを接合するこ とを特徴とする放熱部材の製造方法である。
かかる放熱部材の製造方法は、 アルミニウム部材よ り も溶融点の高い 銅部材からなる伝熱板側から接合ツールを押し込みつつ摩擦振動接合す るので、 接合ツールに接触する銅部材が溶融しにく く高温での変形抵抗 を高く保つことができる。 したがって、 接合条件 (接合ツールの回転数 、 送り速度等) の許容範囲が大きく、 接合効率がよい。 また、 重ね合わ せ面を局所的に高温化でき、 爆発圧接のように放熱部材に過度の負荷を 与えることもないので、 放熱フィ ンの変形を防止でき、 放熱効率の良好 な放熱部材を提供することができる。 また、 第二群において、 本発明は、 互いに間隔をあけた複数枚の板材 をベース板の一方の面に立設させて接合する方法であって、 互いに間隔 をあけて並べられた複数枚の板材と、 これらの板材の間にそれぞれ挟み 込まれたスぺーサと、 一方の面に前記各板材が立設されたベース板と、 を配置する部材配置工程と、 円周方向に回転する円板状の接合ツールの 周面を、 前記ベース板の他方の面に押し当てつつその表面に沿って移動 させることにより、 前記ベース板に前記各板材を接合する摩擦振動接合 工程と、 前記各スぺーサを取り外すスぺーサ離脱工程と、 を含むことを 特徵とする部材接合方法である。
かかる部材接合方法では、 まず部材配置工程で板材とベース板とスぺ ーサを所定の位置にセッ トする。 これらの部材の材質は特に限定される ものではなく、 板材同士、 スぺーサ同士、 板材とスぺーサ、 はそれぞれ 同種材料からなるものと してもよいし、 それぞれ数種の異種材料からな るものと してもよい。 スぺーサの形状も特に限定されるものではなく、 スぺーサ同士が相互に連結されていてもよい。 このとき、 各板材相互間にそれぞれスぺーサを挟み込むので、 板材相 互の間隔を正確に保ちつつ簡単に位置決めすることができ、 しかもスぺ ーサによって板材が補強されるので、 板材の厚さをかなり薄くすること も可能である。 また、 スぺーサの厚さを変更するだけで板材の配置間隔 を任意に変更でき、 さ らに板材の高さを併せて変更することによって、 特に板厚が薄く高さの大きな複数枚の板材を、 ベース板の一方の面に短 ピッチで立設接合することができる。 なお、 本工程でベース板の一方の 面に各板材を立設配置した状態では、 各スぺーサはベース板の該一方の 面に当接していなく てもよいが、 次工程で接合ツールの押圧力によって 板材に曲げ応力が作用することを考慮すれば、 スぺーサによる板材の補 強効果を高めるため、 各スぺーサもベース板の該一方の面に当接させる ことが望ましい。
また、 続く摩擦振動接合工程では、 ベース板の他方の面に接合ツール を押し当てつつ各板材とベース板とを摩擦振動接合する。 したがって、 ろ う接のよ うに真空炉中などで所定時間にわたり加熱保持する必要がな く 、 接合コス トを削減することができる。 なお、 ベース板と板材との接 合強度を高めるためには、 各板材の基端面全面を迪るよ うにベース板の 裏面 (ベース板の他方の面) において接合ツールを移動させることによ つて、 各板材をベース板に完全に接合することが望ましいが、 接合コス トの削減を重視するのであれば、 各板材の基端面の一部だけを迪るよ う に接合ツールを移動させればよい。 また、 ベース板と各板材とを摩擦振 動接合するときにベース板と各スぺーサとを接合してしまってもよいが 、 次工程でスぺーサを取り外すことを考慮すれば、 ベース板と各スぺー サとが接合されないよ うな軌跡で接合ツールを移動させることが望まし い。
また、 上記部材接合方法において、 スぺーサが、 板材及びベース板よ り も溶融点の高い材料からなる、 こ とが望ましい。
かかる部材接合方法では、 スぺーサの溶融点が板材及ぴベース板の溶 融点よ り も高く なつているので、 接合ツールの回転数や送り速度を所定 の範囲に設定することによって、 スぺーサが板材ゃベース板に接合され ないよ うにして、 ベース板と板材だけを接合することが簡単にできるよ うになる。
また、 この場合、 摩擦振動接合工程を完了した段階でスぺーサが板材 やベース板に接合されていないので、 最後のスぺーサ離脱工程では手間 をかけずにスぺーサを取り外すことができる。 たとえば板材及ぴスぺー サを下にしてベース板を上に持ち上げれば、 スぺーサを残したまま板材 だけがベース板と一体に持ち上がるので、 簡単にスぺーサを取り外して 、 複数枚の板材をベース板の一方の面に立設接合した状態とすることが できる。
また、 上記部材接合方法において、 ベース板が、 板材よ り も溶融点の 高い材料からなる、 ことが望ま しい。
かかる部材接合方法では、 板材とベース板との境界面を両者の接合に 必要な温度まで上昇させたときにベース板の変形抵抗を高く保つことが できるので、 接合ツールの押圧力を境界面に効率よく伝達しながら板材 とベース板の間に隙間のない高強度の接合を行う ことができる。
また、 本発明は、 互いに間隔をあけた複数枚の金属製のフィ ンを金属 製のベース板の一方の面に立設してなる放熱部材を製造する方法であつ て、 互いに間隔をあけて並べられた複数枚のフィ ンと、 これらのフィ ン の間にそれぞれ挾み込まれたスぺーサと、 一方の面に前記各フィ ンが立 設されたベース板と、 を配置する部材配置工程と、 円周方向に回転する 円板状の接合ツールの周面を、 前記ベース板の他方の面に押し当てつつ その表面に沿って移動させることによ り、 前記ベース板に前記各フ ィ ン を接合する摩擦振動接合工程と、 前記各スぺーサを」取り外すスぺーサ離 脱工程と、 を含むことを特徴とする放熱部材の製造方法である。
かかる放熱部材の製造方法では、 まず部材配置工程でフィ ンとベース 板とスぺーサを所定の位置にセッ トする。 スぺーサの材質や形状は特に 限定されるものではない。 このとき、 各フィ ン相互間にそれぞれスぺー サを挟み込むので、 フィ ン相互の間隔を正確に保ちつつ簡単に位置決め することができ、 しかもスぺーサによってフィ ンが補強されるので、 フ インの厚さをかなり薄くするこ と も可能である。 また、 スぺーサの厚さ を変更するだけでフィ ンの配置間隔を任意に変更でき、 さ らにフィ ンの 高さを併せて変更することによって、 特にハイ トング比の放熱部材を簡 単に製造することができる。 なお、 本工程でベース板の一方の面に各フ インを立設配置した状態では、 各スぺーサはベース板の該一方の面に当 接していなく てもよいが、 次工程で接合ツールの押圧力によってフィ ン に曲げ応力が作用することを考慮すれば、 スぺーサによるフィ ンの捕強 効果を高めるため、 各スぺーサもベース板の該一方の面に当接させるこ とが望ましい。
また、 続く摩擦振動接合工程では、 ベース板の他方の面に接合ツール を押し当てつつ各フィ ンとベース板とを摩擦振動接合する。 したがって 、 ろ う接のよ うに真空炉中などで所定時間にわたり加熱保持する必要が なく 、 製造コス トを削減するこ とができる。 なお、 ベース板とフィンと の接合強度を高めるためには、 各フィンの基端面全面を迪るよ う にべ一 ス板の裏面 (ベース板の他方の面) において接合ツールを移動させるこ とによって、 各フィ ンをベース板に完全に接合することが望ましいが、 製造コス トの削減を重視するのであれば、 各フィンの基端面の一部だけ を迪るよ う に接合ツールを移動させればよい。 また、 ベース板と各フィ ンとを摩擦振動接合するときにベ一ス板と各スぺーサとを接合してしま つてもよいが、 次工程でスぺーサを取り外すことを考慮すれば、 ベース 板と各スぺーサとが接合されないよ うな軌跡で接合ツールを移動させる ことが望ましい。
また、 本発明は、 互いに間隔をあけた複数枚の金属製のフィ ンを金属 製のベース板の一方の面に立設してなる放熱部材を製造する方法であつ て、 互いに間隔をあけて並べられた複数枚のフィンと、 基端面がそれ自 体の厚さ以内で前記各フィ ンの基端面よ り も埋没するよ うに該各フィン の間にそれぞれ挟み込まれたスぺーサと、 を配置するフィ ン配置工程と 、 ベース板を、 その一方の面に前記各フィンが立設するよ うに、 前記各 スぺーサの基端面よ り も突出する前記各フィンの基端部を折り曲げつつ 配置するベース板配置工程と、 円周方向に回転する円板状の接合ツール の周面を、 前記ベース板の他方の面に押し当てつつその表面に沿って移 動させるこ とによ り、 前記ベース板に前記各フィンの基端部を接合する 摩擦振動接合工程と、 前記各スぺーサを取り外すスぺーサ離脱工程と、 を含むことを特徴とする放熱部材の製造方法である。
かかる放熱部材の製造方法は、 上記放熱部材の製造方法と略同様であ るが、 フィ ン (及びスぺーサ) を配置する工程とベース板を配置するェ 程とを分け、 まずフィ ン配置工程で、 各フィ ンの基端面 (ベース板側の 端面) よ り も各スぺーサの基端面が埋没するよ う に (フィ ンの基端面が スぺーサの基端面よ り も突出するよ う に) 配置しておき、 続くベース板 配置工程で、 ベース板をフィンに押し付けることによって、 フィ ンの基 端部 (スぺーサよ り も突出している部分) を折り 曲げる。 なお、 スぺー サの基端面からのフィ ンの基端部の突出長さはスぺーサの厚さ以内とな つているので、 各フィ ンの基端部を折り 曲げてもこれらが相互に重複す ることはない。 このよ うにすれば、 フィンの厚さがかなり薄い場合であ つても、 フィ ンの基端部がベース板に重ね合わされた状態で接触するの で、 フィ ンとベース板との接触面積を大き く して両者を確実に接合する ことができる。
また、 上記放熱部材の製造方法において、 スぺーサが、 フィン及びべ ース板より も溶融点の高い材料からなる、 こ とを特徴とする。
かかる放熱部材の製造方法では、 スぺーサの溶融点がフィン及ぴベー ス板の溶融点よ り も高く なつているので、 接合ツールの回転数や送り速 度を所定の範囲に設定することによって、 スぺーサがフィンゃベース板 に接合されないよ う にして、 ベース板とフィ ンだけを接合することが簡 単にできるよ う になる。
また、 この場合、 摩擦振動接合工程を完了した段階でスぺーザがフィ ンゃベース板に接合されていないので、 最後のスぺーサ離脱工程では手 間をかけずにスぺーサを取り外すことができる。 たとえばフィ ン及ぴス ぺーサを下にしてベース板を上に持ち上げれば、 スぺーサを残したまま フィ ンだけがベース板と一体に持ち上がるので、 簡単にスぺーサを取り 外して放熱部材を完成させることができる。
また、 上記放熱部材の製造方法において、 ベース板が、 フィ ンよ り も 溶融点の高い材料からなる、 ことが望ましい。
かかる放熱部材の製造方法では、 フィ ンとベース板との境界面を両者 の接合に必要な温度まで上昇させたときにベース板の変形抵抗を高く保 つことができるので、 接合ツールの押圧力を境界面に効率よく伝達しな がらフィンとベース板の間に隙間のない高強度の接合を行う ことができ る。
また、 上記放熱部材の製造方法において、 フィ ンがアルミニウム合金 からなり、 ベース板が銅からなる、 ことが望ましい。
かかる放熱部材の製造方法によれば、 銅の熱伝導性の高さを活かした 放熱性能の高い放熱部材を製造することができる。 また、 本発明は、 互いに間隔をあけた複数個の金属製のフィ ン構成材 を金属製のベース板の一方の面に立設してなる放熱部材を製造する方法 であって、 互いに間隔をあけて並べられ、 それぞれが左右一対のフィ ン とこれらの端部を連結する基端部とで断面凹字形に形成された複数個の フィ ン構成材と、 前記各フィ ン構成材相互間に挟み込まれたスぺーサと 、 前記各フィ ン構成材の左右のフィ ンの間に挟み込まれたスぺーサと、 一方の面に前記各フィン構成材の基端部が当接するよ うに該フィン構成 材が立設されたベース板と、 を配置する部材配置工程と、 円周方向に回 転する円板状の接合ツールの周面を、 前記ベース板の他方の面に押し当 てつつその表面に沿って移動させることにより、 前記ベース板に前記各 フィン構成材の基端部を接合する摩擦振動接合工程と、 前記各スぺーサ を取り外すスぺーサ離脱工程と、 を含むことを特徴とする放熱部材の製 造方法である。
かかる放熱部材の製造方法は、 上記放熱部材の製造方法と略同様であ るが、 フィンに代えて断面凹字形のフィ ン構成材を用いる。 もちろん、 フィ ン構成材相互間及ぴフィ ン構成材の左右のフイ ンの間には、 同種又 は別種のスぺーサを挟み込む。 このよ う にすれば、 フィ ン構成材の左右 のフィ ンの厚さがかなり薄い場合であつても、 フィ ン構成材の基端部が ベース板に重ね合わされた状態で接触するので、 フィ ンをベース板に対 して確実に接合するこ とができる。 なお、 フィ ン構成材は、 一枚の薄い 金属板の中央部にスぺーサを挟んで断面凹字形に折り 曲げることによつ て簡単に作成するこ とができる。
また、 上記放熱部材の製造方法において、 スぺーサが、 フィ ン構成材 及ぴベース板より も溶融点の高い材料からなる、 こ とが望ましい。
かかる放熱部材の製造方法では、 スぺーサの溶融点がフィ ン構成材及 びベース板の溶融点よ り も高く なつているので、 接合ツールの回転数や 送り速度を所定の範囲に設定するこ とによって、 スぺーサがフィン構成 材ゃベース板に接合されないよ う にして、 ベース板とフィ ン構成材だけ を接合することが簡単にできるよ うになる。
また、 この場合、 摩擦振動接合工程を完了した段階でスぺーサがフィ ン構成材ゃベース板に接合されていないので、 最後のスぺーサ離脱工程 では手間をかけずにスぺーサを取り外すことができる。 たとえばフィ ン 構成材及びスぺーサを下にしてベース板を上に持ち上げれば、 スぺーサ を残したままフィ ンだけがベース板と一体に持ち上がるので、 簡単にス ぺーサを取り外して放熱部材を完成させることができる。
また、 上記放熱部材の製造方法において、 ベース板が、 フィ ン構成材 よ り も溶融点の高い材料からなる、 こ とが望ましい。
かかる放熱部材の製造方法では、 フィ ン構成材とベース板との境界面 を両者の接合に必要な温度まで上昇させたときにベース板の変形抵抗を 高く保つことができるので、 接合ツールの押圧力を境界面に効率よく伝 達しながらフィン構成材とベース板の間に隙間のない高強度の接合を行 う ことカ でさる。
また、 上記放熱部材の製造方法において、 フィン構成材がアルミニゥ ム合金からなり、 ベース板が銅からなる、 ことが望ま しい。
かかる放熱部材の製造方法によれば、 銅の熱伝導性の高さを活かした 放熱性能の高い放熱部材を製造することができる。
また、 本発明は、 上記放熱部材の製造方法によって製造されたことを 特徴とする放熱部材である。
かかる放熱部材は、 これまで説明した方法によって製造されるもので あるので、 放熱性能が高く 、 低コス トで製造できる。
また、 本発明は、 フィ ン又はフィ ン構成材とスぺーサとを交互に重ね 合わせた状態でこれらを拘束するフィ ン拘束部と、 ベース板の一方の面 を前記フィ ン又はフィ ン構成材の基端部に当接させて拘束するベース板 拘束部と、 を備えるこ とを特徴とする放熱部材製造用冶具である。
かかる放熱部材製造用冶具は、 これまで説明した方法の使用に特に適 したものであり、 摩擦振動接合時にフィ ン又はフィ ン構成材、 スぺーサ 、 ベース板を確実に拘束することができる。 また、 第三群において、 本発明は、 放熱部材とファ ンを備えるヒー ト シンクであって、 前記放熱部材が、 発熱体に熱的に接続される銅ベース 板と、 この銅ベース板の一方の面に互いに間隔をあけて立設された複数 枚の銅フィン又はアルミニウムフィ ンと、 を備え、 円周方向に回転する 円板状の接合ツールの周面を前記銅ベース板の他方の面に押し当てつつ その表面に沿って移動させることによ り、 前記銅ベース板と前記各銅フ ィ ン又は前記各アルミニゥムフィ ンとが摩擦振動接合されてなる、 こと を特徴とする。
かかるヒー トシンクは、 放熱部材とファンを備えた高性能のヒー トシ ンクである。 放熱部材はベース板の一方の面に互いに間隔をあけて複数 枚のフィンを立設接合したものであって、 ベース板は熱伝導率の極めて 高い銅からなり、 フィ ンは同じく銅又はこれよ り も僅かに熱伝導率の低 いアルミニウムからなる。 そして、 ベース板とフィ ンは摩擦振動接合さ れている。 ここで摩擦振動接合とは金属部材同士の接合法の一種であつ て、 接合ツールの押圧力によって金属部材同士の接合部における隙間を なく しつつ、 回転する接合ツールと金属部材との接触によ り生ずる振動 によって接合面に存在する酸化皮膜を分断破壊すると ともに、 摩擦熱に よつて接合部を高温化して塑性変形させることによ り 、 接合部における 接触面積と拡散速度を増大させながら金属部材同士を接合する方法であ る。 つま り、 このヒー トシンクの放熱部材は、 接合ツールの押圧力によつ てベース板とフィ ンの突合せ部の隙間をなく しつつ、 回転する接合ツー ルとベース板との接触により生ずる振動によって突合せ面に存在する酸 化皮膜を分断破壌すると ともに、 摩擦熱によって突合せ部を高温化して 塑性変形させることにより、 突合せ部における接触面積と拡散速度を増 大させながらベース板とフィ ンが接合されたものとなっている。 そして 、 このよ うにベース板とフィ ンを摩擦振動接合することによ り、 従来の よ う にろう接接合された場合よ り もベース板とブインが高強度に接合さ れた放熱部材を低コス トで製造することができる。
そして特に、 フィンが銅の場合は、 そのままでもよいが、 ベース板と 銅フィ ンの間にアルミニウム又はアルミニウム合金の如く銅よ り融点の 低い金属を介在させて摩擦振動接合すると接合温度が低く て済み、 設備 、 電力等が経済的である。 また、 フィンが銅よ り も溶融点の低いアルミ ニゥムからなる場合には、 銅ベース板の一方の面にアルミニウムフィ ン を立設配置して銅ベース板の他方の面から接合ツールを押し込みつつ接 合し、 銅ベース板とアルミニウムフィ ンとの突合せ部が接合に必要な温 度 (共晶温度 : 5 4. 8 °C ) まで上昇し突合せ面に C u A 1 2層が形成さ れたときに、 銅ベース板が依然と してその変形抵抗を高く保って接合ッ 一ルの押圧力を突合せ部に対して効率よく伝達するので、 突合せ部に隙 間がなく両者がよ り高強度に接合された放熱部材とするこ とができる。 また、 本発明は、 放熱部材とファ ンを備えるヒー トシンクであって、 前記放熱部材が、 発熱体に熱的に接続される銅ベース板と、 この銅べ一 ス板の一方の面に重ねて配置されたアルミニウムベース板と、 前記銅べ ース板と反対側の面において前記アルミニウムベース板に互いに間隔を あけて立設された複数枚のアルミニウムフィンと、 を備え、 前記アルミ -ゥムベース板と前記各アルミニウムフィ ンは一体に押出成形され、 円 周方向に回転する円板状の接合ツールの周面を前記銅ベース板の他方の 面に押し当てつつその表面に沿って移動させることによ り、 前記銅べ一 ス板と前記アルミニゥムベース板とが摩擦振動接合されてなる、 ことを 特徴とする。
かかる ヒー トシンク も、 放熱部材とファ ンを備えた高性能のヒー トシ ンクである点において上記ヒー トシンク と同様であるが、 銅ベース板に フィ ンが直接立設接合された放熱部材ではなく 、 ベース板にフィ ンを立 設して全体を一体に押出成形したアルミニゥム部材を予め用意しておき 、 このアルミニウム部材のベース板が銅ベース板に重ね合わせ接合され た放熱部材を用いる点が異なる。 つま り、 このヒー トシンクの放熱部材 は、 接合ツールの押圧力によって銅ベース板とアルミニウムベース板の 重ね合わせ部の隙間をなく しつつ、 回転する接合ツールと銅ベース板と の接触によ り生ずる振動によって重ね合わせ面に存在する酸化皮膜を分 断破壌する と と もに、 摩擦熱によって重ね合わせ部を高温化して塑性変 形させることによ り、 重ね合わせ部における接触面積と拡散速度を増大 させながら銅ベース板とアルミニウムベース板が接合されたものとなつ ている。 そして、 このよ う に銅ベース板とアルミニウムベース板が摩擦 振動接合されているので、 従来のよ うにろ う接や爆発圧接によ り接合さ れた場合より も銅ベース板とアルミニウムベース板が高強度に接合され た放熱部材を低コス トで製造するこ とができる。 また、 摩擦振動接合さ れる部位が銅ベース板とアルミ二ゥムベース板の重ね合わせ部であり、 接合面積が大きいので、 銅ベース板とアルミニウムフィ ンの突合せ部が 摩擦振動接合される上記のヒー トシンクにおける放熱部材ょり も容易に 製造できる。
もちろん、 銅.ベース板の一方の面にアルミニウムベース板を重ね合わ せて配置して銅ベース板の他方の面から接合ツールを押し込みつつ接合 し、 重ね合わせ部が接合に必要な温度 (共晶温度 : 5 4 8 °C ) まで上昇 し重ね合わせ面に C u A l 2層が形成されたときには、 銅ベース板が依 然と してその変形抵抗を高く保って接合ツールの押圧力を重ね合わせ部 に対して効率よく伝達するので、 重ね合わせ部に隙間がなく両者がよ り 高強度に接合された放熱部材とすることができる。
また、 上記ヒー トシンクにおいて、 発熱体と銅ベース板とがヒー トパ イブで接続されてなる、 ことが望ましい。
かかるヒー トシンクは、 発熱体と銅ベース板とがヒー トパイプで接続 されているので、 放熱部材及ぴファンを発熱体から離して配置するこ と ができ、 薄型のノー トブックパソコンのよ うな発熱体の近傍で熱を放出 する構造とすることがスペース的に困難な場合にも対応可能となる。 また、 第四群において、 本発明は、 複数の金属部材を溶融点の高い順 に互いに重ね合わせて配置し、 重ね合わせ部を前記金属部材のうち最も 溶融点の高い金属部材の表面側から加熱及び加圧することによ り、 前記 複数の金属部材を互いに接合することを特徴とする金属部材接合方法で ある。
かかる金属部材接合方法は、 複数の金属部材を互いに重ね合わせて配 置しておき、 重ね合わせ部を最外側の金属部材側から加熱及び加圧する ことによ り、 重ね合わせ部における隙間をなく しつつ、 境界面に存在す る酸化皮膜を分断破壊する と ともに、 熱によって重ね合わせ部のメタル を高温化して塑性変形させることによ り、 金属部材同士の接触面積と拡 散速度を増大させながら重ね合わせ部を接合する方法である。
ここで、 複数の金属部材は溶融点の高い順に重ね合わせて配置され、 最も溶融点の高い金属部材側から加熱及ぴ加圧されるので、 金属部材同 士の重ね合わせ部が接合に必要な温度まで上昇したときに、 加熱及び加 圧される側の金属部材ほどその変形抵抗を高く保ってその圧力が境界面 に対して効率よく伝達され、 金属部材間に隙間のない高強度の接合が可 能となる。 たとえば、 銅部材とアルミニウム部材とを重ね合わせたとき には、 銅部材側から重ね合わせ部を加熱及ぴ加圧することになる。
なお、 加熱及ぴ加圧の方法は特に限定されるものではなく、 最も溶融 点の高い金属部材の表面に何らかのツールを接触させ、 該ツールによつ て重ね合わせ部に摩擦熱と押圧力を伝達するよ うな接触方式でもよいし 、 電磁誘導を利用するよ うな非接触方式でもよい。
また、 本発明は、 互いに間隔をあけた複数枚の金属製の板材を、 該板 材よ り も溶融点の高い金属からなるベース板の一方の面に立設させて接 合する方法であって、 互いに間隔をあけて並べられた複数枚の板材と、 これらの板材の間にそれぞれ挟み込まれたスぺーサと、 一方の面に前記 各板材が立設されたベース板と、 を配置する部材配置工程と、 前記べ一 ス板の他方の面側から該ベース板と前記各板材との境界面を加熱及び加 圧することによ り、 前記ベース板に前記各板材を接合する接合工程と、 前記各スぺーサを取り外すスぺーサ離脱工程と、 を含むことを特徴とす る金属部材接合方法である。
かかる金属部材接合方法では、 まず部材配置工程で板材、 ベース板、 スぺーサを所定の位置にセ ッ トする。 板材とベース板は金属製であり、 ベース板の溶融点は板材の溶融点より も高い。 スぺーサの材質は特に限 定されない。 スぺーサの形状も特に限定されるものではなく、 スぺーサ 同士が相互に連結されていてもよい。
このとき、 各板材相互間にそれぞれスぺーサを挟み込むので、 板材相 互の間隔を正確に保ちつつ簡単に位置決めすることができ、 しかもスぺ ーサによって板材が捕強されるので、 板材の厚さをかなり薄くすること も可能である。 また、 スぺーサの厚さを変更するだけで板材の配置間隔 を任意に変更でき、 さ らに板材の高さを併せて変更することによって、 特に板厚が薄く高さの大きな複数枚の板材を、 ベース板の一方の面に短 ピッチで立設接合することができる。 なお、 本工程でベース板の一方の 面に各板材を立設配置した状態では、 各スぺーサはベース板の該一方の 面に当接していなく てもよいが、 次工程で板材に曲げ応力が作用するこ とを考慮すれば、 スぺーサによる板材の補強効果を高めるため、 各スぺ ーサもベース板の該一方の面に当接させることが望ましい。
また、 続く接合工程では、 ベース板の他方の面側から該ベース板と各 板材との境界面を加熱及ぴ加圧することにより、 各板材とベース板とを 接合する。 この接合の原理は、 上記金属部材接合方法と同様である。 な お、 ベース板と板材との接合強度を高めるためには、 各板材の基端面全 面をベース板の裏面 (ベース板の他方の面) に接合することが望ましい 力 接合コス トの削減を重視するのであれば、 各板材の基端面の一部だ けをベース板に接合してもよい。 また、 ベース板と各板材とを接合する ときにベース板と各スぺーサとを接合してしまってもよいが、 次工程で スぺーサを取り外すこ とを考慮すれば、 ベース板と各スぺーサとが接合 されないよ うにしておく ことが ¾ましい。
さ らに、 本発明は、 互いに間隔をあけた複数個の金属製のフィ ン構成 材を、 該フィン構成材ょ り も溶融点の高い金属からなるベース板の一方 の面に立設してなる放熱部材を製造する方法であって、 互いに間隔をあ けて並べられ、 それぞれが左右一対のフィンとこれらの端部を連結する 基端部とで断面凹字形に形成された複数個のフィ ン構成材と、 前記各フ ィ ン構成材相互間に挟み込まれたスぺーサと、 前記各フィ ン構成材の左 右のフィ ンの間に挟み込まれたスぺーサと、 一方の面に前記各フイ ン構 成材の基端部が当接するよ うに該フィン構成材が立設されたベース板と 、 を配置する部材配置工程と、 前記ベース板の他方の面側から該ベース 板と前記各フィン構成材の基端部との境界面を加熱及び加圧することに より、 前記ベース板に前記各フィン構成材の基端部を接合する接合工程 と、 前記各スぺーサを取り外すスぺーサ離脱工程と、 を含むことを特徴 とする放熱部材の製造方法である。
かかる放熱部材の製造方法は、 上記金属部材接合方法を応用したもの であり、 板材と して断面凹字形のフィ ン構成材を用いる。 もちろん、 フ ィン構成材相互間及びフィン構成材の左右のフィンの間には、 同種又は 別種のスぺーサを挟み込む。 このよ う にすれば、 フィ ン構成材の左右の フィンの厚さがかなり薄い場合であっても、 フィン構成材の基端部がベ ース板に重ね合わされた状態で接触するので、 フィ ンをベース板に対し て確実に接合することができる。 フィ ン構成材とべ一 X板との接合原理 は、 既に説明したとおりである。 なお、 フィ ン構成材は、 一枚の薄い金 属板の中央部にスぺーサを挟んで断面凹字形に折り曲げることによって 簡単に作成することができる。
そして、 上記金属部材接合方法において、 前記加熱及び加圧は、 円周 方向に回転する円板状の接合ツールの周面を、 前記最も溶融点の高い金 属部材の表面に押し当てつつ該金属部材の表面に沿って移動させること により行われ、 前記接合ツールの周面には、 回転方向に対して僅かに傾 斜して連続する凹溝が形成されている、 ことが望ましい。
また、 上記金属部材接合方法において、 前記加熱及ぴ加圧は、 円周方 向に回転する円板状の接合ツールの周面を、 前記ベース板の他方の面に 押し当てつつ該ベース板の表面に沿って移動させることにより行われ、 前記接合ツールの周面には、 回転方向に対して僅かに傾斜して連続する 凹溝が形成されている、 ことが望ましい。
また、 上記放熱部材の製造方法において、 前記加熱及び加圧は、 円周 方向に回転する円板状の接合ツールの周面を、 前記ベース板の他方の面 に押し当てつつ該ベース板の表面に沿って移動させることによ り行われ 、 前記接合ツールの周面には、 回転方向に対して僅かに傾斜して連続す る凹溝が形成されている、 ことが望ましい。
上記金属部材接合方法は、 円周方向に回転する円板状の接合ツールの 周面を,、 最も溶融点の高い金属部材の表面に押し込みつつ該金属部材の 表面に沿って移動させることによ り 、 重ね合わせ部の加熱及び加圧を行 う ものであるから、 簡易な装置によ り確実な接合が期待できる。
ここで、 接合ツールの周面には凹溝が形成されているので、 接合ツー ルの周面と金属部材の表面との接触面積がよ り大き く なり、 効率よく摩 擦熱を発生させて効率よく複数の金属部材を互いに接合するこ とができ る。
さ らに、 接合ツールの周面の凹溝は、 回転方向に対して僅かに傾斜し た向きで連続するよ うに、 つま り接合ツールの回転軸のまわりで接合ッ 一ルの周面に沿った螺旋形の軌跡を描く よ う に形成されている。 したが つて、 接合ツールの回転 . 移動に伴って、 凹溝内部に溜まった可塑化し たメ タルが接合ツールの幅方向に順次送り 出されるので、 接合後に金属 部材の表面 残る凹み量を最小限に抑えるこ とができる。
なお、 これらのことは、 上記金属部材接合方法及び上記放熱部材の製 造方法についても同様である。
また、 上記金属部材接合方法において、 前記凹溝間のフラッ ト部の幅 w! (mm) 及び前記凹溝の幅 w 2 (mm) について、 Ι ^νί^ ^ δ か つ、 1 ≤ w 2≤ 3 かつ、 0. 6 7 ≤ ! / w 2≤ 5. 0 0が成立するこ とが望ましい。
また、 上記金属部材接合方法において、 前記凹溝間のフラッ ト部の幅 w! (mm) 及び前記凹溝の幅 w2 (mm) について、 l ^w S か つ、 l ^w 2 3、 力、つ、 0. e Y ^W iZw o ^ S . 0 0が成立するこ とが望ましい。
また、 上記記載の放熱部材の製造方法において、 前記凹溝間のフラッ ト部の幅 (mm) 及ぴ前記凹溝の幅 w 2 (mm) について、 1 ≤ w i ≤ 5、 かつ、 l ^ w 2≤ 3、 かつ、 0. S T ^ W i/w s ^ S . 0 0が成 立することが望ましい。
上記金属部材接合方法に関して、 接合ツールの周面における四溝間の フラッ ト部の幅 w (mm) 及び凹溝の幅 w 2 (mm) 並びに凹溝の幅 w 2に対するフラッ ト部の幅 w の比率について発明者らが実験を繰り 返したところ、 w 2が小さすぎる と、 金属部材の表面を接合ツー ルで切削しているのに近い状況となるので、 接合ツールによる摩擦熱の 発生量を比較的大きく できるが、 接合後に金属部材の表面に残る凹み量 が大きく なつてしま う こ と、 一方 W l/w 2が大きすぎる と、 周面がフ ラッ トな接合ツールによる接合に近い状況となるので、 接合ツールによ る摩擦熱の発生量が小さ く なつてしまって、 金属部材の表面への接合ッ —ルの押込量を大き く しなければならず、 機械負荷も大きくなつてしま う こ と、 そして、 l ^ w S かつ、 l ≤ w 2 3、 かつ、 0. 6 7 ≤ w χ w 2≤ 5. 0 0が成立する場合には、 金属部材の表面への接合 ツールの押込量を抑えつつ、 接合ツールによる摩擦熱の発生量を大き く して、 効率的な接合が可能となることが判明した。
なお、 これらのことは、 上記金属部材接合方法及び上記放熱部材の製 造方法についても同様である。
また、 上記金属部材接合方法において、 前記凹溝は、 前記回転方向に 対して 0. 5〜 2. 0 ° 傾斜しており、 前記接合ツールの全周にわたつ て二本以上形成されていることが望ま しい。
また、 上記金属部材接合方法において、 前記凹溝は、 前記回転方向に 対して 0. 5〜 2. 0 ° 傾斜しており、 前記接合ツールの全周にわたつ て二本以上形成されているこ とが望ましい。
また、 上記放熱部材の製造方法において、 前記凹溝は、 前記回転方向 に対して 0. 5〜 2. 0° 傾斜しており、 前記接合ツールの全周にわた つて二本以上形成されていることが望ましい。
上記金属部材接合方法に関して、 接合ツールの周面における凹溝の傾 斜角度について発明者らが実験を繰り返したところ、 凹溝の傾斜角度が 0. 5 ° よ り小さい場合には、 凹溝内部に溜まった可塑化したメ タルが 接合ツールの幅方向にうまく送り出されず、 接合ツールの通過後に金属 部材の表面にバリ が残存する.こ と、 一方凹溝の傾斜角度が 2. 0 ° よ り 大きい場合には、 切粉の排出量が大きく金属部材の表面に残る凹みが大 きく なると ともに、 機械負荷も大き く なつてしま う こ と、 そして、 凹溝 の傾斜角度が 0. 5〜 2. 0° の場合には、 このよ う な弊害がないこと が判明した。 なお、 接合ツールの幅を考慮すると、 凹溝は接合ツールの 全周にわたって二本以上形成されていることが望ましい。
なお、 これらのことは、 上記金属部材接合方法及び上記放熱部材の製 造方法についても同様である。
また、 上記金属部材接合方法において、 前記凹溝の深さが 0. 3〜 1 . 2 mmであるこ とが望ましい。
また、 上記金属部材接合方法において、 前記凹溝の深さが 0. 3〜 1 . 2 mmであることが望ましい。
また、 上記放熱部材の製造方法において、 前記凹溝の深さが 0. 3〜 1 . 2 mniであることが望ましい。
上記金属部材接合方法に関して、 接合ツールの周面における ω溝の深 さについて発明者らが実験を繰り返したと ころ、 凹溝の深さが 0. 3 m mよ り小さい場合には、 可塑化したメタルが凹溝内部に詰まってしまい 、 接合ツールによる摩擦熱の発生量が減少して充分な接合ができないこ と、 一方凹溝の深さが 1 . 2 m mよ り大きい場合には、 金属部材の表面 を接合ツールで切削しているのに近い状況となるので、 接合ツールによ る摩擦熱の発生量を大き くできるが、 接合後に金属部材の表面に残る凹 み量が大きく なつてしま う こと、 そして、 凹溝の深さが 0 . 3〜 1 . 2 m mである場合には、 このよ うな弊害がないことが判明した。
なお、 これらのことは、 上記金属部材接合方法及び上記放熱部材の製 造方法についても同様である。 また、 第五群において、 本発明に係る金属部材接合方法は、 第 1金属 部材に、 この第 1金属部材と比較して溶融点が高い板状の第 2金属部材 を重ね合わせる第 1工程と、 前記第 2金属部材から前記第 1金属部材に 向けて加圧すると ともに加熱して、 前記第 1及び第 2金属部材を相互に 接合する第 2工程とを備えるこ とを特徴とする。
この金属部材接合方法は、 第 1及び第 2金属部材を互いに重ね合わせ て配置しておき、 第 2金属部材側から加熱及び加圧することによ り、 重 ね合わせ部における隙間をなく しつつ、 重ね合わせ面に存在する酸化皮 膜を分断破壌すると ともに、 熱によつて重ね合わせ部のメタルを高温化 して塑性変形させることによ り、 金属部材同士の接触面積と拡散速度を 増大させながら重ね合わせ部を接合する方法である。
そして特に、 この金属部材接合方法は、 相互に溶融点の異なる 2の金 属部材、 つまり第 1金属部材と、 この第 1金属部材と比較して溶融点が 高い第 2金属部材とを重ね合わせて配置しておき、 溶融点の高い第 2金 属部材側から第 1金属部材に向けて加圧すると ともに、 加熱するよ う に 構成されている。 このよ うな金属部材接合方法では、 第 1金属部材と第 2金属部材との重ね合わせ部が接合に必要な温度まで上昇したときに、 溶融点がよ り高い第 2金属部材がその変形抵抗を高く保つので、 第 2金 属部材への押圧力が重ね合わせ部に対して効率よく伝達される。 したが つて、 この金属部材接合方法によれば、 第 1及び第 2金属部材の間に隙 間を形成せずに、 第 1及び第 2金属部材を高強度で接合することができ る。
なお、 加熱及び加圧の方法は特に限定されるものではなく、 第 2金属 部材の表面に何らかのツールを接触させ、 これにより発生する摩擦熱と 押圧力を重ね合わせ部に伝達するよ うな接触方式でもよいし、 電磁誘導 を利用するよ うな非接触方式でもよい。
また、 上記金属部材接合方法において、 前記第 2工程が、 回転する円 板状の接合ツールの板面を前記第 2金属部材に押し当てつつ、 その表面 'に沿って移動させる工程を含むことが望ましい。
この金属部材接合方法は、 回転する円板状の接合ツールの板面 (つま り接合ツールの回転軸に交差する平面) を、 溶融点のより高い第 2金属 部材の表面に押し当てつつ該第 2金属部材の表面に沿って移動させるこ とにより、 重ね合わせ部の加熱及び加圧を行う ものである。 したがって 、 この金属部材接合方法によれば、 簡易な装置により確実な接合が期待 できる。 また、 この金属部材接合方法では、 接合ツールの板面が第 2金 属部材の表面に接触するので、 接合ツールの径を大きくすればするほど 、 加熱及び加圧する範囲を拡大することができる。
また、 本発明に係る放熱部材の製造方法は、 第 1金属部材に、 この第 1金属部材と比較して溶融点が高い板状の第 2金属部材を重ね合わせる 第 1工程と、 前記第 2金属部材から前記第 1金属部材に向けて加圧する と ともに加熱して、 前記第 1及び第 2金属部材を相互に接合する第 2ェ 程と、 前記第 1金属部材を鍛造加工することによって、 前記第 2金属部 材上に複数の放熱フィンを立設する第 3工程とを備えることを特徴とす る。 また、 本発明に係る放熱部材の製造方法は、 第 1金属部材に、 この第 1金属部材と比較して溶融点が高い板状の第 2金属部材を重ね合わせる 第 1工程と、 前記第 2金属部材から前記第 1金属部材に向けて加圧する と ともに加熱して、 前記第 1及び第 2金属部材を相互に接合する第 2ェ 程と、 前記第 1金属部材を切削加工するこ とによって当該第 1金属部材 に複数のスリ ッ トを形成し、 前記第 2金属部材上に複数の放熱フ ィ ンを 立設する第 3工程とを備えることを特徴とする。
これらの放熱部材の製造方法では、 第 1工程及び第 2工程が、 上記金 属部材接合方法における第 1工程及ぴ第 2工程と同様に構成されている 。 そして、 上記放熱部材の製造方法では、 これら第 1工程及び第 2工程 を経て接合された第 1及び第 2金属部材のう ち、 当該第 1金属部材を鍛 造加工し、 あるいは切削加工するこ とによって、 放熱フィンが形成され る。
したがって、 このよ うな放熱部材の製造方法によれば、 上記発明と同 様に、 簡易な装置によ り確実に第 1及び第 2金属部材を接合するこ とが できると と もに、 鍛造加工や切削加工といった簡単な加工法で放熱フィ ンを形成することができる。
また、 本発明に係る放熱部材は、 上記金属部材接合方法によって、 前 記第 1金属部材と しての、 断面がコの字状に成形された板材からなる複 数の放熱フィンと、 前記第 2金属部材と してのベース板とが接合された ことを特徴とする。
また、 本発明に係る放熱部材は、 上記金属部材接合方法によって、 前 記第 1金属部材と しての、 断面が L字状に成形された板材からなる複数 の放熱フィンと、 前記第 2金属部材と してのベース板とが接合されたこ とを特徴とする。
また、 本発明に係る放熱部材は、 上記金属部材接合方法によって、 前 記第 1金属部材と してのコルゲー トフィ ンと、 前 ΙΞ第 2金属部材と して のベース板とが接合されたことを特徴とする。
また、 本発明に係る放熱部材は、 上記金属部材接合方法によって、 前 記第 1金属部材と しての複数の放熱柱状体と、 前記第 2金属部材と して のベース板とが接合されたことを特徴とする。
これらの放熱部材は、 第 1金属部材と しての放熱フィンゃコルゲー ト フィ ン、 放熱柱状体と、 第 2金属部材と してのベース板とが、 上記金属 部材接合方法によって接合されたものである。 つま り、 ベース板側から 加熱及び加圧が施されることによって、 ベース板と放熱フィン等とが接 合されたものである。 したがって、 これら放熱部材では、 上記発明と同 様に、 簡易な装置でよ り確実に放熱フィ ン等と、 ベース板とを接合する ことができる構造を有している。 また、 この放熱部材では、 ベース板側 から加熱及ぴ加圧が施されて放熱フィ ン等とベース板とが接合されるた め、 複雑な形状及び構造を有した放熱フィ ン等であっても、 簡易な装置 で製造することができる構造を有している。 したがって、 この放熱部材 によれば、 放熱面積のよ り大きな複雑な形状及ぴ構造の放熱フィン等を ベース板上に配設することができる。 また、 第六群において、 本発明に係る放熱部材は、 一方の面に発熱体 が接続されるベース板と、 このベース板の他方の面に立設接合された複 数枚のフィンとを備え、 前記ベース板の前記他方の面に前記各フィ ンを つなぐ凸条が形成されていることを特徴とする。
発熱体が接続されるベース板は、 発熱体の熱を各フィ ンに伝える役割 を果たすものであるため、 一般的にはベース板の厚さを大きくするほど 、 放熱部材の放熱性能が高く なる。 しかし、 ベース板の厚さを大きくす るほど、 放熱部材の重量も大きく なつてしま うので、 本発明では、 ベー ス板の厚さを全体的に大きくするのではなく、 発熱体の熱を各フィ ンに 伝える寄与度の大きな部分だけベース板の厚さを大きく し、 寄与度の小 さな部分においてはベース板の厚さを小さくすることによ り、 ベース扳 全体の重量を変えずに、 発熱体の熱を各フィ ンに対してよ り効率的に伝 えるよ う にしたのである。 具体的には、 各フィ ンをつなぐ凸条をベース 板に形成することによ り、 重量を増加させることなく放熱部材の放熱性 能を高めることができる。
ここで、 凸条は、 数枚ごとに各フィ ンをつなぐものであってもよいが 、 特に全てのフィ ンをつなぐよ う に連続的に形成されていれば、 発熱体 の熱が末端のフィ ンまで確実に伝えられるので、 放熱性能が更に向上す るし、 凸条の形成も容易になるので、 製造コス トを抑えることもできる また、 ώ条は、 各フィ ンに斜交する向きに形成されていてもよいが、 特に各フィンに直交する向きで形成されていれば、 凸条の形成が容易に なるし、 ベース板と各フィ ンとの取合部の形状や構造も単純になるので 、 放熱部材の製造コス トを抑えることができる。 また、 凸条が各フィ ン に直交する向きであると、 凸条の全長を小さくすることができるので、 凸条の断面積を最大化して、 更に放熱性能を高めることができる。
また、 凸条の断面形は、 ベース板の本体から遠ざかるほど幅が小さく なるものであることが望ましい。 このよ うにすると、 特にファンと併用 した場合の圧力損失をよ り小さくできるからである。
また、 凸条は、 その断面形を長さ方向に一定とすることが望ま しい。 ベース板に凸条を容易に形成することができる し、 凸条と各フィ ンとの 接合部の形状や構造も単純になるので、 放熱部材の製造コス トを抑える ことができるからである。
この場合において、 凸条の断面形状と しては、 そのアスペク ト比 (凸 条の厚さに対する凸条の幅の比) を 5〜 3 0に、 あるいは、 放熱部材の 全高さに対する当該凸条の厚さの比を 0 . 1〜 0 . 3 に設定することが 望ましい。 後述の実施例からも分かるよ うに、 凸条の厚さが相対的に大 きすぎる と、 圧力損失が大きく なって却って放熱性能が低下してしま う し、 凸条の厚さが相対的に小さすぎると、 ベース板の厚さを全体的に大 きく したものに近づいてしま うからである。
また、 凸条は、 発熱体に接続される位置から長さ方向に向かって断面 積が小さ く なるよ うにしてもよい。 ベース板を伝わる熱量は発熱体から 遠ざかるほど小さ く なつていく から、 その熱量に応じて凸条の断面積を 小さ くすることが理に適っており、 よ り効率的な放熱を行う放熱部材と することができる。
また、 ベース板は銅 (銅合金を含む。 ) で、 フィ ンはアルミニウム ( アルミニウム合金を含む。 ) で形成されていることが望ましい。 銅は熱 伝導率が極めて大きいため、 発熱体の熱を極めて効率的に各フィ ンに伝 えることができるし、 アルミニウムは熱伝導率が比較的大きいだけでな く 、 軽量で加工容易だからである。
また、 フィ ンは、 ベース板に平行な基端部で連結されて二枚一対で形 成されていることが望ましい。 このよ う に二枚一対のフィ ンと これらを 連結する基端部とで略凹字形断面になっていれば、 ベース板にフィ ンを 接合する手間が軽減されるし、 薄いフィ ンであってもその取扱いが容易 となり、 ハイ トング比の放熱部材を容易に製造するこ とができる。 なお 、 一枚のフィ ンと基端部とで略 L字形断面になっていたり、 フィ ンと基 端部とが連続的に蛇腹状に連結されたコルゲー ト断面形であってもよい さ らに、 このよ うな放熱部材は、 自然空冷式で使用してもよいが、 強 制空冷式、 つま り ファンを付設し、 このファンで各フィ ンの熱を奪う ヒ ー トシンク と して用いれば、 よ り高い放熱性能を得ることができる。 このヒー トシンクにおいて、 放熱部材に対してファ ンを取り付ける角 度は任意に定めることができるが、 ファンが各フィ ンに対して側方から 風を送るよ うに配置すれば、 特に高い放熱性能を得ることができる し、 高さも小さく抑えられるので設置スペースが制限されなく なる。
ところで、 このよ うな放熱部材の製造方法は任意に定めう るが、 一方 の面に凸条が形成された銅ベース板の当該一方の面に、 当該凸条をまた ぐ向きで複数枚のアルミユウムフィ ンを立設配置し、 前記銅ベース板の 他方の面から、 当該銅ベース板と前記各アルミニウムフィ ンとの境界面 を加熱及び加圧することによ り 、 当該銅ベース板と前記各アルミニウム フィ ンとを接合することが望ま しい。
かかる製造方法によれば、 加熱及び加圧の際にフィンゃ凸条が邪魔に なることがないから、 フィ ンのピツチやトング比を自由に設定すること ができる。 また、 ベース板、 フィ ンがそれぞれ銅、 アルミニウムからな り、 アルミニウムよ り も溶融点の高い銅からなるベース板側から加熱及 ぴ加圧を行うので、 加圧力がベース板とフィンとの境界面に効率よく伝 達され、 両者が確実に接合される。
