WO2004013344A1 - 2−O−α−D−グルコピラノシル−L−アスコルビン酸の製造方法 - Google Patents

2−O−α−D−グルコピラノシル−L−アスコルビン酸の製造方法 Download PDF

Info

Publication number
WO2004013344A1
WO2004013344A1 PCT/JP2003/008600 JP0308600W WO2004013344A1 WO 2004013344 A1 WO2004013344 A1 WO 2004013344A1 JP 0308600 W JP0308600 W JP 0308600W WO 2004013344 A1 WO2004013344 A1 WO 2004013344A1
Authority
WO
WIPO (PCT)
Prior art keywords
ascorbic acid
darcopyranosyl
enzyme
producing
saccharide
Prior art date
Application number
PCT/JP2003/008600
Other languages
English (en)
French (fr)
Inventor
Kazuhisa Mukai
Keiji Tsusaki
Michio Kubota
Shigeharu Fukuda
Toshio Miyake
Original Assignee
Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo filed Critical Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo
Priority to EP03741243A priority Critical patent/EP1553186A4/en
Priority to US10/523,920 priority patent/US8759030B2/en
Publication of WO2004013344A1 publication Critical patent/WO2004013344A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides

Definitions

  • the present invention relates to a method for producing 2-0-hi-D-darcopyranosyl_L-ascorbic acid, and more specifically, using ⁇ -isomaltosyldarcosaccharide-forming enzyme, or using ⁇ -isomaltosyldarcosaccharide.
  • ⁇ -isomaltosyldarcosaccharide-forming enzyme or using ⁇ -isomaltosyldarcosaccharide.
  • glycosyltransferase using a combination of lipogenic enzyme and cyclomaltodextrin 'darcanotransferase, and the production of 2- ⁇ -a_D-darcoviranosyl-L-ascorbic acid from a solution containing the resulting glycosyltransferase It relates to a manufacturing method. Background art
  • L-ascorbic acid which has the chemical structure represented by Chemical Formula 1, does not exhibit direct reducing properties, has excellent stability, is easily hydrolyzed in vivo, and exhibits the original physiological activity of L-ascorbic acid It is a sugar derivative of.
  • a glycosyltransferase is added to a solution containing L-ascorbic acid and ⁇ -darcosyl saccharified compound.
  • a—D—Darcovyranosyl-L—ascorbic acid obtained by reacting glycosyltransferase with darcoamylase (EC 3.2.1.3) to contain other contaminants
  • column chromatography using a strongly acidic cation exchange resin is carried out, and a 2-0.1 ⁇ -D-darcopyranosyl-L-ascorbic acid-rich fraction of the eluate is collected to obtain 2-0.
  • glycosyltransferases or L-ascorbic acid sugar derivatives obtained by reacting glycosyltransferases with dalcoamylase include, for example, those whose glycosyltransferases are cyclomaltodextrin 'glucanotransferase (EC 2.4.1.
  • CGTase in addition to 2-0-_D_darcopyranosyl_L-ascorbic acid, as a by-product, 5-0-Hy-D-darcopyranosyl-L-ascorbic acid (Chemical formula 2) and 6-0-a-D-darcopyranosyl-L-ascorbic acid (Chemical formula 3)
  • the enzyme is ⁇ ; —darcosidase, in addition to 2—O—a—D—darcopyranosyl—Lascorbic acid, 6— ⁇ —a—D—darcopyranosyl_L—ascorbic acid may be formed.
  • darcosidase
  • L-ascorbic acid and glucose contained in the raw material solution have a different molecular weight from that of 2- ⁇ -D-darcopyranosyl-L-ascorbic acid. It is relatively easy to separate from ⁇ -D-Darcovyranosyl-L-ascorbic acid, On the other hand, 5-0-H-D-darcopyranosyl-L-ascorbic acid and 6-0-a; -D-Darcopyranosyl-L-ascorbic acid produced as by-products are 2-0-H-I-D-darcopyranosyl.
  • 2-L- ⁇ -D-darcopyranosyl Difficult to separate from L-ascorbic acid due to the same molecular weight as L-ascorbic acid, 2-0 — «— D-Darcopyranosyl-L-ascorbic acid-rich fraction In addition, it hinders the improvement of purity and also prevents the precipitation of crystals 2-D-D-darcopyranosyl-L-ascorbic acid from supersaturated solutions.
  • Corbic acid remains in the mother liquor from which the crystal 2-0-D-darcopyranosyl-L-ascorbic acid has been separated and removed, and further crystals 2-0- ⁇ -D-darcopyranossi from this mother liquor Inhibits the precipitation of L-L-ascorbic acid and significantly reduces the recovery of crystals # 2 and # 3.
  • the acid is separated from an oxide of a sugar derivative of L-ascorbic acid (hereinafter simply referred to as an oxide of a sugar derivative of L-ascorbic acid) to give 2-0- ⁇ -D-darcopyranosyl sulfate.
  • an oxide of a sugar derivative of L-ascorbic acid hereinafter simply referred to as an oxide of a sugar derivative of L-ascorbic acid
  • 2- 2- ⁇ - Conditions are required to preferentially oxidize the directly reduced bond isomer without acting on D-dalcopyranosyl-L-ascorbic acid.
  • a method of exposing to aerobic conditions such as aeration and stirring is adopted.
  • is made weakly acidic or alkaline, metal salts such as copper salts and iron salts, oxidation promoters such as activated carbon such as steam coal and zinc chloride coal are allowed to coexist, and hydrogen peroxide and permanganic acid are used.
  • the operation is complicated, for example, by adding an oxidizing agent such as potassium. If the oxidation reaction is insufficient, the bond isomer showing direct reducibility remains and the oxidation reaction is excessive.
  • an oxidizing agent such as potassium.
  • the bond isomer showing direct reducibility remains and the oxidation reaction is excessive.
  • the oxidation reaction process required precise control to maintain the proper progress of the reaction, and there was a great deal of economic effort involved.
  • the present invention has been made to solve the above-mentioned drawbacks of the conventional method for producing 2-0- ⁇ -D_darcopyranosyl-L-ascorbic acid, which eliminates the need to separate bond isomers.
  • An object of the present invention is to provide a method for producing 2-0-a-D-darcopyranosyl-L-ascorbic acid, which can efficiently produce 2- 2-ichi-D-darcopyranosyl-L-ascorbic acid. Disclosure of the invention
  • 5-0- ⁇ -D-Darco which is a contaminant in a solution containing 2 -—- ⁇ -D-darcopyranosyl_L-ascorbic acid, obtained in the step of reacting glycosyltransferase with glycoamylase If the pyranosyl-L-ascorbic acid and 6-0- ⁇ — D_darcopyranosyl_L-ascorbic acid are not produced, or if the production amount can be reduced to such an extent that they cannot be detected, these L-ascorbic acid sugar derivatives exhibiting direct reducing properties Industrially high-purity 2- (2-D-)-D-darcopyranosyl-L-ascorbic acid high content without the need for oxidation or other removal processes Considered squid such than can be produced in high yield on a scale, 5 - ⁇ one a-D _ Darukopiranoshiru _ L Asukorubin acid and 6- ⁇ - "- D
  • a—Isomaltosyldarco saccharide-forming enzyme produces a significant amount of 2— ⁇ —a—D—darcopyranosyl—L—ascorbic acid and is a contaminant, 5 ———— a—D _Darcovyranosyl-L-ascorbic acid and 6-0-a-D-darcopyranosyl_L-ascorbic acid were not produced or their production was found to be undetectably low.
  • the ⁇ -isomaltosyldarcosaccharide-forming enzyme is used in combination with CGTase to cause a glycosyltransfer reaction, or a glycosyltransfer reaction is caused by a combination of these enzymes,
  • the amount of 2-O-hi-D-darcopyranosyl-l-ascorbic acid produced by the action of darcoamylase is 0 as a glycosyltransferase; when isomaltosyl darco-saccharogenic enzyme is used alone.
  • the binding isomers such as 5-D-D-D-Darcopyranosyl-L-ascorbic acid and 6-0-a-D-D-Darcopyranosyl_L-ascorbic acid at that time were converted to ⁇ as glycosyltransferases.
  • -It was also found that, as in the case of using the isomaltosyldarco saccharide-forming enzyme alone, no isomer was formed, or the formation thereof was so small that it could not be detected.
  • the transglycosylation reaction product containing 2-O- ⁇ ; —D-darcopyranosyl-L-ascorbic acid obtained by the above transglycosylation reaction is difficult to separate by column chromatography using a strongly acidic cation exchange resin.
  • 5 _ ⁇ ⁇ ⁇ -D Darcopyranosyl-L—ascorbic acid and 6 Since it does not contain a binding isomer such as 1-O- ⁇ -D-darcopyranosyl-L-ascorbic acid, or even if it does, its amount is very small.
  • 0- ⁇ -D-Darco viranosyl _ L-ascorbic acid can be easily separated and purified in high yield, and high-purity 2-O-a-D-darcopyranosyl-L-ascorbic acid high content Can be produced at a high yield on an industrial scale.
  • the supersaturated solution of high-purity 2-O-CK-D-darcopyranosyl-L-ascorbic acid high-content solution obtained in this manner is easy to precipitate crystals and has a high yield.
  • D-Darcopyranosyl-L-ascorbic acid proved to be extremely advantageous as an industrial process.
  • the term “no formation or no detectable generation” means 0.1 lw / w% (hereinafter, unless otherwise specified,% is wZw%, based on the solid content of the reaction solution). Means the amount of production below.
  • the expression of direct reducing property means that 2,6-dichlorophenol indolephenol is reduced and decolorized as it is, as in the case of L-ascorbic acid.
  • L-ascorbic acid means not only L-ascorbic acid, but also L-ascorbic acid such as an alkali metal salt or an earth metal salt of L-ascorbic acid, or L-ascorbic acid. Means a mixture of
  • 6— ⁇ 1-a—D —Darcobilanosyl-l-ascorbic acid, ⁇ -daricosyl-l-ascorbic acid, and the like mean not only free acids, but also salts thereof, unless inconvenience arises.
  • FIG. 1 is a graph showing the effect of temperature on the 2 -—- hi-D-darcopyranosyl-L-ascorbic acid-forming activity of ⁇ -isomaltosyldarco saccharide-forming enzyme derived from A. gloviformis A19.
  • FIG. 2 is a graph showing the effect of ⁇ on the 2-0- ⁇ —D_darcopyranosyl_L-ascorbic acid-forming activity of ⁇ -isomaltosyldarco saccharide-forming enzyme derived from A. gloviformis A19. BEST MODE FOR CARRYING OUT THE INVENTION
  • the ⁇ -darcosyl sugar compound used in the present invention is a compound having ⁇ -glucose, and is used alone or in combination with ⁇ -isomaltosyldarcosaccharide-forming enzyme and CGTase. Therefore, it is sufficient if L-ascorbic acid can produce 2-0-a-D-darcopyranosyl-L-ascorbic acid or Z and 2-O1-glycosyl-L-ascorbic acid.
  • L-ascorbic acid Maltose, malt triose, maltotetraose, maltopene, maltohexaose, maltohepuse, maltokose, etc., maltooligosaccharides, maltodextrin, cyclodextrin, amylose, mycobacterium, soluble starch, liquefied starch Gelatinized starch, glycogen and the like can be appropriately selected.
  • the concentration of L-ascorbic acid at the time of the reaction is usually 1% or more, preferably about 2 to 30% (w / v).
  • the -darcosyl sugar compound is contained in 1 part by weight of L-ascorbic acid. Usually, a range of about 0.5 to 30 parts by weight is suitable.
  • the ⁇ -isomaltosyldarco saccharide-forming enzyme used in the present invention may be, for example, ⁇ -isomaltosyldarcosaccharide-forming enzyme as described in International Publication No. WO 02/106361 as a non-reducing terminal binding mode.
  • a glucose having a dalcosyl bond and having a degree of polymerization of 2 or more is subjected to ⁇ -darcosyl transfer from the saccharide without substantially increasing the reducing power, thereby forming a non-reducing terminal binding mode.
  • Has a 1,6-darcosyl bond has an enzymatic activity to produce a saccharide with a degree of polymerization of glucose of 3 or more, having an ⁇ -1,4 darcosyl bond as a bond other than the non-reducing end.
  • Specific examples include enzymes having the following physicochemical properties.
  • the carbohydrate having a 1,4 darcosyl bond and a glucose degree of polymerization of 2 or more as a non-reducing terminal bonding mode includes maltooligosaccharides, maltodextrin, amylodextrin, amylose, amiguchi pectin, and the like.
  • One or more saccharides selected from soluble starch, liquefied starch, gelatinized starch and daricogen can be exemplified.
  • a carbohydrate having an ⁇ -1,6 dalcosyl bond as the binding mode of the non-reducing end and an ⁇ -1,4 dalcosyl bond as the bonding mode other than the non-reducing end forms a glucose having a degree of polymerization of 3 or more.
  • SDS Hydrophilicity—Nas a molecular weight in the range of about 74,000 to 160,000 daltons by gel electrophoresis.
  • the reaction is performed at pH 6.0 for 60 minutes, and has an optimum temperature in the range of about 40 to 50 ° C.
  • the reaction is carried out at pH 6.0 for 60 minutes, and has an optimum temperature in the range of about 45 to 55 ° C in the presence of 1 mM Ca 2+ .
  • It has a temperature stable range of about 45 ° C or less under conditions of holding pH 6.0 and 60 minutes.
  • Tyrosine, valine, serine, serine, leucine, glycine, asparagine, bite isin-isoloisin (SEQ ID NO: 1 in the sequence listing), histidine 1 valine-serine-alanine-1 leucine-glycine-1 asparagine-1 bit of isin-1 bit of isine (SEQ ID NO: 2 in the sequence listing), or alaninep-1 bit of isin-1 bit of isine-1 glycine-1 arginine-1 min arginine-1 glutamine-1 glutamine-1 glutamine-1 glutamine-1 glutamine It may have serine-glycine (SEQ ID NO: 3 in the sequence listing).
  • the ⁇ -isomaltosyldarco saccharide-forming enzyme used in the present invention is a saccharide having a non-reducing terminal binding mode of ⁇ -1,4 darcosyl bond and a glucose polymerization degree of 2 or more as a donor for glycosyl transfer reaction.
  • the substance is used, it is transglycosylated to L-ascorbic acid and 2- 2- ⁇ -D-darcopyranosyl-L-ascorbic acid, and furthermore, 2-0- ⁇ -D-darcopyranosyl-L-ascorbinic acid. It produces 2-O-hydaricosyl-L-ascorbic acid in which one or more darcopyranosyl residues are transferred to the darcopyranosyl group of the acid.
  • the isomaltosyldarco saccharide-forming enzyme used in the present invention includes, for example, enzymes derived from bacteria belonging to the genus Arthrobacter and the genus Bacillus.
  • Arthrobacter globiformis A 19 Strain FE RM BP-750
  • Bacillus globisporus C9 strain FE RM BP—71 43
  • Bacillus globisporus Bacillus globisporus C11 strain
  • FE RM BP-7144 Bacillus globisporus N75 strain
  • FE RM BP-750 Bacillus globisporus N75 strain
  • the mutant is isolated to obtain a strain that produces high levels of monoisomaltosyldarco saccharide-forming enzyme.
  • enzymes derived from the mutants can also be advantageously used.
  • the gene DNA encoding the polypeptide of ⁇ ; -isomaltosyldarco saccharide-forming enzyme is chemically synthesized, or the gene DNA is originally cloned from cells having the gene DNA. After obtaining the DNA, the gene DNA is left as is, or one or more DNAs are replaced with other DNAs, and one or more DNAs are deleted, added, or inserted to obtain the same species. Alternatively, it may be a so-called self-cloning or recombinant enzyme derived and introduced into a heterologous cell.
  • the CGTase used in the present invention is, for example, a genus Bacillus (Baci 11 us), a genus Klebsie 11a, a genus Thermoanaerobacter, a brevipacterium ( An enzyme derived from a bacterium belonging to the genus B. revibacterium) or the genus Thermococcus is appropriately selected.
  • the gene DNA encoding the CGTase polypeptide is chemically synthesized or cloned from cells originally containing the gene DNA.
