WO2004014637A1 - Vorrichtung und verfahren zum herstellen eines dreidimensionalen objekts mittels eines generativen fertigungsverfahrens - Google Patents
Vorrichtung und verfahren zum herstellen eines dreidimensionalen objekts mittels eines generativen fertigungsverfahrens Download PDFInfo
- Publication number
- WO2004014637A1 WO2004014637A1 PCT/EP2003/008520 EP0308520W WO2004014637A1 WO 2004014637 A1 WO2004014637 A1 WO 2004014637A1 EP 0308520 W EP0308520 W EP 0308520W WO 2004014637 A1 WO2004014637 A1 WO 2004014637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- applied layer
- carrier
- material application
- previously applied
- application device
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/004—Filling molds with powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/30—Platforms or substrates
- B22F12/37—Rotatable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/44—Radiation means characterised by the configuration of the radiation means
- B22F12/45—Two or more
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/50—Means for feeding of material, e.g. heads
- B22F12/55—Two or more means for feeding material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to an apparatus and a method for producing a three-dimensional object by means of a generative production method.
- the three-dimensional object is produced in layers by applying layers of a construction material and connecting them at the points corresponding to the cross section of the object.
- a device for the layer-by-layer production of a three-dimensional object by selective laser sintering is known for example from EP 0 734 842.
- a first layer of a powdery material is applied to a lowerable carrier and irradiated at the locations corresponding to the object, so that the material sinters there.
- the carrier is then lowered and a second layer is applied to this first layer and in turn selectively sintered, which is bonded to the first layer. This creates the object in layers.
- the application of layers of a building material does not mean an independent flow of the material into the space between the container bottom and the carrier, as is described, for example, in DE 199 57 370.
- the object of the present invention is to increase the production speed of a device for the layer-by-layer production of three-dimensional objects and the productivity of an associated method. This object is achieved by the device characterized in claim 1 and the method characterized in claim 17.
- Fig. 1 is a side view of a device according to a first embodiment of the present invention.
- FIG. 2 shows a top view of a device according to a second embodiment of the present invention
- FIG. 3 shows a perspective illustration of a device according to a second embodiment of the invention
- FIG. 4 shows a top view of a device according to a third embodiment of the present invention.
- FIG. 5 shows a perspective illustration of a device according to a third embodiment of the invention.
- FIG. 1 shows a cross-sectional view of a device for the layer-by-layer production of three-dimensional objects according to a first embodiment of the invention.
- the device does not necessarily have a construction area 2 shaped cross section. This is occupied by a construction container 4 which is open at the top and has an outer boundary surface 17 and an inner boundary surface 16.
- a construction platform 6 serves as the lower limit of the construction container 4 and is designed in such a way that it completely fills the area between the inner boundary surface 16 and the outer boundary surface 17.
- the construction platform 6 has on its inner edge a seal 19 for sealing the gap between the inner boundary surface 16 and the construction platform 6.
- the construction platform 6 has on its outer edge a seal 18 for sealing the gap between the outer boundary surface 17 and the construction platform 6.
- the provision of an inner boundary surface 16 is not absolutely necessary. If there is only an outer boundary surface 17, the building container 4 has no recess in its center and the building platform 6 has no hole in the middle.
- the construction platform 6 is connected to a vertical drive 15, which enables the construction platform 6 to move up and down in the vertical direction.
- the entire building container 4 is connected to a drive 20 which sets the building container 4 in motion about an axis of rotation 3 coinciding with the axis of symmetry of the building container 4.
- the connection between the construction container 4 and the drive 20 is designed so that it can be released immediately below the construction container 4, so that the construction container 4 can be removed from the construction area 2.
- a material application device 7 for applying the material to be applied to the building platform. arranged terials. This extends in the radial direction over the maximum radial extent of the building container.
- a solidification device in the form of a laser 21 and a deflection unit 22 is arranged above the material application device 7.
- the deflection unit is suitable for directing the laser beam to any location within a consolidation area 11.
- the deflection unit is preferably an xy scanner.
- the consolidation area 11 is a partial area that is stationary relative to the position of the material application devices within the construction area 2 and is located at the level of the layer deposited by the material application devices.
- the laser 21, the deflection unit 22, the vertical drive 15 and the drive 20 are connected to a controller 23. 1 shows a formed object 24, which is surrounded by non-solidified material 25.
- the building platform 6 is first positioned so that its top surface is flush with the upper edge of the building container 4. Thereafter, the controller 23 starts the movement of the building container 4 about the axis of rotation 3 at a uniform speed by the drive 20, the material application device 7 applying material to be solidified to the building platform 6. Then the exposure process is started by the laser. This solidifies the material at selective locations within a fixed solidification area 11, under which the building container 4 moves. The material is applied by the material application device 7 in such a way that the applied layer when it enters the laser radiation covered hardening area 11 has a predetermined thickness d and can take place automatically without the involvement of the controller.
- controller 23 controls the vertical drive 15 in such a way that the building platform is lowered by the amount of the layer thickness d during a full revolution of the building container. During each revolution of the building container 4, the material applied at points outside the solidification area 11 is now solidified in the solidification area 11.
- the advantage of this embodiment is that during the solidification of the applied material in one surface area of the object (s) to be manufactured, new material is applied in other surface areas of the object (s) to be manufactured.
- the parallelization of material application and consolidation increases productivity when manufacturing objects. There are no idle times during which the material is dosed, stored and tempered and no solidification can take place.
- the relative movement of the application device 7 to the building container 4 is always only in one direction. Among other things, this results in a higher temperature constancy, which leads to a number of advantages, e.g. a higher process reliability and a higher precision as well as the distortion and tension free of the components.
- the size and the number of objects to be manufactured are not limited by the area covered by the deflection unit. The device is therefore suitable for the series production of large numbers of components with the same properties
- Second embodiment A second embodiment differs from the first embodiment in that a plurality of consolidation devices 1 and a plurality of material application devices 7 are present. Each consolidation device is assigned to a material application device 7 and a consolidation area within the construction area 2. 2 shows an example of a plan view of a device with four solidification areas 11, 12, 13, 14, which are each present between the material application devices 7 and 8 or 8 and 9 or 9 and 10 or 10 and 7.
- the operation of a device according to the second embodiment of the invention differs from the operation of a device according to the first embodiment in that the applied layer of material is solidified in all areas of consolidation at the same time.
- the material applied by the material application device 7 is solidified in the consolidation area 11
- the material applied by the material application device 8 is solidified in the consolidation area 12
- the material applied by the material application device 9 is solidified in the consolidation area 13
- the material applied by the material application device 10 is solidified in the solidification area 14.
- Each of the material application devices deposits the material with a layer thickness d.
- n denotes the number of consolidation areas present
- FIG. 3 shows only one of the consolidation devices 1.
- a first modification of the device according to the first or second embodiment has a drive 20 which is able to change the circulating speed in stages or continuously during the circulation of the building container.
- the rotational speed of the building container about the axis of rotation 3 is increased if material of an applied layer that is not to be solidified passes through the hardening area 11.
- the production speed can thereby be increased since the time period during which no building material is solidified is shortened.
- the circulating speed of the building container is preferably varied as a function of the expansion of the partial areas of the applied layer to be solidified. The result of this is that the current rotational speed is determined by the expansion of the largest partial area of the applied layer to be selectively solidified within one of the hardening areas. If this maximum possible circulation speed is always set as the circulation speed of the building container, this leads to an increase in the production speed. Modification 2 of the first and second embodiments
- the mode of operation is changed such that the thickness d of the layer deposited by the material application devices is varied.
- the lowering speed of the building platform 6 is adapted to the thickness d 'of the layer deposited in a partial area of the building area 2.
- the layer thickness can thus be adapted to the local geometric requirements of the part to be built. If, for example, an increased detail resolution is required locally, one or more layers with a smaller thickness can be applied. The building process can thus be optimized.
- the drive 20 is not connected to the building container 4 but to the consolidation devices 1 and the material application devices 7, 8, 9, 10.
- the building container 4 therefore maintains its position, while the drive 20 allows the consolidation devices 1 and the material application devices 7, 8, 9, 10 to move with respect to the building container 4 about the axis of rotation 3. It is of course also conceivable that both the consolidation devices 1 and the material application devices 7, 8, 9, 10 and the construction container 4 execute a movement against one another.
- Modification 4 of the first and second embodiments In the case of a fourth modification of the first and second embodiment, the building platform cannot be lowered continuously, but in stages, ie the lowering takes place, for example, after solidification has been completed. This has the advantage that the focusing of the laser beam on the layer to be solidified is simplified since the layers applied are thereby parallel to the horizontal plane.
- Figures 4 and 5 show a third embodiment of the invention.
- the third embodiment differs from the second embodiment in that the building container 4 is replaced by a plurality of building containers.
- the construction area is exemplarily occupied by four construction containers 4a, 4b, 4c, 4d.
- Each of the construction containers 4a or 4b or 4c or 4d has a construction platform 6a or 6b or 6c or 6d and has an outer boundary surface 17, an inner boundary surface 16 and lateral boundary surfaces 26.
