WO2022019330A1 - パノース分解酵素とその製造方法並びに用途 - Google Patents

パノース分解酵素とその製造方法並びに用途 Download PDF

Info

Publication number
WO2022019330A1
WO2022019330A1 PCT/JP2021/027319 JP2021027319W WO2022019330A1 WO 2022019330 A1 WO2022019330 A1 WO 2022019330A1 JP 2021027319 W JP2021027319 W JP 2021027319W WO 2022019330 A1 WO2022019330 A1 WO 2022019330A1
Authority
WO
WIPO (PCT)
Prior art keywords
panose
degrading enzyme
isomaltose
enzyme
producing
Prior art date
Application number
PCT/JP2021/027319
Other languages
English (en)
French (fr)
Inventor
徳明 北川
哲也 森
光 渡邊
友之 西本
Original Assignee
株式会社林原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社林原 filed Critical 株式会社林原
Priority to JP2022538041A priority Critical patent/JPWO2022019330A1/ja
Publication of WO2022019330A1 publication Critical patent/WO2022019330A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group

Definitions

  • the present invention comprises a panose-degrading enzyme and a method and use thereof, specifically, a novel panose-degrading enzyme and a method for producing the same, a microorganism capable of producing the enzyme, a DNA encoding the enzyme, and a recombinant containing the same. It relates to a method for producing isomaltose and isomaltoligosaccharide using DNA, a transformant, and the enzyme.
  • Isomaltose (6-O- ⁇ -D-glucosyl-D-glucose) is a reducing disaccharide having a structure in which two D-glucose molecules are bound via an ⁇ -1,6 glucosidic bond, and is difficult to crystallize. It is a sugar with excellent moisturizing properties. Isomaltose is contained in a small amount in fermented foods and the like, and has been conventionally used in various foods and cosmetics in the form of a mixture with D-glucose, maltose, panose and the like.
  • ⁇ -glucosidase also known as “transglucosidase” derived from Aspergillus is allowed to act on maltose (maltose) obtained by decomposing starch with ⁇ -amylase, and isomaltose and isomaltose.
  • maltose maltose
  • ⁇ -amylase maltose
  • isomaltoligosaccharides such as aus, panose, and isomalttetraose and chromatose fractionating them to obtain isomaltose
  • isomaltoligosaccharides obtained by an enzymatic reaction.
  • the content of isomaltose in the contained sugar is usually only about 26% by mass per solid substance, and it is not easy to isolate isomaltose from the isomalto-oligosaccharide mixture. Further, even if isomaltodextranase (EC 3.2.1.94) is allowed to act on the isomaltoligosaccharide-containing sugar to produce isomaltose, the content of isomaltose in the reaction solid is still high. Usually, it is as low as less than 40% by mass.
  • Patent Document 2 a method of allowing isomalt dextranase to act on a product obtained by partially decomposing dextran with an acid.
  • Patent Document 2 a method of allowing isomalt dextranase to act on a product obtained by partially decomposing dextran with an acid.
  • this method using dextran as a raw material has a high yield of isomaltose, it is not easy to produce and obtain a special ⁇ -1,6 glucan called dextran, so isomaltose has been industrially produced. I wasn't.
  • 6- ⁇ -glucosyl transferase also known as ⁇ -isomaltose glucosaccharide-producing enzyme
  • isomalt dextranase as a raw material.
  • An efficient method for producing isomaltose which is characterized by simultaneously acting on starch or a partially decomposed product of starch, has been established and disclosed.
  • the 6- ⁇ -glucosyl transferase acts on starch or a partially decomposed product of starch, and D-glucose binds ⁇ -1,6 to the 6-position hydroxyl group of the non-reducing terminal glucose residue of the ⁇ -1,4 glucan chain.
  • isomaltose When isomalt dextranase is allowed to act on this, isomaltose can be released and generated because the ⁇ -1,4 bond to which the isomaltosyl group is bound is specifically hydrolyzed.
  • isomaltose By alternately repeating the reactions of these two enzymes, isomaltose can be efficiently produced from starch or a partial decomposition product of starch.
  • a sugar composition containing about 63% by mass of isomaltose per solid substance can be obtained from the starch partial decomposition product by an enzymatic reaction in which 6- ⁇ -glucosyl transferase and isomalt dextranase are combined.
  • an enzyme that can be replaced with isomalt dextranase and has a better isomaltose-producing ability can be newly found in the method for producing isomaltose in combination with the above-mentioned 6- ⁇ -glucosyltransferase.
  • Isomaltose can be produced more efficiently using starch or a partially decomposed starch product as a raw material, and if the enzyme is used in combination with another specific glycosyltransferase possessed by the applicant, efficient production of isomaltoligosaccharide is also possible. It was thought that it would be possible.
  • the isomaltodextranase is an enzyme that hydrolyzes panose into isomaltose and D-glucose.
  • isopullulanase EC
  • Non-Patent Document 1 is known, it is not known other than these two enzymes.
  • An object of the present invention is to provide an enzyme useful for producing isomaltose or isomaltoligosaccharide, and an efficient method for producing isomaltose or isomaltoligosaccharide using the enzyme.
  • the present inventors have focused on an enzyme having an action similar to that of isomalt dextranase on panose as an enzyme useful for producing isomaltose or isomalto-oligosaccharide, and hydrolyzed panose to isomaltose and D-glucose.
  • panose is hydrolyzed to isomaltose and D-glucose, it differs from isomalt dextranase in that it does not act on isomalttriose and dextranase, and isopullulanase known in that it does not act on purulan.
  • the present invention was completed by establishing a replacement DNA and a transformant, and establishing a method for producing isomaltose or an isomaltooligosaccharide in which the enzyme and another specific glycosyltransferase are combined.
  • the present invention comprises a panose-degrading enzyme having the following substrate specificities (1) and (2) and a method for producing the same, a microorganism capable of producing the enzyme, a DNA encoding the enzyme, and a set containing the same.
  • the above problem is solved by providing a method for producing isomaltose or an isomaltoligosaccharide using a recombinant DNA and a transformant, and the enzyme. (1) hydrolyzes panose to produce isomaltose and D-glucose; and (2) does not act on isomaltotriose, dextran, and pullulan.
  • the isomaltose group at the end of a sugar such as panose, in which D-glucose is bound via an ⁇ -1,6 bond is bound to the 6-position hydroxyl group of the non-reducing terminal glucose residue of maltooligosaccharide. Since it has the activity of specifically hydrolyzing ⁇ -1,4 bonds and liberating isomaltose, starch can be combined with other specific glycosyltransferases in the same manner as isomalt dextranase having the same activity. Alternatively, isomaltose can be more efficiently produced from the partially decomposed starch product as a raw material.
  • D-glucose is ⁇ -1,6 at the 1st position of the reducing terminal glucose of isomaltooligosaccharide ( ⁇ -1,6 glucan) in which D-glucose is linked by ⁇ -1,6 bond. Since it has the activity of specifically hydrolyzing ⁇ -1,4 bonds of carbohydrates having a 4-linked structure and liberating isomaltooligosaccharides, starch or starch can be obtained by combining with other specific glycosyltransferases. Isomaltooligosaccharide can be efficiently produced from a partially decomposed product as a raw material.
  • FIG. 3 is an SDS-polyacrylamide gel electrophoresis diagram of a panose-degrading enzyme-purified specimen derived from Salocladium kirience U4520. It is a figure which shows the optimum pH of the panose degrading enzyme derived from the U4520 strain. It is a figure which shows the optimum temperature of the panose degrading enzyme derived from the U4520 strain.
  • the present invention relates to a panose-degrading enzyme having the following substrate specificities (1) and (2): (1) hydrolyzes panose to produce isomaltose and D-glucose; and (2) does not act on isomaltotriose, dextran, and pullulan.
  • the panose-degrading enzyme of the present invention is characterized by (1) hydrolyzing panose to produce isomaltose and D-glucose; and (2) not acting on isomaltotriose, dextran, and pullulan. It is a novel enzyme which is unknown in the past and has.
  • the panose-degrading enzyme of the present invention can be clearly distinguished from the known panose-degrading enzyme in the above point (2).
  • Isomaltodextranase EC 3.2.1.94
  • a known panose-degrading enzyme has an activity of hydrolyzing isomaltotriose to produce isomaltos and D-glucose, ⁇ -1,6 glucan.
  • Isoplulanase (EC 3.2.1.57), which is also a known panose-degrading enzyme, does not have the activity of hydrolyzing isomaltotriose and dextran, but it hydrolyzes pullulan and isopulanose. Has no activity to hydrolyze isomaltotriose, dextran, and pullulan, that is, panose degradation of the present invention that does not act on isomaltotriose, dextran, and pullulan. It's completely different from an enzyme.
  • the panose-degrading enzyme of the present invention is not limited by the source, the form, the degree of purification of the crude enzyme or the purified enzyme, and the like. Included in.
  • the enzyme activity of the panose-degrading enzyme of the present invention can be measured as follows. Panose as a substrate is dissolved in a phosphate buffer (pH 7.0) having a concentration of 50 mM so as to have a concentration of 1.0% (w / v) to prepare a substrate solution, and 2.0 mL of the substrate solution is mixed with the same buffer. Add 0.2 mL of the diluted and prepared enzyme solution and start the reaction at 30 ° C. At the time points of 0.5 minutes and 20.5 minutes of the reaction, 0.5 mL of the reaction solution is sampled and each is placed in a hot water bath at 100 ° C.
  • a phosphate buffer pH 7.0
  • the amount of D-glucose in each solution is quantified by a conventional glucose oxidase-peroxidase method (GOD method).
  • the amount of D-glucose produced in 20 minutes of the reaction is calculated by subtracting that at 0.5 minutes from the amount of D-glucose at 20.5 minutes.
  • One unit (U) of activity of a panose-degrading enzyme is defined as the amount of enzyme that produces 1 ⁇ mol of D-glucose per minute under the above conditions.
  • panose-degrading enzyme of the present invention include panose-degrading enzymes having the following physicochemical properties.
  • A Molecular weight shows 85,000 ⁇ 5,000 daltons in SDS-polyacrylamide gel electrophoresis;
  • B Optimal pH Under the conditions of reaction at 30 ° C. for 20 minutes, pH 5.0 to 5.6;
  • C Optimal temperature pH 5.5, 35 ° C. under the condition of reaction for 20 minutes;
  • D pH stability Stable in the range of pH 4.5 to 11.5 under the condition of holding at 4 ° C. for 24 hours; and
  • e Temperature stability under the condition of pH 5.5 and holding for 1 hour, Ca 2+ ions Stable up to 30 ° C in the absence, 5 mM Stable up to 35 ° C in the presence of Ca 2+ ions.
  • the panose degrading enzyme of the present invention usually has a predetermined amino acid sequence, and an example thereof includes the amino acid sequence shown by SEQ ID NO: 11 in the sequence listing or an amino acid sequence homologous thereto.
  • the sequence is as long as it retains the enzymatic activity of hydrolyzing panose to produce isomaltose and D-glucose.
  • the amino acid sequence represented by No. 11 includes an amino acid sequence in which one or more amino acids are deleted, substituted or added, and usually 70% or more of the amino acid sequence represented by SEQ ID NO: 11.
  • amino acid sequence represented by SEQ ID NO: 11 in the sequence listing is an amino acid sequence encoded by the structural gene of panose degrading enzyme (amino acid sequence also shown in the base sequence shown by SEQ ID NO: 10 in the sequence listing) and is secreted. It contains an amino acid sequence consisting of 24 amino acid residues presumed to be the signal peptide sequence for.
  • the panose-degrading enzyme of the present invention is not limited by its source, microorganisms can be mentioned as a preferable source, and in particular, the microorganism U4520 strain isolated from soil by the present inventors or a mutant strain thereof is preferably used.
  • the mutant strain referred to here is, for example, a mutant strain in which the culture properties are improved as compared with the U4520 strain as the parent strain by artificially introducing a mutation, and the ability to produce panose-degrading enzyme is higher than that of the U4520 strain as the parent strain. Examples include improved enzyme high-producing mutants and mutants that produce more active panose-degrading enzymes.
  • the microorganism U4520 strain capable of producing panose-degrading enzyme is a microorganism newly isolated from soil by the present inventors, but as described in Experiment 2 described later, the base sequence of rRNA (rDNA). Based on the above, the homology with that of the known bacterium was examined, and the bacterial species was identified by observing its morphology with a microscope. Was identified. Based on these results, the present inventors named the microorganism U4520 strain the novel microorganism Salocladium Kirience U4520, and the National Institute of Technology and Evaluation, located at 2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan. (NITE) Deposited at the Patent Microorganisms Depositary Center (NPMD), and was deposited under the accession number NITE BP-03236 on June 23, 2nd year of Reiwa.
  • rDNA base sequence of rRNA
  • the culture solution was allowed to act as a crude enzyme solution, and isomaltose and D.
  • the screening method for examining glucose production also includes microorganisms having the ability to produce panose-degrading enzymes belonging to other genera and species isolated and selected from nature, and mutant strains thereof.
  • microorganisms of the genus Salocladium or microorganisms of the genus Acremonium and variants thereof are preferably used, more preferably microorganisms of the genus Salocladium and variants thereof, and even more preferably Sarocladium killiense and its variants.
  • Variants are preferably used.
  • examples of the microorganism belonging to the genus Salocladium include, for example, Sarocladium bacillisporum, Sarocladium hominis, Salocladium, Salocladia, and Salocladia.
  • microorganisms belonging to the genus Acremonium include acremonium ochraceum, acremonium implicatum, acremonium butyri, and acremonium flucatum (Acremonium flucatum). Is done.
  • the genus Salocladium and the genus Acremonium are both classified as fungi, and in recent years, some species of the genus Acremonium have been transferred to the genus Salocladium. 34, 10-24, 2015).
  • the present invention also relates to the above-mentioned base sequence encoding the panose-degrading enzyme according to the present invention and DNA having a base sequence complementary to the base sequence.
  • the DNA of the present invention may be naturally derived or artificially synthesized as long as it has a base sequence encoding a panose-degrading enzyme.
  • natural sources include microorganisms of the genus Salocladium including Salocladium Kirience U4520, microorganisms of the genus Acremonium, and the like.
  • chemical synthesis may be performed based on the amino acid sequence shown in SEQ ID NO: 11 in the sequence listing. It is also advantageous to carry out PCR synthesis using a cDNA containing the DNA as a template and a chemically synthesized DNA as an appropriate primer.
  • Examples of the DNA according to the present invention include the base sequences shown by SEQ ID NO: 10 in the sequence listing, base sequences homologous to them, and DNA having a base sequence complementary to those base sequences. ..
  • a DNA having a base sequence homologous to the base sequence represented by SEQ ID NO: 10 in the sequence listing one DNA is included in the base sequence represented by SEQ ID NO: 10 in the sequence listing as long as the activity of the encoding panose degrading enzyme is maintained.
  • Examples thereof include those having a base sequence in which the above bases are deleted, substituted or added, and are usually 70% or more, preferably 80% or more, and more preferably more desirable than the base sequence shown by SEQ ID NO: 10 in the sequence listing.
  • Recombinant DNA usually consists of DNA and a vector capable of autonomous replication, and if DNA is available, it can be relatively easily prepared by conventional recombinant DNA technology.
  • a vector a plasmid, phage, cosmid or the like can be used, and it can be appropriately selected depending on the cell to be introduced or the method of introduction.
  • the specific type of the vector is not particularly limited, and a vector that can be expressed in a host cell may be appropriately selected.
  • a promoter sequence may be appropriately selected in order to reliably express the gene, and a vector in which the gene is incorporated into various plasmids or the like may be used as an expression vector.
  • expression vectors include, for example, phage vectors, plasmid vectors, virus vectors, retrovirus vectors, chromosome vectors, episomal vectors and virus-derived vectors (eg, bacterial plasmids, bacteriophage, yeast episomes, yeast chromosome elements and viruses (eg, eg).
  • Preferred vectors for use in eukaryotes include pPICZ ⁇ A, pWLNE0, pSV2CAT, pOG44, pXT1 and pSG; and pSVK3, pBPV, pMSG and pSVL.
  • Preferred vectors for use in bacteria include, for example, pRSETA, pQE-70, pQE-60, pBS vector, Pagescript vector, Bluescript vector, pNH8A, pNH6a, pNH18A and pNH46A; and ptrc99a, pKK223-3, pKK233-. 3, pDR540, pRIT5 and the like.
  • the gene DNA containing the target DNA and the vector capable of autonomous replication are cleaved with a restriction enzyme and / or ultrasonic waves, and then the generated DNA fragment and the vector fragment are ligated.
  • the recombinant DNA thus obtained can be appropriately introduced into a host to form a transformant, which can be cultured indefinitely for infinite replication.
  • the recombinant DNA thus obtained can be introduced into an appropriate host microorganism such as yeast, Escherichia coli, Bacillus subtilis, and actinomycete.
  • an appropriate host microorganism such as yeast, Escherichia coli, Bacillus subtilis, and actinomycete.
  • a colony hybridization method may be applied, or one that is cultured in a nutrient medium and produces a panose-degrading enzyme may be selected.
  • the medium used for culturing the microorganism including the transformant capable of producing the panose-degrading enzyme of the present invention may be a nutritional medium capable of growing the microorganism and producing the panose-degrading enzyme, and may be either a synthetic medium or a natural medium. But it may be.
  • the carbon source may be any substance that can be used for growth by microorganisms, for example, starch and its partial decomposition products, plant-derived starch and phytoglycogen, animal and microorganism-derived glycogen and pullulan, and these partial decomposition products.
  • sugars such as glucose, fructose, lactose, sucrose, mannitol, sorbitol and syrup, organic acids such as citric acid and succinic acid, and alcohols such as methanol and ethanol can also be used.
  • concentration of these carbon sources in the medium can be appropriately selected depending on the type of carbon source.
  • the nitrogen source for example, inorganic nitrogen compounds such as ammonium salts and nitrates, and organic nitrogen-containing substances such as urea, corn steep liquor, casein, peptone, yeast extract and meat extract can be appropriately used.
  • salts such as calcium salt, magnesium salt, potassium salt, sodium salt, phosphate, manganese salt, zinc salt, iron salt, copper salt, molybdenum salt and cobalt salt may be appropriately used.
  • amino acids, vitamins and the like can be appropriately used as needed.
  • Culturing is usually carried out aerobically under conditions selected from the pH range of 5.5 to 10 at a temperature of 15 to 37 ° C., preferably the pH range of 5.5 to 8.5 at a temperature of 20 to 34 ° C.
  • the culturing time may be any time as long as the microorganism capable of producing the panose-degrading enzyme of the present invention can grow, and is preferably 10 to 150 hours.
  • the dissolved oxygen concentration of the culture solution under the culture conditions is not particularly limited, but is usually preferably 0.5 to 20 ppm. Therefore, means such as adjusting the air volume and stirring are appropriately adopted.
  • the culture method may be either batch culture or continuous culture.
  • the culture containing the enzyme of the present invention is recovered.
  • the panose-degrading enzyme activity is mainly observed in the disinfectant solution of the culture, and the disinfectant solution can be collected as a crude enzyme solution or the entire culture can be used as a crude enzyme solution.
  • a known solid-liquid separation method is used to remove cells from the culture. For example, a method of centrifuging the culture itself, a method of filtering and separating using a precoat filter or the like, a method of separating by membrane filtration of a flat membrane, a hollow fiber membrane or the like, and the like are appropriately adopted.
  • the sterilizing solution can be used as it is as a crude enzyme solution, it is generally concentrated and used.
  • As the concentration method an ammonium sulfate (ammonium sulfate) salting out method, an acetone and alcohol precipitation method, a membrane concentration method using a flat membrane, a hollow membrane, or the like can be adopted.
  • the panose-degrading enzyme can be immobilized by a known method using a sterilizing solution having panose-degrading enzyme activity and a concentrated solution thereof.
  • a bonding method to an ion exchanger, a covalent bonding / adsorbing method with a resin or a film, a comprehensive method using a polymer substance, or the like can be appropriately adopted.
  • the panose-degrading enzyme of the present invention can be used as it is or by concentrating the crude enzyme solution, but if necessary, it can be further separated and purified by a known method.
  • anion exchange chromatography using "DEAE-Toyopearl 650S” gel manufactured by Toso Co., Ltd.
  • Hydrophobic chromatography using "Phenyl-Toyopearl 650M” gel manufactured by Toso Co., Ltd.
  • gel filtration chromatography using "Superdex 200pg” gel manufactured by GE Health Science
  • isomaltose or isomaltooligosaccharide by combining the panose-degrading enzyme of the present invention with another glycosyltransferase, as a raw material substrate, for example, ground starch such as corn starch, rice starch, wheat starch, horse bell starch, sweet potato, etc.
  • ground starch such as corn starch, rice starch, wheat starch, horse bell starch, sweet potato, etc.
  • Underground starch such as starch and tapioca starch and their partial hydrolyzate (partially decomposed starch) can be preferably used.
  • the starch partial decomposition product is usually obtained by suspending the above-mentioned above-ground or underground starch in water and having a concentration of 10% by mass or more, more preferably 15% by mass to 65% by mass, still more preferably 20% by mass or more.
  • starch milk which is heated to gelatinize and then liquefied (partially decomposed) with an acid or heat-resistant ⁇ -amylase.
  • the degree of liquefaction is preferably set relatively low, and is usually preferably less than DE (Dextrose Equivalent, glucose equivalent) 15, preferably less than DE10, and more preferably in the range of DE9 to 0.1.
  • DE Dextrose Equivalent, glucose equivalent
  • a method of liquefying with an acid agent such as hydrochloric acid, phosphoric acid or oxalic acid and then neutralizing to a desired pH with an alkaline agent such as calcium carbonate, calcium oxide or sodium carbonate is usually used.
  • an alkaline agent such as calcium carbonate, calcium oxide or sodium carbonate
  • the substrate concentration is not particularly limited, but a substrate concentration of 40% by mass or less is preferable, and isomaltose or iso under these conditions. Maltoligosaccharide can be advantageously produced.
  • the reaction temperature may be up to the temperature at which the reaction proceeds, that is, around 45 ° C. A temperature around 30 ° C. is preferably used.
  • the reaction pH is usually adjusted to the range of 4.0 to 6.0, preferably pH 5.0 to 5.5.
  • the amount of enzyme used and the reaction time are closely related, and the amount of enzyme used and the reaction time may be appropriately adjusted according to the progress of the desired enzyme reaction.
  • the present invention acts on starch or a partial decomposition product of starch, and D-glucose is bound to the 6-position hydroxyl group of the non-reducing terminal glucose residue of the ⁇ -1,4 glucan chain via an ⁇ -1,6 bond.
  • 6- ⁇ -glucosyl transferase also known as ⁇ -isomaltose glucosyl glucosaccharide producing enzyme
  • branched ⁇ -glucan also known as ⁇ -isomaltose glucosaccharide
  • It also relates to a method for producing isomaltose, which comprises a step of producing isomaltose by acting on glucose or a partially decomposed product of glucose in combination with the panose-degrading enzyme of the above, and a step of collecting the produced isomaltose. ..
  • the method for producing isomaltose of the present invention comprises 6- ⁇ -glucosyl transferase (also known as ⁇ -isomaltosyl glucosaccharide-producing enzyme) and isomalt dextranase disclosed in Patent Document 3 by the same applicant as the present application.