  • the gene DNA is used as it is, or one or more DNAs are replaced with other DNAs, or one or more DNAs are deleted or added. It may be a so-called self-cloned or recombinant enzyme which is inserted, introduced and expressed in the same or different cells.
  • glycosyltransferases do not necessarily need to be purified and used, and usually the purpose of the present invention can be achieved with a crude enzyme. If necessary, it may be purified and used by various known methods.
  • the amount of the enzyme used and the reaction time are closely related, and the amount of the enzyme is usually selected so that the reaction is completed in about 3 to 80 hours from the viewpoint of economy.
  • Hiichi isomaltosyldarco saccharide-forming enzyme and CGTase were used together.
  • CGTase is used in excess
  • the use of CGTase in excess is 5-0-g-D-darcopyrano syrup L-ascorbic acid and 6-0- _ «which are by-products of the transglycosylation reaction of CGTase.
  • the amount of D-darcopyranosyl_L-ascorbic acid produced is significantly increased, and the effect of the present invention cannot be exhibited.
  • the amount of CGTase used in the present invention is desirably selected from the range of about 0.01 to 50 units per gram of the substrate o; -darcosyl sugar compound.
  • the unit indicating the enzyme activity of CGTase here is a 0.3% (w / v) starch solution containing 20 mM acetate buffer (pH 5.5) and 2 mM calcium chloride.
  • Each unit of the enzyme activity is the amount of enzyme that completely eliminates the iodine coloration of 15 mg of solution-type starch. .
  • 0; -isomaltosyldarco saccharide-forming enzyme and CGTase are immobilized on separate carriers, or both enzymes are immobilized on the same carrier, and the resulting immobilized glycosyltransferase is obtained. It can also be advantageously implemented to use it batch-wise or continuously.
  • the glycosyltransfer method of the present invention is usually carried out by adding a-isomaltosyldarco saccharide-forming enzyme or polyisomaltosyldarcosaccharide to a solution containing the above-mentioned L-ascorbic acid and an ⁇ -darcosyl sugar compound.
  • the production enzyme and CGTase are added, and the reaction is carried out under conditions under which both enzymes sufficiently act, desirably, reaction conditions selected from the range of 11 to 3 to 10 and the temperature of 30 to 70 ° C.
  • L-ascorbic acid is susceptible to oxidative decomposition during the reaction, it is desirable to keep it as light as possible under anaerobic or reduced conditions, and if necessary, react in the presence of thiourea, hydrogen sulfide, etc. This can also be carried out advantageously.
  • the isomaltosyldarco saccharide-forming enzyme of the present invention is used alone or in combination with a-isomaltosyldarco-saccharide-forming enzyme and CGTase.
  • a-isomaltosyldarco-saccharide-forming enzyme and CGTase When transglycosylated to ascorbic acid, 2-0-_D_darcopyranosyl mono-L-ascorbic acid is formed, and one or two or more ⁇ -D-dalcopyranosyl residues are added. L-ascorbic acid is also produced.
  • L-ascorbin is obtained.
  • 2 -—- a-D-Darcopyranosyl-L-ascorbic acid is generated from the acid and the ⁇ -glucosyl sugar compound, and one or more ⁇ -D-darcopyranosyl residues are added.
  • — ⁇ — ⁇ —Glycosyl—L-ascorbic acid which is a contaminant that is formed in a mixed form, but difficult to separate by industrial column chromatography, etc.
  • the darcoamylase is allowed to act on the product obtained by the sugar transfer reaction of the present invention using the ⁇ -isomaltosyldarco saccharide-forming enzyme alone or in combination with ⁇ -isomaltosyldarco-saccharide-forming enzyme and CGTase.
  • 2 — O— HI — D _ darcoviranosyl _ L-ascorbic acid which has a higher molecular weight than the 1-, 4- or ⁇ - 1, 6 bond of the daricosyl moiety of L-ascorbic acid. Decomposes and accumulates and produces 2 - ⁇ - ⁇ -D-Darcovira nosyl-L-ascorbic acid.
  • the conditions of action of darcoamylase are as follows: 2- ⁇ - ⁇ -D-darcopyranosyl-1 L-ascorbic acid, which is larger than 2 —- ⁇ -glycosyl-L-ascorbic acid, and hydrolyzes 2-0- ⁇ —D —Darcopyranosyl one L —A Any condition can be used as long as scorbic acid can be accumulated and generated, and the reaction may be performed under appropriate conditions such as reaction pH, reaction temperature, amount of action, and time of action.
  • the glucoamylase immobilized by a carrier binding method, a cross-linking method, an entrapment method, or the like may be used to continuously or batchwise use a dalcoamylase reaction, or the reaction solution may be subjected to membrane separation or the like. It is also advantageous to collect dalcoamylase and dalcoamylase separately and reuse dalcoamylase.
  • the reaction solution is decolorized with activated charcoal after deactivating the enzyme by heating or the like, or as it is, and filtered to remove insolubles, and concentrated if necessary.
  • Neutral carbohydrates such as glucose may be separated, removed, or reduced by known methods, for example, electrodialysis, column chromatography using an anion exchange resin, or the like.
  • the strongly acidic cation resin is a known styrene-divinylbenzene cross-linked copolymer resin having a sulfonic acid group bonded thereto, such as a Na + type or K + type alkali metal salt type, or a C ++.
  • M g + + -type alkaline earth metal salt type such as, or H + form such as is used appropriately, as commercially available products, for example, trade name of da Ukemikaru company manufacturing "DOWEX 5 0 WX 8", Rohm Product name “Amberlite CG-600” manufactured by & Haas Co., Ltd .; product name “XT—1022 ⁇ ” manufactured by Tokyo Organic Chemical Industry Co., Ltd .; product name “Mitsubishi Chemical Co., Ltd.” Diaion SK 104 ”.
  • a raw material solution for example, when a solution containing contaminants such as L-ascorbic acid and D-darcose is used together with the desired 2-0-Hi-1D-darcopyranosyl-1-L-ascorbic acid, a strong acid
  • the raw material solution is passed through a column filled with a cationic cation exchange resin, and then eluted with water to give 2-O- ⁇ -D-darcopyranosyl-L-ascorbic acid-rich fraction, 2_ ⁇ ——D-darcopyranosyl
  • the fraction is divided into a plurality of fractions in the order of L-ascorbic acid, L-ascorbic acid, D-glucose-rich fraction, L-ascorbic acid, D-dalcos-rich fraction, etc. — Q; _ D—Darcopyranosyl-L-ascorbic acid-rich fraction is easily collected to easily produce 2-O-hi-D-darcopyranosyl-L
  • the fractionation method used in the present invention may be any of a fixed bed method, a moving bed method, and a simulated moving bed method.
  • the thus-obtained high-content 2-D-darcopyranosyl-L-ascorbic acid of the present invention desirably a high-content having a purity of 70% or more, may be in solution or concentrated. Even if it is syrup-shaped, it is stable and easy to handle. Usually, it is further concentrated to obtain a supersaturated solution, crystallized, and further stabilized to produce crystalline 2-P- ⁇ -D-darcopyranosyl-L-ascorbic acid.
  • the 1-D-darcopyranosyl-L-ascorbic acid-rich substance is the first to produce a direct-reducing binding isomer that inhibits the precipitation of crystal 2-11- ⁇ -D-darcopyranosyl-L-ascorbic acid. Since it does not substantially contain the compound in the sugar transfer reaction stage, the precipitation of the crystal is extremely easy and the crystal yield is high.
  • the crystallization method is usually to add a solution of supersaturated 2-hi- ⁇ -D-darcopyranosyl-L-ascorbic acid at 20 to 60 ° C to an auxiliary crystal can. Coexist with 2%, cool slowly with slow stirring, and promote crystallization to make a mass kit.
  • the crystal 2-0-a—D-darcopyranosyl-L-ascorbic acid of the present invention can be converted into a supersaturated 2-— ⁇ — ⁇ — D—darcopyranosyl-L—ascorbic acid solution in the form of a crystal 2--1-a — D-Darcopyranosyl-L-ascorbic acid can be easily crystallized by adding it as a seed crystal.
  • the crystal 2— ⁇ __ ⁇ —D—darcopyranosyl-L-ascorbic acid powder can be collected.
  • the method may be appropriately selected, and examples thereof include a honey separating method, a block grinding method, a fluid granulation method, and a spray drying method.
  • the crystal 2-0-a-D-darcoviranosyl-L-ascorbic acid obtained in this way is practically non-hygroscopic or hardly hygroscopic, although it varies somewhat depending on its purity and crystallization rate.
  • the crystalline powder is fluid, has no concern for sticking, and its excellent features are as follows.
  • L-ascorbic acid Unlike L-ascorbic acid, it does not easily cause the Maillard reaction. Therefore, even if amino acids, peptides, proteins, lipids, carbohydrates, physiologically active substances, and the like coexist, unnecessary reactions do not occur, but rather these substances are stabilized.
  • L-ascorbic acid is produced by hydrolysis, and exhibits the same reducing and antioxidant effects as L-ascorbic acid.
  • L-ascorbic acid and ⁇ -darcosyl sugar compound are substances that are produced and metabolized in vivo by ingestion, their safety is extremely high.
  • the powder is substantially non-hygroscopic or hardly hygroscopic and does not solidify, the powder is flowable and easy to handle, and its packaging, transportation, The physical and human costs required for storage can be significantly reduced.
  • the seed culture was obtained by rotating and shaking at 230 rpm for 48 hours. Add about 20 L of a medium of the same composition as that used for seed culture in a 30 L fermenter, heat sterilize, cool to a temperature of 27 ° C, and add 1% (v / v), and cultured with aeration and agitation for 48 hours while maintaining the temperature at 27 ° C and pH 6.0 to 9.0. After the culture, the enzymatic activity in the culture was measured and found to be about 1.1 units / ml. The culture was centrifuged (10, 000 rpm, 30 minutes), and the enzyme activity of about 18 L of the collected supernatant was measured. The activity of Q!
  • -Isomaltosylglucosaccharide-forming enzyme was determined. The activity was about 1.06 units / m 1 (total activity about 19,100 units).
  • the activity of ⁇ ; -isomaltosyldarco saccharide-forming enzyme is measured as follows. Malttriose was dissolved in 100 mM glycine-Na ⁇ H buffer (pH 8.4) to give a concentration of 2 w / v% as a substrate solution, and the substrate solution was added to 0.5 ml of the enzyme solution.
  • the enzyme reaction was carried out at 40 ° C for 60 minutes, the reaction solution was boiled for 10 minutes to stop the reaction, and the maltose content in the reaction solution was determined by high performance liquid chromatography (HPL). The determination was performed by the C) method.
  • One unit of the activity of the ⁇ -isomaltosyldarco saccharide-forming enzyme was defined as the amount of the enzyme that produces 1 mol of maltose per minute under the above conditions.
  • the HP LC was performed using a Shodex KS-801 column (manufactured by Showa Denko KK) at a column temperature of 60 ° C and a water flow rate of 0.5 m 1 / min as the eluent. Detection was performed using a differential refractometer “RI-8012” (manufactured by Tosoh Corporation).
  • RI-8012 differential refractometer
  • This crude enzyme solution was subjected to ion exchange chromatography (gel amount: 380 ml) using “DEAE_Toyopearl (Toyopear1) 65S” gel (manufactured by Tosoh Corporation).
  • the enzymatically active component was adsorbed on the “DE AE-Toyopearl 1 (650) S” gel and eluted with a linear gradient from 0 M to 1 M NaC1 concentration.
  • the sildarco saccharide-forming enzyme active component was eluted at a concentration of about 0.2 M in a linear gradient of NaC1. There, a fraction of a-isomaltosyldarco saccharide-forming enzyme activity was recovered, and a partially purified enzyme preparation having ⁇ -isomaltosyl-darco saccharide-forming enzyme activity was recovered.
  • the obtained partially purified enzyme preparation having ⁇ -isomaltosyldarco saccharide-forming enzyme activity was dialyzed against 10 mM phosphate buffer ( ⁇ 7.0) containing ammonium persulfate.
  • the dialysate was centrifuged to remove insolubles, and affinity chromatography was performed using Sephacryl HR S-200 gel (Amersham manufactured by Falmacia Biotech). 0 ml).
  • the enzyme active component was adsorbed on the “Sephacry 1 HR S-200” gel and eluted with a linear gradient of ammonium sulfate, which decreased in concentration from 1M to 0M.
  • the enzymatic activity was detected in a fraction with a linear gradient of ammonium sulfate at about 0.2 M.
  • a purified enzyme preparation was used.
  • Table 1 shows the enzymatic activities of the enzyme preparations having ⁇ -isomaltosildarco saccharide-forming enzyme activity at each step of the purification:;, specific activity, and yield.
  • the a-isomaltosyldarco saccharide-forming enzyme preparation obtained by the method of Experiment 2 was subjected to SDS-polyacrylamide gel electrophoresis (gel concentration 7.5 w / v%) and electrophoresed simultaneously.
  • the molecular weight of the enzyme was measured in comparison with a molecular weight marker 1 (manufactured by Nippon Bio's Ladd Laboratories Inc.).
  • the molecular weight of the enzyme was approximately 94,000 ⁇ 20,000 daltons.
  • the temperature stability of the isomaltosyldarco saccharide-forming enzyme was determined by using a solution containing the enzyme (20 mM glycine in NaOH buffer, pH 8.0) in the absence of Ca 2+ or ImM Ca 2 + Maintained at each temperature in the presence for 60 minutes, cooled with water, and then measured for the remaining isomaltosyldarco saccharide-forming enzyme activity.
  • the pH stability was determined by keeping ⁇ -isomaltosyldarcosaccharide-forming enzyme in each of the 5 OmM buffers at 4 ° C for 24 hours. Was adjusted to 8.0, and the remaining enzyme activity was measured. As a result, the temperature stability was up to about 55 ° C (without Ca 2+ ) or up to about 60 ° C (with 1 mM Ca 2+ ), and the pH stability was about 5.0 to less. It was 9.0. Experiment 3-5
  • N-terminal amino acid sequence of a-isomaltosyldarco saccharide-forming enzyme purified by the method of Experiment 2 was analyzed using “Protein Sequencer Model 473 AJ (manufactured by Applied Biosystems)”. At this time, it was found that the ⁇ -isomaltosyldarco saccharide-forming enzyme had the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing.
  • saccharides were used as sugar donors in the transglycosylation reaction using iso-isomaltosyldarco saccharide-forming enzyme, and tested for transglycosylation to L-ascorbic acid. That is, glucose, maltose, maltotriose, maltotetraose, maltopen-yose, maltohexaose, maltohepuse, isomaltose, isomalttriose, isopanoose, trehalose, kojibiose, nigerose, neotrehalose, celloose Mouth Biose, Gentibiose, Maltitol, Maltitol, Lactose, Sucrose, Elrose, Serginose, Mal A solution containing tosyldarcoside, isomaltosyldarcoside, ⁇ -cyclodextrin, ⁇ -cyclodextrin, r-cyclodextrin, amylose, amycin