- a construction platform 6a or 6b or 6c or 6d serves as the lower boundary of the building container 4a or 4b or 4c or 4d and extends between the outer boundary surface 17, the inner boundary surface 16 and the lateral boundary surfaces 26.
- the gap between the construction platform and the boundary surfaces are sealed by a seal analogous to the previous embodiments.
- the horizontal cross-sectional areas of the individual building containers can have any shape and do not necessarily have to be identical.
- a plurality of material application devices 7, 8, 9, 10 for applying building material to the building platforms 4a, 4b, 4c, 4d are arranged about the axis of rotation 3 above the building area 2.
- the number of material application devices preferably corresponds to the number of building containers.
- a plurality of deflection units 22 and / or lasers 21 are arranged above the material application devices 7, 8, 9, 10. Each of the deflection units is suitable for directing the laser beam to any location within a solidification area assigned to the deflection unit.
- Each deflection unit is assigned to a hardening area within the construction area 2.
- the number of building containers preferably corresponds to the number of consolidation areas.
- 4 shows an example of a plan view of a device with four solidification areas 11, 12, 13, 14, which are each present between the material application devices 7 and 8 or 8 and 9 or 9 and 10 or 10 and 7.
- the construction platform 6a or 6b or 6c or 6d is each connected to a vertical drive 15a or 15b or 15c or 15d, not shown in the figures, which enables the construction platform to move up and down in the vertical direction.
- a vertical drive 15a or 15b or 15c or 15d not shown in the figures, which enables the construction platform to move up and down in the vertical direction.
- the connection between the vertical drive and the construction container is detachable immediately below the construction container, so that each of the construction containers can be removed from the construction area 2 independently of the other construction containers.
- a single vertical drive 15 can also be present, to which all construction platforms 6a, 6b, 6c, 6d are connected.
- All building containers 4a, 4b, 4c, 4d are connected to a drive 20, which can set the building containers 4a, 4b, 4c, 4d in synchronism with each other in a movement around the axis of rotation 3.
- the lasers 21, the deflection units 22, the vertical drives 15a, 15b, 15c, 15d, and the drive 20 are connected to a controller 23.
- the controller 20 causes the drive 20 to move the building containers 4a, 4b, 4c, 4d synchronously at a constant speed around the axis of rotation 3.
- the material application devices 7, 8, 9, 10 apply material to be solidified to the construction platforms 6a, 6b, 6c and 6d.
- the applied material layer is solidified in all areas of consolidation at the same time.
- the material applied by the material application device 7 is solidified in the consolidation area 11
- the material applied by the material application device 8 is solidified in the consolidation area 12
- the material applied by the material application device 9 is solidified in the consolidation area 13
- the material applied by the material application device 10 is solidified in the solidification area 14.
- Each of the material application devices deposits the material with a layer thickness d.
- the drives 15a, 15b, 15c, 15d are controlled in such a way that each of the construction platforms 4a, 4b, 4c, 4d is lowered four times the layer thickness 4 xd during one revolution of the associated construction container.
- n denotes the number of consolidation areas present, then the respective construction platforms must be reduced by n times the layer thickness nxd during one revolution of the associated construction container.
- the advantage of the third embodiment results from increased flexibility.
- the device can be used with only a subset of the building containers, even with only one building container operate.
- the construction platforms cannot be lowered continuously, but in stages, i.e. the lowering takes place, for example, after solidification is complete in all hardening areas.
- This has the advantage that the focusing of the laser beam on the layer to be solidified is simplified since the layers applied are thereby parallel to the horizontal plane.
- the layer thickness of the applied layer in the different building containers can be selected differently. This goes hand in hand with a different lowering speed of the building platforms in the different Bau josern. This allows objects with different layer thicknesses to be produced in parallel.
- the building containers do not execute a rotational movement with respect to an axis of rotation 3. Instead, a guide drive 27 guides the building containers synchronously around the axis of rotation 3 only on a closed, not necessarily circular path. If the device has n material application devices and n consolidation areas, the web preferably corresponds to the edge of an n-corner. Optionally, each building container executes an additional rotary movement on its path around the axis of rotation 3 about an axis of rotation 3 ′ passing through it and parallel to the axis of rotation 3.
- Modification 5 of the third embodiment in a fifth modification of the third embodiment, analogously to modification 1 described above, the device has a drive 20 which is able to change the rotational speed in stages or continuously during the rotation of the building container.
- the current rotational speed can be adapted to the extent of the largest partial area of the applied layer to be selectively solidified within one of the hardening regions. If this maximum possible rotational speed is always set as the rotational speed of the building container, this leads to an increase in the production speed.
- the drive 20 is not with the building containers 4a, 4b, 4c, 4d, but with the deflection units 22 and the material application devices 7,
- the laser and the deflection unit instead of the laser and the deflection unit, other radiation sources, such as a Electron beam, microwave radiation, a lamp in connection with a mask, LEDs and other exposure arrays etc. or other solidification devices such as binder and adhesive applicators can be used.
- a Electron beam microwave radiation
- a lamp in connection with a mask LEDs and other exposure arrays etc.
- solidification devices such as binder and adhesive applicators
- the device and methods described above can also be used in various additive manufacturing processes, such as. B. selective laser sintering, especially of polymers, stereolithography, the LOM process (Laminated Object Manufacturing), the FDM process (fused model deposition) or three-dimensional printing (solidifying powdery material by means of an adhesive or by means of a chemical reaction, in particular by using multicomponent systems made of binder / hardener or by melting thermoplastic), in which the three-dimensional object is produced in layers by applying layers of a construction material and connecting them at the points corresponding to the cross section of the object.
- B. selective laser sintering especially of polymers, stereolithography, the LOM process (Laminated Object Manufacturing), the FDM process (fused model deposition) or three-dimensional printing (solidifying powdery material by means of an adhesive or by means of a chemical reaction, in particular by using multicomponent systems made of binder / hardener or by melting thermoplastic), in which the three-dimensional object is produced in layers by applying layers of a construction material and connecting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03784136A EP1526964A1 (de) | 2002-08-02 | 2003-07-31 | Vorrichtung und verfahren zum herstellen eines dreidimensionalen objekts mittels eines generativen fertigungsverfahrens |
US10/523,558 US8172562B2 (en) | 2002-08-02 | 2003-07-31 | Device and method for producing a three-dimensional object by means of a generative production method |