  • the panose-degrading enzyme of the present invention is used instead of isomalt dextranase.
  • Isomalt dextranase is an activity that hydrolyzes isomalttriose to produce isomaltose and D-glucose, and isomaltose that hydrolyzes dextran, which is ⁇ -1,6 glucan, from the non-reducing end in isomaltose units.
  • the panose-degrading enzyme of the present invention is the same as isomalt dextranase in that it has an activity of hydrolyzing panose to isomaltose and D-glucose, but it has an ⁇ -1,6 bond. It is an enzyme that is decisively different from isomalt dextranase in that it does not have the activity of hydrolyzing isomaltose and the activity of hydrolyzing dextran because it does not hydrolyze.
  • 6- ⁇ -glucosyl transferase When a combination of 6- ⁇ -glucosyl transferase and panose degrading enzyme is allowed to act on starch or a partially decomposed starch product, the action of 6- ⁇ -glucosyl transferase causes the non-reducing terminal glucose residue of the ⁇ -1,4 glucan chain.
  • isomaltose is produced by specifically hydrolyzing the ⁇ -1,4 bond to which the isomaltosyl group at the terminal is bound by panose-degrading enzyme. Then, by repeating this reaction, isomaltose will be accumulated in the reaction solution.
  • 6- ⁇ -glucosyl transfer enzyme also known as ⁇ -isomaltosyl glucosaccharide-producing enzyme
  • the same applicant as the present application has made an international publication.
  • An enzyme derived from S1 can be mentioned.
  • Bacillus globisporus is currently classified as Paenibacillus filicis based on the homology (identity) of the base sequence of 16S rDNA.
  • the enzymatic activity of the 6- ⁇ -glucosyltransferase used in the method for producing isomaltose of the present invention can be measured by the following method disclosed in Patent Document 3 by the same applicant as the present application. That is, maltotriose was dissolved in 100 mM acetate buffer (pH 6.0) so as to have a concentration of 2% (w / v) to prepare a substrate solution, and 0.5 mL of an enzyme solution was added to 0.5 mL of the substrate solution.
  • HPLC high performance liquid chromatography
  • One unit (U) of activity of 6- ⁇ -glucosyltransferase is defined as the amount of enzyme that produces 1 ⁇ mol of maltose per minute under the above conditions.
  • a starch debranching enzyme such as isoamylase or pullulanase, ⁇ -amylase, cyclomaltodextrin glucanotransferase ( It is also advantageous to use one or more enzymes selected from CGTase) and glucoamylase in combination.
  • the starch debranching enzyme is an enzyme that specifically hydrolyzes (branches) the ⁇ -1,6 bond of the branched structure via the ⁇ -1,6 bond in the starch or the starch partial decomposition product as a raw material.
  • oligosaccharides which is a target for producing various oligosaccharide products using starch or a partially decomposed starch product as a raw material.
  • starch debranching enzyme By using the starch debranching enzyme in combination, the amount of isomaltose produced can be increased even in the method for producing isomaltose of the present invention in which 6- ⁇ -glucosyltransferase and panose-degrading enzyme are combined.
  • Patent Document 3 International Publication No. 02/088374 pamphlet discloses a method for producing isomaltose in which the 6- ⁇ -glucosyl transfer enzyme and isomalt dextranase are combined, but starch debranching enzyme is also disclosed.
  • the isomaltose content per reaction solid of the reaction product obtained from the raw material starch partial decomposition product is up to about 70% by mass under the condition of the substrate concentration of 5% by mass, and the substrate concentration is 30% by mass. It is described that the production of isomaltose is significantly reduced when the substrate concentration is increased, with a maximum of about 55% by mass under the conditions and a maximum of about 50% by mass under the condition of a substrate concentration of 40% by mass.
  • the present invention further adds to the above-mentioned method for producing isomaltose, a step of reducing isomaltose by hydrogenation to convert it into isomaltitol, and a step of collecting the converted isomaltitol. It also relates to a method for producing isomaltitol.
  • the isomaltose or isomaltose-containing sugar obtained by the above method for producing isomaltose can be continuously hydrogenated under a reduction catalyst and reduced to obtain an isomaltitol or an isomaltitol-containing substance in a high yield. ..
  • a Raney nickel catalyst is added to an isomaltose-containing aqueous solution having a solid substance concentration of 40 to 60%, this is placed in a pressure-resistant container, hydrogen is filled in the container, pressure is applied, and the temperature is 100 to 120. Add hydrogen by stirring at ° C until hydrogen is no longer consumed. At this time, isomaltose is reduced and converted to isomaltose, and other reducing sugars that may be contained in the isomaltose-containing substance, such as D-glucose, maltose, maltotriose, and other reductions. The partially hydrolyzed product of maltotriose is also reduced to sugar alcohol.
  • the obtained isomartol-containing solution is separated from a lane nickel catalyst, decolorized with activated carbon according to a conventional method, desalted with an H-type or OH-type ion exchange resin, purified, and concentrated to form a syrup-like product. Further, this is dried to obtain a powder. If necessary, further, for example, fractionation by column chromatography such as ion exchange column chromatography, activated carbon column chromatography, silica gel column chromatography, crystallization, separation using an organic solvent such as alcohol and acetone, membrane separation method, etc. It is also possible to purify by appropriately combining one kind or two or more kinds of methods to obtain high-purity isomartol. Crystals of isomaltitol are known, and even higher purity products can be produced by crystallization.
  • the present invention acts on starch or starch partial decomposition products, and D-glucose or ⁇ -1,6 glucan having a glucose polymerization degree of 2 or more is added to the 6-position hydroxyl group of the non-reducing terminal glucose residue of the ⁇ -1,4 glucan chain.
  • the method for producing an isomaltooligosaccharide of the present invention is a novel isomaltooligosaccharide in which the ⁇ -glucosyltransferase disclosed in International Publication No. 2002/010361 by the same applicant as the present application and the panose-degrading enzyme of the present invention are combined. It is a formation reaction.
  • ⁇ -glucosyl transferase and panose degrading enzyme are combined and acted on starch or a partially decomposed starch product, the action of ⁇ -glucosyl transferase causes the 6th position of the non-reducing end glucose residue of the ⁇ -1,4 glucan chain.
  • Isomaltooligosaccharide having a glucose polymerization degree of 2 or more is produced by specifically hydrolyzing the ⁇ -1,4 bond to which the above ⁇ -1,6 glucan is bound by a panose degrading enzyme.
  • ⁇ -glucosyltransferase that can be suitably used in the method for producing an isomaltooligosaccharide of the present invention
  • Bacillus Circulance Bacillus Circulance
  • Examples include enzymes derived from Bacillus cyclicans (PP710) and Arthrobacter globiformis (PP349).
  • the enzymatic activity of the ⁇ -glucosyltransferase used in the method for producing an isomaltooligosaccharide of the present invention is the ⁇ -glucosyltransferase using maltose as a substrate disclosed in International Publication No. 2008/136331 by the same applicant as the present application. Can be measured by a method for quantifying the D-glucose remaining when the glucosyl group on the non-reducing terminal side of maltose is transferred.
  • Martose is dissolved in a 20 mM acetate buffer (pH 6.0) so as to have a final concentration of 1% (w / v) to prepare a substrate solution, and 0.5 mL of an enzyme solution is added to 5 mL of the substrate solution.
  • Enzymatically react at 40 ° C. for 30 minutes mix 0.5 mL of the reaction solution with 5 mL of 20 mM phosphate buffer (pH 7.0), heat in a boiling water bath for 10 minutes to stop the reaction, and then react.
  • the amount of glucose in the liquid is measured by the glucose oxidase-peroxidase method according to a conventional method, and the amount of D-glucose produced by the enzymatic reaction is calculated.
  • One unit (U) of activity of ⁇ -glucosyltransferase is defined as the amount of enzyme that produces 1 ⁇ mol of D-glucose per minute under the above conditions.
  • starch branches such as isoamylase and pullulanase are required. It is also advantageous to use one or more enzymes selected from chrysanthemum, ⁇ -amylase, CGTase and glucoamylase in combination.
  • the raw material starch portion As shown in the section of the experiment described later, in the method for producing an isomaltoligosaccharide of the present invention in which the ⁇ -glucosyltransferase and the panose degrading enzyme of the present invention are combined and further used in combination with the starch debranching enzyme and ⁇ -amylase, the raw material starch portion. Since the total content of isomaltoligosaccharides from DP2 isomaltose to DP8 isomalt octaose per reaction solid of the reaction product obtained from the decomposition product reaches at least 73% by mass, the isomaltoligosaccharide of the present invention is used. According to the above-mentioned production method, isomaltoligosaccharide can be produced remarkably more efficiently than the conventional method by using starch or a partially decomposed starch product as a raw material.
  • the present invention comprises the above-mentioned method for producing isomaltooligosaccharide, further reducing the amount of isomaltooligosaccharide by hydrogenation to convert it into isomaltooligosaccharide alcohol, and collecting the converted isomaltooligosaccharide alcohol. It also relates to a method for producing an isomaltooligosaccharide alcohol obtained by adding the above.
  • the isomaltoligosaccharide or isomaltoligosaccharide-containing sugar obtained by the above method for producing isomaltoligosaccharide is hydrogenated under a reduction catalyst and reduced by hydrogenating under a reduction catalyst, as in the case of isomaltose described above. That is, it can be converted into a mixture of isomaltitol, isomalt toryitol, isomalttetritor, isomaltpentititol and the like.
  • the reaction product or its reduced product (hydrogenated product) obtained by the above-mentioned method for producing isomaltose or the method for producing isomaltoligosaccharide of the present invention is an isomaltose-containing sugar solution, an isomaltoleigosaccharide-containing sugar solution, and their products.
  • it can be used as a sugar alcohol-containing liquid, it is generally used after further purification.
  • the purification method a usual method used for purification of sugar and sugar alcohol may be appropriately adopted. For example, decolorization with activated charcoal, desalting with H-type or OH-type ion exchange resin, ion exchange column chromatography, activated charcoal column.
  • Fractionation by column chromatography such as chromatography and silica gel column chromatography, separation by organic solvents such as alcohol and acetone, separation by a membrane having appropriate separation performance, and isomaltose, isomaltooligosaccharides, and their sugar alcohols.
  • a purification method such as fermentation treatment with a microorganism that assimilates and decomposes contaminant sugars without using it, for example, yeast, can be appropriately adopted.
  • ion exchange column chromatography As a mass production method, it is preferable to use ion exchange column chromatography.
  • the strongly acidic cation exchange resin disclosed in JP-A-58-23799, JP-A-58-72598 and the like It is possible to advantageously produce an isomaltose-containing sugar, an isomaltoligosaccharide-containing sugar, or a sugar alcohol-containing product thereof in which contaminants are removed by column chromatography using the above and the content of the target substance is improved.
  • the aqueous solution containing isomaltose, isomaltoligosaccharides or their sugar alcohols (hydrogenated additives) thus obtained can usually be concentrated into a syrup-like product.
  • the syrup-like product may be further dried to form an amorphous solid product or an amorphous powder product.
  • the isomaltoligosaccharide-containing sugar, isomaltose-containing sugar, or powdered product of their sugar alcohol (hydrogen additive) obtained by the production method of the present invention can be used as it is, or if necessary, a bulking agent or an additive. It is also optional to mix it with a shaper, a binder, etc., and mold it into various shapes such as granules, spheres, short rods, plates, cubes, and tablets.
  • the isomaltoligosaccharide-containing sugars, isomaltose-containing sugars, or sugar alcohols (hydrogen additives) thereof obtained by the production method of the present invention are sweeteners, taste improvers, quality improvers, stabilizers, and discoloration prevention.
  • an agent, an excipient, etc. it can be advantageously used in various compositions such as foods and drinks, favorite foods, feeds, feeds, cosmetics, pharmaceuticals, and industrial products in combination with other ingredients.
  • isomaltoligosaccharide-containing sugar, isomaltose-containing sugar, or sugar alcohol (hydrogen additive) thereof obtained by the production method of the present invention into the above various compositions, until the product is completed. It may be contained in the above steps, and for example, known methods such as mixing, kneading, dissolution, melting, dipping, permeation, spraying, coating, coating, spraying, injection, crystallization, and solidification are appropriately selected.
  • the amount is usually 0.1% by mass or more, preferably 1% by mass or more.
  • the activity of the panose-degrading enzyme in the following experiment is described as the activity of producing D-glucose from the substrate panose obtained by the above-mentioned activity measurement method.
  • TLC plate Silica gel aluminum plate (trade name "silica gel 60F254" 10 x 20 cm, manufactured by Merck) Developing solvent: n-butanol: Pyridine: Water mixture (volume ratio 6: 4: 1) Development method: Ascending method, single expansion detection method: Sulfuric acid-methanol method
  • the crude enzyme from the U4520 strain hydrolyzes panose to isomaltose and D-glucose (reference numeral 8 in FIG. 1), while isomaltotriose (reference numeral 9 in FIG. 1). It did not act on either pullulan (reference numeral 10 in FIG. 1) or dextran (reference numeral 11 in FIG. 1).
  • isomalt dextranase (EC 3.2.1.94) and isopullulanase (EC 3.2.1.57) are known as enzymes that hydrolyze panose into isomaltose and D-glucose
  • Isopullulanase is an enzyme that hydrolyzes isomalttriose, purulan and dextranase
  • isopullulanase is an enzyme that hydrolyzes purulan to produce isopanose while not acting on isomalttriose and dextran. Therefore, it was found that the panose-degrading enzyme derived from the U4520 strain is a novel enzyme previously unknown, which is different from isopullulanase and isopullulanase.
  • the U4520 strain that had become a single colony above was caught and suspended in 50 ⁇ L of a commercially available simple DNA extraction reagent (trade name “MightyPrep reagent for DNA”, sold by Takara Bio Inc.), treated at 95 ° C. for 10 minutes, and then 15 The supernatant containing genomic DNA was recovered by centrifugation at 000 rpm for 2 minutes.
  • a commercially available simple DNA extraction reagent trade name “MightyPrep reagent for DNA”, sold by Takara Bio Inc.
  • PCR When PCR was performed using the above and agarose gel electrophoresis was performed on the PCR amplification product, a PCR amplification product of about 2 kbp was observed. Therefore, the PCR amplification product was recovered by ethanol precipitation and used as rDNA.
  • ⁇ Experiment 2-2 Determination of rDNA base sequence>
  • the base sequence of the rDNA of the U4520 strain obtained in Experiment 2-1 was determined by a conventional method, it was found to have the base sequence (1,658 bp) shown by SEQ ID NO: 3 in the sequence listing.
  • Experiment 2-3 Identification of microorganism U4520 strain> The base sequence of rDNA determined in Experiment 2-2 is searched for homology from the base sequence database by the base sequence homology search program "BLASTN", and in order to remove uncertain information, Type material in the NCBI Taxonomy database. The comparison was made in.
  • Table 1 shows the results of a homology search performed on the D1 / D2 region of 26S rDNA used for fungal species identification on the rDNA of the U4520 strain.
  • Table 2 shows the results of a homology search performed on the ITS1 and ITS2 regions located between 18S rDNA and 26S rDNA, which are also used for fungal species identification.
  • the nucleotide sequence of the rDNA of the U4520 strain showed 99.67% homology (identity) with Sarocladium kiliense in the D1 / D2 region. It showed 100% homology with Rium Digitatum.
  • the nucleotide sequence of the rDNA of the U4520 strain showed 100% homology with Salocladium chilience and 95.52% homology with Salocladium hominis in the ITS1 and ITS2 regions. In general, it is said that the classification of bacteria by the base sequence of rDNA is highly likely to be the same species if there is 99% or more homology.
  • the U4520 strain was similar in morphology to Salocladium chilience and was significantly different from Dicthiosporium digitatum. Based on the base sequence of rDNA and the result of morphological observation with a microscope, the U4520 strain was identified as Salocladium chillience and named Salocladium chillience U4520.
  • Salocladium Kirience U4520 was deposited at the National Institute of Technology and Evaluation (NITE) Patent Microorganisms Depositary Center (NPMD) located at 2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan, and was deposited in June 2nd year of Reiwa. It was entrusted with the entrustment number NITE BP-03236 on the 23rd.
  • NITE National Institute of Technology and Evaluation
  • the panose-degrading active fraction was recovered from the elution fraction, dialyzed against 10 mM phosphate buffer (pH 7.0), and the obtained dialysate was dissolved with sulfate so as to have a final concentration of 1.5 M, and the 10 mM phosphate buffer was dissolved.
  • a hydrophobic chromatographic carrier trade name "Phenyl-Toyopeall 650M", manufactured by Toso Co., Ltd.
  • the column was eluted with a linear gradient having a ammonium sulfate concentration of 1.5 M to 0 M, and the panose decomposition active fraction was eluted with an ammonium sulfate concentration of about 0.75 M.
  • a gel filtration carrier (trade name "Superdex 200 pg") in which the panose-degrading active fraction was recovered from the elution fraction, concentrated to 3 mL, and then pre-equilibrated with 10 mM phosphate buffer (pH 7.0) having a salt concentration of 0.4 M.
  • the panose-degrading active fraction was eluted at a salt concentration of about 0.23 M.
  • the eluted panose-degrading active fraction was used as a panose-degrading enzyme-purified sample.
  • the purification process is summarized in Table 3.
  • the specific activity of the panose-degrading enzyme purified preparation is 70.3 U / mg protein, and when compared with the specific activity of the culture supernatant used as the purification raw material, it is purified up to about 500 times by this purification step. rice field.
  • the purity of the obtained panose-degrading enzyme purified sample was tested by SDS-polyacrylamide gel electrophoresis using a 5 to 20% (w / v) concentration gradient gel, it was found in lane 2 of the electrophoresis diagram of FIG. As shown, the purified preparation was found to be of high purity, showing a nearly single protein band.
  • ⁇ Experiment 5-1 Molecular weight> The purified panose-degrading enzyme preparation obtained by the method of Experiment 4 was subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE, 5 to 20% (w / v) concentration gradient) and simultaneously electrophoresed as a molecular weight marker (Bio- When the molecular weight was measured by comparing with the mobility of Rad Laboratory (manufactured by Rad Laboratory), it was found that the molecular weight of the panose-degrading enzyme was 85,000 ⁇ 5,000 daltons.
  • SDS-PAGE SDS-polyacrylamide gel electrophoresis
  • the purified standard was subjected to gel filtration column chromatography using a gel filtration carrier (trade name "Superdex 200 pg", manufactured by GL Healthcare Life Sciences), and its elution time and molecular weight marker (manufactured by Bio-Rad Laboratory) were used.
  • a gel filtration carrier trade name "Superdex 200 pg", manufactured by GL Healthcare Life Sciences
  • its elution time and molecular weight marker manufactured by Bio-Rad Laboratory
  • Example 5-2 Optimal pH and Optimal Temperature>
  • the optimum pH of the panose-degrading enzyme of the present invention was pH 5.0 to 5.6 under the conditions of a reaction at 30 ° C. for 20 minutes. It was also found that the optimum temperature was 35 ° C. under the conditions of pH 5.5 and reaction for 20 minutes.
  • Example 5-3 pH stability and temperature stability> Using the panose-degrading enzyme purified specimen obtained by the method of Experiment 4, the pH stability and temperature stability of the panose-degrading activity were examined. The pH stability was determined by holding the enzyme in 20 mM Briton-Robinson buffer at each pH at 4 ° C. for 24 hours, adjusting the pH to 5.5 and measuring the residual enzyme activity. For temperature stability, use 20 mM Briton-Robinson buffer (pH 5.5) with or without 5 mM calcium chloride, hold the enzyme solution at each temperature for 1 hour, cool with water, and then retain the remaining D-glucose production activity. Obtained by measuring. These results are shown in FIG. 6 (pH stability) and FIG. 7 (temperature stability).
  • the activity of the panose-degrading enzyme of the present invention was found to be stable in the range of pH 4.5 to 11.5. Further, as is clear from FIG. 7, the activity of the panose-degrading enzyme of the present invention is stable up to 30 ° C. in the absence of Ca 2+ ion (“ ⁇ ” in the figure), and is stable up to 30 ° C. in the presence of 5 mM Ca 2+ ion (FIG. 7). In the middle " ⁇ "), it was found to be stable up to about 35 ° C.
  • ⁇ Experiment 5-5 Internal partial amino acid sequence> 250 ⁇ g of the purified panose-degrading enzyme preparation obtained by the method of Experiment 4 was subjected to membrane treatment, the buffer solution was replaced with a 10 mM Tris-phosphate buffer solution (pH 9.0), concentrated to 260 ⁇ L, and then heated at 100 ° C. for 10 minutes. The enzyme protein was heat-denatured by this. Ridill endopeptidase (sold by Wako Pure Chemical Industries, Ltd.) (sold by Wako Pure Chemical Industries, Ltd.) (5 ⁇ g) was added to the obtained heat denaturant, and the mixture was kept at 30 ° C. for 20 hours to hydrolyze the enzyme protein.
  • Ridill endopeptidase (sold by Wako Pure Chemical Industries, Ltd.) (sold by Wako Pure Chemical Industries, Ltd.) (5 ⁇ g) was added to the obtained heat denaturant, and the mixture was kept at 30 ° C. for 20 hours to hydrolyze the enzyme protein.
  • Reversed-phase HPLC column in which the hydrolyzate was previously equilibrated with 0.1% (v / v) trifluoroacetic acid (trade name " ⁇ Bondashere C 18 ", diameter 3.9 mm x length 150 mm, manufactured by Waters). From 0.1% (v / v) trifluoroacetic acid to 0.1% (v / v) trifluoroacetic acid-40% (v / v) acetonitrile under conditions of flow rate 0.9 mL / min and room temperature. The solution was passed through a linear gradient of acetonitrile concentration for 100 minutes to elute and fractionate the peptide fragments.
  • a cDNA was prepared using a cDNA synthesis kit (trade name "PrimeScript II 1st strand cDNA Synthesis Kit” (Takara Bio Co., Ltd.) and an oligo dT primer as a primer. Then, it was estimated to be a start codon and an end codon, respectively.
  • a primer having the base sequences represented by SEQ ID NOs: 8 and SEQ ID NO: 9 in the sequence table is designed outside the base sequence to be obtained, the target region is amplified, and then the base sequence of the panose degrading enzyme deducing gene is determined by a DNA sequencer. did.
  • the decoded base sequence of 1,949 bp includes the four internal partial amino acid sequences of the panose degrading enzyme revealed in Experiment 5-5 (amino acid sequences shown by SEQ ID NOs: 4 to 7 in the sequence listing) starting with methionine. An open reading frame encoding an amino acid sequence containing all of them was observed, and it was found that the full length of the target panose degrading enzyme gene is present in this DNA. From this result, it was inferred that the obtained cDNA was the cDNA encoding the target panose-degrading enzyme. Based on this finding, the base sequence of the panose-degrading enzyme gene and the amino acid sequence of the panose-degrading enzyme encoded by the base sequence were determined.