  • L-ascorbic acid was added to each solution to adjust the carbohydrate concentration and the L-ascorbic acid concentration to 2 w / v%.
  • 3 units of purified isomaltosyldarco saccharifying enzyme obtained by the method of Experiment 2 was added in an amount of 3 units per gram of saccharide solid, and the substrate concentration was adjusted to 1.6 w / V%. These were operated at 40 ° C. and pH 6.0 for 20 hours.
  • TLC thin-layer silica gel chromatography
  • the ⁇ -isomaltosyldarco saccharide-forming enzyme is a carbohydrate having a glucose polymerization degree of 3 or more and a maltose structure at the non-reducing terminal among the various carbohydrates tested.
  • transglycosylation to L-ascorbic acid was found to produce 2 -—- ⁇ -D-darcopyranosyl-L-ascorbic acid.
  • saccharides having a glucose polymerization degree of 2 act on maltose, kodibiose, nigerose, neotrehalose, maltotriitol, and erulose to form 2 -—- D-darcopyranosyl-L-ascorbic acid.
  • aqueous solution containing L-ascorbic acid at a concentration of 5 w / v%, maltopenose at a concentration of 5 w / v%, and 1 mM calcium chloride was adjusted to pH 5.0.
  • boil the reaction solution for 10 minutes to stop the reaction take a part of the reaction solution, and add dalcoamylase (manufactured by Seikagaku Corporation) to maltopentane. After adding 40 units per 1 g of aose and acting at 40 ° C.
  • the total composition including the glycosyltransferase to ascorbic acid, was measured using a differential refractometer “RI-8020” (manufactured by Tosoichi Co., Ltd.), and the transglycosylation to ascorbic acid and ascorbic acid was performed.
  • the amount of the product produced per solid in the reaction solution hereinafter, the amount produced means the amount produced per solid in the reaction solution unless otherwise specified). Table 3 shows the results.
  • a transfer product different from 2—O— ⁇ —D—glucopyranosyl-L—ascorbic acid is 2— 2—a-D-glucopyranosyl—L—ascorbic acid with ⁇ —D —2— ⁇ — ⁇ -glycosyl—L—ascorbic acid to which one or more dalcopyranosyl residues are added, and as a result of the darcoamylase action, this 2— ⁇ - ⁇ —glycosyl_L—ascorbic acid Or two or more — D — darcopyranosyl residues are hydrolyzed, and it is judged that 2- ⁇ - ⁇ -glycosyl-L-ascorbic acid is converted to 2-0--1 D-darcopyranosyl-L-ascorbic acid .
  • L-ascorbic acid should be adjusted to a concentration of 0.5 wZ V%, maltopenose to a concentration of 0.5 w / v%, and calcium chloride to a concentration of 1 mM in 10 OmM acetic acid. Dissolve it in a buffer solution (pH 5.0) to make a substrate solution, add 0.2 ml of the enzyme solution to 2 ml of the substrate solution, and carry out the enzyme reaction at 30 to 65 ° C for 30 minutes. The reaction was boiled for 10 minutes to stop the reaction. The amount of 2-0- ⁇ -D-darcopyranosyl-L-ascorbic acid produced in the reaction solution was determined by separating and measuring by the HPLC method described in Experiment 5.
  • the optimal temperature for the ⁇ -isomaltosyldarcosaccharogenic enzyme's 2--2-D-darcopyranosyl-L-ascorbic acid-forming activity was about 30 min at PH 5.0 and 30 min. 55 to 60 ° C.
  • the optimum pH was about 5.5 at a reaction of 40 ° (:, 30 minutes).
  • CGTase derived from Bacillus' stear-mouth samophilus (manufactured by Hayashibara Biochemical Laboratories Co., Ltd.) was used in place of ⁇ -isomaltosyldal saccharogenic enzyme at a rate of 300 g / g of partially degraded starch.
  • the same procedure was followed except that the units were used, and similarly, 2- 2a-D-darcopyranosyl-1-L-ascorbic acid, and 5 ⁇ 1-1 ⁇ -D-glucopyranosyl-L-ascorbic acid, 6- ⁇ -1- ⁇ -D —Darcopyranosyl—The amount of L-ascorbic acid produced was examined. Table 4 shows the results. Table 4
  • ⁇ -isomaltosyldarcosaccharide-forming enzyme produced only 2—Phiichi D—Darcopyranosyl-L—ascorbic acid as a transfer product to ascorbic acid and the other 5 — ⁇ — ⁇ -D-Glucopyranosyl-L-ascorbic acid and 6-0-a-D-Darcopyrano-sylu L-ascorbic acid were not produced.
  • control CGTase had almost the same amount of 2-O——D_darcopyranosyl-L-ascorbic acid as the ⁇ -isomaltosyldarcosaccharide-forming enzyme, but 5—0— ⁇ -D—
  • the production amounts of darcopyranosyl-L-ascorbic acid and 6-O-hi-D-darcopyranosyl-L-ascorbic acid were 0.8% and 0.3%, respectively.
  • reaction solution was heated at about 100 ° C for 10 minutes to inactivate the enzyme, and then cooled to 40 ° C, and dalcoamylase (manufactured by Seikagaku Corporation) was partially digested with starch. Forty hours were added at 40 ° C for 40 hours per g.
  • dalcoamylase manufactured by Seikagaku Corporation
  • These reaction solutions were subjected to the HPLC method described in Experiment 5 to obtain 2-O-a-D-darcopyranosyl_L-ascorbic acid, and 5--1-en-D-darcopyranosyl-l-ascorbic acid, 6-O — A— D-Darcopyranosyl-L-ascorbic acid production was measured to determine the production per substrate solid.
  • a transfer reaction was performed using purified ⁇ -isomaltosyldarcosaccharide-forming enzyme alone and, as a control, CGTase alone, and the same operation was performed. Table 5 shows the results
  • Zg it is 5 ⁇ -a-D-Darcopyranosyl-L-ascorbic acid and 6- ⁇ 1 ⁇ ; Production of 1-D-Darcopyranosyl-L-ascorbic acid was detected at production rates of 0.8% and 0.1%, respectively.
  • Example 1 Examples of the method of the present invention for producing a high content of 2-0- ⁇ -D-darcopyranosyl-L-ascorbic acid will be described below.
  • Example 1
  • dextrin 9 parts by weight of dextrin (DE about 6) are dissolved by heating in 28 parts by weight of water. While maintaining the pH, add 3 parts by weight of L-ascorbic acid, maintain the pH at 5.0 and 50 ° C, and add the ⁇ -isomaltosyldarco saccharide-forming enzyme activity prepared by the method of Experiment 2. Was added to 8 units per gram of dextrin and reacted for 42 hours. Next, the reaction solution was heated to inactivate the enzyme, and then adjusted to 55 ° C., to which 50 units of dalcoamylase was added per 1 g of dextrin, and reacted for 16 hours.
  • reaction mixture was analyzed by HP LC, and it was found that it contained about 24.9% of 2-O-hy-D-darcopyranosyl-L-ascorbic acid per solid, and 5.
  • O- ⁇ -D-darcopyranosyl. L-ascorbic acid and 6-0-a-D-darcopyranosyl — L-ascorbic acid was not detected.
  • reaction solution is heated to inactivate the enzyme, decolorized and filtered with activated carbon, the filtrate is applied to a column of a cation exchange resin (H + type) to be demineralized, and then anion exchange resin (OH— type)
  • H + type cation exchange resin
  • anion exchange resin OH— type
  • the anion was adsorbed to the resin, washed with water to remove D-glucose, etc., and then dissolved and concentrated with a 0.5 N monohydrochloric acid solution.
  • This crystal 2-0- ⁇ -D-darcopyranosyl-L-ascorbic acid product does not exhibit direct reduction, has sufficient stability and physiological activity, and is not only a vitamin C enhancer, but also a taste improver, sourness It can be advantageously used in foods and beverages, anti-sensitivity agents, cosmetics, etc. as agents, stabilizers, quality improving agents, antioxidants, bioactive agents, ultraviolet absorbers, pharmaceutical raw materials, chemicals, etc.
  • this fraction was prepared according to the method of Example 1, It was concentrated, crystallized and nectarized to obtain crystalline 2-O-a-D-darcopyranosyl-L-ascorbic acid in a yield of about 63% based on the solid content of the mother liquor.
  • Example 3 This product can be advantageously used for foods and drinks, drugs for anti-sensitivity diseases, cosmetics, and the like, as in the case of Example 1.
  • Example 3 Example 3
  • A. gloviformis A19 strain (FERM BP-750) is mutated according to a conventional method using nitrosoguanidine as a mutagenizing agent to produce ⁇ ; —isomaltosyldarco saccharide-forming enzyme with high productivity and 0%.
  • nitrosoguanidine
  • isomaltosyldarco saccharide-forming enzyme with high productivity and 0%.
  • a non-isomaltosyltransferase producing strain was obtained.
  • this mutant was partially degraded with starch (Paindex # 4) 4.0% (wZv), yeast extract Asahi Mist 1.8% (wZv), diphosphate Lithium 0.1% (w / v), sodium phosphate12 hydrate 0.06% (wZv), magnesium sulfate7 hydrate 0.05% (wZv), and 7 in a liquid medium consisting of water
  • the cells were cultured with aeration and stirring for 2 hours. After the cultivation, the enzyme activity in the culture solution was measured. The activity of ⁇ -isomaltosyldarcosaccharide-forming enzyme was about 14 units Zm 1, and no a; -isomaltosyltransferase activity was detected.
  • the obtained culture solution was sterilized with an SF membrane in accordance with a conventional method, and concentrated with a UF membrane to obtain a concentrated solution having ⁇ -isomaltosyldarcosaccharide-forming enzyme activity.
  • the ⁇ -isomaltosyldarcosaccharide-forming enzyme activity was about 350 units Zm1.
  • Corn starch was made into starch milk with a concentration of about 20%, and 0.1% calcium carbonate was added to this to adjust the pH to 6.5, and ⁇ -amylase (trade name: “Taramimil 60 L”, NOPO Was added at 0.3% per gram of starch, reacted at 95 ° C for 15 minutes, then autoclaved at 120 ° C for 20 minutes, and further quenched to about 53 ° C to reduce the DE 4 liquefied solution was obtained, and this liquefied solution 8 8 weight Then, 12 parts by weight of L-ascorbic acid was added to the mixture, and the above-mentioned concentrated solution having isomaltosyldarcosaccharide-forming enzyme activity was added to dextrin while maintaining the pH at 5.0 and 53 ° C. 10 units per gram and CGTase (manufactured by Hayashibara Biochemical Laboratory Co., Ltd.) were added and 1 unit per gram of dextrin was reacted for 36 hours.
  • reaction solution was heated to inactivate the enzyme, the temperature was adjusted to 55 ° C., 50 units of dalcoamylase was added per gram of dextrin, and the mixture was reacted for 16 hours.
  • reaction mixture was analyzed by HPLC, it contained about 33.5% of 2-O- ⁇ -D-darcopyranosyl-L-ascorbic acid per solid, and 5-0-—D_darcopyranosyl-L-ascorbin Acid and 6-O- ⁇ -D-darcopyranosyl-L-ascorbic acid were not detected.
  • the reaction solution is heated to inactivate the enzyme, decolorized and filtered with activated carbon, and the filtrate is applied to a column of thione exchange resin ( ⁇ + type) to be demineralized. Apply on a column to adsorb the anion to the resin, wash with water to remove D-glucose, etc., elute with 0.5N monohydrochloric acid solution, concentrate, and solidify 2-0-en-D-darcopyranosyl-L-ascorbic acid A concentrated liquid containing about 56.1% per product was obtained.
  • This fraction was concentrated under reduced pressure to a concentration of about 77%. This was taken in an auxiliary crystal can, and 1% of crystal 2— ⁇ -I-D—darcoviranosyl-L-ascorbic acid was added as a seed crystal at 40 ° C. With slow stirring, slowly cool and take 2 days 20 and further centrifuged in a basket-type centrifuge to convert 2-0- ⁇ -D-darcopyranosyl-L-ascorbic acid as the first crystal to a solid yield of about 48 with respect to the raw material L-ascorbic acid. %.
  • the obtained mother liquor was filtered by decolorization with activated carbon, concentrated, and subjected to column chromatography using a strongly acidic cation exchange resin according to the method of Example 2 to obtain 2-O-a-D- A darcopyranosyl-L-ascorbic acid-rich fraction was collected.
  • Crystals 1 and 2 of the first and second crystals obtained by the above method 2 O—a—D—darcopyranosyl—Lascorbic acid are dried, mixed and pulverized to obtain crystals 2 having a purity of 99% or more.
  • This product does not exhibit direct reduction, has sufficient stability and physiological activity, and is not only a vitamin C enhancer, but also a taste improver, sour agent, stabilizer, quality improver, antioxidant It can be advantageously used in foods and drinks, anti-sensitivity agents, cosmetics, etc., as bioactive agents, ultraviolet absorbers, pharmaceutical raw materials, chemicals and the like.
  • Example 4
  • dextrin 6 parts by weight of dextrin (DE approx. 6) are dissolved in 30 parts by weight of water by heating, kept under reduction, added with 4 parts by weight of L-ascorbic acid, and maintained at pH 5.0 and 40 ° C.
  • the filtrate When the filtrate was analyzed by HPLC, it contained about 10.2% of 2-O-D-darcopyranosyl-L-ascorbic acid per solid, and 5-0- ⁇ -D-Darcopyranosyl-L -Ascorbic acid and 6_0- ⁇ -D-darcopyranosyl_L-ascorbic acid were not detected.
  • the filtrate is applied to a column of a cation exchange resin ( ⁇ + type) to demineralize, then applied to a column of anion exchange resin ( ⁇ _ type) to adsorb the anion to the resin and washed with water to remove D-glucose, etc.
  • the mixture was eluted with a 0.5N hydrochloric acid solution, concentrated, and subjected to column chromatography using a strongly acidic cation exchange resin according to the method of Example 1 to give 2 -—- ⁇ -D-darcoviranosyl_L-ascorbic acid.
  • the high-content fraction was collected and concentrated under reduced pressure to a concentration of about 77%.
  • the temperature was lowered to 20 ° C over 2 days by slowly cooling with gentle stirring while keeping the temperature at 0 ° C. Then, the crystals were centrifuged in a basket-type centrifuge, and the crystals having a purity of 98% or more were obtained.
  • the present invention relates to a method for producing 2- ⁇ a-; D-darcopyranosyl-L-ascorbic acid, and more particularly, to ⁇ -isomal
  • a transglycosylation reaction to L-ascorbic acid is carried out using tosyldarco saccharogenic enzyme or in combination with ⁇ -isomaltosyldarco saccharogenic enzyme and cyclomaltodextrin / darcanotransferase.
  • the present invention relates to a method for producing 2 -—- ⁇ -D-darcopyranosyl-1-L-ascorbic acid utilizing a reaction for producing D-darcopyranosyl-L-ascorbic acid.
  • a-D-darcoviranosyl-L-ascorbin which is a binding isomer of 2-0-Hi-D-darcoviranosyl-L-ascorbic acid
  • Acid and 6- ⁇ - ⁇ -D-darcopyranosyl-L-ascorbic acid are not formed or their production is so low that they cannot be detected.
  • 2 -—- a-D-dalcoviranosyl_L-ascorbic acid can be advantageously collected without being adversely affected by these bond isomers.
  • 2-0_ ⁇ -D-darcopyranosyl-L-ascorbic acid useful in the art can be industrially produced in large quantities at low cost and in high yield.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明の課題は、5-O-α-D-グルコピラノシル-L-アスコルビン酸及び6-O-α-D-グルコピラノシル-L-アスコルビン酸を生成しないか若しくはそれらの生成が検出できないほど少ない2-O-α-D-グルコピラノシル-L-アスコルビン酸反応方法を提供するとともに本反応方法を用いた2-O-α-D-グルコピラノシル-L-アスコルビン酸の製造方法を提供することであり、L-アスコルビン酸とα-グルコシル糖化合物とを含有する溶液にα-イソマルトシルグルコ糖質生成酵素またはα-イソマルトシルグルコ糖質生成酵素とシクロマルトデキストリン・グルカノトランスフェラーゼ(EC2.4.1.19)とを作用させ、2-O-α-D-グルコピラノシル-L-アスコルビン酸を生成せしめ、これを採取することを特徴とする2-O-α-D-グルコピラノシル-L-アスコルビン酸の製造方法を提供することで前記課題を解決する。