ここで、 加熱及び加圧の方法は任意に定めることができ、 たとえば電 磁誘導などを利用した非接触方式であってもよいが、 接触方式、 つま り 円周方向に回転する円板状の接合ツールの周面を、 銅ベース板の前記他 方の面に押し当てつつその表面に沿って移動させることによ り行われる ものであることが望ましい。
かかる方法は、 いわゆる摩擦振動接合 (F r i c t i o n A c o u s t i c B o n d i n g ) と呼ばれるものであり、 簡易な装置を用い てベース板とフィ ンとを確実に接合することができる。 図面の簡単な説明
第 1図 ( a ) , ( b ) は本発明に係る金属部材接合方法の一実施形態 の各工程を表す正面断面図であり、 ( c ) は ( b ) の側面図である。 第 2図は、 第 1図におけるアルミ二ゥム部材と銅部材との重ね合わせ 面の塑性変形の様子を時系列的に表す断面図である。
第 3図は、 本発明に係る金属部材接合方法の他の実施形態を表す正面 断面図である。
第 4図は、 本発明に係る放熱部材の一実施形態を表す斜視図である。 第 5図 ( a ) は本発明に係る放熱部材の他の実施形態を表す底面図で あり、 (b ) , ( c ) は同横断面図である。
第 6図 ( a ) , ( b ) は本発明に係る放熱部材の製造方法の一実施形 態の各工程を表す正面断面図であり、 ( c ) は (b ) の断面図である。 第 7図は、 本発明に係る放熱部材の製造方法の他の実施形態を表す正 面断面図である。
第 8図 ( a ) , ( b ) は摩擦振動接合の各手順を表す正面断面図であ り、 ( c ) は ( b ) の側面図である。
第 9図は、 第 8図におけるアルミニウム部材と銅部材との重ね合わせ 面の塑性変形の様子を時系列的に表す断面図である。
第 1 0図は、 金属部材の摩擦振動接合の別の例を表す正面断面図であ る。
第 1 1図は、 本発明に係る放熱部材の製造方法の第一実施形態を説明 するための図であって、 ( a ) , ( b ) は部材配置工程を表す正面断面 図である。
第 1 2図は、 第 1 1図に続く工程を説明するための図であって、 ( a ) は摩擦振動接合工程を表す正面断面図、 (b ) はスぺーサ離脱工程を 表す正面断面図である。 第 1 3図は、 本発明に係る放熱部材製造用冶具の一実施形態を表す分 解斜視図である。
第 1 4図は、 本発明に係る放熱部材の一実施形態を表す斜視図である 第 1 5図は、 第 1 2図 ( a ) に示した摩擦振動接合工程における接合 ツールの移動軌跡の各例を表す斜視図である。
第 1 6図は、 第 1 2図 ( a ) に示した摩擦振動接合工程の他の例を表 す正面断面図である。
第 1 7図は、 本発明に係る放熱部材の他の実施形態を表す正面断面図 である。
第 1 8図は、 第 1 7図に示した放熱部材を製造する手順を説明するた めの正面断面図であって、 ( a ) が第一のパターン、 ( b ) , ( c ) 力 S 第二のパターンを表す。
第 1 9図は、 第 1 7図に示した放熱部材を製造する手順を説明するた めの正面断面図であって、 ( a ) 〜 ( c ) が第三のパターン、 ( d ) 〜 ( g ) が第四のパターンを表す。
第 2 0図は、 本発明に係る放熱部材の製造方法の第二実施形態を説明 するための図であって、 ( a ) 〜 ( c ) は部材配置工程を表す正面断面 図、 ( d ) は摩擦振動接合工程を表す正面断面図、 ( e ) はスぺーサ離 脱工程を表す正面断面図である。
第 2 1図は、 本発明に係る放熱部材の製造方法の第三実施形態を説明 するための図であって、 ( a ) はフィン配置工程を表す正面断面図、 ( b ) , ( c ) はベース板配置工程を表す正面断面図、 ( d ) は ( d ) の 部分拡大図である。
第 2 2図は、 第 2 1図に続く工程を説明するための図であって、 ( a ) は摩擦振動接合工程を表す正面断面図、 (b ) はスぺーサ離脱工程を 表す正面断面図である。
第 2 3図は、 本発明に係る放熱部材の製造方法の第四実施形態を説明 するための図であって、 ( a ) 〜 ( e ) は部材配置工程を表す正面断面 図である。
第 2 4図は、 第 2 3図に続く工程を説明するための図であって、 ( a ) は摩擦振動接合工程を表す正面断面図、 (b ) はスぺーサ離脱工程を 表す正面断面図である。
第 2 5図は、 本発明に係る放熱部材の他の実施形態を表す斜視図であ る。
第 2 6図は、 本発明に係る放熱部材の他の実施形態を表す斜視図であ る。
第 2 7図は、 ( a ) は実際に製造された放熱部材のフィンとベース板 との接合部を表す部分拡大断面図であり、 (b ) は ( a ) の部分拡大図 である。
第 2 8図 ( a ) , ( b ) は摩擦振動接合の手順を表す正面断面図であ り、 ( c ) は ( b ) の側面図である。
第 2 9図は、 第 2 8図' 'におけるアルミニウム部材と銅部材との重ね合 わせ面の塑性変形の様子を時系列的に表す断面図である。
第 3 0図は、 金属部材の摩擦振動接合の別の例を表す正面断面図であ る。
第 3 1図は、 放熱部材の一実施形態を表す斜視図である。
第 3 2図は、 第 3 1図の放熱部材の製造方法を説明するための図であ る。
第 3 3図は、 第 3 2図 ( d ) における接合ツールの移動軌跡の各例を 表す斜視図である。
第 3 4図は、 放熱部材の他の実施形態を表す斜視図である。 第 3 5図は、 第 3 4図の放熱部材の製造方法を説明するための図であ る。
第 3 6図 ( a ) は本発明に係るヒー トシンクの第一実施形態の分解斜 視図であり、 ( b ) は同組立斜視図である。
第 3 7図 ( a ) は第 3 6図のヒー トシンクの平面図、 (b ) , ( c ) はそれぞれ同ヒー トシンクの X矢視側面図、 Y矢視側面図である。
第 3 8図は、 本発明に係るヒートシンクの第二実施形態の組立斜視図 である。
第 3 9図 ( a ) は本発明に係るヒー トシンクの第三実施形態の分解斜 視図であり、 ( b ) は同組立斜視図である。
第 4 0図 ( a ) は第 3 9図のヒートシンクの平面図、 (b ) , ( c ) はそれぞれ同ヒー トシンクの X矢視側面図、 Y矢視側面図である。
第 4 1図は、 本発明に係るヒー トシンクの第四実施形態の組立斜視図 である。
第 4 2図 ( a ) は本発明に係るヒー トシンクの第五実施形態の分解斜 視図であり、 ( b ) は同組立斜視図である。
第 4 3図 ( a ) は第 4 2図のヒー トシンクの平面図、 (b ) , ( c ) はそれぞれ同ヒ一トシンクの X矢視側面図、 Y矢視側面図である。
第 4 4図は、 本発明に係るヒー トシンクの第六実施形態の組立斜視図 である。
第 4 5図 ( a ) は本発明に係るヒー トシンクの第七実施形態の分解斜 視図であり、 (b ) は同組立斜視図である。
第 4 6図 ( a ) は第 4 5図のヒー トシンクの平面図、 (b ) , ( c ) はそれぞれ同ヒー トシンクの X矢視側面図、 Y矢視側面図である。 第 4 7図は、 本発明に係るヒー トシンクの第八実施形態の組立斜視図 である。 第 4 8図 ( a ) , ( b ) は本発明に係る金属部材接合方法の第一実施 形態の各手順を表す正面断面図であり、 ( c ) は (b ) の側面図である 第 4 9図は、 第 4 8図におけるアルミ二ゥム部材と銅部材との重ね合 わせ面の塑性変形の様子を時系列的に表す断面図である。
第 5 0図 ( a ) は第 4 8図の接合ツールの部分拡大図であり、 ( b ) 〜 ( d ) は接合ツールの周面の凹溝の別例を表す部分断面図である。 第 5 1図は、 金属部材の摩擦振動接合の別の例を表す正面断面図であ る。
第 5 2図は、 本発明に係る金属部材接合方法の第二実施形態を説明す るための図であって、 ( a ) , ( b ) は部材配置工程を表す正面断面図 である。
第 5 3図は、 第 5 2図に続く工程を説明するための図であって、 ( a ) は接合工程を表す正面断面図、 ( b ) はスぺーサ離脱工程を表す正面 断面図である。
第 5 4図は、 放熱部材製造用治具の一実施形態を表す分解斜視図であ る。
第 5 5図は、 放熱部材の一実施形態を表す斜視図である。
第 5 6図は、 第 5 3図 ( a ) に示した接合工程における接合ツールの 移動軌跡の各例を表す斜視図である。
第 5 7図は、 第 5 3図 ( a ) に示した摩擦振動接合工程の他の例を表 す正面断面図である。
第 5 8図は、 放熱部材の他の実施形態を表す正面断面図である。
第 5 9図は、 第 5 8図に示した放熱部材を製造する手順を説明するた めの正面断面図であって、 ( a ) が第一のパターン、 (b ) , ( c ) が 第二のパターンを表す。 第 6 0図は、 第 5 8図に示した放熱部材を製造する手順を説明するた めの正面断面図であって、 ( a ) 〜 ( c ) が第三のパターン、 ( d ) 〜 ( g ) が第四のパターンを表す。
第 6 1図は、 本発明に係る金属部材接合方法の第三実施形態を説明す るための図であって、 ( a ) 〜 ( c ) は部材配置工程を表す正面断面図 、 ( d ) は接合工程を表す正面断面図、 ( e ) はスぺーサ離脱工程を表 す正面断面図である。
第 6 2図は、 本発明に係る部材接合方法の第四実施形態を説明するた めの図であって、 ( a ) はフィン配置工程を表す正面断面図、 (b ) , ( c ) はベース板配置工程を表す正面断面図、 ( d ) は ( c ) の部分拡 大図である。
第 6 3図は、 第 6 2図に続く工程を説明するための図であって、 ( a ) は接合工程を表す正面断面図、 ( b ) はスぺーサ離脱工程を表す正面 断面図である。
第 6 4図は、 本発明に係る放熱部材の製造方法の第一実施形態を説明 するための図であって、 ( a ) 〜 ( e ) は部材配置工程を表す正面断面 図である。
第 6 5図は、 第 6 4図に続く工程を説明するための図であって、 ( a ) は接合工程を表す正面断面図、 (b ) はスぺーサ離脱工程を表す正面 断面図である。
第 6 6図 ( a ) , ( b ) は特許文献 1に開示された摩擦振動接合の手 順を表す正面断面図であり、 ( c ) は (b ) の側面図である。
第 6 7図 ( a ) 〜 ( d ) はそれぞれ、 特許文献 1に開示された接合ッ ールの部分斜視図である。
第 6 8図 ( a ) , ( b ) は、 第 1実施形態に係る金属部材接合方法に おける摩擦接合の手順を表す正面断面図、 ( c ) は、 (b ) の側面図で ある。
第 6 9図は、 第 6 8図におけるアルミ二ゥム部材と銅部材との重ね合 わせ部の塑性変形の様子を時系列的に表す断面図である。
第 7 0図は、 第 6 8図の接合ツールの部分拡大図である。
第 7 1図 ( a ) は、 第 2実施形態に係る金属部材接合方法に使用され る接合ツールの斜視図、 (b ) 及び ( c ) は、 第 2実施形態に係る金属 部材接合方法に使用される接合ツールの別の例を示す下面図である。 第 7 2図 ( a ) 及び ( b ) は、 第 2実施形態に係る金属部材接合方法 に使用される接合ツールの別の例を示す斜視図である。
第 7 3図 ( a ) 及ぴ (b ) は、 第 2実施形態に係る金属部材接合方法 における摩擦接合の工程を説明する図である。
第 7 4図 ( a ) は、 放熱部材の斜視図、 (b ) 及び ( c ) は、 ( a ) の放熱部材の製造工程を説明する図である。
第 7 5図 ( a ) 及び (b ) は、 第 7 4図 ( a ) の放熱部材の製造工程 を説明する図である。
第 7 6図は、 放熱部材の他の一例を示す断面図である。
第 7 7図は、 第 7 6図の放熱部材を構成する放熱フィンの斜視図であ る。
第 7 8図は、 第 7 6図の放熱部材を製造する際に使用する支持器具の 斜視図である。
第 7 9図 ( a ) , (b )及び ( c ) は、 第 7 6図の放熱部材の製造工程 を説明する図である。
第 8 0図 ( a ) , (b ), ( c ) 及ぴ ( d ) は、 第 7 6図の放熱部材の 変形例を示す図である。
第 8 1図 ( a ) は本発明に係る放熱部材の第一実施形態を表す斜視図 であり、 (b ) は同分解斜視図である。 第 8 2図 ( a ) は第 8 1図の A— A断面図、 (b ) は同 B— B断面図 であり、 ( c ) は同底面図である。
第 8 3図は、 第 8 1図の放熱部材の製造方法の一例を説明する斜視図 である。
第 8 4図 ( a ) は第 8 3図に続く工程を説明する側面図であり、 ( b
) はその要部拡大断面図である。
第 8 5図は、 第 8 4図 ( a ) に続く工程を説明する斜視図である。 第 8 6図は、 第 8 1図の放熱部材の製造方法の別の例を説明する断面 図である。
第 8 7図は、 第 8 6図に続く工程を表す断面図である。
第 8 8図 ( a ) , ( b ) はそれぞれ、 本発明に係る放熱部材の第二実 施形態、 第三実施形態を表す斜視図である。
第 8 9図 ( a ) 〜 ( c ) はそれぞれ、 本発明に係る放熱部材の第四実 施形態乃至第六実施形態を表す断面図である。 '
第 9 0図 ( a ) 〜 ( c ) はそれぞれ、 本発明に係る放熱部材の第七実 施形態乃至第九実施形態を表す斜視図である。
第 9 1図 ( a ) , ( b ) はそれぞれ、' 本発明に係る放熱.部材の第十実 施形態、 第十一実施形態を表す斜視図である。
第 9 2図 ( a ) , ( b ) はそれぞれ、 本発明に係るヒー トシンクの第 一実施形態、 第二実施形態を表す斜視図である。
第 9 3図 ( a ) , ( b ) は実施例 1 の各サンプルの断面形状 · 寸法を 説明する図であり、 ( c ) はシミ ュ レーショ ン結果を示すグラフである 第 9 4図は、 実施例 2 のシミ ュ レーショ ン結果を示すグラフである。 第 9 5図 ( a ) 〜 ( c ) は実施例 3 の各サンプルの断面形状 . 寸法を 説明する図であり、 ( d ) , ( e ) はシミ ュ レーショ ン結果を示すグラ PC蘭 003/010064
47 フである。
第 9 6図は、 実施例 4 のシミ ュ レーショ ン結果を示すグラフである。 第 9 7図は、 実施例 4 のシミュレーション結果を示すグラフである。' 第 9 8図は、 摩擦振動接合方法の第一応用例を説明する図である。 第 9 9図は、 摩擦振動接合方法の第二応用例を説明する図である。 第 1 0 0図は、 摩擦振動接合方法の第三応用例を説明する図である。 第 1 0 1図は、 摩擦振動接合方法の第四応用例を説明する図である。 第 1 0 2図 ( a ) , (b ) は、 摩擦振動接合方法の第五応用例を説明 する図である。
第 1 0 3図 ( a ) , ( b ) は、 摩擦振動接合方法の第六応用例を説明 する図である。
第 1 0 4図は、 摩擦振動接合方法の第七応用例を説明する図である。 第 1 0 5図 ( a ) , (b ) は、 摩擦振動接合方法の第八応用例を説明 する図である。
第 1 0 6図 ( a ) , (b ) は、 摩擦振動接合方法の第九応用例を説明 する図である。
第 1 0 7図は、 摩擦振動接合方法の第十応用例を説明する図である。 第 1 0 8図は、 摩擦振動接合方法の第十一応用例を説明する図である 第 1 0 9図は、 摩擦振動接合方法の第十二応用例を説明する図である 第 1 1 0図は、 摩擦振動接合方法の第十三応用例を説明する図である 図は、 摩擦振動接合方法の第十四応用例を説明する図である
2図は、 摩擦振動接合方法の第十五応用例を説明する図である 0064
48
第 1 1 3図は、 摩擦振動接合方法の第十六応用例を説明する図である 第 1 1 4図は、 摩擦振動接合方法の第十七応用例を説明する図である 。
第 1 1 5図は、 摩擦振動接合方法の第十八応用例を説明する図である 第 1 1 6図は、 摩擦振動接合方法の第十九応用例を説明する図である 第 1 1 7図は、 摩擦振動接合方法の第二十応用例を説明する図である 第 1 1 8図は、 摩擦振動接合方法の第二十一応用例を説明する図であ る。
第 1 1 9図は、 摩擦振動接合方法の第二十二応用例を説明する図であ る。
第 1 2 0図は、 摩擦振動接合方法の第二十三応用例を説明する図であ る。
第 1 2 1図は、 摩擦振動接合方法の第二十四応用例を説明する図であ る。
第 1 2 2図は、 摩擦振動接合方法の第二十五応用例を説明する図であ る。
第 1 2 3図は、 摩擦振動接合方法の第二十六応用例を説明する図であ る。
第 1 2 4図は、 摩擦振動接合方法の第二十七応用例を説明する図であ る。
第 1 2 5図は、 摩擦振動接合方法の第二十八応用例を説明する図であ る 発明を実施するための最良の形態
以下、 添付図面を参照しつつ、 本発明の実施の形態を詳細に説明する 。 なお、 説明において、 同一要素には同一の符号を用い、 重複する説明 は省略するものとする。 まず第一群の発明の実施の形態を説明する。
第 1図 ( a ) , ( b ) は、 本発明に係る金属部材接合方法の一実施形 態の各工程を表す正面断面図であり、.第 1図 ( c ) は第 1図 ( b ) の側 面図である。 本金属部材接合方法では、 まず、 第 1図 ( a ) に示すよ う にアルミニウム部材 1 0 1 と銅部材 1 0 2 とが面接触するように互いに 重ね合わせて配置し、 図示しない冶具で固定する。
次に、 第 1図 ( b ) に示すように、 回転軸 1 0 3 bを中心と して円周 方向に周速度 R (m/min) で高速回転する接合ツール 1 0 3のツール 本体 1 0 3 aの周面を銅部材 1 0 2の表面 1 0 2 aに垂直に押し込みつ つ、 第 1図 ( c ) に示すように接合ツール 1 0 3を銅部材 1 0 2の表面 1 0 2 aに沿って送り速度 V (m/min) で移動させることによって、 アルミニウム部材 1 0 1 と銅部材 1 0 2 とを重ね合わせて接合する。 接 合ツール 1 0 3は回転軸 1 0 3 bの先端部に円板状のツール本体 1 0 3 aを固定してなるものであり、 ツール本体 1 0 3 aは J I S : S KD 6 1などの工具鋼からなる。 ツール本体 1 0 3 aは、 銅部材 1 0 2の表面 1 0 2 aを押さえ込みつつ進行方向後方に送り込むよ うな向きで回転軸 1 0 3 bのまわりに回転する。
ツール本体 1 0 3 aは、 第 2図 ( a ) に示すように、 その周面が銅部 材 1 0 2の表面 1 0 2 aに一定量 a (m) だけ押し込まれた状態で円周 方向に高速回転しつつ、 銅部材 1 0 2の表面 1.0 2 a に沿って移動する 。 そして、 このよ うなツール本体 1 0 3 aの銅部材 1 0 2への押し込み によってアルミニウム部材 1 0 1 と銅部材 1 0 2の重ね合わせ面の隙間 をなく しつつ、 高速回転するツール本体 1 0 3 a と錮部材 1 0 2 との接 触によ り生ずる振動によってアルミユウム部材 1 0 1 と銅部材 1 0 2の 重ね合わせ面の酸化皮膜を分断破壌すると ともに、 第 2図 ( b ) に示す よ うに、 ツール本体 1 0 3 a と接触する銅部材 1 0 2の所定領域及ぴそ の近傍領域と、 これらの領域に隣接するアルミ二ゥム合金 1 0 1 の所定 領域とを、 ツール本体 1 0 3 a と銅部材 1 0 2 との摩擦接触によ り発生 した熱で高温化し、 それぞれ固相状態のまま可塑化 (流動化) させる。 その結果、 銅部材 1 0 2 とアルミニウム部材 1 0 1 は、 互いの境界面に おいても流動拡散し、 それぞれ当初の表面から塑性変形する。
接合ツール 1 0 3のツール本体 1 0 3 aが通過した跡は、 第 2図 ( c ) に示すよ うに、 ツール本体 1 0 3 aの押圧力によつて銅部材 1 0 2の 表面 1 0 2 a に一対の浅い段部 1 0 2 b, 1 0 2 bが形成される。 また 、 アルミニウム部材 1 0 1 と銅部材 1 0 2の重ね合わせ面は、 塑性変形 したアルミ二ゥム部材 1 0 1及ぴ銅部材 1 0 2が互いに嚙み合う よ うに 断面囬凸形で固化した接合面 S となり、 この接合面 S を介して銅部材 1 0 2 とアルミ二ゥム部材 1 0 1 とが確実に接合される。
ここで、 接合ツール 1 0 3 をアルミ二ゥム部材 1 0 1側から押し込む こと も考えられるが、 アルミニウム部材 1 0 1の溶融点は銅部材 1 0 2 の溶融点よ り も低く 、 アルミニウム部材 1 0 1 と銅部材 1 0 2の重ね合 わせ面が接合に必要な共晶温度 ( 5 4 8 °C) 以上に達したときにアルミ 二ゥム部材 1 0 1の変形抵抗が比較的小さく なつてしま うので、 接合ッ —ル 1 0 3による押圧力がアルミ二ゥム部材 1 0 1 と銅部材 1 0 2の重 ね合わせ面に充分に伝達されず、 接合不良となりやすい。 一方、 接合ッ ール 1 0 3をアルミ二ゥム部材 1 0 1 より も溶融点の高い銅部材 1 0 2 側から押し込むようにすれば、 アルミ -ゥム部材 1 0 1 と銅部材 1 0 2 の重ね合わせ面が接合に必要な共晶温度以上に達したときに銅部材 1 0 2の変形抵抗を比較的大きく保持して、 接合ツール 1 0 3の押圧力をァ ルミユウム部材 1 0 1 と銅部材 1 0 2の重ね合わせ面に充分に伝達でき るので、 両部材間の隙間をなく した高強度の接合を行う ことができる。 なお、 本金属部材接合方法は、 アルミニウム部材と銅部材との重ね合 わせ接合に限定されるわけではなく、 金属部材同士の重ね合わせ接合に 広く適用することができる。 そして、 そのよ うな金属部材の形状は、 互 いに重ね合わせて接合ツールを押し込むことができるものであればよい
。 さらに、 金属部材の重ね合わせ数も二つに限定されるわけではなく、 三つ以上と してもよい。
たとえば、 第 3図に他の実施形態と して示した金属部材接合方法は、 三つの金属部材 ( 5 0 0 0系アルミニウム部材 1 0 1、 1 0 0 0系アル ミニゥム部材 1 0 1, 、 銅部材 1 0 2 ) を互いに重ね合わせて配置し、 三つの金属部材のうち最も溶融点の高い銅部材 1 0 2側から接合ツール 1 0 3のツール本体 1 0 3 aを押し込んで摩擦振動接合するものである 。 ここで、 接合時に金属部材同士の重ね合わせ部が共晶温度以上になる こと と、 そのときの各金属部材の変形抵抗が金属部材同士の重ね合わせ 面への接合ツールによる押圧力の伝達効率に影響することを考慮すると 、 三つの金属部材を溶融点の高い順 (ここでは銅部材 1 0 2、 1 0 0 0 系アルミニウム部材 1 0 1, 、 5 0 0 0系アルミニウム部材 1 0 1の順 ) に重ね合わせて配置し、 最も溶融点の高い金属部材 (ここでは銅部材 1 0 2 ) の表面から接合ツール 1 0 3を押し込んで摩擦振動接合するこ とが望ましい。 この他、 三つの金属部材を銅、 アルミエゥム、 マグネシ ゥムと した場合には、 銅部材、 アルミニウム部材、 マグネシウム部材の 順に'重ね合わせ、 銅部材側から接合ツールを押し込んで摩擦振動接合す ればよい。
第 4図は、 本発明に係る放熱部材の一実施形態を表す斜視図である。 同図に示す放熱部材 1 0 4は、 アルミニゥム部材からなるヒー トシンク 材 1 0 5 と、 銅部材からなる伝熱板 1 0 6 とで構成されている。 ヒ ー ト シンク材 1 0 5は、 ベース板 1 0 5 a と、 ベース板 1 0 5 aの一方の面
(同図では下面) から立設する複数の放熱フィ ン 1 0 5 b., 1 0 5 b , …とで構成されている。 そして、 ベース板 1 0 5 a の他方の面 (同図で は上面) に伝熱板 1 0 6が重ね合わせられ、 上記の摩擦振動接合方法に よってヒー トシンク材 1 0 5 と伝熱板 1 0 6 とが接合されている。 つま り、 この放熱部材 1 0 4は、 アルミニウム部材よ り も溶融点の高い銅部 材からなる伝熱板 1 0 6側から接合ツールを押し込みつつ摩擦振動接合 したものであるので、 ベース板 1 0 5 a と伝熱板 1 0 6 との重ね合わせ 面に隙間がなく 、 高強度で接合されたものとなっている。 なお、 ベース 板 1 0 5 a と伝熱板 1 0 6 との重ね合わせ面は全面で摩擦振動接合され ていてもよいし、 一部で摩擦振動接合されていてもよいが、 全面で摩擦 振動接合されていたほうが接合強度や放熱性能の高いものとなる。
なお、 本発明に係る放熱部材はこれに限定されるものではなく 、 ベー ス板 1 0 5 a とこのベース板 1 0 5 a の一方の面から立設する放熱フィ ン 1 0 5 b , 1 0 5 b, …とを有するアルミニウム部材からなるヒ ー ト シンク材 1 0 5 と、 上記の摩擦振動接合に係る金属部材接合方法によつ てベース板 1 0 5 aの他方の面に対して重ね合わせて接合された銅部材 からなる伝熱板 1 0 6 と、 を備えるものであれば、 その他の点について は自由に変更できる。
たとえば、 第 5図に示す放熱部材 1 0 4は、 いずれも放熱性能を高め るために放熱フィ ン 1 0 5 b , 1 0 5 b , …の表面積を大きく したもの であって、 .第 5図 ( a ) は、 放熱フイン 1 0 5 b , 1 0 5 b, …が長さ 方向に波状に走る形状となったもの、 第 5図 ( b ) は、 放熱フィ ン 1 0 5 b , 1 0 5 b , …が伝熱板 1 0 6に対して傾斜して立設されたもの、 第 5図 ( c ) は、 放熱フィン 1 0 5 b , 1 0 5 b , …が高さ方向に屈曲 しているもの (伝熱板 1 0 6の幅方向に対して左右対称断面形でも左右 非対称断面形でもよい。 ) を示している。
第 6図 ( a ) , ( b ) は、 本発明に係る放熱部材の製造方法の一実施 形態として、 第 4図に示した放熱部材 1 0 4を製造する方法の各工程を 表す正面断面図であり、 第 6図 ( c ) は第 6図 ( b ) の断面図である。
まず、 第 6図 ( a ) に示すように、 放熱フイ ン 1 0 5 b , 1 0 5 b , …を下向きにしてアルミニゥム部材からなるヒー トシンク材 1 0 5を、 接合テーブル 1 0 7上に固定する。 そして、 ヒートシンク材 1 0 5のべ ース板 1 0 5 aの上面に、 銅部材からなる伝熱板 1 0 6を互いに面接触 するように重ね合わせて配置し、 図示しない冶具で固定する。
次に、 第 6図 (b ) に示すように、 回転軸 1 0 3 bを中心と して円周 · 方向に高速回転する接合ツール 1 0 3のツール本体 1 0 3 aの周面を伝 熱板 1 0 6 の表面 1 0 6 aに垂直に押し込みつつ、 第 6図 ( c ) に示す ように接合ツール 1 0 3を伝熱板 1 0 6の表面 1 0 6 aに沿って移動さ せることによって、 ヒー トシンク材 1 0 5のベース板 1 0 5 a と伝熱板 1 0 6 とを重ね合わせ接合する。 ツール本体 1 0 3 aは、 伝熱板 1 0 6 の表面 1 0 6 a を押さえ込みつつ進行方向後方に送り込むような向きで 回転軸 1 0 3 bのまわりに回転させる。 接合ツール 1 0 3の移動領域は 、 伝熱板 1 0 6の全面でも一部の面でもよいが、 伝熱板 1 0 6の全面領 域を移動させることによつて伝熱板 1 0 6 とベース板 1 0 5 a の重ね合 わせ面を全面接合したほうが、 接合強度や放熱性能の高い放熱部材 1 0 4を製造することができる。 また、 ツール本体 1 0 3の押込力によって 伝熱板 1 0 6の表面 1 0 6 aに残った凹みが大きい場合には、 伝熱板 1 0 6の表面 1 0 6 aを一定厚みで切削することによって、 外観美麗な放 熱部材 1 0 4を得ることができる。
また、 放熱フィン 1 0 5 bの幅が小さい場合には、 第 7図 ( a ) に示 すよ うに、 放熱フイン 1 0 5 b , 1 0 5 b , …の間に嵌まり こむ断面形 状の放熱フィ ン支持具 1 0 8を接合テーブル 1 0 7上に固定し、 次に第 7図 ( b ) に示すように、 放熱フィン支持具 1 0 8に放熱フィ ン 1 0 5 b , 1 0 5 b , …を嵌めこんで摩擦振動接合するよ うにすれば、 接合ッ ール 1 0 3の押込力による放熱フィン 1 0 5 bの変形を確実に防止する ことができる。
さらに、 接合ツール 1 0 3に代えて、 第 7図 ( c ) に示すよ うに、 回 転軸 1 0 3 bのまわりに所定間隔でツール本体 1 0 3 a, 1 0 3 a , … が固定された接合ツール 1 0 3 ' を用いることもできる。 この場合、 一 度に多数箇所を摩擦振動接合できるので、 接合に要する時間を短縮でき 、 より接合効率が向上する。
以上、 本発明の好適な実施形態を説明したが、 本発明はこれに限定さ れるものではなく、 発明の趣旨に応..じた適宜の変更を加えて.実施される べきものであることは言うまでもない。
<実験 1 >
第 1図、 第 2図に示したように、 アルミニウム部材と銅部材とを重ね 合わせて銅部材側から摩擦振動接合する場合において、 接合ツールのッ ール本体の周速度 Rの適正範囲を検証すべく、 以下の実験を行った。 供試材と して、 厚み 0. 0 0 1 mの銅部材と、 厚み 0. 0 0 1 mのァ ルミニゥム部材 ( 1 0 5 0— O) を用いた。 また、 接合ツールと して、 ツール本体の直径が 0. 0 8 111、 板厚が 0. 0 0 5 mのものを用いた。 接合ツールのツール本体の銅部材表面への押込量 αは 0. 0 0 0 3 mに 賺藝 4
55 設定した。
結果を表 1に示す。
ここで、 材料剥離とは、 重ね合わせ面で両部材が剥がれた (剥離した ) ものを指し、 やや不完全ながら接合がなされたことを示す。 また、 材 料接合部破断とは、 接合部の重ね合わせ面以外で部材が破断したものを 指し、 接合が完全であったことを示す。
56
一表 1
Figure imgf000058_0001
表 1から、 接合時の接合ツールを周速度 2 5 0 2 0 0 0 m/min で 回転させれば、 接合ツールと銅部材との摩擦接触によって発生する熱量 が適正な値となって、 良好な接合を行う ことができるこ とが分かった。 また、 接合時の接合ツールを周速度 5 0 0〜 2 0 0 0 m/min で回転さ せれば、 よ り 良好な接合を行う ことができるこ とが分かった。
<実験 2 >
実験 1 における銅部材の厚み t (m) と接合ツールのツール本体の銅 部材への押込量 a (m) とを変化させ、 実験 1 と同様の実験を行った。 結果を表 2に示す。
βηοοΌ ¾一 ν ρ..
表 2—
Figure imgf000060_0001
表 2に示すよ う に、 接合時の接合ツールの周速度を 2 5 0 m/min よ り小さ く したときには、 接合ツールと銅部材と の摩擦接触によって発生 する熱量が小さすぎて、 銅部材とアルミニウム部材との重ね合わせ面の 温度が低く、 接合不良となってしまった (比 _ 1〜比一 4 ) 。 一方、 表 2 には示していないが、 接合時の接合ツールの周速度を 2 0 0 0 m/ min よ り大きく したときには、 接合ツールと銅部材との摩擦接触によつ て発生する熱量が必要以上に大きく、 接合ツールと接触している銅部材 の温度が局所的に大き く なりすぎて当該部分が塑性変形してしまい、 接 合ツールの押圧力が重ね合わせ面に充分に伝達されず、 両部材間に隙間 が生じてしまった。 また、 この場合には、 接合ツールの駆動エネルギー ロスが大きく 、 接合効率が悪かった。 したがって、 接合時の接合ツール を周速度 2 5 0〜 2 0 0 0 m/min で回転させれば、 接合ツールと銅部 材との摩擦接触によって発生する熱量が適正な値となって、 良好な接合 を行う ことができるこ とが分かった ( 2— 1〜 2 _ 17) 。
ぐ実験 3 >
実験 3 と して、 実験 2 と同様の実験を行い、 接合ツールのツール本体 の銅部材への押込量 α (m) と銅部材の厚み t (m) との関係を検証し た。
結果を表 3に示す。
材料: 1 050-0, C u
A I厚み: 0.001m
接合ツール形状: 0.08m, 0.005m厚 試科番 回転数 周速度 (R) 送り速度 (V) C u厚み( t ) 押込量 ( ) 接合強度 評価 備考 rpm m/min m/min m m N/m2
、 *ϊ、
( x 103) ( 103) ( 106)
比一 5 3000 753.96 2.0 1,0 0.05 0 X
「rt
比一 6 3000 753.
Figure imgf000062_0001
2.0 3.0 0.10 0 X
比一フ 3000 753.96 3.0 3.0 0.15 0 X
比一 8 3000 753.96 0.5 5.0 0.30 0 X
3― 1 2000 502.64 2.0 3.0 0.30 101 〇 材料接合部破断 tilir"
3— 2 2000 502.64 3.0 3.0 0.30 92 O 材料接合部破断
3— 3 oπUπUπU 106. »D 0.5 3.0 0.30 94 O 材料接台部破断
3-4 3000 753.96 1.0 3.0 0.30 98 o 材料接合部破断
3-5 3000 753.96 2.0 3.0 0.30 110 〇 材料接合部破断
3-6 3000 753.96 3.0 3.0 0.30 103 o 材料接合部破断
3-7 3000 753.96 4.0 3.0 0.30 105 〇 材料接合部破断
3-8 6000 1507.92 3.0 3.0 0.30 100 0 材料接合部破断
3-9 2000 502.64 0.5 5.0 0.50 89 0 材料接合部破断
3—10 2000 502.64 0.5 5.0 0.50 188 〇 材料接合部破断
3 0 . 1 t よ り も小さいときには、 銅部材とアルミニウム部材の重ね合わ せ面に隙間が残って接合不良となってしまった (比一 5〜比一 8 ) 。 一 方、 表 3 には示していないが、 押込量 aが 0 · 3 t よ り も大きいときに は、 銅部材とアルミ二ゥム部材との重ね合わせ面に隙間は残らなかった が、 接合ツールの押し込み過大によつて銅部材表面に四みが顕著に残つ てしまい、 部材ロスが発生した。 したがって、 接合時の接合ツールの銅 部材表面への押込量 αを 0 . I t以上 0 . 3 t 以下とすれば、 接合ツー ルの押圧力が適正な値となって、 銅部材とアルミ二ゥム部材の重ね合わ せ面に隙間を発生させずに接合するこ とができ、 銅部材表面の凹みも小 さくできることが分かった。
ただし、 この実験では、 接合ツールのツール本体の周面がフラ ッ トで あった。 ツール本体の周面に凹溝を形成した場合には、 ツール本体の周 面と銅部材との接触面積が増加するので、 接合時のツール本体の銅部材 表面への押込量 αをより小さくすることが可能である。 発明者の実験に よれば、 ツール本体の周面に凹溝を形成した場合には、 接合時の接合ッ ールの銅部材表面への押込量 αを 0 . 0 3 t以上 0 . 3 t以下とするこ とが適当である。 ぐ実験 4 >
実験 4 と して、 実験 2 と同様の実験を行い、 接合ツールのツール本体 の送り速度 V ( m / min) の適正範囲を検証した。 なお、 銅部材の厚み t を 0 . 0 0 5 m、 接合ツールのツール本体の板厚を 0 . 0 1 mに設定 した。
結果を表 4に示す。 嫩 4 材料: 1 050— O, C u
厚さ : A 卜 "0.001m, C u---0.005m (=
接合ツール形状: 00.08m, 0.01m厚
Figure imgf000064_0001
04 Vは、 接合時の接合ツールの周速度を R (m/min) 、 重ね合わせ部に おける銅部材の厚みを t (m) とすれば、 V R/ ( 5. 0 X 1 0 7 X t 2) の範囲にあることが望ましい。
その理由と して、 接合時の接合ツールの周速度が大きく なれば、 接合 ツールと銅部材との摩擦接触によって発生する熱量が大きくなるので、 接合ツールの送り速度 Vを大き く しても、 重ね合わせ部の温度を一定以 上に保つことができるが、 銅部材の厚み t が大き く なる と、 重ね合わせ 部が一定温度以上に達するまでの時間がかかるので、 接合ツールの送り 速度を大きく しすぎると、 重ね合わせ部が一定温度以上に達する前に接 合ツールが通過してしまい、 接合不良となってしま う という こ とが挙げ られる。 つまり、 良好な摩擦振動接合を行う には、 接合ツールの送り速 度 V、 周速度 R、 銅部材の厚み t を相互に調節する必要があり、 発明者 らは実験の結果、 ( 5. 0 X 1 0 X t 2 ) を満足する ときに 良好な接合が可能であることを確認した。
また、 表 4には示していないが、 接合ツールの周速度 Vが小さすぎる と、 接合に時間を要し接合効率が低下するという観点から、 1 0 0≤v を満足するときに接合効率がよいことも確認した。
したがって、 接合時の接合ツールを、 次式 ( C) によって求められる 送り速度 V (m/min) で銅部材の表面に沿って移動させれば、 良好な 摩擦振動接合が可能であることが分かった。
0. 1 ≤ V≤ R/ ( 5. 0 X 1 07 X t 2 ) … ( C ) R : 接合時の接合ツールの周速度 (mZmin)
t : 重ね合わせ部における銅部材の厚み (m)
<実験 5 >
第 6図に示した方法を用いて第 4図に示した形状の放熱部材を実際に 製作した。 ヒ一 トシンク材はアルミ ニウムの押出形材と し、 ベース板の 厚みを 0. 0 0 5 m、 幅を 0. 0 6 m、 長さを 0. 2 m、 放熱フィ ンの 幅を 0. 0 0 0 5 m、 配置間隔を 0. 0 0 2 m、 高さを 0. 0 1 5 mと した。 伝熱板の厚みは 0. 0 0 5 m、 幅及ぴ長さはヒー トシンク材のべ ース板と同じにした。 摩擦振動接合に用いた接合ツールは、 ツール本体 の直径を 0. 0 8 m、 厚みを 0. 0 1 mとし、 接合条件と して、 ツール 本体の回転数を 3 0 0 0 rpm、 送り速度を 0. 2 5 m/min、 伝熱板への 押込量を 0. 0 0 0 5 mに設定した。 また、 摩擦振動接合後に、 伝熱板 の表面に 0. 0 0 1 mの深さで機械加工による切削を行った。
このよ うにして、 熱伝導性に優れた放熱部材を、 効率よく製造するこ とができた。 次に、 第二群の発明の実施の形態を説明する。
まず、 本題に入る前に、 前提となる金属部材の摩擦振動接合の基本メ 力二ズムを説明する。
金属部材の摩擦振動接合とは、 接合ツールの押圧力によって金属部材 の重ね合わせ部における隙間をなく しつつ、 回転する接合ツールと金属 部材との接触により生ずる振動によつて金属部材の重ね合わせ面に存在 する酸化皮膜を分断破壊すると もに、 摩擦熱によつて重ね合わせ部を 高温化して塑性変形させることにより、 金属部材同士の接触面積と拡散 速度を増大させながら重ね合わせ部を接合する方法である。
そして特に、 複数の金属部材を、 溶融点の高い順に互いに重ね合わせ て配置しておき、 最も溶融点の高い金属部材側から接合ツールを押し当 てつつ接合するようにすれば、 金属部材同士の重ね合わせ部が接合に必 要な温度まで上昇したときに、 接合ツールに近い側の金属部材ほどその 変形抵抗を高く保って接合ツールの押圧力を重ね合わせ面に対して効率 よく伝達できるので、 金属部材間に隙間のない高強度の接合が可能とな るのである。
ここで、 金属部材の一例としてアルミユウム部材とこれより も溶融点 の高い銅部材とを挙げ、 より具体的に説明する。 第 8図 ( a ) , ( b ) は、 摩擦振動接合の各手順を表す正面断面図であり、 第 8図 ( c ) は第 8図 (b ) の側面図である。 摩擦振動接合では、 まず、 第 8図 ( a ) に 示すようにアルミニウム部材 1 と銅部材 2 とが面接触するように互いに 重ね合わせて配置し、 図示しない冶具で固定する。
次に、 第 8図 (b ) , ( c ) に示すよ うに、 回転軸 2 0 3 b を中心と して円周方向に周速度 Rで高速回転する接合ツール 2 0 3のツール本体 2 0 3 aの周面を銅部材 2 0 2の表面 2 0 2 aに垂直に押し当てつつ、 接合ツール 2 0 3を銅部材 2 0 2の表面 2 0 2 aに沿って送り速度 Vで 移動させることによって、 アルミ -ゥム部材 2 0 1 と銅部材 2 0 2 とを 重ね合わせて接合する。 接合ツール 2 0 3は回転軸 2 0 3 bの先端部に 円板状のツール本体 2 0 3 aを固定してなるものであり、 ツール本体 2 0 3 aは J I S : S KD 6 1などの工具鋼からなる。 ツール本体 2 0 3 aは、 銅部材 2 0 2の表面 2 0 2 aを押さえ込みつつ進行方向後方に送 り込むような.向きで回転軸 2 0 3 bのまわりに回転する。
ツール本体 2 0 3 aは、 第 9図 ( a ) に示すように、 その周面が銅部 材 2 0 2の表面 2 0 2 aに一定量 αだけ押し込まれた状態で円周方向に. 高速回転しつつ、 銅部材 2 0 2の表面 2 0 2 aに沿って移動する。 そし て、 このよ うなツール本体 2 0 3 a の銅部材 2 0 2への押し込みによつ てアルミ二ゥム部材 2 0 1 と銅部材 2 0 2の重ね合わせ面の隙間をなく しつつ、 高速回転するツール本体 2 0 3 a と銅部材 2 0 2 との接触によ り生ずる振動によってアルミニウム部材 2 0 1 と銅部材 2 0 2の重ね合 わせ面の酸化皮膜を分断破壊すると ともに、 第 9図 (b ) に示すように 、 ツール本体 2 0 3 a と接触する銅部材 2 0 2の所定領域及ぴその近傍 領域と、 これらの領域に隣接するアルミニゥム合金 2 0 1の所定領域と を、 ツール本体 2 0 3 a と銅部材 2 0 2 との摩擦接触により発生した熱 で高温化し、 それぞれ固相状態のまま可塑化 (流動化) させる。 その結 果、 銅部材 2 0 2 とアルミニウム部材 2 0 1 は、 互いの境界面において も塑性流動し、 それぞれ当初の表面から塑性変形する。
接合ツール 2 0 3のツール本体 2 0 3 aが通過した跡は、 第 9図 ( c ) に示すよ うに、 ツール本体 2 0 3 a の押圧力によつて銅部材 2 0 2の 表面 2 0 2 a に一対の浅い段部 2 0 2 b, 2 0 2 bが形成される。 また 、 アルミ二ゥム部材 2 0 1 と銅部材 2 0 2の重ね合わせ面は、 塑性変形 したアルミニウム部材 2 0 1及び銅部材 2 0 2が互いに嚙み合う よ う に 断面凹凸形で固化した接合面 S となり、 この接合面 Sを介して銅部材 2 0 2 とアルミェゥム部材 2 0 1 とが確実に接合される。
ここで、 接合ツール 2 0 3をアルミニウム部材 2 0 1側から押し当て ること も考えられるが、 アルミ二ゥム部材 2 0 1 の溶融点は銅部材 2 0 2の溶融点よ り も低く、 アルミ二ゥム部材 2 0 1 と銅部材 2 0 2の重ね 合わせ面が接合に必要な温度 (共晶温度 : 5 4 8 °C ) 以上に達したとき にアルミ二ゥム部材 2 0 1 の変形抵抗が比較的小さく なつてしま う ので 、 接合ツール 2 0 3 による押圧力がアルミ二ゥム部材 2 0 1 と銅部材 2 0 2の重ね合わせ面に充分に伝達されず、 接合不良となりやすい。 一方 、 接合ツール 2 0 3 をアルミ二ゥム部材 2 0 1 よ り も溶融点の高い銅部 材 2 0 2側から押し当てるようにすれば、 アルミニウム部材 2 0 1 と銅 部材 2 0 2の重ね合わせ面が接合に必要な温度 (共晶温度) 以上に達し たときに銅部材 2 0 2の変形抵抗を比較的大きく保持して、 接合ツール 2 0 3の押圧力をアルミニウム部材 2 0 1 と銅部材 2 0 2の重ね合わせ 面に充分に伝達できるので、 両部材間の隙間をなく した高強度の接合を 行う こ とができる。 なお、 このよ うにしてアルミ二ゥム部材 2 0 1 と銅部材 2 0 2 とを重 ね合わせて摩擦振動接合する場合には、 接合時の接合ツール 2 0 3 (ッ ール本体 2 0 3 a ) を、 次式 (A) で求められる周速度 R (m/min) で回転させることが望ましい。
2 5 0 ≤ R≤ 2 0 0 0 ··· (A)
これは、 接合時の接合ツール 2 0 3の周速度が 2 5 0 m/min よ り小 さいと、 接合ツール 2 0 3 と銅部材 2 0 2 との摩擦接触によって発生す る熱量が小さすぎて、 銅部材 2 0 2 とアルミニウム部材 2 0 1 との重ね 合わせ面の温度が低く、 接合不良となってしまい、 一方、 接合時の接合 ツール 2 0 3の周速度が 2 0 0 0 m/min よ り大きいと、 接合ツール 2 0 3 と銅部材 2 0 2 との摩擦接触によって発生する熱量が必要以上に大 きく なつて、 接合ツール 2 0 3の駆動エネルギーロスが大きいだけでな く、 接合ツール 2 0 3 と接触している銅部材 2 0 2の温度が局所的に大 きく なりすぎて当該部分が塑性変形してしまい、 接合ツール 2 0 3の押 圧力が重ね合わせ面に充分に伝達されず、 両部材間に隙間が生じてしま うおそれがあるからである。 したがって、 接合時の接合ツール 2 0 3 を 周速度 2 5 0〜 2 0 0 0 m/min で回転させれば、 接合ツール 2 0 3 と 銅部材 2 0 2 との摩擦接触によって発生する熱量が適正な値となって、 良好な接合を行う ことができるのである。
また、 アルミニウム部材 2 0 1 と銅部材 2 0 2 とを重ね合わせて摩擦 振動接合する場合には、 接合時の接合ツール 2 0 3 (ツール本体 2 0 3 a ) を、 次式 (B ) で求められる押込量 a (m) だけ銅部材 2 0 2の表 面 2 0 2 a に押し込むことが望ましい。