  • the structural gene of the panose degrading enzyme derived from Salocladium kirience U4520 has a base sequence having a chain length of 1,872 bp shown by SEQ ID NO: 10 in the sequence listing, and consists of 624 residues described in the base sequence. It was found to encode an amino acid sequence. All of the four internal partial amino acid sequences (amino acid sequences shown by SEQ ID NOs: 4 to 7 in the sequence listing) revealed in Experiment 5-5 are listed together with the base sequence shown by SEQ ID NO: 10 in the sequence listing.
  • amino acid sequence the amino acid sequence shown by SEQ ID NO: 11 in the sequence listing
  • amino acid sequence the amino acid sequence shown by SEQ ID NO: 11 in the sequence listing
  • the signal peptide sequence for secretion was predicted using the signal peptide prediction software "SignalP-5.0".
  • the amino acid sequence consisting of 24 amino acid residues on the N-terminal side was predicted to be a signal peptide sequence.
  • the molecular weight calculated from the amino acid sequence represented by SEQ ID NO: 11 in the sequence listing was 69,335 daltons, and the molecular weight excluding the estimated signal peptide sequence of 24 amino acid residues was calculated to be 66,849 daltons.
  • the gene sequence of the panose-degrading enzyme excluding the signal peptide was amplified.
  • PCR was performed using the expression plasmid vector "pPICZ ⁇ A" as a template to amplify the target gene sequence.
  • Infusion reaction transformation into Escherichia coli XL10 Gold, colony PCR, and plasmid extraction were performed. After linearizing the obtained plasmid with a restriction enzyme, it was subjected to agarose gel electrophoresis to confirm that the size of each plasmid was correct.
  • the obtained recombinant DNA for expression "pPICZ ⁇ A-P" is shown in FIG.
  • the gene for the panose-degrading enzyme is expressed using the promoter of the methanol-induced alcohol oxidase gene AOX1, and the recombinant panose-degrading enzyme produced is It is designed to be secreted using the secretory signal peptide of the conjugation factor ⁇ -factor of bread yeast.
  • yeast Pichia pastoris KM71H was used as a host, and recombinant DNA was introduced and transformed by electroporation to transform the transformant "pPICZ ⁇ A-P". "PICZ ⁇ A-P" was obtained.
  • ⁇ Experiment 6-3 Expression of recombinant panose-degrading enzyme in transformant>
  • the transformant "PICZ ⁇ A-P" obtained in Experiment 6-2 is contained in a YPD medium (yeast extract) containing 20 ⁇ g / mL of an antibiotic containing zeocin D1 as a main component (trade name “Zeocin”, sold by Invitrogen). It was inoculated into one 500 mL triangular flask containing 200 mL each of 1.0%, polypeptone 2.0%, and D-glucose 2.0%, and shake-cultured at 30 ° C. for 24 hours. The obtained culture was centrifuged according to a conventional method to collect yeast cells.
  • the cells were washed with sterile water and inoculated into 40 mL of YP medium (yeast extract 1.0%, polypeptone 2.0%) containing 20 ⁇ g / mL of the antibiotic and 1.0% of methanol for 24 hours.
  • the mixture was kept at 25 ° C. for 72 hours while adding methanol to a final concentration of 1.0% each time to induce the expression of the panose degrading enzyme gene.
  • the culture supernatant was collected by centrifugation and sterilized by filtering with a 0.22 ⁇ m filter to obtain a recombinant panose-degrading enzyme solution having a panose-degrading activity of 30.3 U / mL.
  • this enzyme solution was subjected to SDS-polyacrylamide gel electrophoresis, an almost single recombinant panose-degrading enzyme protein band was observed.
  • the optimum pH of the recombinant panose-degrading enzyme was 30 ° C. under the conditions of a reaction for 20 minutes.
  • the pH is 5.0 to 5.5
  • the optimum temperature is pH 5.5
  • the optimum temperature is 35 ° C. under the condition of 20-minute reaction
  • the pH stability is about 4.7 to 12 under the condition of keeping each pH at 4 ° C. for 24 hours.
  • Stable in the range of .0 temperature stability was stable up to 30 ° C. in the absence of Ca 2+ ions under the condition that each temperature was maintained at pH 5.5 for 1 hour.
  • These physicochemical properties were substantially the same as those of the natural panose-degrading enzyme prepared in Experiment 4.
  • the above results indicate that the panose-degrading enzyme of the present invention can be satisfactorily produced as a recombinant enzyme.
  • the substrate specificity of panose-degrading enzyme was investigated using 31 kinds of sugars shown in Table 4 below. Dissolve each sugar as a substrate in 20 mM Briton-Robinson buffer (pH 5.5) to a final concentration of 1%, add 1 U or 10 U of panose-degrading enzyme per gram of substrate solid, and add 1 U or 10 U of panose-degrading enzyme at 30 ° C. for 24 hours. It was reacted. After the reaction, the reactants produced from each substrate were subjected to the same TLC analysis as used in Experiment 1, and the presence or absence of enzymatic action on each sugar and the produced sugar were confirmed.
  • panose degrading enzyme of the present invention not only produces isomaltose and D- glucose by hydrolyzing the alpha-l, 4 bonds panose, 6 2 -
  • the ⁇ -1,4 bond of ⁇ -isomaltose maltose ( ⁇ -isomaltotriosyl- (1 ⁇ 4) -D-glucose) was hydrolyzed to produce isomalttriose and D-glucose.
  • alpha-1, 6-glucan such as isomaltotriose and dextran, pullulan, 6 2-.alpha.-maltosyl maltose and 6 3-.alpha.-maltotriosyl maltotriose
  • maltose and maltotriose do not act on carbohydrates in which maltose or maltotriose is ⁇ -1,6 bound to the 6-position hydroxyl group of the non-reducing terminal glucose residue of malto-oligosaccharides, such as aus.
  • the panose-degrading enzyme of the present invention does not act on maltose and a series of malto-oligosaccharides, isomaltose and a series of isomalto-oligosaccharides bound only via ⁇ -1,6 bonds.
  • Various disaccharides, amylose, starch, glycogen, pullulan, dextran and other polysaccharides were not shown.
  • the panose-degrading enzyme of the present invention hydrolyzes panose to produce isomaltose and D-glucose, but does not hydrolyze ⁇ -1,6 bonds, and isomalttriose and iso. It is a novel enzyme that is unknown in the past and is different from isomalt dextranase, which is a known enzyme in that it does not act on maltotriose and dextranase, and isopullulanase, which is a known enzyme in that it does not act on purulan. It has been found.
  • the TLC chromatogram of the obtained reaction solution is shown in FIG.
  • the culture supernatant containing a crude enzyme solution derived from a microorganism of the genus Acremonium hydrolyzes panose into isomaltose and D-glucose (reference numeral 8 in FIG. 10), while isomaltose. It did not act on any of the triose (reference numeral 9 in FIG. 10), pullulan (reference numeral 10 in FIG. 10) and dextran (reference numeral 11 in FIG. 10).
  • the microorganisms of the genus Acremonium also produce panose-degrading enzymes having the same enzymatic activity as the panose-degrading enzymes produced by the microorganisms of the genus Salocladium.
  • Example 9 Production of isomaltose from a partially decomposed starch product in which a 6- ⁇ -glucosyltransferase and a panose-degrading enzyme are combined> Partial starch degradation of the purified panose-degrading enzyme obtained by the method of Experiment 4 in combination with Bacillus globisporus N75-derived 6- ⁇ -glucosyltransferase disclosed in Republished Patent No. 02/088374. We tried to produce isomaltose by acting on each object. The outline of the isomaltose formation reaction from the partially decomposed starch product obtained by combining 6- ⁇ -glucosyltransferase and panose degrading enzyme is shown in FIG. 11 in a schematic diagram.
  • Example 9-2 Effect of substrate concentration on isomaltose production>
  • the substrate concentration used for the isomaltose formation reaction was changed to 5, 10, 20, 30 or 40% by mass, and the enzymes were operated under the same conditions as in Experiment 9-1 except that all four types of enzymes used in Experiment 9-1 were allowed to act.
  • the reaction was carried out, and the isomaltose content per solid substance of each obtained reaction solution was measured by the above-mentioned HPLC analysis. Moreover, only under the condition of the substrate concentration of 30% by mass, the test was carried out even at the reaction temperature of 40 ° C. The results are shown in Table 6.
  • the isomaltose content of the reaction solution reached about 79% by mass per solid substance in the range of the substrate concentration of 5 to 10% by mass.
  • the isomaltose content of the reaction solution under the conditions of substrate concentrations of 20, 30 and 40% by mass was 76.1, 72.5 and 70.0% by mass, respectively, as the substrate concentration increased.
  • the isomaltose content in was gradually reduced.
  • the isomaltose content of the reaction solution when the reaction temperature was 40 ° C. and the substrate concentration was 30% by mass was 72.5% by mass per solid substance, which was equivalent to that when the reaction temperature was 30 ° C.
  • ⁇ Experiment 10 Production of isomaltooligosaccharide from starch by combining ⁇ -glucosyltransferase and panose-degrading enzyme>
  • the panose-degrading enzyme purified preparation obtained by the method of Experiment 4 was combined with the ⁇ -glucosyltransferase derived from Bacillus cyclicans PP710 disclosed in the pamphlet of International Publication No. 2008/136331 to form a starch partial decomposition product. It was allowed to act and an attempt was made to produce isomaltooligosaccharide.
  • the outline of the reaction for producing isomaltooligosaccharide from the partially decomposed starch obtained by combining ⁇ -glucosyltransferase and panose-degrading enzyme is shown in FIG. 12 in a schematic diagram.
  • ⁇ Experiment 10-1 Effect of combined use of various enzymes in isomaltooligosaccharide production reaction> Using a partially decomposed starch product (trade name "Paindex # 100", sold by Matsutani Chemical Industry Co., Ltd.) as a raw material substrate, it is dissolved in a 20 mM acetate buffer (pH 5.5) containing 1 mM calcium chloride so that the final concentration is 10% by mass. It was used as a substrate solution. Next, 10 U of ⁇ -glucosyltransferase (Hayashihara preparation product) per 1 g of substrate solid, 10 U of panose degrading enzyme, 1,000 fu of isoamylase (Hayashihara preparation product), and 1.0 U.
  • ⁇ -Amylase (trade name "Crystase E5CC", sold by Amano Enzyme Co., Ltd.) was added in the combinations shown in Table 7, and hinokithiol was added as a preservative to a final concentration of 60 ppm, and then 72 at 30 ° C. Reacted for time. After completion of the reaction, the enzyme was inactivated by heating at 100 ° C. for 10 minutes, and then each reaction solution was subjected to thin layer chromatography (TLC) under the following conditions to preliminarily analyze the carbohydrates contained in each reaction solution. did. The TLC chromatogram is shown in FIG.
  • TLC plate Silica gel aluminum plate (trade name "silica gel 60F254", 10 x 20 cm, manufactured by Merck) Developing solvent: n-butanol: Pyridine: Water mixture (volume ratio 6: 4: 1) Development method: Ascending method, double expansion detection method: Sulfuric acid-methanol method
  • the sugar composition of each reaction solution was measured by HPLC under the above conditions, and the total value of the isomaltooligosaccharide contents of DP2 to DP8 was obtained. Further, for the reaction solution obtained by allowing all the above four enzymes to act, 10 U of glucoamylase (derived from the genus Rhizopus, sold by Fuji Film Wako Pure Chemical Industries, Ltd.) was further added per 1 g of the solid substance, and the pH was 5.0, 50. After 18 hours of treatment at ° C., the total value of the sugar composition and the content of isomaltooligosaccharides of DP2 to DP8 was obtained for the obtained glucoamylase-treated product. The results are shown in Table 7.
  • the total amount of carbohydrates from DP1 to DP10 is 85.0% by mass, and the total amount of isomaltoligosaccharides from DP2 to DP8 (isomaltose to isomalt octaose) is 68.7% by mass.
  • the reaction product (Sample 5) obtained by adding ⁇ -glucosyltransferase, panose degrading enzyme, isoamylase and ⁇ -amylase was 5.
  • carbohydrates of DP1 to DP10 account for 94.2% by mass in total
  • isomalto-oligosaccharides (isomaltose to isomalt octaose) of DP2 to DP8 account for 77.1% by mass in total.
  • the reaction product (Sample 5) obtained by allowing ⁇ -glucosyltransferase, panose degrading enzyme, isoamylase and ⁇ -amylase to act on the partially decomposed starch product was further treated with glucoamylase (Sample 6).
  • the HPLC chromatogram of the above is shown in FIG. 14, and the sugar composition obtained by the analysis is also shown in Table 7.
  • the HPLC chromatogram shows a series of peaks in which the sugars from D-glucose to DP10 of DP1 are separated by the difference in the degree of polymerization of glucose, and the sugar composition is the sample 6 in Table 7. It was as seen in the column of.
  • the sugar composition after the glucoamylase treatment (Sample 6) increased by 2.8% by mass of D-glucose, but there was no significant change. Even if maltooligosaccharides derived from the partial decomposition product of the raw material starch are slightly mixed as unreacted products in the sample 5, they are decomposed by glucoamylase in the sample 6, and therefore, other than the D-glucose of the sample 6. All sugars can be regarded as isomaltooligosaccharides. The total value of the isomaltooligosaccharides of DP2 to DP8 of the sample 6 was 75.7% by mass.
  • the results of this experiment show that when ⁇ -glucosyltransferase and panose degrading enzyme are combined and acted on starch or starch partial decomposition products, a series of isomalto-oligosaccharide mixtures can be produced, and isoamylase and ⁇ -amylase are also used in combination. This shows that an isomaltoligosaccharide mixture containing at least 75% by mass of isomalto-oligosaccharides from DP2 isomaltose to DP8 isomalt-octaose can be efficiently produced from starch or a partially decomposed starch product. ..
  • Experiment 10-2 Effect of substrate concentration on isomaltooligosaccharide production> Experiment 10-1 except that the substrate concentration used for the isomaltoligosaccharide production reaction was changed to 5, 10, 20 or 30% by mass, and all four enzymes used in Experiment 10-1 were allowed to act. An enzymatic reaction was carried out under the same conditions, and the sugar composition of each of the obtained reaction solutions was measured by the above-mentioned HPLC analysis. The total value of sugar was calculated. The results are shown in Table 8.
  • This crude enzyme solution was concentrated about 30 times with an ultrafiltration membrane according to a conventional method to obtain a concentrated enzyme preparation having a total activity of about 5,000 U.
  • This product can be used for producing isomaltose in combination with 6- ⁇ -glucosyltransferase as a panose-degrading enzyme agent, and can be used for producing isomaltoligosaccharide in combination with ⁇ -glucosyltransferase.
  • This crude enzyme solution was concentrated about 30 times with an ultrafiltration membrane according to a conventional method to obtain a concentrated enzyme preparation having a total activity of about 240,000 U.
  • This product can be used as a recombinant panose-degrading enzyme agent for the production of isomaltose in combination with 6- ⁇ -glucosyltransferase, and can be used for the production of isomaltoligosaccharide in combination with the ⁇ -glucosyltransferase.
  • This crude enzyme solution was concentrated about 20 times with an ultrafiltration membrane according to a conventional method to obtain a concentrated enzyme preparation having a total activity of about 5,500 U.
  • This product can be used for producing isomaltose in combination with 6- ⁇ -glucosyltransferase as a panose-degrading enzyme agent, and can be used for producing isomaltoligosaccharide in combination with ⁇ -glucosyltransferase.
  • This product has excellent moisturizing property, low sweetness, osmotic pressure controllability, excipient property, shine-imparting property, moisturizing property, viscosity, sugar crystallization prevention property, fertility resistance, starch aging prevention property, etc. Therefore, it can be advantageously used for various foods and drinks, health foods, feeds, feeds, cosmetics, pharmaceuticals, luxury goods and the like.
  • an isomaltose-rich fraction was collected and purified to obtain an isomaltose-rich solution.
  • the yield of isomaltose per solid was about 80%.
  • This solution was decolorized, desalted, and concentrated according to a conventional method to obtain an isomaltose syrup having a concentration of about 75%.
  • This product contained about 95.7% isomaltose per solid.
  • This product is difficult to crystallize and has excellent moisturizing properties, low sweetness, osmotic pressure controllability, formability, shine-imparting property, moisturizing property, viscosity, sugar crystallization prevention property, fertility resistance, and starch aging prevention. Since it has sex, it can be advantageously used for various foods and drinks, health foods, feeds, feeds, cosmetics, pharmaceuticals, luxury foods and the like.
  • This product has excellent moisturizing property, low sweetness, osmotic pressure controllability, excipient property, shine-imparting property, moisturizing property, viscosity, sugar crystallization prevention property, fertility resistance, starch aging prevention property, etc. Therefore, it can be advantageously used for various foods and drinks, health foods, feeds, feeds, cosmetics, pharmaceuticals, luxury goods and the like.
  • This isomaltitol-rich syrup is concentrated to a concentration of about 75% by mass, this concentrate is placed in a crystallization can, and crystalline isomaltitol powder as a seed crystal is added in an amount of 0.1% by mass per solid substance at a temperature of 25 ° C. It was held for about 20 hours to crystallize isomaltitol. Subsequently, the nectar was separated using a centrifuge, and the crystalline isomaltitol was recovered. The isomaltitol crystals were vacuum dried at 80 ° C. for 20 hours to obtain crystalline isomaltitol.
  • This product contained 0.2% by mass of sorbitol, 99.3% by mass of isomaltitol, and 0.5% by mass of other sugar alcohols per solid substance.
  • This product is non-reducing, non-moisture-absorbing, low-sweetness, osmotic pressure-regulating, morphogenic, shining, moisturizing, viscous-imparting, sugar crystallization-preventing, refractory, starch aging. Since it has preventive properties, it can be advantageously used for various foods and drinks, health foods, health supplements, feeds, feeds, cosmetics, pharmaceuticals, luxury foods and the like.
  • Tapioca starch is made into starch milk having a concentration of about 30% by mass, and calcium carbonate is added in an amount of 0.1% by mass to adjust the pH to 6.5, and heat-resistant ⁇ -amylase (trade name "Tarmamir 60L", manufactured by Novo) is added. 0.3% by mass per starch was added, and the mixture was reacted at 95 ° C. for 15 minutes, then autoclaved at 120 ° C. for 20 minutes, and further cooled to about 40 ° C. to prepare a starch liquefied solution having a DE of about 4.5.
  • This starch liquefied solution is adjusted to pH 5.5, and 10 U of ⁇ -glucosyltransferase (derived from Bacillus Circulance PP710, Hayashihara preparation product) per 1 g of starch solid is 10 U of panose degrading enzyme (method of Example 1).
  • ⁇ -glucosyltransferase derived from Bacillus Circulance PP710, Hayashihara preparation product
  • panose degrading enzyme method of Example 1.
  • the enzyme was inactivated by heating at 96 ° C. for 30 minutes, and then the sugar composition of the reaction solution was measured by HPLC.
  • D-glucose was 11.3% by mass and isomaltose was 16.0% by mass.
  • Isomalt triose 15.8% by mass, isomalt tetraose 13.8% by mass, isomalt pentaose 11.5% by mass, isomalt hexaose 9.1% by mass, sugar 22.5 more than isomalt heptaose It was% by mass.
  • this isomaltooligosaccharide-containing sugar solution can be advantageously used as a sweetener, a carbon source for fermentation, a reagent, a chemical product, a raw material for pharmaceuticals, an intermediate, etc. as a syrup containing a high content of isomaltooligosaccharide. ..
  • Isomalt oligosaccharide alcohol syrup containing 11.4% by mass, isomalthexaitol 9.0% by mass, and isomalt heptitol or higher sugar alcohol 23.3% by mass in a yield of about 90% per solid. Obtained.
  • This isomaltooligosaccharide alcohol syrup was concentrated to a concentration of about 75% by mass and filled in a can to prepare a product.
  • This product is non-reducing, non-moisture-absorbing, low-sweetness, osmotic pressure-regulating, morphogenic, shining, moisturizing, viscous-imparting, sugar crystallization-preventing, refractory, starch aging. Since it has preventive properties, it can be advantageously used for various foods and drinks, health foods, health supplements, feeds, feeds, cosmetics, pharmaceuticals, luxury foods and the like.
  • This product has excellent sweetness and has about twice the sweetness of sugar.
  • This product is a sweetening composition containing isomaltose, which is difficult to crystallize and has excellent moisturizing properties. In addition, this product is stable under normal temperature storage without fear of deterioration.
  • This product has antioxidant properties, high stability, and can be advantageously used as a high-quality sunscreen, skin-beautifying agent, fair-skinning agent, and the like.
  • This product is a high commercial value plaster that prevents the volatilization of iodine and methanol by isomaltose and has little change over time. In addition, this product not only has a bactericidal action by iodine, but also acts as an energy supply agent for cells by maltose, so that the healing period is shortened and the wound surface is healed cleanly.
  • ⁇ Water Yokan> Put one stick agar in 400 mL of tap water, heat to a boil, add 25 g of brown sugar, 50 g of white sugar and 20 g of isomaltooligosaccharide-rich syrup prepared by the method of Example 8 as a solid content, and further strain the yokan. After adding about 300 g, remove the sardine while boiling over medium heat, turn off the heat after 5 minutes of boiling, add an appropriate amount of salt and stir well, pour into a mold, hold at room temperature for 30 minutes to harden, and then harden. A water yokan was made by cooling in a refrigerator. This product is a water yokan that contains isomaltooligosaccharide and has an elegant sweetness.
  • ⁇ Lactic acid drink> 100 g of isomaltoligosaccharide-rich syrup prepared by the method of Example 8 was taken, 100 mL of milk was added thereto, the mixture was heated to a boil, the heat was turned off, the lye was removed, and the mixture was naturally cooled. After confirming that the product temperature has dropped to 37 ° C or lower, add an appropriate amount of citric acid, lactic acid, lactic acid essence and lemon essence, stir well, fill the bottle with a lid and cool in the refrigerator to make a lactic acid beverage. did.
  • This product is a lactic acid beverage that contains isomaltooligosaccharides and has reduced sweetness and calories.
  • a milky lotion was prepared based on the following formulation. (Ingredients)% by mass Squalene 5.0 Olive oil 5.0 Jojoba oil 5.0 Cetyl alcohol 1.5 Glycerin monostearate 2.0 Polyoxyethylene (20) cetyl ether 3.0 Polyoxyethylene (20) Sorbitan Monooleate 2.0 1,3-butylene glycol 1.0 Glycerin 2.0 Isomaltooligosaccharide-rich syrup obtained by the method of Example 8 7.0 Preservative (paraoxybenzoic acid ester) Appropriate amount of fragrance Appropriate amount of purified water Residual of 100
  • the panose-degrading enzyme of the present invention is a novel enzyme previously unknown.
  • isomaltose and isomaltoligosaccharide can be efficiently produced from starch or a partially decomposed starch product as a raw material and on an industrial scale. Therefore, establishment of a method for producing isomaltose and a method for producing isomaltoligosaccharide using the panose-degrading enzyme of the present invention in combination with this panose-degrading enzyme and another glycosyltransferase is related not only to the sugar industry but also to this. It has great significance in the food, cosmetics and pharmaceutical industries.