Description

明 細 書
2 -0- ο:— D—ダルコピラノシル— Lーァスコルビン酸の製造方法 技術分野
本発明は、 2— 0— ひ一 D—ダルコピラノシル _ Lーァスコルビン酸 の製造方法に関し、 更に詳細には、 α—イソマルトシルダルコ糖質生成 酵素を用いて、 又は、 α—イソマルトシルダルコ糖質生成酵素とシクロ マルトデキストリン ' ダルカノトランスフヱラ一ゼとを併用して糖転移 反応せしめ、 得られる糖転移物を含有する溶液からの 2—Ο— a _D— ダルコビラノシル— L—ァスコルビン酸の製造方法に関する。 背景技術
2 _ O— ひ — D—ダルコピラノシル _ Lーァスコルビン酸は、 特開平 3 - 1 3 5 9 9 2号公報、 特開平 ·3 - 1 3 9 2 8 8号公報などに開示さ れているように、 化学式 1で示される化学構造を有しており、 直接還元 性を示さず、 安定性に優れ、 しかも生体内で容易に加水分解され、 L一 ァスコルビン酸本来の生理活性を発揮する Lーァスコルビン酸の糖誘導 体である。
化学式 1 :
CH2OH
Figure imgf000002_0001
その工業的製造方法としては、 特開平 3— 1 8 3 4 9 2号公報に開示 されているように、 例えば、 L—ァスコルビン酸と α _ダルコシル糖化 合物とを含有する溶液に糖転移酵素または糖転移酵素とダルコアミラ一 ゼ (E C 3. 2. 1. 3 ) とを作用させて得られる 2 — O— a—D— ダルコビラノシルー L—ァスコルビン酸とともにそれ以外の夾雑物を含 有する溶液を原料溶液として、 強酸性カチオン交換樹脂を用いるカラム クロマトグラフィーを行ない、 この溶出液の 2—〇一 α— D—ダルコピ ラノシルー L—ァスコルビン酸高含有画分を採取することにより、 2 - 0- α— D—ダルコビラノシル— L—ァスコルビン酸高含有液を製造す る方法、 更に、 これを濃縮して過飽和とし、 結晶 2 — 0— ひ — D—ダル コピラノシル— Lーァスコルビン酸を製造する方法が開示されている。 しかしながら、 糖転移酵素または糖転移酵素とダルコアミラーゼとを 作用させて得られる Lーァスコルビン酸糖誘導体は、 例えば、 糖転移酵 素がシクロマルトデキストリン'グルカノ トランスフェラ一ゼ(E C 2. 4. 1. 1 9 ) (以下、本明細書では、 C GT a s eと略することもある。) の場合には、 2 - 0- _D _ダルコピラノシル _ L—ァスコルビン酸 以外に、 副生成物として、 その結合異性体である 5 — 0— ひ—D—ダル コピラノシル— L—ァスコルビン酸 (化学式 2 ) 及び 6 -0- a -D - ダルコピラノシルー Lーァスコルビン酸 (化学式 3 ) が生成し、 また、 糖転移酵素が ο;—ダルコシダ一ゼの場合には、 2 — O— a— D—ダルコ ピラノシル— Lーァスコルビン酸以外に、 6 —〇— a— D—ダルコピラ ノシル _ L—ァスコルビン酸が生成することが知られている。 強酸性力 チオン交換樹脂を用いるカラムクロマトグラフィーの際、 原料溶液に含 まれる Lーァスコルビン酸やグルコースは 2 一〇一 α— D—ダルコピラ ノシル— Lーァスコルビン酸と分子量が異なるために 2 —〇ー α— D— ダルコビラノシルー L—ァスコルビン酸と分離が比較的に容易であるが、 一方、 副生成物として生成した 5 - 0 - ひ — D—ダルコピラノシルー L ーァスコルビン酸及び 6—0— a;— D—ダルコピラノシル— L一ァスコ ルビン酸は 2 — 0— ひ一 D—ダルコピラノシル—Lーァスコルビン酸と 分子量が同一であるために 2—〇一 α— D—ダルコピラノシル— Lーァ スコルビン酸と分離が困難であり、 2—0— «— D—ダルコピラノシル 一 Lーァスコルビン酸高含有画分の純度向上を妨げ、 更に、 過飽和溶液 からの結晶 2—〇一ひ一 D—ダルコピラノシルー L—ァスコルビン酸の 析出をも阻害する。
化学式 2 :
Figure imgf000004_0001
化学式 3
Figure imgf000004_0002
更に、 これら結合異性体である 5—〇— ο; — D—ダルコピラノシルー L—ァスコルピン酸及び 6 一 O— α'— D—グルコピラノシル一 Lーァス ,
4
コルビン酸は、 結晶 2— 0— 一 D—ダルコピラノシルー Lーァスコル ビン酸を分離除去した母液中に残存し、 こ.の母液からの更なる結晶 2— 0 _ α— D—ダルコピラノシルー Lーァスコルビン酸の析出を阻害し、 2番晶、 3番晶の回収量を著しく低下させる。
5— Ο— ひ一 D—ダルコピラノシル—L—ァスコルビン酸及び 6― 0 一 α— D—ダルコピラノシル一 Lーァスコルビン酸の除去方法としては、 特開平 5 - 1 1 7 2 9 0号公報に開示されているように、 これら結合異 性体が直接還元性を有するため酸化されやすいという特性を利用して、 2 - 0 - α - D -グルコピラノシル一 L—ァスコルビン酸とともにこれ ら結合異性体とを含有する溶液を酸化処理して、 直接還元性を示す結合 異性体だけを酸化せしめ、 次いで、 強酸性カチオン交換樹脂を用いる力 ラムクロマトグラフィーを行なうことにより、 2 - O - —D—ダルコ ピラノシル— Lーァスコルビン酸と L—ァスコルビン酸糖誘導体の酸化 物 (以下、 単に Lーァスコルビン酸糖誘導体酸化物と略称する。) とを分 離し、 2—0— α—D—ダルコピラノシルー L—ァスコルビン酸高含有 物を製造する方法が開示されている。
しかしながら、 上記のようにして、 2— O— a— D—ダルコピラノシ ルー Lーァスコルビン酸とともにこれら直接還元性を示す結合異性体を 含有する溶液を酸化処理するには、 できるだけ、 2— Ο— α— D—ダル コピラノシルー L—ァスコルビン酸に作用することなく、 直接還元性を 示す結合異性体を優先的に酸化する条件が必要で、 例えば、 通気攪拌な どの好気的条件にさらす方法が採用され、 この際、 ρ Ηを弱酸性乃至ァ ルカリ性にしたり、 銅塩、 鉄塩などの金属塩、 水蒸気炭、 塩化亜鉛炭な どの活性炭など酸化促進剤を共存させたり、 過酸化水素、 過マンガン酸 カリウムなどの酸化剤を添加するなど操作が煩雑で、 また、 酸化反応が 不十分であれば、 直接還元性を示す結合異性体が残存し、 酸化反応が過 度であれば、 2— O— ο;— D —ダルコビラノシル _ Lーァスコルビン酸 にまで作用が及び、 結果として得られる 2—0— ひ 一 D —ダルコピラノ シル—L —ァスコルビン酸高含有物の収率が低下することとなるため、 酸化反応の工程にはその適正な反応進行を維持するための正確な制御が 必要で、 それに掛かる経済的労力には多大なものがあった。
本発明は、 上記のような従来の 2 - 0 - α— D _ダルコピラノシルー Lーァスコルビン酸の製造方法の欠点を解消するために為されたもので、 結合異性体を分離する必要がなく、 効率良く 2—〇一ひ—D —ダルコピ ラノシル— L—ァスコルビン酸を製造することができる 2 - 0 - a - D —ダルコピラノシル—L —ァスコルビン酸の製造方法を提供するもので ある。 発明の開示
本発明者等は、 2—〇—《一 D _ダルコピラノシル— L 一ァスコルビ ン酸の製造において、 その'初発工程である Lーァスコルビン酸と α —グ ルコシル糖化合物とを含有する溶液に糖転移酵素または糖転移酵素とグ ルコアミラーゼとを作用させる工程で得られる 2— Ο— α — D —ダルコ ピラノシル _ L —ァスコルビン酸を含有する溶液中に夾雑物である 5― 0 - α— D—ダルコピラノシルー Lーァスコルピン酸及び 6— 0—《— D _ダルコピラノシル _ L —ァスコルビン酸を生成しないか、 若しくは 検出されないほど生成量が少なくすることができれば、 これら直接還元 性を示す Lーァスコルビン酸糖誘導体を酸化処理するなどの除去工程を 必要とすることなく、 高純度の 2—〇一《— D —ダルコピラノシルー L ーァスコルビン酸高含有物を工業的規模で高収率に製造できるのではな いかと考え、 5 —〇一 a—D _ダルコピラノシル _ Lーァスコルビン酸 及び 6— Ο—《— D —ダルコピラノシル _ Lーァスコルビン酸を生成し ないか若しくはそれらの生成が検出できないほど少ない 2— 0— α— D 一ダルコピラノシル— L —ァスコルビン酸生成反応の確立を目指して、 研究を続けてきた。
その結果、 意外にも、 Lーァスコルビン酸と —ダルコシル糖化合物 とを含有する溶液に、 糖転移酵素として、 先に発明した国際公開番号 W 0 0 2 / 1 0 3 6 1号明細書で開示した a —イソマルトシルダルコ糖質 生成酵素を作用させることによって、 2— Ο— a— D—ダルコピラノシ ル— L —ァスコルビン酸が著量生成し、 しかも、 夾雑物である 5— Ο— a—D _ダルコビラノシル—L—ァスコルビン酸及び 6— 0— a— D— ダルコピラノシル _ L—ァスコルピン酸を生成しないか若しくはそれら の生成が検出できないほど少ないことを見いだした。
更に、 糖転移反応する際、 該 α —イソマルトシルダルコ糖質生成酵素 と C G T a s eとを併用し糖転移反応を起こさせるか、 又は、 これら酵 素の併用による糖転移反応を起こさせ、 次いで、 ダルコアミラーゼを作 用させることによって、 得られる 2—O—ひ 一 D —ダルコピラノシル一 L—ァスコルビン酸の生成量は、 糖転移酵素として 0;—イソマルトシル ダルコ糖質生成酵素を単独で使用する場合よりも増加し、 しかも、 その 時の 5—〇一 一 D _ダルコピラノシル一 L—ァスコルビン酸及び 6― 0— a — D —ダルコピラノシル _ L—ァスコルビン酸等の結合異性体は、 糖転移酵素として α —イソマルトシルダルコ糖質生成酵素を単独で使用 する場合と同様に生成しないか若しくはそれらの生成が検出できないほ ど少ないことも判明した。
上記のような糖転移反応によって得られる 2— O— α;— D —ダルコピ ラノシルー Lーァスコルビン酸を含有する糖転移反応生成物は、 強酸性 カチオン交換樹脂を用いるカラムクロマトグラフィーでは分離が困難で あった 5 _〇一 α— D —ダルコピラノシルー L —ァスコルビン酸及び 6 一 O— α— D—ダルコピラノシルー L一ァスコルビン酸等の結合異性体 を含有していないか、 若しくは含有していてもその量が極めて少ないた め、 該クロマトグラフィ一によって目的とする 2— 0— α— D—ダルコ ビラノシル _ L—ァスコルビン酸が容易に、 且つ高収率で分離 ·精製で き、 高純度の 2—O— a—D—ダルコピラノシルー L—ァスコルビン酸 高含有物を工業的規模で高収率に製造できるものである。
また、 このようにして得られる高純度の 2— O— CK— D—ダルコピラ ノシルー Lーァスコルビン酸高含有物の過飽和溶液は、 結晶の析出が容 易で収率も高く、 結晶 2— 0— α— D—ダルコピラノシルー L一ァスコ ルビン酸の工業的製造方法としてきわめて有利であることが判明した。 本明細書でいう生成しないか若しくはそれらの生成が検出できないほ ど少ないとは、 反応液固形物当り 0 . l w/w % (以下、 本明細書では、 特にことわらない限り、 %は wZw %を意味する。)未満の生成量を意味 する。 また、 本明細書でいう直接還元性を示すとは、 Lーァスコルビン 酸の場合と同様に、 そのままで、 2 , 6—ジクロルフエノールインドフ ェノールを還元脱色することを意味する。
また、 本明細書でいう L—ァスコルビン酸とは、 Lーァスコルビン酸 のみならず、 L—ァスコルビン酸のアル力リ金属塩若しくはアル力リ土 類金属塩などの L—ァスコルビン酸塩、 または、 それらの混合物を意味 する。
また、 同様に、 本明細書でいう 2— O— a—D—ダルコピラノシル— L—ァスコルビン酸、 5— 0—《— D—ダルコピラノシルー L一ァスコ ルビン酸、 6—〇一 a— D—ダルコビラノシル一 Lーァスコルビン酸、 α—ダリコシル一 Lーァスコルビン酸などについても、 特に不都合が生 じない限り、 遊離の酸のみならず、 それらの塩を 意味する。
以下、 本発明の α —イソマル卜シルダルコ糖質生成酵素による糖転移 反応方法、 または、 α —イソマルトシルダルコ糖質生成酵素と C G T a s eとの併用による糖転移方法について、 より具体的に説明する。 図面の簡単な説明
図 1は、 ァルスロバクタ一 · グロビホルミス A 1 9由来の α —イソマ ル卜シルダルコ糖質生成酵素の 2— Ο— ひ 一 D —ダルコピラノシル— L ーァスコルビン酸生成活性に及ぼす温度の影響を示す図である。
図 2は、 ァルスロバクタ一 · グロビホルミス A 1 9由来の α —イソマ ルトシルダルコ糖質生成酵素の 2 - 0 - α — D _ダルコピラノシル _ L ーァスコルピン酸生成活性に及ぼす ρ Ηの影響を示す図である。 発明を実施するための最良の形態
本発明で用いる α —ダルコシル糖化合物は、 α —グルコースを有する 化合物であり、 α —イソマルトシルダルコ糖質生成酵素単独、 または、 α —イソマルトシルダルコ糖質生成酵素と C G T a s eとの併用によつ て、 L—ァスコルビン酸から 2 - 0 - a—D —ダルコピラノシルー L 一 ァスコルビン酸又は Z及び 2— O 1—グリコシル— L—ァスコルビン 酸を生成できるものであればよく、 例えば、 マルトース、 マルトトリオ ース、 マルトテトラオース、 マルトペン夕オース、 マルトへキサオース、 マルトヘプ夕オース、 マルトォク夕オースなどのマルトオリゴ糖、 マル トデキストリン、 シクロデキストリン、 アミロース、 アミ口べクチン、 溶性澱粉、 液化澱粉、 糊化澱粉、 グリコーゲンなどが適宜選択できる。 反応時の Lーァスコルビン酸の濃度は、 通常、 1 %以上、 望ましくは、 約 2乃至 3 0 % ( w/ v ) であればよく、 «—ダルコシル糖化合物は、 Lーァスコルビン酸 1重量部に対して、 通常、 約 0 . 5乃至 3 0重量部 の範囲が好適である。 本発明に用いる α—ィソマルトシルダルコ糖質生成酵素は、 例えば、 国際公開番号 W O 0 2 / 1 0 3 6 1号明細書に記載の如く、 非還元性末 端の結合様式として α— 1 , ダルコシル結合を有するグルコース重合 度が 2以上の糖質に対して、 該糖質から、 還元力を実質的に増加するこ となく α—ダルコシル転移することによって、 非還元性末端の結合様式 としてひ一 1, 6ダルコシル結合を有し、 この非還元末端以外の結合様 式として α— 1 , 4ダルコシル結合を有するグルコース重合度が 3以上 の糖質を生成する酵素活性を有しており、 具体例としては、 下記の理化 学的性質を有する酵素がある。 尚、 前記非還元性末端の結合様式として ひ一 1 , 4ダルコシル結合を有するグルコース重合度が 2以上の糖質と しては、 マルトオリゴ糖、 マルトデキストリン、 アミロデキストリン、 アミロース、 アミ口べクチン、 溶性澱粉、 液化澱粉、 糊化澱粉及びダリ コ一ゲンから選ばれる 1種又は 2種以上の糖質を例示できる。
( 1 ) 作用
非還元性末端の結合様式として α— 1, 4ダルコシル結合を有するグ ルコース重合度が 2以上の糖.質から、 還元力を実質的に増加することな く -ダルコシル転移することによって、 非還元性末端の結合様式とし て α— 1, 6ダルコシル結合を有し、 この非還元末端以外の結合様式と して α— 1 , 4ダルコシル結合を有するグルコース重合度が 3以上の糖 質を生成する。
( 2 ) 分子量
S D S —ゲル電気泳動法により、 約 7 4, 0 0 0乃至 1 6 0 , 0 0 0 ダルトンの範囲内で分子量を有する。
( 3 ) 等電点
アンフォライン含有電気泳動法により、 p i約 3 . 8乃至 7 . 8の範囲 内に等電点を有する。 ( 4 ) 至適温度
p H 6. 0、 60分間反応で、 約 40乃至 5 0 °Cの範囲内で至適温度を 有する。
p H 6. 0、 60分間反応で、 1 mMC a 2+存在下、 約 45乃至 5 5 °C の範囲内に至適温度を有する。
pH 8. 4、 60分間反応で、 約 6 0 °Cに至適温度を有する。 または、 p H 8. 4、 60分間反応で ImM C a 2 +存在下、 約 6 5 °Cに至適温 度を有する。
( 5) 至適 pH
3 5 °C, 60分間反応で、 pH約 6. 0乃至 8. 4の範囲内に至適 p Hを有する。
( 6 ) 温度安定性
PH 6. 0、 6 0分間保持する条件で、 約 45 °C以下に温度安定域を 有する。
p H 6. 0、 6 0分間保持する条件で、 1 mMC a 2+存在下、 約 5 0 °C 以下に温度安定域を有する。
PH 8. 0、 60分間保持する条件で、 約 5 5°C以下に温度安定域を有 する。 または、
P H 8. 0、 6 0分間保持する条件で、 1 mMC a 2+存在下、 約 6 0 °C 以下に温度安定域を有する。
(7) pH安定性
4°C, 24時間保持する条件で、 pH約 4. 5乃至 1 0. 0の範囲内 に安定 P H域を有する。
(8) N末端アミノ酸配列
チロシン一バリン一セリン一セリン一ロイシン一グリシン一ァスパラギ ン一口イシンーィソロイシン(配列表における配列番号 1 )、 ヒスチジン 一バリン―セリンーァラニン一ロイシン一グリシン一ァスパラギン一口 イシン一口イシン (配列表における配列番号 2)、 または、 ァラニンープ 口リン一口イシン一グリシン一パリン—ダル夕ミン—アルギニンーァラ ニン一グルタミン一フエ二ルァラニン一グルタミン一セリン一グリシン (配列表における配列番号 3) を有する場合がある。
本発明に用いる α—イソマル卜シルダルコ糖質生成酵素は、 糖転移反 応の供与体として、 非還元性末端の結合様式が α— 1 , 4ダルコシル結 合であるグルコース重合度が 2以上の糖質を用いると、 L一ァスコルビ ン酸に糖転移し 2— Ο— α— D—ダルコピラノシルー L—ァスコルビン 酸、 及び、 更にこの 2— 0_ α— D—ダルコピラノシルー L—ァスコル ビン酸のダルコピラノシル基に 一ダルコピラノシル残基が 1個または 2個以上転移した 2— O— ひ一ダリコシルー L—ァスコルビン酸を生成 する。