0. 0 3 X t ≤ a ≤ 0. 3 X t … ( B )
t : 重ね合わせ部における銅部材の厚さ (m)
これは、 接合時の接合ツール 2 0 3の銅部材 2 0 2表面への押込量 力 S O . 0 3 t よ り も小さいと、 銅部材 2 0 2 とアルミニウム部材 2 0 1 との重ね合わせ面に隙間が残って接合不良となり、 一方、 押込量 αが 0 . 3 t よ り も大きいと、 銅部材 2 0 2 とアルミ二ゥム部材 2 0 1 との重 ね合わせ面に隙間は残らないが、 接合ツール 2 0 3の押し込み過大によ つて銅部材 2 0 2表面に凹みが顕著に残ってしまい、 部材ロスが発生す るからである。 したがって、 接合時の接合ツール 2 0 3の銅部材 2 0 2 表面への押込量 αを 0 . 0 3 1以上 0 . 3 t以下とすれば、 接合ツール 2 0 3の押圧力が適正な値となって、 銅部材 2 0 2 とアルミニウム部材
2 0 1 との重ね合わせ面に隙間を発生させずに接合することができ、 銅 部材 2 0 2表面の凹みも小さくできるのである。
さ らに、 アルミニウム部材 2 0 1 と銅部材 2 0 2 とを重ね合わせて摩 擦振動接合する場合には、 接合時の接合ツール 2 0 3 (ツール本体 2 0
3 a ) を、 次式 (C ) によって求められる送り速度 V (m/min) で銅 部材 2 0 2の表面に沿って移動させることが望ましい。
0 · 1 ≤ V≤ R /' ( 5 . 0 X 1 0 7 X t " … ( C )
R : 接合時の接合ツールの周速度 (mZmin)
t : 重ね合わせ部における銅部材の厚さ ·(m)
これは、 接合時の接合ツール 2 0 3の周速度が大き く なれば、 接合ッ ール 2 0 3 と銅部材 2 0 2 との摩擦接触によって発生する熱量が大き く なるので、 接合ツール 2 0 3の送り速度 Vを大きく しても、 重ね合わせ 部の温度を一定以上に保つことができるが、 銅部材 2 0 2の厚さが厚く なると、 重ね合わせ面が一定温度以上に達するまでの時間がかかるので 、 接合ツール 2 0 3の送り速度を大きく しすぎると、 重ね合わせ部が一 定温度以上に達する前に接合ツール 2 0 3が通過してしまい、 接合不良 となってしま うからである。 つま り、 良好な摩擦振動接合を行う には、 接合ツール 2 0 3の送り速度 V、 周速度 R、 銅部材の厚さ t を相互に調 節する必要があり 、 実験の結果、 V≤ R/ ( 5. 0 X 1 0 7 X t 2) を 満足するときに良好な接合が可能であることが確認されている。 一方、 接合ツール 2 0 3の周速度 Vが小さすぎると、 接合効率が低下するとい う観点から、 0. 1 ≤Vを満足するときに接合効率がよいこと も実験に よって確認されている。
なお、 金属部材の摩擦振動接合は、 アルミ -ゥム部材と銅部材との重 ね合わせ接合に限定されるわけではなく、 金属部材同士の重ね合わせ接 合に広く適用するこ とができる。 そして、 そのよ うな金属部材の形状は 、 互いに重ね合わせて接合ツールを押し当てるこ とができるものであれ ばよい。、 さらに、 金属部材の重ね合わせ数も二つに限定されるわけでは なく 、 三つ以上と してもよい。
たとえば、 第 1 0図では、 三つの金属部材 ( 5 0 0 0系アルミニゥム 部材 2 0 1、 1 0 0 0系アルミ ニウム部材 2 0 1 , 、 銅部材 2 0 2 ) を 互いに重ね合わせて配置し、 三つの金属部材のう ち最も溶融点の高い銅 部材 2 0 2側から接合ツール 2 0 3のツール本体 2 0 3 aを押し当てて 摩擦振動接合するものである。 ここで、 接合時に金属部材同士の重ね合 わせ部が所定温度以上になること と、 そのときの各金属部材の変形抵抗 が金属部材同士の重ね合わせ面への接合ツールによる押圧力の伝達効率 に影響することを考慮すると、 三つの金属部材を溶融点の高い順 (ここ では銅部材 2 0 2、 1 0 0 0系アルミ二ゥム部材 2 0 1 ' 、 5 0 0 0系 アルミ ニウム部材 2 0 1の順) に重ね合わせて配置し、 最も溶融点の高 い金属部材 (ここでは銅部材 2 0 2 ) の表面から接合ツール 2 0 3を押 し当てて摩擦振動接合するこ とが望ましい。 この他、 三つの金属部材を 銅、 アルミニウム、 マグネシウムと した場合には、 銅部材、 アルミニゥ ム部材、 マグネシウム部材の順に重ね合わせ、 銅部材側から接合ツール を押し当てて摩擦振動接合すればよい。 以上、 金属部材の摩擦振動接合の基本メ力ニズムについて説明したが 、 続いて、 これを応用した本発明に係る放熱部材の製造方法について説 明する。
第 1 1図及び第 1 2図は、 本発明に係る放熱部材の製造方法の第一実 施形態を説明するための図であって、 第 1 1図 ( a ) , ( b ) は部材配 置工程を表す正面断面図、 第 1 2図 ( a ) は摩擦振動接合工程を表す正 面断面図、 第 1 2図 (b ) はスぺーサ離脱工程を表す正面断面図である 。 また、 第 1 3図は、 本発明に係る放熱部材製造用冶具の一実施形態を 表す分解斜視図である。
本実施形態ではまず、 第 1 1図 ( a ) に示すように、 アルミニウム製 の板状部材であるフィン 2 0 4, 2 0 4, …と、 鉄製の板状部材である スぺーサ 2 0 5, 2 0 5, …とを交互に並べながら、 これらを放熱部材 製造用冶具 2 1 0の部材セッ ト部 2 1 2に立設配置する。
放熱部材製造用冶具 2 1 0は、 第 1 3図に示すように、 上面が開放し た箱形の冶具本体 2 1 1 と、 この冶具本体 2 1 1の内部に形成された四 部である部材セッ ト部 2 1 2においてスライ ド可能に配置された押圧板 2 1 3 と、 この押圧板 2 1 3 と直交する向きで冶具本体 2 1 1 の壁体を 貫通しつつ、 先端部が押圧板 2 1 3の背面に固着され頭部が冶具本体 2 1 1の壁体の外側に位置する締付ボルト 2 1 4 と、 押圧板 2 1 3に平行 な向きで冶具本体 2 1 1の壁体上部に架け渡されるベース固定板 2 1 5 と、 このベース固定板 2 1 5の両端を冶具本体 2 1 1 の壁体上部に螺着 するための締付ボルト 2 1 6 と、 で構成されている。
そして、 ここでは、 フィ ン 2 0 4, 2 0 4 , …とスぺーサ 2 0 5, 2 0 5, …とを、 これらが交互に立設するように部材セッ ト部 2 1 2に並 ベた上で、 締付ボルト 2 1 4をねじ込んで押圧板 2 1 3をこれらに押し 付けることによってこれらを互いに密着した状態で拘束する。 このとき 、 フィ ン 2 0 4 とスぺーサ 2 0 5は全て高さが等しいので、 立設された フィ ン 2 0 4, 2 0 4 , …の上面 (基端面) とスぺーサ 2 0 5, 2 0 5 , …の上面 (基端面) とで水平面が形成されるよ うになっている。
続いて、 第 1 1図 (b ) に示すよ うに、 部材セッ ト部 2 1 2に立設配 置されたフィ ン 2 0 4, 2 0 4, …及ぴスぺーサ 2 0 5, 2 0 5 , …の 上面に、 銅製の板状部材であるベース板 2 0 6、 さらにその上にベース 固定板 2 1 5を載せ、 ベース固定板 2 1 5 の下面に形成されている切欠 2 1 5 aにフィ ン 2 0 4 , 2 0 4, …及びスぺーサ 2 0 5, 2 0 5 , … の上部 (基端部) を嵌め込むことによって、 フィ ン 2 0 4, 2 0 4, ··· 及ぴスぺーサ 2 0 5, 2 0 5 , …を長さ方向 (紙面直交方向) に移動し ないように拘束する。 さらに、 この状態でベース固定板 2 1 5の両端の ポルト孔 2 1 5 bから冶具本体 2 1 1の壁体上面のポルト孔 2 1 1 a に 締付ポルト 2 1 6をねじ込むことによって、 ベース板 2 0 6をフィ ン 2 0 4及びスぺーサ 2 0 5 の上部に固定する。 また図示していないが、 必 要に応じて、 ベース板 2 0 6が幅方向 (紙面左右方向) に移動しないよ うに拘束する。 これで、 フィ ン 2 0 4及びスぺーサ 2 0 5 の基端面がベ ース板 2 0 6の下面 (一方の面) に当接するよ うに、 フィ ン及ぴスぺ一 サ 2 0 5をベース板 2 0 6に立設配置する工程が完了する。
なお、 第 1 1図 ( a ) , ( b ) に示した部材配置工程は、 必ずしもこ のとおりでなくても、 フィ ン 2 0 4, 2 0 4 , …とスぺーサ 2 0 5, 2 0 5, …とベース板 2 0 6 とが最終的に第 1 1図 (b ) のように所定の 位置に配置されるのであれば、 手順を問わない。 したがって、 たとえば 、 互いに間隔をあけてフィ ン 2 0 4, 2 0 4 , ··■ (又はスぺーサ 2 0 5 , 2 0 5, ···) を配置しておき、 それらの基端面にベース板 2 0 6を固 定した後、 最後にフィ ン 2 0 4 , 2 0 4, … (又はスぺーサ 2 0 5, 2 0 5 , …) の間にそれぞれスぺーサ 2 0 5, 2 0 5 , … (又はフィ ン 2 0 4, 2 0 4, ■··) を挿入するよ うにしてもよい。
次に、 第 1 2図 ( a ) に示すよ う に、 回転軸 2 0 3 b を中心と して円 周方向に高速回転する接合ツール 2 0 3 のツール本体 2 0 3 a の周面を ベース板 2 0 6の他方の面の表面 2 0 6 a に垂直に押し当てつつ、 接合 ツール 2 0 3をベース板 2 0 6 の表面 2 0 6 a に沿って移動させるこ と によって、 ベース板 2 0 6にフィ ン 2 0 4, 2 0 4, …を接合する。 このとき、 ベース板 2 0 6 を構成する銅の溶融点がフィ ン 2 0 4を構 成するアルミ ニウムの溶融点より も高いので、 フィ ン 2 0 4 とベース板 2 0 6 との境界面を両者の接合に必要な温度 (共晶温度 : 5 4 8 °C) ま で上昇させたときにベース板 2 0 6 の変形抵抗を高く保つことができ、 接合ツール 2 0 3 の押圧力を境界面に効率よく伝達しながらフィ ン 2 ◦ 4 とベース板 2 0 6の間に隙間のない高強度の接合を行う ことができる また、 スぺーサ 2 0 5 を構成する鉄の溶融点がフィ ン 2 0 4を構成す るアルミニウム及びベース板 2 0 6 を構成する銅の溶融点より も高いの で、 接合ツール 2 0 3の周速度や送り速度を所定の範囲に設定するこ と によって、 スぺーサ 2 0 5がフィ ン 2 0 4やベース板 2 0 6に接合され ないよ う に、 ベース板 2 0 6 とフィ ン 2 0 4だけを容易に接合するこ と ができる。
最後に、 放熱部材製造用冶具 2 1 0 の締付ポル ト 2 1 6を緩めてベー ス固定板 2 1 5を冶具本体 2 1 1から取り外すと ともに、 締付ボル ト 2 1 4を緩めて押圧板 2 1 3によるフィ ン 2 0 4及ぴスぺーサ 2 0 5 の拘 束を解除した上で、 第 1 2図 ( b ) に示すよ う に、 ベース板 2 0 6 を上 に持ち上げる。 すると、 ベース板 2 0 6 に接合されたフィ ン 2 0 4 , 2 0 4, …だけが一緒に持ち上がり、 スぺーサ 2 0 5, 2 0 5 , …は放熱 部材製造用冶具 2 1 0の部材セッ ト部 2 1 2に取り残される。 このよ う 4
73 にしてスぺーサ離脱工程において簡単にスぺーサ 2 0 5, 2 0 5 , …を 取り外すことによって、 第 1 4図に示すよ うな、 複数枚のアルミニゥム 製のフィ ン 2 0 4, 2 0 4 , …が互いに間隔をあけて銅製のベース板 2 0 6の一方の面に立設接合された放熱部材 2 5 0 を製造することができ る。
以上のよ うな放熱部材の製造方法によれば、 フィ ン 2 0 4 , 2 0 4, …の間にそれぞれスぺーサ 2 0 5 , 2 0 5, …を挟み込むので、 フィ ン 2 0 4相互の間隔を正確に保ちつつ、 互いに所定間隔をあけた状態でフ イン 2 0 4, 2 0 4, …を並べて位置決めするこ とができる。 また、 ス ぺーサ 2 0 5 によってフィン 2 0 4が補強されるので、 摩擦振動接合ェ 程においてフィ ン 2 0 4に曲げ応力が作用するにもかかわらず、 フィ ン 2 0 4の厚さをかなり薄くすることが可能である。 また、 スぺーサ 2 0 5の厚さを変更するだけでフィ ン 2 0 4の配置間隔を任意に変更でき、 さらにフィ ン 2 0 4の高さを併せて変更することによって、 特に板厚が 薄く高さの大きなフィ ン 2 0 4, 2 0 4 , …を、 ベース板 2 0 6の一方 の面に短ピッチで立設接合して、 ハイ トング比の (たとえばトング比 2 0を超える) 放熱部材 2 5 0 を製造することができる。 もちろん、 スぺ ーサ 2 0 5は金属製に限定されるわけではなく 、 強度や加工性等を考慮 してセラミ ックその他の任意の材質とするこ とができ、. またスぺーサ 2 0 5の形状も適宜定めればよい。 なお、 部材配置工程でベース板 2 0 6 の一方の面にフィ ン 2 0 4, 2 0 4 , …を立設配置したときに、 スぺー サ 2 0 5 , 2 0 5, …の基端面はベース板 2 0 6の該一方の面に当接し ていなくてもよいが、 摩擦振動接合工程で接合ツール 2 0 3の押圧力に よってフィ ン 2 0 4に曲げ応力が作用することを考慮すれば、 スぺーサ 2 0 5によるフィ ン 2 0 4の補強効果を高めるため、 上記実施形態のよ うにスぺーサ 2 0 5, 2 0 5, …をフィ ン 2 0 4, 2 0 4 , …と同じ高 さに揃えることによって、 スぺーサ 2 0 5, 2 0 5 , …の基端面をべ一 ス板 2 0 6の該一方の面に当接させることが望ま しい。
また、 以上のよ うな放熱部材の製造方法によれば、 ろう接のよ う に真 空炉中などで所定時間にわたり加熱保持することなく、 フィン 2 0 4, 2 0 4, …とベース板 2 0 6 とを接合できるので、 製造コス トを削減す ることができる。 なお、 ベース板 2 0 6 とフィ ン 2 0 4, 2 0 4 , …と の接合強度を高める と ともに、 放熱部材 2 5 0の放熱性能を高めるため には、 第 1 5図 ( a ) に示すよ うに、 各フィ ン 2 0 4 の基端面全面を迪 るよ う にベース板 2 0 6の裏面 (ベース板 2 0 6 の他方の面) において 接合ツール 2 0 3を移動させることによって、 フィ ン 2 0 4 , 2 0 4 , …をベース板 2 0 6に完全に接合することが望ま しい (第 1 5図におい て斜線を付した領域は、 接合ツール 2 0 3の移動跡を示している。 ) 。 一方、 接合コス トの削減を重視するのであれば、 たとえば第 1 5図 ( b ) に示すよ うに、 各フィ ン 2 0 4の基端面の全面ではなく一部だけを迪 るよ うに接合ツール 2 0 3 を移動させればよい。 また、 ベース板 2 0 6 とフィ ン 2 0 4, 2 0 4 , …とを摩擦振動接合するときに同時にベース 板 2 0 6 とスぺーサ 2 0 5, 2 0 5 , …とを接合しておき、 スぺーサ離 脱工程では何らかの方法によってベース板 2 0 6やフィ ン 2 0 4からス ぺーサ 2 0 5, 2 0 5, …を取り外すよ うにしてもよいが、 接合ツール 2 0 3 のツール本体 2 0 3 a の幅をフィ ン 2 0 4 の厚さ以下と しておき 、 第 1 5図 ( c ) に示すよ う にベース板 2 0 6 とスぺーサ 2 0 5 , 2 0 5, …とが接合されないよ う な軌跡で (図示の場合、 フィン 2 0 4 , 2 0 4, …の直上領域だけで) 接合ツール 2 0 3 を移動させる力 、 又は、 ベース板 2 0 6にフィ ン 2 0 4, 2 0 4, …のみを当接させ、 ベース板 2 0 6 とスぺーサ 2 0 5, 2 0 5, …が当接しないよ う に配置して接合 する力 あるいは、 上記実施形態のよ うにスぺーサ 2 0 5の溶融点をフ イン 2 0 4及びベース板 2 0 6の溶融点より も高くすることによって、 接合ツール 2 0 3 の移動軌跡にかかわらずスぺーサ 2 0 5 , 2 0 5, … がベース板 2 0 6やフィ ン 2 0 4に接合されないようにしておけば、 摩 擦振動接合後もスぺーサ 2 0 5, 2 0 5, …がベース板 2 0 6やフィ ン 2 0 4に接合されないので、 スぺーサ離脱工程での手間を省いて製造コ ス トを削減することができる。 また、 接合ツール 2 0 3 の押込力によつ てベース板 2 0 6の他方の面の表面 2 0 6 aに残った凹みが大きい場合 には、 ベース板 2 0 6の表面 2 0 6 a を一定厚さで切削することによつ て、 外観美麗な放熱部材 2 5 0 とすることができる。
また、 摩擦振動接合工程を簡素化するために、 接合ツール 2 0 3に代 えて、 第 1 6図に示すように、 回転軸 2 0 3 bのまわりに所定間隔でッ ール本体 2 0 3 a, 2 0 3 a , …が固定された接合ツール 2 0 3, を用 いて摩擦振動接合するようにしてもよい。 この場合、 一度に多数箇所を 摩擦振動接合できるので、 接合に要する時間を短縮でき、 さらに接合効 率が向上する。
なお、 このよ う にして製造された放熱部材 2 5 0のフィ ン 2 0 4, 2 0 4, …の先端面にさらに別のベース板 2 0 6, を接合することにより 、 第 1 7図に示すような、 互いに間隔をあけたフィ ン 2 0 4, 2 0 4 , …の両端面にそれぞれベース板 2 0 6, 2 0 6, を摩擦振動接合した放 熱部材 2 5 0 ' を製造するよ うにしてもよい。
同図に示した放熱部材 2 5 0 ' の製造手順の第一パターンは、 第 1 8 図 ( a ) に示すように、 互いに間隔をあけたフィ ン 2 0 4, 2 0 4 , … の間にそれぞれスぺーサ 2 0 5 , 2 0 5, …を挟み込み、 フィ ン 2 0 4 , 2 0 4, …の両端 (図示上下端) にそれぞれベース板 2 0 6, 2 0 6 ' を配置した上で、 ベース板 2 0 6 の背面 (図示上面) 及ぴベース板 2 0 6 , の背面 (図示下面) から接合ツール 2 0 3, 2 0 3を押し当てて 同時に摩擦振動接合する。 そして最後に、 スぺーサ 2 0 5, 2 0 5 , … を側方から (紙面直交方向に) 抜き取る。
放熱部材 2 5 0 '' の製造手順の第二パターンは、 第 1 8図 ( b ) に示 すように、 互いに間隔をあけたフィ ン 2 0 4 , 2 0 4 , …の間にそれぞ れスぺーサ 2 0 5 , 2 0 5 , …を挟み込み、 フィ ン 2 0 4 , 2 0 4, ··· の両端 (図示上下端) にそれぞれベース板 2 0 6 , 2 0 6 ' を配置した 上で、 一方のベース板 2 0 6の背面 (図示上面) から接合ツール 2 0 3 を下向きに押し当てて摩擦振動接合する。 その後、 各部材の配置関係を 保持したままフィ ン 2 0 4、 スぺーサ 2 0 5、 ベース板 2 0 6 , 2 0 6 ' を上下反転した上で、 第 1 8図 ( c ) に示すように、 他方のベース板 2 0 6 ' の背面 (図示上面) から接合ツール 2 0 3を下向きに押し当て て摩擦振動接合する。 そして最後に、 スぺーサ 2 0 5, 2 0 5 , …を側 方から (紙面直交方向に) 抜き取る。
放熱部材 2 5 0 ' の製造手順の第三パターンは、 第 1 9図 ( a ) に示 すように、 互いに間隔をあけたフィ ン 2 0 4, 2 0 4, …の間にそれぞ れスぺーサ 2 0 5 , 2 0 5, …を挟み込み、 フィ ン 2 0 4, 2 0 4, … の一端 (図示上端) だけにベース板.2 0 6·を配置した上で、 ベース板 2 0 6の背面 (図示上面) から接合ツール 2 0 3を下向きに押し当てて摩 擦振動接合する。 その後、 各部材の配置関係を保持したままフィ ン 2 Q 4、 スぺーサ 2 0 5、 ベース板 2 0 6を上下反転した上で、 第 1 9図 ( b ) に示すように、 フィ ン 2 0 4, 2 0 4 , …の他端 (図示上端) にべ ース板 2 0 6, を配置し、 さらに第 1 9図 ( c ) に示すように、 ベース 板 2 0 6 ' の背面 (図示上面) から接合ツール 2 0 3を下向きに押し当 てて摩擦振動接合する。 そして最後に、 スぺーサ 2 0 5, 2 0 5, …を 側方から (紙面直交方向に) 抜き取る。
放熱部材 2 5 0 ' の製造手順の第四パターンは、 第 1 9図 ( d ) に示 すように、 互いに間隔をあけたフィ ン 2 0 4, 2 0 4 , …の間にそれぞ れスぺーサ 2 0 5 , 2 0 5 , …を挟み込み、 フィ ン 2 0 4, 2 0 4 , … の一端 (図示上端) だけにベース板 2 0 6を配置した上で、 ベース板 2 0 6の背面 (図示上面) から接合ツール 2 0 3を下向きに押し当てて摩 擦振動接合する。 次に、 第 1 9図 ( e ) に示すよ うに、 ベース板 2 0 6 及びフィ ン 2 0 4を上に持ち上げる等してスぺーサ 2 0 5を取り外し、 一旦放熱部材 2 5 0を完成させる。 その後、 放熱部材 2 5 0を上下反転 した上で、 第 1 9図 ( f ) に示すように、 フィ ン 2 0 4, 2 0 4 , …の 間にそれぞれスぺーサ 2 0 5 , 2 0 5 , …を挟み込み、 フィ ン 2 0 4 , 2 0 4, …の他端 (図示上端) にベース板 2 0 6, を配置する。 さ らに 、 第 1 9図 ( g ) に示すように、 ベース板 2 0 6 , の背面 (図示上面) から接合ツール 2 0 3を下向きに押し当てて摩擦振動接合する。 そして 最後に、 スぺーサ 2 0 5, 2 0 5, …を側方から (紙面直交方向に) 抜 き取る。
次に、 本発明に係る放熱部材の製造方法の第二実施形態について説明 する。 本実施形態は、 上記第一実施形態と略同様であるが、 放熱部材製 造用冶具 2 1 0を使用せず、 これに代えてスぺーサ冶具 2 2 0を使用す る点において異なる。
スぺーサ冶具 2 2 0は、 第 2 0図 ( a ) に示すように、 スぺーサ 2 0 5, 2 0 5 , …の先端部 (図示下端部) が相互に連結された断面櫛形状 の冶具である。 そして、 部材配置工程では、 このスぺーサ冶具 2 2 0 の スぺーサ 2 0 5 , 2 0 5, …を上に向けて固定した後で、 第 2 0図 (b ) に示すよ うに、 スぺーサ 2 0 5 , 2 0 5 , …の間にそれぞれフィ ン 2 0 4, 2 0 4, …を挿入し、 さらに第 2 0図 ( c ) に示すように、 フィ ン 2 0 4 , 2 0 4 , …の上面 (基端面) にベース板 2 0 6 の下面 (一方 の面) が当接するよ うに、 ベース板 2 0 6を固定する。 なお、 第 2 0図 ( b ) , ( c ) の手順を逆にすること、 つま り スぺーサ冶具 2 2 0の上 面にベース板 2 0 6 を固定した後で、 側方 (紙面直交方向) からスぺー サ 2 0 5 , 2 0 5, …を挿入することも可能である。
続く摩擦振動接合工程では、 第 2 0図 ( d ) に示すよ う に、 ベース板 2 0 6の上面 (他方の面) から接合ツール 2 0 3 を押し当てつつ、 ベー ス板 2 0 6にフィ ン 2 0 4, 2 0 4 , …を摩擦振動接合する。
最後のスぺーサ離脱工程では、 第 2 0図 ( e ) に示すよ うに、 ベース 板 2 0 6及びこれに接合されたフィ ン 2 0 4, 2 0 4 , …を持ち上げる ことにより、 スぺーサ冶具 2 2 0を取り外す。
本実施形態のよ う にスぺーサ冶具 2 2 0を用いれば、 放熱部材製造用 冶具 2 1 0が不要となり.、 しかもスぺーサ 2 0 5 , 2 0 5, …の配置の 手間も省けるという利点がある。
次に、 本発明に係る放熱部材の製造方法の第三実施形態について説明 する。 本実施形態は、 上記第一実施形態と略同様であるが、 部材配置ェ 程がフィ ン配置工程とその後のベース板配置工程とに分かれている。
そして、 最初のフィ ン配置工程では、 第 2 1図 ( a ) に示すよ うに、 フィ ン 2 0 4 , 2 0 4 , …とスぺーサ 2 0 5 , 2 0 5 , …とを交互に並 ベながら、 これらを放熱部材製造用冶具 2 1 0の部材セッ ト部 2 1 2に 立設配置する。 このと き、 スぺーサ 2 0 5 , 2 0 5 , …の高さはスぺー サ 2 0 5の厚さの範囲内でフィ ン 2 0 4, 2 0 4, …の高さよ り も小さ く なつており 、 スぺーサ 2 0 5, 2 0 5 , …の基端面 (図示上端面) が フィ ン' 2 0 4, 2 0 4 , …の基端面 (図示上端面) よ り もスぺーサ 2 0 5 の厚さ以内で埋没している。 換言すれば、 フィ ン 2 0 4, 2 0 4 , ··· の高さはスぺーサ 2 0 5の厚さの範囲内でスぺーサ 2 0 5, 2 0 5 , … の高さより も大き く なつており 、 フィ ン 2 0 4, 2 0 4 , …の基端面が スぺーサ 2 0 5 , 2 0 5 , …の基端面よ り もスぺーサ 2 0 5 の厚さ以内 で突出している。
続くベース板配置工程では、 第 2 1図 ( b ) に示すよ うに、 部材セッ ト部 2 1 2に立設配置されたフィ ン 2 0 4, 2 0 4, …の基端面 (上面 ) にベース板 2 0 6を载せる。 そして、 第 2 1図 ( c ) , ( d ) に示す よ うに、 フィン 2 0 4に向かう下向きの押圧力をベース板 2 0 6に作用 させることによって、 フィ ン 2 0 4, 2 0 4 , …の基端部 (スぺーサ 2 0 5 , 2 0 5, …より も突出している部分) 2 0 4 aを折り曲げ、 フィ ン 2 0 4, 2 0 4 , …を断面 L字形に形成した状態で固定する。 このと き、 フィ ン 2 0 4の基端部 2 0 4 a の高さはスぺーサ 2 0 5 の厚さ以内 であるので、 折り曲げられたフィ ン 2 0 4 の基端部 2 0 4 aは相互に重 複せず、 ベース板 2 0 6の一方の面 (図示下面) に沿う面を形成する。
次に、 第 2 2図 ( a ) に示すように、 回転軸 2 0 3 bを中心と して円 周方向に高速回転する接合ツール 2 0 3 のツール本体 2 0 3 a の周面を ベース板 2 0 6の他方の面の表面 2 0 6 aに垂直に押し当てつつ、 接合 ツール 2 0 3をベース板 2 0 6の表面 2 0 6 aに沿って移動させること によって、 ベース板 2 0 6にフィ ン 2 0 4, 2 0 4 , …の基竭部 2 0 4 a を接合する。
このと き、 直角に折り曲げられたフィ ン 2 0 4 の基端部 2 0 4 aがべ ース板 2 0 6の一方の面に沿う面を形成しているので、 第一実施形態に 比べてベース板 2 0 6 とフィ ン 2 0 4 との接触面積が大きくなつており 、 両者を確実に接合することができる。 つまり、 本実施形態によれば、 フィ ン 2 0 4の厚さがかなり薄い場合であっても、 ベース板 2 0 6 にフ イ ン 2 0 4 , 2 0 4 , …が確実に立設接合された放熱部材 2 5 0を製造 することができる。
最後に、 第 2 2図 ( b ) に示すように、 ベース板 2 0 6を上に持ち上 げれば、 ベース板 2 0 6に接合されたフィ ン 2 0 4, 2 0 4, …だけが 一緒に持ち上がり、 スぺーサ 2 0 5, 2 0 5, …は放熱部材製造用冶具 2 1 0の部材セッ ト部 2 1 2に取り残されるので、 複数枚のフイン 2 0 4, 2 0 4, …がそれぞれの折り曲げられた基端部 2 0 4 aを介してべ ース板 2 0 6の一方の面に立設接合された放熱部材 2 5 0を製造するこ とができる。
次に、 本発明に係る放熱部材の製造方法の第四実施形態について説明 する。 本実施形態も、 上記第一実施形態と略同様であるが、 フィン 2 0 4に代えて断面凹字形のフィ ン構成材 2 3 0を用いる。
つまり、 最初の部材配置工程では、 まず第 2 3図 ( a ) に示すよ うに 、 全体が逆 T字形になるように、 一枚の薄いアルミニウム合金製の板材 2 3 1 の中央部にスぺーサ 2 0 5を直交配置し、 第 2 3図 (b ) に示す よ うに、 断面凹字形のフィン構成材作成冶具 2 4 0の中央部の溝内に、 板材 2 3 1を折り曲げつつその中央部を押し込みながらスぺーサ 2 0 5 を挿入していく ことによって、 第 2 3図 ( c ) に示すよ うな、 中央部の 溝にスぺーサ 2 0 5が挟み込まれた断面囬字形のフィン構成材 2. 3 0を 作成する。 フィン構成材 2 3 0は、 左右一対のフィン 2 0 4, 2 0 4 と これらの端部を連結する基端部 2 0 4 a とで断面凹字形に形成されてい る。
そして、 このよ うに左右一対のフィン 2 0 4, 2 0 4の間にスぺーサ 2 0 5が挟み込まれたフィ ン構成材 2 3 0を複数個用意し、 これらのフ イ ン構成材 2 3 0, 2 3 0, …とスぺーサ 2 0 5 ' , 2 0 5 ' , …とを 交互に並べながら、 第 2 3図 ( d ) に示すよ うに、 これらを放熱部材製 造用冶具 2 1 0の部材セッ ト部 2 1 2に立設配置する。 このときフィ ン 構成材 2 3 0は、 左右一対のフイン 2 0 4, 2 0 4の間にスぺーサ 2 0 5を挟み込んだ状態で、 かつ、 基端部 2 0 4 aを上に向けた状態とする 。 また、 フィ ン構成材 2 3 0, 2 3 0 , …相互間に挟み込まれるよ うに 配置されたスぺーサ 2 0 5, , 2 0 5 , , …の高さを、 フィ ン構成材 2 3 0の左右一対のフィン 2 0 4, 2 0 4の間に挟み込まれたスぺーサ 2 0 5 の高さより も、 フィ ン構成材 2 3 0 の基端部 2 0 4 a の厚さ分だけ 大きくするこ と によって、 フィ ン構成材 2 3 0 の基端部 2 0 4 a とスぺ ーサ 2 0 5 , の基端部とで水平な上面を形成することが望ましい。
その後、 第 2 3図 ( e ) に示すよ うに、 部材セッ ト部 2 1 2に立設配 置されたフィ ン構成材 2 3 0, 2 3 0, …及ぴスぺーサ 2 0 5 ' , 2 0 5, , …の上面にベース板 2 0 6を载せて固定する。 これで、 ベース板 2 0 6の一方の面 (図示下面) にフィ ン構成材 2 3 0の基端部 2 0 4 a 及びスぺーサ 2 0 5 , の基端面が当接した状態となって、 部材配置工程 が完了する。
なお、 第 2 3図 ( a ) 〜 ( e ) に示した部材配置工程は、 必ずしもこ のとおり でなく ても、 フィ ン構成材 2 3 0 , 2 3 0 , …とスぺーサ 2 0 5, 2 0 5 , … と スぺーサ 2 0 5, , 2 0 5, , …とが最終的に第 2 3 図 ( e ) のよ うに所定の位置に配置されるのであれば、 手順を問わない 。 したがって、 たとえば、 予め断面凹字形に形成したフィ ン構成材 2 3 0, 2 3 0, …を互いに間隔をあけて並べておき、 各フィ ン構成材 2 3 0 の左右一対のフィ ン 2 0 4 , 2 0 4 の間にそれぞれスぺーサ 2 0 5, 2 0 5 , …を挿入するとともに、 フィ ン構成材 2 3 0, 2 3 0 , …相互 間にスぺーサ 2 0 5, , 2 0 5, , …を挿入し、 最後にベース板 2 0 6 を配置するようにしてもよいし、 あるいは、 予め断面凹字形に形成した フィン構成材 2 3 0, 2 3 0 , …を互いに間隔をあけて並べておき、 次 にベース板 2 0 6を配置し、 最後に、 各フィ ン構成材 2 3 0 の左右一対 のフィ ン 2 0 4, 2 0 4の間にそれぞれスぺーサ 2 0 5 , 2 0 5, …を 挿入するとともに、 フィ ン構成材 2 3 0 , 2 3 0, …相互間にスぺーサ 2 0 5, , 2 0 5 ' , …を挿入するよ うにしてもよい。 続く摩擦振動接合工程では、 第 2 4図 ( a ) に示すよ うに、 回転軸 2 0 3 b を中心と して円周方向に高速回転する接合ツール 2 0 3のツール 本体 2 0 3 a の周面をベース板 2 0 6の他方の面の表面 2 0 6 aに垂直 に押し当てつつ、 接合ツール 2 0 3をベース板 2 0 6 の表面 2 0 6 a に 沿って移動させるこ とによって、 ベース板 2 0 6 にフィ ン構成材 2 3 0 , 2 3 0, …の基端部 2 0 4 aを接合する。
このと き、 フィ ン構成材 2 3 0 の基端部 2 0 4 a がベース板 2 0 6 の 一方の面に沿う面を形成しているので、 第一実施形態に比べてベース板 2 0 6 とフィ ン 2 0 4 との接触面積が大きく なつており、 両者を確実に 接合するこ とができる。 つま り、 本実施形態によれば、 フィ ン 2 0 4の 厚さがかなり薄い場合であっても、 ベース板 2 0 6にフィ ン 2 0 4, .2 0 4 , …が確実に立設接合された放熱部材 2 5 0 を製造することができ る。
最後に、 第 2 4図 ( b ) に示すよ うに、 ベース板 2 0 6 を上に持ち上 げれば、 ベース板 2 0 6 に接合されたフィ ン構成材 2 3 0, 2 3 0 , ··· だけが一緒に持ち上がり 、 スぺーサ 2 0 5, , 2 0 5 ' , …及ぴスぺ一 サ 2 0 5, 2 0 5 , …は放熱部材製造用冶具 2 1 0.の部材セッ ト部 2 1 2 に取り残されるので、 複数枚のフイ ン 2 0 4, 2 0 4, …がフィ ン構 成材 2 3 0の基端部 2 0 4 a を介してベース板 2 0 6の一方の面に立設 接合された放熱部材 2 5 0を製造することができる。
これまで、 放熱部材の製造方法、 該方法によって製造された放熱部材 、 該方法に用いられる放熱部材製造用冶具の実施形態を説明してきたが 、 本発明はこれらに限定されるものではなく、 発明の趣旨に応じた適宜 の変更が可能であることは言うまでもない。
たとえば放熱部材に関していえば、 第 2 5図 ( a ) に示すよ うに、 長 さ方向中央部の高さが小さ く なつた複数枚のフィ ン 2 0 4 ' , 2 0 4 ' , …を、 そうでない複数枚のフィ ン 2 0 4, 2 0 4 , …と一緒に互いに 間隔をあけてベース板 2 0 6に立設接合させた放熱部材 2 5 1 と しても よいし、 第 2 5図 ( b ) に示すように、 高さが長さ方向に凸凹をもって 形成された複数枚の櫛形状のフィ ン 2 0 4 " , 2 0 4 " , …を互いに間 隔をあけてベース板 2 0 6に立設接合した放熱部材 2 5 2 としてもよい 。 なお、 特にこの放熱部材 2 5 2は、 第 1 4図に示した放熱部材 2 5 0 に比べてフィンの表面積が格段に大きくなっているので、 より放熱性能 の高いものとなる。
また、 放熱部材のフィンは平板状に限定されるものではなく、 たとえ ば第 2 6図 ( a ) に示すよ うに、 径の異なる複数個の薄肉円筒形状のフ イ ン 2 0 4 A, 2 0 4 A, …を互いに間隔をあけて同心円状に並べ、 円 板状のベース板 2 0 6 Aの一方の面に立設接合した放熱部材 2 5 3 と し てもよいし、 第 2 6図 ( b ) に示すよ うに、 複数枚の平面視波形のフィ ン 2 0 4 B, 2 0 4 B , …を互いに間隔をあけて並べ、 これらをベース 板 2 0 6の一方の面に立設接合した放熱部材 2 5 4 と してもよい。
さらにまた、 放熱部材のベース板も平板状に限定されるわけではなく 、 第 2 6図 ( c ) に示すように、 縦断面円弧状の半割円筒かちなるベー ス板 2 0 6 Bの外周面に、 互いに間隔をあけてフィ ン 2 0 4, 2 0 4 , …を立設接合した放熱部材 2 5 5 と してもよい。
もちろん、 これらの放熱部材 2 5 1〜2 5 5はいずれも、 これまでに 説明した放熱部材の製造方法によつて製造されるものである。
なお、 以上に説明してきた放熱部材の製造方法は、 金属部材の摩擦振 動接合を応用したものであるが、 接合対象物を金属部材に限定しない部 材接合方法とすることも可能である。 つまり、 たとえば放熱部材のフィ ン 2 0 4又はベース板 2 0 6のうちの一方又は双方について、 一部又は 全部を金属製以外のセラミ ック製部材等とすれば、 本発明は、 互いに間 隔をぁけた複数枚の板材をベース板の一方の面に立設させて接合する部 材接合方法となる。
<実施例 >
第 2 1図、 第 2 2図に示した放熱部材の製造方法を実際に使用して、 フィン 2 0 4 とベース板 2 0 6 との接合部の組織を観察した。
こ こで、 フィ ン 2 0 4 と して板厚 1 mm ( = 1 . 0 X 1 0 — 3 m) 、 高 さ 2 6 mm ( = 2 . 6 X 1 0 — 2 m) 、 長さ 6 0 mm ( = 6 . 0 X 1 0 ~ 2 m ) の A 1 0 5 0アルミ -ゥム合金を、 スぺーサ 2 0 5 と して板厚 1 mm ( = 1 . 0 X 1 0 — 3 m) 、 高さ 2 5 mm ( = 2 . 5 X 1 0 ~ 2 m ) 、 長さ 5 7 mm ( = 5 . 7 X 1 0 — 2 m.) の軟鋼を、 ベース板 2 0 6 と して板厚 2 mm ( = 2 . 0 X 1 0 — 3 m) 、 幅 5 7 mm (= 5 . 7 X 1 0 ~ 2 m ) 、 長さ 6 0 mm ( = 6 . 0 X 1 0 — 2 m) の無酸素銅を、 それぞれ使用した。 こ のときのトング比は 2 6である。 また、 摩擦振動接合時の接合ツール 2 0 3 のツール本体 2 0 3 a の直径を 8 0 mm ( = 8 . 0 X 1 0 — 2 m) 、 幅を 5 mm (= 5 . 0 X 1 0 " 3 m ) 、 回転数を 3 0 0 0 rpm, 送り速度 V を 4 0 0 0 ram/min ( = 4 . 0 m/min) 、 ベース板 2 0 6 の表面 2 0 6 aへの押込量 αを.0 . 3 mm ( = 3 . 0 X 1 0 — 4 m) に設定した。
摩擦振動接合後にスぺーサ 2 0 5を取り外し、 フィ ン 2 0 4 とベース 板 2 0 6 との接合部の組織を観察した。 第 2 7図 ( a ) に示すように、 ベース板 2 0 6に若干の変形はあるものの、 フィ ン 2 0 4には折れや曲 がり等の変形は見られなかった。 フィ ン 2 0 4 とベース板 2 0 6 とは C u A 1 2からなる反応層 2 0 7を介して接合されているが、 第 2 7図 ( a ) を更に拡大した第 2 7図 (b ) に示すように、 反応層 2 0 7 の大部 分は摩擦振動接合時の接合ツールの押圧力によってフィ ン 2 0 4の外側 に掃出されており、 フィ ン 2 0 4の基端部領域の反応層 2 0 7の厚さは 3 0 μ χα ( = 3 . 0 X 1 0 — 5 m) 以下で、 亀裂や隙間等も見られなかつ た。 なお、 反応層 2 0 7はベース板 2 0 6からフィ ン 2 0 4への熱伝導 の妨げになるので、 反応層 2 0 7が極薄であることによって、 放熱性能 の高い放熱部材となっている。 次に、 第三群の発明の実施の形態を説明する。
<摩擦振動接合 >
まず、 本題に入る前に、 前提となる金属部材の摩擦振動接合の基本メ 力二ズムを説明する。
金属部材の摩擦振動接合とは、 接合ツールの押圧力によつて金属部材 の重ね合わせ部における隙間をなく しつつ、 回転する接合ツールと金属 部材との接触により生ずる振動によつて金属部材の重ね合わせ面に存在 する酸化皮膜を分断破壊すると ともに、 摩擦熱によって重ね合わせ部を 高温化して塑性変形させることにより、 金属部材同士の接触面積と拡散 速度を増大させながら重ね合わせ部を接合する方法である。
そして特に、 複数の金属部材を、 溶融点の高い順に互いに重ね合わせ て配置しておき、 最も溶融点の高い金属部材側から接合ツールを押し当 てつつ接合するよ うにすれば、 金属部材同士の重ね合わせ部が接合に必 要な温度まで上昇したときに、 接合ツールに近い側の金属部材ほどその 変形抵抗を高く保って接合ツール 押圧力を重ね合わせ面に対して効率 よく伝達できるので、 金属部材間に隙間のない高強度の接合が可能とな るのである。
ここで、 金属部材の一例と してアルミニウム部材とこれより も溶融点 の高い銅部材とを挙げ、 より具体的に説明する。 第 2 8図 ( a ) , ( b ) は、 摩擦振動接合の手順を表す正面断面図であり、 第 2 8図 ( c ) は 第 2 8図 ( b ) の側面図である。 摩擦振動接合では、 まず、 第 2 8図 ( a ) に示すよ うにアルミ二ゥム部材 3 0 1 と銅部材 3 0 2 とが面接触す るように互いに重ね合わせて配置し、 図示しない治具で固定する。
次に、 第 2 8図 (b ) , ( c ) に示すよ うに、 回転軸 3 0 3 bを中心 と して円周方向に周速度 Rで高速回転する接合ツール 3 0 3のツール本 体 3 0 3 aの周面を銅部材 3 0 2の表面 3 0 2 aに垂直に押し当てつつ 、 接合ツール 3 0 3を銅部材 3 0 2の表面 3 0 2 aに沿って送り速度 V で移動させることによって、 アルミ -ゥム部材 3 0 1 と銅部材 3 0 2 と を重ね合わせて接合する。 接合ツール 3 0' 3は回転軸 3 0 3 bの先端部 に円板状のツール本体 3 0 3 aを固定してなるものであり、 ツール本体 3 0 3 aは J I S : S KD 6 1などの工具鋼からなる。 ツール本体 3 0 3 aは、 銅部材 3 0 2の表面 3 0 2 aを押さえ込みつつ進行方向後方に 送り込むよ うな向きで回転軸 3 0 3 bのまわりに回転する。
ツール本体 3 0 3 aは、 第 2 9図 ( a ) に示すように、 その周面が銅 部材 3 0 2の表面 3 0 2 aに一定量 αだけ押し込まれた状態で円周方向 に高速回転しつつ、 銅部材 3 0 2の表面 3 0 2 aに沿って移動する。 そ して、 このよ うなツール本体 3 0 3 a の銅部材 3 0 2への押し込みによ つてアルミニウム部材 3 0 1 と銅部材 3 0 2の重ね合わせ面の隙間をな く しつつ、 高速回転するツール本体 3 0 3 a と銅部材 3 0 2 との接触に より生ずる振動によってアルミニウム部材 3 0 1 と銅部材 3 0 2の重ね 合わせ面の酸化皮膜を分断破壊すると ともに'、 第 2 9図 (b ) に示すよ うに、 ツール本体 3 0 3 a と接触する銅部材 3 0 2の所定領域及ぴその 近傍領域と、 これらの領域に隣接するアルミニゥム合金 3 0 1 の所定領 域とを、 ツール本体 3 0 3 a と銅部材 3 0 2 との摩擦接触により発生し た熱で高温化し、 それぞれ固相状態のまま可塑化 (流動化) させる。 そ の結果、 銅部材 3 0 2 とアルミニウム部材 3 0 1は、 互いの境界面にお いても塑性流動し、 それぞれ当初の表面から塑性変形する。
接合ツール 3 0 3のツール本体 3 0 3 aが通過した跡は、 第 2 9図 ( c ) に示すように、 ツール本体 3 0 3 aの抻圧力によって銅部材 3 0 2 の表面 3 0 2 aに一対の浅い段部 3 0 2 b, 3 0 2 bが形成される。 ま. た、 アルミニウム部材 3 0 1 と銅部材 3 0 2の重ね合わせ面は、 塑性変 形したアルミ二ゥム部材 3 0 1及ぴ銅部材 3 0 2が互いに嚙み合うよ う に断面凹凸形で固化した接合面 Sとなり、 この接合面 Sを介して銅部材 3 0 2とアルミ ニウム部材 3 0 1 とが確実に接合される。
ここで、 接合ツール 3 0 3をアルミニウム部材 3 0 1側から押し当て ることも考えられるが、 アルミ二ゥム部材 3 0 1 の溶融点は銅部材 3 0 2の溶融点より も低く、 アルミ二ゥム部材 3 0 1 と銅部材 3 0 2の重ね 合わせ面が接合に必要な温度 (共晶温度 : 5 4 8 °C) 以上に達したとき にアルミニウム部材 3 0 1 の変形抵抗が比較的小さくなつてしまうので 、 接合ツール 3 0 3による押圧力がアルミ二ゥム部材 3 0 1 と銅部材 3 0 2の重ね合わせ面に充分に伝達されず、 接合不良となりやすい。 一方 、 接合ツール 3 0 3をアルミニゥム部材 3 0 1 より も溶融点の高い銅部 材 3 0 2側から押し当てるようにすれば、 アルミニウム部材 3 0 1 と銅 部材 3 0 2の重ね合わせ面が接合に必要な温度 (共晶温度) 以上に達し たときに銅部材 3 0 2の変形抵抗を比較的大きく保持して、 接合ツール 3 0 3の押圧力をアルミユウム部材 3 0 1 と銅部材 3 0 2の重ね合わせ 面に充分に伝達できるので、 両部材間の隙間をなく した高強度の接合を 行うことができる。
なお、 このよ う にしてアルミニウム部材 3 0 1 と銅部材 3 0 2 とを重 ね合わせて摩擦振動接合する場合には、 接合時の接合ツール 3 0 3 (ッ ール本体 3 0 3 a ) を、 次式 (A) で求められる周速度 R (m/min) で回転させることが望ましい。
2 5 0≤ R≤ 2 0 0 0 … ( A)
これは、 接合時の接合ツール 3 0 3の周速度が 2 5 0 m/min より小 さいと、 接合ツール 3 0 3 と銅部材 3 0 2 との摩擦接触によって発生す る熱量が小さすぎて、 銅部材 3 0 2 とアルミニウム部材 3 0 1 との重ね 合わせ面の温度が低く、 接合不良となってしまい、 一方、 接合時の接合 ツール 3 0 3の周速度が 2 0 0 0 m/min よ り大きいと、 接合ツール 3 0 3 と銅部材 3 0 2 との摩擦接触によって発生する熱量が必要以上に大 きく なつて、 接合ツール 3 0 3の駆動エネルギーロスが大きいだけでな く、 接合ツール 3 0 3 と接触している銅部材 3 0 2の温度が局所的に大 きく なりすぎて当該部分が塑性変形してしまい、 接合ツール 3 0 3の押 圧力が重ね合わせ面に充分に伝達されず、 両部材間に隙間が生じてしま うおそれがあるからである。 したがって、 接合時の接合ツール 3 0 3 を 周速度 2 5 0〜 2 0 0 0 m/min で回転させれば、 接合ツール 3 0 3 と 銅部材 3 0 2 との摩擦接触によって発生する熱量が適正な値となって、 良好な接合を行う ことができるのである。