  • M Malto-oligosaccharide marker 1: Isomaltose standard product 2: Isomaltose standard product 3: Panose standard product 4: Isomaltotriose standard product 5: Pullulan standard product 6: Dextran standard product 7: U4520 strain crude enzyme only 8: U4520 Reaction solution in which the crude enzyme of the strain was allowed to act on panose 9: Reaction solution in which the crude enzyme of the U4520 strain was allowed to act on isomalttriose 10: Reaction solution in which the crude enzyme of the U4520 strain was allowed to act on pullulan 11: Of the U4520 strain. Reaction solution in which the crude enzyme was allowed to act on dextran.
  • Molecular weight marker 2 Panose degrading enzyme purified preparation 3: Molecular weight marker
  • In the absence of Ca 2+ ions
  • 5 mM in the presence of Ca 2+ ions
  • ⁇ -factor Base sequence encoding the secretory signal peptide of the conjugation factor
  • Panose-hydrorysing enzyme Panose degrading enzyme gene Stop: Termination codon 5'AOX1: Promoter of methanol-induced alcohol oxidase gene AOX1 AOX1 TT : Transcription termination signal of methanol-induced alcohol oxidase gene AOX1
  • PTEF1 Promoter of transcription elongation factor TEF1 for inducing expression of zeosin resistance gene
  • PEM7 Promoter for induction of expression of zeosin resistance gene
  • Zeocin Transcription termination region of zeocin resistance gene
  • CYC1TT pUC ori: PUC replication origin Bgl
  • G1 D-glucose G2: maltose G3: maltotriose G4: maltotetraose G5: maltopentaose G6: maltohexaose G7: maltheptaose G8: maltooctaose IG2: isomaltose IG3: isomaltose IG4: Isomalttetraose Gn: Malto-oligosaccharide marker IGn: Isomalto-oligosaccharide marker Lane 0: Starch partial decomposition product (raw material substrate) Lane 1: Reactant obtained by allowing ⁇ -glucosyltransferase to act on the partially decomposed starch lane 2: Reactor obtained by allowing panose degrading enzyme to act on the partially decomposed starch Lane 3: ⁇ - on the partially decomposed starch Reactive product lane 4: obtained by reacting glucosyltransferase and panose degrading enzyme

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

イソマルトース又はイソマルトオリゴ糖の製造に有用な酵素と、当該酵素を用いた効率的なイソマルトース又はイソマルトオリゴ糖の製造方法を提供することを課題とし、下記(1)及び(2)の基質特異性を有するパノース分解酵素とその製造方法、当該酵素の産生能を有する微生物、当該酵素をコードするDNAとこれを含んでなる組換えDNA及び形質転換体、並びに該酵素を利用したイソマルトースの製造方法又はイソマルトオリゴ糖の製造方法を提供することにより上記課題を解決する: (1)パノースを加水分解し、イソマルトースとD-グルコースを生成する;及び (2)イソマルトトリオース、デキストラン、及びプルランに作用しない。

Description

パノース分解酵素とその製造方法並びに用途
 本発明は、パノース分解酵素とその製造方法並びに用途、詳細には、新規パノース分解酵素とその製造方法、当該酵素の産生能を有する微生物、当該酵素をコードするDNAとこれを含んでなる組換えDNA及び形質転換体、さらには当該酵素を用いたイソマルトース並びにイソマルトオリゴ糖の製造方法に関するものである。
 イソマルトース(6-O-α-D-グルコシル-D-グルコース)は、D-グルコース2分子がα-1,6グルコシド結合を介して結合した構造を有する還元性二糖であり、難結晶性で優れた保湿性を有する糖質である。イソマルトースは発酵食品などに微量含まれており、従来、D-グルコース、マルトース、パノースなどとの混合物の状態で各種食品、化粧品などに利用されている。
 イソマルトースの製造方法としては、澱粉をβ-アミラーゼで分解して得たマルトース(麦芽糖)に麹菌(Aspergillus)由来のα-グルコシダーゼ(別名「トランスグルコシダーゼ」)を作用させ、イソマルトース、イソマルトトリオース、パノース、イソマルトテトラオースなどのイソマルトオリゴ糖を生成させ(特許文献1)、これをクロマト分画してイソマルトースを採取する方法が知られているものの、酵素反応で得られるイソマルトオリゴ糖含有糖質におけるイソマルトースの含量は、通常、固形物当たり26質量%程度に過ぎず、また、イソマルトオリゴ糖混合物からのイソマルトースの単離も容易ではない。さらに、そのイソマルトオリゴ糖含有糖質にイソマルトデキストラナーゼ(Isomaltodextranase、EC 3.2.1.94)を作用させ、イソマルトースを生成させたとしても、反応固形物中のイソマルトースの含量は、通常、40質量%未満と低い。一方、イソマルトースの別の製造方法としては、デキストランを酸で部分分解したものにイソマルトデキストラナーゼを作用させる方法(特許文献2)が知られている。しかしながらデキストランを原料とするこの方法は、イソマルトースの収率は高いものの、デキストランという特殊なα-1,6グルカンの製造、入手が容易ではないためイソマルトースは工業的には製造されるに至っていなかった。
 本願と同じ出願人は、特許文献3において、新規酵素として見出した6-α-グルコシル転移酵素(別名:α-イソマルトシルグルコ糖質生成酵素)と前記イソマルトデキストラナーゼとを組合せ、原料である澱粉又は澱粉部分分解物に同時に作用させることを特徴とするイソマルトースの効率的製造方法を確立し開示した。前記6-α-グルコシル転移酵素は、澱粉又は澱粉部分分解物に作用し、そのα-1,4グルカン鎖の非還元末端グルコース残基の6位水酸基にD-グルコースがα-1,6結合した分岐構造を有する分岐α-グルカンを生成する活性を有する酵素であり、これを澱粉又は澱粉部分分解物に作用させて得られる分岐α-グルカンは、α-1,4グルカン鎖の非還元末端グルコース残基の6位水酸基にD-グルコースがα-1,6結合した分岐構造、即ち、α-1,4グルカン鎖の非還元末端にイソマルトース構造を有する糖質である。そして、これにイソマルトデキストラナーゼを作用させるとイソマルトシル基が結合したα-1,4結合を特異的に加水分解するためイソマルトースを遊離、生成させることができる。そしてこれら2種の酵素の反応が交互に繰り返されることにより、澱粉又は澱粉部分分解物から効率よくイソマルトースを生成させることができる。この製造方法によれば、6-α-グルコシル転移酵素とイソマルトデキストラナーゼを組合せた酵素反応によって澱粉部分分解物から固形物当たりイソマルトースを約63質量%含有する糖組成物が得られ、さらにこれら酵素の組合せに澱粉枝切酵素を併用すると固形物当たりイソマルトースを約70質量%含有する糖組成物が得られるため、イソマルトースの効率的製造が可能となった。しかしながら、イソマルトデキストラナーゼを用いるこの方法には、酵素反応時の原料澱粉又は澱粉部分分解物の濃度を工業的製造レベルの30質量%以上に高めるとイソマルトースの生成が低下し、澱粉枝切酵素を併用した場合であっても反応液中の固形物当たりのイソマルトース含量が55質量%以下にまで低下すること、酵素反応に多量のイソマルトデキストラナーゼを要することなどの欠点があり、実用化されるに至っていない。
 上記6-α-グルコシル転移酵素と組合せたイソマルトースの製造方法において、イソマルトデキストラナーゼと置換することができ、且つ、より優れたイソマルトース生成能を有する酵素を新たに見出すことができれば、澱粉又は澱粉部分分解物を原料としてさらに効率よくイソマルトースが製造できることとなり、また、その酵素を出願人が保有する他の特定の糖転移酵素と組合せて用いれば、イソマルトオリゴ糖の効率よい製造も可能になると考えられた。
 前述したα-1,4グルカン鎖の非還元末端にイソマルトース構造を有する糖質の内、最も低分子の糖質はパノース(6-O-α-D-グルコシル-マルトース)である。前記イソマルトデキストラナーゼは、パノースをイソマルトースとD-グルコースとに加水分解する酵素であるが、この反応を触媒する酵素としては、イソマルトデキストラナーゼの他にはイソプルラナーゼ(Isopullulanase,EC 3.2.1.57、非特許文献1)が公知であるものの、これら2つの酵素以外には知られていない。
特開昭61-219345号公報 特開昭63-216493号公報 国際公開第2002/088374号パンフレット
坂野ら、バイオケミストリー・ジャーナル(Biochem.J.)323巻、757-764頁(1997年)
 本発明は、イソマルトース又はイソマルトオリゴ糖の製造に有用な酵素と、当該酵素を用いた効率的なイソマルトース又はイソマルトオリゴ糖の製造方法を提供することを課題とする。
 本発明者等は、イソマルトース又はイソマルトオリゴ糖の製造に有用な酵素として、パノースに対しイソマルトデキストラナーゼと同様の作用を有する酵素に着目し、パノースをイソマルトースとD-グルコースとに加水分解する活性を指標として微生物のスクリーニングを鋭意続けてきた。その過程において、パノースをイソマルトースとD-グルコースに加水分解するものの、イソマルトトリオースやデキストランに作用しない点でイソマルトデキストラナーゼとは異なり、また、プルランに作用しない点で公知のイソプルラナーゼとも異なる全く新規なパノース分解酵素を産生する真菌U4520株を見出し、この新規なパノース分解酵素とその製造方法、当該酵素の産生能を有する微生物、当該酵素をコードするDNAとこれを含んでなる組換えDNA及び形質転換体を確立するとともに、該酵素と他の特定の糖転移酵素とを組合せたイソマルトースの製造方法又はイソマルトオリゴ糖の製造方法を確立して本発明を完成した。
 すなわち、本発明は、下記(1)及び(2)の基質特異性を有するパノース分解酵素とその製造方法、当該酵素の産生能を有する微生物、当該酵素をコードするDNAとこれを含んでなる組換えDNA及び形質転換体、並びに該酵素を利用したイソマルトースの製造方法又はイソマルトオリゴ糖の製造方法を提供することにより上記課題を解決するものである:
(1)パノースを加水分解し、イソマルトースとD-グルコースを生成する;及び
(2)イソマルトトリオース、デキストラン、及びプルランに作用しない。
 本発明のパノース分解酵素は、マルトオリゴ糖の非還元末端グルコース残基の6位水酸基にD-グルコースがα-1,6結合を介して結合したパノースなどの糖質における末端のイソマルトシル基が結合したα-1,4結合を特異的に加水分解しイソマルトースを遊離させる活性を有することから、同活性を有するイソマルトデキストラナーゼと同様に他の特定の糖転移酵素と組合せることにより、澱粉又は澱粉部分分解物を原料としてイソマルトースをさらに効率よく製造することができる。また、本発明のパノース分解酵素は、D-グルコースがα-1,6結合で連結したイソマルトオリゴ糖(α-1,6グルカン)の還元末端グルコースの1位にD-グルコースがα-1,4結合した構造を有する糖質のα-1,4結合を特異的に加水分解し、イソマルトオリゴ糖を遊離させる活性を有することから、他の特定の糖転移酵素と組合せることにより澱粉又は澱粉部分分解物を原料としてイソマルトオリゴ糖を効率よく製造することができる。
U4520株の培養上清をパノース、イソマルトトリオース、プルラン又はデキストランに作用させた反応液のTLCクロマトグラムである。 U4520株の形態を示す顕微鏡写真(倍率:600倍)である。 サロクラディウム・キリエンス U4520由来パノース分解酵素精製標品のSDS-ポリアクリルアミドゲル電気泳動図である。 U4520株由来のパノース分解酵素の至適pHを示す図である。 U4520株由来のパノース分解酵素の至適温度を示す図である。 U4520株由来のパノース分解酵素のpH安定性を示す図である。 U4520株由来のパノース分解酵素の温度安定性を示す図である。 組換え型パノース分解酵素の発現用の組換えDNAを示す図である。 各種基質に対するU4520株由来のパノース分解酵素の作用を表した模式図である。 アクレモニウム属微生物の培養上清を、パノース、イソマルトトリオース、プルラン又はデキストランに作用させた反応液のTLCクロマトグラムである。 澱粉又は澱粉部分分解物からのイソマルトース生成反応の概要を示す模式図である。 澱粉又は澱粉部分分解物からのイソマルトオリゴ糖生成反応の概要を示す模式図である。 α-グルコシル転移酵素、パノース分解酵素、イソアミラーゼ及びα-アミラーゼを組合せ澱粉部分分解物に作用させて得た各反応物のTLCクロマトグラムである。 澱粉部分分解物にα-グルコシル転移酵素、パノース分解酵素、イソアミラーゼ及びα-アミラーゼを組合せて作用させ得た反応物をさらにグルコアミラーゼ処理して得た糖質組成物のHPLCクロマトグラムである。
 本発明は、下記(1)及び(2)の基質特異性を有するパノース分解酵素に係るものである:
(1)パノースを加水分解し、イソマルトースとD-グルコースを生成する;及び
(2)イソマルトトリオース、デキストラン、及びプルランに作用しない。
 本発明のパノース分解酵素は、(1)パノースを加水分解し、イソマルトースとD-グルコースとを生成するという特徴;に加え、(2)イソマルトトリオース、デキストラン、及びプルランに作用しないという特徴;を有する従来未知の新規酵素である。本発明のパノース分解酵素は、上記(2)の点において、公知のパノース分解酵素と明瞭に区別することができる。公知のパノース分解酵素であるイソマルトデキストラナーゼ(EC 3.2.1.94)は、イソマルトトリオースを加水分解しイソマルトースとD-グルコースとを生成する活性、α-1,6グルカンであるデキストランを非還元末端からイソマルトース単位で加水分解しイソマルトースを生成する活性、及び、プルランを加水分解しイソパノース(6-O-α-マルトシル-D-グルコース)を生成する活性を有しており、また、同じく公知のパノース分解酵素であるイソプルラナーゼ(EC 3.2.1.57)は、イソマルトトリオース及びデキストランを加水分解する活性を有さないものの、プルランを加水分解しイソパノースを生成する活性を有していることから、イソマルトトリオース、デキストラン、及びプルランを加水分解する活性を有さない、すなわち、イソマルトトリオース、デキストラン、及びプルランに作用しない本発明のパノース分解酵素とは全く相違する。パノース分解酵素は、上記(1)及び(2)の基質特異性を有する酵素である限り、その給源、形態、粗酵素又は精製酵素などの精製度によって限定されることなく本発明のパノース分解酵素に包含される。
 本発明のパノース分解酵素の酵素活性は、次のようにして測定することができる。基質としてのパノースを濃度1.0%(w/v)となるように濃度50mMのリン酸緩衝液(pH7.0)に溶解させて基質溶液とし、その基質溶液2.0mLに同緩衝液で希釈、調製した酵素液0.2mLを加えて30℃で反応を開始し、反応0.5分と反応20.5分の時点で反応液を0.5mLずつサンプリングしそれぞれ100℃の湯浴で10分間加熱することにより酵素を失活させ反応を停止させた後、それぞれの液中のD-グルコース量を、常法のグルコースオキシダーゼ-パーオキシダーゼ法(GOD法)で定量する。20.5分の時点でのD-グルコース量から0.5分の時点のそれを減算することにより反応20分間で生成したD-グルコース量を算出する。パノース分解酵素の活性1単位(U)は、上記の条件下で1分間に1μモルのD-グルコースを生成する酵素量と定義する。
 本発明のパノース分解酵素の具体例としては、例えば、下記の理化学的性質を有するパノース分解酵素が挙げられる。
(a)分子量
 SDS-ポリアクリルアミドゲル電気泳動において、85,000±5,000ダルトンを示す;
(b)至適pH
 30℃、20分反応の条件下で、pH5.0乃至5.6;
(c)至適温度
 pH5.5、20分反応の条件下で35℃;
(d)pH安定性
 4℃、24時間保持の条件下で、pH4.5乃至11.5の範囲で安定;及び
(e)温度安定性
 pH5.5、1時間保持の条件下、Ca2+イオン非存在下で30℃まで安定、5mM
 Ca2+イオン存在下で35℃まで安定。
 また、本発明のパノース分解酵素は、通常、所定のアミノ酸配列を有しており、その一例としては、配列表における配列番号11で示されるアミノ酸配列又はそれに相同的なアミノ酸配列が挙げられる。配列表における配列番号11で示されるアミノ酸配列に相同的なアミノ酸配列を有する変異体酵素としては、パノースを加水分解し、イソマルトースとD-グルコースを生成するという酵素活性を保持する範囲で、配列番号11で示されるアミノ酸配列において1個又は2個以上のアミノ酸が欠失、置換若しくは付加したアミノ酸配列を有するものが挙げられ、配列番号11で示されるアミノ酸配列に対し、通常、70%以上、望ましくは、80%以上、さらに望ましくは、90%以上の相同性を有するアミノ酸配列を有するものが好適である。なお、配列表における配列番号11で示されるアミノ酸配列は、パノース分解酵素の構造遺伝子にコードされるアミノ酸配列(配列表における配列番号10で示される塩基配列に併記されたアミノ酸配列)であり、分泌のためのシグナルペプチド配列と推定される24アミノ酸残基からなるアミノ酸配列を含むものである。
  本発明のパノース分解酵素はその給源によって制限されないものの、好ましい給源として、微生物が挙げられ、とりわけ本発明者らが土壌より単離した微生物U4520株若しくはその変異株が好適に用いられる。ここでいう変異株としては、例えば、人為的に変異を導入することにより、親株としてのU4520株よりも培養性状が改善された変異株、パノース分解酵素の産生能が親株としてのU4520株よりも向上した酵素高生産変異株、より活性の高いパノース分解酵素を産生する変異株などが挙げられる。
 前述したとおり、パノース分解酵素の産生能を有する微生物U4520株は、本発明者らが土壌から新たに単離した微生物であるが、後述する実験2に記載のとおり、rRNA(rDNA)の塩基配列に基づいて、公知菌のそれとの相同性を検討するとともに、顕微鏡でその形態を観察することにより菌種の同定を行ったところ、微生物U4520株は、真菌であり、サロクラディウム・キリエンス(Sarocladium kiliense)と同定された。これらの結果に基づき、本発明者等は、微生物U4520株を新規微生物サロクラディウム・キリエンス U4520と命名し、日本国千葉県木更津市かずさ鎌足2-5-8所在の独立行政法人製品評価技術基盤機構(NITE) 特許微生物寄託センター(NPMD)に寄託し、令和2年6月23日付で受託番号 NITE BP-03236として受託された。
 本発明のパノース分解酵素産生能を有する微生物には、上記菌はもとより、その変異株、更には、本明細書において用いた、基質パノースに培養液を粗酵素液として作用させ、イソマルトースとD-グルコースの生成を調べるスクリーニング方法により、自然界から単離、選抜される他の属、種に属するパノース分解酵素産生能を有する微生物、及び、それらの変異株なども包含される。例えば、サロクラディウム属の微生物又はアクレモニウム(Acremonium)属の微生物及びそれらの変異体が好適に用いられ、より好ましくはサロクラディウム属の微生物及びその変異体、さらに好ましくはサロクラディウム・キリエンス(Sarocladium killiense)及びその変異体が好適に用いられる。ここで、特に限定されないが、サロクラディウム属の微生物としては、例えば、サロクラディウム・バシリスポラム(Sarocladium bacillisporum)、サロクラディウム・ホミニス(Sarocladium hominis)、サロクラディウム・キリエンス(Sarocladium killiense)、サロクラディウム・オリゼー(Sarocladium orizae)などが、アクレモニウム属の微生物としては、例えば、アクレモニウム・オクラセウム(Acremonium ochraceum)、アクレモニウム・インプリカタム(Acremonium implicatum)、アクレモニウム・ブチリ(Acremonium butyri)、アクレモニウム・フルカタム(Acremonium furcatum)などが含まれる。なお、サロクラディウム属とアクレモニウム属は双方真菌に分類され、近年ではアクレモニウム属の幾つかの種がサロクラディウム属に移されるなど、その分類が見直されている近い菌種である(Giraldoら、Persoonia 34,10~24頁、2015年)。
 本発明は、前述した本発明に係るパノース分解酵素をコードする塩基配列、及び当該塩基配列に相補的な塩基配列を有するDNAに係るものでもある。本発明のDNAは、パノース分解酵素をコードする塩基配列を有するものである限り、それが天然由来のものであっても、人為的に合成されたものであってもよい。天然の給源としては、例えば、サロクラディウム・キリエンス U4520を含むサロクラディウム属の微生物、アクレモニウム属の微生物などが挙げられ、これらの培養物からmRNAを調製し、常法により逆転写酵素を作用させることにより、本発明に係るパノース分解酵素をコードするcDNAを得ることができる。本発明のDNAを人為的に合成するには、例えば、配列表における配列番号11に示されるアミノ酸配列に基づいて化学合成すればよい。また、当該DNAを含むcDNAを鋳型として、適当なプライマーとなる化学合成DNAを用いてPCR合成することも有利に実施できる。