本発明に用いるひ一イソマルトシルダルコ糖質生成酵素としては、 例 えば、 ァルスロパクター属及びバチルス属などに属する細菌由来の酵素 があり、 例えば、 アルスロバクタ一 · グロビホルミス (A r t h r o b a c t e r g l o b i f o rm i s ) A 1 9株 (F E RM B P - 7 5 9 0 )、 バチルス ·グロビスポルス (B a c i l l u s g l o b i s p o r u s ) C 9株 (F E RM B P— 7 1 4 3)、 バチルス ·グロビス ポルス (B a c i 1 1 u s g l o b i s p o r u s ) C 1 1株 ( F E RM B P— 7 1 44)、 バチルス ·グロビスポルス (B a c i l l u s g l o b i s p o r u s ) N 7 5株 (F E RM B P— 7 5 9 0) など を挙げることができる。 勿論、 NTGなどの化学変異誘発剤または紫外 線や照射線などを用いた人為的変異を施したり、突然変異株を分離して、 一イソマルトシルダルコ糖質生成酵素高生産株などを取得し、 その変 異株由来の酵素も有利に利用できる。 また、 α;—イソマルトシルダルコ糖質生成酵素のポリべプチドをコ一 ドする遺伝子 DNAを化学合成したり、 本来、 該遺伝子 DNAを保有す る細胞からクロ一ニングしたりして該遺伝子 DNAを得た後、 該遺伝子 DN Aをそのまま、 若しくは 1個または 2個以上の DNAを他の DNA に置換したり、 1個または 2個以上の DNAを欠失または付加、 挿入し て、 同種または異種の細胞に導入し発現させた、 所謂、 セルフクロー二 ング体及び組換え体の由来の酵素であってもよい。
本発明に用いる C GT a s eは、 例えば、 バチルス (B a c i 1 1 u s ) 属、 クレブシ一ラ (K l e b s i e 1 1 a) 属、 サーモアナエロパ クタ一 (Th e r mo a n a e r o b a c t e r) 属、 ブレビパクテリ ゥム (B r e v i b a c t e r i um) 属、 サーモコッカス (T h e r mo c o c c u s ) 属などに属する細菌由来の酵素が適宜選択される。 また、 α—イソマルトシルダルコ糖質生成酵素の場合と同様に、 CGT a s eのポリぺプチドをコードする遺伝子 D N Aを化学合成したり、 本 来、 該遺伝子 DNAを保有する細胞からクローニングしたりして該遺伝 子 DNAを得た後、 該遺伝子 DNAをそのまま、 若しくは 1個または 2 個以上の DN Aを他の DN Aに置換したり、 1個または 2個以上の DN Aを欠失または付加、 挿入して、 同種または異種の細胞に導入し発現さ せた、 所謂、 セルフクローニング体及び組換え体の由来の酵素であって もよい。
これら糖転移酵素は、必ずしも精製して使用する必要はなく、通常は、 粗酵素で本発明の目的を達成することができる。 必要ならば、 公知の各 種方法で精製して使用してもよい。
また、 使用酵素量と反応時間とは、 密接な関係があり、 通常は、 経済 性の点から約 3乃至 8 0時間で反応を終了するように酵素量が選ばれる。 また、 ひ一イソマルトシルダルコ糖質生成酵素と C GT a s eとを併 用して使用する場合、 C GT a s eの使用量が過剰であると、 CGT a s eの糖転移反応による副生成物である 5— 0— ひ — D—ダルコピラノ シルー Lーァスコルビン酸及び 6— 0 _ «— D—ダルコピラノシル _ L ーァスコルピン酸の生成量が著しく増加し、 本発明の効果が発揮できな くなる。 したがって、 本発明に用いる CGT a s eの量は、 望ましくは、 基質の ο;—ダルコシル糖化合物 1グラム当り約 0. 0 1乃至 50単位の 範囲から選択される。 なお、 ここでいう C GT a s eの酵素活性を示す 単位は、 2 0mMの酢酸緩衝液 (pH 5. 5) 及び 2 mMの塩化カルシ ゥムを含む 0. 3 % (w/v) の澱粉溶液に C GT a s eを添加し、 4 0°C, 1 0分間反応することで測定し、 その酵素活性 1単位は、 1 5m gの溶液状澱粉のヨウ素呈色を完全に消失させる酵素量とする。
また、 0;—ィソマルトシルダルコ糖質生成酵素と C GT a s e とを 別々の担体に固定化し、 または、 両酵素を同一の担体に固定化し、 得ら れる固定化された糖転移酵素をバッチ式で繰り返し、 または連続式で反 応に利用することも有利に実施できる。
本発明の糖転移方法は、 通常、 前述の Lーァスコルビン酸と α—ダル コシル糖化合物とを含有する溶液に a—ィソマルトシルダルコ糖質生成 酵素、 または、 ひ —イソマルトシルダルコ糖質生成酵素と C GT a s e とを加え、 該両酵素が充分作用する条件、 望ましくは、 11約3乃至1 0、 温度 3 0乃至 7 0°Cの範囲から選ばれる反応条件にして行う。
また、 反応中に L—ァスコルビン酸が酸化分解を受け易いので、 でき るだけ嫌気または還元状態で遮光下に維持するのが望ましく、 必要なら ば、 チォ尿素、 硫化水素などを共存させて反応させることも有利に実施 できる。
本発明のひ —イソマルトシルダルコ糖質生成酵素単独、 または、 a— イソマルトシルダルコ糖質生成酵素と CGT a s eとを併用して、 L一 ァスコルビン酸に糖転移させると、 2 - 0 - _ D _ダルコピラノシル 一 L—ァスコルビン酸が生成するとともに、 α— D —ダルコピラノシル 残基が更に 1個又は 2個以上付加した 2— 0— ひ—グリコシルー Lーァ スコルビン酸も混在して生成する。
以上述べたように、 本発明の α —イソマルトシルダルコ糖質生成酵素 単独、 または、 α —イソマルトシルダルコ糖質生成酵素と C G T a s e との併用による糖転移反応を採用すると、 L —ァスコルビン酸と α—グ ルコシル糖化合物とから、 2— Ο— a— D—ダルコピラノシル— L—ァ スコルビン酸が生成するとともに、 α— D—ダルコピラノシル残基が更 に 1個又は 2個以上付加した 2—Ο— α —グリコシル— L 一ァスコルビ ン酸も混在して生成するものの、 工業的カラムクロマトグラフィーなど で分離困難な夾雑物である 5— Ο— a—D—ダルコピラノシル— Lーァ スコルビン酸など Lーァスコルビン酸の 5位水酸基への糖転移物や 6 - 0— α— D _グルコピラノシルー L —ァスコルビン酸など L—ァスコル ビン酸の 6位水酸基への糖転移物の副生成は無いか検出できないほど少 ない。
本発明の α—イソマルトシルダルコ糖質生成酵素単独、 または、 α _ ィソマルトシルダルコ糖質生成酵素と C G T a s eとの併用による糖転 移反応によって得られる生成物にダルコアミラーゼを作用させると、 2 — O— ひ — D _ダルコビラノシル _ L—ァスコルビン酸より高分子の 2 一 0— a —グリコシル— L—ァスコルビン酸のダリコシル部分の - 1 , 4結合又は α— 1 , 6結合を加水分解し、 2 —〇— α — D—ダルコビラ ノシルー Lーァスコルビン酸を蓄積生成させることができる。
ダルコアミラーゼの作用条件は、 2—〇一 α - D -ダルコピラノシル 一 L —ァスコルビン酸より高分子の 2 — Ο— α—グリコシルー L —ァス コルビン酸を加水分解し、 2 - 0 - α — D —ダルコピラノシル一 L —ァ スコルビン酸を蓄積生成させることができる条件であればよく、 反応 p H、 反応温度、 作用量、 作用時間など適当な条件で実施すればよい。 ま た、 担体結合法、 架橋法、 又は包括法などで固定化されたグルコアミラ ーゼを用いて連続式に、 またはバッチ式にダルコアミラーゼ反応するこ とも、 反応後に膜分離などして、 反応液とダルコアミラーゼとを別々に 回収し、 ダルコアミラーゼを再利用することも有利に実施できる。
通常、 反応溶液は加熱するなどして酵素を失活させた後、 またはその まま、 活性炭で脱色し、 濾過して不溶物を除き、 必要であれば濃縮する。 得られる 2— O— a—D—ダルコピラノシル— L—ァスコルビン酸含有 溶液は、 目的とする 2—0— α— D—ダルコビラノシルー L—ァスコル ビン酸とともに、 夾雑物として未反応の L—ァスコルビン酸、 D—ダル コースなど中性糖質を含有している。 グルコースなどの中性糖質を、 公 知の方法、 例えば、 電気透析法、 ァニオン交換樹脂を用いるカラムクロ マトグラフィ一法などで分離、 除去、 又は低減させてもよい。 このよう にして得られる 2— O— a— D—グルコピラノシルー L—ァスコルビン 酸含有溶液を原料として、 強酸性カチオン交換樹脂を用いるカラムクロ マトグラフィ一を行い、 2—〇— a— D—ダルコピラノシルー L—ァス コルビン酸高含有画分を得る。
強酸性カチオン樹脂は、 公知の、 例えば、 スルホン酸基を結合したス チレン—ジビニルベンゼン架橋共重合体樹脂の N a +型、 K +型などのァ ルカリ金属塩型、 または、 C a + +型、 M g + +型などのアルカリ土類金属 塩型、 または H +型などが適宜使用され、 市販品としては、 例えば、 ダ ゥケミカル社製造の商品名『ダウエックス 5 0 W X 8』、 ローム &ハ一 ス社製造の商品名『アンバーライ ト C G— 6 0 0 0』、東京有機化学工業 株式会社製造の商品名『X T— 1 0 2 2 Ε』、三菱化学株式会社製造の商 品名 『ダイヤイオン S K 1 0 4』 などがある。 原料溶液として、 例えば、 目的とする 2 — 0— ひ 一 D—ダルコピラノ シル一 Lーァスコルビン酸とともに、 L—ァスコルビン酸、 D—ダルコ ースなどの夾雑物を含有する溶液を用いる場合には、 強酸性カチオン交 換樹脂を充填したカラムに原料溶液を流し、 次いで、 水で溶出し、 2— O— α— D—ダルコピラノシルー Lーァスコルビン酸高含有画分、 2 _ Ο— —D—ダルコピラノシル一 L—ァスコルビン酸 · L—ァスコルビ ン酸 · D—グルコース高含有画分、 Lーァスコルビン酸 · D—ダルコ一 ス高含有画分などの順に複数の画分に分画して、 この 2— O— Q; _ D— ダルコピラノシルー L—ァスコルビン酸高含有画分を採取することによ り 、 容易に 2—O—ひ—D—ダルコピラノシルー Lーァスコルビン酸高 含有物が製造される。
また、 原料溶液をカラムに流して分画するに際し、 既に得られている 2— O—ひ— D—ダルコピラノシル一 L一ァスコルビン酸 · L—ァスコ ルビン酸 · D―グルコース高含有画分などの 2— 0— ひ 一 D—ダルコピ ラノシル— Lーァスコルビン酸含有画分を原料溶液の前後に、 または、 原料溶液とともに流すことにより、分画に要する水の使用量を減少させ、 原料溶液から 2 - 0 - - Ό -グルコピラノシル— L—ァスコルビン酸 高含有物を高濃度、 高収率で採取することも有利に実施できる。 本発明 で使用される分画方式は固定床方式、 移動床方式、 擬似移動床方式のい ずれであってもよい。
このようにして得られる本発明の 2 —〇— ひ一 D—ダルコピラノシル 一 L—ァスコルビン酸高含有物、 望ましくは、 純度 7 0 %以上の高含有 物は、 溶液状であっても、 また濃縮してシラップ状であっても、 安定で あり、 その取り扱いは容易である。 通常、 更に濃縮して、 過飽和溶液と し、 結晶化して、 さらに安定化した結晶 2—〇ー α— D—ダルコピラノ シル— Lーァスコルビン酸を製造する。 本発明で使用する晶出用 2—〇 一 —D—ダルコピラノシルー Lーァスコルビン酸高含有物は、 結晶 2 一〇一 α— D—ダルコピラノシルー L—ァスコルビン酸の析出を阻害す る直接還元性を示す結合異性体を、 初発の糖転移反応段階で実質的に含 有していないので、 その結晶の析出は、 きわめて容易であり、 結晶収率 も高い。 晶出方法は、 通常、 2 0乃至 6 0 °Cの過飽和 2—ひ— α— D— ダルコピラノシル— L—ァスコルビン酸溶液を助晶缶【ことり、 これに種 結晶を望ましくは、 0 . 1乃至 2 %共存せしめて、 ゆっくり攪拌しつつ 徐冷し、 晶出を促してマスキットにすればよい。
このように、 本発明の結晶 2 - 0 - a — D—ダルコピラノシル一 L— ァスコルビン酸は、 過飽和 2— Ο—《— D —ダルコピラノシルー L—ァ スコルビン酸溶液に結晶 2—〇一 a— D—ダルコピラノシルー L—ァス コルビン酸を種晶として加えることにより容易に晶出させることができ る。 ·
晶出したマスキットから結晶 2— 0— α — D —ダルコピラノシルー L ーァスコルビン酸粉末を製造する方法としては、 結晶 2— Ο _ θί— D— ダルコピラノシルー L—ァスコルビン酸粉末を採取できる方法を適宜選 択すればよく、 例えば、 分蜜方法、 ブロック粉碎方法、 流動造粒方法、 噴霧乾燥方法などが挙げられる。
このようにして得られる結晶 2 - 0 - a—D —ダルコビラノシルー L —ァスコルビン酸は、 その純度、 晶出率によって多少変動するものの、 実質的に非吸湿性または、 難吸湿性であり、 その結晶粉末は流動性であ り、 固着の懸'念もなく、 その優れた特長は、 次の通りである。
( 1 ) 直接還元性を示さず、 きわめて安定である。
Lーァスコルビン酸とは違って、 メイラード反応を起こしにくい。 従つ て、 アミノ酸、 ペプチド、 蛋白質、 脂質、 糖質、 生理活性物質などが共 存しても無用の反応を起こさず、 むしろ、 これらの物質を安定化する。 (2) 加水分解を受けて L—ァスコルビン酸を生成し、 L—ァスコルビ ン酸と同様の還元作用、 抗酸化作用を示す。
(3) 体内の酵素により、 Lーァスコルビン酸と D—グルコースとに容 易に加水分解され、 Lーァスコルビン酸本来の生理活性を示す。
また、 ビタミン E、 ビタミン Pなどとの併用により、 その生理活性を 増強することができる。
(4) L—ァスコルビン酸と α—ダルコシル糖化合物とを経口摂取する ことにより、 生体内で生成され、 代謝される物質であることから、 その 安全性は極めて高い。
(5) 実質的に、 非吸湿性、 難吸湿性であるにもかかわらず、 水に対し て大きな溶解速度、 溶解度を有しており、 粉末、 顆粒、 錠剤などのビ夕 ミン剤、 サンドクリーム、 チョコレート、 チューィンガム、 即席ジユー ス、 即席調味料などの飲食物のビタミン C強化剤、 呈味改善剤、 酸味剤、 安定剤などとして有利に利用できる。
(6) 実質的に非吸湿性または難吸湿性であり、 固結しないことからそ の粉末は流動性であり、その取り扱いは容易で非晶質の場合と比較して、 その包装、 輸送、 貯蔵に要する物的、 人的経費が大幅に削減できる。 次に実験により本発明の Lーァスコルビン酸への糖転移方法をさらに 具体的に説明する。
< α—イソマル卜シルダルコ糖質生成酵素の生産 >
澱粉部分分解物 『パインデックス # 4』 4. 0 % (wZv)、 酵母抽出 物『アサヒミースト』 1. 8 % (wZ v)、 リン酸ニ力リウム 0. 1 % (w / v)、 リン酸ーナトリウム ' 1 2水塩 0. 0 6 % (w/ v), 硫酸マグ ネシゥム · 7水塩 0. 0 5 % (w/v)、 及び水からなる液体培地を、 5 00m l容三角フラスコに 1 00m lずつ入れ、 オートクレーブで 1 2 1 °C, 20分間滅菌し、 冷却して、 ァルスロパクター · グロビホルミス A 1 9株 (F ERM B P— 7 5 90) を接種し、 2 Ί。じ、 2 30 r p m で 48時間回転振盪培養したものを種培養とした。 容量 3 0 Lのファ一 メン夕一に種培養の場合と同組成の培地を約 2 0 L入れて、 加熱滅菌、 冷却して温度 2 7°Cとした後、 種培養液 1 % ( v/v) を接種し、 温度 27°C、 pH 6. 0乃至 9. 0に保ちつつ、 48時間通気攪拌培養した。 培養後、 培養物中の酵素活性を測定したところ、 ひ—イソマルトシルグ ルコ糖質生成酵素活性は約 1. 1単位/ m lであった。 この培養物を遠 心分離 ( 1 0, 0 0 0 r pm、 30分間) して回収した上清約 1 8 Lの 酵素活性を測定したところ、 Q!—イソマルトシルグルコ糖質生成酵素活 性は約 1. 0 6単位/ m 1 (総活性約 1 9, 1 0 0単位) であった。 尚、 ο;—イソマルトシルダルコ糖質生成酵素の活性測定は、 次のよう にして測定する。 マルトトリオースを濃度 2 w/v%となるよう 1 0 0 mMグリシン— N a〇H緩衝液 (pH 8. 4) に溶解させ基質液とし、 そ'の基質液 0. 5m 1に酵素液 0. 5m l加えて、 40°Cで 60分間酵 素反応し、 その反応液を 1 0分間煮沸して反応を停止させた後、 その反 応液中のマルトース含量を高速液体クロマトグラフィー (HPL C) 法 で定量することによって行った。 α—イソマルトシルダルコ糖質生成酵 素の活性 1単位は、 上記の条件下で 1分間に 1 モルのマルトースを生 成する酵素量と定義した。 尚、 HP L Cは、 『S h o d e x KS— 80 1カラム』 (昭和電工株式会社製造)を用い、 カラム温度 60°C、 溶 離液として水の流速 0. 5m 1 /m i n水の条件で行い、 検出は示差屈 折計 『R I— 8 0 1 2』 (東ソ一株式会社製造) を用いて行なった。 実験 2 く α—イソマルトシルダルコ糖質生成酵素の精製 >
実験 1の方法で得た培養上清約 1 8 Lを 8 0 %飽和硫安液で塩祈して 4°C、 24時間放置した後、 その塩析沈殿物を遠心分離 ( 1 0, 0 0 0 r pm、 3 0分間) して回収し 1 0 mMトリス ·塩酸緩衝液 ( p H 7. 5) に溶解後、 同緩衝液に対して透析して粗酵素液約 8 5 0 m lを得た。 'この粗酵素液は、 a—イソマルトシルダルコ糖質生成酵素活性を約 8 , 2 1 0単位含んでいた。 この粗酵素液を 『D E AE _トヨパール (T o y o p e a r 1 ) 6 5 0 S』 ゲル (東ソ一株式会社製造) を用いたィォ ン交換クロマトグラフィー (ゲル量 3 8 0 m l ) に供した。 酵素活性成 分は、 『D E AE—トヨパール (T o y o p e a r 1 ) 6 5 0 S』ゲルに は吸着し、 N a C 1濃度 0Mから 1 Mのリニアグラジェントで溶出させ たところ、 α—イソマルトシルダルコ糖質生成酵素活性成分は、 N a C 1のリニアグラジェン卜でその濃度が約 0. 2 M付近で溶出した。 そこ で、 a—イソマルトシルダルコ糖質生成酵素活性画分を回収し、 α—ィ ソマルトシルダルコ糖質生成酵素活性を有する部分精製酵素標品を回収 した。