CN038209845A CN1678448B (zh) | 2002-08-02 | 2003-07-31 | 使用创成制造方法制造三维物体的设备和方法 |
JP2004526843A JP4790264B2 (ja) | 2002-08-02 | 2003-07-31 | 生成的製造法による三次元物体を製造するためのデバイスおよび方法 |
HK06101912.7A HK1081489A1 (en) | 2002-08-02 | 2006-02-15 | Device and method for manufacturing a three-dimensional object by a generative manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10235434A DE10235434A1 (de) | 2002-08-02 | 2002-08-02 | Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens |
DE10235434.0 | 2002-08-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004014637A1 true WO2004014637A1 (de) | 2004-02-19 |
Family
ID=30128673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/008520 WO2004014637A1 (de) | 2002-08-02 | 2003-07-31 | Vorrichtung und verfahren zum herstellen eines dreidimensionalen objekts mittels eines generativen fertigungsverfahrens |
Country Status (7)
Country | Link |
---|---|
US (1) | US8172562B2 (de) |
EP (1) | EP1526964A1 (de) |
JP (1) | JP4790264B2 (de) |
CN (1) | CN1678448B (de) |
DE (1) | DE10235434A1 (de) |
HK (1) | HK1081489A1 (de) |
WO (1) | WO2004014637A1 (de) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010015451A1 (de) | 2010-04-17 | 2011-10-20 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte |
US8359744B2 (en) | 2004-12-14 | 2013-01-29 | Sustainable Engine Sytems Ltd. | Heat exchanger |
EP2727709A1 (de) | 2012-10-31 | 2014-05-07 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Verfahren und Vorrichtung zum Herstellen von greifbaren Produkten durch schichtenweise Herstellung |
WO2015000755A1 (de) * | 2013-07-01 | 2015-01-08 | Max Schlatterer Gmbh & Co. Kg | Endloses transport- oder formatband und verfahren zur herstellung eines endlosen transport- oder formatbands |
WO2015163765A1 (en) | 2014-04-23 | 2015-10-29 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Apparatus and method for making tangible products by layerwise manufacturing |
WO2015167335A1 (en) | 2014-04-30 | 2015-11-05 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Method and production line for making tangible products by layerwise manufacturing |
EP2878409B1 (de) | 2013-11-27 | 2016-03-30 | SLM Solutions Group AG | Verfahren und Vorrichtung zur Steuerung eines Bestrahlungssystems |
US9649812B2 (en) | 2011-01-05 | 2017-05-16 | Voxeljet Ag | Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area |
US9656423B2 (en) | 2010-03-31 | 2017-05-23 | Voxeljet Ag | Device and method for producing three-dimensional models |
US9770867B2 (en) | 2010-12-29 | 2017-09-26 | Voxeljet Ag | Method and material system for building models in layers |
US9878494B2 (en) | 2011-08-31 | 2018-01-30 | Voxeljet Ag | Device for constructing models in layers |
US9943981B2 (en) | 2013-12-11 | 2018-04-17 | Voxeljet Ag | 3D infiltration method |
US9962885B2 (en) | 2010-04-14 | 2018-05-08 | Voxeljet Ag | Device for producing three-dimensional models |
US10052682B2 (en) | 2012-10-12 | 2018-08-21 | Voxeljet Ag | 3D multi-stage method |
US10059058B2 (en) | 2012-06-22 | 2018-08-28 | Voxeljet Ag | Device for building a multilayer structure with storage container or filling container movable along the dispensing container |
US10059062B2 (en) | 2012-05-25 | 2018-08-28 | Voxeljet Ag | Device for producing three-dimensional models with special building platforms and drive systems |
US10213831B2 (en) | 2012-11-25 | 2019-02-26 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US10220567B2 (en) | 2012-03-06 | 2019-03-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10220568B2 (en) | 2013-12-02 | 2019-03-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
FR3074446A1 (fr) * | 2017-12-05 | 2019-06-07 | Addup | Machine de fabrication additive comprenant une surface de reception de poudre mobile autour de la zone de fabrication |
US10343301B2 (en) | 2013-02-28 | 2019-07-09 | Voxeljet Ag | Process for producing a moulding using a water-soluble casting mould and material system for the production thereof |
US10442170B2 (en) | 2013-12-20 | 2019-10-15 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US10682809B2 (en) | 2014-12-22 | 2020-06-16 | Voxeljet Ag | Method and device for producing 3D moulded parts by means of a layer construction technique |
US10799989B2 (en) | 2007-10-23 | 2020-10-13 | Voxeljet Ag | Pre-assembled module for a device for the layer-wise production of patterns |
US10843404B2 (en) | 2015-05-20 | 2020-11-24 | Voxeljet Ag | Phenolic resin method |
US10882110B2 (en) | 2015-09-09 | 2021-01-05 | Voxeljet Ag | Method and device for applying fluids |
US10913207B2 (en) | 2014-05-26 | 2021-02-09 | Voxeljet Ag | 3D reverse printing method and device |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
US10987868B2 (en) | 2012-10-31 | 2021-04-27 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Production line for making tangible products by layerwise manufacturing |
US11077611B2 (en) | 2015-03-17 | 2021-08-03 | Voxeljet Ag | Method and device for producing 3D shaped articles with a double recoater |
US11097471B2 (en) | 2014-03-31 | 2021-08-24 | Voxeljet Ag | Method and device for 3D printing using temperature-controlled processing |
US11097469B2 (en) | 2012-10-15 | 2021-08-24 | Voxeljet Ag | Method and device for producing three-dimensional models with a temperature-controllable print head |
US11235518B2 (en) | 2015-12-01 | 2022-02-01 | Voxeljet Ag | Method and device for producing three-dimensional components with the aid of an overfeed sensor |
US11273605B2 (en) | 2016-11-15 | 2022-03-15 | Voxeljet Ag | Integrated print head maintenance station for powder bed-based 3D printing |
US11279087B2 (en) | 2017-07-21 | 2022-03-22 | Voxeljet Ag | Process and apparatus for producing 3D moldings comprising a spectrum converter |
US11541596B2 (en) | 2013-10-30 | 2023-01-03 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
US11820076B2 (en) | 2019-11-01 | 2023-11-21 | Voxeljet Ag | 3D printing process and molding produced by this process using lignosulfate |
US11826958B2 (en) | 2019-02-05 | 2023-11-28 | Voxeljet Ag | Exchangeable process unit |
US11890810B2 (en) | 2015-09-16 | 2024-02-06 | Voxeljet Ag | Device and method for producing three-dimensional shaped parts |
US11964434B2 (en) | 2018-08-16 | 2024-04-23 | Voxeljet Ag | Closure device, 3D printing device and method for producing 3D-molded parts |
US11975487B2 (en) | 2016-03-09 | 2024-05-07 | Voxeljet Ag | Method and device for producing 3D shaped parts using construction field tools |
US12134229B2 (en) | 2019-06-14 | 2024-11-05 | Voxeljet Ag | Method and apparatus for producing 3D moldings by means of a layering technique, and recoater with vacuum closure |
Families Citing this family (207)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2865960B1 (fr) * | 2004-02-06 | 2006-05-05 | Nicolas Marsac | Procede et machine pour realiser des objets en trois dimensions par depot de couches successives |
US20050278933A1 (en) * | 2004-06-22 | 2005-12-22 | The Boeing Company | Joint Design For Large SLS Details |
WO2006121797A2 (en) * | 2005-05-06 | 2006-11-16 | The Ex One Company | Solid free-form fabrication apparatuses and methods |
DE102005030067A1 (de) * | 2005-06-27 | 2006-12-28 | FHS Hochschule für Technik, Wirtschaft und soziale Arbeit St. Gallen | Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes durch ein generatives 3D-Verfahren |
US7424335B2 (en) * | 2005-07-13 | 2008-09-09 | Swift Lawrence W | Identification of terrestrial foliage location, type and height for scaled physical models |
US20070013724A1 (en) * | 2005-07-13 | 2007-01-18 | Swift Lawrence W | Building of scaled physical models |
US20070042327A1 (en) * | 2005-08-19 | 2007-02-22 | Swift Lawrence W | Determination of scaling for scaled physical architectural models |
US7951412B2 (en) * | 2006-06-07 | 2011-05-31 | Medicinelodge Inc. | Laser based metal deposition (LBMD) of antimicrobials to implant surfaces |
US20080015947A1 (en) * | 2006-07-12 | 2008-01-17 | Swift Lawrence W | Online ordering of architectural models |
DE102006055052A1 (de) * | 2006-11-22 | 2008-05-29 | Eos Gmbh Electro Optical Systems | Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts |
DE102006055056A1 (de) * | 2006-11-22 | 2008-05-29 | Eos Gmbh Electro Optical Systems | Beschichter zum Auftragen einer Schicht eines pulverförmigen Aufbaumaterials in einer Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts |
DE102007010624B4 (de) * | 2007-03-02 | 2009-04-30 | Deltamed Gmbh | Vorrichtung zur schichtweisen generativen Herstellung dreidimensionaler Formteile, Verfahren zur Herstellung dieser Formteile sowie diese Formteile |
GB0712027D0 (en) * | 2007-06-21 | 2007-08-01 | Materials Solutions | Rotating build plate |
EP2231352B1 (de) | 2008-01-03 | 2013-10-16 | Arcam Ab | Verfahren und vorrichtung zur herstellung von dreidimensionalen objekten |
JP4798185B2 (ja) | 2008-08-05 | 2011-10-19 | パナソニック電工株式会社 | 積層造形装置 |
GB0816308D0 (en) * | 2008-09-05 | 2008-10-15 | Mtt Technologies Ltd | Optical module |
JP5033117B2 (ja) * | 2008-12-25 | 2012-09-26 | 長野日本無線株式会社 | 三次元造形機 |
US9403323B2 (en) * | 2009-03-24 | 2016-08-02 | Basf Se | Printing method for producing thermomagnetic form bodies for heat exchangers |
JP5555769B2 (ja) | 2009-07-15 | 2014-07-23 | アーカム・アーベー | 三次元物体を製作するための方法および装置 |
DE102010020416A1 (de) * | 2010-05-12 | 2011-11-17 | Eos Gmbh Electro Optical Systems | Bauraumveränderungseinrichtung sowie eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts mit einer Bauraumveränderungseinrichtung |
DE102010041284A1 (de) | 2010-09-23 | 2012-03-29 | Siemens Aktiengesellschaft | Verfahren zum selektiven Lasersintern und für dieses Verfahren geeignete Anlage zum selektiven Lasersintern |
WO2012074986A1 (en) * | 2010-11-29 | 2012-06-07 | 3D Systems, Inc. | Stereolithography systems and methods using internal laser modulation |
JP5712306B2 (ja) | 2011-01-28 | 2015-05-07 | ア−カム アーベー | 三次元体の製造方法 |
EP2720852B1 (de) * | 2011-06-15 | 2017-11-29 | DSM IP Assets B.V. | Verfahren und vorrichtung zur herstellung eines substratbasierten zusatzes |
EP2786860B1 (de) * | 2011-06-28 | 2018-05-16 | Global Filtration Systems, A DBA of Gulf Filtration Systems Inc. | Vorrichtung zur Bildung dreidimensionaler Gegenstände mittels linearer Erstarrung |
IN2014DN03184A (de) | 2011-12-28 | 2015-05-22 | Arcam Ab | |
CN104023948B (zh) | 2011-12-28 | 2016-07-06 | 阿卡姆股份公司 | 用于在无模成形中检测缺陷的方法和设备 |
WO2013098135A1 (en) | 2011-12-28 | 2013-07-04 | Arcam Ab | Method and apparatus for manufacturing porous three-dimensional articles |
US8915728B2 (en) | 2012-01-27 | 2014-12-23 | United Technologies Corporation | Multi-dimensional component build system and process |
WO2013117185A1 (de) | 2012-02-10 | 2013-08-15 | Additech Gmbh | Verfahren und vorrichtung zur herstellung eines 3-dimensionalen objektes |
WO2013167194A1 (en) * | 2012-05-11 | 2013-11-14 | Arcam Ab | Powder distribution in additive manufacturing |
EP2877316A4 (de) * | 2012-07-27 | 2015-12-02 | Aerojet Rocketdyne De Inc | Festes axialsymmetrisches pulverbett für selektives laserschmelzen |
EP2695724A1 (de) * | 2012-08-09 | 2014-02-12 | Siemens Aktiengesellschaft | Lasersintertechnik zum Herstellen von Elementen auf einer sich bewegenden Sinterplattform |
FR2994885B1 (fr) * | 2012-08-29 | 2014-08-29 | Carpyz | Machines pour la fabrication de produits circulaires par addition couche par couche |
CN104781022B (zh) | 2012-11-06 | 2017-10-17 | 阿卡姆股份公司 | 用于加成制造的粉末预处理 |
FR2998496B1 (fr) * | 2012-11-27 | 2021-01-29 | Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines | Procede de fabrication additive d'une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie |
US9505172B2 (en) | 2012-12-17 | 2016-11-29 | Arcam Ab | Method and apparatus for additive manufacturing |
DE112013006045T5 (de) | 2012-12-17 | 2015-09-17 | Arcam Ab | Additives Herstellungsverfahren und Vorrichtung |
US20140191439A1 (en) * | 2013-01-04 | 2014-07-10 | New York University | Continuous Feed 3D Manufacturing |
EP3597398A1 (de) * | 2013-03-12 | 2020-01-22 | Orange Maker, LLC | 3d-drucken unter verwendung von spiralförmigem aufbau |
WO2014165310A2 (en) | 2013-03-15 | 2014-10-09 | 3D Systems, Inc. | Improved powder distribution for laser sintering systems |
DE102013206458A1 (de) * | 2013-04-11 | 2014-10-16 | Eos Gmbh Electro Optical Systems | Rotationsbeschichter und Vorrichtung zum generativen Herstellen eines Objekts mit dem Rotationsbeschichter |
US9550207B2 (en) | 2013-04-18 | 2017-01-24 | Arcam Ab | Method and apparatus for additive manufacturing |
US9676031B2 (en) | 2013-04-23 | 2017-06-13 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
CN103222528B (zh) * | 2013-05-06 | 2014-12-17 | 兰雄兵 | 3d打印设备及其送料系统 |
US9415443B2 (en) | 2013-05-23 | 2016-08-16 | Arcam Ab | Method and apparatus for additive manufacturing |
DE102013210242A1 (de) * | 2013-06-03 | 2014-12-04 | Siemens Aktiengesellschaft | Anlage zum selektiven Laserschmelzen mit drehender Relativbewegung zwischen Pulverbett und Pulververteiler |
GB201310398D0 (en) | 2013-06-11 | 2013-07-24 | Renishaw Plc | Additive manufacturing apparatus and method |
EP3007879B1 (de) * | 2013-06-10 | 2019-02-13 | Renishaw Plc. | Vorrichtung und verfahren für selektive lasererstarrung |
US9468973B2 (en) | 2013-06-28 | 2016-10-18 | Arcam Ab | Method and apparatus for additive manufacturing |
US9481131B2 (en) * | 2013-07-18 | 2016-11-01 | Mitsubishi Electric Research Laboratories, Inc. | Method and apparatus for printing 3D objects using additive manufacturing and material extruder with translational and rotational axes |
US9505057B2 (en) | 2013-09-06 | 2016-11-29 | Arcam Ab | Powder distribution in additive manufacturing of three-dimensional articles |
US9676032B2 (en) | 2013-09-20 | 2017-06-13 | Arcam Ab | Method for additive manufacturing |
US10434572B2 (en) | 2013-12-19 | 2019-10-08 | Arcam Ab | Method for additive manufacturing |
US9802253B2 (en) | 2013-12-16 | 2017-10-31 | Arcam Ab | Additive manufacturing of three-dimensional articles |
EP3083254B1 (de) * | 2013-12-17 | 2019-06-26 | Koninklijke Philips N.V. | Laserdrucksystem |
US10130993B2 (en) * | 2013-12-18 | 2018-11-20 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US9789563B2 (en) | 2013-12-20 | 2017-10-17 | Arcam Ab | Method for additive manufacturing |
CN104760424B (zh) * | 2014-01-03 | 2017-01-18 | 北京理工大学 | 一种多功能组装式3d打印装置及方法 |
TWI535554B (zh) * | 2014-01-06 | 2016-06-01 | 財團法人工業技術研究院 | 立體成型物以及立體成型物的製造設備與製造方法 |
US9789541B2 (en) | 2014-03-07 | 2017-10-17 | Arcam Ab | Method for additive manufacturing of three-dimensional articles |
GB201404854D0 (en) * | 2014-03-18 | 2014-04-30 | Renishaw Plc | Selective solidification apparatus and method |
DE102014004633B4 (de) * | 2014-04-01 | 2023-12-14 | Concept Laser Gmbh | Vorrichtung und Verfahren zum Herstellen von dreidimensionalen Objekten durch aufeinanderfolgendes Verfestigen von Schichten |
US20150283613A1 (en) | 2014-04-02 | 2015-10-08 | Arcam Ab | Method for fusing a workpiece |
GB2546016B (en) | 2014-06-20 | 2018-11-28 | Velo3D Inc | Apparatuses, systems and methods for three-dimensional printing |
WO2016009426A1 (en) | 2014-07-13 | 2016-01-21 | Stratasys Ltd. | Method and system for rotational 3d printing |
US9310188B2 (en) | 2014-08-20 | 2016-04-12 | Arcam Ab | Energy beam deflection speed verification |
DE102015011013B4 (de) | 2014-08-22 | 2023-05-04 | Sigma Additive Solutions, Inc. | Verfahren zur Überwachung von generativen Fertigungsprozessen |
US10029417B2 (en) | 2014-09-09 | 2018-07-24 | Siemens Energy, Inc. | Articulating build platform for laser additive manufacturing |
DE102014218639A1 (de) * | 2014-09-17 | 2016-03-31 | Mtu Aero Engines Gmbh | Vorrichtung und Verfahren zum generativen Aufbauen einer Werkstückanordnung |
CN106794631A (zh) | 2014-10-02 | 2017-05-31 | 惠普发展公司,有限责任合伙企业 | 用于增材制造设备的一体化建造和材料供应系统 |
DE102014221885A1 (de) * | 2014-10-28 | 2016-04-28 | Koenig & Bauer Ag | Vorrichtung zum schichtweisen Aufbau von mindestens einem dreidimensionalen Werkstück |
TWI630124B (zh) * | 2014-11-10 | 2018-07-21 | 三緯國際立體列印科技股份有限公司 | 立體列印裝置 |
WO2016081651A1 (en) | 2014-11-18 | 2016-05-26 | Sigma Labs, Inc. | Multi-sensor quality inference and control for additive manufacturing processes |
EP3224025B1 (de) | 2014-11-24 | 2019-07-17 | Additive Industries B.V. | Vorrichtung zur herstellung eines objektes mittels generativer fertigung und verfahren zur kalibrierung einer vorrichtung |