また、 アルミユウム部材 3 0 1 と銅部材 3 0 2 とを重ね合わせて摩擦 振動接合する場合には、 接合時の接合ツール 3 0 3 (ツール本体 3 0 3 a ) を、 次式 (B ) で求められる押込量 o; (m) だけ銅部材 3 0 2の表 面 3 0 2 a に押し込むこ とが望ましい。
0. 0 3 X t ≤ a ≤ 0 . 3 X t … ( B )
t : 重ね合わせ部における銅部材の厚さ (m)
これは、 接合時の接合ツール 3 0 3の銅部材 3 0 2表面への押込量 α カ 0. 0 3 t よ り も小さレヽと、 銅部材 3 0 2 とアルミニウム部材 3 0 1 との重ね合わせ面に隙間が残って接合不良となり、 一方、 押込量 αが 0 . 3 t よ り も大きレヽと、 銅部材 3 0 2 とアルミニウム部材 3 0 1 との重 ね合わせ面に隙間は残らないが、 接合ツール 3 0 3の押し込み過大によ つて銅部材 3 0 2表面に凹みが顕著に残ってしまい、 部材ロスが発生す るからである。 したがって、 接合時の接合ツール 3 0 3の銅部材 3 0 2 表面への押込量 αを 0. 0 3 1;以上 0. 3 t以下とすれば、 接合ツール 3 0 3の押圧力が適正な値となって、 銅部材 3 0 2 とアルミユウム部材 3 0 1 との重ね合わせ面に隙間を発生させずに接合することができ、 銅 部材 3 0 2表面の凹みも小さくできるのである。
さ らに、 アルミニウム部材 3 0 1 と銅部材 3 0 2 とを重ね合わせて摩 擦振動接合する場合には、 接合時の接合ツール 3 0 3 (ツール本体 3 0 3 a ) を、 次式 ( C) によって求められる送り速度 V (m/min) で銅 部材 3 0 2の表面に沿って移動させることが望ましい。
0. 1 ≤ V≤ R/ ( 5. 0 X 1 0 7 X t 2 ) . ··· ( C ) R : 接合時の接合ツールの周速度 (m/min)
t : 重ね合わせ部における銅部材の厚さ (m)
これは、 接合時の接合ツール 3 0 3の周速度が大き く なれば、 接合ッ ール 3 0 3 と銅部材 3 0 2 との摩擦接触によつて発生する熱量が大きく なるので、 接合ツール 3 0 3の送り速度 Vを大きく しても、 重ね合わせ 部の温度を一定以上に保つことができるが、 銅部材 3 0 2の厚さが厚く なると、 重ね合わせ面が一定温度以上に達するまでの時間がかかるので 、 接合ツール 3 0 3の送り速度を大きく しすぎると、 重ね合わせ部が一 定温度以上に達する前に接合ツール 3 0 3が通過してしまい、 接合不良 となってしま うからである。 つま り、 良好な摩擦振動接合を行うには、 接合ツール 3 0 3 の送り速度 V、 周速度 R、 銅部材の厚さ t を相互に調 節する必要があ り 、 実験の結果、 V≤ R/ ( 5. 0 X 1 0 7 X t 2) を 満足するときに良好な接合が可能であることが確認されている。 一方、 接合ツール 3 0 3の周速度 Vが小さすぎると、 接合効率が低下するとい う観点から、 0. 1 ≤Vを満足するときに接合効率がよいことも実験に よって確認されている。
なお、 金属部材の摩擦振動接合は、 アルミニウム部材と銅部材との重 ね合わせ接合に限定されるわけではなく、 金属部材同士の重ね合わせ接 合に広く適用することができる。 そして、 そのような金属部材の形状は 、 互いに重ね合わせて接合ツールを押し当てることができるものであれ ば任意に定めうる。 さらに、 金属部材の重ね合わせ数も二つに限定され るわけではなく、 三つ以上としてもよい。
たとえば、 第 3 0図では、 三つの金属部材 ( 5 0 0 0系アルミニウム 部材 3 0 1、 1 0 0 0系アルミニウム部材 3 0 1 ' 、 銅部材 3 0 2 ) を 互いに重ね合わせて配置し、 三つの金属部材のうち最も溶融点の高い銅 部材 3 0 2側から接合ツール 3 0 3のツール本体 3 0 3 aを押し当てて 摩擦振動接合するものである。 ここで、 接合時に金属部材同士の重ね合 わせ部が所定温度以上になることと、 そのときの各金属部材の変形抵抗 が金属部材同士の重ね合わせ面への接合ツールによる押圧力の伝達効率 に影響することを考慮すると、 三つの金属部材を溶融点の高い順 (ここ では銅部材 3 0 2、 1 0 0 0系アルミニゥム部材 3 0 1, 、 5 0 0 0系 アルミニウム部材 3 0 1の順) に重ね合わせて配置し、 最も溶融点の高 い金属部材 (ここでは銅部材 3 0 2 ) の表面から接合ツール 3 0 3を押 し当てて摩擦振動接合することが望ましい。 この他、 三つの金属部材を 銅、 アルミニウム、 マグネシウムと した場合には、 銅部材、 アルミニゥ ム部材、 マグネシウム部材の順に重ね合わせ、 銅部材側から接合ツール を押し当てて摩擦振動接合すればよい。
<放熱部材>
以上、 金属部材の摩擦振動接合の基本メ力ニズムについて説明したが 、 続いて、 これを応用して製造される放熱部材について説明する。
第 3 1図は、 放熱部材の一実施形態を表す斜視図である。 同図に示す 放熱部材 3 5 0は、 銅製のベース板 3 0 5の一方の面に、 複数枚のアル ミニゥム製のフィン 3 0 4, 3.0 4, …が互いに間隔をあけて立設接合 されたものである。
放熱部材 3 5 0の製造方法の一例は、 スぺーサ治具 3 0 6 を使用する ものである。
スぺーサ治具 3 0 6は、 第 3 2図 ( a ) に示すよ う に、 スぺーサ 3 0 6 a , 3 0 6 a , …の下端部が相互に連結された断面櫛形状の治具であ る。 スぺーサ 3 0 6 a , 3 0 6 a , …の高さは、 放熱部材 3 5 0 のフィ ン 3 0 4, 3 0 4, …の高さ と等しく なつている。
そして、 まず第 3 2図 ( b ) に示すよ うに、 スぺーサ 3 0 6 a , 3 0 6 a , …の間にそれぞれフィ ン 3 0 4, 3 0 4 , …を挿入する。 このと き、 フィ ン 3 0 4, 3 0 4, …の上面とスぺーサ 3 0 6 a , 3 0 6 a , …の上面とで水平面が形成される。
続いて、 第 3 2図 ( c ) に示すよ うに、 フィ ン 3 0 4, 3 0 4, …の 上面にベース板 3 0 5の一方の面 (図中の下面) が当接するよ う に、 ベ ース板 3 0 5を固定する。 なお、 第 3 2図 (b ) , ( c ) の手順を逆に するこ と、 つま り スぺーサ治具 3 0 6 の上面にベース板 3 0 5 を固定し た後で、 側方 (紙面直交方向) からフィ ン 3 0 4, 3 0 4, …を挿入す ること も可能である。
次に、 第 3 2図 ( d ) に示すよ う に、 ベース板 3 0 5の他方の面 (図 中の上面) から接合ツール 3 0 3を押し当てつつ、 ベース板 3 0 5にフ イ ン 3 0 4, 3 0 4 , …を摩擦振動接合する。 このとき、 ベース板 3 0 5を構成する銅の溶融点がフィ ン 3 0 4を構成するアルミニゥムの溶融 点よ り も高いので、 フィン 3 0 4 とベース板 3 0 5 との境界面を両者の 接合に必要な温度 (共晶温度 : 5 4 8 °C) まで上昇させたときにベース 板 3 0 5 の変形抵抗を高く保つことができ、 接合ツール 3 0 3 の押圧力 を境界面に効率よく伝達しながらフィ ン 3 0 4 とベース板 3 0 5 の間に 隙間のない高強度の接合を行う ことができる。 また、 スぺーサ 3 0 6 a を構成する鉄の溶融点がフィン 3 0 4を構成 するアルミ二ゥム及ぴベース板 3 0 5 を構成する銅の溶融点よ り .も高い ので、 接合ツール 3 0 3の周速度や送り速度を所定の範囲に設定するこ とによって、 スぺーサ 3 0 6 aがフィ ン 3 0 4やベース板 3 0 5 に接合 されないよ うに、 ベース板 3 0 5 とフィ ン 3 0 4だけを容易に接合する ことができる。
最後に、 第 3 2図 ( e ) に示すよ うに、 ベース板 3 0 5及ぴこれに接 合されたフィ ン 3 0 4, 3 0 4, …を持ち上げて、 スぺーサ治具 3 0 6 を取り外すことによ り、 放熱部材 3 5 0 の製造が完了する。
以上のよ うにすれば、 スぺーサ治具 3 0 6 のスぺーサ 3 0 6 a, 3 0 6 a , …の間にそれぞれフィ ン 3 0 4, 3 0 4, …を挿入するだけで、 フィ ン 3 0 4相 ϋの間隔を正確に保ちつつ、 互いに所定間隔をあけた状 態でフィ ン 3 0 4, 3 0 4 , …を並べて位置決めすることができる。 ま た、 摩擦振動接合時にはフィ ン 3 0 4に曲げ応力が作用するが、 スぺー サ 3 0 6 a によってフィン 3 0 4が補強されているので、 フィ ン 3 0 4 の厚さをかなり薄くすることが可能である。 また、 スぺーサ治具 3 0 6 のスぺーサ 3 0 6 a の厚さや配置間隔を変更すれば、 フィ ン 3 0 4 の配 置間隔や厚さを調節でき、 さ らにフィ ン 3 0 4の高さを併せて変更する ことによって、 特に板厚が薄く高さの大きなフィ ン 3 0 4, 3 0 4 , … を、 ベース板 3 0 5の一方の面に短ピッチで立設接合して、 ハイ トング 比の (たとえばトング比 2 0を超える) 放熱部材 3 5 0 を製造すること ができる。 もちろん、 スぺーサ治具 3 0 6 (スぺーサ 3 0 6 a ) は金属 製に限定されるわけではなく 、 強度や加工性等を考慮してセラ ミ ックそ の他の任意の材質とすることができる。 なお、 スぺーサ治具 3 0 6 のス ぺーサ 3 0 6 a, 3 0 6 a , …の高さをフィ ン 3 0 4 の高さよ り も小さ く して、 摩擦振動接合時にベース板 3 0 5の一方の面にスぺーサ 3 0 6 a , 3 0 6 a , …が当接しないよ う にしてもよいが、 摩擦振動接合時に 接合ツール 3 0 3 の押圧力によってフィ ン 3 0 4に曲げ応力が作用する ことを考慮すれば、 スぺーサ 3 0 6 a によるフィン 3 0 4の補強効果を 高めるため、 上記実施形態のよ うにスぺーサ 3 0 6 a, 3 0 6 a, …を フィ ン 3 0 4, 3 0 4 , …と同じ高さに揃えることが望ましい。
また、 以上のよ うな製造方法によれば、 ろう接のよ うに真空炉中など で所定時間にわたり加熱保持するこ となく、 フィ ン 3 0 4, 3 0 4 , … とベース板 3 0 5 とを接合できるので、 製造コス トを削減するこ とがで きる。
なお、 ベース板 3 0 5 とフィ ン 3 0 4, 3 0 4, … との接合強度を高 めると と もに、 放熱部材 3 5 0 の放熱性能を高めるためには、 第 3 3図 ( a ) に示すよ う に、 各フィ ン 3 0 4の基端部 (図中の上面) を全て迪 るよ う にベース板 3 0 5の裏面 (ベース板 3 0 5の他方の面) において 接合ツール 3 0 3を移動させることによって、 フィ ン 3 0 4, 3 0 4, …をベース板 3 0 5に完全に接合するこ とが望ましい (第 3 3図におい て斜線を付した領域は、 接合ツール 3 0 3 の移動跡を示している。 ) 。 一方、 接合コス トの削減を重視するのであれば、 たとえば第 3 3図 ( b ) に示すよ うに、 各フィ ン 3 0 4の基端部の全面ではなく一部だけを迪 るよ う に接合ツール 3 0 3を移動させればよい。 また、 ベース板 3 0 5 とフィ ン 3 0 4, 3 0 4, …とを摩擦振動接合するときに同時にペース 板 3 0 5 とスぺーサ 3 0 6 a, 3 0 6 a, …とを接合しておき、 その後 に何らかの方法によってベース板 3 0 5やフィ ン 3 0 4からスぺーサ 3 0 6 a , 3 0 6 a , …を取り外すよ う にしてもよいが、 接合ツール 3 0 3 のツール本体 3 0 3 a の幅をフィ ン 3 0 4 の厚さ以下と しておき、 第 3 3図 ( c ) に示すよ うにベース板 3 0 5 とスぺーサ 3 0 6 a, 3 0 6 a , …とが接合されないよ うな軌跡で (図示の場合、 フィ ン 3 0 4, 3 0 4, …の直上領域だけで) 接合ツール 3 0 3 を移動させるか、 又は、 ベース板 3 0 5にフィン 3 0 4, 3 0 4, …のみを当接させ、 ベース板 3 0 5 とスぺーサ 3 0 6 a , 3 0 6 a , …が当接しないよ うに配置して 接合するか、 あるいは、 上記実施形態のよ う にスぺーサ 3 0 6 a の溶融 点をフ ィ ン 3 0 4及ぴベース板 3 0 5 の溶融点よ り も高くするこ とによ つて、 接合ツール 3 0 3 の移動軌跡にかかわらずスぺーサ 3 0 6 a , 3 0 6 a , …がベース板 3 0 5やフィ ン 3 0 4に接合されないよ う にして おけば、 摩擦振動接合後もスぺーサ 3 0 6 a , 3 0 6 a , …がベース板 3 0 5やフィ ン 3 0 4に接合されないので、 スぺーサ 3 0 6 a を離脱す る手間を省いて製造コス トを削減することができる。 また、 接合ツール 3 0 3の押込力によってベース板 3 0 5の他方の面の表面に残った凹み が大きい場合には、 ベース板 3 0 5 の表面を一定厚さで切削することに よって、 外観美麗な放熱部材 3 5 0 とすることができる。
また、 摩擦振動接合を簡素化するために、 回転軸 3 0 3 bのまわり に 所定間隔で複数個のツール本体 3 0 3 a , 3 0 3 a , …が固定された接 合ツール (図示省略) を用いて摩擦振動接合するよ うにしてもよい。 こ の場合、 一度に多数箇所を摩擦振動接合できるので、 接合に要する時間 を短縮でき、 さ らに接合効率が向上する。
第 3 4図は、 放熱部材の他の実施形態を表す斜視図である。 同図に示 す放熱部材 3 6 0は、 銅製のベース板 3 0 5の一方の面に、 アルミ放熱 部 3 0 7が摩擦振動接合されたものである。 アルミ放熱部 3 0 7は、 ベ ース板 3 0 5の一方の面に重ねて配置されたアルミニウム製のベース板 3 0 7 a と、 ベース板 3 0 5 と反対側の面においてベース板 3 0 7 a に 互いに間隔をあけて立設された複数枚のアルミニゥム製のフィ ン 3 0 7 b , 3 0 7 b , …とが一体に押出成形されたものである。
この放熱部材 3 6 0 の製造方法も、 上記放熱部材 3 5 0 の製造方法と 略同様である。 つまり、 第 3 5図 ( a ) に示す断面形状のスぺーサ治具 3 0 6を接合テーブル上に固定しておき、 第 3 5図 ( b ) に示すように 、 スぺーサ治具 3 0 6 のスぺーサ 3 0 6 a, 3 0 6 a , …の間にそれぞ れフィ ン 3 0 7 b, 3 0 7 b , …が嵌め込まれるよ うにアルミ放熱部 3 0 7をセッ トする。 また、 アルミ放熱部 3 0 7 のベース板 3 0 7 aにお けるフィ ン 3 0 7 b, 3 0 7 b , …と反対側の面 (図示上面) にべ一ス 板 3 0 5の一方の面 (図示下面) を重ね合わせて固定する。 そして、 第 3 5図 ( c ) に示すよ うに、 ベース板 3 0 5の他方の面 (図示上面) 側 から接合ツール 3 0 3で摩擦振動接合する。 最後に、 第 3 5図 ( d ) に 示すようにスぺーサ治具 3 0 6を取り外せば、 放熱部材 3 6 0 の製造が 完了する。 その他の点については、 放熱部材 3 5 0の製造方法と同様で ある。.
く ヒー トシンク >
続いて、 本発明に係るヒー トシンクの実施形—態を説明する。
第 3 6図 ( a ) は本発明に係るヒー トシンクの第一実施形態の分解斜 視図であり、 第 3 6図 ( b ) は同組立斜視図である。 また、 第 3 7図 ( a ) は第 3 6図のヒー トシンクの平面図、 第 3 7図 ( b ) , ( c ) はそ れぞれ同ヒートシンク の X矢視側面図、 Y矢視側面図である。
このヒー トシンク 3 1 O Aは、 放熱部材 3 5 0 と フ ァ ン 3 2 0 とを備 えた高性能のヒー トシンクである。 放熱部材 3 5 0は発熱体たる C P U 3 4 0に対してヒートパイプ 3 3 0で熱的に接続されている。
放熱部材 3 5 0は、 既に説明したように、 銅製のベース板 3 0 5の一方 の面に、 複数枚のアルミニゥム製のフィ ン 3 0 4, 3 0 4, …が互いに 間隔をあけて立設した状態で摩擦振動接合されたものである。 ここで、 ベース板 3 0 5 の両側面には突起 3 0 5 aが形成されている。 また、 ベ ース板 3 0 5の下面には、 ヒートパイプ 3 3 0の端部が嵌合される嵌合 溝 3 0 5 bが形成されている。
ファ ン 3 2 0は、 放熱部材 3 5 0を強制的に冷却するものであって、 ファン取付部材 3 2 1 を介して放熱部材 3 5 0に取り付けられ、 放熱部 材 3 5 0 の熱を上方に放出する。 ファ ン 3 2 0には、 図示しないモータ が接続されている。
フ了ン取付部材 3 2 1は、 上板部 3 2 1 a と側板部 3 2 1 b, 3 2 1 b とで構成されており、 放熱部材 3 5 0 のフィ ン 3 0 4, 3 0 4 , …を 包含するよ うに断面門形に形成されている。 上板部 3 2 1 a の中央部に はファ ン 3 2 0 の位置及び大きさに応じた空気孔 3 2 1 cが穿設され、 上板部 3 2 1 a の四隅にはビス孔 3 2 1 dが形成されている。 側板部 3 2 1 b の下部には、 放熱部材 3 5 0 のベース板 3 0 5 の突起 3 0 5 a に 対応する位置に取付孔 3 2 1 eが穿設されている。
そして、 取付孔 3 2 1 e に突起 3 0 5 a を挿入した後に突起 3 0 5 a をかしめたり曲げ加工することによ り、 ファン取付部材 3 2 1が放熱部 材 3 5 0に取り付けられる。 また、 ファ ン 3 2 0 の上方からビス孔 3 2 1 dにビス 3 2 1 f をねじ込むことによ り、 ファ ン 3 2 0がファン取付 部材 3 2 1 に取り付けられる。 このよ う にして、 放熱部材 3 5 0 にファ ン 3 2 0が取り付けられている。
ヒー トパイプ 3 3 0は、 発熱体たる C P U 3 4 0で発生した熱を放熱 部材 3 5 0に輸送するものであり、 その一端は放熱部材 3 5 0に、 他端 は C P U 3 4 0に、 それぞれ熱的に接続されている。 つまり、 ヒー トパ ィプ 3 3 0 の一端は、 放熱部材 3 5 0 のベース板 3 0 5 の嵌合溝 3 0 5 b に嵌合され押し付けられた状態で、 取付金具 3 3 1及びビスでベース 板 3 0 5に固定されている。 また、 C P U 3 4 0 の上に配置された受熱 部材 3 4 1 の上面には、 放熱部材 3 5 0 のベース板 3 0 5 の下面と同様 、 嵌合溝 3 4 1 a が形成されており 、 ヒー トパイプ 3 3 0 の他端はこの 0064
97 嵌合溝 3 4 1 a に嵌合され押し付けられた状態で、 取付金具 3 4 2及び ビスで受熱部材 3 4 1 に固定される。 受熱部材 3 4 1 は熱伝導率の高い 材料 (例えば銅など) からなる。
C P U 3 4 0の下方には回路基板のソケッ ト 3 4 3が配置される。 こ のソケッ ト 3 4 3の側面には突起 3 4 3 aが形成されている。 ソケッ ト
3 4 3の上には C P U 3 4 0が重ね合わせられ、 さ らに C P U 3 4 0の 上に受熱部材 3 4 1 が重ね合わせられる。 そして、 両端部に取付孔 3 4
4 aが穿設された門形の取付ク リ ップ 3 4 4を上方からこれらに被せ、 取付孔 3 4 4 a に突起 3 4 3 a を揷入した上で、 突起 3 4 3 a をかしめ たり 曲げ加工することにより、 ソケッ ト 3 4 3、 C P U 3 4 0、 受熱部 材 3 4 1が互いに押し付けられた状態で一体に固定される。
以上のヒートシンク 3 1 O Aは、 放熱部材 3 5 0 とファン 3 2 0 を備 えており、 発熱体たる C P U 3 4 0で発生した熱を順に、 受熱部材 3 4 1、 ヒー トパイプ 3 3 0、 放熱部材 3 5 0に輸送してフアン 3 2 0で強 制的に外部に放出するので、 放熱性能が高い。 また、 C P U 3 4 0 と放 熱部材 3 5 0 とがヒー トパイプ 3 3 0で接続されているので、 放熱部材 3 5 0及ぴファン 3 2 0を C P U 3 4 0から離して配置することができ 、 薄型のノートブックパソコンのよ うな C P U 3 4 0の近傍で熱を放出 する構造とするこ とがスペース的に困難な場合にも対応可能なものとな つている。
また、 ヒー トシンク 3 1 0 Aの放熱部材 3 5 0は、 ベース板 3 0 5の 一方の面に互いに間隔をあけて複数枚のフィン 3 0 4, 3 0 4 , …を立 設して摩擦振動接合されたものであるので、 従来のよ う にろう接接合さ れた場合より もベース板とフィンが高強度に接合され、 低コス トで製造 できる。 そして特に、 フィン 3 0 4が銅よ り も溶融点の低いアルミ -ゥ ムからなるので、 摩擦振動接合時に銅製のベース板 3 0 5が接合ツール 3 0 3の押圧力を突合せ部に対して効率よく伝達し、 突合せ部に隙間が なく両者がより高強度に接合されたものとなっている。
なお、 こ こでは放熱部材 3 5 0のフィ ン 3 0 4をアルミニウム製と し たが、 これを銅製と してもよい。
第 3 8図は、 本発明に係るヒー トシンクの第二実施形態の組立斜視図 である。 このヒー トシンク 3 1 0 Bは、 放熱部材の構成を除いて全て第 一実施形態のヒー トシンク 3 1 O Aと同様である。 ヒー トシンク 3 1 0 Bの放熱部材 3 6 0は、 既に説明したよ うに、 銅製のベース板 3 0 5の 一方の面に、 アルミ放熱部 3 0 7が摩擦振動接合されたものである。 ァ ルミ放熱部 3 0 7は、 ベース板 3 0 5の一方の面に重ねて配置されたァ ルミニゥム製のベース板 3 0 7 a と、 ベース板 3 0 5 と反対側の面にお いてベース板 3 0 7 aに互いに間隔をあけて立設された複数枚のアルミ ニゥム製のフィ ン 3 0 7 b, 3 0 7 b , …とが一体に押出成形されたも のである。 '
このヒー トシンク 3 1 0 Bの放熱部材 3 6 0は、 銅製のベース板 3 0 5 とアルミニウム製のベース板 3 0 7 a とが摩擦振動接合されているの で、 従来のよ うにろう接や爆発圧接によ り接合された場合よ り もベース 板 3 0 5, 3- 0 7 aが高強度に接合され、 低コス トで製造することがで きる。 また、 摩擦振動接合される部位がベース板 3 0 5 とベース板 3 0 7 aの重ね合わせ部であり、 接合面積が大きいので、 第一実施形態のヒ ー トシンク 3 1 0 Aの放熱部材 3 5 0 よ り も製造が容易である。
第 3 9図 ( a ) は本発明に係るヒー トシンクの第三実施形態の分解斜 視図であり、 第 3 9図 ( b ) は同組立斜視図である。 また、 第 4 0図 ( a ) は第 3 9図のヒー トシンクの平面図、 第 4 0図 ( b ) , ( c ) はそ れぞれ同ヒー トシンクの X矢視側面図、 Y矢視側面図である。
このヒー トシンク 3 1 0 Cは、 ファ ンの構造等を除いて第一実施形態 0064
99 のヒー トシンク 3 1 O Aと同様である。
このヒー トシンク 3 1 O Cのファ ン 3 2 2は、 放熱部材 3 5 0の側方 に配置された状態で放熱部材 3 5 0に直接に取り付けられている。 つま り 、 ファ ン 3 2 2は、 放熱部材 3 5 0のフィ ン 3 0 4, 3 0 4, …の側 端面に面するよ うにフィ ン 3 0 4, 3 0 4, …の側方に配置され、 放熱 部材 3 5 0の熱を上方に放出するものとなっている。 ファ ン 3 2 2は、 フィ ン 3 0 4, 3 0 4 , …を包含するよ うな断面門形のファ ンケース 3
2 2 a を含んでいる。 ファンケース 3 2 2 aの下部には、 放熱部材 3 5 0のベース板 3 0 5の突起 3 0 5 a に対応する位置に取付孔 3 2 2 bが 穿設されている。 そして、 取付孔 3 2 2 bに突起 3 0 5 a を挿入した後 に突起 3 0 5 a をかしめたり 曲げ加工することにより、 ファン 3 2 2が 放熱部材 3 5 0 に取り付けられている。
以上のヒー トシンク 3 1 0 Cは、 放熱部材 3 5 0 とファ ン 3 2 2を備 えており、 発熱体たる C P U 3 4 0で発生した熱を順に、 受熱部材 3 4 1、 ヒー トパイプ 3 3 0、 放熱部材 3 5 0に輸送してファ ン 3 2 2で強 制的に外部に放出するので、 放熱性能が高い。 また、 C P U 3 4 0 と放 熱部材 3 5 0 とがヒートパイプ 3 3 0で接続されているので、 放熱部材
3 5 0及ぴファ ン 3 2 2を C P U 3 4 0から離して配置することができ る と ともに、 放熱部材 3 5 0の側方にファ ン 3 2 2を配置してあるので 、 ヒー トシンク 3 1 0 C全体の高さを第一実施形態のヒー トシンク 3 1 O Aよ り も小さ くすることができ、 薄型のノー トブックパソコンのよ う な C P U 3 4 0の近傍で熱を放出する構造とすることがスペース的に困 難な場合に特に適したものとなっている。
なお、 その他の構成及び作用は、 第一実施形態のヒー トシンク 1 0 A と同様である。
第 4 1図は、 本発明に係るヒー トシンクの第四実施形態の組立斜視図 である。 このヒー トシンク 3 1 O Dは、 放熱部材の構成を除いて全て第 三実施形態のヒー トシンク 3 1 0 Cと同様である。 つまり、 ヒー トシン ク 3 1 0 Dの放熱部材 3 6 0は、 既に説明したよ う に、 銅製のベース板 3 0 5の一方の面に、 アルミ放熱部 3 0 7が摩擦振動接合されたもので ある。 アルミ放熱部 3 0 7は、 ベース板 3 0 5の一方の面に重ねて配置 されたアルミ ニウム製のベース板 3 0 7 a と、 ベース板 3 0 5 と反対側 の面においてベース板 3 0 7 a に互いに間隔をあけて立設された複数枚 のアルミニウム製のフィン 3 0 7 b, 3 0 7 b , …とが一体に押出成形 されたものである。
第 4 2図 ( a ) は本発明に係るヒー トシンクの第五実施形態の分解斜 視図であり、 第 4 2図 ( b ) は同組立斜視図である。 また、 第 4 3図 ( a ) は第 4 2図のヒー トシンクの平面図、 第 4 3図 ( b ) , ( c ) はそ れぞれ同ヒー トシンクの X矢視側面図、 Y矢視側面図である。
このヒー トシンク 3 1 0 Eは、 第一実施形態のヒー トシンク 3 1 0 A と略同様であり、 放熱部材 3 5 0 ' とファ ン 3 2 0 とを備えた高性能の ヒー トシンクである。 放熱部材 3 5 0, は、 ヒー トパイプ 3 3 0 を経由 せずに C P U 3 4 0に対して直接的に熱接続されている。
放熱部材 3 5 0, は、 第一実施形態のヒー トシンク 3 1 0 Aの放熱部 材 3 5 0 と略同様の構成であるが、 アルミニウム製のフィ ン 3 0 4, 3 0 4, ···を横切るよ うに、 取付ク リ ップ 3 4 4が挿入されるク リ ツプ溝 3 0 4 a が形成されたものとなっている。 つま り、 放熱部材 3 5 0 ' は 、 銅製のベース板 3 0 5の一方の面に、 ク リ ップ溝 3 0 4 aをあけて二 列にアルミニウム製のフィ ン 3 0 4 , 3 0 4 , …が立設され、 摩擦振動 接合されたものとなっている。
また、 放熱部材 3 5 0, のベース板 3 0 5の下面に嵌合溝は形成され ていない。 ヒー トシンク 3 1 0 Eのファン取付部材 3 2 1 , の側板部 3 2 1 bの 下部中央部には取付ク リ ップ 3 4 4が嵌合されるク リ ップ溝 3 2 1 gが 形成されている。
ヒー トシンク 3 1 O Eの組立手順と しては、 まずソケッ ト 3 4 3の上 に C P U 3 4 0、 放熱部材 3 5 0, のベース板 3 0 5 を順に重ね合わて おき、 放熱部材 3 5 0 ' のク リ ツプ溝 3 0 4 a に取付ク リ ップ 3 4 4を 揷入して、 さ らに取付ク リ ップ 3 4 4の取付孔 3 4 4 a にソケッ ト 3 4 3の突起 3 4 3 a を挿入した'上で、 突起 3 4 3 a をかしめたり 曲げ加工 することによ り、 ソケッ ト 3 4 3、 C P U 3 4 0、 放熱部材 3 5 0, を 互いに押し付けた状態で一体に固定し、 発熱体たる C P U 3 4 0 と放熱 部材 3 5 0 ' とを熱的に接続する。
次に、 取付ク リ ップ 3 4 4をク リ ツプ溝 3 2 1 gに挿入しながらファ ン取付部材 3 2 1 , を放熱部材 3 5 0, に上から被せ、 取付孔 3 2 1 e に突起 3 0 5 a を揷入した後に突起 3 0 5 a をかしめたり曲げ加工する ことによ り、 ファ ン取付部材 3 2 1 ' を放熱部材 3 5 0, に取り付ける 。 最後に、 ファ ン 3 2 0の上方からビス孔 3 2 1 dにビス 3 2 1 f をね じ込むことによ り、 ファ ン 3 2 0をファ ン取付部材 3 2 1 ' に取り付け て、 ヒー トシンク 3 1 0 Eの組立が完了する。
以上のヒー トシンク 3 1 0 Eは、 放熱部材 3 5 0 ' と ファン 3 2 0 を 備えており、 C P U 3 4 0で発生した熱をヒー トパイプを経由せずに直 接的に放熱部材 3 5 0 ' に伝達し、 ファ ン 3 2 0で強制的に外部に放出 するので、 特に放熱性能が高い。
なお、 その他の構成及ぴ作用は、 第一実施形態のヒー トシンク 3 1 0 Aと同様である。
第 4 4図は、 本発明に係るヒー トシンク の第六実施形態の組立斜視図 である。 このヒー トシンク 3 1 0 Fは、 放熱部材の構成を除いて全て第 PC霞 003/010064
102 五実施形態のヒートシンク 3 1 0 Eと同様である。 ヒートシンク 3 1 0 Fの放熱部材 3 6 0 ' は、 第二実施形態のヒートシンク 3 1 0 Bの放熱 部材 3 6 0 と同様、 銅製のベース板 3 0 5の一方の面に、 アルミ放熱部 3 0 7が摩擦振動接合されたものである。 アルミ放熱部 3 0 7は、 ベー ス板 3 0 5の一方の面に重ねて配置されたアルミニウム製のベース板 3 0 7 a と、 ベース板 3 0 5 と反対側の面においてベース板 3 0 7 aに互 いに間隔をあけて立設された複数枚のアルミニウム製のフィ ン 3 0 7 b , 3 0 7 b , …とが一体に押出成形されたものである。 また、 フィ ン 3 0 7 b , 3 0 7 b , …には、 第五実施形態と同様の形状で、 図示しない ク リ ップ溝が形成されている。
第 4 5図 ( a ) は本発明に係るヒー トシンクの第七実施形態の分解斜 視図であり、 第 4 5図 (b ) は同組立斜視図である。 また、 第 4 6図 ( a ) は第 4 5図のヒー トシンクの平面図、 第 4 6図 ( b ) , ( c ) はそ れぞれ同ヒートシンクの X矢視側面図、 Y矢視側面図である。
このヒー トシンク 3 1 0 Gは、 第五実施形態のヒー トシンク 3 1 0 E と略同様であり、 放熱部材 3 5 0· ' とファ ン 3 2 0 とを備えた高性能の ヒー トシンクである。 放熱部材 3 5 0, は、 ヒー トパイプを経由せずに C P U 3 4 0に対して直接的に熱接続され'ている。
ヒー トシンク 3 1 0 Gでは、 ファ ン 3 2 0が放熱部材 3 5 0 ' の側方 に取り付けられ、 放熱部材 3 5 0 ' の熱が側方に放出される。 したがつ て、 ヒー トシンク 3 1 0 Gのファ ン取付部材 3 2 1 " の空気孔 3 2 1 c 、 ビス孔 3 2 1 dは側方に形成されている。
以上のヒートシンク 3 1 0 Gは、 放熱部材 3 5 0 " とファ ン 3 2 0を 備えており、 C P U 3 4 0で発生した熱をヒー トパイプを経由せずに直 接的に放熱部材 3 5 0 ' に伝達し、 ファン 3 2 0で強制的に外部に放出 するので、 特に放熱性能が高い。 さらに、 放熱部材 3 5 0, の側方にフ アン 3 2 0を配置してあるので、 ヒー トシンク 3 1 O G全体の高さを小 さくすることができ、 薄型のノー トプックパソコンのよ うな C P U 3 4 0の近傍で熱を放出する構造とすることがスペース的に困難な場合に特 に適したものとなっている。
なお、 その他の構成及ぴ作用は、 第五実施形態のヒー トシンク 3 1 0 E と同様である。
第 4 7図は、 本発明に係るヒー トシンクの第八実施形態の組立斜視図 である。 このヒー トシンク 3 1 0 Hは、 放熱部材の構成を除いて全て第 七実施形態のヒー トシンク 3 1 O Gと同様である。 ヒー トシンク 3 1 0 Hの放熱部材 3 6 0, は、 第六実施形態のヒー トシンク 3 1 0 Fの放熱 部材 3 6 0 ' と同様である。
なお、 具体的寸法について一例を示すと下記の如く である。
① 銅ベース板の厚さ X幅 X奥行 : 2 mmX 7 2 mmX 5 5 mm
アルミニウムフィ ンの厚さ X奥行 X高さ : 0 . 3 mm X 5 4 mm X I 0 mm
フィ ンピッチ : 1 . 5〜 : I . 6 mm
フィ ン枚数 : 4 2枚
最大放熱能力 : 4 2〜 4 3 W
② 銅ベース板の厚さ X幅 X奥行 : 2. 5 mm X 7 2 mm X 5 5 mm
アルミニウムフィ ンの厚さ X奥行 X高さ : 0 . 3 mm X 5 8 mm X I 2. 5 mm
フィ ンピッチ : 1 . 5〜 1. 6 mm .
フィ ン枚数 : 4 2枚
最大放熱能力 : 5 8〜 5 9 W 次に、 第四群の発明の実施の形態を説明する。 <金属部材接合方法一 1 >
本発明に係る傘属部材接合方法の第一実施形態は、 金属部材同士を重 ね合わせて摩擦振動接合するものである。 金属部材の摩擦振動接合とは 、 接合ツールの押圧力によつて金属部材の重ね合わせ部における隙間を なく しつつ、 回転する接合ツールと金属部材との接触により生ずる振動 によって金属部材同士の境界面に存在する酸化皮膜を分断破壌するとと もに、 摩擦熱によつて重ね合わせ部を高温化して塑性変形させることに より、 金属部材同士の接触面積と拡散速度を増大させながら重ね合わせ 部を接合する方法である。
そして特に、 複数の金属部材を、 溶融点の高い順に互いに重ね合わせ て配置しておき、 最も溶融点の高い金属部材側から接合ツールを押し当 てつつ接合するよ うにすれば、 金属部材同士の重ね合わせ部が接合に必 要な温度まで上昇.したときに、 接合ツールに近い側の金属部材ほどその 変形抵抗を高く保って接合ツールの押圧力を境界面に対して効率よく伝 達できるので、 金属部材間に隙間のない高強度の接合が可能となるので ある。
ここで、 金属部材の一例としてアルミニウム部材とこれより も溶融点 の高い銅部材とを挙げ、 よ り具体的に説明する。 第 4 8図 ( a ) , ( b ) は、 本発明に係る金属部材接合方法の第一実施形態と しての、 金属部 材の摩擦振動接合の各手順を表す正面断面図であり、 第 4 8図 ( c ) は 第 4 8図 (b ) の側面図である。 本実施形態ではまず、 第 4 8図 ( a ) に示すようにアルミニゥム部材 4 0 1 と銅部材 4 0 2 とが面接触するよ うにこれらを互いに重ね合わせて配置し、 図示しない治具で固定する。 次に、 第 4 8図 ( b ) , ( c ) に示すように、 回転軸 4 0 3 bを中心 と して円周方向に周速度 Rで高速回転する接合ツール 4 0 3のツール本 体 4 0 3 aの周面を銅部材 4 0 2の表面 4 0 2 a に垂直に押し当てつつ PC蘭 00應 0064
105
、 接合ツール 4 0 3を銅部材 4 0 2 の表面 4 0 2 aに沿って送り速度 V で移動させることによって、 アルミ -ゥム部材 4.0 1 と銅部材 4 0 2 と を重ね合わせて接合する。 接合ツール 4 0 3は回転軸 4 0 3 bの先端部 に円板状のツール本体 4 0 3 a を固定してなるものであり、 ツール本体 4 0 3 aは J I S : S KD 6 1などの工具鋼からなる。 ツール本体 4 0
3 aは、 銅部材 4 0 2の表面 4 0 2 aを押さえ込みつつ進行方向後方に 送り込むような向きで回転軸 4 0 3 bのまわりに回転する。
ツール本体 4 0 3 aは、 第 4 9図 ( a ) に示すように、 その周面が銅 部材 4 0 2の表面 4 0 2 aに一定量 αだけ押し込まれた状態で円周方向 に高速回転しつつ、 銅部材 4 0 2の表面 4 0 2 aに沿って移動する。 そ して、 このようなツール本体 4 0 3 aの銅部材 4 0 2への押し込みによ つてアルミ ニウム部材 4 0 1 と銅部材 4 0 2 の重ね合わせ面 (境界面) の隙間をなく しつつ、 高速回転するツール本体 4 0 3 a と銅部材 4 0 2 との接触により生ずる振動によってアルミ ニウム部材 4 0 1 と銅部材 4 0 2 の重ね合わせ面 (境界面) の酸化皮膜を分断破壌するとともに、 第
4 9図 ( b ) に示すよ うに、 ツール本体 4 0 3 a と接触する銅部材 4 0 2の所定領域及びその近傍領域と、 これらの領域に隣接するアルミニゥ ム部材 4 0 1 の所定領域とを、 ツール本体 4 0 3 a と銅部材 4 0 2 との 摩擦接触により発生した熱で高温化し、 それぞれ固相状態のまま可塑化 (流動化) させる。 その結果、 銅部材 4 0 2 とアルミユウム部材 4 0 1 は、 互いの境界面においても塑性流動し、 それぞれ当初の表面から塑性 変形する。
接合ツール 4 0 3のツール本体 4 0 3 aが通過した跡は、 第 4 9図 ( c ) に示すように、 ツール本体 4 0 3 a の押圧力によって銅部材 4 0 2 の表面 4 0 2 aに一対の浅い段部 4 0 2 b , 4 0 2 bが形成される。 ま た、 アルミニウム部材 4 0 1 と銅部材 4 0 2の重ね合わせ面 (境界面) T細 03/010064
106 は、 塑性変形したアルミ二ゥム部材 4 0 1及ぴ銅部材 4 0 2が互いに嚙 み合う よ う に断面凹凸形で固化した接合面 S となり、 この接合面 Sを介 して銅部材 4 0 2 とアルミニウム部材 4 0 1 とが確実に接合される。 ここで、 接合ツール 4 0 3をアルミニウム部材 4 0 1側から押し当て ること も考えられるが、 アルミ二ゥム部材 4 0 1の溶融点は銅部材 4 0 2の溶融点よ り も低く、 アルミ二ゥム部材 4 0 1 と銅部材 4 0 2の重ね 合わせ面 (境界面) が接合に必要な温度 (共晶温度 : 5 4 8 °C ) 以上に 達したときにアルミ二ゥム部材 4 0 1 の変形抵抗が比較的小さく なつて しま うので、 接合ツール 4 0 3 による押圧力がアルミ二ゥム部材 4 0 1 と銅部材 4 0 2の重ね合わせ面 (境界面) に充分に伝達されず、 接合不 良となりやすい。 一方、 接合ツール 4 0 3をアルミニウム部材 4 0 1 よ り も溶融点の高い銅部材 4 0 2側から押し当てるよ う にすれば、 アルミ ニゥム部材 4 0 1 と銅部材 4 0 2の重ね合わせ面 (境界面) が接合に必 要な温度 (共晶温度) 以上に達したときに銅部材 4 0 2の変形抵抗を比 較的大き く保持して、 接合ツール 4 0 3の押圧力をアルミニゥム部材 4 0 1 と銅部材 4 0 2の重ね合わせ面 (境界面) に充分に伝達できるので 、 両部材間の隙間をなく した高強度の接合を行う ことができる。
と ころで、 第 5 0図 ( a ) に示すよ うに、 接合ツール 4 0 3のツール 本体 4 0 3 aの周面には回転方向に略沿った向きで凹溝 4 0 3 cが形成 されている。 したがって、 接合ツール 4 0 3の周面と銅部材 4 0 2の表 面 4 0 2 a との接触面積がよ り大きく なり、 効率よく摩擦熱を発生させ て効率よく銅部材 4 0 2 とアルミ -ゥム部材 4 0 1 とを接合することが できる。
また、 凹溝 4 0 3 cは、 回転方向に対して僅かに傾斜して連続するよ う に、 つま り接合ツール 4 0 3の回転軸 4 0 3 bのまわりでツール本体 4 0 3 a の周面に沿った螺旋形の軌跡を描く よ うに形成されている。 し 03010064
107 たがって、 ツール本体 4 0 3 aの回転 · 移動に伴って、 凹溝 4 0 3 cの 内部に溜まつた可塑化したメ タルがツール本体 4 0 3 aの幅方向に順次 送り出されるので、 接合後に銅部材 4 0 2の表面 4 0 2 aに残る凹み量 (段部 4 0 2 bの高さ) を最小限に抑えることができる。
ここで、 接合ツール 4 0 3のツール本体 4 0 3 aの周面の凹溝 4 0 3 c , 4 0 3 c間のフラッ ト部 4 0 3 dの幅 (mm) 及ぴ凹溝 4 0 3 cの幅 w 2 (mm) は、 l w S 力 つ、 1 ≤ w 2≤ 3 , 力、つ、 0. Q 1 ≤ ^ 1 / V72≤ . 0 0が成立するよ う に設定されている。 フラ ッ ト部 4 0 3 d及ぴ凹溝 4 0 3 cがこのよ うに設定されていることによ り 、 銅部材 4 0 2の表面 4 0 2 aへの接合ツール 4 0 3のツール本体 4 0 3 aの押込量を抑えつつ、 接合ツール 4 0 3のツール本体 4 0 3 a によ る摩擦熱の発生量を大きく して、 効率的な接合が可能となる。
また、 接合ツール 4 0 3のツール本体 4 0 3 aの周面の凹溝 4 0 3 c は、 ツール本体 4 0 3 aの回転方向に対して傾斜して形成されており、 傾斜角 0 は 0. 5〜 2. 0 ° に設定されている。 第 5 0図 ( a ) におい て、 Mは回転方向に平行な線を示す。 そして凹溝 4 0 3 cは、 ツール本 体 4 0 3 aの周面の全周にわたって幅方向に二本以上形成されている。 凹溝 4 0 3 cの傾斜角 Θ及び本数がこのよ うに設定されていることによ り、 接合ツール 4 0 3のツール本体 4 0 3 a の回転 ' 移動に伴って、 凹 溝 4 0 3 c内部に溜まつた可塑化した銅部材 4 0 2のメタルがツール本 体 4 0 3 a の幅方向にうまく連続的に送り出され、 ツール本体 4 0 3 a の通過後に銅部材 4 0 2の表面 4 0 2 a にパリや凹みがほとんど残存し なく なり、 機械負荷も小さく なる。
さ らに、 接合ツール 4 0 3のツール本体 4 0 3 a の周面の凹溝 4 0 3 cの深さ dは 0. 3〜 1. 2 mmに設定されている。 凹溝 4 0 3 cの深 さ dがこのよ うに設定されているこ とによ り、 可塑化した銅部材 4 0 2 のメタルが凹溝 4 0 3 cの内部に詰まらず、 接合後に銅部材 4 0 2の表 面 4 0 2 a に残る凹み量も小さく なり、 効率的な接合が可能となる。
なお、 このよ うにしてアルミニウム部材 4 0 1 と銅部材 4 0 2 とを重 ね合わせて摩擦振動接合する場合には、 接合時の接合ツール 4 0 3 (ッ ール本体 4 0 3 a ) を、 次式 (A) で求められる周速度 R (m/min) で回転させることが望ましい。
2 5 0 ≤ R≤ 2 0 0 0 ··· (A)
これは、 接合時の接合ツール 4 0 3の周速度が 2 5 0 m /rain よ り小 さいと、 接合ツール 4 0 3 と銅部材 4 0 2 との摩擦接触によって発生す る熱量が小さすぎて、 銅部材 4 0 2 とアルミニウム部材 4 0 1 との重ね 合わせ面 (境界面) の温度が低く、 接合不良となってしまい、 一方、 接 合時の接合ツール 4 0 3の周速度が 2 0 0 0 m/min よ り大きいと、 接 合ツール 4 0 3 と銅部材 4 0 2 との摩擦接触によって発生する熱量が必 要以上に大きく なつて、 接合ツール 4 0 3の駆動エネルギーロスが大き いだけでなく 、 接合ツール 4 0 3 と接触している銅部材 4 0 2の温度が 局所的に大きく なりすぎて当該部分が塑性変形してしまい、 接合ツール 4 0 3の押圧力が重ね合わせ面 (境界面) に充分に伝達されず、 両部材 間に隙間が生じてしま うおそれがあるからである。 したがって、 接合時 の接合ツール 4 0 3 を周速度 2 5 0〜 2 0 0 0 m/min で回転させれば 、 接合ツール 4 0 3 と銅部材 4 0 2 との摩擦接触によって発生する熱量 が適正な値となって、 良好な接合を行う こ とができるのである。
また、 アルミニウム部材 4 0 1 と銅部材 4 0 2 とを重ね合わせて摩擦 振動接合する場合には、 接合時の接合ツール 4 0 3 (ツール本体 4 0 3 a ) を、 次式 (B ) で求められる押込量 a (m) だけ銅部材 4 0 2の表 面 4 0 2 a に押し込むこ とが望ましい。
0. 0 3 X t ≤ α≤ 0. 3 X t … ( B ) t : 重ね合わせ部における銅部材の厚さ (m)