得られた α—イソマルトシルダルコ糖質生成酵素活性を有する部分精 製酵素標品を 1 Μ硫安を含む 1 0 mMリン酸緩衝液 (ρ Η 7. 0) に対 して透析し、 この透析液を遠心分離して不溶物を除き、 『セファクリル (S e p h a c r y l ) HR S— 2 0 0』 ゲル (アマシャム ' フアル マシア ·バイォテク社製造) を用いたァフィ二ティーク口マトグラフィ 一 (ゲル量 5 0 0 m l ) に供した。 酵素活性成分は、 『セフアクリル (S e p h a c r y 1 HR S— 2 0 0』ゲルに吸着し、硫安 1 Mから 0 M に濃度低下するリ二アグラジェントで溶出させたところ、 ひ—イソマル トシルダルコ糖質生成酵素活性は、 硫安のリニアグラジェント濃度が約 0. 2 M付近の画分に検出された。 そこで、 本酵素活性画分を回収し、 精製酵素標品とした。 この精製の各ステップにおける α · ィソマルトシ ルダルコ糖質生成酵素活性を有する酵素標品の酵素活性: ;、 比活性、 収 率を表 1に示す。
表 1 :
Figure imgf000022_0001
精製した α—イソマルトシルダルコ糖質生成酵素標品を 7. 5 % (w / v) 濃度ポリアクリルアミドを含むゲル電気泳動により酵素標品の純 度を検定したところ、蛋白バンドは単一で純度の高い酵素標品であった。 実験 3
ぐ α—イソマルトシルダルコ糖質生成酵素の諸性質 >
実験 3— 1
<分子量 >
実験 2の方法で精製して得た a—イソマルトシルダルコ糖質生成酵素 標品を、 SD S—ポリアクリルアミドゲル電気泳動法 (ゲル濃度 7. 5 w/v%) に供し、 同時に泳動した分子量マーカ一 (日本バイオ ' ラッ ド · ラボラトリーズ株式会社製造) と比較して当該酵素の分子量を測定 した。 当該酵素の分子量は約 94, 0 0 0 ± 2 0, 0 0 0ダルトンであ つた。 実験 3— 2
<等電点 >
実験 2の方法で精製して得たひ一イソマルトシルダルコ糖質生成酵素 標品を、 2 wZv%アンフオライン (アマシャム · フアルマシア · バイ ォテク社製造) 含有等電点ポリアクリルアミドゲル電気泳動法に供し、 電気泳動後の蛋白バンド及びゲルの p Hを測定して当該酵素ポリべプチ ドの等電点を求めた。 その結果、 当該酵素の等電点は P I約 4. 3 ± 0. 5であった。 実験 3— 3
<作用温度及び ρΗ>
一イソマルトシルダルコ糖質生成酵素活性に及ぼす温度と Ρ Ηの影 響について、 各種温度、 ρΗ条件下、 実験 1に記載の α—イソマルトシ ルダルコ糖質生成酵素の活性測定法に準じて調べた。 その結果、 至適温 度は、 ρΗ 8. 4、 6 0分間反応で、 約 6 0°C (C a2 +非存在) 又は約
6 5 °C ( 1 mMC a 2+存在) で、 その至適 pHは、 3 5°C、 6 0分間反 応で約 8. 4であった。 実験 3— 4
く安定性 >
—イソマルトシルダルコ糖質生成酵素の温度安定性は、 当該酵素含 有溶液 ( 2 0 mMグリシン— N a OH緩衝液、 pH 8. 0) を C a 2+非 存在下または I mMC a 2+存在下で各温度に 6 0分間保持し、 水冷した 後、 残存するひ 一イソマルトシルダルコ糖質生成酵素活性を測定するこ とにより求めた。 又、 pH安定性は、 α—イソマルトシルダルコ糖質生 成酵素を各 Ρ Ηの 5 OmM緩衝液中で 4°C、 24時間保持した後、 p H を 8 . 0に調整し、 残存する酵素活性を測定することにより求めた。 そ の結果、 温度安定性は約 5 5 °Cまで (C a 2 +非存在) 又は約 6 0 °Cまで ( 1 mM C a 2 +存在) で、 p H安定性は約 5 . 0乃至 9 . 0であった。 実験 3 - 5
< N末端アミノ酸配列 >
実験 2の方法で精製して得た a—イソマルトシルダルコ糖質生成酵素 について、その N末端アミノ酸配列を、『プロテインシーケンサー モデ ル 4 7 3 AJ (アプライドバイオシステムズ社製造) を用いて分析したと ころ、 α—イソマルトシルダルコ糖質生成酵素は配列表に於ける配列番 号 3に示すアミノ酸配列を有することが判明した。
以上、 ァルスロパクター · グロビホルミス A 1 9株由来の《—イソマ ルトシルダルコ糖質生成酵素の調製方法及びその性質を示したが、 本発 明においては、 他の菌株由来の α—イソマルトシルダルコ糖質生成酵素 であっても用いることができる。 実験 4
< Lーァスコルビン酸への糖転移試験 >
以下に示す各種糖質が、 ひ一イソマルトシルダルコ糖質生成酵素を用 いる糖転移反応における糖供与体となり、 Lーァスコルビン酸へ糖転移 するかどうかを試験した。 すなわち、 グルコース、 マルトース、 マルト トリオ一ス、 マルトテトラオース、 マルトペン夕オース、 マルトへキサ オース、 マルトヘプ夕オース、 イソマルトース、 イソマルトトリオース、 イソパノ一ス、 トレハロース、 コージビオース、 ニゲロース、 ネオトレ ハロース、 セ口ビオース、 ゲンチビオース、 マルチトール、 マルトトリ ィトール、 ラクト一ス、 スクロース、 エルロース、 セラギノース、 マル トシルダルコシド、 イソマルトシルダルコシド、 α—シクロデキストリ ン、 β―シクロデキストリン、 r—シクロデキストリン、 アミロース、 アミ口べクチン、 グリコーゲン、 プルラン、 デキストランを含む溶液を 調製した。 それぞれ溶液に L—ァスコルビン酸を加えて、 糖質濃度及び Lーァスコルビン酸濃度を 2 w/v%に調整した。 これらの溶液に、 実 験 2の方法で得た精製ひ一イソマルトシルダルコ糖質生成酵素標品を糖 質固形物 1グラム当たりそれぞれ 3単位ずつ加え、 基質濃度を 1. 6w / V %になるように調整し、 これらを 40°C、 p H 6. 0で 2 0時間作 用させた。 酵素反応後の 2— O— a— D—ダルコピラノシル— Lーァス コルビン酸の生成を調べるため、シリカゲル薄層クロマトグラフィ一(以 下、 TL Cと略す。) を行なった。 展開溶媒として n—ブ夕ノール、 ピリ ' ジン、水混液(容量比 6 : 4 : 1 )、薄層プレー卜としてメルク社製造『キ ーゼルゲル 6 0 F 2 5 4』 (アルミプレート、 2 0 X 2 0 cm) を用い 1 回展開した後、 紫外線を薄層プレートに照射してァスコルビン酸及び 2 一〇一 a—D—ダルコピラノシル一 L—ァスコルビン酸検出し、 2—〇 一 a— D—ダルコビラノシルー L—ァスコルビン酸生成の有無を確認し た。 結果を表 2に示す。
表 2
Figure imgf000026_0001
表 2の結果から明らかなように、 α—イソマルトシルダルコ糖質生成 酵素は、 試験した各種糖質の内、 グルコース重合度が 3以上で、 非還元 末端にマルト一ス構造を有する糖質を糖供与体として、 L—ァスコルビ ン酸に糖転移し、 2— Ο— α— D—ダルコピラノシル— L一ァスコルビ ン酸を生成することが判明した。 又、 グルコース重合度が 2の糖質では、 マルトース、 コ一ジビオース、 ニゲロース、 ネオトレハロース、 マルト トリイ トール、 エルロースにも作用し 2— Ο— ひ 一 D—ダルコピラノシ ルー L—ァスコルビン酸を生成することが判明した。 実験 5
< Lーァスコルビン酸への糖転移生成物 >
L—ァスコルビン酸を濃度 5 w/ v %、 マルトペン夕オースを濃度 5 w/ v %、 及び 1 mMの塩化カルシウムを含む水溶液を p H 5 . 0に調 整し、 これに実験 2の方法で調製した精製 α—イソマルトシルダルコ糖 質生成酵素をマルトペン夕オース 1 g当たり 1 0単位になるように加え で 50°Cで 24時間反応させ、 その反応液を 1 0分間煮沸して反応を停 止させた後、 その反応液の一部分を採り、 それにダルコアミラーゼ (生 化学工業株式会社製造)をマルトペンタオース 1 g当たり 40単位加え、 40°Cで 1 6時間作用させた後、 1 0分間煮沸して反応を停止させた。 これら反応液中の Lーァスコルビン酸への糖転移生成物及び残存する L ーァスコルビン酸を、 以下の高速液体クロマトグラフィー (HP L C) 法で分離し測定した。 『Wa k o p a k WB— T— 3 30カラム』 (和 光純薬工業株式会社製造)を用い、 カラム温度 2 5°C、溶離液として 7 0 p pm硝酸水溶液の流速 0. 5m 1 /m i nの条件で行い、 検出は、 ァ スコルビン酸及びァスコルビン酸への糖転移物を分光光度計 『UV_ 8 020』 (東ソ一株式会社製造)を用いて波長 2 3 8 nm吸収で測定する とともに、 ァスコルビン酸及びァスコルビン酸への糖転移物を含めた全 組成を示差屈折計『R I — 8 0 20』 (東ソ一株式会社製造) を用いて測 定することで行ない、 ァスコルビン酸及びァスコルビン酸への糖転移物 の反応液固形物当りの生成量 (以下、 本明細書では、 特に断らない限り、 生成量は反応液固形物当りの生成量を意味する。) を求めた。それらの結 果を表 3に示す。
表 3 :
Figure imgf000027_0001
*: 2— Ο— a—D— ルコビラノシル一Lーァスコルビン酸に or—D- グルコビラノシル残基が更に 1個又は 2個以上付加したものを意味する c 表 3の結果から明らかなように、 α; —イソマルトシルダルコ糖質生成 酵素による Lーァスコルピン酸への糖転移生成物として、 2— 0— α— D—ダルコピラノシルー L —ァスコルビン酸が約 1 8 . 7 %生成すると ともに、 2— 0— α—ρ—ダルコピラノシルー Lーァスコルビン酸とは 異なる転移生成物が約 0 . 4 %生成することがわかった。 また、 この反 応液にダルコアミラ一ゼを作用させると、 2— Ο— ひ 一 D—ダルコピラ ノシル— Lーァスコルビン酸とは異なる転移生成物は消失し、 その消失 とともに 2—0— 一 D —ダルコピラノシル一 L—ァスコルビン酸量が 増加し、 Lーァスコルピン酸への糖転移生成物として、 2— O— ひ — D 一ダルコピラノシルー L —ァスコルビン酸のみが生成することが判明し た。 ダルコアミラ一ゼの作用特性を考慮すると、 2— O— α— D —グル コピラノシルー L —ァスコルビン酸とは異なる転移生成物は、 2— Ο— a - D -グルコピラノシル— L —ァスコルビン酸に α— D—ダルコピラ ノシル残基が更に 1個又は 2個以上付加した 2— Ο— α—グリコシル— L —ァスコルピン酸であり、 ダルコアミラーゼ作用の結果、 この 2— Ο - α —グリコシル _ Lーァスコルビン酸の 1個又は 2個以上付加した — D —ダルコピラノシル残基が加水分解され、 2—〇一 α—グリコシル 一 Lーァスコルビン酸が 2— 0— 一 D—ダルコピラノシル—Lーァス コルビン酸に変換されたと判断される。 実験 6
く 2— O— ひ 一 D—ダルコピラノシル一 Lーァスコルビン酸生成の作用 温度及び p H >
α —イソマルトシルダルコ糖質生成酵素の 2—〇_ α — D—ダルコピ ラノシル— Lーァスコルビン酸生成活性に及ぼす温度と Ρ Ηの影響につ いて、 各種温度、 ρ Η条件下で調べた。 2 _〇ー en— D —ダルコピラノ シルー Lーァスコルビン酸生成活性測定は、 次のようにして測定した。
( 1 )温度の影響については、 Lーァスコルビン酸を濃度 0. 5 wZ V %、 マルトペン夕オースを濃度 0. 5 w/v %、 及び塩化カルシウムを濃度 1 mMとなるように 1 0 O mM酢酸緩衝液 (p H 5. 0 ) に溶解させ基 質液とし、その基質液 2 m 1に酵素液 0. 2 m 1加えて、 3 0乃至 6 5 °C で 3 0分間酵素反応し、 その反応液を 1 0分間煮沸して反応を停止させ た。 その反応液中に生成した 2 - 0- α— D—ダルコピラノシル一 L一 ァスコルビン酸量は、 実験 5に記載の HP L C法により分離し測定する ことによって行った。
( 2 ) p Hの影響については、 Lーァスコルビン酸を濃度 0. 5 w/v %、 マルトペン夕オースを濃度 0. 5 w/v %、 及び塩化カルシウムを濃度 1 mMとなるように 1 0 0 mMの各種緩衝液に溶解させ基質液とした。 緩衝液の種類は、 p H 4. 1乃至 6. 4の範囲では酢酸緩衝液を用い、 p H 6. 7乃至 7. 5の範囲ではリン酸緩衝液を用い、 p H 7. 6乃至 8. 5の範囲ではトリス ·塩酸緩衝液を用いた。 その基質液 2 m 1 に酵 素液 0. 2 m l加えて、 4 0 °Cで 3 0分間酵素反応し、 その反応液を 1 0分間煮沸して反応を停止させた後、 その反応液中に生成した 2 — O— ひ— D—ダルコピラノシルー Lーァスコルビン酸量を HP L C法で定量 することによって行った。 それらの結果を図 1 (温度の影響) 及び図 2 (p Hの影響) に示した。
図 1から明らかなように、 α—イソマルトシルダルコ糖質生成酵素の 2 - - 一 D—ダルコピラノシル—Lーァスコルビン酸生成活性の至 適温度は、 P H 5. 0、 3 0分間反応で、 約 5 5乃至 6 0 °Cであった。 また、 図 2から明らかなように、 その至適 p Hは、 4 0 ° (:、 3 0分間反 応で約 5. 5であった。 実験 7
く 2—〇一 α— D—ダルコピラノシルー Lーァスコルビン酸生成 >
L—ァスコルビン酸を 5 %、 澱粉部分分解物 (商品名 『パインデック ス # 1』、松谷化学株式会社製造) を 5 %及び 1 mMの塩化カルシウムを 含む水溶液を p H 5 . 0に調整し、 これに実験 2の方法で調製した精製 ひ一イソマルトシルダルコ糖質生成酵素を澱粉部分分解物 1 g当たり 5 乃至 2 0単位になるように加えて 5 0 °Cで 4 8時間反応させた。 これら 反応液を約 1 0 0 °Cで 1 0分間加熱し、 酵素を失活させた後、 4 0 に 冷却し、 ダルコアミラーゼ (生化学工業株式会社製造) を澱粉部分分解 物 1 g当たり 4 0単位加え、 4 0 °Cで 1 6時間作用させた。 これら反応 液を実験 5に記載の H P L C法に供し、 標準品として、 市販の 2—〇_ ひ—D—ダルコピラノシル— L—ァスコルビン酸 (株式会社林原生物化 学研究所製造)、特許第 3 1 3 4 2 3 5号明細書に記載の方法で調製した 5 _〇— α— D _ダルコピラノシル— L—ァスコルビン酸及び 6 - 0 - 一 D—ダルコピラノシルー L—ァスコルビン酸を用いて、 2— 0— Q! 一 D—ダルコピラノシルー Lーァスコルビン酸、 及び 5— O— α— D— グルコピラノシル一 Lーァスコルビン酸、 6 - O - a - D -グルコピラ ノシルー Lーァスコルビン酸を分離し、 それぞれの生成量を測定し、 基 質固形物当りの生成率を求めた。 対照として、 α—イソマルトシルダル コ糖質生成酵素の代わりに、 バチルス 'ステア口サ一モフィルス由来の C G T a s e (株式会社林原生物化学研究所製造) を澱粉部分分解物 1 g当り 3 0 0単位用いた以外、 同じ操作を行い、 同様に、 2—〇一 a— D一ダルコピラノシル一 L—ァスコルビン酸、 及び 5 一〇一 α— D—グ ルコピラノシルー Lーァスコルビン酸、 6—〇一 α— D—ダルコピラノ シル— Lーァスコルビン酸の生成量を調べた。 それらの結果を表 4に示 す。 表 4
Figure imgf000031_0001
表 4の結果から明らかなように、 α—イソマル卜シルダルコ糖質生成 酵素は、 ァスコルビン酸への転移物として 2 —〇ー ひ一 D—ダルコピラ ノシルー L—ァスコルビン酸のみを生成し、 他の 5 — Ο— α— D—グル コピラノシル— Lーァスコルビン酸及び 6 —0— a— D—ダルコピラノ シルー L—ァスコルビン酸の生成されなかった。 一方、 対照の C G T a s eは、 α—イソマル卜シルダルコ糖質生成酵素とほぼ同じの 2— O— — D _ダルコピラノシルー Lーァスコルビン酸生成量であつたが、 5 — 0— α—D—ダルコピラノシル— L—ァスコルビン酸及び 6 — O— ひ 一 D—ダルコピラノシルー L—ァスコルビン酸の生成量は、 それぞれ、 0 . 8 %、 0 . 3 %であった。
以上の結果から、 C G T a s eのァスコルビン酸への糖転移は、 ァス コルビン酸の 2位水酸基だけでなく、 5位及び 6位水酸基にも転移し、 2 —〇一 a— D—ダルコピラノシル— L—ァスコルビン酸を生成すると ともに、 副生成物として 5—〇一 α;— D—ダルコピラノシル一 Lーァス コルビン酸及び 6 一〇一 a—D—ダルコビラノシル _ Lーァスコルビン 酸を生成するのに対して、 本発明の a—イソマルトシルダルコ糖質生成 酵素のァスコルビン酸への糖転移は、 ァスコルビン酸の 2位水酸基のみ に反応し、 特異的に 2 -0- α— D—ダルコピラノシルー Lーァスコル ビン酸を生成することが判明した。 実験 8
<C GT a s eとの併用試験〉
L—ァスコルビン酸を 9 %、 澱粉部分分解物 (商品名 『パインデック ス # 1 0 0』、松谷化学株式会社製造) を 2 1 %及び ImMの塩化カルシ ゥムを含む水溶液を PH 5. 0に調整し、 これに実験 2の方法で調製し た精製 α—イソマルトシルダルコ糖質生成酵素を澱粉部分分解物 1 g当 たり 1 0単位、 CGT a s e (株式会社林原生物化学研究所製造) を.1 乃至 1 0 0単位になるように加えて 5 0 °Cで 24時間反応させた。 これ ら反応液を約 1 0 0°Cで 1 0分間加熱し、 酵素を失活させた後、 40°C に冷却し、 ダルコアミラーゼ (生化学工業株式会社製造) を澱粉部分分 解物 1 g当たり 40単位加え、 40 °Cで 1 6時間作用させた。 これら反 応液を実験 5に記載の H P L C法に供し、 2— O— a— D—ダルコピラ ノシル _ L—ァスコルビン酸、 及び 5—〇一 en—D—ダルコピラノシル 一 L—ァスコルビン酸、 6— O— a— D—ダルコピラノシル— Lーァス コルビン酸の生成量を測定し、 基質固形物当りの生成量を求めた。 併せ て、 精製 α—イソマルトシルダルコ糖質生成酵素単独及び対照として、 C GT a s e単独で転移反応を行い同様に操作した。 それらの結果を表 5に示す。 表 5 :
Figure imgf000033_0001