 本発明に係るDNAの一例としては、配列表における配列番号10で示される塩基配列、又はそれらに相同的な塩基配列、さらには、それらの塩基配列に相補的な塩基配列を有するDNAが挙げられる。配列表における配列番号10で示される塩基配列に相同的な塩基配列を有するDNAとしては、コードするパノース分解酵素の活性を保持する範囲で、配列表における配列番号10で示される塩基配列において1個以上の塩基が欠失、置換若しくは付加した塩基配列を有するものが挙げられ、配列表における配列番号10で示される塩基配列に対し、通常、70%以上、望ましくは、80%以上、さらに望ましくは、90%以上、またさらに望ましくは95%以上の相同性(配列同一性)を有する塩基配列を有するものが好適である。また、これらパノース分解酵素をコードするDNAにおいて、遺伝子コードの縮重に基づき、それぞれがコードするパノース分解酵素のアミノ酸配列を変えることなく塩基の1個又は2個以上を他の塩基に置換したもの、それらに相補的な塩基配列を有するものも本発明のDNAに包含される。
 本発明のDNAを、自律複製可能な適宜ベクターに挿入して組換えDNAとすることも有利に実施できる。組換えDNAは、通常、DNAと自律複製可能なベクターとからなり、DNAが入手できれば、常法の組換えDNA技術により比較的容易に調製することができる。斯かるベクターの例としては、プラスミド、ファージ又はコスミド等を用いることができ、導入される細胞又は導入方法に応じて適宜選択できる。ベクターの具体的な種類は特に限定されるものではなく、宿主細胞中で発現可能なベクターを適宜選択すればよい。宿主細胞の種類に応じて、確実に上記遺伝子を発現させるために適宜プロモーター配列を選択し、これと上記遺伝子を各種プラスミド等に組み込んだものを発現ベクターとして用いればよい。かかる発現ベクターとしては、例えば、ファージベクター、プラスミドベクター、ウィルスベクター、レトロウィルスベクター、染色体ベクター、エピソームベクター及びウィルス由来ベクター(例えば、細菌プラスミド、バクテリオファージ、酵母エピソーム、酵母染色体エレメント及びウィルス(例えば、バキュロウィルス、パポバウィルス、ワクシニアウィルス、アデノウィルス、トリポックスウィルス、仮性狂犬病ウィルス、ヘルペスウィルス、レンチウィルス及びレトロウィルス))並びにそれらの組合せに由来するベクター(例えば、コスミド及びファージミド)を利用可能である。
 真核生物における使用に好ましいベクターとしては、pPICZαA、pWLNE0、pSV2CAT、pOG44、pXT1及びpSG;並びにpSVK3、pBPV、pMSG及びpSVLなどが挙げられる。また、細菌における使用に好ましいベクターとしては、例えば、pRSET A、pQE-70、pQE-60、pBSベクター、Phagescriptベクター、Bluescriptベクター、pNH8A、pNH6a、pNH18A及びpNH46A;並びにptrc99a、pKK223-3、pKK233-3、pDR540及びpRIT5などが挙げられる。
 本発明のDNAを斯かるベクターに挿入するには、斯界において通常一般の方法が採用される。具体的には、まず、目的とするDNAを含む遺伝子DNAと自律複製可能なベクターとを制限酵素及び/又は超音波により切断し、次に、生成したDNA断片とベクター断片とを連結する。斯くして得られる組換えDNAは、適宜宿主に導入して形質転換体とし、これを培養することにより無限に複製することができる。
 このようにして得られる組換えDNAは、酵母、大腸菌、枯草菌、放線菌をはじめとする適宜の宿主微生物に導入することができる。形質転換体を取得するには、コロニーハイブリダイゼーション法を適用するか、栄養培地で培養し、パノース分解酵素を産生するものを選択すればよい。
 本発明のパノース分解酵素産生能を有する形質転換体も含めた微生物の培養に用いる培地は、微生物が生育でき、パノース分解酵素を産生しうる栄養培地であればよく、合成培地および天然培地のいずれでもよい。炭素源としては、微生物が生育に利用できる物であればよく、例えば、澱粉やその部分分解物、植物由来の澱粉やフィトグリコーゲン、動物や微生物由来のグリコーゲンやプルラン、また、これらの部分分解物やグルコース、フラクトース、ラクトース、スクロース、マンニトール、ソルビトール、糖蜜などの糖質、また、クエン酸、コハク酸などの有機酸、メタノール、エタノールなどのアルコールも使用することができる。培地におけるこれらの炭素源の濃度は炭素源の種類により適宜選択できる。窒素源としては、例えば、アンモニウム塩、硝酸塩などの無機窒素化合物および、例えば、尿素、コーン・スティープ・リカー、カゼイン、ペプトン、酵母エキス、肉エキスなどの有機窒素含有物を適宜用いることができる。また、無機成分としては、例えば、カルシウム塩、マグネシウム塩、カリウム塩、ナトリウム塩、リン酸塩、マンガン塩、亜鉛塩、鉄塩、銅塩、モリブデン塩、コバルト塩などの塩類を適宜用いることができる。更に、必要に応じて、アミノ酸、ビタミンなども適宜用いることができる。
 培養は、通常、温度15乃至37℃でpH5.5乃至10の範囲、好ましくは温度20乃至34℃でpH5.5乃至8.5の範囲から選ばれる条件で好気的に行われる。培養時間は本発明のパノース分解酵素産生能を有する微生物が増殖し得る時間であればよく、好ましくは10時間乃至150時間である。また、培養条件における培養液の溶存酸素濃度には特に制限はないが、通常は、0.5乃至20ppmが好ましい。そのために、通気量を調節したり、攪拌したりするなどの手段を適宜採用する。また、培養方式は、回分培養または連続培養のいずれでもよい。
 このようにして微生物を培養した後、本発明の酵素を含む培養物を回収する。パノース分解酵素活性は、主に培養物の除菌液に認められ、除菌液を粗酵素液として採取することも、培養物全体を粗酵素液として用いることもできる。培養物から菌体を除去するには公知の固液分離法が採用される。例えば、培養物そのものを遠心分離する方法、あるいは、プレコートフィルターなどを用いて濾過分離する方法、平膜、中空糸膜などの膜濾過により分離する方法などが適宜採用される。除菌液をそのまま粗酵素液として用いることができるものの、一般的には、濃縮して用いられる。濃縮法としては、硫酸アンモニウム(硫安)塩析法、アセトン及びアルコール沈殿法、平膜、中空膜などを用いた膜濃縮法などを採用することができる。
 更に、パノース分解酵素活性を有する除菌液及びその濃縮液を用いて、パノース分解酵素を公知の方法により固定化することもできる。例えば、イオン交換体への結合法、樹脂及び膜などとの共有結合法・吸着法、高分子物質を用いた包括法などを適宜採用できる。
 上記のように本発明のパノース分解酵素は、粗酵素液をそのまま又は濃縮して用いることができるものの、必要に応じて、公知の方法によって、さらに分離・精製して利用することもできる。例えば、培養液の処理物を硫安塩析して濃縮した粗酵素標品を透析後、『DEAE-トヨパール(Toyopearl) 650S』ゲル(東ソ-株式会社製)などを用いた陰イオン交換クロマトグラフィー、『フェニル-トヨパール(Phenyl-Toyopearl) 650M』ゲル(東ソ-株式会社製)などを用いた疎水クロマトグラフィー、『Superdex 200pg』ゲル(GEヘルスサイエンス社製)などを用いたゲルろ過クロマトグラフィーなどを用いて精製することにより、本発明のパノース分解酵素を電気泳動的に単一なレベルにまで精製された精製酵素として得ることができる。
 上記の方法で得られる天然型又は組換え型パノース分解酵素を、他の特定の活性を有する糖転移酵素と組合せて用いれば、澱粉や澱粉部分分解物を原料としてイソマルトースやイソマルトオリゴ糖、及びそれらを含有する糖質を効率よく製造することができる。
 本発明のパノース分解酵素と他の糖転移酵素を組合せてイソマルトースやイソマルトオリゴ糖を製造するに際し、原料基質としては、例えば、とうもろこし澱粉、米澱粉、小麦澱粉などの地上澱粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱粉などの地下澱粉及びそれらの部分加水分解物(澱粉部分分解物)を好適に用いることができる。前記澱粉部分分解物は、通常、上記した地上又は地下澱粉を水に懸濁して、通常、濃度10質量%以上、より好ましくは、15質量%乃至65質量%、更に好ましくは、20質量%乃至50質量%の澱粉乳とし、これを加熱して糊化し、次いで、酸或いは耐熱性α-アミラーゼにより液化(部分分解)して得ることができる。液化の程度は、比較的低く設定するのがよく、通常、DE(Dextrose Equivalent、グルコース当量)15未満、好ましくは、DE10未満、より好ましくは、DE9乃至0.1の範囲とするのが望ましい。酸で液化する場合には、例えば、塩酸、燐酸、蓚酸などの酸剤により液化した後、通常、炭酸カルシウム、酸化カルシウム、炭酸ナトリウムなどのアルカリ剤を用いて所望のpHに中和する方法を採用する。
 本発明のパノース分解酵素と他の糖転移酵素を組合せて基質原料に作用させるに際し、その基質濃度は特に限定されないものの、基質濃度40質量%以下が好適であり、この条件下でイソマルトースやイソマルトオリゴ糖を有利に製造できる。反応温度は反応が進行する温度、即ち45℃付近までで行えばよい。好ましくは30℃付近の温度を用いる。反応pHは、通常、4.0乃至6.0の範囲、好ましくはpH5.0乃至5.5の範囲に調整するのがよい。酵素の使用量と反応時間とは密接に関係しており、目的とする酵素反応の進行により酵素の使用量と反応時間を適宜調整すればよい。
<イソマルトースの製造方法>
 本発明は、澱粉又は澱粉部分分解物に作用し、そのα-1,4グルカン鎖の非還元末端グルコース残基の6位水酸基にD-グルコースがα-1,6結合を介して結合した分岐構造を有する分岐α-グルカン(別名:α-イソマルトシルグルコ糖質)を生成する活性を有する6-α-グルコシル転移酵素(別名:α-イソマルトシルグルコ糖質生成酵素)と、本発明のパノース分解酵素とを組合せて、澱粉又は澱粉部分分解物に作用させることによりイソマルトースを生成させる工程と、生成したイソマルトースを採取する工程を含んでなるイソマルトースの製造方法に係るものでもある。
 本発明のイソマルトースの製造方法は、本願と同じ出願人が特許文献3に開示した、6-α-グルコシル転移酵素(別名:α-イソマルトシルグルコ糖質生成酵素)とイソマルトデキストラナーゼとを組合せたイソマルトースの製造方法において、イソマルトデキストラナーゼに替えて本発明のパノース分解酵素を用いたものである。イソマルトデキストラナーゼは、イソマルトトリオースを加水分解しイソマルトースとD-グルコースとを生成する活性、α-1,6グルカンであるデキストランを非還元末端からイソマルトース単位で加水分解しイソマルトースを生成する活性、パノースをイソマルトースとD-グルコースとに加水分解する活性、及び、プルランを加水分解しイソパノース(6-O-α-マルトシル-D-グルコース)を生成する活性を有しているのに対し、本発明のパノース分解酵素は、パノースをイソマルトースとD-グルコースに加水分解する活性を有している点ではイソマルトデキストラナーゼと同じであるものの、α-1,6結合を加水分解しないためイソマルトトリオースを加水分解する活性、及び、デキストランを加水分解する活性を有さない点で、イソマルトデキストラナーゼとは決定的に相違する酵素である。6-α-グルコシル転移酵素とパノース分解酵素とを組合せ澱粉又は澱粉部分分解物に作用させると、6-α-グルコシル転移酵素の作用により、α-1,4グルカン鎖の非還元末端グルコース残基の6位水酸基にD-グルコースがα-1,6結合した分岐構造を有する分岐α-グルカン、すなわち、α-1,4グルカン鎖の非還元末端にイソマルトース構造を有する糖質(別名:α-イソマルトシルグルコ糖質)が生成し、次いで、その末端のイソマルトシル基が結合したα-1,4結合をパノース分解酵素が特異的に加水分解することによりイソマルトースが生成する。そして、この反応が繰り返されることにより、反応液中にイソマルトースが蓄積することとなる。
 本発明のイソマルトースの製造方法において好適に用いることのできる前記6-α-グルコシル転移酵素(別名:α-イソマルトシルグルコ糖質生成酵素)としては、例えば、本願と同じ出願人が国際公開第2002/010361号パンフレットに開示した、バチルス・グロビスポルス(Bacillus globisporus) C9、バチルス・グロビスポルス C11又はバチルス・グロビスポルス N75由来の酵素、及び、アルスロバクター・グロビホルミス(Arthrobacter globiformis) A19又はアルスロバクター・ラモサス(Arthrobacter ramosus) S1由来の酵素が挙げられる。なお、バチルス・グロビスポルスは、現在では16S rDNAの塩基配列の相同性(同一性)に基づき、パエニバチルス・フィリシス(Paenibacillus filicis)に分類されている。
 本発明のイソマルトースの製造方法において用いる6-α-グルコシル転移酵素の酵素活性は、本願と同じ出願人による特許文献3に開示した以下の方法で測定することができる。すなわち、マルトトリオースを濃度2%(w/v)となるように100mM酢酸緩衝液(pH6.0)に溶解させて基質液とし、その基質液0.5mLに酵素液0.5mLを加えて、35℃で60分間酵素反応させ、その反応液を10分間煮沸して反応を停止させた後、その反応液中に主に生成するイソマルトシルマルトース(6-α-D-グルコシルマルトトリオース)とマルトースの内、マルトースを高速液体クロマトグラフィー(以下、『HPLC』と略記する。)で定量する。HPLCは、『YMC Pack ODS-AQ303』カラム(株式会社ワイ・エム・シー製)を、溶離液として脱イオン水を用い、カラム温度40℃、流速0.5mL/分の条件で行い、生成糖の検出は示差屈折計『RI-8012』(東ソー株式会社製)を用いて行なう。6-α-グルコシル転移酵素の活性1単位(U)は、上記の条件下で1分間に1μモルのマルトースを生成する酵素量と定義する。
 なお、本発明のイソマルトースの製造方法の前記イソマルトースを生成させる工程においては、さらに、必要に応じて、イソアミラーゼやプルラナーゼなどの澱粉枝切酵素、α-アミラーゼ、シクロマルトデキストリングルカノトランスフェラーゼ(CGTase)及びグルコアミラーゼから選ばれる1種又は2種以上の酵素を併用することも有利に実施できる。とりわけ、澱粉枝切酵素は、原料とする澱粉又は澱粉部分分解物におけるα-1,6結合を介した分岐構造のα-1,6結合を特異的に加水分解(枝切り)する酵素であるため、澱粉又は澱粉部分分解物を原料として各種オリゴ糖製品を製造する上で目的とするオリゴ糖の収率を高めるために汎用される酵素である。澱粉枝切酵素を併用することにより6-α-グルコシル転移酵素とパノース分解酵素とを組合せた本発明のイソマルトースの製造方法においても、イソマルトースの生成量を高めることができる。
 特許文献3(国際公開第02/088374号パンフレット)には前記6-α-グルコシル転移酵素とイソマルトデキストラナーゼとを組合せたイソマルトースの製造方法が開示されているが、澱粉枝切酵素も併用した製造方法において、原料澱粉部分分解物から得られる反応物の反応固形物当たりのイソマルトース含量は、基質濃度5質量%の条件下で最大約70質量%であり、基質濃度30質量%の条件下では最大約55質量%、基質濃度40質量%の条件下では最大約50質量%と、基質濃度を高めるとイソマルトースの生成が顕著に低下することが記載されている。これに対し、イソマルトデキストラナーゼを本発明のパノース分解酵素と置き換えた場合には、後述する実験の項に示すとおり、基質濃度30乃至40質量%の条件下でも反応物の反応固形物当たりのイソマルトース含量は70質量%以上に達し、イソマルトデキストラナーゼに比べ、より効率よくイソマルトースを製造することができる。
 また、本発明は、上記のイソマルトースの製造方法に、さらにイソマルトースを水素添加することにより還元しイソマルチトールに変換する工程と、変換されたイソマルチトールを採取する工程とを付加してなるイソマルチトールの製造方法に係るものでもある。上記のイソマルトースの製造方法で得られるイソマルトース又はイソマルトース含有糖質を、引き続き還元触媒下で水素添加し還元することによってイソマルチトール又はイソマルチトール含有物を高収率で得ることができる。具体的には、例えば、固形物濃度40乃至60%のイソマルトース含有水溶液にラネーニッケル触媒を加え、これを耐圧性容器内に入れ、この容器内に水素を充填し、加圧し、温度100乃至120℃にて水素が消費されなくなるまで攪拌して水素添加する。この際、イソマルトースは還元されイソマルチトールに変換されるとともに、イソマルトース含有物中に含まれる場合がある他の還元性糖質、例えば、D-グルコース、マルトース、マルトトリオース、他の還元性澱粉部分加水分解物も還元され糖アルコールとなる。得られたイソマルチトール含有溶液をラネーニッケル触媒と分離し、常法にしたがって活性炭により脱色し、H型、OH型イオン交換樹脂等で脱塩し、精製し、濃縮してシラップ状物とするか、更に、これを乾燥して粉末状物とする。必要ならば、更に、例えば、イオン交換カラムクロマトグラフィー、活性炭カラムクロマトグラフィー、シリカゲルカラムクロマトグラフィーなどのカラムクロマトグラフィーによる分画、結晶化、アルコール及びアセトンなど有機溶媒を用いる分別、膜分離法等の1種又は2種以上の方法を適宜組み合わせて精製し、高純度イソマルチトールとすることもできる。なお、イソマルチトールは結晶が知られており、結晶化することによっても、さらに高純度の製品を製造することができる。
<イソマルトオリゴ糖の製造方法>
 本発明は、澱粉又は澱粉部分分解物に作用し、そのα-1,4グルカン鎖の非還元末端グルコース残基の6位水酸基にD-グルコース若しくはグルコース重合度2以上のα-1,6グルカンがα-1,6結合を介して結合した分岐構造を有する分岐α-グルカンを生成する活性を有するα-グルコシル転移酵素と、本発明のパノース分解酵素とを組合せ、澱粉又は澱粉部分分解物に作用させることによりイソマルトオリゴ糖を生成させる工程と、生成したイソマルトオリゴ糖を採取する工程を含んでなるイソマルトオリゴ糖の製造方法に係るものでもある。
 本発明のイソマルトオリゴ糖の製造方法は、本願と同じ出願人が国際公開第2002/010361号パンフレットに開示したα-グルコシル転移酵素と、本発明のパノース分解酵素とを組合せた新規なイソマルトオリゴ糖生成反応である。α-グルコシル転移酵素とパノース分解酵素とを組合せて澱粉又は澱粉部分分解物に作用させると、α-グルコシル転移酵素の作用により、α-1,4グルカン鎖の非還元末端グルコース残基の6位水酸基にD-グルコース若しくはグルコース重合度2以上のα-1,6グルカンがα-1,6結合した分岐構造を有する分岐α-グルカンが生成し、次いで、その末端のイソマルトシル基若しくはグルコース重合度3以上のα-1,6グルカンが結合したα-1,4結合をパノース分解酵素が特異的に加水分解することによりグルコース重合度2以上のイソマルトオリゴ糖が生成する。
 本発明のイソマルトオリゴ糖の製造方法において好適に用いることのできる前記α-グルコシル転移酵素としては、例えば、本願と同じ出願人が国際公開第2008/136331号パンフレットに開示した、バチルス・サーキュランス(Bacillus circulans) PP710由来、及び、アルスロバクター・グロビホルミス(Arthrobacter globiformis) PP349由来の酵素が挙げられる。
 本発明のイソマルトオリゴ糖の製造方法において用いるα-グルコシル転移酵素の酵素活性は、本願と同じ出願人による国際公開第2008/136331号パンフレットに開示した、基質としてマルトースを用い、α-グルコシル転移酵素がマルトースの非還元末端側のグルコシル基を転移した際に残存するD-グルコースを定量する方法で測定することができる。具体的には、マルトースを最終濃度1%(w/v)となるように20mM酢酸緩衝液(pH6.0)に溶解させて基質液とし、その基質液5mLに、酵素液0.5mLを加え40℃で30分間酵素反応させ、その反応液0.5mLと5mLの20mMリン酸緩衝液(pH7.0)とを混合し、沸騰水浴中で10分間加熱することにより反応停止させた後、反応液中のグルコース量を、常法に従ってグルコースオキシダーゼ-パーオキシダーゼ法で測定し、酵素反応によって生成したD-グルコース量を算出する。α-グルコシル転移酵素の活性1単位(U)は、上記の条件下で1分間に1μモルのD-グルコースを生成する酵素量と定義する。
 また、本発明のイソマルトオリゴ糖の製造方法の前記イソマルトオリゴ糖を生成させる工程においては、前記イソマルトースの製造方法の項において述べたと同様に、必要に応じて、イソアミラーゼやプルラナーゼなどの澱粉枝切酵素、α-アミラーゼ、CGTase及びグルコアミラーゼから選ばれる1種又は2種以上の酵素を併用することも有利に実施できる。
 後述する実験の項に示すとおり、α-グルコシル転移酵素と本発明のパノース分解酵素を組合せ、さらに澱粉枝切酵素やα-アミラーゼを併用した本発明のイソマルトオリゴ糖の製造方法において、原料澱粉部分分解物から得られる反応物の反応固形物当たりのDP2のイソマルトースからDP8のイソマルトオクタオースまでのイソマルトオリゴ糖の合計の含量は少なくとも73質量%以上に達することから、本発明のイソマルトオリゴ糖の製造方法によれば、澱粉又は澱粉部分分解物を原料として、従来法よりも顕著に効率よくイソマルトオリゴ糖を製造することができる。
 また、本発明は、上記のイソマルトオリゴ糖の製造方法に、さらにイソマルトオリゴ糖を水素添加することにより還元しイソマルトオリゴ糖アルコールに変換する工程と、変換されたイソマルトオリゴ糖アルコールを採取する工程とを付加してなるイソマルトオリゴ糖アルコールの製造方法に係るものでもある。上記のイソマルトオリゴ糖の製造方法で得られるイソマルトオリゴ糖又はイソマルトオリゴ糖含有糖質は、前述のイソマルトースの場合と同様に、還元触媒下で水素添加し、還元することによってイソマルトオリゴ糖アルコール、すなわち、イソマルチトール、イソマルトトリイトール、イソマルトテトライトール、イソマルトペンタイトールなどの混合物に変換することができる。
 上記した本発明のイソマルトースの製造方法又はイソマルトオリゴ糖の製造方法によって得られた反応物又はその還元物(水素添加物)は、そのままイソマルトース含有糖液、イソマルトオリゴ糖含有糖液、それらの糖アルコール含有液として用いることができるものの、一般的には、さらに精製して用いられる。精製方法としては、糖及び糖アルコールの精製に用いられる通常の方法を適宜採用すればよく、例えば、活性炭による脱色、H型、OH型イオン交換樹脂による脱塩、イオン交換カラムクロマトグラフィー、活性炭カラムクロマトグラフィー、シリカゲルカラムクロマトグラフィーなどのカラムクロマトグラフィーによる分画、アルコールおよびアセトンなど有機溶媒による分別、適度な分離性能を有する膜による分離、更には、イソマルトースやイソマルトオリゴ糖、それらの糖アルコールを利用せず夾雑糖質を資化、分解する微生物、例えば酵母などによる発酵処理などの精製方法が適宜採用できる。