これは、 接合時の接合ツール 4 0 3の銅部材 4 0 2の表面 4 0 2 aへ の押込量 αが 0 . 0 3 t より も小さいと、 銅部材 4 0 2 とアルミ ニウム 部材 4 0 1 との重ね合わせ面 (境界面) に隙間が残って接合不良となり 、 一方、 押込量 αが 0 . 3 t よ り も大きいと、 銅部材 4 0 2 とアルミ二 ゥム部材 4 0 1 との重ね合わせ面 (境界面) に隙間は残らないが、 接合 ツール 4 0 3 の押し込み過大によって銅部材 4 0 2表面に凹みが顕著に 残ってしまい、 部材ロスが発生するからである。 したがって、 接合時の 接合ツール 4 0 3 の銅部材 4 0 2の表面 4 0 2 a への押込量 αを 0 . 0 3 1; 以上 0. 3 t以下とすれば、 接合ツール 4 0 3 の押圧力が適正な値 となって、 銅部材 4 0 2 とアルミニウム部材 4 0 1 との重ね合わせ面 ( 境界面) に隙間を発生させずに接合することができ、 銅部材 4 0 2 の表 面 4 0 2 a の凹みも小さ く できるのである。
さ らに、 アルミ ニウム部材 4 0 1 と銅部材 4 0 2 とを重ね合わせて摩 擦振動接合する場合には、 接合時の接合ツール 4 0 3 (ツール本体 4 0 3 a ) を、 次式 ( C ) によって求められる送り速度 V (m/min) で銅 部材 4 0 2の表面 4 0 2 a に沿って移動させることが望ましい。
0. 1 ≤ V≤ R / ( 5 . 0 X 1 0 6 X t 2 ) ··· ( C )
R : 接合時の接合ツールの周速度 (mZmin)
t : 重ね合わせ部における銅部材の厚さ (m)
これは、 接合時の接合ツール 4 0 3の周速度が大き く なれば、 接合ッ ール 4 0 3 と銅部材 4 0 2 との摩擦接触によって発生する熱量が大きく なるので、 接合ツール 4 0 3 の送り速度 Vを大きく しても、 重ね合わせ 部の温度を一定以上に保つことができるが、 銅部材 4 0 2の厚さが厚く なる と、 重ね合わせ面 (境界面) が一定温度以上に達するまでの時間が かかるので、 接合ツール 4 0 3 の送り速度を大きく しすぎると、 重ね合 わせ部が一定温度以上に達する前に接合ツール 4 0 3が通過してしまい 、 接合不良となってしま うからである。 つま り、 良好な摩擦振動接合を 行うには、 接合ツール 4 0 3の送り速度 V、 周速度 R、 銅部材の厚さ t を相互に調節する必要があり 、 実験の結果、 V≤ RZ ( 5. 0 X 1 0 6 X t 2) を満足するときに良好な接合が可能であることが確認されてい る。 一方、 接合ツール 4 0 3の周速度 Vが小さすぎる と、 接合効率が低 下する という観点から、 0. 1 を満足するときに接合効率がよいこ と も実験によって確認されている。
なお、 ツール本体 4 0 3 aが回転軸 4 0 3 bの先端部に固定された、 いわゆる片持式の接合ツール 4 0 3においては、 ツール本体 4 0 3 a の 幅は 5〜 2 5 mmに設定されるが、 これ以上ツール本体 4 0 3 a の幅を 大きくする場合には、 ツール本体 4 0 3 aが回転軸 4 0 3 bの中間部に 固定された、 いわゆる両持式の接合ツール 4 0 3 とすることが望ま しい 。 ツール本体 4 0 3 aの幅が大きいと、 接合ツール 4 0 3に作用する圧 力で回転軸 4 0 3 bが橈んでしまって、 ツール本体 4 0 3 aの周面を銅 部材 4 0 2の表面 4 0 2 a に対して垂直に押し込むこ とが難しく なって く る力 らである。
なお、 金属部材の摩擦振動接合は、 アルミニウム部材と銅部材との重 ね合わせ接合に限定されるわけではなく、 金属部材同士の重ね合わせ接 合に広く適用することができる。 そして、 そのよ うな金属部材の形状は 、 互いに重ね合わせて接合ツールを押し当てることができるものであれ ばよい。 さ らに、 金属部材の重ね合わせ数も二つに限定されるわけでは なく 、 三つ以上と してもよい。
たとえば、 第 5 1図では、 三つの金属部材 ( 5 0 0 0系アルミニウム 部材 4 0 1、 1 0 0 0系アルミニウム部材 4 0 1 ' 、 銅部材 4 0 2 ) を 互いに重ね合わせて配置し、 三つの金属部材のうち最も溶融点の高い銅 2003/010064
111 部材 4 0 2側から接合ツール 4 0 3のツール本体 4 0 3 aを押し当てて 摩擦振動接合するものである。 ここで、 接合時に金属部材同士の重ね合 わせ部が所定温度以上になること と、 そのときの各金属部材の変形抵抗 が金属部材同士の重ね合わせ面 (境界面) への接合ツールによる押圧力 の伝達効率に影響することを考慮すると、 三つの金属部材を溶融点の高 い順 (ここでは銅部材 4 0 2、 1 0 0 0系アルミ二ゥム部材 4 0 1 ' 、 5 0 0 0系アルミ -ゥム部材 4 0 1 の順) に重ね合わせて配置し、 最も 溶融点の高い金属部材 (ここでは銅部材 4 0 2 ) の表面から接合ツール 4 0 3を押し当てて摩擦振動接合することが望ましい。 この他、 三つの 金属部材を銅、 アルミニウム、 マグネシウムと した場合には、 銅部材、 アルミニウム部材、 マグネシウム部材の順に重ね合わせ、 銅部材側から 接合ツールを押し当てて摩擦振動接合すればよい。
<金属部材接合方法一 2 >
本発明に係る金属部材接合方法の第二実施形態は、 複数枚の金属製板 材を金属製のベース板に立設させて摩擦振動接合することによ り、 放熱 部材を製造するというものである。
第 5 2図及ぴ第 5 3図は、 本発明に係る金属部材接合方法の第二実施 形態と しての放熱部材の製造方法を説明するための図であって、 第 5 2 図 ( a ) , ( b ) は部材配置工程を表す正面断面図、 第 5 3図 ( a ) は 接合工程を表す正面断面図、 第 5 3図 ( b ) はスぺーサ離脱工程を表す 正面断面図である。 また、 第 5 4図は、 放熱部材製造用治具の一実施形 態を表す分解斜視図である。
本実施形態ではまず、 第 5 2図 ( a ) に示すよ うに、 アルミニウム製 の板材であるフィ ン 4 0 4, 4 0 4 , …と、 鉄製の板状部材であるスぺ ーサ 4 0 5, 4 0 5, …とを交互に並べながら、 これらを放熱部材製造 用治具 4 1 0の部材セッ ト部 4 1 2に立設配置する。 放熱部材製造用治具 4 1 0は、 第 5 4図に示すよ う に、 上面が開放し た箱形の治具本体 4 1 1 と、 この治具本体 4 1 1の内部に形成された凹 部である部材セッ ト部 4 1 2においてスライ ド可能に配置された押圧板 4 1 3 と、 この押圧板 4 1 3 と直交する向きで治具本体 4 1 1 の壁体を 貫通しつつ、 先端部が押圧板 4 1 3 の背面に固着され頭部が治具本体 4 1 1の壁体の外側に位置する締付ボルト 4 1 4 と、 押圧板 4 1 3に平行 な向きで治具本体 4 1 1 の壁体上部に架け渡されるベース固定板 4 1 5 と、 このベース固定板 4 1 5 の両端を治具本体 4 1 1 の壁体上部に螺着 するための締付ボルト 4 1 6 と、 で構成されている。
そして、 ここでは、 フィ ン 4 0 4, 4 0 4 , …とスぺーサ 4 0 5 , 4 0 5, …とを、 これらが交互に立設するよ うに部材セッ ト部 4 1 2に並 ベた上で、 締付ポルト 4 1 4をねじ込んで押圧 4板 1 3をこれらに押し 付けることによってこれらを互いに密着した状態で拘束する。 このとき 、 フィ ン 4 0 4 とスぺーサ 4 0 5は全て高さが等しいので、 立設された フィ ン 4 0 4, 4 0 4 , …の上面 (基端面) とスぺーサ 4 0 5 , 4 0 5 , …の上面 (基端面) とで水平面が形成されるよ う になっている。
続いて、 第 5 2図 ( b ) に示すよ うに、 部材セッ ト部 4 1 2に立設配 置されたフィ ン 4 0 4, 4 0 4, …及ぴスぺーサ 4 0 5, 4 0 5 , …の 上面に、 銅製の板材であるベース板 4 0 6、 さ らにその上にベース固定 板 4 1 5 を载せ、 ベース固定扳 4 1 5 の下面に形成されている切欠 4 1 5 a にフィ ン 4 0 4, 4 0 4, …及びスぺーサ 4 0 5 , 4 0 5 , …の上 部 (基端部) を嵌め込むことによって、 フィ ン 4 0 4 , 4 0 4 , …及ぴ スぺーサ 4 0 5, 4 0 5 , …を長さ方向 (紙面直交方向) に移動しない よ う に拘束する。 さ らに、 この状態でベース固定板 4 1 5の両端のポル ト孔 4 1 5 bから治具本体 4 1 1の壁体上面のボルト孔 4 1 1 a に締付 ボルト 4 1 6 をねじ込むことによって、 ベース板 4 0 6 をフィ ン 4 0 4 及びスぺーサ 4 0 5 の上部に固定する。 また図示していないが、 必要に 応じて、 ベース板 4 0 6が幅方向 (紙面左右方向) に移動しないよ う に 拘束する。 これで、 フィ ン 4 0 4及ぴスぺーサ 4 0 5の基端面がベース 板 4 0 6の下面 (一方の面) に当接するよ うに、 フィ ン 4 0 4及ぴスぺ ーサ 4 0 5 をベース板 4 0 6に立設配置する工程が完了する。
なお、 第 5 2図 ( a ) , ( b ) に示した部材配置工程は、 必ずしもこ のとおりでなくても、 フィ ン 4 0 4, 4 0 4, …とスぺーサ 4 0 5 , 4 0 5, …とベース板 4 0 6 とが最終的に第 5 2図 ( b ) のよ うに所定の 位置に配置されるのであれば、 手順を問わない。 したがって、 たとえば 、 互いに間隔をあけてフィ ン 4 0 4, 4 0 4 , ··· (又はスぺーサ 4 0 5 , 4 0 5 , ···) を配置しておき、 それらの基端面にベース板 4 0 6 を固 定した後、 最後にフィ ン 4 0 4, 4 0 4, ■■· (又はスぺーサ 4 0 5 , 4 0 5, ■··) の間にそれぞれスぺーサ 4 0 5 , 4 0 5, … (又はフィ ン 4 0 4 , 4 0 4 , …) を挿入するよ う にしてもよい。
次に、 第 5 3図 ( a ) に示すよ うに、 回転軸 4 0 3 b を中心と して円 周方向に高速回転する接合ツール 4 0 3のツール本体 4 0 3 a の周面を ベース板 4 0 6の他方の面の表面 4 0 6 a に垂直に押し当てつつ、 接合 ツール 4 0 3をベース板 4 0 6 の表面 4 0 6 a に沿って移動させるこ と によって、 ベース板 4 0 6 にフィ ン 4 0 4, 4 0 4, …を接合する。 ッ ール本体 4 0 3 a の周面には、 第一実施形態と同様の凹溝 4 0 3 c が形 成されている。
このとき、 ベース板 4 0 6 を構成する銅の溶融点がフィン 4 0 4を構 成するアルミニウムの溶融点よ り も高いので、 フィン 4 0 4 とベース板 4 0 6 との境界面を両者の接合に必要な温度 (共晶温度 : 5 4 8 °C) ま で上昇させたときにベース板 4 0 6の変形抵抗を高く保つことができ、 接合ツール 4 0 3の押圧力を境界面に効率よく伝達しながらフィ ン 4 0 TJP2003/010064
114
4 とベース板 4 0 6の間に隙間のない高強度の接合を行う ことができる また、 スぺーサ 4 0 5を構成する鉄の溶融点がフィ ン 4 0 4を構成す るアルミ二ゥム及ぴベース板 4 0 6を構成する銅の溶融点より も高いの で、 接合ツール 4 0 3の周速度や送り速度を所定の範囲に設定すること によって、 スぺーサ 4 0 5がフィ ン 4 04やベース板 4 0 6に接合され ないよ うに、 ベース板 4 0 6 とフィ ン 4 0 4だけを容易に接合すること ができる。
最後に、 放熱部材製造用治具 4 1 0の締付ボル ト 4 1 6を緩めてベー ス固定板 4 1 5を治具本体 4 1 1から取り外すと と もに、 締付ボルト 4 1 4を緩めて押圧扳 4 1 3によるフィ ン 4 0 4及ぴスぺーサ 4 0 5の拘 束を解除した上で、 第 5 3図 (b ) に示すよ う に、 ベース板 4 0 6を上 に持ち上げる。 する と、 ベース板 4 0 6に接合されたフィ ン 4 0 4, 4 0 4, …だけが一緒に持ち上がり、 スぺーサ 4 0 5, 4 0 5 , …は放熱 部材製造用治具 4 1 0の部材セッ ト部 4 1 2に取り残される。 このよ う にしてスぺーサ離脱工程において簡単にスぺーサ 4 0 5, 40 5, …を 取り外すことによって、 第 5 5図に示すよ うな、 複数枚のアルミニゥム 製のフィン 4 0 4, 4 0 4, …が互いに間隔をあけて銅製のベース板 4 0 6の一方の面に立設接合された放熱部材 4 5 0を製造することができ る。
このよ うな方法によれば、 フィン 4 04 , 4 0 4 , …の間にそれぞれ スぺーサ 4 0 5, 4 0 5 , …を挟み込むので、 フィ ン 4 0 4相互の間隔 を正確に保ちつつ、 互いに所定間隔をあけた状態でフィ ン 4 0 4, 4 0 4, …を並べて位置決めすることができる。 また、 スぺーサ 4 0 5によ つてフィン 4 0 4が補強されるので、 接合工程においてフィン 4 0 4に 曲げ応力が作用するにもかかわらず、 フィ ン 4 0 4の厚さをかなり薄く することが可能である。 また、 スぺーサ 4 0 5 の厚さを変更するだけで フィ ン 4 0 4 の配置間隔を任意に変更でき、 さらにフィ ン 4 0 4の高さ を併せて変更することによって、 特に板厚が薄く高さの大きなフィ ン 4 0 4, 4 0 4 , …を、 ベース板 4 0 6の一方の面に短ピツチで立設接合 して、 ハイ トング比の (たとえばトング比 2 0を超える) 放熱部材 4 5 0を製造することができる。 もちろん、 スぺーサ 4 0 5は金属製に限定 されるわけではなく、 強度や加工性等を考慮してセラ ミ ックその他の任 意の材質とすることができ、 またスぺーサ 4 0 5の形状も適宜定めれば よレ、。 なお、 部材配置工程でベース板 4 0 6の一方の面にフィ ン 4 0 4 , 4 0 4, …を立設配置したときに、 スぺーサ 4 0 5 , 4 0 5 , …の基 端面はベース板 4 0 6の該一方の面に当接していなく てもよいが、 接合 工程で接合ツール 4 0 3 の押圧力によってフィ ン 4 0 4に曲げ応力が作 用することを考慮すれば、 スぺーサ 4 0 5によるフィ ン 4 0 4 の補強効 果を高めるため、 本実施形態のよ うにスぺーサ 4 0 5 , 4 0 5, …をフ イ ン 4 0 4, 4 0 4, …と同じ高さに揃えることによって、 スぺーサ 4 0 5, 4 0 5, …の基端面をベース板 4 0 6の該一方の面に当接させる こ とが望ましい。
なお、 ベース板 4 0 6 とフィ ン 4 0 4 , 4 0 4, …との接合強度を高 めると ともに、 放熱部材 4 5 0 の放熱性能を高めるためには、 第 5 6図 ( a ) に示すよ うに、 各フィ ン 4 0 4の基端面全面を迪るよ う にベース 板 4 0 6の裏面 (ベース板 4 0 6の他方の面) において接合ツール 4 0
3 (ツール本体 4 0 3 a ) を移動させることによって、 フィン 4 0 4,
4 0 4, …をベース板 4 0 6に完全に接合することが望ま しい (第 5 6 図において斜線を付した領域は、 接合ツール 4 0 3 の移動跡を示してい る。 ) 。 一方、 接合コス トの削減を重視するのであれば、 たとえば第 5 6図 ( b ) に示すよ う に、 各フィ ン 4 0 4の基端面の全面ではなく一部 だけを迪るよ うに接合ツール 4 0 3 を移動させればよい。 また、 ベース 板 4 0 6 とフィ ン 4 0 4, 4 0 4, … とを接合するときに同時にベース 板 4 0 6 とスぺーサ 4 0 5, 4 0 5 , … とを接合しておき、 スぺーサ離 脱工程では何らかの方法によってベース板 4 0 6やフィン 4 0 4からス ぺーサ 4 0 5, 4 0 5 , …を取り外すよ う にしてもよいが、 接合ツール
4 0 3 のツール本体 4 0 3 a の幅をフィ ン 4 0 4 の厚さ以下と しておき 、 第 5 6図 ( c ) に示すようにベース板 4 0 6 とスぺーサ 4 0 5 , 4 0 5, …とが接合されないよ うな軌跡で (図示の場合、 フィ ン 4 0 4, 4 0 4, …の直上領域だけで) 接合ツール 4 0 3 を移動させるか、 又は、 ベース板 4 0 6にフィ ン 4 0 4 , 4 0 4 , …のみを当接させ、 ベース板4 0 6 とスぺーサ 4 0 5 , 4 0 5 , …が当接しないよ うに配置して接合 する力 、 あるいは、 上記実施形態のよ うにスぺーサ 4 0 5の溶融点をフ イ ン 4 0 4及びベース板 4 0 6 の溶融点よ り も高くすることによって、 接合ツール 4 0 3 の移動軌跡にかかわらずスぺーサ 4 0 5, 4 0 5 , … がベース板 4 0 6やフィ ン 4 0 4に接合されないよ うにしておけば、 接 合後もスぺーサ 4 0 5 , 4 0 5, …がベース板 4 0 6やフィ ン 4 0 4に 接合されないので、 スぺーサ離脱工程での手間を省いて製造コス トを削 減することができる。 また、 接合ツール 4 0 3の押込力によってベース 板 4 0 6の他方の面の表面 4 0 6 a に残った凹みが大きい場合には、 ベ —ス板 4 0 6の表面 4 0 6 a を一定厚さで切削することによって、 外観 美麗な放熱部材 4 5 0 とすることができる。
また、 接合工程を簡素化するために、 接合ツール 4 0 3 に代えて、 第
5 7図に示すよ う に、 回転軸 4 0 3 bのまわり に所定間隔でツール本体 4 0 3 a , 4 0 3 a, …が固定された接合ツール 4 0 3 , を用いて接合 するよ う にしてもよい。 この場合、 一度に多数箇所を接合できるので、 接合に要する時間を短縮でき、 さらに接合効率が向上する。 なお、 このようにして製造された放熱部材 4 5 0のフィ ン 4 0 4, 4 0 4, …の先端面にさらに別のベース板 4 0 6, を接合することにより 、 第 5 8図に示すよ うな、 互いに間隔をあけたフィ ン 4 0 4, 4 0 4 , …の両端面にそれぞれベース板 4 0 6 , 4 0 6, を接合した放熱部材 4 5 0, を製造するようにしてもよい。
同図に示した放熱部材 4 5 0, の製造手順の第一パターンは、 第 5 9 図 ( a ) に示すよ うに、 互いに間隔をあけたフィ ン 4 0 4, 4 0 4, … の間にそれぞれスぺーサ 4 0 5, 4 0 5, …を挟み込み、 フィ ン 4 0 4 , 4 0 4 , …の両端 (図示上下端) にそれぞれベース板 4 0 6 , 4 0 6 ' を配置した上で、 ベース板 4 0 6 の背面 (図示上面) 及びベース板 4 0 6 ' の背面 (図示下面) から接合ツール 4 0 3, 4 0 3を押し当てて 同時に接合する。 そして最後に、 スぺーサ 4 0 5, 4 0 5, …を側方か ら (紙面直交方向に) 抜き取る。
放熱部材 4 5 0 ' の製造手順の第二パターンは、 第 5 9図 ( b ) に示 すように、 互いに間隔をあけたフィ ン 4 0 4, 4 0 4 , …の間にそれぞ れスぺーサ 4 0 5 , 4 0 5, …を挟み込み、 フィ ン 4 0 4, 4 0 4 , … の両端 (図示上下端) にそれぞれベース板 4.0 6 , 4 0 6, を配置した 上で、 一方のベース板 4 0 6の背面 (図示上面) から接合ツール 4 0 3 を下向きに押し当てて接合する。 その後、 各部材の配置関係を保持した ままフィ ン 4 0 4、 スぺーサ 4 0 5 、 ベース板 4 0 6 , 4 0 6, を上下 反転した上で、 第 5 9図 ( c ) に示すように、 他方のベース板 4 0 6 ' の背面 (図示上面) から接合ツール 4 0 3を下向きに押し当てて接合す る。 そして最後に、 スぺーサ 4 0 5 , 4 0 5, …を側方から (紙面直交 方向に) 抜き取る。
放熱部材 4 5 0 ' の製造手順の第三パターンは、 第 6 0図 ( a ) に示 すように、 互いに間隔をあけたフィ ン 4 0 4, 4 0 4, …の間にそれぞ れスぺーサ 4 0 5, 4 0 5 , …を挟み込み、 フィ ン 4 0 4 , 4 0 4, … の一端'(図示上端) だけにベース板 4 0 6を配置した上で、 ベース板 4 0 6 の背面 (図示上面) から接合ツール 4 0 3を下向きに押し当てて接 合する。 その後、 各部材の配置関係を保持したままフィ ン 4 0 4、 スぺ ーサ 4 0 5、 ベース板 4 0 6を上下反転した上で、 第 6 0図 (b ) に示 すよ うに、 フィ ン 4 0 4, 4 0 4, …の他端 (図示上端) にベース板 4 0 6, を配置し、 さらに第 6 0図 ( c ) に示すように、 ベース板 4 0 6 ' の背面 (図示上面) から接合ツール 4 0 3を下向きに押し当てて接合' する。 そして最後に、 スぺーサ 4 0 5, 4 0 5, …を側方から (紙面直 交方向に) 抜き取る。
放熱部材 4 5 0, の製造手順の第四パターンは、 第 6 0図 ( d ) に示 すように、 互いに間隔をあけたフィ ン 4 0 4, 4 0 4 , …の間にそれぞ れスぺーサ 4 0 5, 4 0 5 , …を挟み込み、 フィ ン 4 0 4, 4 0 4, … の一端 (図示上端) だけにベース板 4 0 6を配置した上で、 ベース板 4 0 6の背面 (図示上面) から接合ツール 4 0 3を下向きに押し当てて接 合する。 次に、 第 6 0図 ( e ) に示すように、 ベース板 4 0 6及びフィ ン 4 0 4を上に持ち上げる等してスぺーサ 4 0 5を取り外し、 ー且放熱 部材 4 5 0を完成させる。 その後、 放熱部材 4 5 0を上下反転した上で 、 第 6 0図 ( f ) に示すように、 フィ ン 4 0 4, 4 0 4, …の間にそれ ぞれスぺーサ 4 0 5, 4 0 5, …を挟み込み、 フィ ン 4 0 4 , 4 0 4 , …の他端 (図示上端) にベース板 4 0 6 ' を配置する。 さらに、 第 6 0 図 ( g ) に示すよ うに、 ベース板 4 0 6 ' の背面 (図示上面) から接合 ツール 4 0 3を下向きに押し当てて接合する。 そして最後に、 スぺーサ 4 0 5, 4 0 5, …を側方から (紙面直交方向に) 抜き取る。
く金属部材接合方法一 3 >
本発明に係る金属部材接合方法の第三実施形態は、 上記第二実施形態 と略同様であるが、 放熱部材製造用治具 4 1 0 を使用せず、 これに代え てスぺーサ治具 4 2 0を使用する点において異なる。
スぺーサ治具 4 2 0は、 第 6 1図 ( a ) に示すよ う に、 スぺーサ 4 0 5 , 4 0 5 , …の先端部 (図示下端部) が相互に連結された断面櫛形状 の治具である。 そして、 部材配置工程では、 このスぺーサ治具 4 2 0の スぺーサ 4 0 5 , 4 0 5, …を上に向けて固定した後で、 第 6 1図 ( b ) に示すように、 スぺーサ 4 0 5, 4 0 5, …の間にそれぞれフィ ン 4 0 4, 4 0 4 , …を挿入し、 さ らに第 6 1図 ( c ) に示すよ う に、 フィ ン 4 0 4, 4 0 4, …の上面 (基端面) にベース板 4 0 6 の下面 (一方 の面) が当接するよ う に、 ベース板 4 0 6を固定する。 なお、 第 6 1図 ( b ) , ( c ) の手順を逆にすること、 つま り スぺーサ治具 4 2 0 の上 面にベース板 4 0 6 を固定した後で、 側方 (紙面直交方向) からスぺー サ 4 0 5, 4 0 5, …を挿入することも可能である。
続く接合工程では、 第 6 1 図 ( d ) に示すよ うに、 ベース板 4 0 6 の 上面 (他方の面) から接合ツール 4 0 3を押し当てつつ、 ベース板 4 0 6 にフィ ン 4 0 4, 4 0 4, …を接合する。
最後のスぺーサ離脱工程では、 第 6 1図 ( e ) に示すよ うに、 ベース 板 4 0 6及ぴこれに接合されたフィ ン 4 0 4, 4 0 4 , …を持ち上げる ことによ り、 スぺーサ治具 4 2 0を取り外す。
本実施形態のよ う にスぺーサ治具 4 2 0を用いれば、 放熱部材製造用 治具 4 1 0が不要となり、 しかもスぺーサ 4 0 5 , 4 0 5, …の配置の 手間も省けるとレヽぅ利点がある。
ぐ金属部材接合方法一 4 >
本発明に係る金属部材接合方法の第四実施形態は、 上記第二実施形態 と略同様であるが、 部材配置工程がフィ ン配置工程とその後のベース板 配置工程とに分かれている。 そして、 最初のフィ ン配置工程では、 第 6 2図 ( a ) に示すように、 フィ ン 4 0 4 , 4 0 4 , … とスぺーサ 4 0 5, 4 0 5, …とを交互に並 ベながら、 これらを放熱部材製造用治具 4 1 ◦の部材セッ ト部 4 1 2に 立設配置する。 このと き、 スぺーサ 4 0 5, 4 0 5 , …の高さはスぺー サ 4 0 5の厚さの範囲内でフィ ン 4 0 4, 4 0 4 , …の高さより も小さ くなつており、 スぺーサ 4 0 5 , 4 0 5 , …の基端面 (図示上端面) が フィ ン 4 0 4, 4 0 4 , …の基端面 (図示上端面) より もスぺーサ 4 0 5 の厚さ以内で埋没している。 換言すれば、 フィ ン 4 0 4, 4 0 4, ■·· の高さはスぺーサ 4 0 5の厚さの範囲内でスぺーサ 4 0 5 , 4 0 5, … の高さより も大きくなつており 、 フィ ン 4 0 4, 4 0 4 , …の基端面が スぺーサ 4 0 5, 4 0 5, …の基端面よりもスぺーサ 4 0 5 の厚さ以内 で突出している。
続くベース板配置工程では、 第 6 2図 (b ) に示すよ うに、 部材セッ ト部 4 1 2に立設配置されたフィ ン 4 0 4, 4 0 4 , …の基端面 (上面 ) にベース板 4 0 6を載せる。 そして、 第 6 2図 ( c ) , ( d ) に示す ように、 フィ ン 4 0 4に向かう下向きの押圧力をベース板 4 0 6に作用 させることによって、 フィ ン 4 0 4, 4 0 4, …の基端部 (スぺーサ 4 0 5 , 4 0 5 , …より も突出している部分) 4 0 4 aを折り曲げ、 フィ ン 4 0 4, 4 0 4, …を断面 L字形に形成した状態で固定する。 このと き、 フィ ン 4 0 4 の基端部 4 0 4 a の高さはスぺーサ 4 0 5 の厚さ以内 であるので、 折り 曲げられたフィ ン 4 0 4の基端部 4 0 4 aは相互に重 複せず、 ベース板 4 0 6の一方の面 (図示下面) に沿う面を形成する。
次に、 第 6 3図 ( a ) に示すように、 回転軸 4 0 3 b を中心と して円 周方向に高速回転する接合ツール 4 0 3 のツール本体 4 0 3 a の周面を ベース板 4 0 6の他方の面の表面 4 0 6 aに垂直に押し当てつつ、 接合 ツール 4 0 3をベース板 4 0 6の表面 4 0 6 aに沿って移動させること によって、 ベース板 4 0 6にフィ ン 4 0 4, 4 0 4, …の基端部 4 0 4 a を接合する。
このとき、 直角に折り 曲げられたフィ ン 4 0 4の基端部 4 0 4 aがべ ース板 4 0 6の一方の面に沿う面を形成しているので、 第二実施形態に 比べてベース板 4 0 6 とフィ ン 4 0 4 との接触面積が大きくなつており 、 両者を確実に接合することができる。 つま り 、 本実施形態によれば、 フィ ン 4 0 4 の厚さがかなり薄い場合であっても、 ベース板 4 0 6 にフ イ ン 4 0 4, 4 0 4 , …が確実に立設接合された放熱部材 4 5 0を製造 することができる。 ―
最後に、 第 6 3 '図 ( b ) に示すよ うに、 ベース板 4 0 6 を上に持ち上 げれば、 ベース板 4 0 6 に接合されたフィ ン 4 0 4 , 4 0 4 , …だけが 一緒に持ち上がり 、 スぺーサ 4 0 5 , 4 0 5, …は放熱部材製造用治具 4 1 0の部材セッ ト部 4 1 2に取り残されるので、 複数枚のフイ ン 4 0 4, 4 0 4 , …がそれぞれの折り 曲げられた基端部 4 0 4 a を介してべ ース板 4 0 6の一方の面に立設接合された放熱部材 4 5 0を製造するこ とができる。
ぐ放熱部材の製造方法 >
次に、 本発明に係る放熱部材の製造方法の実施形態について説明する 。 本実施形態は、 上記金属部材接合方法の第二実施形態と略同様である が、 フィ ン 4 0 4 に代えて断面凹字形のフィ ン構成材 4 3 0を用いる。 まず、 最初の部材配置工程では、 第 6 4図 ( a ) に示すよ う に、 全体 が逆 T字形になるよ う に、 一枚の薄いアルミ二ゥム合金製の板材 4 3 1 の中央部にスぺーサ 4 0 5 を直交配置し、 第 6 4図 ( b ) に示すよ うに 、 断面凹字形のフィ ン構成材作成治具 4 4 0の中央部の溝内に、 板材 4 3 1 を折り 曲げつつその中央部を押し込みながらスぺーサ 4 0 5を挿入 していく ことに'よって、 第 6 4図 ( c ) に示すよ うな、 中央部の溝にス 3010064
122 ぺーサ 4 0 5が挟み込まれた断面凹字形のフィ ン構成材 4 3 0を作成す る。 フィ ン構成材 4 3 0は、 左右一対のフィ ン 4 0 4, 4 0 4 とこれら の端部を連結する基端部 4 0 4 a とで断面回字形に形成されている。 そして、 このよ うに左右一対のフィン 4 0 4, 4 0 4の間にスぺーサ 4 0 5が挟み込まれたフィン構成材 4 3 0を複数個用意し、 これらのフ イ ン構成材 4 3 0 , 4 3 0 , … とスぺーサ 4 0 5 ' , 4 0 5, , …とを 交互に並べながら、 第 6 4図 ( d ) に示すように、 これらを放熱部材製 造用治具 4 1 0 の部材セッ ト部 4 1 2に立設配置する。 このときフィ ン 構成材 4 3 0は、 左右一対のフィ ン 4 0 4, 4 0 4 の間にスぺーサ 4 0 5を挟み込んだ状態で、 かつ、 基端部 4 0 4 aを上に向けた状態とする 。 また、 フィ ン構成材 4 3 0, 4 3 0, …相互間に挟み込まれるよ うに 配置されたスぺーサ 4 0 5, , 4 0 5 ' , …の高さを、 フィ ン構成材 4 3 0 の左右一対のフィ ン 4 0 4, 4 0 4の間に挟み込まれたスぺーサ 4 0 5 の高さよりも、 フィ ン構成材 4 3 0 の基端部 4 0 4 a の厚さ分だけ 大きくすることによって、 フィ ン構成材 4 3 0の基端部 4 0 4 a とスぺ ーサ 4 0 5 ' の基端部とで水平な上面を形成することが望ましい。
その後、 第 6 4図 ( e ) に示すよ うに、 部材セッ ト部 4 1 2に立設配 置されたフィ ン構成材 4 3 0, 4 3 0, …及びスぺーサ 4 0 5, , 4 0 5 , , …の上面にベース板 4 0 6を載せて固定する。 これで、 ベース板 4 0 6の一方の面 (図示下面) にフィ ン構成材 4 3 0の基端部 4 0 4 a 及ぴスぺーサ 4 0 5 , の基端面が当接した状態となつ.て、 部材配置工程 が完了する。
なお、 第 6 4図 ( a ) 〜 ( e ) に示した部材配置工程は、 必ずしもこ のとおりでなくても、 フィン構成材 4 3 0, 4 3 0, …とスぺーサ 4 0 5, 4 0 5, …とスぺーサ 4 0 5, , 4 0 5 ' , …とが最終的に第 6 4 図 ( e ) のように所定の位釐に配置ざれるのであれば、 手順を問わない 。 したがって、 たとえば、 予め断面凹字形に形成したフィ ン構成材 4 3 0, 4 3 0, …を互いに間隔をあけて並べておき、 各フィ ン構成材 4 3 0の左右一対のフィ ン 4 0 4, 4 0 4の間にそれぞれスぺーサ 4 0 5, 4 0 5, …を挿入するとともに、 フィ ン構成材 4 3 0, 4 3 0 , …相互 間にスぺーサ 4 0 5, , 4 0 5, , …を挿入し、 最後にベース板 4 0 6 を配置するようにしてもよいし、 あるいは、 予め断面凹字形に形成した フィ ン構成材 4 3 0, 4 3 0 , …を互いに間隔をあけて並べておき、 次 にベース板 4 0 6を配置し、 最後に、 各フィ ン構成材 4 3 0 の左右一対 のフィ ン 4 0 4, 4 0 4の間にそれぞれスぺーサ 4 0 5, 4 0 5, …を 挿入すると ともに、 フィ ン構成材 4 3 0, 4 3 0 , …相互間にスぺーサ 4 0 5, , 4 0 5, , …を挿入するようにしてもよい。
続く接合工程では、 第 6 5図 ( a ) に示すように、 回転軸 4 0 3 bを 中心として円周方向に高速回転する接合ツール 4 0 3 のツール本体 4 0 3 aの周面をベース板 4 0 6の他方の面の表面 4 0 6 aに垂直に押し当 てつつ、 接合ツール 4 0 3をベース板 4 0 6 の表面 4 0 6 aに沿って移 動させることによって、 ベース板 4 0 6 にフィ ン構成材 4 3 0, 4 3 0 , …の基端部 4 0 4 aを接合する。
このとき、 フィ ン構成材 4 3 0の基端部 4 0 4 aがベース板 4 0 6 の 一方の面に沿う面を形成しているので、 第一実施形態に比べてベース板 4 0 6 とフィ ン 4 0 4との接触面積が大きくなつており、 両者を確実に 接合することができる。 つまり、 本実施形態によれば、 フィ ン 4 0 4の 厚さがかなり薄い場合であっても、 ベース板 4 0 6にフィン 4 0 4, 4 0 4, …が確実に立設接合された放熱部材 4 5 0を製造することができ る。
最後に、 第 6 5図 (b ) に示すよ うに、 ベース板 4 0 6を上に持ち上 げれば、 ベース板 4 0 6に接合されたフィ ン構成材 4 3 0, 4 3 0 , … だけが一緒に持ち上がり、 スぺーサ 4 0 5 ' , 4 0 5 ' , …及ぴスぺ一 サ 4 0 5, 4 0 5, …は放熱部材製造用治具 4 1 0の部材セッ ト部 4 1 2に取り残されるので、 複数枚のフィ ン 4 0 4 , 4 0 4, …がフィ ン構 成材 4 3 0の基端部 4 0 4 aを介してベース板 4 0 6の一方の面に立設 接合された放熱部材 4 5 0を製造することができる。
ぐその他 >
なお、 以上の実施形態では、 接合ツール 4 0 3を用いたいわゆる摩擦 振動接合を例示してきたが、' 本発明はこれらに限定されるものではない 。 たとえば、 加熱及び加圧の方法と しては、 回転する接合ツール 4 0 3 を溶融点の高い金属部材側に押し込んで、 これにより発生する摩擦熱と 押圧力を金属部材間の境界面に伝達するような接触方式に限定されるも のではなく、 電磁誘導を利用して溶融点の高い金属部材側から金属部材 間の境界面を加熱及び加圧するよ うな非接触方式でもよい。
以下に実施例を示す。
第 4 8図、 第 4 9図に示すように、 銅製の板材 (銅板) とアルミニゥ ム合金 ( A 1 0 5 0 ) 製の板材 (アルミ板) とを重ね合わせて、 高速回 転する接合ツールの周面を銅板の表面に押し当てつつ移動させる摩擦振 動接合を実際に行った。 銅板は板厚 4 mm, 幅 7 0 min、 長さ 1 0 0 m mと し、 アルミ板は板厚 0. 5 mm、 幅 7 0 mm、 長さ 1 0 0 mmと し た。 接合ツールは直径 1 2 0 mm、 幅 2 4 mmとし、 接合ツールの回転 数は 2 0 0 0 r p m (周速度 1 5 0 7 m/min) 、 送り速度は 0. 7 5 m / min と した。
く実施例 1 〉
接合ツールの周面のフラッ ト部の幅 (mm) 、 溝幅 w 2 (mm) 、 溝幅に対するフラッ ト部の幅の比率 w Z w 2を様々に設定して、 接 合品質、 外観、 機械負荷について調べた結果を表 5に示す。 表 5—
Figure imgf000127_0001
ぐ接合品質 > ◎:良好 / X :不良
く外観 > © :良好 Z 厶:切粉多 / X :バリ多
<機械負荷 > ◎ :負荷小 / 〇:モータ定格以下
厶:モータ定格以上 / X :連続使用によりモータ停止
表 5から、 w / w 2が小さすぎる と (比較例 1 — 2 ) 、 銅板の表面 を接合ツールで切削しているのに近い状況となるので、 接合ツールによ る摩擦熱の発生量を比較的大きく でき機械負荷は小さ く なるものの、 接 合後に銅板の表面に残る凹み量が大き く なつて外観が悪く、 接合品質も 悪かった。 一方、 W l/w 2が大きすぎる と (比較例 1 — 1 ) 、 周面が フラッ トな'接合ツールによる接合に近い状況となって、 接合ツールによ る摩擦熱の発生量が小さいので、 銅板表面への接合ツールの押込量を大 きく しなければならず外観が悪くなり、 機械負荷も過大であった。
そして、 丄 ^ ^ 、 かつ、 l ^ w2≤ 3、 力 つ、 0. 6 7 w 2≤ 5 . 0 0が成立する場合 (実施例 1 — 1 ~ 1 一 7 ) には、 銅板表 面への接合ツールの押込量を抑えつつ、 接合ツールによる摩擦熱の発生 量を大きく機械負荷を小さく して、 効率的な接合が可能となることが判 明した。
<実施例 2 >
接合ツールの周面の溝の回転方向に対する傾斜角度と溝数を様々に設 定して、 接合品質、 外観、 機械負荷について調べた結果を表 6に示す。 なお、 比較例 2— 2 の場合だけ、 接合ツールの幅を 1 0 m mに設定した
表 6
Figure imgf000128_0001
く接合品質 > ©:良好 Z X :不良
く外観 > ©:良好 Z △:切粉多 Z X :バリ多 ぐ機械負荷 > ◎:負荷小 z o:モータ定格 下
△ :モータ定格以上 z X :連続使用によ yモータ停止
表 6から、 凹溝の傾斜角度が 0 . 5 ° よ り小さい場合 (比較例 2— 2 ) には、 機械負荷は小さいものの、 M溝内部に溜まった可塑化したメ タ ルが接合ツールの幅方向にうまく送り出されないため、 接合ツールの通 過後に銅板の表面にパリが残存し、 外観不良となった。 一方、 凹溝の傾 斜角度が 2 . 0 ° よ り大きい場合 (比較例 2— 1 ) には、 切粉の排出量 が大きく外観不良であると と もに、 金属部材の表面に残る凹みが大きく 機械負荷が過大であった。
そして、 凹溝の傾斜角度が 0 . 5 〜 2 . 0。 の場合 (実施例 2— 1 〜 2 - 3 ) には、 このよ うな弊害がなく 、 良好な接合が可能であった。
◎ ©◎厶
なお、 接合ツールの幅を考慮する と、 接合ツールの全周にわたって形 成されている凹溝の本数は幅方向に二以上である。 比較例 2— 2におい て、 溝数が 0本となっているのは、 接合ツールの回転方向に傾斜した凹 溝がないという ことを示している。
<実施例 3 >
接合ツールの周面の溝の深さを様々に設定して、 接合品質、 外観、 機 械負荷について調べた結果を表 7に示す。
一表 7
Figure imgf000129_0001
ぐ接合品質 > 良好 / X :不良
<外観 > 良好 / :切粉多 / :パリ多
<機械負荷 > 負荷小 / 0 :モータ定格以下
モータ定格以上 / X :連続使用によりモータ停止 3010064
128 表 7から、 凹溝の深さが 0. 3 mmよ り小さい場合 (比較例 3— 1 ) には、 可塑化したメタルが凹溝内部に詰まってしまい、 接合ツールによ る摩擦熱の発生量が減少して充分な接合ができなかった。 一方、 凹溝の 深さが 1. 2 mmよ り大きい場合 (比較例 3— 2 ) には、 銅板の表面を 接合ツールで切削しているのに近い状況となるので、 接合ツールによる 摩擦熱の発生量を大き くでき機械負荷が小さいが、 接合ツールの押込量 が大き く なつてしまい、 その結果、 外観不良であった。 さ らに、 溝が全 く ない場合 (比較例 3 — 3 ) には、 接合ツールによる摩擦熱の発生量が 小さいので、 銅板表面への接合ツールの押込量を大きく しなければなら ず外観が悪くなり、 機械負荷も過大であった。
そして、 凹溝の深さが 0. 3〜 1 . 2 mmである場合には、 このよ う な弊害がなく 、 良好な接合が可能であった。 次に、 第五群の発明の実施の形態を説明する。
く金属部材接合方法 >
まず、 本発明に係る金属部材接合方法の第 1実施形態について説明す る。 ここでは、 第 1金属部材と してのアルミニウム部材と、 第 2金属部 材と しての銅部材とを接合する場合を例にとって説明する。
ここで、 第 1金属部材の一例と してアルミェゥム部材を挙げ、 そして 第 2金属部材の一例と して板状の銅部材を挙げることによって、 まず、 本発明に係る金属部材接合方法の第 1実施形態について説明する。 第 6 8図 ( a ) 及び第 6 8図 ( b ) は、 第 1実施形態に係る金属部材接合方 法と しての、 金属部材の摩擦接合の各手順を表す正面断面図、 第 6 8図 ( c ) は第 6 8図 ( b ) の側面図、 第 6 9図 ( a ) , 第 6 9図 ( b ) 及 ぴ第 6 9図 ( c ) は、 第 6 8図 ( b ) におけるアルミニウム部材と銅部 材との重ね合わせ部の塑性変形の様子を時系列的に表す断面図、 第 7 0 図は、 第 6 8図 (b ) 及び第 6 8図 ( c ) の接合ツールの部分拡大図で ある。
この金属部材接合方法では、 まず第 6 8図 ( a ) に示すように、 アル ミニゥム部材 5 0 1 と板状の銅部材 5 0 2とが面接触するように互いに 重ね合わせられて配置されると ともに、 図示しない冶具で固定される。
次に、 第 6 8図 ( b ) 及び第 6 8図 ( c ) に示すよ うに、 回転軸 5 0 3 bを中心と して円周方向に周速度 Rで高速回転する接合ツール 5 0 3 のツール本体 5 0 3 aの周面を銅部材 5 0 2の表面 5 0 2 aに垂直に押 し当てつつ、 接合ツール 5 0 3を銅部材 5 0 2の表面 5 0 2 aに沿って 送り速度 Vで移動させることによって、 アルミ二ゥム部材 5 0 1 と銅部 材 5 0 2とを重ね合わせて接合する。 接合ツール 5 0 3は回転軸 5 0 3 bの先端部に円板状のツール本体 5 0 3 aを固定してなるものであり、 ツール本体 5 0 3 aは J I S : S K D 6 1などの工具鋼からなる。 ツー ル本体 5 0 3 aは、 銅部材 5 0 2の表面 5 0 2 aを押さえ込みつつ進行 方向後方に送り込むような向きで回転軸 5 0 3 bのまわりに回転する。
ツール本体 5 0 3 aは、 第 6 9図 ( a ) に示すように、 その周面が銅 部材 5 0 2の表面 5 0 2 aに一定量 αだけ押し込まれた状態で円周方向 に高速回転しつつ、 銅部材 5 0 2の表面 5 0 2 aに沿って移動する。 そ して、 このようなツール本体 5 0 3 aの銅部材 5 0 2への押し込みによ つてアルミニウム部材 5 0 1 と銅部材 5 0 2の重ね合わせ部の隙間をな く しつつ、 高速回転するツール本体 5 0 3 a と銅部材 5 0 2 との接触に より生ずる振動によってアルミニウム部材 5 0 1 と銅部材 5 0 2の重ね 合わせ部の酸化皮膜を分断破壊するとともに、 第 6 9図 ( b ) に示すよ うに、 ツール本体 5 0 3 a と接触する銅部材 5 0 2の所定領域及ぴその 近傍領域と、 これらの領域に隣接するアルミニウム部材 5 0 1 の所定領 域とを、 ツール本体 5 0 3 a と銅部材 5 0 2 との摩擦接触により発生し た熱で高温化し、 それぞれ固相状態のまま可塑化 (流動化) させる。 そ の結果、 銅部材 5 0 2 とアルミニウム部材 5 0 1 は、 互いの境界面にお いても塑性流動し、 それぞれ当初の表面から塑性変形する。 そして、 接 合ツール 5 0 3のツール本体 5 0 3 aが通過した後に冷却されて、 第 6 9図 ( c ) に示すよ うに、 アルミニウム部材 5 0 1 と銅部材 5 0 2 とが 相互に接合された接合体 J が製造される。
このよ うな接合体 Jの銅部材 5 0 2の表面 5 0 2 a には、 第 6 9図 ( c ) に示すよ うに、 ツール本体 5 0 3 aが押圧力を当該表面 5 0 2 a に 負荷しながら通過した跡が、 一対の浅い段部 5 0 2 b, 5 0 2 b となつ て現れる。 また、 この接合体 J では、 アルミニウム部材 5 0 1 と銅部材 5 0 2 との重ね合わせ部が、 塑性変形したアルミニゥム部材 5 0 1及ぴ 銅部材 5 0 2が波打って互いに嚙み合う よ うに塑性変形した後に固化す るこ とによって、 その断面が凹凸形状となる接合面 Sを形成している。 このよ う な接合体 Jでは、 この接合面 Sによって銅部材 5 0 2 とアルミ ニゥム部材 5 0 1 とが確実に接合されている。 なお、 接合ツール 5 0 3 の押込力によつて銅部材 5 0 2の表面 5 0 2 aに形成された段部 5 0 2 b, 5 0 2 bは、 アルミユウム部材 .5 0 1及ぴ銅部材 5 0 2が接合され た後に、 当該銅部材 5 0 2の表面 5 0 2 a を一定厚みで切削することに よって、 平滑化してもよい。