表 5の結果から明らかなように、 α—イソマルトシルダルコ糖質生成 酵素単独の場合は、 上記の実験 7の結果と同様に、 ァスコルビン酸への 転移物として 2 - 0- 一 D—ダルコピラノシル一 L—ァスコルビン酸 のみを約 2 5 %生成量で生成し、 他の 5 — O— « _D—ダルコピラノシ ル一 L—ァスコルピン酸及び 6 - 0- « -D -ダルコピラノシル— L― ァスコルピン酸の生成は検出されなかった。 一イソマルトシルダルコ 糖質生成酵素と C GT a s eとを併用した場合は、 2—0— a— D—グ ルコピラノシル一 Lーァスコルビン酸の生成が増加し、 約 2 9乃至 3 1 %の生成量で、 併用する C GT a s eの使用量が 1乃至 2単位 Zgで は 5 _〇一 α— D—ダルコピラノシル— Lーァスコルビン酸及び 6— Ο 一《— D—ダルコピラノシルー L—ァスコルビン酸の生成は検出されず, 併用する C GT a s eの使用量が 5乃至 1 0単位/ gでは 5 —〇 _ α _ D _ダルコピラノシル— L—ァスコルビン酸の生成が約 0 - 1 %の生成 量で検出され、 併用する C GT a s eの使用量が 1 0 0単位 Zgでは 5 一〇— a—D—ダルコピラノシルー L—ァスコルビン酸及び 6—〇一 ο; 一 D—ダルコピラノシル— L—ァスコルビン酸の生成が、 それぞれ 0 . 8 %及び0 . 1 %の生成量で検出された。 対照の C G T a s e単独の場 合、 その使用量が 1乃至 2単位 Z gでは、 5— 0— α — D —ダルコピラ ノシルー Lーァスコルビン酸及び 6—〇一 a— D —ダルコビラノシルー L—ァスコルビン酸の生成は検出されないものの、 2 —0— a _ D—グ ルコピラノシルー Lーァスコルビン酸の生成量は約 4乃至 5 %と少量で、 また、 C G T a s e単独の使用量が 5単位/ g以上の場合では、 その使 用量の増加とともに 2— O— ひ 一 D —ダルコピラノシル一 L—ァスコル ビン酸の生成量が約 8 %から約 3 0 %に上昇するものの、 5 _ 0— α— D—ダルコピラノシル— Lーァスコルビン酸及び Ζ又は 6 — 0— a - D —ダルコビラノシル— L —ァスコルビン酸が生成することがわかった。 以上の結果から、 5 — Ο— α — D—ダルコピラノシルー L —ァスコル ビン酸及び Ζ又は 6— Ο— ο;— D —ダルコピラノシル— L 一ァスコルビ ン酸の生成が無いか若しくは検出できない使用量の C G T a s eを、 α —イソマルトシルダルコ糖質生成酵素と併用することによって、 2 —〇 一 — D —ダルコピラノシル— L —ァスコルビン酸の生成率を a; —イソ マルトシルダルコ糖質生成酵素単独使用の場合より増加させ、 且つ、 ひ 一イソマルトシルダルコ糖質生成酵素単独使用の場合と同様に、 5 — O 一 CK — D —ダルコピラノシル— Lーァスコルビン酸及び/又は 6 一 O— ο;— D—ダルコピラノシルー L —ァスコルビン酸の生成が無いか若しく は検出できないほどの極微量であることが判明した。
以下、 本発明の 2—0— α — D —ダルコピラノシルー L 一ァスコルビ ン酸高含有物の製造'方法についての実施例を述べる。 実施例 1
デキストリン (D E約 6 ) 9重量部を水 2 8重量部に加熱溶解し、 還 元下に保って、 Lーァスコルビン酸 3重量部を加え、 pH 5. 0、 5 0°C に維持しつつ、 これに実験 2の方法で調製した α—イソマルトシルダル コ糖質生成酵素活性を有する部分精製酵素標品をデキストリン 1グラム 当り 8単位加えて 42時間反応させた。 次に、 反応液を加熱して酵素を 失活させた後、 5 5°Cに調整し、 これにダルコアミラ一ゼをデキストリ ン 1 g当り 5 0単位加えて、 1 6時間反応させた。
反応液を HP L Cで分析したところ、 2 - O -ひ — D—ダルコピラノ シル— L—ァスコルビン酸を固形物当り約 2 4. 9 %含有しており、 5. 一 O— α—D—ダルコピラノシル— Lーァスコルビン酸及び 6 -0- a 一 D_ダルコピラノシル— L—ァスコルビン酸は検出されなかった。 さ らに、 本反応液を加熱して酵素を失活させ、 活性炭で脱色濾過し、 濾液 をカチオン交換樹脂 (H +型) のカラムにかけ脱ミネラルし、 次いで、 ァニオン交換樹脂 (OH—型) のカラムにかけァニオンを樹脂に吸着さ せ、 水洗して D—グルコースなどを除去後、 0. 5規定一塩酸溶液で溶 出、 濃縮した。
濃縮液を HP L Cで分析したところ、 2— O— ひ 一 D—ダルコピラノ シル— L—ァスコルビン酸を固形物当り約 5 2. 5 %、 L—ァスコルビ ン酸を固形物当り約 3 9 %含有しており、 5— 0— α— D—ダルコピラ ノシル— L—ァスコルビン酸及び 6— Ο— α— D _ダルコピラノシルー L—ァスコルビン酸は 0. 1 %未満であった。 本濃縮液を原料溶液とし て、 強酸性カチオン交換樹脂 (ローム &ハース社製造、 商品名 『アンバ 一ライ ト C G— 6 0 0 0』、 Η +型) を充填したカラムクロマトグラフィ 一を行い、 この溶出液の 2—〇一 a—D—ダルコピラノシルー Lーァス コルビン酸高含有画分を採取した。
本画分を H P L Cで分析したところ、 2—〇一 α— D—ダルコピラノ シル— Lーァスコルビン酸を固形物当り約 9 3. 6 %含有しており、 5 一 O— Q; _D—ダルコピラノシルー Lーァスコルビン酸及び 6 -0- 一 D—ダルコピラノシルー Lーァスコルピン酸は 0 . 1 %未満であった。 本画分を減圧濃縮して濃度約 7 7 %とし、 これを助晶缶にとり、 結晶 2 -0 - -Ό -ダルコビラノシルー Lーァスコルビン酸を種晶として 2 %加えて 4 0 °Cとし、 ゆっくり攪拌しつつ、 徐冷して 2日間を要して 2 0 °Cまで下げ、 更にバスケット型遠心分離機にかけ、 結晶一 0— ひ一 D一ダルコピラノシルー Lーァスコルビン酸を原料の L—ァスコルビン 酸に対して収率約 46 %で得た。 また、 母液として、 2— O— ひ一 D— ダルコピラノシル— L—ァスコルビン酸を固形物当り約 8 2. 3 %含有 する溶液を原料の L—ァスコルビン酸に対して固形物収率約 2 8 %で回 収した。
本結晶 2 - 0 - α—D—ダルコピラノシル— Lーァスコルビン酸品は、 直接還元性をしめさず、 安定性、 生理活性も充分で、 ビタミン C強化剤 としてばかりでなく、 呈味改善剤、 酸味剤、 安定剤、 品質改良剤、 抗酸 化剤、 生理活性剤、 紫外線吸収剤、 医薬原料、 化学品などとして、 飲食 物、 抗感受性疾患剤、 化粧品などに有利に利用できる。 実施例 2
実施例 1の方法で回収した母液を濃縮後、 実施例 2の方法に準じて、 強酸性カチオン交換樹脂を用いるカラムクロマトグラフィーを行い、 こ の溶出液の 2 - O- a - D -ダルコピラノシルー L—ァスコルビン酸高 含有画分を採取した。 本画分を H P L Cで分析したところ、 2 — O— Q; 一 D—ダルコピラノシルー Lーァスコルビン酸を固形物当り約 9 3 .
0 %含有しており、 5 -〇一 α— D -ダルコピラノシルー Lーァスコル ビン酸及び 6—〇— α—D—ダルコビラノシル—L—ァスコルビン酸は
0 . 1 %未満であった。 さらに、 本画分を、 実施例 1の方法に準じて、 濃縮、 晶出、 分蜜し、 結晶 2— O— a—D—ダルコピラノシルー L—ァ スコルビン酸を母液固形物当り収率約 6 3 %で得た。
本品は、 実施例 1の場合と同様に、 飲食物、 抗感受性疾患剤、 化粧品 などに有利に利用できる。 実施例 3
ァルスロバクタ一 · グロビホルミス A 1 9株 (F ERM B P— 7 5 9 0) を常法に従って、 変異剤としてニトロソグァ二ジンを用いて変異 させ、 α;—イソマルトシルダルコ糖質生成酵素高生産且つ 0;—イソマル トシル転移酵素非生産株を取得した。 この変異株を、 実験 1の方法に準 じて、 澱粉部分分解物 『パインデックス # 4』 4. 0 % (wZv)、 酵母 抽出物『アサヒミースト』 1. 8 % (wZv)、 リン酸ニ力リウム 0. 1 % (w/v)、 リン酸ーナトリウム · 1 2水塩 0. 06 % (wZv)、 硫酸 マグネシウム · 7水塩 0. 0 5 % (wZv)、 及び水からなる液体培地で 7 2時間通気攪拌培養した。 培養後、 培養液中の酵素活性を測定したと ころ、 α—イソマルトシルダルコ糖質生成酵素活性は約 1 4単位 Zm 1 で、 a; -イソマルトシル転移酵素活性は検出されなかった。 得られた培 養液を、 常法に従って、 S F膜で除菌し、 UF膜で濃縮し、 α _イソマ ルトシルダルコ糖質生成酵素活性を有する濃縮液を得た。 得られた濃縮 液の酵素活性を測定したところ、 α—イソマルトシルダルコ糖質生成酵 素活性は約 3 5 0単位 Zm 1であった。
とうもろこし澱粉を濃度約 2 0 %の澱粉乳とし、 これに炭酸カルシゥ ム 0. 1 %加え、 pH 6. 5に調整し、 α—アミラーゼ (商品名 『ター マミ一ル 6 0 L』、ノポ社製造)を澱粉グラム当たり 0. 3 %加え、 9 5°C で 1 5分間反応させ、 次いで 1 2 0°Cに 2 0分間オートクレープし、 更 に約 5 3 °Cに急冷して D E約 4の液化溶液を得、 この液化溶液 8 8重量 部に L —ァスコルビン酸 1 2重量部を加え、 p H 5 . 0、 5 3 °Cに維持 しつつ、 これに上記のひ 一イソマルトシルダルコ糖質生成酵素活性を有 する濃縮液をデキストリン 1グラム当り 1 0単位と C G T a s e (株式 会社林原生物化学研究所製造) をデキストリン 1グラム当り 1単位加え て 3 6時間反応させた。
反応液を加熱して酵素を失活させた後、 5 5 °Cに調整し、 これにダル コアミラーゼをデキストリン l g当り 5 0単位加えて、 1 6時間反応さ せた。 反応液を H P L Cで分析したところ、 2— O— α — D —ダルコピ ラノシルー L —ァスコルビン酸を固形物当り約 3 3 . 5 %含有しており、 5— 0— — D _ダルコピラノシル— L—ァスコルビン酸及び 6 — O— α— D —ダルコピラノシルー Lーァスコルピン酸は検出されなかった。 本反応液を加熱して酵素を失活させ、 活性炭で脱色濾過し、 濾液を力 チオン交換樹脂 (Η +型) のカラムにかけ脱ミネラルし、 次いで、 ァニ オン交換樹脂 (O H—型) のカラムにかけァニオンを樹脂に吸着させ、 水洗して D—グルコースなどを除去後、 0 . 5規定一塩酸溶液で溶出、 濃縮し、 2— 0— en— D —ダルコピラノシル— L —ァスコルビン酸を固 形物当り約 5 6 . 1 %含有する濃縮液を得た。
本濃縮液を原料溶液として、 実施例 1の方法に準じて強酸性カチオン 交換樹脂を用いたカラムクロマトグラフィ一を行い、 この溶出液の 2— 〇— α—D—ダルコピラノシル—L—ァスコルビン酸高含有画分を採取 し、 2一〇— α — D —ダルコピラノシルー L —ァスコルビン酸を固形物 当り約 9 6 . 4 %含有する 2 _〇— α — D—ダルコピラノシルー L —ァ スコルビン酸高含有画分を得た。
本画分を減圧濃縮して濃度約 7 7 %とし、 これを助晶缶にとり、 結晶 2 —〇一ひ—D —ダルコビラノシルー Lーァスコルビン酸を種晶として 1 %加えて 4 0 °Cとし、 ゆっく り攪拌しつつ、 徐冷して 2日間を要して 2 0 まで下げ、 更にバスケット型遠心分離機にかけ、 1番晶結晶とし て 2— 0— α — D —ダルコピラノシルー Lーァスコルビン酸を原料の L ーァスコルビン酸に対して固形物収率約 4 8 %で得た。 また、 母液とし て、 2 -〇— α— D _ダルコピラノシル— L—ァスコルビン酸を固形物 当り約 8 6 . 7 %含有する溶液を原料の Lーァスコルビン酸に対して固 形物収率約 2 6 %で回収した。
得られた母液を、 活性炭で脱色濾過し、 濃縮して、 実施例 2の方法に 準じて、 強酸性カチオン交換樹脂を用いるカラムクロマトグラフィーを 行い、 この溶出液の 2 - O - a - D -ダルコピラノシル— Lーァスコル ビン酸高含有画分を採取した。
本画分を H P L Cで分析したところ、 2 — 0 _ a — D—ダルコピラノ シル— Lーァスコルビン酸を固形物当り約 9 6 . 3 %含有しており、 5 — Ο— α— D —ダルコピラノシル _ L —ァスコルビン酸及び 6 - 0 - α 一 D—ダルコピラノシル _ L —ァスコルビン酸は 0 . 1 %未満であった。 本画分を、 実施例 1の方法に準じて、 濃縮、 晶出、 分蜜し、 2番晶結 晶として 2 — Ο— - Ώ -ダルコピラノシル一 L —ァスコルピン酸を母 液固形物当り収率約 6 5 %で得た。
上記の方法で得られた 1番晶及び 2番晶の結晶 2 — O— a—D —ダル コピラノシル— Lーァスコルビン酸をそれぞれ乾燥し、 混合して粉碎し て、 純度 9 9 %以上の結晶 2 —〇_ α— D—ダルコビラノシル— L —ァ スコルビン酸粉末を原料の L —ァスコルビン酸に対して固形物収率約 6 0 %で得た。
本品は、 直接還元性をしめさず、 安定性、 生理活性も充分で、 ビタミ ン C強化剤としてばかりでなく、 呈味改善剤、 酸味剤、 安定剤、 品質改 良剤、 抗酸化剤、 生理活性剤、 紫外線吸収剤、 医薬原料、 化学品などと して、 飲食物、 抗感受性疾患剤、 化粧品などに有利に利用できる。 実施例 4
国際公開番号 WO O 2 / 1 0 3 6 1号明細書に記載の方法に準じて、 澱粉部分分解物 『パインデックス # 4』 4. 0 % (w/v), 酵母抽出物 『アサヒミースト』 1. 8 % (wZv)、 リン酸二カリウム 0. 1 % (w /v)、 リン酸一ナトリウム · 1 2水塩 0. 0 6 % (wZv)、 硫酸マグ ネシゥム · 7水塩 0. 0 5 % (wZv)、 及び水からなる液体培地を用い て、 バチルス ·グロビスポルス C 1 1株 (F E RM B P - 7 1 44) を 4 8時間通気攪拌培養し、 遠心分離 (1 0, 0 0 0 r pm、 3 0分間) して回収した培養上清を 8 0 %飽和硫安液で塩祈し、透析した後、『セフ ァビーズ (S e p a b e a d s ) F P— DA 1 3』 ゲル (三菱化学株式 会社製造) を用いたイオン交換クロマトグラフィー、 続いて、 『セファク リル (S e p h a c r y l ) HR S— 2 0 0』 ゲル (アマシャム ' フ アルマシア ·バイオテク社製造を用いたァフィ二ティークロマ卜グラフ ィ一、 更に 『ブチル—トヨパール (B u t y l — T o y o p e a r l ) 6 5 0 M』 ゲル (東ソ一株式会社製造) を用いた疎水クロマトグラフィ ―、 再度 『セフアクリル (S e p h a c r y l ) HR S— 2 0 0』 ゲ ルを用いたァフィ二ティークロマトグラフィーを行い、 —イソマルト シルダルコ糖質生成酵素活性を約 2, 0 0 ひ単位有する精製酵素標品を 得た。
デキストリン (DE約 6) 6重量部を水 3 0重量部に加熱溶解し、 還 元下に保って、 L—ァスコルビン酸 4重量部を加え、 pH 5. 0、 40°C に維持しつつ、 これに上記の ο;—イソマルトシルダルコ糖質生成酵素活 性を有する精製酵素標品をデキストリン 1グラム当り 1単位と C GT a s e (株式会社林原生物化学研究所製造) をデキストリン 1グラム当り 2単位加えて 2 4時間反応させた。 反応液を加熱して酵素を失活させた 後、 5 5 °Cに調整し、 これにダルコアミラーゼをデキストリン 1 g当り 5 0単位加えて、 1 6時間反応させた。 この反応液を加熱して酵素を失 活させ、 活性炭で脱色濾過し、 濾液を得た
濾液を H P L Cで分析したところ、 2— O— 一 D—ダルコピラノシ ル—L—ァスコルビン酸を固形物当り約 1 0 . 2 %含有しており、 5― 0 - α—D —ダルコピラノシルー L—ァスコルビン酸及び 6 _ 0— α— D—ダルコピラノシル _ L—ァスコルビン酸は検出されなかった。 濾液をカチオン交換樹脂 (Η +型) のカラムにかけ脱ミネラルし、 次 いで、 ァニオン交換樹脂 (〇Η _型) のカラムにかけァニオンを樹脂に 吸着させ、 水洗して D—グルコースなどを除去後、 0 . 5規定一塩酸溶 液で溶出、 濃縮し、 実施例 1の方法に準じて強酸性カチオン交換樹脂を 用いたカラムクロマトグラフィ一を行い、 2— Ο _ α— D—ダルコビラ ノシル _ Lーァスコルビン酸高含有画分を採取し、 減圧濃縮して濃度約 7 7 %とし、 これを助晶缶にとり、 結晶 2—O— a—D —ダルコピラノ シルー L —ァスコルビン酸を種晶として 2 %加えて 4 0 °Cとし、 ゆつく り攪拌しつつ、 徐冷して 2日間を要して 2 0 °Cまで下げ、 更にバスケッ ト型遠心分離機にかけ、 純度 9 8 %以上の結晶 2— 0— ο;— D—ダルコ ピラノシルー L —ァスコルビン酸を原料の L —ァスコルピン酸に対して 固形物収率約 1 1 %で得た。 · 本品は、 直接還元性をしめさず、 安定性、 生理活性も充分で、 ビタミ ン C強化剤としてばかりでなく、 呈味改善剤、 酸味剤 安定剤、 品質改 良剤、 抗酸化剤、 生理活性剤、 紫外線吸収剤、 医薬原料、 化学品などと して、 飲食物、 抗感受性疾患剤、 化粧品などに有利に利用できる。 産業上の利用可能性
以上説明したように、 本発明は、 2—〇一 a;— D—ダルコピラノシル —Lーァスコルビン酸の製造方法に関し、 より詳細には、 α —イソマル トシルダルコ糖質生成酵素を用いて、 又は、 α—イソマル卜シルダルコ 糖質生成酵素とシクロマルトデキストリン · ダルカノトランスフェラー ゼとを併用して、 L—ァスコルビン酸に糖転移反応させ、 2— Ο— a— D—ダルコピラノシル— Lーァスコルビン酸を生成せしめる反応を利用 した 2— Ο— α—D—ダルコピラノシル一 L—ァスコルビン酸の製造方 法に関する発明である。 斯かる本発明によれば、 糖転移物中には、 2— 0— ひ一 D—ダルコビラノシル一 L—ァスコルビン酸の結合異性体であ る 5— O— a - D -ダルコビラノシルー Lーァスコルビン酸及び 6— Ο 一 α— D—ダルコピラノシルー Lーァスコルビン酸が生成してないか若 しくはそれらの生成が検出できないほど少なく、 糖転移物から 2— Ο— a— D—ダルコビラノシルー L—ァスコルビン酸を採取する工程におい て、 これら結合異性体の悪影響を受けることなく有利に 2— Ο— a— D 一ダルコビラノシル _ L—ァスコルビン酸を採取することができる。 斯 かる本発明によれば、 斯界に於いて有用な 2 — 0 _ α— D—ダルコピラ ノシルー Lーァスコルビン酸を工業的に大量かつ安価に高収率で製造し 得る。