WO2016096407A1 (en) * | 2014-12-15 | 2016-06-23 | Arcam Ab | Method and apparatus for additive manufacturing using a two dimensional angular coordinate system |
US20160167303A1 (en) | 2014-12-15 | 2016-06-16 | Arcam Ab | Slicing method |
WO2016115284A1 (en) | 2015-01-13 | 2016-07-21 | Sigma Labs, Inc. | Material qualification system and methodology |
US10226817B2 (en) | 2015-01-13 | 2019-03-12 | Sigma Labs, Inc. | Material qualification system and methodology |
US9721755B2 (en) | 2015-01-21 | 2017-08-01 | Arcam Ab | Method and device for characterizing an electron beam |
DE102015201686A1 (de) * | 2015-01-30 | 2016-08-04 | Siemens Aktiengesellschaft | Additives Herstellungsverfahren unter Verwendung dickerer Pulverschichten und Bauteil |
DE102015103365A1 (de) * | 2015-03-09 | 2016-09-15 | Otto-Von-Guericke-Universität Magdeburg | Delta-3D-Druckereinrichtung |
GB201505458D0 (en) | 2015-03-30 | 2015-05-13 | Renishaw Plc | Additive manufacturing apparatus and methods |
US11014161B2 (en) | 2015-04-21 | 2021-05-25 | Arcam Ab | Method for additive manufacturing |
US10449606B2 (en) * | 2015-06-19 | 2019-10-22 | General Electric Company | Additive manufacturing apparatus and method for large components |
US11478983B2 (en) * | 2015-06-19 | 2022-10-25 | General Electric Company | Additive manufacturing apparatus and method for large components |
JP6791942B2 (ja) | 2015-07-13 | 2020-11-25 | ストラタシス リミテッド | 付加製造及び装置における印刷ノズルの動作 |
US10357827B2 (en) * | 2015-07-29 | 2019-07-23 | General Electric Comany | Apparatus and methods for production additive manufacturing |
US10807187B2 (en) | 2015-09-24 | 2020-10-20 | Arcam Ab | X-ray calibration standard object |
US10207489B2 (en) | 2015-09-30 | 2019-02-19 | Sigma Labs, Inc. | Systems and methods for additive manufacturing operations |
GB2543305A (en) * | 2015-10-14 | 2017-04-19 | Rolls Royce Plc | Apparatus for building a component |
US10583483B2 (en) | 2015-10-15 | 2020-03-10 | Arcam Ab | Method and apparatus for producing a three-dimensional article |
KR102290893B1 (ko) * | 2015-10-27 | 2021-08-19 | 엘지전자 주식회사 | 연속 레이저 조형이 가능한 레이저 신터링 장치 |
CN108367498A (zh) | 2015-11-06 | 2018-08-03 | 维洛3D公司 | Adept三维打印 |
US10525531B2 (en) | 2015-11-17 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10610930B2 (en) | 2015-11-18 | 2020-04-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
EP3386662A4 (de) | 2015-12-10 | 2019-11-13 | Velo3d Inc. | Kompetentes dreidimensionales drucken |
CN108701162A (zh) * | 2015-12-11 | 2018-10-23 | Eos有限公司电镀光纤系统 | 用于检查逐层增材制造装置的输入数据集的方法和装置 |
DE102015122005A1 (de) * | 2015-12-16 | 2017-06-22 | Airbus Operations Gmbh | Vorrichtung und Verfahren zum schichtweisen Aufbau einer dreidimensionalen Struktur |
DE102015225757A1 (de) * | 2015-12-17 | 2017-06-22 | Volkswagen Aktiengesellschaft | Vorrichtung und Verfahren zur kontinuierlichen generativen Fertigung von Bauteilen |
CN105499568A (zh) * | 2015-12-17 | 2016-04-20 | 龙泉市金宏瓷业有限公司 | 一种连续增料3d打印机及其打印方法 |
US9919360B2 (en) | 2016-02-18 | 2018-03-20 | Velo3D, Inc. | Accurate three-dimensional printing |
DE102016203582A1 (de) | 2016-03-04 | 2017-09-07 | Airbus Operations Gmbh | Additives Fertigungssystem und Verfahren zur additiven Fertigung von Bauteilen |
JP6255500B1 (ja) * | 2016-03-09 | 2017-12-27 | 技術研究組合次世代3D積層造形技術総合開発機構 | 3次元積層造形システム、3次元積層造形方法、積層造形制御装置およびその制御方法と制御プログラム |
US11247274B2 (en) | 2016-03-11 | 2022-02-15 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
US9862139B2 (en) * | 2016-03-15 | 2018-01-09 | Xyzprinting, Inc. | Three dimensional printing apparatus |
DE102016105097A1 (de) | 2016-03-18 | 2017-09-21 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zur additiven Herstellung eines dreidimensionalen Objekts |
US10239157B2 (en) | 2016-04-06 | 2019-03-26 | General Electric Company | Additive machine utilizing rotational build surface |
JP6925759B2 (ja) * | 2016-04-27 | 2021-08-25 | 株式会社ミマキエンジニアリング | 造形装置及び造形方法 |
ITUA20163108A1 (it) * | 2016-05-03 | 2017-11-03 | 3D New Tech S R L | Apparecchiatura per additive manufacturing per la costruzione di oggetti in leghe intermetalliche ad elevata temperatura di fusione |
US11325191B2 (en) | 2016-05-24 | 2022-05-10 | Arcam Ab | Method for additive manufacturing |
US10549348B2 (en) | 2016-05-24 | 2020-02-04 | Arcam Ab | Method for additive manufacturing |
CN106077639A (zh) * | 2016-06-01 | 2016-11-09 | 西安铂力特激光成形技术有限公司 | 一种激光选区熔化成形设备及其成形方法 |
US10525547B2 (en) | 2016-06-01 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11691343B2 (en) | 2016-06-29 | 2023-07-04 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
US10259044B2 (en) | 2016-06-29 | 2019-04-16 | Velo3D, Inc. | Three-dimensional printing and three-dimensional printers |
DE102016214249A1 (de) * | 2016-08-02 | 2018-02-08 | Technische Universität Dresden | Vorrichtung zur generativen Fertigung eines dreidimensionalen Körpers in einem Pulverbett |
EP3281727B8 (de) * | 2016-08-10 | 2023-11-22 | Nikon SLM Solutions AG | Vorrichtung zur herstellng eines dreidimensionalen werkstücks mit mehreren pulverapplikationsvorrichtungen |
WO2018064349A1 (en) | 2016-09-30 | 2018-04-05 | Velo3D, Inc. | Three-dimensional objects and their formation |
US10821511B2 (en) | 2016-10-07 | 2020-11-03 | General Electric Company | Additive manufacturing apparatus and method for large components |
US10792757B2 (en) | 2016-10-25 | 2020-10-06 | Arcam Ab | Method and apparatus for additive manufacturing |
WO2018128695A2 (en) | 2016-11-07 | 2018-07-12 | Velo3D, Inc. | Gas flow in three-dimensional printing |
IT201600113040A1 (it) * | 2016-11-09 | 2018-05-09 | 3D4Mec Srl | Stampante 3d laser |
CN108068310B (zh) * | 2016-11-17 | 2020-02-07 | 三纬国际立体列印科技股份有限公司 | 立体打印方法 |
EP3554836B1 (de) | 2016-12-13 | 2021-01-27 | Stratasys, Inc. | System zur generativen fertigung mit rotierendem silo |
US10987752B2 (en) | 2016-12-21 | 2021-04-27 | Arcam Ab | Additive manufacturing of three-dimensional articles |
DE102016226150A1 (de) * | 2016-12-23 | 2018-06-28 | Robert Bosch Gmbh | Vorrichtung zum generativen Herstellen von Werkstücken |
WO2018127274A1 (en) | 2017-01-03 | 2018-07-12 | L3F Sweden Ab | A method for printing a 3d product and a 3d printing device |
US20180186080A1 (en) | 2017-01-05 | 2018-07-05 | Velo3D, Inc. | Optics in three-dimensional printing |
CN106735218B (zh) * | 2017-01-17 | 2019-05-14 | 华南理工大学 | 一种旋转式多缸多材料激光选区熔化成型装置与方法 |
US10500832B2 (en) * | 2017-01-18 | 2019-12-10 | General Electric Company | Systems and methods for additive manufacturing rotating build platforms |
DE102017102068A1 (de) * | 2017-02-02 | 2018-08-02 | Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) | Verfahren zur additiven Fertigung mit kontinuierlichem Schichtauftrag |
US10442003B2 (en) | 2017-03-02 | 2019-10-15 | Velo3D, Inc. | Three-dimensional printing of three-dimensional objects |
US20180281283A1 (en) | 2017-03-28 | 2018-10-04 | Velo3D, Inc. | Material manipulation in three-dimensional printing |
US11654490B2 (en) * | 2017-04-18 | 2023-05-23 | Hewlett-Packard Development Company, L.P. | Apparatus having a movable chamber |
US11007713B2 (en) * | 2017-04-26 | 2021-05-18 | GM Global Technology Operations LLC | High throughput additive manufacturing system |
US11059123B2 (en) | 2017-04-28 | 2021-07-13 | Arcam Ab | Additive manufacturing of three-dimensional articles |
GB201706804D0 (en) * | 2017-04-28 | 2017-06-14 | Rolls Royce Plc | ALM base plate, system and method |
DE102017207764A1 (de) * | 2017-05-09 | 2018-11-15 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zur Herstellung einer dreidimensionalen Verbundstruktur nach einem Druckverfahren |
EP3632595B1 (de) | 2017-05-26 | 2024-10-16 | IHI Corporation | Vorrichtung zur herstellung eines dreidimensionalen mehrschichtmodells |
US11292062B2 (en) | 2017-05-30 | 2022-04-05 | Arcam Ab | Method and device for producing three-dimensional objects |
US20180345371A1 (en) * | 2017-05-31 | 2018-12-06 | General Electric Company | Apparatus and method for angular and rotational additive manufacturing |
WO2018223176A1 (en) * | 2017-06-06 | 2018-12-13 | Aurora Labs Limited | Powder canister and method for manufacturing same |