ここで、 接合ツール 5 0 3をアルミ -ゥム部材 5 0 1側から押し当て るこ とも考えられるが、 アルミ二ゥム部材 5 0 1の溶融点は銅部材 5 0 2の溶融点よ り も低く、 アルミ二ゥム部材 5 0 1 と銅部材 5 0 2の重ね 合わせ部が接合に必要な温度 (共晶温度 : 5 4 8 °C ) 以上に達したとき にアルミニゥム部材 5 0 1 の変形抵抗が比較的小さく なつてしま うので 、 接合ツール 5 0 3による押圧力がアルミニウム部材 5 0 1 と銅部材 5 0 2の重ね合わせ部に充分に伝達されず、 接合不良となりやすい。 一方 、 本実施の形態に係る金属部材接合方法では、 接合ツール 5 0 3をアル ミニゥム部材 5 0 1 よりも溶融点の高い銅部材 5 0 2側から押し当てる ようにしており、 アルミニウム部材 5 0 1 と銅部材 5 0 2の重ね合わせ 部が接合に必要な温度 (共晶温度) 以上に達したときに銅部材 5 0 2の 変形抵抗を比較的大きく保持して、 接合ツール 5 0 3の押圧力をアルミ -ゥム部材 5 0 1 と銅部材 5 0 2の重ね合わせ部に充分に伝達できる。 したがって、 本実施の形態に係る金属部材接合方法によれば、 両部材 5 0 1, 5 0 2間の隙間をなく した高強度の接合を行うことができる。 ところで、 本実施の形態に係る金属部材接合方法に使用される接合ッ ール 5 0 3は、 第 7 0図に示すように、 ツール本体 5 0 3 a の周面に回 転方向に略沿った向きで囬溝 5 0 3 cが形成されているものが望ましい 。 このよ うな接合ツール 5 0 3を使用した金属部材接合方法によれば、 接合ツール 5 0 3の周面と銅部材 5 0 2の表面 5 0 2 a との接触面積が より大きく なり、 効率よく摩擦熱を発生させて効率よく銅部材 5 0 2 と アルミニウム部材 5 0 1 とを接合するこ とができる。
また、 接合ツール 5 0 3は、 囬溝 5 0 3 cが回転方向に対して僅かに 傾斜して連続するよ うに、 つまり接合ツール 5 0 3の回転軸 5 0 3 bの まわりで接合ツール 5 0 3の周面に沿った螺旋形の軌跡を描く よ うに形 成されているものがさらに望ましい。 このよ うな接合ツール 5 0 3を使 用した金属部材接合方法によれば、 接合ツール 5 0 3の回転 ' 移動に伴 つて、 凹溝 5 0 3 cの内部に溜まつた可塑化したメタルが接合ツール 5 0 3の幅方向に順次送り出されるので、 接合後に銅部材 5 0 2の表面 5 0 2 aに残る凹み量 (段部 5 0 2 bの高さ) を最小限に抑えることがで きる。
ここで、 接合ツール 5 0 3のツール本体 5 0 3 aの周面の凹溝 5 0 3 c , 5 0 3 c間のフラッ ト部 5 0 3 dの幅 W l (mm) 及ぴ囬溝 5 0 3 cの幅 w 2 (mm) は、 1 ≤ x≤ 5 s 力 つ、 1 ≤ w 2≤ 3 , 力 つ、 0. 6 7≤ w x/w 2≤ 5 . 0 0が成立するよ う に設定されるのが望ま しい 。 フラッ ト部 5 0 3 d及び凹溝 5 0 3 cがこのよ うに設定されているこ とにより、 銅部材 5 0 2の表面 5 0 2 aへの接合ツール 5 0 3のツール 本体 5 0 3 aの押込量を抑えつつ、 接合ツール 5 0 3のツール本体 5 0 3 aによる摩擦熱の発生量を大きく して、 効率的な接合が可能となる。 また、 接合ツール 5 0 3は、 そのツール本体 5 0 3 a の周面の凹溝 5 0 3 cが、 ツール本体 5 0 3 aの回転方向に対して傾斜して形成されて おり、 傾斜角 0 は 0. 5〜 2. 0° に設定されているものが望ましい。 また、 接合ツール 5 0 3は、 凹溝 5 0 3 cが、 ツール本体 5 0 3 a の周 面の全周にわたつて二本以上形成されているものが望ましい。 凹溝 5 0 3 cの傾斜角 Θ及ぴ本数がこのよ うに設定されていることによ り、 接合 ツール 5 0 3のツール本体 5 0 3 a の回転 · 移動に伴って、 凹溝 5 0 3 c内部に溜まった可塑化した銅部材 5 0 2のメ タルがツール本体 5 0 3 aの幅方向にうまく連続的に送り出され、 ツール本体 5 0 3 aの通過後 に銅部材 5 0 2の表面 5 0 2 aにパリや凹みがほとんど残存しなく なり 、 機械負荷も小さ く なる。
さらに、 接合ツール 5 0 3は、 そのツール本体 5 0 3 aの周面の凹溝 5 0 3 cの深さ d力 S O . 3〜 1. 2 mmに設定されているものが望まし い。 凹溝 5 0 3 c の深さ dがこのよ う に設定されていることによ り 、 凹 溝 5 0 3 c の内部に可塑化した銅部材 5 0 2のメ タルが詰まらず、 接合 後に銅部材 5 0 2の表面 5 0 2 aに残る凹み量も小さ く なり、 効率的な 接合が可能となる。
なお、 このよ う にしてアルミニウム部材 5 0 1 と銅部材 5 0 2 とを重 ね合わせて摩擦接合する場合には、 接合時の接合ツール 5 0 3 (ツール 本体 5 0 3 a ) を、 次式 (A) で求められる周速度 R (m/min) で回 転させることが望ましい。
2 5 0≤ R≤ 2 0 0 0 … (A)
これは、 接合時の接合ツール 5 0 3の周速度が 2 5 0 m/min よ り小 さいと、 接合ツール 5 0 3 と銅部材 5 0 2 との摩擦接触によって発生す る熱量が小さすぎて、 銅部材 5 0 2 とアルミニゥム部材 5 0 1 との重ね 合わせ部の温度が低く 、 接合不良となってしまい、 一方、 接合時の接合 ツール 5 0 3の周速度が 2 0 0 0 m/min よ り大きレ、と、 接合ツール 5 0 3 と銅部材 5 0 2 との摩擦接触によつて発生する熱量が必要以上に大 きく なつて、 接合ツール 5 0 3の駆動エネルギーロスが大きいだけでな く、 接合ツール 5 0 3 と接触している銅部材 5 0 2の温度が局所的に大 きく なりすぎて当該部分が塑性変形してしまい、 接合ツール 5 0 3の押 圧力が重ね合わせ部に充分に伝達されず、 両部材間に隙間が生じてしま うおそれがあるからである。 したがって、 接合時の接合ツール 5 0 3 を 周速度 2 5 0〜 2 0 0 0 m/min で回転させれば、 接合ツール 5 0 3 と 銅部材 5 0 2 との摩擦接触によって発生する熱量が適正な値となって、 良好な接合を行う ことができるのである。
また、 アルミニウム部材 5 0 1 と銅部材 5 0 2 とを重ね合わせて摩擦 接合する場合には、 接合時の接合ツール 5 0 3 (ツール本体 5 0 3 a ) を、 次式 (B) で求められる押込量 α (m) だけ銅部材 5 0 2の表面 5 0 2 a に押し込むことが望ましい。
0. 0 3 X t ≤ a≤ 0. 3 X t … ( B )
t : 重ね合わせ部における銅部材の厚み (m)
これは、 接合時の接合ツール 5 0 3の銅部材 5 0 2の表面 5 0 2 aへ の押込量 ctが 0. 0 3 t よ り も小さいと、 銅部材 5 0 2 とアルミ -ゥム 部材 5 0 1 との重ね合わせ部に隙間が残って接合不良となり、 一方、 押 込量 αが 0. 3 t よ り も大きいと、 銅部材 5 0 2 とアルミニウム部材 5 0 1 との重ね合わせ部に隙間は残らないが、 接合ツール 5 0 3の押し込 み過大によって銅部材 5 0 2表面に凹みが顕著に残ってしまい、 部材ロ スが発生するからである。 したがって、 接合時の接合ツール 5 0 3の銅 部材 5 0 2の表面 5 0 2 aへの押込量 αを 0. 0 3 t以上 0. 3 t以下 とすれば、 接合ツール 5 0 3の押圧力が適正な値となって、 銅部材 5 0 2 とアルミニウム部材 5 0 1 との重ね合わせ部に隙間を発生させずに接 合することができ、 銅部材 5 0 2の表面 5 0 2 aの凹みも小さ くできる のである。
さ らに、 アルミニウム部材 5 0 1 と銅部材 5 0 2 とを重ね合わせて摩 擦接合する場合には、 接合時の接合ツール 5 0 3 (ツール本体 5 0 3 a ) を、 次式 (C) によって求められる送り速度 V (m/min) で銅部材 5 0 2の表面 5 0 2 aに沿って移動させることが望ま しい。
0 . 1≤ V≤ R/ ( 5 . 0 X 1 0 6 X t 2) ··· ( C )
R : 接合時の接合ツールの周速度 (m/min)
t : 重ね合わせ部における銅部材の厚み (m)
これは、 接合時の接合ツール 5 0 3の周速度が大きく なれば、 接合ッ ール 5 0 3 と銅部材 5 0 2 との摩擦接触によって発生する熱量が大きく なるので、 接合ツール 5 0 3の送り速度 Vを大きく しても、 重ね合わせ 部の温度を一定以上に保つこ とができるが、 銅部材 5 0 2の厚みが厚く なる と、 重ね合わせ部が一定温度以上に達するまでの時間がかかるので 、 接合ツール 5 0 3の送り速度を大きく しすぎる と、 重ね合わせ部が一 定温度以上に達する前に接合ツール 5 0 3が通過してしまい、 接合不良 となってしま うからである。 つま り、 良好な摩擦接合を行う には、 接合 ツール 5 0 3の送り速度 V、 周速度 R、 銅部材の厚み t を相互に調節す る必要があり、 実験の結果、 V≤ RZ ( 5. 0 X 1 0 6 X t 2) を満足 するときに良好な接合が可能であることが確認されている。 一方、 接合 ツール 5 0 3の周速度 Vが小さすぎる と、 接合効率が低下するという観 点から、 0. 1 を満足するときに接合効率がよいこ と も実験によつ て確認されている。
次に、 本発明に係る金属部材接合方法の第 2実施形態について説明す る。 第 7 1図 ( a ) は、 第 2実施形態に係る金属部材接合方法に使用さ れる接合ツールの斜視図、 第 7 1図 ( b ) 及び第 7 1図 ( c ) は、 第 2 実施形態に係る金属部材接合方法に使用される接合ツールの別の例を示 す下面図、 第 7 2図 ( a ) 及び第 7 2図 ( b ) は、 第 2実施形態に係る 金属部材接合方法に使用される接合ツールの別の例を示す斜視図、 第 7 3図 ( a ) 及び第 7 3図 ( b ) は、 第 2実施形態に係る金属部材接合方 法における摩擦接合の工程を説明する図である。
この金属部材接合方法は、 まず第 1実施形態に係る金属部材接合方法 と同様にして、 アルミ二ゥム部材 5 0 1 と板状の銅部材 5 0 2 とが面接 触するよ うに互いに重ね合わせられて配置される (第 6 8図 ( a ) 参照 ) 。 そして、 この金属部材接合方法では、 第 1実施形態に係る金属部材 接合方法で使用した接合ツール 5 0 3 (第 6 8図 ( b ) 及び第 6 8図 ( c ) 参照) に代えて、 次の接合ツールが使用される。
第 7 1図 ( a ) に示すよ う に、 この金属部材接合方法で使用される接 合ツール 5 0 4は、 円板状のツール本体 5 0 4 a と、 回転軸 5 0 4 b と を備えており、 ツール本体 5 0 4 aの上面 U Sに回転軸 5 0 4 bが固定 されている。 そして、 ツール本体 5 0 4 aの下面 D Sには、 複数の突起 bが形成されている。 この突起 bは、 例えば当該下面 D Sに固着したダ ィャモン ドライクカーボン (D L C) 等の砥粒で構成することができる また、 この接合ツール 5 0 4のツーノレ本体 5 0 4 a は、 その下面 D S に前記した突起 bに代えて、 細溝を備えたものであってもよい。 第 7 1 図 (b ) に示すよ うに、 この細溝 Gは、 下面 D S上で回転中心 A Xから 放射状に延びるものであってもよいし、 第 7 1図 ( c ) に示すよ うに、 下面 D S上で格子状に延びるものであってもよい。
また、 この細溝 Gは湾曲していてもよく、 例えば、 第 7 2図 ( a ) に 示すように、 下面 D Sで渦巻き状に形成されたスクロール形状のもので もよいし、 第 7 2図 (b ) に示すよ うに、 相互に異なる径の複数の環状 の細溝 Gからなり、 これらが同心円状に配置されたものであってもよい また、 図示しないが、 接合ツール 5 0 4のツール本体 5 0 4 aは、 そ の下面 D Sに前記した突起 bに代えて、 湾曲したレール (突条) を備え たものであってもよい。 このレールは、 下面 D S (第 7 1図 ( a ) 参照 ) で渦巻き状に形成されたスクロール形状のものでもよいし、 下面 D S で大きさの異なる複数の環状のレールからなり、 これらが同心円状に配 置されたものであってもよい。
この第 2実施形態に係る金属部材接合方法では、 第 7 3図 ( a ) 及ぴ 第 7 3図 ( b ) に示すように、 回転軸 5 0 4 bを中心として高速回転す る接合ツール 5 0 4のツール本体 5 0 4 a の下面 D Sを銅部材 5 0 2の 表面 5 0 2 aに押し当てつつ、 接合ツール 5 0 4を銅部材 5 0 2の表面 5 0 2 aに沿って前記した送り速度 Vで移動させることによって、 アル ミニゥム部材 5 0 1 と銅部材 5 0 2 とを接合する。
このときツール本体 5 0 4 aは、 第 7 3図 ( a ) に示すよ うに、 その 下面 D Sが銅部材 5 0 2の表面 5 0 2 a に前記した一定量 αだけ押し込 まれた状態で高速回転しつつ、 銅部材 5 0 2の表面 5 0 2 aに沿って移 · 動する。 そして、 このようなツール本体 5 0 4 a の銅部材 5 0 2への押 し込みによってアルミニウム部材 5 0 1 と銅部材 5 0 2の重ね合わせ部 の隙間をなく しつつ、 高速回転するツール本体 5 0 4 a と銅部材 5 0 2 との接触により生ずる振動によってアルミニウム部材 5 0 1 と銅部材 5 0 2の重ね合わせ部の酸化皮膜を分断破壌するとともに、 第 7 3図 ( b ) に示すよ うに、 ツール本体 5 0 4 a と接触する銅部材 5 0 2の所定領 域及びその近傍領域と、 これらの領域に隣接するアルミニゥム部材 5 0 1の所定領域とを、 ツール本体 5 0 4 a と銅部材 5 0 2 との摩擦接触に より発生した熱で高温化し、 それぞれ固相状態のまま可塑化 (流 1¾化) させる。 その結果、 銅部材 5 0 2 とアルミニウム部材 5 0 1は、 互いの 境界面においても塑性流動し、 それぞれ当初の表面から塑性変形する。 接合ツール 5 0 4のツール本体 5 0 4 aが通過した跡は、 第 1実施形 態に係る金属部材接合方法と同様に、 ツール本体 5 0 4 aの押圧力によ つて銅部材 5 0 2の表面 5 0 2 aに一対の浅い段部 5 0 2 b, 5 0 2 b が形成される (第 6 9図 ( c ) 参照) 。 また、 アルミニウム部材 5 0 1 と銅部材 5 0 2 との重ね合わせ部は、 第 1実施形態に係る金属部材接合 方法と同様に、 塑性変形したアルミ二ゥム部材 5 0 1及ぴ銅部材 5 0 2 が互いに嚙み合う.よ うに断面凹凸形で固化した接合面 Sとなり、 この接 合面 Sを介して銅部材 5 0 2 とアルミニウム部材 5 0 1 とが確実に接合 される (第 6 9図 ( c ).参照) 。
ぐ放熱部材及ぴその製造方法 >
次に、 前記した金属部材接合方法によつて得られたアルミ二ゥム部材 5 0 1 (第 1金属部材) 及び銅部材 5 0 2 (第 2金属部材) で構成され る接合体 J (第 6 9図 ( c ) 参照) から製造された放熱部材について説 明する。 第 7 4図 ( a ) は、 放熱部材の斜視図、 第 7 4図 (b ) 及び第 7 4図 ( c ) 並びに第 7 5図 ( a ) 及ぴ第 7 5図 (b ) は、 第 7 4図 ( a ) の放熱部材の製造工程を説明する図である。
この放熱部材は、 例えば、 I C用放熱部材、 ペルチ 素子用放熱部材 、 モーター用放熱部材、 電子制御部品用放熱部材等と して使用されるも のであって、 第 7 4図 ( a ) に示すよ う に、 放熱部材 5 0 6は、 ベース 板 5 0 7 と、 複数の放熱フイ ン 5 0 8 a を有する と ともに、 これら放熱 フィン 5 0 8 aがベース板 5 0 7上で相互に間隔をあけて立設されるよ うに当該ベース板 5 0 7の一方の面に接合された放熱部材 5 0 8 とを備 えている。 この放熱部材 5 0 6のベース板 5 0, 7は、 前記接合体 J (第 6 9図 ( c ) 参照) の銅部材 5 0 2に相当する部分であり、 放熱部材 5 0 8は、 後記する手順で前記接合体 J のアルミニゥム部材 5 0 1 に相当 する部分から形成されたものである。
次に、 この放熱部材 5 0 6の製造方法を説明する。 この製造方法では 、 前記した接合体 J のアルミニウム部材 5 0 1 を鍛造加工することによ つて、 銅部材 5 0 2上に複数の放熱フィ ン 5 0 8 aが立設される。
この鍛造加工に使用する鍛造型と しては、 例えば、 第 7 4図 (b ) に 示すよ うに、 接合体 J の平面形状と同じ形状で開口 し、 その形状で平坦 な底部 5 0 9 aまで延びる内部空間 5.0 9 b を有する下部鍛造型 5 0 9 と、 この下部鍛造型 5 0 9 の内部空間 5 0 9 b と略同形状であって、 下 部鍛造型 5 0 9の底部 5 0 9 a と向き合う側に、 放熱フイン 5 0 8 a の 外形を象った形状の窪み 5 1 0 aが形成された上部鍛造型 5 1 0 とで構 成されるものが挙げられる。
この放熱部材 5 0 6の製造方法では、 まず、 第 7 4図 ( b ) に示すよ うに、 下部鍛造型 5 0 9の底部 5 0 9 a に接合体 Jが配置される。 この とき、 接合体 J は、 アルミ二ゥム部材 5 0 1が上部鍛造型 5 1 0に対向 するよ うに配置される。 次に、 下部鍛造型 5 0 9 の開口部 5 0 9 c カ ら その内部空間 5 0 9 b に向けて上部鍛造型 5 1 0が押し下げられる と、 第 7 4図 ( c ) に示すよ う に、 上部鍛造型 5 1 ◦ に形成された前記窪み 5 1 0 a内にアルミ二ゥム部材 5 0 1が塑性変形することよつて入り込 む。 そして、 上部鍛造型 5 1 0が持ち上げられて上部鍛造型 5 5 1 0の 4
139 窪み 5 1 0 aから接合体 J が離されると、 第 7 4図 ( a ) に示す放熱部 材 5 0 6が製造される。
また、 この放熱部材 5 0 6の製造方法は、 このよ う な鍛造加工による ものに限定されるものではなく 、 次のよ うな切削加工によるものであつ てもよい。 この製造方法では、 前記した接合体 J のアルミニウム部材 5 0 1 を切削加工することによって、 このアルミ二ゥム部材 5 0 1 に複数 のス リ ッ トを形成し、 銅部材 5 0 2上に複数の放熱フイン 5 0 8 aが立 設される。
この切削加工に使用する切削器具と しては、 例えば、 第 7 5図 ( a ) に示すよ うに、 円板状の形状であって、 その周面に図示しない切歯が形 成された複数のカッター 5 1 1 a, 5 1 1 a · · ' と、 これらカッター 5 1 1 a , 5 1 1 a - · · が等間隔に配置されるよ う に支持する.と とも に、 その軸周り に回転する支持軸 5 1 1 b とで構成される切削器具 5 1 1が挙げられる。
この放熱部材 5 0 6 の製造方法では、 まず、 第 7 5図 ( a ) に示すよ うに、 図示しない支持台上でアルミニウム部材 5 0 1 を上にして水平に 支持された接合体 Jの上方に、 その支持軸 5 1 1 bが水平になるよ うに 切削器具 5 1 1 が配置される。 次に、 切削器具 5 1 1 が接合体 J に向け て押し下げられる と、 第 7 5図 ( b ) に示すよ うに、 接合体 J のアルミ ニゥム部材 5 0 1 には、 カッター 5 1 1 a, 5 1 1 a · · ' が配置され る間隔で複数のス リ ッ ト 5 0 2 c, 5 0 2 c · · ' が形成される。 そし て、 このよ うな複数のス リ ッ ト 5 0 2 c, 5 0 2 c · · ' でアルミニゥ ム部材 5 0 2が分割されることによって、 所定の間隔で並ぶ放熱フィン 5 0 8 aが形成される と、 第 7 4図 ( a ) に示す放熱部材 5 0 6が製造 される。
なお、 このよ うな放熱部材 5 0 6の製造方法で、 アルミ二ゥム部材 5 0 1を鍛造し、 あるいは切削することによって、 銅部材 5 0 2上に複数 の放熱フィン 5 0 8 aを立設する前記工程は、 特許請求の範囲にいう 「 第 3工程」 に相当する。
以上、 接合体 Jのアルミニウム部材 5 0 1を鍛造加工し、 あるいは切 削加工することによって形成した放熱フィン 5 0 8 a を備える放熱部材 5 0 6及ぴその製造方法について説明したが、 本発明の放熱部材は、 こ れに限定されず、 次に説明するよ うな、 第 1金属部材と しての放熱フィ ンと、 第 2金属部材と してのベース板とを、 摩擦接合方法 (前記第 1及 び第 2実施形態に係る金属部材接合方法) によって相互に接合した他の 放熱部材であってもよい。
ぐ他の放熱部材及ぴその製造方法 >
以下に、 他の放熱部材及ぴその製造方法について説明するが、 ここで は、 放熱フィンとベース板とを前記した第 1実施形態に係る金属部材接 合方法によって接合した放熱部材及びその製造方法を例にとって説明す る。 第 7 6図は、 他の放熱部材の断面図、 第 7 7図は、 第 7 6図の放熱 部材を構成する放熱フィ ンの斜視図、 第 7 8図は、 第 7 6図の放熱部材 を製造する際に使用する支持器具の斜視図、 第 7 9図 ( a ) 乃至第 7 9 図 ( c ) は、 第 7 6図の放熱部材の製造工程を説明する図、 第 8 0図 ( a ) 乃至第 8 0図 ( d ) は、 第 7 6図の放熱部材の変形例を示す図であ る。
第 7 6図に示すように、 ここで説明する放熱部材 5 1 2は、 アルミ二 ゥム板からなる放熱フィン 5 1 2 a (第 1金属部材) と、 銅からなるベ ース板 5 1 2 b (第 2金属部材) とを備えている。 この放熱部材 5 1 2 では、 ベース板 5 1 2 bの一方の面に高さ h 5の複数の放熱フィン 5 1 2 a , 5 1 2 a · · · が相互に一定の間隔をおいて立設されている。 そ して、 最外端に配置される放熱フ イ ン 5 1 2 aは、 ベース板 5 1 2 b上 で所定の長さ O Sでオフセッ ト している。 なお、 これら放熱フィ ン 5 1 2 a , 5 1 2 a - · · の高さ h 5は、 8〜 2 2 mmの範囲で適宜に設定 すればよい。 また、 オフセッ トの長さ O Sは、 1 mm程度でよい。
放熱フィン 5 1 2 a, 5 1 2 & · · · は、 第 7 7図を併せて参照する と明らかなよ うに、 アルミニウム材が押し出し成形されたものであって 、 その断面が L字状になった板材で構成されている。 この放熱フィ ン 5 1 2 aは、 平板材を L字状に屈曲したものであってもよレ、。 なお、 放熱 フィ ン 5 1 2 aの厚み (板厚) は、 0. 2〜 0. 8 ram程度でよい。 ま た、 ベース板 5 1 2 b と接触する放熱フィ ン 5 1 2 a部分の幅 W5 (第 7 6図参照) は、 広ければ広いほどベース 5 1 2 b との接合力を向上さ せることができるが、 その反面、 ベース板 5 1 2 b上に立設する放熱フ イ ン 5 1 2 a, 5 1 2 a - · · の数が減少するため、 放熱部材 5 1 2の 放熱面積が低減する。 したがって、 ベース板 5 1 2 に対する放熱フィ ン 5 1 2' aの接合力と放熱面積の確保の双方を満足させるためには、 前 記幅 W5は、 1. 2〜2. 0 mmの範囲に設定するのが望ましい。
次に、 この放熱部材 5 1 2の製造方法を説明する。 まず、 複数の放熱 フィン 5 1 2 a, 5 1 2 a - · ' のそれぞれが、 所定の間隔をおいて並 ぶように支持される。 このよ うに各放熱フィ ン 5 1 2 a, 5 1 2 a - - - を支持する方法としては、 特に制限はないが、 複数の放熱フィ ン 5 1 2 a , 5 1 2 a · · · を所定の間隔で支持する支持器具を使用する方法 が挙げられる。 このよ うな支持器具と しては、 例えば第 7 8図に示すよ うに、 各放熱フイ ン 5 1 2 a, 5 1 2 a ' · · を受け入れるための複数 のス リ ッ ト 5 1 3 a , 5 1 3 a · · ' が所定の間隔で一方向に並ぶよ う に形成されたプロック体からなる支持器具 5 1 3が挙げられる。
このよ う な支持器具 5 1 3 のス リ ッ ト 5 1 3 a , 5 1 3 a - · ' のそ れぞれに各放熱フィ ン 5 1 2 a, 5 1 2 a - · · が差し込まれた後に、 0064
142 この支持器具 5 1 3は、 所定の放熱部材製造用冶具に固定される。
第 7 9図 ( a ) に示すように、 この放熱部材製造用冶具 5 1 4は、 上 面が開放した箱形の冶具本体 5 1 4 a と、 冶具本体 5 1 4 aを構成する 壁に螺合すると ともに、 冶具本体 5 1 4 a内に収納された支持器具 5 1 3を固定するための締付ボルト 5 1 4 b とを備えている。 この放熱部材 製造用冶具 5 1 4では、 放熱フィ ン 5 1 2 a の折り曲げられた縁部 5 1 2 c の一方が、 冶具本体 5 1 4 a の開放された上面側に向く よ うに支持 器具 5 1 3が冶具本体 5 1 4 a内に収納されると ともに、 締付ボルト 5 1 4 bが締め付けられることによって、 冶具本体 5 1 4 a内で複数の放 熱フィ ン 5 1 2 a, 5 1 2 a ' · · が固定される。
次に、 第 7 9図 ( b ) に示すよ うに、 冶具本体 5 1 4 a の開放された 上面側に向けられた放熱フイ ン 5 1 2 a の縁部 5 1 2 cにベース板 5 1
2 bが重ね合わせられる。 このときベース板 5 1 2 bは、 図示しない固 定冶具で放熱フイ ン 5 1 2 a の縁部 5 1 2 c上に固定される。
このよ う にして各放熱フイン 5 1 2 a, 5 1 2 a · · · 上にベース板 5 1.2 bが重ね合わせられると、 各放熱フィ ン 5 1 2 a , 5 1 2 a · · • とベース板 5 1 2 b とは、 前記した第 1実施形態に係る金属部材接合 方法で接合される。 つまり、 第 7 9図 ( c ) に示すように、 回転軸 5 0
3 bを中心として円周方向に高速回転するツール本体 5 0 3 aの周面を ベース板 5 1 2 b の表.面に垂直に押し当てつつ、 ベース板 5 1 2 の表面 に沿って移動させることによって、 各放熱フィン 5 1 2 a, 5 1 2 a - . · とベース板 5 1 2 b とが接合される。
このと き、 ベース板 5 1 2 bを構成する銅の溶融点が放熱フイ ン 5 1 2 a を構成するアルミ -ゥムの溶融点より も高いため、 各放熱フイン 5 1 2 a , 5 1 2 a · · · (縁部 5 1 2 c , 5 1 2 c · · · ) とベース板 5 1 2 b との重ね合わせ部を両者の接合に必要な温度 (共晶温度 : 5 4 8 °C) まで上昇させたときに、 ベース板 5 1 2 bの変形抵抗は高く保た れる。 その結果、 この放熱部材 5 1 2の製造方法では、 接合ツール 5 0 3の押圧力を各放熱フィン 5 1 2 a, 5 1 2 a - · · とベース板 5 1 2 との重ね合わせ部に効率よく伝達することができるので、 各放熱フィ ン 5 1 2 a , 5 1 2 a · · · とベース板 5 1 2 b との間には隙間が形成 されることがなく 、 しかも各放熱フイン 5 1 2 a, 5 1 2 & · · · とべ ース板 5 1 2 b とは高い強度で接合される。 なお、 ここでは、 第 1実施 形態に係る金属部材'接合方法が使用されているが、 放熱フィン 5 1 2 a とベース板 5 1 2 b との接合に、 前記した第 2実施形態に係る金属部材 接合方法が使用されてもよいことは言うまでもない。
このよ う に各放熱フイン 5 1 2 a, 5 1 2 a · · · とベース板 5 1 2 b とが接合された後に、 放熱部材製造用冶具 5 1 4から支持器具 5 1 3 を取り外すと ともに、 接合された各放熱フイン 5 1 2 a, 5 1 2 a · · • 及ぴベース板 5 1 2 bからこの支持器具 5 1 3を抜き取ることによつ て、 放熱部材 5 1 2の製造工程は終了する。
以上、 詳述したよ う に、 このよ うな本実施の形態に係る金属部材接合 方法では、 溶融点が高い板状の銅部材 5 0 2から、 接合ツール 5 0 3 , 5 0 4, 5 0 5 (第 6 8図 (b ) 、 第 6 8図 ( c ) 、 第 7 1図 ( a ) 〜 第 7 1図 ( c ) 、 第 7 2図 ( a ) 、 第 7 2図 ( b ) 参照) によって加圧 及ぴ加熱が施されるので、 アルミニウム部材 5 0 1 と銅部材 5 0 2 との 重ね合わせ部が、 接合に必要な温度まで上昇したときに、 銅部材 5 0 2 はその変形抵抗を高く保って、 その圧力が重ね合わせ部に対して効率よ く伝達される。 したがって、 この金属部材接合方法によれば、 簡単な装 置で、 アルミニウム部材 5 0 1 と銅部材 5 0 2 との間に隙間のない高強 度の接合が可能となる。
また、 本実施の形態に係る放熱部材の製造方法では、 アルミニウム部 材 5 0 1 と銅部材 5 0 2 (ベース板) とを前記金属部材接合方法で接合 した接合体 J (第 6 9図 ( c ) 参照) を形成し、 次いで、 この接合体 J のアルミニウム部材 5 0 1 に相当する部分を加工して放熱フィ ン 5 0 8 a (第 7 4図 ( a ) 参照) を形成するか、 あるいはアルミニウムからな る放熱フィ ン 5 1 2 a と銅からなるベース板 5 1 2 b とを前記金属部材 接合方法で接合して放熱部材 5 1 2 (第 7 6図参照) を製造している。 したがって、 この放熱部材 5 1 2の製造方法によれば、 前記金属部材接 合方法と同様に、 簡単な装置で、 放熱フィ ン 5 1 2 a とベース板 5 1 2 b との間に隙間のない高強度の接合が可能となる。
また、 この放熱部材の製造方法によれば、 ろう接のよ う に真空炉中な どで所定時間にわたり加熱保持することなく 、 放熱フイ ン 5 0 8 a, 5 1 2 a とベース板 5 0 7, 5 1 2 b (第 7 4図 ( a ) 、 第 7 6図参照) とを接合できるので、 製造コス トを削減することができる。
また、 放熱フイ ン 5 1 2 a とベース板 5 1 2 b とを前記金属部材接合 方法で接合する放熱部材 5 1 2 の製造方法では、 放熱フィ ン 5 1 2 a と ベース板 5 1 2 b とを相互に重ね合わせる際に、 複数の放熱フイ ン 5 1 2 a , 5 1 2 a · · · は、 支持器具 5 1 3 (第 7 8図参照) で支持され る。 したがって、 この放熱部材 5 1 2 の製造方法によれば、 各放熱フィ ン 5 1 2 a, 5 1 2 a · · ' は、 相互の間隔を正確に保ちつつ、 互いに 所定間隔をあけた状態で位置決めされる。
また、 この放熱部材 5 1 2の製造方法では、 放熱フイ ン 5 1 2 a とべ ース板 5 1 2 b とを前記金属部材接合方法で接合する際に、 放熱フィ ン 5 1 2 aには曲げ応力が作用するが、 放熱フィ ン 5 1 2 a は支持器具 5 • 1 3 で補強される。 したがって、 この放熱部材 5 1 2 の製造方法によれ ば、 放熱フィ ン 5 1 2 a の厚みをかなり薄く することが可能となる。 また、 この放熱部材 5 1 2 の製造方法では、 放熱フイ ン 5 1 2 a とべ ース板 5 1 2 b とを前記金属部材接合方法で接合する際に、 放熱フィ ン 5 1 2 a は支持器具 5 1 3で補強されるので、 放熱フイン 5 1 2 a の高 さ h 5 (第 7 6図参照) をよ り大き くすることができる。 したがって、 この放熱部材 5 1 2の製造方法によれば、 ハイ トング比の (たとえばト ング比 2 0を超える) 放熱部材 5 1 2を製造することができる。
本実施の形態に係る放熱部材 5 1 2は、 ベース板 5 1 2 b側から加熱 及び加圧が施されて放熱フィ ン 5 1 2 a とベース板 5 1 2 b とが接合さ れたものである。 つまり、 従来品のよ うに、 放熱フィ ン 5 1 2 a側から 加熱及び加圧が施されて接合されたものではない。 したがって、 この放 熱部材 5 1 2によれば、 複雑な形状及ぴ構造を有した放熱フィン 5 1 2 aであっても、 簡易な装置で製造することができるよ う に構成されてい る。 その結果、 この放熱部材 5 1 2では、 放熱面積のよ り大きな複雑な 形状及び構造の放熱フィン 5 1 2 a をベース板 5 1 2 b上に配設するこ とができる。
以上、 本発明の実施の形態について説明したが、 本発明は、 この実施 の形態に限定されることなく 、 様々な形態で実施される。
例えば、 本実施の形態では、 銅部材 5 0 2 (第 2金属部材).に対して 加熱及び加圧を施すに際して、 回転する接合ツール 5 0 3, 5 0 4 , 5 0 5 (第 6 8図 ( b ) 、 第 6 8図 ( c ) 、 第 7 1図 ( a ) 〜第 7 1 図 ( c ) 、 第 7 2図 ( a ) 、 第 7 2図 ( b ) 参照) を銅部材 5 0 2に押し当 てる接触方式を採用しているが、 本発明の金属部材接合方法は、 このよ うな接触方式に限定されるものではなく、 この接触方式に代えて、 電磁 誘導で加熱する方法といった非接触方式を採用するものであってもよい また、 本実施の形態では、 第 1金属部材と してアルミニウム部材 5 0 1 を例示し、 第 2金属部材と して銅部材 2を例示したが、 本発明の金属 P 霞 003/010064
146 部材接合方法、 放熱部材の製造方法及び放熱部材は、 これらを使用した もので限定されるものではなく、 相互に溶融点が異なる金属部材を広く 使用することができる。
また、 第 1実施形態に係る金属部材接合方法では、 ツール本体 5 0 3 aの周面に凹溝 5 0 3 cを有する接合ツール 5 0 3を使用する方法を例 示したが、 本発明の金属部材接合方法は、 この接合ツール 5 0 3に代え て、 その周面に突起を有するツール本体を備えた接合ツールを使用する ものであってもよいし、 あるいはその周面が平滑面で構成されるツール 本体を備えた接合ツールを使用するものであってもよい。
また、 第 2実施形態に係る金属部材接合方法では、 ツール本体 5 0 4 a の下面 D Sに突起 bや細溝 Gが形成された接合ツール 5 0 4を使用す る方法を例示したが、 本発明の金属部材接合方法は、 この金属部材接合 方法で使用される接合ツール 5 0 4に代えて、 その下面 D Sが平滑面で 構成されるツール本体を備えた接合ツールを使用するものであってもよ い。
また、 本実施の形態に係る放熱部材と して、 その断面形状が L字状の 放熱フィ ンを有するものを例示したが、 本発明は、 これに限定されるも のではなく、 例えば、 第 8 0図 ( a ) に示すように、 その断面形状がコ の字状の放熱フィン 5 1 2 aを有するものであってもよい。
また、 本発明の放熱部材は、 第 8 0図 ( b ) 及ぴ第 8 0図 ( c ) に示 すよ うに、 放熱フイン 5 1 2 aが、 波打った板材で構成されるコルゲー トフイ ンであってもよい。 また、 その板材の波形は、 特に制限はなく、 第 8 0図 ( b ) に示すよ うな 角形状のものであってもよいし、 第 8 0 図 ( c ) に示すような矩形のものであってもよい。 また、 放熱フィ ン 5 1 2 a とベース板 5 1 2 b との接合箇所は、 放熱フイ ン 5 1 2 a とべ一 ス板 5 1 2 b とが接触する箇所の全てであつてもよレヽし、 例えば、 コル ゲー トフィ ンの両端部といったよ う に、 接触する箇所の一部分であって もよい。 また、 第 8 0図 ( b ) 及ぴ第 8 0図 ( c ) に示す放熱フィ ン 5 1 2 aでは、 1枚の板材からなる放熱フィ ン 5 1 2 a を例示したが、 本 発明の放熱部材に使用される放熱フィンは、 これに制限されるものでは なく 、 第 8 0図 ( b ) 及び第 8 0図 ( c ) に示すよ うな波形を形成する よ うに、 屈曲させた複数の板材をベース板上に並べて配置する と と もに 、 これら板材を個別にベース板と接合した図示しない放熱フィ ンであつ てもよい。 なお、 第 8 0図 ( a ) で示したよ うな放熱フィン 5 1 2 aで は、 幅 W5が、 1 . 2 ~ 2. 0 mmの範囲で適宜に設定されればよく 、 放熱フィ ン 5 1 2 aの高さ h 5は、 8〜 1 6 mmの範囲で適宜に設定す ればよい。 また、 第 8 0図 ( b ) で示したよ うな放熱フィン 5 1 2 aで は、 フィン幅 Pが 1. 5〜 2. 0 mm程度に設定されればよい。 また、 第 8 0図 ( b ) で示したよ うな放熱フィ ン 5 1 2 aでは、 フィ ン幅 Pが 1. 5〜 1 . 8 mm程度に設定されればよい。 また、 放熱フイ ン 5 1 2 aの高さ h 5は、 8〜 1 6 mmの範囲で適宜に設定すればよい。
また、 本実施の形態に係る放熱部材では、 放熱フィン 5 0 8 a , 5 1 2 a (第 7 4図 ( a ) 、 第 7 6図参照) を備えるものを例示したが、 本 発明の放熱部材は、 これに限定されるものではなく、 第 8 0図 ( d ) に 示すよ うに、 第 2金属部材と してのベース板 5 1 2 b上に、 前記第 1金 属部材と しての複数の放熱柱状体 5 1 2 dが接続されたものであっても よい。 この放熱柱状体 5 1 2 dは、 その断面形状に制限はなく 、 円柱で あってもよいし、 角柱であってもよい。 この放熱柱状体 5 1 2 dの高さ 5は、 2 0〜 4 0 mm程度でよ く 、 放熱柱状体 5 1 2 dのべ一ス板 5 1 2 b上での配置間隔 Pは、 1. 8〜 2. O mm程度でよい。 また、 放 熱柱状体 5 1 2 dが円柱体である場合のその直径は 2 mm程度でよい。 次に、 第六群の発明の実施の形態を説明する。
第 8 1図 ( a ) は本発明に係る放熱部材の第一実施形態を表す斜視図 であり、 第 8 1図 ( b ) は同分解斜視図である。 また、 第 8 2図 ( a ) は第 8 1図 ( a ) の A— A断面図、 第 8 2図 ( b ) は同 B— B断面図、 第 8 2図 ( c ) は同底面図である。 これらの図に示すよ うに、 放熱部材 6 0 1 Aはベース板 6 0 2 とフィ ン 6 0 3 , 6 0 3, …とで構成されて いる。
ベース板 6 0 2は銅製であり、 その幅、 長さ、 厚さはそれぞれ W 6, L , t である。 ベース板 6 0 2の一方の面 6 0 2 a には、 ヒー トスプレ ッダ 6 0 4を介して、 発熱体たる C P U 6 0 5が熱的に接続される。 ま た、 ベース板 6 0 2の他方の面 6 0 2 b には、 厚さ t s 、 幅 W s 、 長さ L s の凸条 6 0 2 cが形成されている。 凸条 6 0 2 c の幅 W s はヒー ト スプレッダ 6 0 4の幅と同程度である。 また、 凸条 6 0 2 cの長さ L s は、 ここではベース板 6 0 2の長さ Lに等しいが、 L s く Lと してもよ い。
フィン 6 0 3, 6 0 3, …はアルミニウム製であり、 ベース板 6 0 2 の面 6 0 2 b上に互いに平行となるよ う に立設接合されている。 フィ ン 6 0 3 , 6 0 3は、 二枚一対が基端部 6 0 3 aで連結されてフィ ン構成 材 6 0 6 を形成している。 フィン構成材 6 0 6の底部の幅方向略中央部 には、 ベース板 6 0 2の凸条 6 0 2 c と対応する形状の切欠 6 0 6 a が 形成されており、 フィ ン 6 0 3, 6 0 3, …がベース板 6 0 2の面 6 0 2 に立設接合されたときに、 凸条 6 0 2 cが全てのフイン 6 0 3, 6 0 3, …をつなぐ格好となる。
かかる放熱部材 6 0 1 Aにおいて、 C P U 6 0 5で発生した熟は、 ま ずヒー トスプレッダ 6 0 4を介してベース板 6 0 2に伝えられ、 次にベ ース板 6 0 2中で第 8 2図 ( c ) の矢印で示すよ うに全方向に流れて各 フィ ン 6 0 3 , 6 0 3, …に伝えられ、 最終的にここで自然冷却され、 あるいはファンなどによって強制冷却されて空気中に放散される。 した がって一般的には、 ベース板 6 0 2の厚さを大き くするほどベース板 6 0 2がじ? 116 0 5の熱をフィン 6 0 3, 6 0 3, …に伝えやすく なる わけであるが、 この場合は当然にベース板 6 0 2の重量も増加してしま う。 このため、 この放熱部材 6 0 1 Aでは、 ベース板 6 0 2の厚さを全 体的に大きくするのではなく、 0 ? 116 0 5の熱をフィン 6 0 3, 6 0 3 , …に伝える寄与度の大きな部分だけベース板 6 0 2の厚さを大きく する一方で、 寄与度の小さな部分の厚さを小さくすることによ り、 ベー ス板 6 0 2の全体重量を変えずに、 C P U 6 0 5の熱をより効率的に各 フィ ン 6 0 3, 6 0 3 , …に伝えるよ うにしている。 つまり、 ベース板 6 0 2に凸条 6 0 2 c を形成したこ とによ り 、 第 8 2図 ( c ) の矢印 Y 方向よ り も矢印 X方向によ り大量の熱が流れ、 C P U 6 0 5で発生した 熱がよ り効率的に各フィ ン 6 0 3, 6 0 3, …に伝えられることになる 。 そして、 ベース板 6 0 2の全体重量を変えずに放熱性能を高めること ができるという こ とは、 放熱性能を低下させずによ り軽量化できること を意味する。
かかる観点から、 凸条 6 0 2 cの断面形状と しては、 その厚さ t s に 対する幅 W s の比 (アスペク ト比) を 5 ~ 3 0に、 あるいは、 放熱部材 の全高さ h 6に対する当該凸条 6 0 2 cの厚さ t s の比を 0. 1 ~ 0. 3に設定するこ とが望ましい。 後述の実施例からも分かるよ う に、 凸条 6 0 2 cの厚さが相対的に大きすぎると、 圧力損失も大きくなつて却つ て放熱性能が低下してしま う し、 凸条 6 0 2 cの厚さが相対的に小さす ぎると、 ベース板 6 0 2の厚さを全体的に大きく したものに近づいてし まって、 凸条 6 0 2 c を形成した意味が薄れてく るからである。
次に、 放熱部材 6 0 1 Aの製造方法の一例を説明する。 まず、 銅及ぴアルミニゥムよ り も溶融点の高い鉄などからなるスぺー サ冶具 6 0 7を用意する。 第 8 3図 ( a ) に示すよ うに、 このスぺーサ 冶具 6 0 7には、 高さの等しい板状のスぺーサ部 6 0 7 a , 6 0 7 a , …が等間隔に並んで立設形成されている。 スぺーサ部 6 0 7 a , 6 0 7 a間の隙間 6 0 7 bの幅は、 フィン 6 0 3の板厚に略等しい。 各スぺー サ部 6 0 7 a , 6 0 7 a, …にはそれぞれ、 ベース板 6 0 2の凸条 6 0 2 c と略同一形状の切欠 6 0 7 cが形成されている。
一方で、 中央部に長方形開口が形成された平板状のアルミニゥム板を 断面凹字形に折り曲げることにより、 フィン構成材 6 0 6を製作してお < 。
そして、 スぺーサ冶具 6 0 7 のスぺーサ部 6 0 7 aを取り巻く よ うに 、 フィン構成材 6 0 6をスぺーサ冶具 6 0 7に対して側方から挿入する 。 つまり、 スぺーサ部 6 0 7 aの両側の隙間 6 0 7 b , 6 0 7 bにそれ ぞれフィ ン 6 0 3, 6 0 3を、 当該スぺ一サ部 6 0 7 a の上面に基端部 6 0 3 aが位置するよ うに、 フィ ン構成材 6 0 6を側方から挿入する。 同様にして、 他の全ての隙間 6 0 7 bにもそれぞれフィン 6 0 3が嵌ま るように、 次々にフィ ン構成材 6 0 6, 6 0 6, …をスぺーサ冶具 6 0 7に揷入していく。 すると、 フィ ン構成材 6 0 6 の切欠 6 0 6 a と スぺ 一サ冶具 6 0 7の切欠 6 0 7 c とによって、 ベース板 6 0 2の凸条 6 0 2 cが嵌まる凹溝が形成される。 ,
その後、 フィ ン構成材 6 0 6 , 6 0 6 , …をセッ トしたスぺーサ冶具 6 0 7 の上方からベース板 6 0 2を被せる。 この状態で、 ベース板 6 0 2 の面 6 0 2 b (図示下面) はフィ ン構成材 6 0 6 の基端部 6 0 3 aに 接触しており、 スぺーサ冶具 6 0 7のスぺーサ部 6 0 7 aには接触して いない。 同様に、 ベース板 6 0 2の凸条 6 0 2 cの下面は、 フィン構成 材 6 0 6 の切欠 6 0 6 aにおける各フィ ン 6 0 3 , 6 0 3に接触してお り、 スぺーサ冶具 6 0 7 のスぺーサ部 6 0 7 aには接触していない。 た だし、'ベース板 6 0 2の凸条 6 0 2 cの幅、 フィン構成材 6 0 6の切欠 6 0 6 a の幅、 スぺーサ冶具 6 0 7 の切欠 6 0 7 c の幅は、 互いに略等 しくなつているので、 ベース板 6 0 2の凸条 6 0 2 cは、 ベース板 6 0 2 とフィ ン構成材 6 0 6の幅方向の相対位置、 さらにはフィ ン構成材 6 0 6 , 6 0 6の相互の幅方向の位置を正確に決める位置決め部としても 機能する。
次に、 第 8 3図 (b ) , 第 8 4図に示すように、 回転軸 6 0 8 bを中 心と して円周方向に高速回転する接合ツール 6 0 8 のツール本体 6 0 8 a の周面をベース板 6 0 2 の面 6 0 2 aに垂直に押し当てつつ、 接合ッ ール 6 0 8をベース板 6 0 2の面 6 0 2 aに沿って所定の送り速度で移 動させることによって、 フィン構成材 6 0 6 とベース板 6 0 2 とを摩擦 振動接合する。 接合ツール 6 0 8は回転軸 6 0 8 bの先端部に円板状の ツール本体 6 0 8 aを固定してなるものであり、 ツール本体 6 0 8 aは J I S : S KD 6 1などの工具鋼からなる。 ツール本体 6 0 8 aは、 ベ ース板 6 0 2の面 6 0 2 aを押さえ込みつつ進行方向後方に送り込むよ うな向きで回転軸 6 0 8 bのまわりに回転する。