 とりわけ、大量生産方法としては、イオン交換カラムクロマトグラフィーの採用が好適であり、例えば、特開昭58-23799号公報、特開昭58-72598号公報などに開示されている強酸性カチオン交換樹脂を用いるカラムクロマトグラフィーにより夾雑糖類を除去し、目的物の含量を向上させたイソマルトース含有糖質、イソマルトオリゴ糖含有糖質又はそれらの糖アルコール含有物を有利に製造することができる。この際、固定床方式、移動床方式、擬似移動床方式のいずれの方式を採用することも随意である。
 このようにして得られたイソマルトース、イソマルトオリゴ糖又はそれらの糖アルコール(水素添加物)を含む水溶液は、通常、濃縮してシラップ状製品とすることができる。このシラップ状製品は、更に、乾燥して非晶質固状物製品又は非晶質粉末製品にすることも随意である。
 本発明の製造方法で得られるイソマルトオリゴ糖含有糖質、イソマルトース含有糖質、又はそれらの糖アルコール(水素添加物)の粉末状製品は、そのままで、または必要に応じて、増量剤、賦形剤、結合剤などと混合して、顆粒、球状、短棒状、板状、立方体、錠剤など各種形状に成形して使用することも随意である。
 本発明の製造方法で得られるイソマルトオリゴ糖含有糖質、イソマルトース含有糖質、又はそれらの糖アルコール(水素添加物)は、甘味料、呈味改良剤、品質改良剤、安定剤、変色防止剤、賦形剤などとして、他の成分と組合せ、飲食物、嗜好物、飼料、餌料、化粧品、医薬品、工業用品などの各種組成物に有利に利用できる。
 上記各種組成物に、本発明の製造方法で得られるイソマルトオリゴ糖含有糖質、イソマルトース含有糖質、又はそれらの糖アルコール(水素添加物)を含有させる方法としては、その製品が完成するまでの工程に含有せしめればよく、例えば、混和、混捏、溶解、融解、浸漬、浸透、散布、塗布、被覆、噴霧、注入、晶析、固化など公知の方法が適宜選ばれる。その量は、通常0.1質量%以上、望ましくは1質量%以上含有せしめるのが好適である。
 以下、実験により本発明を詳細に説明する。なお、以下の実験におけるパノース分解酵素の活性は、前述した活性測定法により求めた、基質パノースからD-グルコースを生成する活性として表記した。
<実験1:土壌単離菌からのパノース分解酵素生産菌のスクリーニング>
 土壌より単離した微生物菌株950株をそれぞれ、澱粉部分分解物(商品名『パインデックス(Pinedex) #4』、松谷化学工業株式会社販売)15g/L、酵母エキス(商品名『酵母エキス SH』、日本製薬株式会社販売)1.0g/L、ペプトン(商品名『ハイポリペプトン』、日本製薬株式会社販売)5.0g/L、リン酸二カリウム1.0g/L、リン酸一ナトリウム・7水和物0.6g/L、硫酸マグネシウム・7水和物0.5g/L、硫酸第一鉄・7水和物0.01g/L、硫酸マンガン・5水和物0.01g/L、炭酸カルシウム3.0g/L、及び水からなる液体培地(pH6.8)を試験管に3mL入れ、オートクレーブで121℃、20分間滅菌したものに植菌し、27℃、240rpmで振トウしながら3日間培養した。得られた培養液にそれぞれ6mg/mLのリゾチーム溶液100μLと3%界面活性剤(商品名『Triton X100』)溶液100μLを添加し27℃で2時間振トウして溶菌させ、粗酵素液とした。次いで、得られた粗酵素液を、パノースを3%(w/v)、1mMアカルボース、50mM酢酸緩衝液(pH5.5)、防腐剤120ppmを含有する基質溶液に等量混合し、40℃で24時間反応させ、得られた反応液を下記条件によるTLC分析に供し、パノースへの作用の有無を調べ、作用した場合には生成物を調べた。
<TLC分析条件>
TLCプレート:シリカゲルアルミニウムプレート(商品名『シリカゲル60F254』
、10×20cm、メルク社製)
展開溶媒:n-ブタノール:ピリジン:水混液(容量比6:4:1)
展開方法:上昇法、1回展開
検出方法:硫酸-メタノール法
 基質パノースに作用させた場合に、TLC分析においてイソマルトースとD-グルコースが生成物として明確に認められる酵素を産生する微生物はU4520株の1株のみであった。U4520株を選択し、さらにその培養上清を粗酵素としてパノースと同様にイソマルトトリオース、プルラン又はデキストランに作用させ、その作用性から酵素を同定することを試みた。U4520株由来の粗酵素をパノース、イソマルトトリオース、プルラン、及びデキストランにそれぞれ作用させた反応液のTLCクロマトグラムを図1に示した。図1に見られるとおり、U4520株由来の粗酵素は、パノースをイソマルトースとD-グルコースとに加水分解(図1の符号8)する一方で、イソマルトトリオース(図1の符号9)、プルラン(図1の符号10)及びデキストラン(図1の符号11)のいずれにも作用しなかった。パノースをイソマルトースとD-グルコースとに加水分解する酵素としてはイソマルトデキストラナーゼ(EC 3.2.1.94)とイソプルラナーゼ(EC 3.2.1.57)が公知であるものの、イソマルトデキストラナーゼはイソマルトトリオース、プルラン及びデキストランを加水分解する酵素であり、イソプルラナーゼはイソマルトトリオース及びデキストランには作用しない一方でプルランを加水分解しイソパノースを生成する酵素であることから、U4520株由来のパノース分解酵素は、イソマルトデキストラナーゼとも、また、イソプルラナーゼとも異なる従来未知の新規酵素であることが判明した。
<実験2:パノース分解酵素生産菌U4520株の同定>
 土壌スクリーニングにおいて単離したパノース分解酵素生産菌U4520株の顕微鏡写真を図2に示した。図2に見られるとおり、顕微鏡観察において、U4520株には菌糸とともに分生子柄及び分生子が観察され、真菌であることが判明した。また、分生子柄の頭部に数多くの分生子が塊を形成していることが分った。本実験では、rRNA(rDNA)の塩基配列を決定し、この塩基配列情報と顕微鏡観察における菌の形態に基づき微生物U4520株の菌種同定を行った。
<実験2-1:U4520株からのrDNAの調製>
 市販のデキストリン(商品名『パインデックス#4』、松谷化学工業株式会社販売)1.5g/L、酵母エキス(商品名『酵母エキスSH』、日本製薬株式会社販売)0.2g/L、ポリペプトン(商品名『ハイポリペプトン』、日本製薬株式会社販売)1.0g/L、リン酸二カリウム1.0g/L、リン酸一ナトリウム・7水和物0.6g/L、硫酸マグネシウム・7水和物0.5g/L、硫酸第一鉄・7水和物0.01g/L、硫酸マンガン・5水和物0.01g/L、寒天20.0g/L及び水からなる培地(pH6.8)を、オートクレーブで121℃、20分間滅菌した後、シャーレに分注し冷却して寒天平板培地を調製した。次いで、U4520株をこの平板培地に接種し、それぞれ27℃で5日間静置培養し、単コロニー化した。
 上記で単コロニー化したU4520株を釣菌し、市販のDNA簡易抽出試薬(商品名『MightyPrep reagent for DNA』、タカラバイオ株式会社販売)50μLに懸濁し、95℃で10分間処理した後、15,000rpm、2分間遠心分離することによりゲノムDNAを含む上清を回収した。回収したU4520株のゲノムDNAに対して、配列表における配列番号1で示される塩基配列を有するセンスプライマー「ITS」、及び、配列表における配列番号2で示される塩基配列を有するアンチセンスプライマー「LR7」を用いたPCRを行い、PCR増幅産物についてアガロース電気泳動を行ったところ、約2kbpのPCR増幅産物が認められたため、エタノール沈殿により回収し、rDNAとした。
<実験2-2:rDNA塩基配列の決定>
 実験2-1で得たU4520株のrDNAの塩基配列を常法により決定したところ、配列表における配列番号3で示される塩基配列(1,658bp)を有していることが判明した。
<実験2-3:微生物U4520株の同定>
 実験2-2で決定したrDNAの塩基配列を、塩基配列の相同性検索プログラム『BLASTN』により塩基配列データベースから相同性検索を行い、不確定な情報を除くため、NCBI Taxonomyデータベースのうち、Type materialでの比較を行った。
 U4520株のrDNAについて、真菌の菌種同定に用いられる26S rDNAのD1/D2領域について行った相同性検索の結果を表1に示した。また、同じく真菌の菌種同定に用いられる18S rDNAと26S rDNAの間に位置するITS1・ITS2領域について行った相同性検索の結果を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2に見られるとおり、U4520株のrDNAの塩基配列は、D1/D2領域において、サロクラディウム・キリエンス(Sarocladium kiliense)と99.67%の相同性(同一性)を示し、ディクチオスポリウム・ディジテイタム(Dictyosporium digitatum)と100%の相同性を示した。また、U4520株のrDNAの塩基配列は、ITS1・ITS2領域において、サロクラディウム・キリエンスと100%の相同性を示し、サロクラディウム・ホミニス(Sarocladium hominis)と95.52%の相同性を示した。一般的に、rDNAの塩基配列での菌の分類は99%以上の相同性があれば同種である可能性が高いと言われている。さらに、前記した顕微鏡観察において、U4520株は形態がサロクラディウム・キリエンスに類似しており、ディクチオスポリウム・ディジテイタムとは大きく相違していた。rDNAの塩基配列と顕微鏡による形態観察の結果に基づき、U4520株をサロクラディウム・キリエンスと同定し、サロクラディウム・キリエンス U4520と命名した。
 サロクラディウム・キリエンス U4520は、日本国千葉県木更津市かずさ鎌足2-5-8所在の独立行政法人製品評価技術基盤機構(NITE) 特許微生物寄託センター(NPMD)に寄託され、令和2年6月23日付で受託番号 NITE BP-03236として受託された。
<実験3:サロクラディウム・キリエンス U4520の培養によるパノース分解酵素粗
酵素液の調製>
 市販のデキストリン(商品名『パインデックス#4』、松谷化学工業株式会社販売)45g/L、酵母エキス(商品名『酵母エキスSH』、日本製薬株式会社販売)1.0g/L、ポリペプトン(商品名『ハイポリペプトン』、日本製薬株式会社販売)15g/L、リン酸二カリウム1.0g/L、リン酸一ナトリウム・7水和物0.6g/L、硫酸マグネシウム・7水和物0.5g/L、硫酸第一鉄・7水和物0.01g/L、硫酸マンガン・5水和物0.01g/L及び水からなる液体培地(pH6.8)を、500mL容三角フラスコに100mL入れたものを70本調製し、オートクレーブで121℃、20分間滅菌した後、予め種培養培地で培養したサロクラディウム・キリエンス U4520の種培養液1.0%(v/v)を無菌的に添加し、240rpmで撹拌しながら27℃で72時間培養した。培養終了後、培養液を遠心分離し、得られた培養上清6,900mLを粗酵素液として回収した。粗酵素液におけるパノース分解酵素の全活性は、1,656Uであった。
<実験4:パノース分解酵素の精製>
 実験3で得た粗酵素液6,900mLに80%飽和になるよう硫安を添加溶解し、一晩放置して塩析し、生じた沈澱を遠心分離にて回収し、10mMリン酸緩衝液(pH7.0)に対して透析した。透析液中の不溶物を遠心分離にて除去し、透析酵素液420mLを得た。透析酵素液を予め10mMリン酸緩衝液(pH7.0)で平衡化した陰イオン交換体(商品名『DEAE-Toyopearl 650S』、株式会社東ソー製)を用いた陰イオン交換カラムクロマトグラフィー(ゲル容量83mL)に供したところ、パノース分解活性画分は陰イオン交換体に吸着した。カラムを同緩衝液で洗浄した後、食塩濃度0Mから0.5Mのリニアグラジエントで溶出させたところ、パノース分解活性画分は食塩濃度約0.22Mで溶出した。溶出画分からパノース分解活性画分を回収し、10mMリン酸緩衝液(pH7.0)に透析し、得られた透析液に終濃度1.5Mになるよう硫安を溶解させ、10mMリン酸緩衝液(pH7.0)、1.5M硫安で予め平衡化した疎水クロマト担体(商品名『Phenyl-Toyopearl 650M』、株式会社東ソー製)を用いた疎水カラムクロマトグラフィー(ゲル容量11mL)に供したところ、パノース分解活性画分は疎水クロマト担体に吸着した。カラムを同緩衝液で洗浄した後、硫安濃度1.5Mから0Mのリニアグラジエントで溶出させたところ、パノース分解活性画分は硫安濃度約0.75Mで溶出した。溶出画分からパノース分解活性画分を回収し、3mLまで膜濃縮した後、食塩濃度0.4Mの10mMリン酸緩衝液(pH7.0)で予め平衡化したゲルろ過担体(商品名『Superdex 200pg』、GLヘルスケアライフサイエンス社製)を用いたゲルろ過カラムクロマトグラフィー(ゲル容量120mL)に供し、同緩衝液で溶出し、溶出画分からパノース分解活性画分を回収した。次いで、回収した活性画分を透析後、予め10mMリン酸緩衝液(pH7.0)で平衡化した陰イオン交換体(商品名『Resource Q』、GLヘルスケアライフサイエンス社製)を用いた陰イオン交換カラムクロマトグラフィー(ゲル容量1mL)に供したところ、パノース分解活性画分は陰イオン交換体に吸着した。カラムを同緩衝液で洗浄した後、食塩濃度0Mから0.5Mのリニアグラジエントで溶出させたところ、パノース分解活性画分は食塩濃度約0.23Mで溶出した。溶出したパノース分解活性画分をパノース分解酵素精製標品とした。精製工程を表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、パノース分解酵素精製標品の比活性は70.3U/mg蛋白であり、精製原料とした培養上清の比活性と対比すると、この精製工程によって約500倍まで精製されていた。得られたパノース分解酵素精製標品の純度を5乃至20%(w/v)濃度勾配ゲルを用いたSDS-ポリアクリルアミドゲル電気泳動法により検定したところ、図3の電気泳動図のレーン2に示すとおり、精製標品はほぼ単一な蛋白バンドを示す純度の高いものであることが分った。
<実験5:パノース分解酵素の性質>
 実験4の方法で得たパノース分解酵素精製標品を用いてパノース分解酵素の分子量と酵素学的性質を調べた。
<実験5-1:分子量>
 実験4の方法で得たパノース分解酵素精製標品をSDS-ポリアクリルアミドゲル電気泳動法(SDS-PAGE、5乃至20%(w/v)濃度勾配)に供し、同時に泳動した分子量マーカー(バイオ・ラッド・ラボラトリー社製)の移動度と比較することにより分子量を測定したところ、当該パノース分解酵素の分子量は85,000±5,000ダルトンであることが判明した。また同精製標品をゲルろ過担体(商品名『Superdex 200pg』、GLヘルスケアライフサイエンス製)を用いたゲルろ過カラムクロマトグラフィーに供し、その溶出時間と分子量マーカー(バイオ・ラッド・ラボラトリー社製)の溶出時間との関係から分子量を測定したところ、当該パノース分解酵素のゲルろ過クロマトグラフィーにおける分子量は67,000±5,000ダルトンであった。
<実験5-2:至適pH及び至適温度>
 実験4の方法で得たパノース分解酵素精製標品を用い、パノース分解活性に及ぼすpH及び温度の影響を活性測定法に準じてそれぞれ調べた。これらの結果を図4(至適pH)及び図5(至適温度)に示す。本発明のパノース分解酵素の至適pHは、30℃、20分反応の条件下でpH5.0乃至5.6であった。また、至適温度はpH5.5、20分反応の条件下で35℃であることが判明した。
<実験5-3:pH安定性及び温度安定性>
 実験4の方法で得たパノース分解酵素精製標品を用い、パノース分解活性のpH安定性及び温度安定性を調べた。pH安定性は、酵素を各pHの20mMブリトン-ロビンソン緩衝液中で4℃、24時間保持した後、pHを5.5に調整し、残存する酵素活性を測定することにより求めた。温度安定性は、5mM塩化カルシウム添加又は無添加の20mMブリトン-ロビンソン緩衝液(pH5.5)を用い、酵素溶液を各温度に1時間保持し、水冷した後、残存するD-グルコース生成活性を測定することにより求めた。これらの結果を図6(pH安定性)及び図7(温度安定性)に示す。図6から明らかなように、本発明のパノース分解酵素の活性はpH4.5乃至11.5の範囲で安定であることが判明した。また、図7から明らかなように、本発明のパノース分解酵素の活性は、Ca2+イオン非存在下(図中「●」)では30℃まで安定であり、5mMのCa2+イオン存在下(図中「○」)では約35℃まで安定であることが判明した。
<実験5-4:N末端アミノ酸配列>
 実験4の方法で得たパノース分解酵素精製標品を常法のエドマン分解によるN末端アミノ酸配列分析に供したところ、N末端アミノ酸配列を得ることはできなかった。このことから本パノース分解酵素は、N末端アミノ酸残基が何らかの修飾を受けており、アミノ酸配列が分析できなかったものと推測された。
<実験5-5:内部部分アミノ酸配列>
 実験4の方法で得たパノース分解酵素精製標品250μgを、膜処理にて緩衝液を10mMトリス-リン酸緩衝液(pH9.0)に交換し260μLまで濃縮した後、100℃、10分間加熱することにより酵素蛋白を熱変性させた。得られた熱変性物にリジルエンドペプチダーゼ(和光純薬株式会社販売)5μgを加えて、30℃、20時間保持することにより酵素蛋白を加水分解した。加水分解物を予め0.1%(v/v)トリフルオロ酢酸で平衡化させておいた逆相HPLCカラム(商品名『μBondashere C18』、直径3.9mm×長さ150mm、ウォーターズ社製)に注入し、流速0.9mL/分、室温の条件下、0.1%(v/v)トリフルオロ酢酸から0.1%(v/v)トリフルオロ酢酸-40%(v/v)アセトニトリル溶液までの100分間のアセトニトリル濃度のリニアグラジエントで通液し、ペプチド断片を溶出させ分画した。ペプチド断片の溶出は波長210nmの吸光度を測定することにより検出した。保持時間約42分、約58分、約76分、及び約86分に溶出した4種のペプチド断片P1、P2、P3及びP4を分取し、それぞれのアミノ酸配列をN末端から5残基ずつ分析したところ、それぞれ配列表における配列番号4、配列番号5、配列番号6及び配列番号7で示されるアミノ酸配列を有していた。
<実験6:パノース分解酵素をコードするcDNAのクローニング及びこれを含む組換えDNAと形質転換体の調製>
 本発明のパノース分解酵素をコードするcDNAをサロクラディウム・キリエンス U4520からクローニングし、自律複製可能な組換えDNAの作製、パノース分解酵素をコードするcDNAの塩基配列の決定、及び、形質転換体の調製を行った。
<実験6-1:パノース分解酵素をコードするcDNAのクローニング及び塩基配列の決定>
 サロクラディウム・キリエンス U4520は真菌であり、そのゲノムDNAはイントロンを含むと考えられたため、同菌株からmRNAを調製し、パノース分解酵素をコードするcDNAを調製した。
 実験3で用いた液体培地で24時間培養して得たサロクラディウム・キリエンス U4520の菌体を菌体破砕用ビーズ(商品名『NucleoSpin Bead Tubes Type A』(タカラバイオ株式会社)で破砕後、RNA抽出キット(商品名『NucleoSpin RNA』(タカラバイオ株式会社)を用いて処理しRNAを抽出した。得られたRNAをアガロース(1%)電気泳動に供し、rRNAのバンドを確認することで精製度を確認し、cDNA合成キット(商品名『PrimeScript II 1st strand cDNA Synthesis Kit』(タカラバイオ株式会社)を用い、プライマーにオリゴdTプライマーを用いてcDNAを作製した。次いで、開始コドン、終止コドンとそれぞれ推定される塩基配列の外側に配列表における配列番号8及び配列番号9で示される塩基配列を有するプライマーを設計し、目的の領域を増幅した後、パノース分解酵素推定遺伝子の塩基配列をDNAシーケンサーで決定した。
 解読した1,949bpの塩基配列には、メチオニンで始まり、実験5-5で明らかにしたパノース分解酵素の4種の内部部分アミノ酸配列(配列表における配列番号4乃至7で示されるアミノ酸配列)を全て含むアミノ酸配列をコードするオープンリーディングフレームが認められ、本DNA中に目的とするパノース分解酵素遺伝子の全長が存在していることが判明した。この結果から、得られたcDNAは目的とするパノース分解酵素をコードするcDNAと推察された。この知見に基づきパノース分解酵素遺伝子の塩基配列及びこれにコードされるパノース分解酵素のアミノ酸配列を決定した。その結果、サロクラディウム・キリエンス U4520由来パノース分解酵素の構造遺伝子は、配列表における配列番号10で示される鎖長1,872bpの塩基配列を有しており、当該塩基配列に併記した624残基からなるアミノ酸配列をコードしていることが判明した。実験5-5で明らかにした4種の内部部分アミノ酸配列(配列表における配列番号4乃至7で示されるアミノ酸配列)は、そのいずれもが配列表における配列番号10で示される塩基配列に併記したアミノ酸配列(配列表における配列番号11で示されるアミノ酸配列)中に認められ、それぞれ当該アミノ酸配列における第46乃至第50番目、第588乃至第592番目、第234乃至第238番目、及び、第397乃至第401番目のアミノ酸配列と完全に一致していた。
 また、上記で決定した、配列表における配列番号11で示されるパノース分解酵素のアミノ酸配列について、分泌のためのシグナルペプチド配列をシグナルペプチド予測ソフトウェア『SignalP-5.0』を用いて予測したところ、N末端側の24アミノ酸残基からなるアミノ酸配列がシグナルペプチド配列と予測された。なお、配列表における配列番号11で示されるアミノ酸配列から算出される分子量は69,335ダルトンであり、24アミノ酸残基の推定シグナルペプチド配列を除いた分子量は66,849ダルトンと算出された。この値は実験5-1で求めたサロクラディウム・キリエンス U4520由来パノース分解酵素の分子量の内、ゲルろ過クロマトグラフィーで求めた67,000±5,000ダルトンとよく一致したものの、SDS-PAGEで求めた85,000±5,000ダルトンとは大きく異なっていた。アミノ酸配列から算出した分子量がSDS-PAGEで求めた分子量と大きく異なった理由としては、実際に産生されたパノース分解酵素は糖鎖などの修飾を受けており、SDS-PAGEでの移動度に影響を与えたことが考えられた。
<実験6-2:組換え型パノース分解酵素発現用ベクターの構築と形質転換体の調製>
 サロクラディウム・キリエンス U4520から調製したcDNAを鋳型にし、シグナルペプチドを除いたパノース分解酵素の遺伝子配列を増幅した。また、発現用プラスミドベクター『pPICZαA』を鋳型にしてPCRを行い、目的遺伝子配列を増幅した。次いで、In Fusion反応、大腸菌XL10 Goldへの形質転換、コロニーPCR、プラスミド抽出を行った。取得したプラスミドを制限酵素で線状化した後、アガロースゲル電気泳動に供し、各プラスミドのサイズが正しいことを確認した。取得した発現用組換えDNA『pPICZαA-P』を図8に示す。なお、図8に見られるとおり、当該発現用組換えDNAにおいて、パノース分解酵素の遺伝子はメタノール誘導性アルコール酸化酵素遺伝子AOX1のプロモーターを利用して発現され、産生される組換え型パノース分解酵素はパン酵母の接合因子α-ファクターの分泌シグナルペプチドを利用して分泌されるよう設計されている。次いで、『pPICZαA-P』を制限酵素で線状化した後、宿主として酵母ピキア・パストリス(Pichia pastoris) KM71Hを用い、組換えDNAをエレクトロポレーションにより導入して形質転換し、形質転換体『PICZαA-P』を得た。