DE102017213087A1 (de) * | 2017-07-28 | 2019-01-31 | Siemens Aktiengesellschaft | Anlage zum pulverbettbasierten additiven Herstellen eines Werkstücks mit mehreren Dosiervorrichtungen für verschiedene Pulverarten und Verfahren zu deren Betreiben |
US11890807B1 (en) | 2017-08-31 | 2024-02-06 | Blue Origin, Llc | Systems and methods for controlling additive manufacturing processes |
US10710159B2 (en) * | 2017-09-06 | 2020-07-14 | General Electric Company | Apparatus and method for additive manufacturing with real-time and in-situ adjustment of growth parameters |
US11185926B2 (en) | 2017-09-29 | 2021-11-30 | Arcam Ab | Method and apparatus for additive manufacturing |
WO2019070277A1 (en) * | 2017-10-05 | 2019-04-11 | Hewlett-Packard Development Company, L.P. | VALVE MECHANISM FOR COUPLING TO A CONSTRUCTION MATERIAL CONTAINER |
KR102296398B1 (ko) * | 2017-10-05 | 2021-08-31 | 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. | 재료 컨테이너 인쇄를 위한 안내 부분 |
US10698386B2 (en) | 2017-10-18 | 2020-06-30 | General Electric Company | Scan path generation for a rotary additive manufacturing machine |
EP3473410A1 (de) * | 2017-10-20 | 2019-04-24 | CL Schutzrechtsverwaltungs GmbH | Baumaterialaufbringungsvorrichtung |
DE102017219386A1 (de) * | 2017-10-27 | 2019-05-02 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum generativen Herstellen eines dreidimensionalen Objekts |
US10529070B2 (en) | 2017-11-10 | 2020-01-07 | Arcam Ab | Method and apparatus for detecting electron beam source filament wear |
US20190143406A1 (en) * | 2017-11-13 | 2019-05-16 | General Electric Company | Additive manufacturing apparatus and method for large components |
CN107900333A (zh) * | 2017-11-15 | 2018-04-13 | 芜湖天梦信息科技有限公司 | 一种3d打印机铺粉装置的喷头机构 |
US10821721B2 (en) | 2017-11-27 | 2020-11-03 | Arcam Ab | Method for analysing a build layer |
US11072117B2 (en) * | 2017-11-27 | 2021-07-27 | Arcam Ab | Platform device |
US10983505B2 (en) | 2017-11-28 | 2021-04-20 | General Electric Company | Scan path correction for movements associated with an additive manufacturing machine |
CL2017003215A1 (es) * | 2017-12-14 | 2019-10-04 | Univ Pontificia Catolica Chile | Equipo sgm y método para la fabricación de piezas u objetos de revolución axi-simétricos. |
US11517975B2 (en) | 2017-12-22 | 2022-12-06 | Arcam Ab | Enhanced electron beam generation |
CN107876774A (zh) * | 2017-12-27 | 2018-04-06 | 科大天工智能装备技术(天津)有限公司 | 一种线激光螺旋升降式增材制造设备 |
CN108177339A (zh) * | 2017-12-27 | 2018-06-19 | 科大天工智能装备技术(天津)有限公司 | 一种多区域连续成型增材制造激光成型设备 |
US10272525B1 (en) | 2017-12-27 | 2019-04-30 | Velo3D, Inc. | Three-dimensional printing systems and methods of their use |
WO2019133552A1 (en) * | 2017-12-28 | 2019-07-04 | Nikon Corporation | Rotating energy beam for three-dimensional printer |
EP4344805A3 (de) * | 2018-01-12 | 2024-06-19 | Concept Laser GmbH | Verfahren zum betrieb einer vorrichtung zur generativen fertigung dreidimensionaler objekte |
US10144176B1 (en) | 2018-01-15 | 2018-12-04 | Velo3D, Inc. | Three-dimensional printing systems and methods of their use |
US10814388B2 (en) | 2018-01-24 | 2020-10-27 | General Electric Company | Heated gas circulation system for an additive manufacturing machine |
US10814395B2 (en) | 2018-01-24 | 2020-10-27 | General Electric Company | Heated gas circulation system for an additive manufacturing machine |
US20200398477A1 (en) * | 2018-02-23 | 2020-12-24 | Xjet Ltd. | 3d printing of inorganic material in round inkjet printing configuration |
US11267051B2 (en) | 2018-02-27 | 2022-03-08 | Arcam Ab | Build tank for an additive manufacturing apparatus |
US11458682B2 (en) | 2018-02-27 | 2022-10-04 | Arcam Ab | Compact build tank for an additive manufacturing apparatus |
US10695867B2 (en) | 2018-03-08 | 2020-06-30 | General Electric Company | Controlling microstructure of selected range of layers of object during additive manufacture |
US11400519B2 (en) | 2018-03-29 | 2022-08-02 | Arcam Ab | Method and device for distributing powder material |
US20220219394A1 (en) * | 2018-04-16 | 2022-07-14 | Panam 3D, Llc | System and method for 3d printing |
US11273496B2 (en) * | 2018-04-16 | 2022-03-15 | Panam 3D Llc | System and method for rotational 3D printing |
US11273601B2 (en) | 2018-04-16 | 2022-03-15 | Panam 3D Llc | System and method for rotational 3D printing |
EP3566854B1 (de) * | 2018-05-07 | 2021-09-15 | CL Schutzrechtsverwaltungs GmbH | Vorrichtung zur generativen fertigung dreidimensionaler objekte |
IT201800005478A1 (it) * | 2018-05-17 | 2019-11-17 | Metodo per formare un primo e un secondo oggetto tridimensionale da un primo e un secondo materiale solidificabile il quale è in grado di solidificarsi sotto l’effetto su di esso di irraggiamento elettromagnetico | |
EP3575090A1 (de) * | 2018-05-29 | 2019-12-04 | Siemens Aktiengesellschaft | Vorrichtung zum entfernen von überschüssigem material und verfahren zum betrieb davon |
EP3815818A4 (de) * | 2018-06-26 | 2021-11-24 | IHI Corporation | Dreidimensionale modellierungsvorrichtung |
US11225017B2 (en) | 2018-07-24 | 2022-01-18 | Ricoh Company, Ltd. | Three-dimensional object shaping apparatus and method |
CN109332697B (zh) * | 2018-11-16 | 2021-07-06 | 汕头大学 | 一种选区激光熔化增材制造设备 |
DE102018129028A1 (de) * | 2018-11-19 | 2020-05-20 | AMCM GmbH | Verfahren zur additiven Fertigung und System |
DE102018129027A1 (de) * | 2018-11-19 | 2020-05-20 | AMCM GmbH | Verfahren zur additiven Fertigung und System |
CN109261966A (zh) * | 2018-11-29 | 2019-01-25 | 汕头大学 | 一种大尺寸移动吹吸烟选区激光熔化智能装备 |
CN109483881A (zh) * | 2018-12-28 | 2019-03-19 | 源秩科技(上海)有限公司 | 一种打印装置和打印方法 |
CN109483880A (zh) * | 2018-12-28 | 2019-03-19 | 源秩科技(上海)有限公司 | 铺料系统及方法 |
CN109459921B (zh) * | 2018-12-28 | 2021-06-25 | 源秩科技(上海)有限公司 | 选择性铺料装置和铺料方法 |
US11819943B1 (en) | 2019-03-28 | 2023-11-21 | Blue Origin Llc | Laser material fusion under vacuum, and associated systems and methods |
US20220161331A1 (en) * | 2019-04-02 | 2022-05-26 | Ihi Corporation | Three-dimensional manufacturing apparatus |
GB201904816D0 (en) * | 2019-04-05 | 2019-05-22 | Additive Manufacturing Tech Ltd | Additive manufacturing |
WO2021001878A1 (ja) * | 2019-07-01 | 2021-01-07 | 株式会社ニコン | 造形装置 |
JP2022544339A (ja) | 2019-07-26 | 2022-10-17 | ヴェロ3ディー,インコーポレーテッド | 三次元オブジェクトの形成における品質保証 |
CN110538995A (zh) * | 2019-09-06 | 2019-12-06 | 华中科技大学 | 大尺寸环形/框形金属件的激光选区熔化成形装置及方法 |
US20210178473A1 (en) * | 2019-12-12 | 2021-06-17 | Arcam Ab | Additive manufacturing apparatuses with separable process chamber housing portions and methods of use |
DE102020201896A1 (de) | 2020-02-17 | 2021-08-19 | Volkswagen Aktiengesellschaft | Fertigungssystem für die Verwendung in einem additiven und pulverbettbasierten Fertigungsverfahren zur Herstellung von dreidimensionalen Objekten, Verfahren zur Durchführung von simultanen Beschichtungs- und Verfestigungsvorgängen |
JP7402105B2 (ja) | 2020-03-31 | 2023-12-20 | 本田技研工業株式会社 | 3次元造形装置及び造形方法 |
CN111390107B (zh) * | 2020-04-16 | 2021-10-29 | 杭州喜马拉雅信息科技有限公司 | 一种旋转式异孔径喷嘴的砂模打印方法 |
JP7276259B2 (ja) | 2020-06-18 | 2023-05-18 | トヨタ自動車株式会社 | 積層造形方法、及び積層造形装置 |
CN112355325B (zh) * | 2020-09-28 | 2022-12-16 | 西安增材制造国家研究院有限公司 | 一种基于随动粉缸的ebsm设备 |
DE102021103739A1 (de) * | 2021-02-17 | 2022-08-18 | Te Connectivity Germany Gmbh | Additives Fertigungssystem mit einer Mehrzahl von Fertigungsstationen und Verfahren zur additiven Fertigung einer Mehrzahl von Werkstücken |
CN116917129A (zh) * | 2021-03-09 | 2023-10-20 | 戴弗根特技术有限公司 | 旋转式增材制造系统和方法 |
US12042866B2 (en) | 2021-03-16 | 2024-07-23 | General Electric Company | Additive manufacturing apparatus and fluid flow mechanism |
DE102021108175A1 (de) | 2021-03-31 | 2022-10-06 | RUHR-UNIVERSITäT BOCHUM | Verfahren und Vorrichtung zur schichtweisen additiven Herstellung von wenigstens einem Bauteil |
US11938539B2 (en) | 2021-04-16 | 2024-03-26 | General Electric Company | Additive manufacturing build units with process gas inertization systems |
US11759861B2 (en) | 2021-04-16 | 2023-09-19 | General Electric Company | Additive manufacturing build units with process gas inertization systems |