ツール本体 6 0 8 aは、 第 8 4図 ( b ) に示すよ うに、 その周面がベ ース板 6 0 2の面 6 0 2 aに一定量 αだけ押し込まれた状態で円周方向 に高速回転しつつ、 ベース板 6 0 2 の面 6 0 2 aに沿って移動する。 そ して、 このようなツール本体 6 0 8 aのベース板 6 0 2への押し込みに よってフィ ン構成材 6 0 6 の基端部 6 0 3 a とベース板 6 0 2 の境界面 の隙間をなく しつつ、 高速回転するツール本体 6 0 8 a とベース板 6 0 2 との接触により生ずる振動によってブイ ン構成材 6 0 6 の基端部 6 0 3 a とベース板 6 0 2の境界面の酸化皮膜を分断破壊するとともに、 ッ ール本体 6 0 8 a と接触するベース板 6 0 2の所定領域とこれに隣接す る基端部 6 0 3 a の所定領域とを、 ツール本体 6 0 8 a とベース板 6 0 2 との摩擦接触によ り発生した熱で高温化し、 ベース板 6 0 2 (銅) と. 接している基端部 6 0 3 a (アルミ ニウム) の一部を共晶融解させる。 その結果、 ベース板 6 0 2 と基端部 6 0 3 a の間には共晶層 6 0 9が形 成される。 そして、 接合ツール 6 0 8のツール本体 6 0 8 aが通過した 後に冷却されて、 フィ ン構成材 6 0 6 の基端部 6 0 3 a とベース板 6 0 2は、 共晶層 6 0 9を介して接合される。
ベース板 6 0 2 の面 6 0 2 a には、 ツール本体 6 0 8 aが押圧力を当 該面 6 0 2 aに負荷しながら通過した跡が残るが、 これを後で面削して 平滑面を形成することが望ま しい。
このよ う に、 ベース板 6 0 2 、 フィ ン構成材 6 0 6 がそれぞれ銅、 了 ルミニゥムからなり、 アルミ ニウムよ り も溶融点の高い銅からなるベー ス板 6 0 2側から接合ツール 6 0 8を押し当てるので、 フィ ン構成材 6 0 6 の基端部 6 0 3 a とベース板 6 0 2 の重ね合わせ部が接合に必要な 温度 (銅とアルミ二ゥムの共晶温度 : 5 4 8 °C ) 以上に達したときにべ ース板 6 0 2の変形抵抗を比較的大き く保持して、 接合ツール 6 0 8 の 押圧力を境界面に充分に伝達でき、 両者が確実に接合される。 また、 接 合ツール 6 0 8 を押し当てる際にフィ ン 6 0 3ゃ凸条 6 0 2 cが邪魔に ならないので、 フィ ン 6 0 3 のピッチやトング比、 凸条 6 0 2 c の形状 などを自由に設定することができる。
最後に、 第 8 5図に示すよ うに、 スぺーサ冶具 6 0 7からベース板 6 0 2を持ち上げるだけで、 ベース板 6 0 2 にフィ ン構成材 6 0 6, 6 0 6, …が立設接合された放熱部材 6 0 1 Aを取り出すこ とができる。 次に、 放熱部材 6 0 1 Aの製造方法の別の例を説明する。
まず、 第 8 6図 ( a ) に示すよ うに、 全体が逆 T字形になるよ うに、 一枚の薄いアルミニウム製の板材 6 0 3 ' の中央部にスぺーサ 6 1 0を 直交配置し、 第 8 6図 (b ) に示すよ うに、 断面凹字形のフィ ン構成材 作成冶具 6 1 1の中央部の溝内に、 板材 6 0 3 ' を折り曲げつつその中 央部を押し込みながらスぺーサ 6 1 0を挿入していく ことによって、 第 8 6図 ( c ) に示すよ うな、 中央部の溝にスぺーサ 6· 1 0が挟み込まれ た断面凹字形のフィン構成材 6 0 6 を作成する。 フィ ン構成材 6 0 6は 、 一対のフィン 6 0 3, 6 0 3 とこれらを連結する基端部 6 0 3 a とで 断面凹字形に形成されている。
そして、 このよ う に一対のフィ ン 6 0 3, 6 0 3の間にスぺーサ 6 1 0が挟み込まれたフィ ン構成材 6 0 6を複数個用意し、 これらのフィン 構成材 6 0 6, 6 0 6 , …とスぺーサ 6 1 0 ' , 6 1 0, , …とを交互 に並べながら、 第 8 6図 ( d ) に示すように、 これらを放熱部材製造用 冶具 6 1 2の部材セッ ト部 6 1 2 aに立設配置する。 このときフィン構 成材 6 0 6は、 一対のフィン 6 0 3, 6 0 3の間にスぺーサ 6 1 0を挟 み込んだ状態で、 かつ、 基端部 6 0 3 aを上に向けた状態とする。 また 、 フィ ン構成材 6 0 6, 6 0 6, …相互間に挟み込まれるように配置さ れたスぺーサ 6 1 0, , 6 1 0, , …の高さを、 フィン構成材 6 0 6の 一対のフィ ン 6 0 3, 6 0 3の間に挟み込まれたスぺーサ 6 1 0の高さ より も、 フィン構成材 6 0 6の基端部 6 0 3 aの厚さ分だけ大きくする ことによって、 フィン構成材 6 0 6 の基端部 6 0 3 a とスぺーサ 6 1 0 ' の基端部とで水平な上面を形成することが望ましい。
その後、 第 8 6図 ( e ) に示すよ うに、 部材セッ ト部 6 1 2 a に立設 配置されたフィ ン構成材 6 0 6, 6 0 6, …及びスぺーサ 6 1 0, , 6 1 0 ' , …の上面にベース板 6 0 2を载せて、 固定具 6 1 3で固定する 。 これで、 ベース板 6 0 2の面 6 0 2 bにフィン構成材 6 0 6の基端部 6 0 3 a及ぴスぺーサ 6 1 0 ' の基端面が当接した状態となる。
続いて第 8 7図 ( a ) に示すよ うに、 回転軸 6 0 8 bを中心と して円 周方向に高速回転する接合ツール 6 0 8 のツール本体 6 0 8 a の周面を ベース板 6 0 2 の面 6 0 2 a に垂直に押し当てつつ、 接合ツール 6 0 8 をベース板 6 0 2 の面 6 0 2 a に沿って移動させるこ とによって、 ベー ス板 6 0 2 にフィ ン構成材 6 0 6 , 6 0 6 , …の基端部 6 0 3 aを摩擦 振動接合する。
最後に、 第 8 7図 ( b ) に示すよ うに、 ベース板 6 0 2を上に持ち上 げれば、 ベース板 6 0 2に接合されたフィ ン構成材 6 0 6, 6 0 6, … だけが一緒に持ち上がり、 スぺーサ 6 1 0 ' , 6 1 0 , , …及ぴスぺ一 サ 6 1 0, 6 1 0 , …は放熱部材製造用冶具 6 1 2の部材セッ ト部 6 1 2 a に取り残されるので、 複数枚のフイ ン 6 0 3, 6 0 3, …がフィ ン 構成材 6 0 6 の基端部 6 0 3 a を介してベース板 6 0 2の面 6 0 2 に 立設接合された放熱部材 6 0 1 Aを取り出すことができる。
次に、 本発明に係る放熱部材の他の実施形態を説明する。
第 8 8図 ( a ) に示す第二実施形態の放熱部材 6 0 1 Bは、 ベース板 6 0 2の凸条 6 0 2 cが長さ方向に分割されたものであり、 その他は全 て第一実施形態と同じである。 このよ う に凸条 6 0 2 cが長さ方向に分 割されていると、 C P U 6 0 5から伝わる熱のルー トが末端のフィ ン 6 0 3に到達する前に分断されるので、 凸条 6 0 2 cが長さ方向に連続し ている第一実施形態に比べて放熱性能が低下するが、 凸条 6 0 2 cのな い従来の放熱部材よ り は放熱性能が高い。
第 8 8図 ( b ) に示す第三実施形態の放熱部材 6 0 1 Cは、 ベース板 6 0 2の凸条 6 0 2 cが各フィ ン 6 0 3, 6 0 3 , …に対して斜交する 向きに形成されたものであり、 その他は全て第一実施形態と同じである 。 このよ う に凸条 6 0 2 c の向きが各フィ ン 6 0 3, 6 0 3 , …に斜交 していると、 ベース板 6 0 2の重量を同じにしたときの凸条 6 0 2 c の 断面積が小さ く なるので、 凸条 6 0 2 cが各フイ ン 6 0 3, 6 0 3, … に直交している第一実施形態に比べて放熱性能が低下するが、 凸条 6 0 2 cのない従来の放熱部材ょ りは放熱性能が高い。
第 8 9図 ( a ) に示す第四実施形態の放熱部材 6 0 1 D、 第 8 9図 ( b ) に示す第五実施形態の放熱部材 6 0 .1 E、 第 8 9図 ( c ) に示す第 六実施形態の放熱部材 6 0 1 Fではそれぞれ、 凸条 6 0 2 cの断面形が 、 台形、 三角形、 ドーム形となっている。 これらはいずれも、 凸条 6 0 2 c の幅がベース板 6 0 2 の本体から離れるほど小さ く なつており 、 凸 条 6 0 2 cの断面形が長方形の場合よ り も、 特に矢印のよ う に側方から ファンで強制冷却するときの圧力損失が小さく なる。
第 9 0図 ( a ) に示す第七実施形態の放熱部材 6 0 1 Gは、 ベース板 6 0 2の凸条 6 0 2 cの厚さを一定にしたまま、 凸条 6 0 2 c の幅が C P U 6 0 5の接続位置から長さ方向に離れるほど小さ く なるよ う に形成 されたものであり、 その他は全て第一実施形態と同じである。
第 9 0図 ( b ) に示す第八実施形態の放熱部材 6 0 1 Hは、 ベース板 6 0 2の凸条 6 0 2 c の幅を一定にしたまま、 凸条 6 0 2 cの厚さが C P U 6 0 5の接続位置から長さ方向に離れるほど小さ く なるよ うに形成 されたものであり、 その他は全て第一実施形態と同じである。 ·
第 9 0図 ( c ) に示す第九実施形態の放熱部材 6 0 1 I は、 ベース板 6 0 2の凸条 6 0 2 c の幅及ぴ厚さが C P U 6 0 5の接続位置から長さ 方向に離れるほど小さ く なるよ うに、 つま り全体と して凸条 6 0 2 cが ドーム状となるよ う に形成したものであり、 その他は全て第一実施形態 と同じである。
ベース板 6 0 2を伝わる熱量は C P U 6 0 5から遠ざかるほど小さく なっていくから、 その熱量に応じて凸条 6 0 2 cの断面積を小さ く して いく ことは理に適っており、 それゆえこれらの放熱部材 6 0 1 G〜 6 0 1 I は、 よ り効率的な放熱を行う ことができるものとなっている。 また、 第 9 1図 ( a ) に示す第十実施形態の放熱部材 6 0 1 Jは、 フ イ ン構成材 6 0 6, 6 0 6, …を用いずに、 フィ ン 6 0 3, 6 0 3, … を直接ベース板 6 0 2に立設接合したものであり、 その他は全て第一実 施形態と同じである。
さらに、 第 9 1図 (b ) に示す第 H ^—実施形態の放熱部材 6 0 1 Kは 、 フィ ン 6 0 3, 6 0 3, …をそれぞれ幅方向に三分割してベース板 6 0 2に立設接合したものであり、 その他は全て第十実施形態と同じであ る。 もちろん、 フィ ン構成材 6 0 6, 6 0 6 , …をそれぞれ幅方向に分 割した構成と してもよい。
なお、 本発明に係る放熱部材及ぴその製造方法は、 これまで説明して きたものに限定されるわけではなく、 適宜の変更実施が可能であること は言うまでもない。 たとえば、 凸条 6 0 2 cを一列だけでなく、 複数列 形成してもよい。 また凸条 6 0 2 cは、 ベース板 6 0 2 の本体と一体形 成しなければならないわけではなく、 別体に形成した後でベース板 6 0 2 の本体に固定するようにしてもよい。 ベース板 6 0 2 、 フィ ン 6 0 3 の材質についても、 それぞれ銅、 アルミニウム以外のものに変更するこ とができる。 ヒートスプレッダの有無やその寸法 .形状も任意であり、 発熱体たる C P U 6 0 5はヒートパイプ等を介してベース板 6 0 2に接 続されていてもよレ、。
さらに、 ベース板 6 0 2 とフィ ン 6 0 3 との接合方法と して例示した 摩擦振動接合においては、 接合ツール 6 0 8の走行領域や走行向き等の 接合条件を任意に定め得る。 また、 接合方法は、 回転する接合ツールを 溶融点の高い金属部材側に押し込んで、 これにより発生する摩擦熱と押 圧力を金属部材間の境界面に伝達するよ うな接触方式に限定されるもの ではなく、 電磁誘導を利用して溶融点の高い金属部材側から金属部材間 の境界面を加熱及び加圧するような非接触方式でもよい。 また、 たとえ ばベース板 6 0 2 とフィ ン 6 0 3 とがと もに銅からなる場合には、 境界 面にアルミ箔などを挟んで接合することが好適である。 さらに、 かしめ 、 接着剤又はろ う付けなどの公知の方法を用いて、 ベース板 6 0 2 とフ イン 6 0 3 とを接合してもよい。
ところで、 これまで説明してきた放熱部材にファ ンを付設し、 フィ ン を強制冷却するヒー トシンク と して構成することも可能である。
たとえば、 第 9 2図 ( a ) に示すヒー トシンク 6 2 0 Aは、 ファ ン 6 1 4が放熱部材 6 0 1 Aの上方から各フィ ン 6 0 3, 6 0 3, …に風を 送るよ うにしたものであり、 第 9 2図 ( b ) に示すヒー トシンク 6 2 0 Bは、 ファ ン 6 1 4が放熱部材 6 0 1 Aの側方から各フィ ン 6 0 3, 6 0 3, …に風を送るよ うにしたものである。
なお、 ファ ン 6 1 4の取付方法や風の向きはこれらに限定されるわけ ではなく、 ヒー トシンクの設置スペースなどに応じて適宜設定すればよ い。
<実施例 1 >
凸条の有無によつて放熱部材の放熱性能がどのよ う に変わるかについ て、 シミ ュ レーショ ンを行った。 具体的には、 凸条無の放熱部材と凸条 有の放熱部材とを用意し、 それぞれの自然対流下での熱抵抗を求めた。 なお、 それぞれのベース板の断面積は等しく なつている。 凸条有の放熱 部材において、 凸条はベース板の長さ方向に連続しており、 凸条の断面 積はその長さ方向に一定である。 ベース板は銅製、 フィ ンはアルミニゥ ム製である。 フィ ンは、 第 9 1図 ( a ) に示した態様で一枚ずつベース 板に立設接合してある。 各サンプルの断面形状を第 9 3図 ( a ) , ( b ) に、 シミ ュ レーショ ン結果を示す'グラフを第 9 3図 ( c ) に示す。 ま た、 表 8はデータ値である。 表 8 —
表 8:凸条の有無による熱抵抗の違い (自然対流)
ベース板 フィン
熱抵 凸条 凸条 凸条
本体 本体 本体 断面 ピッ 抗
幅 W 長し チ (mm) (°C/
Ws し s t s (°C)
(謹) (mm) (mm; (mm2) (mm) W)
(mm) (mm) 卿)
1-1 2.00 449 5.90
¾5
50 50 100 1.3 30 11.5
1.10 15 50 420 5.49 有
第 9 3図 ( c ) のグラフから分かるよ うに、 自然対流下で、 凸条有の サンプル 1-2は、 凸条無のサンプル 1-1 に比べて、 ベース板の断面積が 同じであるにもかかわらず、 熱抵抗が大幅に小さくなつた。 つまり、 凸 条を形成することにより、 放熱部材の重量を変えずに放熱性能を高めら れること、 換言すれば、 放熱性能を低下させずに放熱部材を軽量化でき ることが分かった。
<実施例 2 >
実施例 1 と同様、 凸条の有無によつて放熱部材の放熱性能がどのよ う に変わるかについて、 シミ ュ レーシ ョ ンを行った。 ただし、 実施例 1は 自然対流下でのシ ミ ュ レーショ ンであつたが、 実施例 2では、 フ ァ ンで 上方から (フ ィ ンからベース板に向かう方向に) 3 m/ s の風を送り、 フィ ンを強制冷却した。 なお、 放熱部材の放熱性能の指標として、 熱抵 抗だけでなく圧力損失も求めた。 その他は実施例 1 と同様である。 シミ ユ レーシヨ ン結果を示すグラフを第 9 4図 ( a ) , ( b ) に示す。 また 表 9:凸条の有無による放熱性能の違い Ch方から強制冷却)
ベース板 フィン
全向 熱抵抗 圧力損失
本体幅 本体長 本体厚 凸条幅 凸条長 凸条厚 断面積 ピッチ 枚
(mm) (¾) (°C/W) (Pa)
W し (國) t (mm) W s (画) し s (園) t s (mm) (腿2) (画 j 数
2-1 凸条無 2.00 52.0 0.38 31
50 107 100 1.3 78 11.5
2-2 凸条有 1. 10 15 107 3 50. 1 0.35 33
C
≠ 9
^ ^^ 9!' 第 9 4図 ( a ) のグラフから分かるよ うに、 ファ ンで上方から強制冷 却した場合においても、 凸条有のサンプル 2-2 は、 凸条無のサンプル 2-1 に比べて、 ベース板の断面積が同じであるにもかかわらず、 熱抵抗 が小さくなつた。 また、 第 9 4図 ( b ) のグラフから分かるよ うに、 凸 条有のサンプル 2-2の圧力損失は、 凸条無のサンプル 2-1の圧力損失と 略同じであった。 したがって、 凸条を形成することにより、 放熱部材の 重量を変えずに放熱性能を高められること、 換言すれば、 放熱性能を低 下させずに放熱部材を軽量化できることが分かった。
く実施例 3 >
実施例 2 と同様、 凸条の有無によって放熱部材の放熱性能がどのよ う に変わるかについて、 シミ ュ レーショ ンを行った。 ただし、 実施例 2で は、 ファ ンで上方から (フィ ンからベース板に向かう方向に) 風を送り 、 フィ ンを強制冷却したが、 実施例 3では、 ファンで側方から (フィ ン の幅方向に) 3 m Z sの風を送り、 フィ ンを強制冷却した。 その他は実 施例 2 と同様である。 各サンプルの断面形状を第 9 5図 ( a ) 〜 ( c ) に、 シミ ュ レーショ ン結果を示すグラフを第 9 5図 ( d ) , ( e ) に示 す。 また、 表 1 0はデータ値である。
表 10:凸条の有無による放熱性能の違い (側方から強制冷却)
ベース板 フィン
;皿 熱抵抗 圧力損失 本体幅 本体長 本体厚 凸条幅 凸条長 凸条厚 断面積 ピッチ 枚 〇 闘) ( ) (°c/w) (Pa) W(mm) し(mm) t (mm) W s (mm) し s御) t s (mm) (mm2) (mm) 数
3-1 凸条無 2.00 54.8 0.41 67 凸条有
3-2 15 53.6 0.40 91 長方形 50 107 100 1.3 78 11.5
1.10 107 3
凸条有 上辺 12
3-3 53.1 0.39 84 台形 下辺 18
第 9 5図 ( d ) のグラフから分かるように、 ファ ンで側方から強制冷 却した場合においても、 凸条有のサンプル 3-2, 3-3 は、 凸条無のサン プル 3-1に比べて、 ベース板の断面積が同じであるにもかかわらず、 熱 抵抗が小さくなつた。 また、 凸条の断面形状が台形のサンプル 3- 3の熱 抵抗は、 凸条の断面形状が長方形のサンプル 10-2 の熱抵抗より も小さ くなった。
さらに、 第 9 5図 ( e ) のグラフから分かるように、 凸条有のサンプ ル 3-2 , 3-3 の圧力損失は、 凸条無のサンプル 3- 1 の圧力損失より も大 きく なつた。 そして、 凸条の断面形状が台形のサンプル 3- 3の圧力損失 は、 凸条の断面形状が長方形のサンプル 3- 2の圧力損失より も小さくな つた。
以上の結果により、 凸条を形成すると、 側方からファ ンで冷却したと きの圧力損失が大きく、 熱抵抗は小さくなることが分かった。 したがつ て、 ファンの性能などを適宜調整して、 放熱部材の放熱性能に与える圧 力損失の影響を熱抵抗の影響に比べて小さく しておけば、 凸条を形成す ることにより、 放熱部材の重量を変えずに放熱性能を高められること、 換言すれば、 放熱性能を低下させずに放熱部材を軽量化できることが分 かった。 また、 その場合、 凸条の断面形は、 ベース板から離れるほど幅 が小さくなるように (第 8 9図参照) したほうがよいことが分かった。
く実施例 4 >
凸条の形状や寸法によって放熱部材の放熱性能がどのように変わるか について、 シミ ュ レーショ ンを行った。 サンプルと してそれぞれ第 9 5 図 ( a ) , ( b ) に示した形状の放熱部材を用いた。 その他は実施例 3 と同様である。 シミ ュ レーショ ン結果を示すグラフを第 9 6図、 第 9 7 図に示す。 また、 表 1 1はデータ値である。 表 11 :凸条の形状 ·寸法による放熱性能の違い (側方から強制冷却 )
ベー -ス板 フィン
凸条幅 ώ条長 凸条厚 熱抵抗 圧力損失 本体幅
Figure imgf000165_0001
本体長 本体厚 断面積 ピッチ 枚
Ws し s t s (mm) (¾) (°C/W) (Pa)
W (mm) し (mni) t (麵) 了ス * ^J:匕 (mm2) (mm
(mm) (mm) Ontn)
4-1 9.00 5.0 1.8 53.93 0. 02 125
4-2 11.25 4.0 2.8 53.46 0.395 105
4-3 15.00 3.0 5.0 53.64 0.394 91
50 107 1.10 107 100 ί.3 78 11.5
4-4 22.50 2.0 11.3 53.62 0.397 79
4-5 37.50 1.2 31.3 54.16 0. 05 77
4-6 45.00 1.0 45.0 55.02 0. 17 79
第 9 6図、 第 9 7図のグラフから分かるよ うに、 熱抵抗が小さ く 、 圧 力損失もそれほど大きく ならないのは、 凸条のァスぺク ト比を 5〜 3 0 に設定したとき、 あるいは、 ώ条の厚さを 1 . 1 5 mm〜 3 . 4 5 mm にしたときである。 つま り、 凸条のアスペク ト比が 5〜 3 0のとき、 あ るいは、 放熱部材の全高さに対する凸条の厚さの比を 0 . 1〜 0 . 3に 設定したときに、 バランスのよい放熱性能が得られることが分かった。 最後に、 これまで説明してきた摩擦振動接合方法の応用例を説明する 。 なお、 以下の応用例において 「銅」 、 「アルミ」 はそれぞれ 「銅又は 銅合金」 、 「アルミニウム又はアルミ ニウム合金」 を指し、 「アルミ箔 J は 「アルミ ニウム又はアルミ ニウム合金からなる箔又は薄板」 を指す ものとする。
第 9 8図に示す第一応用例は、 二枚の銅板 7 0 1, 7 0 2を、 その間 にアルミ箔 7 0 3 を挟んだ状態で全面的に重ね合わせ、 銅板 7 0 1 の外 側面から接合ツール 7 0 4を押し当てるものである。 つまり、 回転軸 7 0 4 b を中心と して円周方向に高速回転するツール本体 7 0 4 a の周面 を銅板 7 0 1の表面に押し当てつつ、 ツール本体 7 0 4 aを銅板 7 0 1 の表面に沿って所定の送り速度で移動させる。 すると、 ツール本体 7 0 4 a との摩擦接触熱によつて銅板 7 0 1が高温化し、 銅板 7 0 1 に接し ているアルミ箔 7 0 3が共晶融解し、 これが冷えてできた共晶層を介し て、 銅板 7 0 1 と銅板 7 0 2 とが接合される。
第 9 9図に示す第二応用例は、 第一の銅板 7 0 1 に対して第二の銅板 7 0 2を略丁字形となるよ うに直交配置し、 銅板 7 0 1 の外側面から接 合ツール 7 0 4を押し当てるものである。 この場合にも銅板 7 0 1 と銅 板 7 0 2 との間にアルミ箔 7 0 3が挟まれているので、 銅板 7 0 1 と銅 板 7 0 2 とを接合することができる。
第 1 0 0図に示す第三応用例は、 銅板 7 0 1 の一部とアルミ板 7 0 5 の一部とを重ね合わせて配置し、 溶融点の高い銅板 7 0 1側からこの重 ね合わせ部に接合ツール 7 0 4を作用させることによって、 重ね合わせ 部に共晶層を形成して、 銅板 7 0 1 とアルミ板 7 0 5 とを接合するもの である。
第 1 0 1 図に示す第四応用例は、 アルミ板 7 0 5が銅板 7 0 1 に直交 配置されている場合であって、 それ以外の点は第三応用例と同じである 第 1 0 2図は第五応用例であり、 銅板 7 0 1 とアルミ板 7 0 5 とで一 枚板を形成しょ う とするものである。 ( a ) では、 銅板 7 0 1 の端部に 嵌合凸部 7 0 1 a と嵌合凹部 7 0 1 bが形成されており、 アルミ板 7 0 5の端部に嵌合凸部 7 0 5 a と嵌合凹部 7 0 5 bが形成されている。 嵌 合凸部 7 0 1 aは嵌合凹部 7 0 5 b に嵌ま り、 嵌合凸部 7 0 5 a は嵌合 凹部 7 0 1 bに嵌まる。 つま り、 銅板 7 ◦ 1 とアルミ板 7 0 5は相决り の形式で嵌ま り合い、 一枚板を構成する。 そして、 アルミ板 7 0 5 よ り も溶融点の高い銅板 7 0 1 の嵌合凸部 7 0 1 a側から嵌合部に接合ツー ル 7 0 4を作用させて、 銅板 7 0 1 とアルミ板 7 0 5 とを接合する。 ま た ( b ) では、 銅板 7 0 1の端面及びアルミ板 7 0 5の端面がそれぞれ 互いに逆向きの斜面 (テーパ面) になっている。 つま り、 ここでは銅板 7 0 1の端面は下向きの斜面であり、 アルミ板 7 0 5の端面は上向きの 斜面である。 そして、 このよ うな斜面同士を接触させて配置した後、 溶 融点の高い銅板 7 0 1側からテーパ部に接合ツール 7 0 4を作用させて 、 銅板 7 0 1 とアルミ板 7 0 5 とを接合するこ とによ り、 銅板 7 0 1 と アルミ板 7 0 5 とで一枚板を構成する。
第 1 0 3図に示す第六応用例は、 銅板 7 0 1 と銅板 7 0 2 とを、 第五 応用例と同様の形状で接合するものである。 そのため、 第一応用例及び 第二応用例と同様の考え方に基づいて、 ( a ) では嵌合部に、 (b ) で はテーパ部に、 それぞれアルミ箔 7 0 3を挟み込むことにより、 銅板 7 0 1 と銅板 7 0 2 とを接合する。
第 1 0 4図に示す第七応用例は、 アルミ板 7 0 5 とアルミ板 7 0 6 と を突合わせて配置し、 その突合せ部を上下からそれぞれ銅板 7 0 1, 7 0 2で挟み込むことにより、 銅板 7 0 1 とアルミ板 7 0 5, 7 0 6 との 重ね合わせ部、 銅板 7 0 2 とアルミ板 7 0 5, 7 0 6 との重ね合わせ部 を形成し、 溶融点の高い銅板 7 0 1, 7 0 2側から重ね合わせ部に接合 ツール 7 0 4を作用させて銅板 7 0 1, 7 0 2 、 アルミ板 7 0 5, 7 0 6を接合するものである。
第 1 0 5図に示す第八応用例も、 アルミ板 7 0 5 とアルミ板 7 0 6 と を突合わせて配置するものである。 ( a ) では、 アルミ板 7 0 5の端部 片面側に嵌合凹部 7 0 5 bが形成され、 アルミ板 7 0 6 の端部片面側に 嵌合凹部 7 0 6 bが形成されている。 そして嵌合凹部 7 0 5 b, 7 0 6 bで嵌合凹溝が形成され、 この嵌合凹溝に銅板 7 0 1 をびつたり と嵌め 入れた上で、 銅板 7 0 1に接合ツール 7 0 4を作用させることにより、 銅板 7 0 1 とアルミ板 7 0 5 , 7 0 6 とを接合するものである。 (b ) は ( a ) と略同様であり、 アルミ板 7 0 5, 7 0 6 の端部両面側にそれ ぞれ銅板 7 0 1, 7 0 2を嵌め入れるものである。 なお、 銅板 7 0 1, 7 0 2に接合ツール 7 0 4を作用させるときには、 順番に行ってもよい し、 同時並行して行ってもよい。
第 1 0 6図に示す第九応用例は、 銅板 7 0 1 と銅板 7 0 2とを、 第八 応用例と同様の形状で接合するものである。 ( a ) では、 銅板 7 0 1の 端部片面側に嵌合 00部 7 0 1 bが形成され、 銅板 7 0 2の端部片面側に 嵌合凹部 7 0 2 bが形成されている。 そして嵌合凹部 7 0 1 b, 7 0 2 で嵌合凹溝が形成されるので、 この嵌合凹溝にアルミ箔 7 0 3を敷い た上で銅板 7 0 7をぴったり と嵌め入れた上で、 銅板 7 0 7に接合ツー ル 7 0 4を作用させることにより、 銅板 7 0 7 と銅板 7 0 1 , 7 0 2 と を接合するものである。 (b ) は ( a ) と略同様であり、 銅板 7 0 1, 7 0 2の端部両面側にそれぞれ銅板 7 0 7, 7 0 8を嵌め入れるもので ある。
第 1 0 7図に示す第十応用例は、 円柱形又は円筒形のアルミ棒 7 0 9 , 7 1 0の端部をそれぞれ、 銅リ ング 7 1 1の内部にぴったり と揷入し て互いに突合せた後、 銅リ ング 7 1 1の外周面に沿って接合ツール 7 0 4を作用させることにより、 銅リ ング 7 1 1 とアルミ棒 7 0 9, 7 1 0 とを接合するものである。
第 1 0 8図に示す第十一応用例は、 第十応用例と略同様であるが、 ァ ルミ棒 7 0 9, 7 1 0の端部にそれぞれ円柱形又は円筒形の嵌合凸部 7 0 9 a , 7 1 0 aが突出形成されており、 これらをそれぞれ銅リ ング 7 1 1の内部にぴったり と揷入して互いに突き合わせる。 この状態で銅リ ング 7 1 1の外周面は、 アルミ棒 7 0' 9, 7 1 0の外周面と一致してい る。 その他は第十応用例と同じである。
第 1 0 9図に示す第十二応用例は、 銅板 7 0 1 とアルミ網体 7 1 2 と を重ね合わせ、 溶融点の高い銅板 7 0 1側から重ね合わせ部に接合ツー ル 7 0 4を作用させることにより、 銅板 7 0 1 とアルミ網体 7 1 2とを 接合するものである。
第 1 1 0図に示す第十三応用例は、 銅板 7 0 1 に中空又は中実のアル ミ棒 7 0 9を立設状態に配置し、 両者の接触部に対して、 溶融点の高い 銅板 7 0 1側から接合ツール 7 0 4を作用させることにより、 銅板 7 0 1 とアルミ棒 7 0 9 とを接合するものである。
第 1 1 1図に示す第十四応用例は、 銅板 7 0 1に中空又は中実の銅棒 7 1 3を立設状態に配置し、 さらに両者の間にアルミ箔 7 0 3を挟んで 配置する。 そして、 銅板 7 0 1側から接合ツール 7 0 4を作用させるこ とにより、 銅板 7 0 1に接しているアルミ箔 7 0 3を共晶融解させ、 こ れが冷えてできた共晶層を介して、 銅板 7 0 1 とアルミ棒 7 0 9 とを接 合するものである。
第 1 1 2図に示す第十五応用例は、 円筒形の銅棒 7 1 4と円筒形のァ ルミ棒 7 1 5 とで一本の棒体を形成するものである。 銅棒 7 1 4の端部 には、 リ ング状の嵌合凸部 7 1 4 a と、 その内周に位置する嵌合凹部 7 1 4 b とが形成されている。 また、 アルミ棒 7 1 5の端部には、 リ ング 状の嵌合凸部 7 1 5 a と、 その外周に位置する嵌合凹部 7 1 5 b とが形 成されている。 嵌合凸部 7 1 4 aは嵌合凹部 7 1 5 bに嵌まり、 嵌合凸 部 7 1 5 aは嵌合凹部 7 1 4 bに嵌まる。 そして、 アルミ棒 7 1 5 より も溶融点の高い銅棒 7 1 4の嵌合凸部 7 1 4 a側から嵌合部に接合ツー ル 7 0 4を作用させて、 銅棒 7 1 4 とアルミ棒 7 1 5 とを接合する。
第 1 1 3図に示す第十六応用例は、 円筒形の銅棒 7 1 4と円筒形の銅 棒 7 1 6 とを、 第十五応用例と同様の形状で接合するものである。 その ため、 嵌合部にアルミ箔 7 0 3を挟み込むことにより、 銅棒 7 1 4, 7 1 6を接合する。
第 1 1 4図に示す第十七応用例は、 第十五応用例と略同じであるが、 銅棒 7 1 4の端面及ぴアルミ棒 7 1 5の端面がそれぞれ互いに逆向きの 斜面 (テーパ面) になっている。 つまり、 ここでは銅棒 7 1 4の端面は 中空部に近づくほど引っ込んだいわゆるすり鉢状の斜面になっており、 またアルミ棒 7 1 5の端面は、 中空部に近づくほど出っ張った斜面にな つている。 そして、 このような斜面同士を接触させて配置した後、 溶融 点の高い銅棒 7 1 4側からテーパ部に接合ツール 7 0 4を作用させて、 銅棒 7 1 4 とアルミ棒 7 1 5 とを接合することによ り、 一本の棒体を構 成する。
第 1 1 5図に示す第十八応用例は、 円筒形の銅棒 7 1 4 と円筒形の銅 棒 7 1 6 とを、 第+七応用例と同様の形状で接合するものである。 その ため、 テーパ面間にアルミ箔 7 0 3 を挟み込むことによ り、 銅棒 7 1 4 , 7 1 6を接合する。
第 1 1 6図に示す第十九応用例は、 半導体のヒー トシンク板 (パツキ ングプレー ト) の製造方法に関するものである。 つま り、 アルミ製のヒ ー トシンク板 7 1 7の片側面には数条の凹溝 7 1 7 a,. 7 1 7 a , …が 形成されていて、 このよ うなヒー トシンク板 7 1 7の凹溝 7 1 7 a, 7 1 7 a , …側の面に銅製の蓋板 7 1 8 を重ね合わせた上で、 ヒー トシン ク板 7 1 7 と蓋板 7 1 .8 との重ね合わせ部に、 溶融点の高い銅製の蓋板 7 1 8側から接合ツール 7 0 4を作用させることによ り、 ヒー トシンク 板 7 1 7 と蓋板 7 1 8 とを接合し、 蓋板 7 1 8で密閉された各凹溝 7 1 7 a を水冷孔となす。 かかる方法は、 溶接などのよ う に接合材を溶かす わけではないので熱ひずみが少なく 、 高精度の製品を低コス トで製造す ることができる。
第 1 1 7図に示す第二十応用例は、 第十九応用例と略同じであるが、 ヒー トシンク板と蓋板の材質が逆になつている点において異なる。 つま り 、 銅製のヒー トシンク板 7 1 9の片側面には数条の凹溝 7 1 9 a , 7 1 9 a , …が形成されていて、 このよ うなヒー トシンク板 7 1 9の凹溝 7 1 9 a , 7 1 9 a, …側の面にアルミ製の蓋板 7 2 0を重ね合わせた 上で、 ヒー トシンク板 7 1 9 と蓋板 7 2 0 との重ね合わせ部に、 溶融点 の高い銅製のヒー トシンク板 7 1 9側から接合ツール 7 0 4を作用させ ることによ り、 ヒー トシンク板 7 1 9 と蓋板 7 2 0 とを接合し、 蓋板 7 2 0で密閉された各凹溝 7 1 9 a を水冷孔となす。 その他の点は、 第十 九応用例と同じである。 第 1 1 8図に示す第二十一応用例は、 第十八応用例、 第十九応用例と 略同じであるが、 ヒー トシンク板と蓋板の材質がと もに銅である点にお いて異なる。 つま り、 銅製のヒー トシンク 7 1 9の片側面には数条の 凹溝 7 1 9 a, 7 1 9 a , …が形成されていて、 このよ う なヒー トシン ク板 7 1 9の凹溝 7 1 9 a, 7 1 9 a , …側の面に銅製の蓋板 7 1 8 を 重ね合わせる。 このとき、 ヒー トシンク板 7 1 9 と蓋板 7 1 8 との重ね 合わせ部には、 アルミ箔 7 0 3を挟み込んでおく。 そして、 蓋板 7 1 8 側又はヒー トシンク板 7 1 9側から重ね合わせ部に接合ツール 7 0 4を 作用させることによ り、 ヒー トシンク板 7 1 9 と蓋板 7 1 8 とを接合し 、 蓋板 7 1 8で密閉された各凹溝 7 1 9 a を水冷孔となす。 なお、 その 他の点は、 第十九応用例、 第二十応用例と同じである。
第 1 1 9図に示す第二十二応用例は、 アルミ容器 7 2 1 の底面にステ ンレス板 7 2 2を接合して、 電磁調理器となすものである。 接合ツール 7 2 3 は、 これまでと 同じものでも よいが、 こ こでは、 回転軸 7 2 3 b を中心と して円周方向に高速回転するツール本体 7 2 3 a の上面 (回転 軸 7 2 3 b に直交する面) を、 ステンレス板 7 2 2 の表面に押し当てつ つ、 ツール本体.7 2 3 a をステンレス板 7 2 2の表面に沿って所定の送 り速度で移動させる。 すると、 ツール本体 7 2 3 a との摩擦接触熱によ つてステンレス板 7 2 2が高温化し、 ステンレス板 7 2 2 に接している アルミ容器 7 2 1が部分的に共晶融解し、 これが冷えてできた共晶層を 介して、 ステンレス板 7 2 2 とアルミ容器 7 2 1 とが接合される。
第 1 2 0図に示す第二十三応用例は、 略コ字形断面のアルミ形材 7 2 4, 7 2 5 を左右一対で組み合わせて接合し、 筒状のパスケッ トセルを 製造するものである。 バスケッ トセルとは、 その内部に使用済核燃料棒 を貯蔵する ものであり、 これが集まってキャスクの一部であるパスケッ トを構成する。 アルミ形材 7 2 4, 7 2 5は、 いずれも 2 0重量パーセ ントのボロンカーバイ ド ( B 4 C ) を含有している。 アルミ形材 7 2 4 の端部には嵌合凸部 7 2 4 a と嵌合凹部 7 2 4 bが形成されており、 ァ ルミ形材 7 2 5の端部には嵌合凸部 7 2 5 a と嵌合凹部 7 2 5 bが形成 されている。 嵌合凸部 7 2 4 aは嵌合凹部 7 2 5 bに嵌まり、 嵌合凸部 7 2 5 aは嵌合凹部 7 2 4 b'に嵌まる。 嵌合凸部 7 2 4 aは嵌合凸部 7 2 5 aより も外側に位置する。 また、 アルミ形材 7 2 4, 7 2 5の嵌合 部には、 アルミ箔 7 0 3が挟み込まれている。 そして.、 嵌合凸部 7 2 4 aの外側から接合ツール 7 0 4を作用させ、 アルミ形材 7 2 4, 7 2 5 を接合する。 このとき、 接合ツール 7 0 4の下方向の押圧力によって嵌 合部が下方に撓み、 接合時にメタルが下方に漏れ出て接合不良となって しまうことを防止するため、 ここでは筒状体内中空部に台車式中子 7 2 6及び裏当板 7 2 7を配置している。 裏当板 7 2 7は、 接合部の下面に 沿って配置された長い板である。 また、 台車式中子 7 2 6は、 上下方向 に伸縮自在のジャッキ 7 2 6 bで下から裏当板 7 2 7を接合部の下面に 押し付けながら、 ローラ 7 2 6 aで筒状体内中空部を接合ツール 7 0 4 に同期して移動する。 したがって、 上から接合ツール 7 0 4を押し当て られている接合部.の下面は、 常時裏'当板 7 2 7で支持されて塞がれてい るので、 接合部がほとんど撓まず、 メタルが漏れることもない。
第 1 2 1図に示す第二十四応用例は、 第二十三応用例と略同じである が、 嵌合部の形状が異なる。 つまり、 アルミ形材 7 2 4の端面は下向き の斜面 (テーパ面) であり、 アルミ形材 7 2 5の端面は上向きの斜面 ( テーパ面) である。 そして、 中間にアルミ箔 7 0 3を挟み込んでアルミ 形材 7 2 4のテーパ面とアルミ形材 7 2 5のテーパ面とを接触させた上 で、 外側からテーパ面に接合ツール 7 0 4を作用させ、 アルミ形材 7 2 4 , 7 2 5を接合する。 その他の点については、 全て第二十三応用例と 同じである。 第 1 2 2図に示す第二十五応用例は、 略 L字形断面のアルミ形材 7 2 8, 7 2 9 を組み合わせて接合し、 筒状のバスケッ トセルを製造するも のである。 断面略 L字形状の嵌合部はいずれもコーナー部に位置し、 接 合ツール 7 0 4 の真下に鉛直壁が配置されているので、 第二十三応用例 のよ うな台車式中子は不要である。 その他の点については、 全て第二十 三応用例と同じである。
第 1 2 3図に示す第二十六応用例は、 第二十五応用例と略同じである 力 嵌合部の形状が異なる。 つま り 、 アルミ形材 7 2 8の端面は下向き の斜面 (テーパ面) であり、 アルミ形材 7 2 9の端面は上向きの斜面 ( テーパ面) である。 そして、 中間にアルミ箔 7 0 3を挟み込んでアルミ 形材 7 2 8 のテーパ面とアルミ形材 7 2 9 のテーパ面とを接触させた上 で、 外側からテーパ面に接合ツール 7 0 4を作用させ、 アルミ形材 7 2 8 , 7 2 9 を接合する。 その他の点については、 全て第二十五応用例と 同じである。
第 1 2 4図に示す第二十七応用例は、 四つのアルミ形材 7 3 0, 7 3 1, 7 3 2 , 7 3 3を組み合わせて接合し、 筒状のバスケッ トセルを製 造するものである。 断面略 L字形状の嵌合部はいずれもコーナー部に位 置している。 ( b ) に示したように、 アルミ形材 7 3 0の端部の外側に は嵌合凸部 7 3 0 aが形成されており、 アルミ形材 7 3 3の端部の上面 には支持面 7 3 3 aが形成されている。 また、 嵌合部にはアルミ箔 7 0 3が挟み込まれている。 そして、 接合ツール 7 0 4のツール本体 7 0 4 aがアルミ形材 7 3 0 の嵌合凸部 7 3 0 a の外側から作用することによ り、 アルミ箔 7 0 3が加熱及び加圧されて、 アルミ形材 7 3 0 , 7 3 3 が接合される。 接合ツール 7 0 4からの下向きの押圧力は、 アルミ形材 7 3 0, 7 3 3 を伝わって両側斜め下方に流れ、 最終的に開き止め冶具 7 3 4で受け止められるので、 嵌合部が開いたり、 下向きに橈んでしま う ことがない。 四箇所の嵌合部は、 いずれも筒状体の中心軸について点 対称の形状である。 その他の点については、 全て第二十三応用例、 第二 十五応用例と同じである。
第 1 2 5図に示す第二十八応用例は、 第二 +七応用例と略同じである が、 嵌合部の形状が異なる。 つまり、 アルミ形材 7 3 0, 7 3 3の突合 せ部に着目すると、 アルミ形材 7 3 0の端面は下向きの斜面 (テーパ面 ) であり、 アルミ形材 7 3 3の端面は上向きの斜面 (テーパ面) である 。 そして、 中間にアルミ箔 7 0 3を挟み込んでアルミ形材 7 3 0のテー パ面とアルミ形材 7 3 3のテーパ面とを接触させた上で、 外側からテー パ面に接合ツール 7 0 4を作用させ、 アルミ形材 7 3 0, 7 3 3を接合 する。 同様にして、 アルミ形材を順次回転させ、 四箇所のテーパ面接触 部を全て接合する。 その他の点については、 全て第二十七応用例と同じ である。 産業上の利用可能性
以上のように、 第一群の発明によれば、 金属部材同士の重ね合わせ部 が接合に必要な温度まで上昇したときに、 接合ツールに近い側の金属部 材ほどその変形抵抗を高く保って接合ツールの押圧力を重ね合わせ面に 対して効率よく伝達できるので、 金属部材間に隙間のない高強度の摩擦 振動接合を行う ことができる。
また、 アルミ二ゥム部材ょりも溶融温度の高い銅部材側から接合ツー ルを押し込んで摩擦振動接合するので、 两部材の重ね合わせ部が共晶温 度以上に達したときであっても銅部材の変形抵抗が比較的大きく、 充分 な押圧力を重ね合わせ面に伝達しながら確実な接合を行う ことができる また、 接合ツールと銅部材との摩擦接触によって発生する熱量が適正 な値となって、 良好な接合を行う ことができる。
また、 接合ツールの押圧力が適正な値となって、 銅部材とアルミユウ ム部材との重ね合わせ面に隙間を発生させずに接合することができ、 銅 部材表面の凹みも小さ く できる。
また、 接合ツールの送り速度、 周速度、 銅部材の厚みが適正な関係と なって、 接合強度の高い摩擦振動接合を効率的に行う ことができる。 また、 ベース板と伝熱板との重ね合わせ面に隙間がなく 、 よ り高強度 で接合された放熱部材とするこ とができる。
また、 ヒートシンク材がアルミニウムの押出成形によ り成形されてい るので、 ヒー トシンク材の加工精度が高い。
また、 接合ツールに接触する銅部材が溶融しにく く高温での変形抵抗 を高く保つことができるので、 接合条件 (接合ツールの回転数、 送り速 度等) の許容範囲が大きく、 接合効率がよい。 また、 第二群の発明によれば、 部材の材質を問わず、 ベース板の一方 の面に、 互いに間隔をあけた複数枚の板材を容易に立設接合するこ とが でき、 特に厚さが薄く高さが大きい板材を、 ベース板に短ピッチで強固 に立設接合することができる。
また、 本発明に係る放熱部材の製造方法によれば、 互いに間隔をあけ た複数枚のフィンをベース板の一方の面に対して立設接合した放熱部材 を、 低コス トで容易に製造することができ、 特にハイ トング比で放熱性 能の高い放熱部材を低コス トで容易に製造することができる。 このとき 本発明に係る放熱部材製造用冶具を用いれば、 摩擦振動接合時にフィン 又はフィ ン構成材、 スぺーサ、 ベース板を確実に拘束することができる さ らに、 本発明に係る放熱部材は、 放熱性能が高く 、 製造コス トが安 また、 第三群の発明によれば、 放熱部材が、 銅ベース板と銅若しく は アルミニウムのフィ ン又はアルミニウムベース板とを摩擦振動接合した ものであるので、 従来品よ り も低コス トで確実に製造できる。
また、 放熱部材の熱をファンで強制的に冷却する構成であるので、 放 熱性能が高い。
さ らに、 発熱体と銅ベース板とがヒ一 パイプで接続されている場合 には、 放熱部材及ぴファンを発熱体から離して配置することができ、 薄 型のノー トブックパソコンのよ うな発熱体の近傍で熱を放出する構造と することがスペース的に困難な場合にも対応可能となる。 また、 第四群の発明によれば、 金属部材同士を互いに重ね合わせて簡 易かつ確実に接合でき、 また、 複数枚の金属製板材を金属製ベース板に 立設させて簡易かつ確実に接合できる。 さ らに本発明に係る放熱部材の 製造方法によれば、 複数枚のフィ ンをベース板に強固に立設接合した放 熱部材を簡易に製造できる。 また、 第五群の発明によれば、 少ない工数によって短時間で金属部材 同士を接合することができ、 しかも金属部材同士を高い強度で接合する ことができる。 また、 この金属部材接合方法を応用した放熱部材の製造 方法で得られた放熱部材は、 少ない工数によって短時間でベース部材に 放熱フィン等をよ り確実に高い強度で接合されたものであるため、 従来 品よ り も低コス トでしかも強度に優れている。 また、 第六群の発明によれば、 各フィンをつなぐ凸条がベース板に形 成されているので、 ベース板が発熱体の熱をよ り効率的に各フィ ンに伝 えるこ とができるよ うになり、 放熱性能が向上する。 したがって、 放熱 性能を低下させずに放熱部材を軽量化することができる。 また、 本発明 に係るヒー トシンクによれば、 放熱性能をよ り一層向上させることがで きる。
また、 本発明に係る放熱部材の製造方法によれば、 凸条ゃフィ ンが邪 魔にならず、 簡単かつ確実にベース板とフィンとを接合することができ 、 フィ ンのピッチやトング比を自由に設定することができる。