<実験6-3:形質転換体における組換え型パノース分解酵素の発現>
 実験6-2で得た形質転換体『PICZαA-P』を、フレオマイシンD1を主成分とする抗生物質(商品名『ゼオシン(Zeocin)』、インビトロジェン社販売)を20μg/mL含むYPD培地(酵母エキス 1.0%、ポリペプトン 2.0%、D-グルコース 2.0%)を200mLずつ入れた500mL容三角フラスコ1本に植菌し、30℃で24時間振トウ培養した。得られた培養物を、常法に従い、遠心分離して酵母菌体を回収した。次いで、菌体を滅菌水で洗浄し、同抗生物質を20μg/mL、メタノールを1.0%含むYP培地(酵母エキス 1.0%、ポリペプトン 2.0%)40mLに植菌し、24時間ごとに終濃度1.0%になるようにメタノールを添加しながら25℃で72時間保持し、パノース分解酵素遺伝子の発現を誘導した。培養後、遠心分離により培養上清を回収し、0.22μmのフィルターでろ過することにより除菌し、パノース分解活性30.3U/mLの組換え型パノース分解酵素液を得た。なお、本酵素液をSDS-ポリアクリルアミドゲル電気泳動に供したところ、ほぼ単一な組換え型パノース分解酵素蛋白バンドが認められた。
 得られた組換え型パノース分解酵素標品の酵素的性質を実験5に示した方法に準じて調べたところ、組換え型パノース分解酵素の至適pHは30℃、20分反応の条件下でpH5.0乃至5.5、至適温度はpH5.5、20分反応の条件下で35℃、pH安定性は、各pHに4℃で24時間保持する条件下で約4.7乃至12.0の範囲で安定、温度安定性は、各温度にpH5.5で1時間保持する条件下で、Ca2+イオン非存在下において30℃まで安定であった。これらの理化学的性質は、実験4で調製した天然型パノース分解酵素のそれと実質的に同一であった。以上の結果は、本発明のパノース分解酵素が、組換え型酵素としても良好に製造できることを示している。
<実験7:パノース分解酵素の基質特異性>
 実験4の方法で得たパノース分解酵素の精製標品を各種糖質に作用させ、基質特異性を調べた。
 下記の表4に示す31種の糖質を用いてパノース分解酵素の基質特異性を調べた。各糖質を基質として終濃度1%となるように20mMブリトン-ロビンソン緩衝液(pH5.5)に溶解し、基質固形物1グラム当たりパノース分解酵素を1U又は10Uずつ加え、30℃で24時間反応させた。反応後、それぞれの基質から生成した反応物を実験1で用いたと同じTLC分析に供し、それぞれの糖質に対する酵素作用の有無及び生成する糖質を確認した。TLCにおいて、用いた基質以外の反応生成物のスポットが認められるものを「作用する」(+)、反応生成物が認められないものを「作用しない」(-)と判定し、作用が認められた基質については反応生成物を同定した。結果を表4に示す。また、本試験の結果から判明したパノース分解酵素の基質特異性、すなわち、パノース分解酵素が作用する基質と作用しない基質、作用する基質についてはそれら基質の構造と加水分解される結合に関し、図9にまとめた。
Figure JPOXMLDOC01-appb-T000004
 表4の結果及び図9から明らかなように、本発明のパノース分解酵素は、パノースのα-1,4結合を加水分解してイソマルトースとD-グルコースを生成するのみでなく、6-α-イソマルトシルマルトース(α-イソマルトトリオシル-(1→4)-D-グルコース)のα-1,4結合を加水分解し、イソマルトトリオースとD-グルコースを生成した。また、本発明のパノース分解酵素は、6-α-グルコシルマルトトリオース、6-α-グルコシルマルトテトラオース及び6-α-グルコシルマルトペンタオースのように、マルトオリゴ糖の非還元末端グルコース残基の6位水酸基にD-グルコースがα-1,6結合した構造を有する一連の糖質に作用させた場合には、非還元末端に存在するイソマルトース構造が結合したα-1,4結合を特異的に加水分解し、それぞれイソマルトースと残余のマルトース、マルトトリース及びマルトテトラオースを生成することが判明した。その一方で、本発明のパノース分解酵素は、イソマルトトリオースやデキストランのようなα-1,6グルカンや、プルラン、6-α-マルトシルマルトースや6-α-マルトトリオシルマルトトリオースのように、マルトオリゴ糖の非還元末端グルコース残基の6位水酸基にマルトースやマルトトリオースがα-1,6結合した糖質には作用しないことが判明した。
 さらに、表4から明らかなように、本発明のパノース分解酵素は、マルトース及び一連のマルトオリゴ糖、イソマルトース及びα-1,6結合のみを介して結合した一連のイソマルトオリゴ糖には作用せず、各種二糖、アミロース、澱粉、グリコーゲン、プルラン、デキストランなどの多糖への作用も示さなかった。
 上記の基質特異性から、本発明のパノース分解酵素は、パノースを加水分解してイソマルトースとD-グルコースを生成するものの、α-1,6結合を加水分解せず、イソマルトトリオースやイソマルトテトラオース、デキストランに作用しない点で公知酵素であるイソマルトデキストラナーゼとは相違し、また、プルランに作用しない点で公知酵素であるイソプルラナーゼとも相違する、従来未知の新規な酵素であることが判明した。
<実験8:アクレモニウム属微生物によるパノース分解酵素の産生>
 真菌U4520株以外のパノース分解酵素産生する微生物の取得を目的として、サロクラディウム属の類縁であるアクレモニウム属の菌株より、実験1に示した方法と同様の手順にてパノース分解酵素産生菌のスクリーニングを行った。スクリーニングに用いたアクレモニウム属微生物のうち1種の菌株由来の粗酵素液を含む培養上清を、実験1と同様にパノース、イソマルトトリオース、プルラン、及びデキストランにそれぞれ作用させた結果、得られた反応液のTLCクロマトグラムを図10に示す。図10に見られるとおり、アクレモニウム属の微生物由来の粗酵素液を含む該培養上清は、パノースをイソマルトースとD-グルコースとに加水分解(図10の符号8)する一方で、イソマルトトリオース(図10の符号9)、プルラン(図10の符号10)及びデキストラン(図10の符号11)のいずれにも作用しなかった。このように、アクレモニウム属の微生物においても、サロクラディウム属の微生物が産生するパノース分解酵素と同様の酵素活性を有するパノース分解酵素が産生されることが確認された。
<実験9:6-α-グルコシル転移酵素とパノース分解酵素とを組合せた澱粉部分分解物からのイソマルトースの製造>
 実験4の方法で得たパノース分解酵素の精製標品を、再公表特許02/088374号公報に開示されたバチルス・グロビスポルス(Bacillus globisporus) N75由来6-α-グルコシル転移酵素と組合せて澱粉部分分解物にそれぞれ作用させ、イソマルトースの製造を試みた。なお、6-α-グルコシル転移酵素とパノース分解酵素とを組合せた澱粉部分分解物からのイソマルトースの生成反応の概要を図11に模式図で示した。
<実験9-1:イソマルトース生成反応における各種酵素の併用効果>
 澱粉部分分解物(商品名『パインデックス#100』、松谷化学工業株式会社販売)を原料基質とし、1mM塩化カルシウムを含む20mM酢酸緩衝液(pH5.5)に終濃度5質量%になるよう溶解し基質溶液とした。次いで、これに基質固形物1g当たり1Uの6-α-グルコシル転移酵素(株式会社林原調製品)、8Uのパノース分解酵素、1,000fuのイソアミラーゼ(株式会社林原調製品)、及び、0.5Uのシクロマルトデキストリングルカノトランスフェラーゼ(CGTase、株式会社林原調製品)を、それぞれ表5に示す組合せで添加し、さらに防腐剤としてヒノキチオールを終濃度60ppmになるよう添加した後、30℃で72時間反応させた。反応終了後、100℃で10分間加熱して酵素を失活させた後、各反応液の糖組成を下記条件のHPLCにて測定し、反応液のイソマルトース含量を求めた。結果を表5に示す。
<HPLC条件>
カラム:『MCIgel CK04SS』(三菱ケミカル株式会社製)
     カラム2本を直列に連結して使用;
溶離液:超純水
カラム温度:80℃
流速:0.4mL/分
検出:示差屈折計RID-10A(株式会社島津製作所製)
Figure JPOXMLDOC01-appb-T000005
 表5に示すとおり、6-α-グルコシル転移酵素及びパノース分解酵素をそれぞれ単独で澱粉部分分解物に作用させた場合、イソマルトースはほとんど生成しないのに対し、6-α-グルコシル転移酵素とパノース分解酵素を組合せて作用させると、イソマルトースが効率よく生成し、反応液固形物当たりのイソマルトース含量は66.5質量%まで達した。また、これら酵素の組合せに、さらに澱粉枝切酵素であるイソアミラーゼを併用すると、反応液固形物当たりのイソマルトース含量は76.7質量%と、約10質量%の顕著なイソマルトースの増収効果が認められた。この結果は、澱粉部分分解物中に本来的に存在するα-1,6結合を介した分岐構造(枝)が6-α-グルコシル転移酵素とパノース分解酵素を組合せたイソマルトース生成反応において障害となっており、澱粉枝切酵素でこの分岐構造を加水分解することにより、さらにイソマルトース生成反応が進行したことを物語っている。さらに、これら酵素の組合せにさらにCGTaseを併用すると、反応液固形物当たりのイソマルトース含量は79.5質量%と、約3質量%ではあるがさらに増加させることができることも判明した。
<実験9-2:イソマルトース生成に及ぼす基質濃度の影響>
 イソマルトース生成反応に用いる基質濃度を5、10、20、30又は40質量%と変え、実験9-1で用いた4種類の酵素を全て作用させた以外は実験9-1と同じ条件で酵素反応を行い、得られた各反応液の固形物当たりのイソマルトース含量を前述したHPLC分析により測定した。また、基質濃度30質量%の条件のみ反応温度40℃でも試験した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に見られるとおり、反応温度30℃において、基質濃度5乃至10質量%の範囲で反応液のイソマルトース含量は固形物当たり約79質量%に達した。基質濃度20、30及び40質量%の条件下での反応液のイソマルトース含量は固形物当たり、それぞれ、76.1、72.5及び70.0質量%と、基質濃度が高くなるにつれて反応物におけるイソマルトース含量は徐々に低下した。一方、反応温度40℃、基質濃度30質量%場合の反応液のイソマルトース含量は固形物当たり72.5質量%と、反応温度30℃の場合と同等であった。
 実験9の結果は、6-α-グルコシル転移酵素とパノース分解酵素を組合せた本発明のイソマルトースの製造方法において、澱粉枝切酵素やCGTaseを併用することにより、比較的基質濃度が高い条件においても、イソマルトース含量70質量%以上の反応物が得られ、澱粉部分分解物から効率よくイソマルトースを製造できることを物語っている。
<実験10:α-グルコシル転移酵素とパノース分解酵素とを組合せた澱粉からのイソマルトオリゴ糖の製造>
 実験4の方法で得たパノース分解酵素精製標品を、国際公開第2008/136331号パンフレットに開示した、バチルス・サーキュランス(Bacillus circulans) PP710由来α-グルコシル転移酵素と組合せて澱粉部分分解物に作用させ、イソマルトオリゴ糖の製造を試みた。なお、α-グルコシル転移酵素とパノース分解酵素とを組合せた澱粉部分分解物からのイソマルトオリゴ糖の生成反応の概要を図12に模式図で示した。
<実験10-1:イソマルトオリゴ糖生成反応における各種酵素の併用効果>
 澱粉部分分解物(商品名『パインデックス#100』、松谷化学工業株式会社販売)を原料基質とし、1mM塩化カルシウムを含む20mM酢酸緩衝液(pH5.5)に終濃度10質量%になるよう溶解し基質溶液とした。次いで、これに基質固形物1g当たり10Uのα-グルコシル転移酵素(株式会社林原調製品)、10Uのパノース分解酵素、1,000fuのイソアミラーゼ(株式会社林原調製品)、及び、1.0Uのα-アミラーゼ(商品名『クライスターゼE5CC』、天野エンザイム株式会社販売)を、それぞれ表7に示す組合せで添加し、さらに防腐剤としてヒノキチオールを終濃度60ppmになるよう添加した後、30℃で72時間反応させた。反応終了後、100℃で10分間加熱して酵素を失活させた後、各反応液を下記条件による薄層クロマトグラフィー(TLC)に供し、各反応液に含まれる糖質を予備的に分析した。TLCクロマトグラムを図13に示す。
<TLC分析条件>
TLCプレート:シリカゲルアルミニウムプレート(商品名『シリカゲル60F254』、10×20cm、メルク社製)
展開溶媒:n-ブタノール:ピリジン:水混液(容量比6:4:1)
展開方法:上昇法、2回展開
検出方法:硫酸-メタノール法
 図13に見られるとおり、原料とした澱粉部分分解物(図13のレーン0)、α-グルコシル転移酵素反応物(図13のレーン1)及びパノース分解酵素反応物(図13のレーン2)では、それぞれのTLCクロマトグラムにおいて、いずれも試料をスポットした原点以外に明瞭な糖質のスポットは認められず、同時にTLCを行ったマルトオリゴ糖マーカー(図13の符号「Gn」のレーン)、イソマルトオリゴ糖マーカー(図13の符号「IGn」のレーン)のクロマトグラムと対比すると、少なくともグルコース重合度10以下のマルトオリゴ糖やグルコース重合度4以下のイソマルトオリゴ糖は実質的に存在しないことが分った。一方、澱粉部分分解物にα-グルコシル転移酵素とパノース分解酵素を作用させて得た反応物(図13のレーン3)、α-グルコシル転移酵素、パノース分解酵素及びイソアミラーゼを作用させて得た反応物(図13のレーン4)、及び、α-グルコシル転移酵素、パノース分解酵素、イソアミラーゼ及びα-アミラーゼを作用させて得た反応物(図13のレーン5)のクロマトグラムには、D-グルコース、イソマルトース、イソマルトトリオース及びイソマルトテトラオースのスポットが認められ、また、これら試料にもグルコース重合度(DP、Degree of Polymerization)10以下のマルトオリゴ糖のスポットは認められなかった。この結果から、これら3種の反応物中にはDP10以下のマルトオリゴ糖は実質的に存在しないと考えられた。
 さらに、各反応液の糖組成を前記条件のHPLCにて測定するとともに、DP2~DP8のイソマルトオリゴ糖の含量の合計値を求めた。また、上記4種の酵素全てを作用させて得た反応液についてはさらに固形物1g当たり10Uのグルコアミラーゼ(リゾプス属由来、富士フィルム和光純薬株式会社販売)を添加し、pH5.0、50℃で18時間処理し、得られたグルコアミラーゼ処理物についても同様に糖組成及びDP2~DP8のイソマルトオリゴ糖の含量の合計値を求めた。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に見られるとおり、原料とした澱粉部分分解物(対照)、α-グルコシル転移酵素反応物(試料1)及びパノース分解酵素反応物(試料2)では、DP11以上の糖質がほぼ90質量%以上を占め、DP10以下の糖質はごく少量であった。一方、澱粉部分分解物にα-グルコシル転移酵素とパノース分解酵素を作用させて得た反応物(試料3)は、DP11以上の糖質が37.1質量%まで低減し、DP1~DP10の糖質の生成が認められ、その合計は62.9質量%であり、DP2~DP8のイソマルトオリゴ糖(イソマルトース~イソマルトオクタオース)が合計で51.1質量%含まれていた。さらに、澱粉部分分解物にα-グルコシル転移酵素とパノース分解酵素に加えさらに澱粉枝切酵素であるイソアミラーゼを作用させて得た反応物(試料4)ではDP11以上の糖質が15.0質量%まで低減し、DP1~DP10の糖質が合計で85.0質量%を占めており、DP2~DP8のイソマルトオリゴ糖(イソマルトース~イソマルトオクタオース)が合計で68.7質量%含まれていた。またさらに、澱粉部分分解物にα-グルコシル転移酵素、パノース分解酵素、イソアミラーゼに加え、さらにα-アミラーゼを添加し作用させて得た反応物(試料5)ではDP11以上の糖質が5.8質量%まで低減し、DP1~DP10の糖質が合計で94.2質量%を占めており、DP2~DP8のイソマルトオリゴ糖(イソマルトース~イソマルトオクタオース)が合計で77.1質量%含まれていた。
 また、澱粉部分分解物にα-グルコシル転移酵素、パノース分解酵素、イソアミラーゼ及びα-アミラーゼを作用させて得た反応物(試料5)をさらにグルコアミラーゼ処理して得た反応物(試料6)のHPLCクロマトグラムを図14に示すとともに、分析により得られた糖組成を表7に併記した。図14に見られるとおり、HPLCクロマトグラムでは、DP1のD-グルコースからDP10までの糖質がそのグルコース重合度の違いによって分離された一連のピークが認められ、その糖組成は表7の試料6の欄に見られるとおりであった。グルコアミラーゼ処理前(試料5)の糖組成と比べ、グルコアミラーゼ処理後(試料6)の糖組成は、D-グルコースが2.8質量%増加していたものの大きな変化はなかった。試料5において、仮に原料澱粉部分分解物由来のマルトオリゴ糖が未反応物として僅かに混在していたとしても、それらは試料6ではグルコアミラーゼにより分解されることから、試料6のD-グルコース以外の糖質は全てイソマルトオリゴ糖と見なすことができる。なお、当該試料6のDP2~DP8のイソマルトオリゴ糖の合計値は75.7質量%であった。
 本実験の結果は、α-グルコシル転移酵素とパノース分解酵素とを組合せて澱粉又は澱粉部分分解物に作用させると、一連のイソマルトオリゴ糖混合物が製造でき、さらにイソアミラーゼやα-アミラーゼを併用することで、DP2のイソマルトースからDP8のイソマルトオクタオースまでのイソマルトオリゴ糖を合計で少なくとも75質量%以上含むイソマルトオリゴ糖混合物を澱粉又は澱粉部分分解物を原料として効率よく製造できることを物語っている。
<実験10-2:イソマルトオリゴ糖生成に及ぼす基質濃度の影響>
 イソマルトオリゴ糖の生成反応に用いる基質濃度を5、10、20又は30質量%と変えたこと、及び、実験10-1で用いた4種類の酵素を全て作用させた以外は実験10-1と同じ条件で酵素反応を行い、得られた各反応液の糖組成を前述したHPLC分析により測定し、実験10-1と同様に、DP2のイソマルトースからDP8のイソマルトオクタオース)までのイソマルトオリゴ糖の合計値を算出した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に見られるとおり、基質濃度を5、10,20又は30質量%と変化させても、生成物の糖組成は大きく変化することなく、D-グルコースを約11質量%、イソマルトースを約16質量%、イソマルトトリオースを約16質量%、イソマルトテトラオースを約14質量%、イソマルトペンタオースを約11質量%、イソマルトヘキサオースを約9質量%、イソマルトヘプタオースを約7質量%、及び、イソマルトオクタオースを約5質量%含有するイソマルトオリゴ糖混合物が得られた。また、DP2のイソマルトースからDP8のイソマルトオクタオースまでの合計値は77~79質量%を示した。
 実験10-1及び10-2の結果は、α-グルコシル転移酵素とパノース分解酵素を組合せて用いる本発明のイソマルトオリゴ糖の製造方法によれば、比較的基質濃度が高い条件においても、他の酵素も適宜併用することにより、固形物当たりの、DP2のイソマルトースからDP8のイソマルトオクタオースまでのイソマルトオリゴ糖の合計の含量が少なくとも75質量%以上の糖組成物が得られ、澱粉又は澱粉部分分解物を原料として効率よくイソマルトオリゴ糖混合物を製造できることを物語っている。
 以下、実施例により本発明をさらに具体的に説明する。しかしながら、本発明はこれら実施例によって何ら限定されるものではない。
<パノース分解酵素の調製>
 実験3で用いた液体培地を30L-容ジャーファーメンターに約20L入れ、120℃、20分間滅菌した後、サロクラディウム・キリエンス U4520の種培養液2%(v/v)を無菌的に添加し、通気撹拌しながら27℃で60時間培養した。培養液約18Lを遠心分離して菌体を除去し、パノース分解活性0.28U/mLの培養上清を粗酵素液として得た。この粗酵素液を常法に従い限外ろ過膜で約30倍に濃縮し、総活性約5,000Uの濃縮酵素剤を得た。本品は、パノース分解酵素剤として6-α-グルコシル転移酵素と組合せたイソマルトースの製造に利用でき、また、α-グルコシル転移酵素と組合せたイソマルトオリゴ糖の製造に利用できる。
<パノース分解酵素の調製>
 実験6-3で用いた抗生物質(商品名『ゼオシン(Zeocin)』、インビトロジェン社販売)を20μg/mL含むYPD培地液体培地を30L-容ジャーファーメンターに約20L入れ、120℃、20分間滅菌した後、実験6-2で得た形質転換体『PICZαA-P』の種培養液1%(v/v)を無菌的に添加し、通気撹拌しながら27℃で48時間培養した。得られた培養物を遠心分離して酵母菌体を回収した後、菌体を滅菌水で洗浄し、同抗生物質を20μg/mL、メタノールを1.0%含むYP培地(酵母エキス1.0%、ポリペプトン2.0%)7.5Lに再度植菌し、6時間ごとに終濃度1.0%になるようにメタノールを添加しながら25℃で24時間保持し、パノース分解酵素遺伝子の発現を誘導した。培養後、培養液約7.3Lを遠心分離して菌体を除去し、パノース分解活性32.1U/mLの培養上清を粗酵素液として得た。この粗酵素液を常法に従い限外ろ過膜で約30倍に濃縮し、総活性約240,000Uの濃縮酵素剤を得た。本品は、組換え型パノース分解酵素剤として6-α-グルコシル転移酵素と組合せたイソマルトースの製造に利用でき、また、α-グルコシル転移酵素と組合せたイソマルトオリゴ糖の製造に利用できる。
<パノース分解酵素の調製>
 実験3で用いた液体培地を30L-容ジャーファーメンターに約20L入れ、120℃、20分間滅菌した後、実験8で用いたアクレモニウム株の種培養液2%(v/v)を無菌的に添加し、通気撹拌しながら27℃で72時間培養した。培養液約17Lを遠心分離して菌体を除去し、パノース分解活性0.35U/mLの培養上清を粗酵素液として得た。この粗酵素液を常法に従い限外ろ過膜で約20倍に濃縮し、総活性約5,500Uの濃縮酵素剤を得た。本品は、パノース分解酵素剤として6-α-グルコシル転移酵素と組合せたイソマルトースの製造に利用でき、また、α-グルコシル転移酵素と組合せたイソマルトオリゴ糖の製造に利用できる。
<澱粉からのイソマルトースの製造>
 タピオカ澱粉を濃度約30%(w/v)の澱粉乳とし、これに炭酸カルシウム0.1%加え、pH6.5に調整し、耐熱性α-アミラーゼ(商品名『ターマミール 60L』、ノボ社製)を澱粉グラム当たり0.3%加え、95℃で15分間反応させ、次いで120℃で20分間オートクレーブし、更に約35℃に急冷してDE約4の澱粉液化溶液を得、これに国際公開第2002/010361号パンフレット記載のバチルス・グロビスポルス N75由来6-α-グルコシル転移酵素(α-イソマルトシルグルコ糖質生成酵素)を澱粉固形物1グラム当り1.0U、実施例1の方法で得たパノース分解酵素を澱粉1グラム当り8U、イソアミラーゼ(株式会社林原製)を澱粉1グラム当り1,000fu、及びシクロマルトデキストリングルカノトランスフェラーゼ(CGTase,株式会社林原製)を澱粉1グラム当り0.5Uになるように加え、pH5.5、温度35℃で72時間反応させた。その反応液を95℃で30分間保持して酵素を失活させた後、冷却し、濾過して得られる濾液を、常法に従って、活性炭で脱色し、H型及びOH型イオン交換樹脂により脱塩して精製し、更に濃縮し、乾燥し、粉末化してイソマルトース高含有糖質を固形物当たり約95質量%の収率で得た。本品は、固形物当たりD-グルコース4.7質量%、イソマルトース72.5質量%、及び、その他の糖質を22.8質量%含有していた。本品は、優れた保湿性、低甘味性、浸透圧調節性、賦形性、照り付与性、保湿性、粘性、糖質晶出防止性、難醗酵性、澱粉の老化防止性等を有していることから、各種飲食品、健康食品、飼料、餌料、化粧品、医薬品、嗜好品などに有利に用いることができる。