CN117123802B (zh) * | 2023-09-01 | 2024-04-09 | 江苏大学 | 一种可变光路的多成形缸不间断打印激光选区熔化设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2166526A5 (en) * | 1971-12-28 | 1973-08-17 | Boudet Jean | Concentrated beam particle melting - at focal point of several beams |
US4323756A (en) * | 1979-10-29 | 1982-04-06 | United Technologies Corporation | Method for fabricating articles by sequential layer deposition |
DE29907262U1 (de) * | 1999-04-23 | 1999-07-15 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung zum Herstellen eines dreidimensionalen Objektes mittels Rapid Prototyping |
DE19952998A1 (de) * | 1999-11-04 | 2001-05-17 | Horst Exner | Vorrichtung und Verwendung von Vakuum und/oder einer zusätzlichen Wärmequelle zur direkten Herstellung von Körpern im Schichtaufbau aus pulverförmigen Stoffen |
US20010050448A1 (en) * | 2000-05-24 | 2001-12-13 | Minolta Co., Ltd. | Three-dimensional modeling apparatus |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5637175A (en) * | 1988-10-05 | 1997-06-10 | Helisys Corporation | Apparatus for forming an integral object from laminations |
US5134569A (en) * | 1989-06-26 | 1992-07-28 | Masters William E | System and method for computer automated manufacturing using fluent material |
DE19511772C2 (de) * | 1995-03-30 | 1997-09-04 | Eos Electro Optical Syst | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes |
JP3557970B2 (ja) | 1999-11-25 | 2004-08-25 | 松下電工株式会社 | 三次元形状造形物の製造方法 |
DE19957370C2 (de) * | 1999-11-29 | 2002-03-07 | Carl Johannes Fruth | Verfahren und Vorrichtung zum Beschichten eines Substrates |
JP2001347572A (ja) * | 2000-06-06 | 2001-12-18 | Sanyo Electric Co Ltd | 光造形装置 |
DE10219984C1 (de) * | 2002-05-03 | 2003-08-14 | Bego Medical Ag | Vorrichtung und Verfahren zum Herstellen frei geformter Produkte |
-
2002
- 2002-08-02 DE DE10235434A patent/DE10235434A1/de not_active Ceased
-
2003
- 2003-07-31 JP JP2004526843A patent/JP4790264B2/ja not_active Expired - Fee Related
- 2003-07-31 US US10/523,558 patent/US8172562B2/en not_active Expired - Fee Related
- 2003-07-31 EP EP03784136A patent/EP1526964A1/de not_active Withdrawn
- 2003-07-31 CN CN038209845A patent/CN1678448B/zh not_active Expired - Fee Related
- 2003-07-31 WO PCT/EP2003/008520 patent/WO2004014637A1/de active Application Filing
-
2006
- 2006-02-15 HK HK06101912.7A patent/HK1081489A1/xx not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2166526A5 (en) * | 1971-12-28 | 1973-08-17 | Boudet Jean | Concentrated beam particle melting - at focal point of several beams |
US4323756A (en) * | 1979-10-29 | 1982-04-06 | United Technologies Corporation | Method for fabricating articles by sequential layer deposition |
DE29907262U1 (de) * | 1999-04-23 | 1999-07-15 | Eos Gmbh Electro Optical Systems, 82152 Planegg | Vorrichtung zum Herstellen eines dreidimensionalen Objektes mittels Rapid Prototyping |
DE19952998A1 (de) * | 1999-11-04 | 2001-05-17 | Horst Exner | Vorrichtung und Verwendung von Vakuum und/oder einer zusätzlichen Wärmequelle zur direkten Herstellung von Körpern im Schichtaufbau aus pulverförmigen Stoffen |
US20010050448A1 (en) * | 2000-05-24 | 2001-12-13 | Minolta Co., Ltd. | Three-dimensional modeling apparatus |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8359744B2 (en) | 2004-12-14 | 2013-01-29 | Sustainable Engine Sytems Ltd. | Heat exchanger |
US10960655B2 (en) | 2007-07-18 | 2021-03-30 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US10226919B2 (en) | 2007-07-18 | 2019-03-12 | Voxeljet Ag | Articles and structures prepared by three-dimensional printing method |
US10799989B2 (en) | 2007-10-23 | 2020-10-13 | Voxeljet Ag | Pre-assembled module for a device for the layer-wise production of patterns |
US9656423B2 (en) | 2010-03-31 | 2017-05-23 | Voxeljet Ag | Device and method for producing three-dimensional models |
US9815243B2 (en) | 2010-03-31 | 2017-11-14 | Voxeljet Ag | Device for producing three-dimensional models |
US9962885B2 (en) | 2010-04-14 | 2018-05-08 | Voxeljet Ag | Device for producing three-dimensional models |
DE102010015451A1 (de) | 2010-04-17 | 2011-10-20 | Voxeljet Technology Gmbh | Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte |
WO2011127897A2 (de) | 2010-04-17 | 2011-10-20 | Voxeljet Technology Gmbh | Verfahren und vorrichtung zum herstellen dreidimensionaler modelle |
US10179365B2 (en) | 2010-04-17 | 2019-01-15 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9914169B2 (en) | 2010-04-17 | 2018-03-13 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10639715B2 (en) | 2010-04-17 | 2020-05-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US9770867B2 (en) | 2010-12-29 | 2017-09-26 | Voxeljet Ag | Method and material system for building models in layers |
US10946636B2 (en) | 2011-01-05 | 2021-03-16 | Voxeljet Ag | Device and method for constructing a layer body |
US10513105B2 (en) | 2011-01-05 | 2019-12-24 | Voxeljet Ag | Device and method for constructing a layer body |
US11407216B2 (en) | 2011-01-05 | 2022-08-09 | Voxeljet Ag | Device and method for constructing a layer body |
US9649812B2 (en) | 2011-01-05 | 2017-05-16 | Voxeljet Ag | Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area |
US9878494B2 (en) | 2011-08-31 | 2018-01-30 | Voxeljet Ag | Device for constructing models in layers |
US10913204B2 (en) | 2011-08-31 | 2021-02-09 | Voxeljet Ag | Device for constructing models in layers and methods thereof |
US10589460B2 (en) | 2012-03-06 | 2020-03-17 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10220567B2 (en) | 2012-03-06 | 2019-03-05 | Voxeljet Ag | Method and device for producing three-dimensional models |
US10059062B2 (en) | 2012-05-25 | 2018-08-28 | Voxeljet Ag | Device for producing three-dimensional models with special building platforms and drive systems |
US11225029B2 (en) | 2012-05-25 | 2022-01-18 | Voxeljet Ag | Device for producing three-dimensional models and methods thereof |
US10059058B2 (en) | 2012-06-22 | 2018-08-28 | Voxeljet Ag | Device for building a multilayer structure with storage container or filling container movable along the dispensing container |
US10052682B2 (en) | 2012-10-12 | 2018-08-21 | Voxeljet Ag | 3D multi-stage method |
US11097469B2 (en) | 2012-10-15 | 2021-08-24 | Voxeljet Ag | Method and device for producing three-dimensional models with a temperature-controllable print head |
EP2727709A1 (de) | 2012-10-31 | 2014-05-07 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Verfahren und Vorrichtung zum Herstellen von greifbaren Produkten durch schichtenweise Herstellung |
US10226894B2 (en) | 2012-10-31 | 2019-03-12 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Method and apparatus for making tangible products by layerwise manufacturing |
WO2014070007A1 (en) | 2012-10-31 | 2014-05-08 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Method and apparatus for making tangible products by layerwise manufacturing |
US11014288B2 (en) | 2012-10-31 | 2021-05-25 | René Jos Houben | Production line for making tangible products by layerwise manufacturing |
US10987868B2 (en) | 2012-10-31 | 2021-04-27 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Production line for making tangible products by layerwise manufacturing |
US11130290B2 (en) | 2012-11-25 | 2021-09-28 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US10213831B2 (en) | 2012-11-25 | 2019-02-26 | Voxeljet Ag | Construction of a 3D printing device for producing components |
US10343301B2 (en) | 2013-02-28 | 2019-07-09 | Voxeljet Ag | Process for producing a moulding using a water-soluble casting mould and material system for the production thereof |
US11072090B2 (en) | 2013-02-28 | 2021-07-27 | Voxeljet Ag | Material system for producing a molded part using a water-soluble casting mold |
WO2015000755A1 (de) * | 2013-07-01 | 2015-01-08 | Max Schlatterer Gmbh & Co. Kg | Endloses transport- oder formatband und verfahren zur herstellung eines endlosen transport- oder formatbands |
US11541596B2 (en) | 2013-10-30 | 2023-01-03 | Voxeljet Ag | Method and device for producing three-dimensional models using a binding agent system |
EP2878409B1 (de) | 2013-11-27 | 2016-03-30 | SLM Solutions Group AG | Verfahren und Vorrichtung zur Steuerung eines Bestrahlungssystems |