Claims

請 求 の 範 囲
1. Lーァスコルビン酸と a—ダルコシル糖化合物とを含有する溶液に α—イソマルトシルダルコ糖質生成酵素または α—イソマルトシルグル コ糖質生成酵素とシクロマルトデキス卜リン ' ダルカノ トランスフェラ ーゼ (E C 2. 4. 1. 1 9 ) とを作用させ、 2 -O- a -D -ダル コピラノシル— L—ァスコルビン酸を生成せしめ、 これを採取すること を特徵とする 2—〇一 一D—ダルコピラノシル _ Lーァスコルビン酸 の製造方法。
2. a—イソマルトシルダルコ糖質生成酵素又は α—イソマル卜シルグ ルコ糖質生成酵素とシクロマルトデキストリン ' ダル力ノ トランスフエ ラ一ゼとを作用させた後に、 ダルコアミラーゼ (E C 3. 2. 1. 3) を作用させることを特徴とする請求の範囲第 1項記載の 2— O— a— D -ダルコピラノシルー Lーァスコルビン酸の製造方法。
3 · 2—〇ー CK— D—ダルコピラノシル— L—ァスコルビン酸を生成せ しめるに際し、 5— O— a -D-ダルコピラノシルー L—ァスコルビン 酸及び 6—〇一 α— D _ダルコピラノシル一 L—ァスコルビン酸を生成 しないか若しくはそれらの生成が検出できないほど少ないことを特徴と する請求の範囲第 1項又は第 2項記載の 2—〇— ひ一 D _ダルコピラノ シル _ L—ァスコルビン酸の製造方法。
4. 一ダルコシル糖化合物が、 マルトオリゴ糖、 マルトデキス卜リン、 シクロデキス卜リン、 アミロース、 アミ口べクチン、 溶性澱粉、 液化澱 粉、 糊化澱粉、 及びグリコーゲンから選ばれる 1種又は 2種以上の糖質 である請求の範囲第 1項、 第 2項又は第 3項に記載の 2—〇一 α— D— ダルコピラノシルー Lーァスコルビン酸の製造方法。
5. 生成する 2 -0- α一 D—ダルコピラノシルー L—ァスコルビン酸 が、 反応液固形物当り 2—0— α— D _ダルコピラノシルー L 一ァスコ ルビン酸を 1 0 wZw %以上含有し、 且つ、 反応液固形物当り 5 — 0— a - D -ダルコピラノシルー Lーァスコルビン酸及び 6 一 Ο— α — D— ダルコビラノシル _ Lーァスコルビン酸を 0 . 1 w/w %未満含有する ことを特徴とする請求の範囲第 1項乃至第 4項のいずれかに記載の 2— 〇一 α — D—ダルコピラノシルー L'—ァスコルビン酸の製造方法。
6 . 2— Ο— α— D _ダルコピラノシルー L _ァスコルビン酸を採取す る工程に於いて、 強酸性カチオン交 樹脂を用い、 更に、 必要に応じて、 粉末化工程又は結晶化工程を含むことを特徴とする請求の範囲第 1項乃 至第 5項のいずれかに記載の 2 — Ο— ひ—D—ダルコピラノシル— L 一 ァスコルビン酸の製造方法。
7 . 2 - 0 - α _ D—ダルコピラノシルー L 一ァスコルビン酸を採取す る工程に於いて、 2 - 0 - a — D —ダルコピラノシルー L —ァスコルビ ' ン酸をシラップ状、 粉末状又は結晶状で採取することを特徴とする請求 の範囲第 1項乃至第 6項のいずれかに記載の 2— 0 _ CK — D —ダルコピ ラノシルー L _ァスコルビン酸の製造方法。
8 . L —ァスコルビン酸と α —ダルコシル糖化合物とを含有する溶液に α —イソマルトシルダルコ糖質生成酵素または —イソマルトシルグル コ糖質生成酵素とシクロマルトデキストリン ' ダルカノトランスフェラ 一ゼとを作用させ、 2—〇一 α— D—ダルコピラノシルー L—ァスコル ビン酸を生成せしめる L—ァスコルビン酸への糖転移方法。
9 . a -ダルコシル糖化合物が、 マルトオリゴ糖、 マルトデキストリン、 シクロデキストリン、 アミロース、 アミ口べクチン、 溶性澱粉、 液化澱 粉、 糊化澱粉、 及びグリコーゲンから選ばれる 1種又は 2種以上の糖質 である請求の範囲第 8項記載の Lーァスコルビン酸への糖転移方法。
PCT/JP2003/008600 2002-08-06 2003-07-07 2−O−α−D−グルコピラノシル−L−アスコルビン酸の製造方法 WO2004013344A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03741243A EP1553186A4 (en) 2002-08-06 2003-07-07 PROCESS FOR THE PREPARATION OF 2-O-α-D-GLUCOPYRANOSYL-L-ASCORBINSEURE
US10/523,920 US8759030B2 (en) 2002-08-06 2003-07-07 Process for producing 2-O-alpha-D-glucopyranosyl-L-ascorbic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002228705A JP4043312B2 (ja) 2002-08-06 2002-08-06 2−O−α−D−グルコピラノシル−L−アスコルビン酸の製造方法
JP2002-228705 2002-08-06

Publications (1)

Publication Number Publication Date
WO2004013344A1 true WO2004013344A1 (ja) 2004-02-12

Family

ID=31492266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008600 WO2004013344A1 (ja) 2002-08-06 2003-07-07 2−O−α−D−グルコピラノシル−L−アスコルビン酸の製造方法

Country Status (6)

Country Link
US (1) US8759030B2 (ja)
EP (1) EP1553186A4 (ja)
JP (1) JP4043312B2 (ja)
KR (1) KR101013195B1 (ja)
TW (1) TW200404812A (ja)
WO (1) WO2004013344A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050920A1 (en) 2015-09-25 2017-03-30 Acib Gmbh Method for small molecule glycosylation
CN107828835A (zh) * 2017-12-08 2018-03-23 中国水产科学研究院黄海水产研究所 一种海洋微生物酶法制备aa‑2g的方法
CN117106838A (zh) * 2023-08-24 2023-11-24 安徽天寅生物技术有限公司 一种l-抗坏血酸葡萄糖苷的制备工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265150A (ja) * 2005-03-23 2006-10-05 Kyoto Life Science Kenkyusho:Kk 抗酸化健康飲料水
KR101073990B1 (ko) 2009-08-19 2011-10-17 한국생명공학연구원 글루칸수크라제를 이용한 아스코르브산 2­글루코시드의 생산방법
BR112012004864B1 (pt) 2009-09-03 2019-06-25 Hayashibara Co., Ltd. Processo para produção de uma composição particulada
US9206215B2 (en) 2010-09-07 2015-12-08 Hayashibara Co., Ltd. Hydrous crystalline 2-O-α-D-glucosyl-L-ascorbic acid, particulate composition comprising the same, their preparation and uses
SG193343A1 (en) 2011-03-07 2013-10-30 Hayashibara Co Method for producing 2-o-alpha-d-glucosyl-l-ascorbic acid anhydrous crystal-containing powder
KR101614924B1 (ko) * 2014-02-05 2016-04-25 엘에스엠 주식회사 신규효소와 이를 이용한 아스코르브산 배당체의 제조방법
CN112921061A (zh) * 2021-01-25 2021-06-08 山东鲁维制药有限公司 2-O-α-D-吡喃型葡萄糖基-L-抗坏血酸的生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398484A2 (en) * 1989-05-19 1990-11-22 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Alpha-glycosyl-L-ascorbic acid, and its preparation and uses
EP0425066A1 (en) * 1989-10-21 1991-05-02 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Crystalline 2-0-alpha-D-glucopyranosyl-L-ascorbic acid, and its preparation and uses
EP0539196A1 (en) * 1991-10-23 1993-04-28 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Process for preparing high 2-O-alpha-D-glucopyranosyl-L-ascorbic acid content product
WO2002010361A1 (fr) * 2000-08-01 2002-02-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Synthase d'$g(a)-isomaltosylglucosaccharide, procede de preparation et utilisation associes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192746B2 (en) 2000-05-22 2007-03-20 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo α-Isomaltosyltransferase, process for producing the same and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398484A2 (en) * 1989-05-19 1990-11-22 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Alpha-glycosyl-L-ascorbic acid, and its preparation and uses
EP0425066A1 (en) * 1989-10-21 1991-05-02 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Crystalline 2-0-alpha-D-glucopyranosyl-L-ascorbic acid, and its preparation and uses
EP0539196A1 (en) * 1991-10-23 1993-04-28 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Process for preparing high 2-O-alpha-D-glucopyranosyl-L-ascorbic acid content product
WO2002010361A1 (fr) * 2000-08-01 2002-02-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Synthase d'$g(a)-isomaltosylglucosaccharide, procede de preparation et utilisation associes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1553186A4 *
TANAKA M. ET AL.: "Characterization of bacillus stearothermo philus cyclodextrin glucanotransferase in ascorbic acid 2-0-alpha-glucoside formation", BIOCHIM. BIOPHYS. ACTA, vol. 1078, no. 2, 1991, pages 127 - 132, XP000863556 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050920A1 (en) 2015-09-25 2017-03-30 Acib Gmbh Method for small molecule glycosylation
CN107828835A (zh) * 2017-12-08 2018-03-23 中国水产科学研究院黄海水产研究所 一种海洋微生物酶法制备aa‑2g的方法
CN117106838A (zh) * 2023-08-24 2023-11-24 安徽天寅生物技术有限公司 一种l-抗坏血酸葡萄糖苷的制备工艺

Also Published As

Publication number Publication date
EP1553186A1 (en) 2005-07-13
KR20060006888A (ko) 2006-01-20
KR101013195B1 (ko) 2011-02-10
EP1553186A4 (en) 2010-08-25
JP2004065098A (ja) 2004-03-04
JP4043312B2 (ja) 2008-02-06
US20060216792A1 (en) 2006-09-28
TWI329673B (ja) 2010-09-01
US8759030B2 (en) 2014-06-24
TW200404812A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
JP2926421B2 (ja) 糖代用物質の製造に有用なオリゴデキストランの酵素による合成方法および新規なオリゴデキストラン
EP0327099B1 (en) Cyclomaltodextrin glucanotransferase, process for its preparation and novel microorganism useful for the process
EP3494993B1 (en) Novel use of maltotriosyl transferase
KR100497749B1 (ko) 이소말토-올리고사카라이드함유시럽의제조방법
IL109569A (en) Process for the preparation of a sweetener containing a saccharide mixture and sweetener compositions prepared thereby
JP3557289B2 (ja) 非還元性糖質からトレハロースを遊離する組換え型耐熱性酵素
WO2006035725A1 (ja) イソサイクロマルトオリゴ糖及びイソサイクロマルトオリゴ糖生成酵素とそれらの製造方法並びに用途
JP2012016309A (ja) マルトトリオース生成アミラーゼとその製造方法並びに用途
JP4043312B2 (ja) 2−O−α−D−グルコピラノシル−L−アスコルビン酸の製造方法
WO2005021564A1 (ja) 環状マルトシルマルトース及び環状マルトシルマルトース生成酵素とそれらの製造方法並びに用途
KR101969040B1 (ko) 이소말토올리고당 함유 조성물 및 이의 제조방법
WO2002040659A1 (fr) POLYPEPTIDES PRESENTANT UNE ACTIVITE α-ISOLMALTOSYL TRANSFERASE
EP0558213B1 (en) Process for preparing neotrehalose, and its uses
EP0873995B2 (en) Crystalline 1-kestose and process for preparing the same
WO2002055708A1 (en) POLYPEPTIDE HAVING α-ISOMALTOSYLGLUCOSACCHARIDE SYNTHASE ACTIVITY
JPS6318480B2 (ja)
EP1445325B1 (en) Processes for producing isomaltose and isomaltitol and use thereof
US20080027027A1 (en) Lactosucrose High Content Saccharide, Its Preparation and Uses
US6562600B1 (en) Production of cyclic alternan tetrasaccharides from oligosaccharide substrates
JP2022024332A (ja) イソマルトースの製造方法
WO2022019330A1 (ja) パノース分解酵素とその製造方法並びに用途
EP1153930B2 (en) Method for enzymatically hydrolysing mixtures of isomaltulose and trehalulose
JPS61268191A (ja) フラクトオリゴ糖を含有する糖質の製造法
JP4328482B2 (ja) α−ガラクトシル基を含む非還元性二糖の製造方法
JP3494686B2 (ja) イソマルトシルフラクトシドの製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057002169

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006216792

Country of ref document: US

Ref document number: 10523920

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003741243

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003741243

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057002169

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10523920

Country of ref document: US