Claims

請 求 の 範 囲
1 . 複数の金属部材を、 溶融点の高い順に互いに重ね合わせて配置し 、 円周方向に回転する円板状の接合ツールの周面を、 重ね合わせ部にお いて前記金属部材のうち最も溶融点の高い金属部材の表面に押し込みつ っ該金属部材の表面に沿って移動させることにより、 前記複数の金属部 材を互いに接合することを特徴とする金属部材接合方法。
2. 溶融点の異なる二の金属部材を互いに重ね合わせて配置し、 円周 方向に回転する円板状の接合ツールの周面を、 重ね合わせ部において前 記金属部材のうち溶融点の高い一方の金属部材の表面に押し込みつつ該 一方の金属部材の表面に沿って移動させることにより、 前記両金属部材 同士を接合することを特徴とする金属部材接合方法。
3. アルミニウム部材と銅部材とを重ね合わせて配置し、 円周方向に 回転する円板状の接合ツールの周面を、 重ね合わせ部において前記銅部 材の表面に押し込みつつ該銅部材の表面に沿って移動させることにより 、 前記アルミニウム部材と前記銅部材とを接合することを特徴とする金 属部材接合方法。
4. 接合時の前記接合ツールを、 次式 (A) で求められる周速度 R ( m/min) で回転させることを特徴とする請求の範囲第 3項に記載の金 属部材接合方法。
2 5 0≤ R≤ 2 0 0 0 ■·· (A)
5. 接合時の前記接合ツールを、 次式 (B) で求められる押込量 α ( m) だけ前記銅部材の表面に押し込むことを特徴とする請求の範囲第 3 項に記載の金属部材接合方法。
0. 0 3 X t ≤ α≤ 0. 3 X t … ( B )
t : 重ね合わせ部における銅部材の厚み (m)
6. 接合時の前記接合ツールを、 次式 (B ) で求められる押込量 α ( m) だけ前記銅部材の表面に押し込むことを特徴とする請求の範囲第 4 項に記載の金属部材接合方法。
0. 0 3 X t ≤ a≤ 0. 3 X t ··· ( B )
t : 重ね合わせ部における銅部材の厚み (m)
7. 接合時の前記接合ツールを、 次式 (C) によって求められる送り 速度 V (m/min) で前記銅部材の表面に沿って移動させることを特徵 とする請求の範囲第 3項に記載の金属部材接合方法。
0. 1 ≤ V≤ R/ ( 5. 0 X 1 07 X t 2) ··■ ( C )
R : 接合時の接合ツールの周速度 (m/min)
t : 重ね合わせ部における銅部材の厚み (m)
8. 接合時の前記接合ツールを、 次式 (C) によって求められる送り 速度 V (m/min) で前記銅部材の表面に沿って移動させることを特徴 とする請求の範囲第 4項に記載の金属部材接合方法。
0. 1 ≤ V≤ R/ ( 5. 0 X 1 07 X t 2) ··· ( C )
R :接合時の接合ツールの周速度 (mZmin)
t : 重ね合わせ部における銅部材の厚み (m)
9. 接合時の前記接合ツールを、 次式 (C) によって求められる送り 速度 V (m/min) で前記銅部材の表面に沿って移動させることを特徴 とする請求の範囲第 5項に記載の金属部材接合方法。
0. 1 ≤ V≤ R/ ( 5. 0 X 1 07 X t 2 ) ··· ( C )
R : 接合時の接合ツールの周速度 (m/min)
t : 重ね合わせ部における銅部材の厚み (m)
1 0. 接合時の前記接合ツールを、 次式 (C) によって求められる送 り速度 V (m/min) で前記銅部材の表面に沿って移動させることを特 徴とする請求の範囲第 6項に記載の金属部材接合方法。
0 . 1 ≤ V≤ R / ( 5 . 0 X 1 0 7 X t 2 ) · ·· ( C )
R :接合時の接合ツールの周速度 ( m / min)
t :重ね合わせ部における銅部材の厚み (m )
1 1 . ベース板とこのベース板の一方の面から立設する放熱フインと を有するアルミニウム部材からなるヒー トシンク材と、 請求の範囲第 3 項乃至第 1 0項のいずれか一項に記載の金属部材接合方法によって前記 ベース板の他方の面に対して重ね合わせて接合された銅部材からなる伝 熱板と、 を備えることを特徴とする放熱部材。
1 2 . 前記ヒー トシンク材がアルミ ニウムの押出成形により成形され たことを特徴とする請求の範囲第 1 1項に記載の放熱部材。
1 3 . ベース板とこのベース板の一方の面から立設する放熱フィ ンと を有するアルミユウム部材からなるヒートシンク材の前記ベース板の他 方の面に、 銅部材からなる伝熱板を重ね合わせて配置し、 請求の範囲第 3項乃至第 1 0項のいずれか一項に記載の金属部材接合方法によつて前 記ベース板と前記伝熱板とを接合することを特徴とする放熱部材の製造 方法。
1 4 . 互いに間隔をあけた複数枚の板材をベース板の一方の面に立設 させて接合する方法であって、
互いに間隔をあけて並べられた複数枚の板材と、 これらの板材の間に それぞれ挟み込まれたスぺーサと、 一方の面に前記各板材が立設された ベース板と、 を配置する部材配置工程と、
円周方向に回転する円板状の接合ツールの周面を、 前記ベース板の他 方の面に押し当てつつその表面に沿って移動させることにより、 前記べ ース板に前記各板材を接合する摩擦振動接合工程と、
前記各スぺーサを取り外すスぺーサ離脱工程と、
を含むことを特徴とする部材接合方法。
1 5 . 前記スぺーサが、 前記板材及びベース板よ り も溶融点の高い材 料からなる、
ことを特徴とする請求の範囲第 1 4項に記載の部材接合方法。
1 6 . 前記ベース板が、 前記板材よ り も溶融点の高い材料からなる、 ことを特徴とする請求の範囲第 1 4項又は第 1 5項に記載の部材接合方 法。
1 7 . 互いに間隔をあけた複数枚の金属製のフィ ンを金属製のベース 板の一方の面に立設してなる放熱部材を製造する方法であって、
互いに間隔をあけて並べられた複数枚のフィンと、 これらのフィ ンの 間にそれぞれ挟み込まれたスぺーサと、 一方の面に前記各フィ ンが立設 されたベース板と、 を配置する部材配置工程と、
円周方向に回転する円板状の接合ツールの周面を、 前記ベース板の他 方の面に押し当てつつその表面に沿って移動させるこ とによ り、 前記べ ース板に前記各フィンを接合する摩擦振動接合工程と、
前記各スぺーサを取り外すスぺーサ離脱工程と、
を含むことを特徴とする放熱部材の製造方法。
1 8 . . 互いに間隔をあけた複数枚の金属製のフィ ンを金属製のベース 板の一方の面に立設してなる放熱部材を製造する方法であって、
互いに間隔をあけて並べられた複数枚のフィンと、 基端面がそれ自体 の厚さ以内で前記各フィ ンの基端面よ り も埋没するよ うに該各フィ ンの 間にそれぞれ挟み込まれたスぺーサと、 を配置するフィ ン配置工程と、 ベース板を、 その一方の面に前記各フィ ンが立設するよ う に、 前記各 スぺーサの基端面より も突出する前記各フィンの基端部を折り 曲げつつ 配置するベース板配置工程と、
円周方向に回転する円板状の接合ツールの周面を、 前記ベース板の他 方の面に押し当てつつその表面に沿って移動させるこ とにより、 前記べ ース板に前記各フィ ンの基端部を接合する摩擦振動接合工程と、 前記各スぺーサを取り外すスぺーサ離脱工程と、
を含むことを特徴とする放熱部材の製造方法。
1 9 . 前記スぺーサが、 前記フィ ン及びベース板よ り も溶融点の高レ 材料からなる、
ことを特徴とする請求の範囲第 1 7項に記載の放熱部材の製造方法。 2 0 . 前記スぺーサが、 前記フィ ン及びベース板よ り も溶融点の高レヽ 材料からなる、
ことを特徴とする請求の範囲第 1 8項に記載の放熱部材の製造方法。 2 1 . 前記ベース板が、 前記フィ ンよ り も溶融点の高い材料からなる ことを特徴と.する請求の範囲第 1 7項に記載の放熱部材の製造方法。 2 2 . 前記ベース板が、 前記フイ ンよ り も溶融点の高い材料からなる ことを特徴とする請求の範囲第 1 8項に記載の放熱部材の製造方法。
2 3 . 前記ベース板が、 前記フィンよ り も溶融点の高い材料からなる こ とを特徴とする請求の範囲第 1 9項に記載の放熱部材の製造方法。 2 4 . 前記ベース板が、 前記フィンよ り も溶融点の高い材料からなる 、
ことを特徴とする請求の範囲第 2 0項に記載の放熱部材の製造方法。 2 5 . 前記フィ ンがアルミニウム合金からなり、 前記ベース板が銅か らなる、
こ とを特徴とする請求の範囲第 2 1項に記載の放熱部材の製造方法。 2 6 . 前記フィ ンがアルミ ニウム合金からなり、 前記ベース板が銅か らなる、 ことを特徴とする請求の範囲第 2 2項に記載の放熱部材の製造方法。 2 7 . 前記フィ ンがアルミニウム合金からなり、 前記ベース板が銅か らなる、
ことを特徴とする請求の範囲第 2 3項に記載の放熱部材の製造方法。 2 8 . 前記フィ ンがアルミニウム合金からなり、 前記ベース板が銅か らなる、
ことを特徴とする請求の範囲第 2 4項に記載の放熱部材の製造方法。
2 9 . 互いに間隔をあけた複数個の金属製のフィ ン構成材を金属製の ベース板の一方の面に立設してなる放熱部材を製造する方法であって、 互いに間隔をあけて並べられ、 それぞれが左右一対のフィンとこれら の端部を連結する基端部とで断面凹字形に形成された複数個のフィ ン構 成材と、 前記各フィ ン構成材相互間に挟み込まれたスぺーサと、 前記各 フィン構成材の左右のフィンの間に挟み込まれたスぺーサと、.—方の面 に前記各フィン構成材の基端部が当接するよ う に該フィ ン構成材が立設 されたベース板と、 を配置する部材配置工程と、
円周方向に回転する円板状の接合ツールの周面を、 前記ベース板の他 方の面に押し当てつつその表面に沿って移動させることにより、 前記べ ース板に前記各フィン構成材の基端部を接合する摩擦振動接合工程と、 前記各スぺーサを取り外すスぺーサ離脱工程と、
を含むこ とを特徴とする放熱部材の製造方法。
3 0 . 前記スぺーサが、 前記フ ィ ン構成材及ぴベース板より も溶融点 の高い材料からなる、
ことを特徴とする請求の範囲第 2 9項に記載の放熱部材の製造方法。 3 1 . 前記ベース板が、 前記フィ ン構成材よ り も溶融点の高い材料か らなる、
ことを特徴とする請求の範囲第 2 9項に記載の放熱部材の製造方法。
3 2 . 前記ベース板が、 前記フィ ン構成材よ り も溶融点の高い材料か らなる、
ことを特徴とする請求の範囲第 3 0項に記載の放熱部材の製造方法。 3 3 . 前記フィ ン構成材がアルミニウム合金からなり、 前記ベース板 が銅からなる、
ことを特徴とする請求の範囲第 3 1項に記載の放熱部材の製造方法。 3 4 . 前記フィ ン構成材がアルミニウム合金からなり、 前記ベース板 が銅からなる、
ことを特徴とする請求の範囲第 3 2項に記載の放熱部材の製造方法。 3 5 . 請求の範囲第 1 7項乃至第 3 4項のいずれか一項に記載の放熱 部材の製造方法によって製造されたことを特徴とする放熱部材。
3 6 . フィ ン又はフィン構成材とスぺーサとを交互に重ね合わせた状 態でこれらを拘束するフィ ン拘束部と、
ベース板の一方の面を前記フィ ン又はフィン構成材の基端部に当接さ せて拘束するベース板拘束部と、
を備えることを特徴とする放熱部材製造用冶具。
3 7 . 放熱部材とファ ンを備えるヒー トシンクであって、
前記放熱部材は、 発熱体に熱的に接続される銅ベース板と、 この銅べ ース板の一方の面に互いに間隔をあけて立設された複数枚の銅フィ ン又 はアルミニウムフィンと、 を備え、
円周方向に回転する円板状の接合ツールの周面を前記銅ベース板の他 方の面に押し当てつつその表面に沿って移動させることによ り、 前記銅 ベース板と前記各銅フイン又は各アルミニウムフィ ンとが摩擦振動接合 されてなる、
ことを特徴とするヒー トシンク。
3 8 . 放熱部材とファ ンを備えるヒー トシンクであって、 前記放熱部材は、 発熱体に熱的に接続される銅ベース板と、 この銅べ ース板の一方の面に重ねて配置されたアルミニウムベース板と、 前記銅 ベース板と反対側の面において前記アルミニゥムベース板に互いに間隔 をあけて立設された複数枚のアルミニウムフィンと、 を備え、
前記アルミニゥムベース板と前記各アルミニゥムフィ ンは一体に押出 成形され、
円周方向に回転する円板状の接合ツールの周面を前記銅ベース板の他 方の面に押し当てつつその表面に沿って移動させることにより、 前記銅 ベース板と前記アルミニゥムベース板とが摩擦振動接合されてなる、 ことを特徴とするヒー トシンク。
3 9. 前記発熱体と前記銅ベース板とがヒー トパイプで接続されてな る、
ことを特徴とする請求の範囲第 3 7項又は第 3 8項に記載のヒー トシン ク。
4 0. 複数の金属部材を溶融点の高い順に互いに重ね合わせて配置し 、 重ね合わせ部を前記金属部材のうち最も溶融点の高い金属部材側から 加熱及び加圧することによ り、 前記複数の金属部材を互いに接合するこ とを特徴とする金属部材接合方法。
4 1 . 前記加熱及ぴ加圧は、 円周方向に回転する円板状の接合ツール の周面を、 前記最も溶融点の高い金属部材の表面に押し当てつつ該金属 部材の表面に沿って移動させることにより行われ、
前記接合ツールの周面には、 回転方向に対して僅かに傾斜して連続す る凹溝が形成されている、
ことを特徴とする請求の範囲第 4 0項に記載の金属部材接合方法。
4 2. 前記凹溝間のフラッ ト部の幅 W l (mm) 及び前記凹溝の幅 w 。 (mm) について、 l ^ W i ^ S かつ、 l ^ w 2≤ 3、 かつ、 0. 6 7 ≤ w 2≤ 5. 0 0が成立することを特徴とする請求の範囲第 4 1項に記載の金属部材接合方法。
4 3. 前記凹溝は、 前記回転方向に対して 0. 5〜 2. 0 ° 傾斜して おり、 前記接合ツールの全周にわたつて二本以上形成されていることを 特徴とする請求の範囲第 4 1項に記載の金属部材接合方法。
4 4. 前記凹溝は、 前記回転方向に対して 0. 5〜 2. 0 ° 傾斜して おり、 前記接合ツールの全周にわたって二本以上形成されていることを 特徴とする請求の範囲第 4 2項に記載の金属部材接合方法。
4 5. 前記凹溝の深さが 0. 3〜 1 . 2 mmであることを特徴とする 請求の範囲第 4 1項乃至第 4 4項のいずれか一項に記載の金属部材接合 方法。
4 6. 互いに間隔をあけた複数枚の金属製の板材を、 該板材より も溶 融点の高い金属からなるベース板の一方の面に立設させて接合する方法 であって、
互いに間隔をあけて並べられた複数枚の板材と、 これらの板材の間に それぞれ挟み込まれたスぺーサと、 一方の面に前記各板材が立設された ベース板と、 ·を配置する部材配置工程と、
前記ベース板の他方の面側から該ベース板と前記各板'材との境界面を 加熱及び加圧することにより、 前記ベース板に前記各板材を接合する接 合工程と、
前記各スぺーサを取り外すスぺーサ離脱工程と、
を含むことを特徴とする金属部材接合方法。
4 7. 前記加熱及び加圧は、 円周方向に回転する円板状の接合ツール の周面を、 前記ベース板の他方の面に押し当てつつ該ベース板の表面に 沿って移動させることにより行われ、
前記接合ツールの周面には、 回転方向に対して僅かに傾斜して連続す る凹溝が形成されている、
ことを特徴とする請求の範囲第 4 6項に記載の金属部材接合方法。
4 8. 前記凹溝間のフラッ ト部の幅 wェ (mm) 及び前記凹溝の幅 w 2 (mm) につレヽて、 Ι
Figure imgf000188_0001
δ つ、 1 ≤ w 2≤ 3 Ν 力 つ、 0. 6 7≤ w w 2≤ 5. 0 0が成立することを特徴とする請求の範囲第 4 7項に記載の金属部材接合方法。
4 9. 前記凹溝は、 前記回転方向に対して 0. 5〜 2. 0 ° 傾斜して おり、 前記接合ツールの全周にわたって二本以上形成されていることを 特徴とする請求の範囲第 4 7項に記載の金属部材接合方法。
5 0. 前記凹溝は、 前記回転方向に対して 0. 5〜 2. 0 ° 傾斜して おり、 前記接合ツールの全周にわたつて二本以上形成されていることを 特徴とする請求の範囲第 4 8項に記載の金属部材接合方法。
5 1 . 前記凹溝の深さが 0. 3〜 1. 2 mmであることを特徴とする 請求の範囲第 4 7項乃至第 5 0項のいずれか一項に記載の金属部材接合 方法。
5 2. 互いに間隔をあけた複数個の金属製のフィン構成材を、 該フィ ン構成材ょり も溶融点の高い金属からなるベース板の一方の面に立設し てなる放熱部材を製造する方法であって、
互いに間隔をあけて並べられ、 それぞれが左右一対のフィンとこれら の端部を連結する基端部とで断面凹字形に形成された複数個のフイ ン構 成材と、 前記各フィ ン構成材相互間に挟み込まれたスぺーサと、 前記各 フィン構成材の左右のフィ ンの間に挟み込まれたスぺーサと、 一方の面 に前記各フィン構成材の基端部が当接するよ うに該フィン構成材が立設 されたベース板と、 を配置する部材配置工程と、
前記ベース板の他方の面側から該ベース板と前記各フィン構成材の基 端部との境界面を加熱及び加圧するこ と によ り 、 前記ベース板に前記各 フィン構成材の基端部を接合する接合工程と、
前記各スぺーサを取り外すスぺーサ離脱工程と、
を含むことを特徴とする放熱部材の製造方法。
5 3. 前記加熱及び加圧は、 円周方向に回転する円板状の接合ツール の周面を、 前記ベース板の他方の面に押し当てつつ該ベース板の表面に 沿って移動させることによ り行われ、
前記接合ツールの周面には、 回転方向に対して僅かに傾斜して連続す る凹溝が形成されている、
ことを特徴とする請求の範囲第 5 2項に IB載の放熱部材の製造方法。 5 4. 前記凹溝間のフラッ ト部の幅 w (mm) 及び前記凹溝の幅 w 2 (mm) について、 l ^ W i ^ S 力 つ、 l ^w2≤ 3、 かつ、 0. 6 7≤ w! / w 2≤ 5. 0 0が成立するこ とを特徴とする請求の範囲第 5 3項に記載の放熱部材の製造方法。
5 5. 前記凹溝は、 前記回転方向に対して 0. 5〜 2. 0° 傾斜して おり、 前記接合ツールの全周にわたって二本以上形成されているこ とを 特徴とする請求の範囲第 5 3項に記載の放熱部材の製造方法。
5 6. 前記凹溝は、 前記回転方向に対して 0. 5〜 2. 0° 傾斜して おり、 前記接合ツールの全周にわたって二本以上形成されているこ とを 特徴とする請求の範囲第 5 4項に記載の放熱部材の製造方法。
5 7. 前記凹溝の深さが 0. 3 ~ 1 . 2 mmであることを特徴とする 請求の範囲第 5 3項乃至第 5 6項のいずれか一項に記載の放熱部材の製 造方法。
5 8. 第 1金属部材に、 この第 1金属部材と比較して溶融点が高い板 状の第 2金属部材を重ね合わせる第 1工程と、
前記第 2金属部材から前記第 1金属部材に向けて加圧すると と もに加 熱して、 前記第 1及び第 2金属部材を相互に接合する第 2工程とを備え ることを特徴とする金属部材接合方法。
5 9 . 前記第 2工程が、 回転する円板状の接合ツールの板面を前記第 2金属部材に押し当てつつ、 その表面に沿って移動させる工程を含むこ とを特徴とする請求の範囲第 5 8項に記載の金属部材接合方法。
6 0 . 第 1金属部材に、 この第 1金属部材と比較して溶融点が高い板 状の第 2金属部材を重ね合わせる第 1工程と、
前記第 2金属部材から前記第 1金属部材に向けて加圧すると ともに加 熱して、 前記第 1及び第 2金属部材を相互に接合する第 2工程と、 前記第 1金属部材を鍛造加工することによって、 前記第 2金属部材上 に複数の放熱フィ ンを立設する第 3工程とを備えることを特徴とする放 熱部材の製造方法。
6 1 . 第 1金属部材に、 この第 1金属部材と比較して溶融点が高い板 状の第 2金属部材を重ね合わせる第 1工程と、
前記第 2金属部材から前記第 1金属部材に向けて加圧すると ともに加 熱して、 前記第 1及び第 2金属部材を相互に接合する第 2工程と、 前記第 1金属部材を切削加工することによって当該第 1金属部材に複 数のスリ ッ トを形成し、 前記第 2金属部材上に複.数の放熱フィンを立設 する第 3工程とを備えることを特徴とする放熱部材の製造方法。
6 2 . 請求の範囲第 5 8項又は第 5 9項に記載の金属部材接合方法に よって、 前記第 1金属部材と しての、 断面がコの字状に成形された板材 からなる複数の放熱フィ ンと、 前記第 2金属部材と してのベース板とが 接合されたことを特徴とする放熱部材。
6 3 . 請求の範囲第 5 8項又は第 5 9項に記載の金属部材接合方法に よって、 前記第 1金属部材と しての、 断面が L字状に成形された板材か らなる複数の放熱フィ ンと、 前記第 2金属部材と してのベース板とが接 合されたことを特徴とする放熱部材。
6 4 . 請求の範囲第 5 8項又は第 5 9項に記載の金属部材接合方法に よって、 前記第 1金属部材と してのコルゲートフィ ンと、 前記第 2金属 部材と してのベース板とが接合されたことを特徴とする放熱部材。
6 5 . 請求の範囲第 5 8項又は第 5 9項に記載の金属部材接合方法に よって、 前記第 1金属部材と しての複数の放熱柱状体と、 前記第 2金属 部材と してのベース板とが接合されたことを特徴とする放熱部材。
6 6 . —方の面に発熱体が接続されるベース板と、 このベース板の他 方の面に立設接合された複数枚のフィンとを備え、
前記ベース板の前記他方の面に前記各フィンをつなぐ凸条が形成され ていることを特徴とする放熱部材。
6 7 . 前記凸条が前記各フイ ンを全てつなぐことを特徴とする請求の 範囲第 6 6項に記載の放熱部材。
6 8 · 前記凸条が前記各フィンに直交する向きに形成されているこ と を特徴とする請求の範囲第 6 6項に記載の放熱部材。
6 9 . 前記凸条が前記各フィンに直交する向きに形成されているこ と を特徴とする請求の範囲第 6 7項に記載の放熱部材。
7 0 . 前記凸条の幅が前記ベース板の本体から遠ざかるほど小さ く な ることを特徴とする請求の範囲第 6 6項に記載の放熱部材。
7 1 . 前記凸条の幅が前記ベース板の本体から遠ざかるほど小さ く な ることを特徴とする請求の範囲第 6 7項に記載の放熱部材。
フ 2 . 前記凸条の幅が前記ベース板の本体から遠ざかるほど小さ く な ることを特徴とする請求の範囲第 6 8項に記載の放熱部材。
7 3 . 前記凸条の幅が前記ベース板の本体から遠ざかるほど小さ く な ることを特徴とする請求の範囲第 6 9項に記載の放熱部材。
7 4 . 前記凸条の断面形が一定で、 そのアスペク ト比が 5 〜 3 0であ ることを特徴とする請求の範囲第 6 6項に記載の放熱部材。
7 5. 前記凸条の断面形が一定で、 そのアスペク ト比が 5〜 3 0であ るこ とを特徴とする請求の範囲第 6 7項に記載の放熱部材。
7 6. 前記凸条の断面形が一定で、 そのアスペク ト比が 5〜 3 0であ ることを特徴とする請求の範囲第 6 8項に記載の放熱部材。
7 7. 前記凸条の断面形が一定で、 そのアスペク ト比が 5 ~ 3 0であ るこ とを特徴とする請求の範囲第 6 9項に記載の放熱部材。
7 8. 前記凸条の断面形が一定で、 そのアスペク ト比が 5〜 3 0であ るこ とを特徴とする請求の範囲第 7 0項に記載の放熱部材。
7 9. 前記凸条の断面形が一定で、 そのアスペク ト比が 5〜 3 0であ るこ とを特徴とする請求の範囲第 7 1項に記載の放熱部材。
8 0. 前記凸条の断面形が一定で、 そのアスペク ト比が 5〜 3 0であ るこ とを特徴とする請求の範囲第 7 2項に記載の放熱部材。
8 1. 前記凸条の断面形が一定で、 そのァスぺク ト比が 5〜 3 0であ るこ とを特徴とする請求の範囲第 7 3項に記載の放熱部材。
8 2. 前記凸条の断面形が一定で、 全高さに対する当該凸条の厚さの 比が 0. 1〜 0. 3であるこ とを特徴とする請求の範囲第 6 6項に記載 の放熱部材。
8 3. 前記凸条の断面形が一定で、 全高さに対する当該凸条の厚さの 比が 0. 1〜 0. 3であることを特徴とする請求の範囲第 6 7項に記载 の放熱部材。
8 4. 前記凸条の断面形が一定で、 全高さに対する当該凸条の厚さの 比が 0. 1〜 0. 3であることを特徴とする請求の範 ffl第 6 8項に記載 の放熱部材。
8 5. 前記凸条の断面形が一定で、 全高さに対する当該凸条の厚さの 比が 0. 1〜 0. 3であることを特徴とする請求の範囲第 6 9項に記载 の放熱部材。
8 6. 前記凸条の断面形が一定で、 全高さに対する当該凸条の厚さの 比が 0. 1〜 0. 3であることを特徴とする請求の範囲第 7 0項に記載 の放熱部材。
8 7. 前記凸条の断面形が一定で、 全高さに対する当該凸条の厚さの 比が 0. 1〜 0. 3であることを特徴とする請求の範囲第 7 1項に記载 の放熱部材。
8 8. 前記凸条の断面形が一定で、 全高さに対する当該凸条の厚さの 比が 0. 1 ~ 0. 3であることを特徴とする請求の範囲第 7 2項に記载 の放熱部材。
8 9. 前記凸条の断面形が一定で、 全高さに対する当該凸条の厚さの 比が 0. 1〜 0. 3であることを特徴とする請求の範囲第 7 3項に記載 の放熱部材。
9 0. 前記凸条の断面積が前記発熱体に接続される位置から長さ方向 に向かって小さく なることを特徴とする請求の範囲第 6 6項に記載の放 熱部材。
9 1 . 前記凸条の断面積が前記発熱体に接続される位置から長さ方向 に向かって小さく なることを特徴とする請求の範囲第 6 7項に記載の放 熱部材。
9 2. 前記凸条の断面積が前記発熱体に接続される位置から長さ方向 に向かって小さく なることを特徴とする請求の範囲第 6 8項に記載の放 熱部材。
9 3. 前記凸条の断面積が前記発熱体に接続される位置から長さ方向 に向かって小さ く なることを特徴とする請求の範囲第 6 9項に記載の放 熱部材。
9 4. 前記凸条の断面積が前記発熱体に接続される位置から長さ方向 に向かって小さく なることを特徴とする請求の範囲第 7 0項に記載の放 熱部材。
9 5 . 前記凸条の断面積が前記発熱体に接続される位置から長さ方向 に向かって小さ く なることを特徴とする請求の範囲第 7 1項に記載の放 熱部材。
9 6 . 前記凸条の断面積が前記発熱体に接続される位置から長さ方向 に向かって小さく なることを特徴とする請求の範囲第 7 2項に記載の放 熱部材。
9 7 . 前記凸条の断面積が前記発熱体に接続される位置から長さ方向 に向かって小さ く なることを特徴とする請求の範囲第 7 3項に記載の放 熱部材。
9 8 . 前記ベース板が銅からなり 、 前記フィ ンがアルミニウムからな ることを特徴とする請求の範囲第 6 6項に記載の放熱部材。
9 9 . 前記ベース板が銅からなり、 前記フィ ンがアルミニウムからな ることを特徴とする請求の範囲第 6 7項に記載の放熱部材。
1 0 0 . 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 6 8項に記載の放熱部材。
1 0 1 . 前記ベース板が銅からなり、 前記フィ ンがアルミ二ゥムから なるこ とを特徴とする請求の範囲第 6 9項に記載の放熱部材。
1 0 2 . 前記ベース板が銅からなり、 前記フィンがアルミニウムから なるこ とを特徴とする請求の範囲第 7 0項に記載の放熱部材。
1 0 3 . 前記ベース板が銅からなり、 前記フィンがアルミニウムから なるこ とを特徴とする請求の範囲第 7 1項に記載の放熱部材。
1 0 4 . 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 7 2項に記載の放熱部材。
1 0 5 . 前記ベース板が銅からなり 、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 7 3項に記載の放熱部材。
1 0 6. 前記ベース板が銅からなり、 前記フインがアルミニウムから なることを特徴とする請求の範囲第 7' 4項に記載の放熱部材。
1 0 7. 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 7 5項に記載の放熱部材。
1 0 8. 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 7 6項に記載の放熱部材。
1 0 9. 前記ベース板が銅からなり、 前記フインがアルミニウムから なることを特徴とする請求の範囲第 7 7項に記載の放熱部材。
1 1 0. 前記ベース板が銅からなり、 前記フィンがアルミニウムから なることを特徴 する請求の範囲第 7 8項に記載の放熱部材。
1 1 1 . 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 7 9項に記載の放熱部材。
1 1 2. 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 8 0項に記載の放熱部材。
1 1 3. 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 8 1項に記載の放熱部材。
1 1 4. 前記ベース板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 8 2項に記載の放熱部材。
1 1 5. 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 8 3項に記載の放熱部材。
1 1 6. 前記ベース板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 8 4項に記載の放熱部材。
1 1 7. 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 8 5項に記載の放熱部材。
1 1 8. 前記ベース板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 8 6項に記載の放熱部材。
1 1 9. 前記ペース板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 8 7項に記載の放熱部材。
1 2 0. 前記ベース板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 8 8項に記載の放熱部材。
1 2 1 . 前記ベース板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 8 9項に記載の放熱部材。
1 2 2. 前記ベース板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 9 0項に記載の放熱部材。
1 2 3. 前記ベース板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 9 1項に記載の放熱部材。
1 2 4. 前記ベース板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 9 2項に記載の放熱部材。
1 2 5. 前記べ一ス板が銅からなり、 前記フィンがアルミニウムから なることを特徴とする請求の範囲第 9 3項に記載の放熱部材。
1 2 6. 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 9 4項に記載の放熱部材。
1 2 7. 前記ベース板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 9 5項に記載の放熱部材。
1 2 8. 前記べ一ス板が銅からなり、 前記フィ ンがアルミニウムから なることを特徴とする請求の範囲第 9 6項に記載の放熱部材。
1 2 9. 前記ベース板が銅からなり、 前記フインがアルミニウムから なることを特徴とする請求の範囲第 9 '7項に記載の放熱部材。
1 3 0. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 6 6項に記載の 放熱部材。
1 3 1 . 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されているこ とを特徴とする請求の範囲第 6 7項に記載の 放熱部材。
1 3 2. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されているこ とを特徴とする請求の範囲第 6 8項に記載の 放熱部材。
1 3 3. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されているこ とを特徴とする請求の範囲第 6 9項に記載の 放熱部材。
1 3 4. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されているこ とを特徴とする請求の範囲第 7 0項に記載の 放熱部材。
1 3 5. 前記フイ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されているこ とを特徴とする請求の範囲第 7 1項に記載の 放熱部材。
1 3 6. 前記フイ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている こ とを特徴とする請求'の範囲第 7 2項に記載の 放熱部材。
1 3 7. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されているこ とを特徴とする請求の範囲第 7 3項に記載の 放熱部材。
1 3 8. 前記フイ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されているこ とを特徴とする請求の範囲第 7 4項に記載の 放熱部材。
1 3 9. 前記フイ ンが、 前記ベース板に平行な基端部で連結されて二 枚- -対で形成されているこ とを特徴とする請求の範囲第 7 5項に記載の 放熱部材。
1 4 0 . 前記フイ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 7 6項に記載の 放熱部材。
1 1 . 前記フイ ンが. 前記ベース板に平行な基端部で違結されて二 枚一対で形成されている とを特徴とする請求の範囲第 7 7項に記載の 放熱部材。
1 4 2 . 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 7 8項に記載の 放熱部材。
1 3 . 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 7 9項に記載の 放熱部材。
1 4 4 . 前記フィ ンが 前記ベース板に平行な ¾端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 8 0項に記載の 放熱部材。
1 5 . 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 8 1項に記載の 放熱部材。
1 6 . 前記フィンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徵とする請求の範囲第 8 2項に記載の 放熱部材。
1 4 7 . 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 8 3項に記載の 放熱部材。
1 4 8 . 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 8 4項に記載の 放熱部材。
1 4 9. 前記フイ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 8 5項に記載の 放熱部材。
1 5 0. 前記フィ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 8 6項に記載の 放熱部材。
1 5 1 . 前記フイ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 8 7項に記載の 放熱部材。
1 5 2. 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 8 8項に記載の 放熱部材。
1 5 3. 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 8 9項に記載の 放熱部材。
1 5 4. 前記フィンが 前記べ一ス板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 9 0項に記載の 放熱部材。
1 5 5. 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 9 1項に記載の 放熱部材。
1 5 6. 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 9 2項に記載の 放熱部材。
1 5 7. 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 9 3項に記載の 放熱部材。
1 5 8. 前記フィ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 9 4項に記載の 放熱部材。
1 5 9. 前記フイ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 9 5項に記載の 放熱部材。
1 6 0. 前記フイ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 9 6項に記載の 放熱部材。
1 6 1 . 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 9 7項に記載の 放熱部材。
1 6 2. 前記フィ ンが 前記ベース板に平行な基端部で連結されてニ 枚一対で形成されている .とを特徴とする請求の範囲第 9 8項に記載の 放熱部材。
1 6 3. 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 9 9項に記載の · 放熱部材。
1 6 4. 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徵とする請求の範囲第 1 0 0項に記載 の放熱部材。
1 6 5. 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 0 1項に記載 の放熱部材。
1 6 6. 前記フイ ンが、 前記ベース板に平行な基端部で連結されて二 牧一対で形成されている とを特徴とする請求の範囲第 1 0 2項に記載 の放熱部材。
1 6 7. 前記フィ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 0 3項に記载 の放熱部材。
1 6 8. 前記フイ ンが. 前記べ一ス板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 0 4項に記載 の放熱部材。
1 6 9. 前記フィ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 1 0 5項に記載 の放熱部材。
1 7 0. 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 0 6項に記載 の放熱部材。
1 7 1 . 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 1 0 7項に記載 の放熱部材。
1 7 2. 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 1 0 8項に記載 の放熱部材。
1 7 3. 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 1 0 9項に記載 の放熱部材。 .
1 7 4. 前記フィンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 1 1 0項に記载 の放熱部材。
1 7 5. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 1 1項に記載 の放熱部材。
1 7 6. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 1 2項に記載 の放熱部材。
1 7 7. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 1 3項に記载 の放熱部材。
1 7 8. 前記フィ ンが、 前記ベース板に平行な基端部で違結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 1 4項に記載 の放熱部材。
1 7 9. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 1 5項に記載 の放熱部材。
1 8 0. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 1 6項に記載 の放熱部材。
1 8 1 . 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 1 7項に記載 の放熱部材。
1 8 2. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 1 8項に記載 の放熱部材。
1 8 3. 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 1 9項に記载 の放熱部材。
1 8 4. 前記フイ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 2 0項に記載 の放熱部材。
1 8 5. 前記フイ ンが. 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている 'とを特徴とする請求の範囲第 1 2 1項に記载 の放熱部材。
1 8 6. 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 2 2項に記載 の放熱部材。
1 8 7. 前記フィ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 2 3項に記载 の放熱部材。
1 8 8. 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 2 4項に記載 の放熱部材。
1 8 9. 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている .とを特徴とする請求の範囲第 1 2 5項に記載 の放熱部材。
1 9 0. 前記フイ ンが 前記ベース板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 2 6項に記載 の放熱部材。
1 9 1 . 前記フィ ンが 前記べ一ス板に平行な基端部で連結されて二 枚一対で形成されている とを特徴とする請求の範囲第 1 2 7項に記載 の放熱部材,
1 9 2 . 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 2 8項に記載 の放熱部材。
1 9 3 . 前記フィ ンが、 前記ベース板に平行な基端部で連結されて二 枚一対で形成されていることを特徴とする請求の範囲第 1 2 9項に記載 の放熱部材。
1 9 4 . 請求の範囲第 6 6乃至第 1 9 3項のいずれか一項に記載の放 熱部材にファンを付設してなることを特徴とするヒー トシンク。
1 9 5 . 前記ファンが前記各フィンに対して側方から風を送ることを 特徴とする請求の範囲第 1 9 4項に記載のヒー トシンク。
1 9 6 . —方の面に凸条が形成された銅ベース板の当該一方の面に、 当該凸条をまたぐ向きで複数枚のアルミニウムフィンを立設配置し、 前記銅ベース板の他方の面から、 当該銅ベース板と前記各アルミニゥ ムフィ ンとの境界面を加熱及び加圧するこ とによ り 、 当該銅ベース板と 前記各アルミニウムフィ ンと を接合する、
ことを特徴とする放熱部材の製造方法。
1 9 7 . 前記加熱及び加圧は、 円周方向に回転する円板状の接合ツー ルの周面を、 前記銅ベース板の前記他方の面に押し当てつつその表面に 沿って移動させることにより行われる、
ことを特徴とする請求の範囲第 1 9 6項に記載の放熱部材の製造方法。
PCT/JP2003/010064 2002-08-29 2003-08-07 部材接合方法、金属部材接合方法並びに放熱部材及びその製造方法、その製造用冶具並びにヒートシンク WO2004020138A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003254859A AU2003254859A1 (en) 2002-08-29 2003-08-07 Method of joining members, method of joining metallic members, radiation member, process for manufacturing the same, jig for the manufacturing and heat sink

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002-249983 2002-08-29
JP2002249983A JP2004088014A (ja) 2002-08-29 2002-08-29 ヒートシンク
JP2003150205A JP4222108B2 (ja) 2003-05-28 2003-05-28 金属部材接合方法
JP2003-150205 2003-05-28
JP2003-162488 2003-06-06
JP2003162488A JP4211499B2 (ja) 2003-06-06 2003-06-06 金属部材接合方法
JP2003-203752 2003-07-30
JP2003203752A JP4337441B2 (ja) 2003-07-30 2003-07-30 放熱部材及びその製造方法並びにヒートシンク

Publications (1)

Publication Number Publication Date
WO2004020138A1 true WO2004020138A1 (ja) 2004-03-11

Family

ID=31982500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010064 WO2004020138A1 (ja) 2002-08-29 2003-08-07 部材接合方法、金属部材接合方法並びに放熱部材及びその製造方法、その製造用冶具並びにヒートシンク

Country Status (4)

Country Link
CN (1) CN100436028C (ja)
AU (1) AU2003254859A1 (ja)
TW (5) TW200631714A (ja)
WO (1) WO2004020138A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019051563A (ja) * 2017-09-13 2019-04-04 株式会社マキタ 電動工具
US11219957B2 (en) 2018-06-20 2022-01-11 Makita Corporation Controller and power tool including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022507A1 (ja) * 2007-08-10 2009-02-19 Nippon Light Metal Company, Ltd. 接合方法及び接合構造物の製造方法
WO2009078126A1 (ja) * 2007-12-14 2009-06-25 Akim Corporation 真空内溶接処理装置
CN102056700B (zh) * 2008-06-27 2013-08-14 日本轻金属株式会社 导热板的制造方法及导热板
JP5531573B2 (ja) * 2008-12-09 2014-06-25 日本軽金属株式会社 樹脂部材と金属部材の接合方法、液冷ジャケットの製造方法及び液冷ジャケット
KR101278290B1 (ko) * 2011-10-20 2013-06-21 포항공과대학교 산학협력단 압축비틀림을 이용한 나선형 층상복합재료 제조 방법
CN104332724B (zh) * 2014-10-24 2016-08-24 江苏万奇电器集团有限公司 一种铜铝对接加叠接导电排
JP7024573B2 (ja) * 2018-04-20 2022-02-24 日本軽金属株式会社 伝熱板の製造方法及び摩擦攪拌接合方法
DE102019134024A1 (de) * 2019-12-11 2021-06-17 Eckold Gmbh & Co. Kg Verfahren zum Fügen zweier Bleche mit einer variablen Gesamtdicke
CN113709977B (zh) * 2020-05-22 2022-11-11 深南电路股份有限公司 一种电路板的加工方法及电路板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975133A (en) * 1981-11-28 1990-12-04 Licentia Patent-Verwaltungs-Gmbh Apparatus for welding components together with the use of ultrasound
JP2003142639A (ja) * 2001-11-07 2003-05-16 Nippon Light Metal Co Ltd 放熱器およびその製造方法
JP2003230968A (ja) * 2002-02-07 2003-08-19 Nippon Light Metal Co Ltd 金属部材接合方法並びに放熱部材及びその製造方法
JP2003275875A (ja) * 2002-03-19 2003-09-30 Nippon Light Metal Co Ltd 部材接合方法、放熱器の製造方法並びに放熱器及び放熱器製造用冶具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203595A (ja) * 1996-01-26 1997-08-05 Sansha Electric Mfg Co Ltd 放熱装置
CN2370378Y (zh) * 1999-04-08 2000-03-22 富准精密工业(深圳)有限公司 散热装置的鳍片固定夹具
CN1095413C (zh) * 2000-06-12 2002-12-04 富准精密工业(深圳)有限公司 散热器制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975133A (en) * 1981-11-28 1990-12-04 Licentia Patent-Verwaltungs-Gmbh Apparatus for welding components together with the use of ultrasound
JP2003142639A (ja) * 2001-11-07 2003-05-16 Nippon Light Metal Co Ltd 放熱器およびその製造方法
JP2003230968A (ja) * 2002-02-07 2003-08-19 Nippon Light Metal Co Ltd 金属部材接合方法並びに放熱部材及びその製造方法
JP2003275875A (ja) * 2002-03-19 2003-09-30 Nippon Light Metal Co Ltd 部材接合方法、放熱器の製造方法並びに放熱器及び放熱器製造用冶具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019051563A (ja) * 2017-09-13 2019-04-04 株式会社マキタ 電動工具
US11219957B2 (en) 2018-06-20 2022-01-11 Makita Corporation Controller and power tool including the same

Also Published As

Publication number Publication date
CN100436028C (zh) 2008-11-26
TWI270429B (en) 2007-01-11
TW200631712A (en) 2006-09-16
TW200631711A (en) 2006-09-16
TWI259117B (en) 2006-08-01
TW200631714A (en) 2006-09-16
TW200405840A (en) 2004-04-16
TW200631713A (en) 2006-09-16
CN1678425A (zh) 2005-10-05
AU2003254859A1 (en) 2004-03-19
TWI268190B (en) 2006-12-11

Similar Documents

Publication Publication Date Title
US6637109B2 (en) Method for manufacturing a heat sink
JP4888721B2 (ja) 板状のフィンを有する放熱器の製造方法
WO2004020138A1 (ja) 部材接合方法、金属部材接合方法並びに放熱部材及びその製造方法、その製造用冶具並びにヒートシンク
US20130175019A1 (en) Heat sink and method for manufacturing
JP3336277B2 (ja) ヒートシンク及びその製造方法
JP4516410B2 (ja) 積層体の接合方法
US7950447B2 (en) Heat dissipation module
JP4211499B2 (ja) 金属部材接合方法
JP4134580B2 (ja) 部材接合方法、放熱器の製造方法及び放熱器製造用冶具
JP2011230954A (ja) セラミック部材とフィン付き放熱部材との接合体の製造方法
JP2002184922A (ja) 複合型放熱部材
JP4618327B2 (ja) 金属部材接合方法及び放熱器の製造方法
JP3314028B2 (ja) アルミニウム製放熱装置及びその製造方法
JP2004088014A (ja) ヒートシンク
JP2006320931A (ja) ろう付け方法およびろう付け製品
US20050103470A1 (en) Process for joining members of a heat transfer assembly and assembly formed thereby
JP4128490B2 (ja) 剛性基板プレートの放熱性を高める方法
JP4222108B2 (ja) 金属部材接合方法
JP4134569B2 (ja) 放熱部材及びその製造方法
JP6264822B2 (ja) ヒートシンク付パワーモジュール用基板及びその製造方法
JPH1071462A (ja) 放熱フィンおよびその製造方法
JP4337441B2 (ja) 放熱部材及びその製造方法並びにヒートシンク
JP5042702B2 (ja) プレートフィン型放熱器の製造方法
JP3449285B2 (ja) 熱歪吸収体およびそれを用いたパワー半導体装置
JP3072340U (ja) ヒートシンクのフィンとベースの溶接加工モジュール

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038200600

Country of ref document: CN

122 Ep: pct application non-entry in european phase