US11850796B2 (en) | 2013-12-02 | 2023-12-26 | Voxeljet Ag | Interchangeable container with moveable side walls |
US10220568B2 (en) | 2013-12-02 | 2019-03-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US11292188B2 (en) | 2013-12-02 | 2022-04-05 | Voxeljet Ag | Interchangeable container with moveable side walls |
US9943981B2 (en) | 2013-12-11 | 2018-04-17 | Voxeljet Ag | 3D infiltration method |
US10889055B2 (en) | 2013-12-20 | 2021-01-12 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US10442170B2 (en) | 2013-12-20 | 2019-10-15 | Voxeljet Ag | Device, special paper, and method for producing shaped articles |
US11097471B2 (en) | 2014-03-31 | 2021-08-24 | Voxeljet Ag | Method and device for 3D printing using temperature-controlled processing |
WO2015163765A1 (en) | 2014-04-23 | 2015-10-29 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Apparatus and method for making tangible products by layerwise manufacturing |
US10421265B2 (en) | 2014-04-23 | 2019-09-24 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Apparatus and method for making tangible products by layerwise manufacturing |
WO2015167335A1 (en) | 2014-04-30 | 2015-11-05 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Method and production line for making tangible products by layerwise manufacturing |
US10384436B2 (en) | 2014-04-30 | 2019-08-20 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappeluk Onderzoek Tno | Method and production line for making tangible products by layerwise manufacturing |
US10913207B2 (en) | 2014-05-26 | 2021-02-09 | Voxeljet Ag | 3D reverse printing method and device |
US12070905B2 (en) | 2014-05-26 | 2024-08-27 | Voxeljet Ag | 3D reverse printing method and device |
US10946556B2 (en) | 2014-08-02 | 2021-03-16 | Voxeljet Ag | Method and casting mold, in particular for use in cold casting methods |
US10682809B2 (en) | 2014-12-22 | 2020-06-16 | Voxeljet Ag | Method and device for producing 3D moulded parts by means of a layer construction technique |
US11077611B2 (en) | 2015-03-17 | 2021-08-03 | Voxeljet Ag | Method and device for producing 3D shaped articles with a double recoater |
US10843404B2 (en) | 2015-05-20 | 2020-11-24 | Voxeljet Ag | Phenolic resin method |
US10882110B2 (en) | 2015-09-09 | 2021-01-05 | Voxeljet Ag | Method and device for applying fluids |
US11890810B2 (en) | 2015-09-16 | 2024-02-06 | Voxeljet Ag | Device and method for producing three-dimensional shaped parts |
US12036732B2 (en) | 2015-12-01 | 2024-07-16 | Voxeljet Ag | Method and device for producing three- dimensional components with the aid of an overfeed sensor |
US11235518B2 (en) | 2015-12-01 | 2022-02-01 | Voxeljet Ag | Method and device for producing three-dimensional components with the aid of an overfeed sensor |
US11975487B2 (en) | 2016-03-09 | 2024-05-07 | Voxeljet Ag | Method and device for producing 3D shaped parts using construction field tools |
US11760023B2 (en) | 2016-11-15 | 2023-09-19 | Voxeljet Ag | Print head parking or maintenance unit for powder bed-based 3D printing, 3D printing systems and methods thereof |
US11273605B2 (en) | 2016-11-15 | 2022-03-15 | Voxeljet Ag | Integrated print head maintenance station for powder bed-based 3D printing |
US11731361B2 (en) | 2017-07-21 | 2023-08-22 | Voxeljet Ag | Process and apparatus for producing 3D moldings comprising a spectrum converter |
US11279087B2 (en) | 2017-07-21 | 2022-03-22 | Voxeljet Ag | Process and apparatus for producing 3D moldings comprising a spectrum converter |
WO2019110899A1 (fr) * | 2017-12-05 | 2019-06-13 | Addup | Machine de fabrication additive comprenant une surface de reception de poudre mobile autour de la zone de fabrication |
FR3074446A1 (fr) * | 2017-12-05 | 2019-06-07 | Addup | Machine de fabrication additive comprenant une surface de reception de poudre mobile autour de la zone de fabrication |
US11964434B2 (en) | 2018-08-16 | 2024-04-23 | Voxeljet Ag | Closure device, 3D printing device and method for producing 3D-molded parts |
US11826958B2 (en) | 2019-02-05 | 2023-11-28 | Voxeljet Ag | Exchangeable process unit |
US12122099B2 (en) | 2019-02-05 | 2024-10-22 | Voxeljet Ag | Exchangeable process unit |
US12134229B2 (en) | 2019-06-14 | 2024-11-05 | Voxeljet Ag | Method and apparatus for producing 3D moldings by means of a layering technique, and recoater with vacuum closure |
US11820076B2 (en) | 2019-11-01 | 2023-11-21 | Voxeljet Ag | 3D printing process and molding produced by this process using lignosulfate |
Also Published As
Publication number | Publication date |
---|---|
JP4790264B2 (ja) | 2011-10-12 |
DE10235434A1 (de) | 2004-02-12 |
EP1526964A1 (de) | 2005-05-04 |
CN1678448B (zh) | 2010-05-12 |
US20060108712A1 (en) | 2006-05-25 |
CN1678448A (zh) | 2005-10-05 |
JP2005534543A (ja) | 2005-11-17 |
HK1081489A1 (en) | 2006-05-19 |
US8172562B2 (en) | 2012-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004014637A1 (de) | Vorrichtung und verfahren zum herstellen eines dreidimensionalen objekts mittels eines generativen fertigungsverfahrens | |
EP2864108B1 (de) | Vorrichtung und verfahren zum schichtweisen herstellen eines dreidimensionalen objekts | |
EP2275247B1 (de) | Vorrichtung und Verfahren zum Herstellen von dreidimensionalen Objekten mittels eines generativen Fertigungsverfahrens | |
EP2301743B1 (de) | Verfahren und vorrichtung zum herstellen eines formkörpers durch schichtweisen aufbau | |
DE4309524C1 (de) | Verfahren zum Herstellen eines dreidimensionalen Objekts | |
EP3362259B1 (de) | Vorrichtung und verfahren zum herstellen eines dreidimensionalen objekts | |
EP3165349B1 (de) | Vorrichtung zum herstellen dreidimensionaler objekte | |
DE60002344T2 (de) | Stereolithografisches verfahren zur herstellung von gegenständen mit verschiedene dichten aufweisenden zonen | |
EP3710182A1 (de) | Schichtselektive belichtung im überhangbereich bei der generativen fertigung | |
DE102007040755A1 (de) | Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern | |
DE102010020416A1 (de) | Bauraumveränderungseinrichtung sowie eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts mit einer Bauraumveränderungseinrichtung | |
DE60031317T2 (de) | Stereolithografische Verfahren und Vorrichtung zur Herstellung dreidimensionaler Gegenstände, wobei Abglättungsparameter für Schichtengruppen gelten | |
WO2016169783A1 (de) | Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts | |
DE102015222100A1 (de) | Beschichtungseinheit, Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts | |
EP3342583B1 (de) | Verfahren und vorrichtung zum generativen herstellen eines dreidimensionalen objekts | |
EP3085519A1 (de) | Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts | |
EP3297813B1 (de) | Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts | |
WO2018172079A1 (de) | Überlappoptimierung | |
EP0681521B1 (de) | Verfahren und vorrichtung zum herstellen von dreidimensionalen objekten | |
EP4238741A1 (de) | Verfahren zur additiven fertigung eines bauteils unter nutzung wenigstens einer mit füllmaterial zu füllenden volumenkammer | |
EP3668704B1 (de) | Anordnung und verfahren zur erzeugung einer 3d-struktur | |
DE102019007480A1 (de) | Anordnung und Verfahren zum Erzeugen einer Schicht eines partikelförmigen Baumaterials in einem 3D-Drucker | |
DE102015118161A1 (de) | Vorrichtung zum Herstellen dreidimensionaler Objekte | |
WO2016206781A1 (de) | Vorrichtung und verfahren zum herstellen eines dreidimensionalen objekts | |
WO2020039005A1 (de) | Verfahren zum herstellen eines bauteils durch positionieren von partikelgefüllten, strukturierten schichtelementen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN IN JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003784136 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004526843 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 241/KOLNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038209845 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2003784136 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006108712 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10523558 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10523558 Country of ref document: US |