<イソマルトースシラップ>
 実施例4の方法で得られたイソマルトース高含有粉末を水に溶解し、強酸性カチオン交換樹脂 商品名『アンバーライトCR-1310』、Na型、オルガノ株式会社製)を用いてカラムクロマトグラフィーを行った。即ち、前記樹脂を内径12.5cmのジャケット付きステンレス製カラム10本に充填し、これらカラムを直列接続して樹脂層全長を16mとした。カラム内温度を40℃に維持しつつ、前記溶液を樹脂量に対して1.5%(v/v)加え、これに40℃の温水をSV0.2で流して分画し、溶出液の糖組成をHPLC法でモニターしながら、イソマルトース高含有画分を採取し、これを精製し、イソマルトース高含有液を得た。イソマルトースの固形物当たりの収率は約80%であった。本液を、常法に従って、脱色、脱塩、濃縮して、濃度約75%のイソマルトースシラップを得た。本品は、固形物当たり約95.7%のイソマルトースを含有していた。本品は、難結晶性で優れた保湿性、低甘味性、浸透圧調節性、賦形性、照り付与性、保湿性、粘性、糖質晶出防止性、難醗酵性、澱粉の老化防止性等を有していることから、各種飲食品、健康食品、飼料、餌料、化粧品、医薬品、嗜好品などに有利に用いることができる。
<澱粉からのイソマルトースの製造>
 とうもろこし澱粉を濃度約30%(w/v)の澱粉乳とし、これに炭酸カルシウム0.1%加え、pH6.5に調整し、耐熱性α-アミラーゼ(商品名『ターマミール 60L』、ノボ社製)を澱粉グラム当たり0.3%加え、95℃で15分間反応させ、次いで120℃で20分間オートクレーブし、更に約35℃に急冷してDE約5の澱粉液化溶液を得、これに国際公開第2002/010361号パンフレット記載のバチルス・グロビスポルス N75由来6-α-グルコシル転移酵素(α-イソマルトシルグルコ糖質生成酵素)を澱粉固形物1グラム当り1.0U、実施例3の方法で得たパノース分解酵素を澱粉1グラム当り8U、イソアミラーゼ(株式会社林原製)を澱粉1グラム当り1,000fu、及びシクロマルトデキストリングルカノトランスフェラーゼ(CGTase,株式会社林原製)を澱粉1グラム当り0.5Uになるように加え、pH5.5、温度35℃で72時間反応させた。その反応液を95℃で30分間保持して酵素を失活させた後、冷却し、濾過して得られる濾液を、常法に従って、活性炭で脱色し、H型及びOH型イオン交換樹脂により脱塩して精製し、更に濃縮し、乾燥し、粉末化してイソマルトース高含有糖質を固形物当たり約95質量%の収率で得た。本品は、固形物当たりD-グルコース4.5質量%、イソマルトース71.8質量%、及び、その他の糖質を23.7質量%含有していた。本品は、優れた保湿性、低甘味性、浸透圧調節性、賦形性、照り付与性、保湿性、粘性、糖質晶出防止性、難醗酵性、澱粉の老化防止性等を有していることから、各種飲食品、健康食品、飼料、餌料、化粧品、医薬品、嗜好品などに有利に用いることができる。
<結晶イソマルチトールの製造>
 実施例5で得たイソマルトースシラップに活性化したラネーニッケルを加え、常法により水素添加した後、ラネーニッケルを除去し、活性炭で脱色し、H型及びOH型イオン交換樹脂により脱塩、精製し、固形物当たりソルビトール1.2質量%、イソマルチトール96.0質量%、その他の糖アルコールを2.8質量%含有するイソマルチトール高含有シラップを固形物当たり約90%の収率で得た。本イソマルチトール高含有シラップを濃度約75質量%に濃縮し、この濃縮液を晶析缶に入れ、種晶として結晶イソマルチトール粉末を固形物当たり0.1質量%加え、温度25℃ 、約20時間保持してイソマルチトールを晶析した。続いて、遠心分離機を用いて分蜜し、結晶イソマルチトールを回収した。イソマルチトール結晶を80℃で20時間真空乾燥して、結晶イソマルチトールを得た。本品は、固形物当たり、ソルビトール0.2質量%、イソマルチトール99.3質量%、その他の糖アルコールを0.5質量%含有していた。本品は、非還元性、非吸湿性、低甘味性、浸透圧調節性、賦形性、照り付与性、保湿性、粘性付与性、糖質晶出防止性、難醗酵性、澱粉の老化防止性等を有していることから、各種飲食品、健康食品、健康補助食品、飼料、餌料、化粧品、医薬品、嗜好品などに有利に用いることができる。
<澱粉からのイソマルトオリゴ糖の製造>
 タピオカ澱粉を濃度約30質量%の澱粉乳とし、これに炭酸カルシウムを0.1質量%加え、pH6.5に調整し、耐熱性α-アミラーゼ(商品名『ターマミール60L』、ノボ社製)を澱粉当たり0.3質量%加え、95℃で15分間反応させ、次いで120℃で20分間オートクレーブし、更に約40℃まで冷却してDE約4.5の澱粉液化液を調製した。この澱粉液化液をpH5.5に調整し、澱粉固形物1g当たり10Uのα-グルコシル転移酵素(バチルス・サーキュランス PP710由来、株式会社林原調製品)、10Uのパノース分解酵素(実施例1の方法で調製したもの)、1,000fuのイソアミラーゼ(株式会社林原調製品)、及び、1.0Uのα-アミラーゼ(商品名『クライスターゼ E5CC』、天野エンザイム株式会社販売)を添加し、さらに防腐剤としてピロ亜硫酸ナトリウムを終濃度0.01質量%になるよう添加した後、30℃で72時間反応させた。反応終了後、96℃で30分間加熱して酵素を失活させた後、反応液の糖組成をHPLCにて測定したところ、D-グルコース11.3質量%、イソマルトース16.0質量%、イソマルトトリオース15.8質量%、イソマルトテトラオース13,8質量%、イソマルトペンタオース11.5質量%、イソマルトヘキサオース9.1質量%、イソマルトヘプタオース以上の糖22.5質量%であった。このイソマルトオリゴ糖含有糖液は脱色、脱塩、濃縮した後、イソマルトオリゴ糖高含有シラップとして、甘味料、発酵用炭素源、試薬、化学品、医薬品の原料及び中間体などとして有利に利用できる。
<イソマルトオリゴ糖アルコール>
 実施例8の方法で得たイソマルトオリゴ糖高含有シラップに活性化したラネーニッケルを加え、常法により水素添加した後、ラネーニッケルを除去し、活性炭で脱色し、H型及びOH型イオン交換樹脂により脱塩、精製し、固形物当たりソルビトール11.1質量%、イソマルチトール15.9質量%、イソマルトトリイトール15.6質量%、イソマルトテトライトール13,7質量%、イソマルトペンタイトール11.4質量%、イソマルトヘキサイトール9.0質量%、イソマルトヘプタイトール以上の糖アルコール23.3質量%を含有するイソマルトオリゴ糖アルコールシラップを固形物当たり約90%の収率で得た。本イソマルトオリゴ糖アルコールシラップを濃度約75質量%に濃縮し、缶に充填し製品とした。本品は、非還元性、非吸湿性、低甘味性、浸透圧調節性、賦形性、照り付与性、保湿性、粘性付与性、糖質晶出防止性、難醗酵性、澱粉の老化防止性等を有していることから、各種飲食品、健康食品、健康補助食品、飼料、餌料、化粧品、医薬品、嗜好品などに有利に用いることができる。
<甘味料>
 実施例4の方法により得た粉末状イソマルトース高含有糖質8質量部に、トレハロース二含水結晶含有粉末(登録商標『トレハ』、株式会社林原販売)2質量部、α-グリコシルステビオシド(商品名『αGスィート』、東洋精糖株式会社販売)0.1質量部、及びL-アスパルチル-L-フェニルアラニンメチルエステル(商品名『アスパルテーム』)0.1質量部を均一に混合し、顆粒成形機にかけて顆粒状甘味料を得た。本品は、甘味の質が優れ、砂糖の約2倍の甘味度を有している。本品は、難結晶性で優れた保湿性を有するイソマルトースを含有する甘味料組成物である。又、本品は、室温保存下、変質劣化の懸念が無く、安定である。
<チョコレート>
 カカオペースト40質量部、カカオバター10質量部、及び実施例4の方法で得た粉末状イソマルトース高含有糖質50質量部を混合し、得られる混合物をレファイナーに通して粘度を下げた後、コンチェに入れて50℃で2昼夜練り上げた。この間にレシチン0.5質量部を添加し充分に分散させた。次いで、温度調節器で31℃に調節し、バターの固まる直前に型に流し込み、振動機でアワ抜きした後、10℃の冷却トンネルを20分間かけて通過させて固化させた。これを型抜きして包装してチョコレートを得た。本品は、吸湿性がなく、色、光沢共に良く、内部組織も良好であり、口中で滑らかに溶け、上品な甘味とまろやかな風味とを有するチョコレートである。
<化粧用クリーム>
 モノステアリン酸ポリオキシエチレングリコール2質量部、自己乳化型モノステアリン酸グリセリン5質量部、実施例7の方法で得た結晶イソマルチトール2質量部、α-グルコシルルチン(商品名『αGルチン』、東洋精糖株式会社販売)2質量部、流動パラフィン1質量部、トリオクタン酸グリセリン10質量部および防腐剤の適量を常法に従って加熱溶解し、これにL-乳酸2質量部、1,3-ブチレングリコール5質量部および精製水66質量部を加え、ホモゲナイザーにかけ乳化し、更に香料の適量を加えて撹拌混合し、化粧用クリームを製造した。本品は、抗酸化性を有し、安定性が高く、高品質の日焼け止め、美肌剤、色白剤などとして有利に利用できる。
<外傷治療用膏薬>
 実施例5の方法で得たイソマルトースシラップ100質量部及びマルトース300質量部に、ヨウ素3質量部を溶解したメタノール50質量部を加え混合し、更に10%(w/v)プルラン水溶液200質量部を加えて混合し、適度の延び、付着性を示す外傷治療用膏薬を得た。本品は、イソマルトースにより、ヨウ素、メタノールの揮散が防止され、経時変化の少ない商品価値の高い膏薬である。また、本品は、ヨウ素による殺菌作用のみならず、マルトースによる細胞へのエネルギー補給剤としても作用することから治癒期間が短縮され、創面もきれいに治る。
<錠剤>
 アスピリン10質量部に実施例7の方法で得た粉末状の結晶イソマルチトール60質量部、コーンスターチ4質量部を充分に混合した後、常法に従って打錠機により打錠して厚さ5.25mm、1錠680mgの錠剤を製造した。本品は、結晶イマルチトール粉末の賦形性を利用したもので、吸湿性がなく、物理的強度も充分にあり、しかも水中での崩壊はきわめて良好である。
<水ようかん>
 400mLの水道水に棒寒天1本を入れ、火にかけ沸騰させた後、黒砂糖25g、上白糖50g及び実施例8の方法で調製したイソマルトオリゴ糖高含有シラップを固形分として20g加え、さらに漉し餡約300gを加えた後、中火で煮ながらあくを取り、沸騰させて5分後に火を止め、適量の食塩を加えよく撹拌した後、型に流し込み、室温に30分間保持して固め、さらに冷蔵庫で冷却して水ようかんを作成した。本品はイソマルトオリゴ糖を含有し、上品な甘さを有する水ようかんである。
<乳酸飲料>
 実施例8の方法で調製したイソマルトオリゴ糖高含有シラップを100gとり、これに牛乳100mLを加えた後、加熱沸騰させ、火を止めてあくを取り、自然冷却した。品温が37℃以下になったことを確認した後、適量のクエン酸、乳酸、乳酸エッセンス及びレモンエッセンスを入れて良く撹拌し、ビンに詰め蓋をして冷蔵庫で冷却し、乳酸飲料を作成した。本品はイソマルトオリゴ糖を含有し、甘さとカロリーを低減した乳酸飲料である。
<乳液>
 下記の配合に基づき乳液を調製した。
(配合成分)                        質量%
スクワラン                         5.0
オリーブ油                         5.0
ホホバ油                          5.0
セチルアルコール                      1.5
グリセリンモノステアレート                 2.0
ポリオキシエチレン(20)セチルエーテル          3.0
ポリオキシエチレン(20)ソルビタンモノオレート      2.0
1,3-ブチレングリコール                 1.0
グリセリン                         2.0
実施例8の方法で得たイソマルトオリゴ糖高含有シラップ    7.0
防腐剤(パラオキシ安息香酸エステル)            適量
香料                            適量
精製水                       100とする残余
 本発明のパノース分解酵素は従来未知の新規な酵素である。本発明のパノース分解酵素を、特定の糖転移酵素と組合せて用いれば、澱粉又は澱粉部分分解物を原料として効率よく、且つ、工業的規模でイソマルトースやイソマルトオリゴ糖を製造することができる。従って、本発明のパノース分解酵素と、このパノース分解酵素と他の糖転移酵素を組合せて用いるイソマルトースの製造法及びイソマルトオリゴ糖の製造方法の確立は、製糖産業のみならず、これに関連する食品、化粧品、医薬品産業における意義が極めて大きい。
図1において、
M:マルトオリゴ糖マーカー
1:イソマルトース標準品
2:イソパノース標準品
3:パノース標準品
4:イソマルトトリオース標準品
5:プルラン標準品
6:デキストラン標準品
7:U4520株の粗酵素のみ
8:U4520株の粗酵素をパノースに作用させた反応液
9:U4520株の粗酵素をイソマルトトリオースに作用させた反応液
10:U4520株の粗酵素をプルランに作用させた反応液
11:U4520株の粗酵素をデキストランに作用させた反応液
図3において、
1:分子量マーカー
2:パノース分解酵素精製標品
3:分子量マーカー
図7において、
●:Ca2+イオン非存在下
〇:5mM Ca2+イオン存在下
図8において、
α-factor:パン酵母の接合因子α-ファクターの分泌シグナルペプチドをコードする塩基配列
Panose-hydrolysing enzyme:パノース分解酵素遺伝子
Stop:終止コドン
5´AOX1:メタノール誘導性アルコール酸化酵素遺伝子AOX1のプロモーター
AOX1 TT:メタノール誘導性アルコール酸化酵素遺伝子AOX1の転写終結シグナル
PTEF1:ゼオシン耐性遺伝子発現誘導用転写伸長因子TEF1のプロモーター
PEM7:ゼオシン耐性遺伝子発現誘導用プロモーター
Zeocin:ゼオシン耐性遺伝子
CYC1TT:チトクロームC遺伝子の転写終結領域
pUC ori:pUCの複製起点
Bgl II:制限酵素サイト
Bam HI:制限酵素サイト
図10において
M:マルトオリゴ糖マーカー
1:イソマルトース標準品
2:イソパノース標準品
3:パノース標準品
4:イソマルトトリオース標準品
5:プルラン標準品
6:デキストラン標準品
7:アクレモニウム属微生物の粗酵素のみ
8:アクレモニウム属微生物の粗酵素をパノースに作用させた反応液
9:アクレモニウム属微生物の粗酵素をイソマルトトリオースに作用させた反応液
10:アクレモニウム属微生物の粗酵素をプルランに作用させた反応液
11:アクレモニウム属微生物の粗酵素をデキストランに作用させた反応液
図13において、
G1:D-グルコース
G2:マルトース
G3:マルトトリオース
G4:マルトテトラオース
G5:マルトペンタオース
G6:マルトヘキサオース
G7:マルトヘプタオース
G8:マルトオクタオース
IG2:イソマルトース
IG3:イソマルトトリオース
IG4:イソマルトテトラオース
Gn:マルトオリゴ糖マーカー
IGn:イソマルトオリゴ糖マーカー
レーン0:澱粉部分分解物(原料基質)
レーン1:澱粉部分分解物にα-グルコシル転移酵素を作用させて得た反応物
レーン2:澱粉部分分解物にパノース分解酵素を作用させて得た反応物
レーン3:澱粉部分分解物にα-グルコシル転移酵素及びパノース分解酵素を作用させて得た反応物
レーン4:澱粉部分分解物にα-グルコシル転移酵素、パノース分解酵素及びイソアミラーゼを作用させて得た反応物
レーン5:澱粉部分分解物にα-グルコシル転移酵素、パノース分解酵素、イソアミラーゼ及びα-アミラーゼを作用させて得た反応物
図14において、
G1:D-グルコース
IG2:イソマルトース
IG3:イソマルトトリオース
IG4:イソマルトテトラオース
IG5:イソマルトペンタオース
IG6:イソマルトヘキサオース
IG7:イソマルトヘプタオース
IG8:イソマルトオクタオース
IG9:イソマルトノナオース
IG10:イソマルトデカオース

Claims (23)

  1.  下記(1)及び(2)の基質特異性を有するパノース分解酵素:
    (1)パノースを加水分解し、イソマルトースとD-グルコースを生成する;及び
    (2)イソマルトトリオース、デキストラン、及びプルランに作用しない。
  2.  下記(a)乃至(e)の理化学的性質を有する請求項1記載のパノース分解酵素:
    (a)分子量
     SDS-ポリアクリルアミドゲル電気泳動において、85,000±5,000ダルトンを示す;
    (b)至適pH
     30℃、20分反応の条件下で、pH5.0乃至5.6;
    (c)至適温度
     pH5.5、20分反応の条件下で35℃;
    (d)pH安定性
     4℃、24時間保持の条件下で、pH4.5乃至11.5の範囲で安定;及び
    (e)温度安定性
     pH5.5、1時間保持の条件下、Ca2+イオン非存在下で30℃まで安定、5mM Ca2+イオン存在下で35℃まで安定。
  3.  配列表における配列番号11で示されるアミノ酸配列か、配列表における配列番号11で示されるアミノ酸配列において、パノース分解活性を保持する範囲で1個又は2個以上のアミノ酸が欠失、置換若しくは付加したアミノ酸配列を有する請求項1又は2記載のパノース分解酵素。
  4.  サロクラディウム(Sarocladium)属微生物である請求項1乃至3のいずれかに記載のパノース分解酵素。
  5.  サロクラディウム(Sarocladium)属微生物が、サロクラディウム・キリエンス(Sarocladium kiliense) U4520株(独立行政法人製品評価技術基盤機構 特許微生物寄託センター、受託番号NITE BP-03236)又はその変異株である請求項4記載のパノース分解酵素。
  6.  請求項1乃至3のいずれかに記載のパノース分解酵素産生能を有するサロクラディウム・キリエンス(Sarocladium kiliense) U4520株(独立行政法人製品評価技術基盤機構 特許微生物寄託センター、受託番号NITE BP-03236)又はその変異株。
  7.  請求項1乃至3記載のいずれかに記載のパノース分解酵素をコードするDNA。
  8.  配列表における配列番号10で示される塩基配列か、又は配列表における配列番号10で示される塩基配列において、コードするパノース分解酵素の活性を保持する範囲で1個又は2個以上の塩基が欠失、置換又は付加した塩基配列、又はそれらに相補的な塩基配列を有する請求項7記載のDNA。
  9.  遺伝子コードの縮重に基づき、コードするアミノ酸配列を変えることなく、配列表における配列番号10で示される塩基配列における塩基の1個又は2個以上を他の塩基で置換した請求項8記載のDNA。
  10.  請求項7乃至9のいずれかに記載のDNAと自律複製可能なベクターを含んでなる組換えDNA。
  11.  請求項10記載の組換えDNAを適宜の宿主細胞に導入してなる形質転換体。
  12.  請求項1乃至3のいずれかに記載のパノース分解酵素産生能を有する微生物を栄養培地で培養して請求項1乃至3のいずれかに記載のパノース分解酵素を生成せしめ、これを採取することを特徴とするパノース分解酵素の製造方法。
  13.  前記微生物が、サロクラディウム(Sarocladium)属に属する微生物である請求項12記載のパノース分解酵素の製造方法。
  14.  サロクラディウム(Sarocladium)属微生物が、サロクラディウム・キリエンス(Sarocladium kiliense)U4520(独立行政法人製品評価技術基盤機構 特許微生物寄託センター、受託番号NITE BP-03236)又はその変異株である請求項13記載のパノース分解酵素の製造方法。
  15.  請求項11記載の形質転換体を培養し、培養物から請求項1乃至3のいずれかに記載のパノース分解酵素を採取することを特徴とする組換え型パノース分解酵素の製造方法。
  16.  澱粉又は澱粉部分分解物に作用し、そのα-1,4グルカン鎖の非還元末端グルコース残基の6位水酸基にD-グルコースがα-1,6結合した分岐構造を有する分岐α-グルカンを生成する活性を有する6-α-グルコシル転移酵素と、請求項1乃至5のいずれかに記載のパノース分解酵素とを組合せ、澱粉又は澱粉部分分解物に作用させることによりイソマルトースを生成させる工程と、生成したイソマルトースを採取する工程とを含んでなるイソマルトースの製造方法。
  17.  前記澱粉又は澱粉部分分解物に作用し、そのα-1,4グルカン鎖の非還元末端グルコース残基の6位水酸基にD-グルコースがα-1,6結合した分岐構造を有する分岐α-グルカンを生成する活性を有する6-α-グルコシル転移酵素が、バチルス(Bacillus)属微生物又はアルスロバクター(Arthrobacter)属微生物由来の酵素である請求項16記載のイソマルトースの製造方法。
  18.  前記イソマルトースを生成させる工程において、さらに、澱粉枝切酵素、α-アミラーゼ、シクロマルトデキストリングルカノトランスフェラーゼ及びグルコアミラーゼから選ばれる1種又は2種以上の酵素を併用する請求項16又は17記載のイソマルトースの製造方法。
  19.  請求項16乃至18のいずれかに記載のイソマルトースの製造方法に、さらにイソマルトースを水素添加することにより還元しイソマルチトールに変換する工程と、変換されたイソマルチトールを採取する工程とを付加してなるイソマルチトールの製造方法。
  20.  澱粉又は澱粉部分分解物に作用し、そのα-1,4グルカン鎖の非還元末端グルコース残基の6位水酸基にD-グルコース若しくはグルコース重合度2以上のα-1,6グルカンがα-1,6結合した分岐構造を有する分岐α-グルカンを生成する活性を有するα-グルコシル転移酵素と、請求項1乃至5のいずれかに記載のパノース分解酵素とを組合せ、澱粉又は澱粉部分分解物に作用させることによりイソマルトオリゴ糖を生成させる工程と、生成したイソマルトオリゴ糖を採取する工程を含んでなるイソマルトオリゴ糖の製造方法。
  21.  前記澱粉又は澱粉部分分解物に作用し、そのα-1,4グルカン鎖の非還元性末端グルコース残基の6位水酸基にD-グルコース若しくはグルコース重合度2以上のα-1,6グルカンがα-1,6結合した分岐構造を有する分岐α-グルカンを生成する活性を有するα-グルコシル転移酵素が、バチルス(Bacillus)属微生物又はアルスロバクター(Arthrobacter)属微生物由来の酵素である請求項20記載のイソマルトオリゴ糖の製造方法。
  22.  前記イソマルトオリゴ糖を生成させる工程において、さらに、澱粉枝切酵素、α-アミラーゼ、シクロマルトデキストリングルカノトランスフェラーゼ及びグルコアミラーゼから選ばれる1種又は2種以上の酵素を併用する請求項20又は21記載のイソマルトオリゴ糖の製造方法。
  23.  請求項20乃至22のいずれかに記載のイソマルトオリゴ糖の製造方法に、さらにイソマルトオリゴ糖を水素添加することにより還元しイソマルトオリゴ糖アルコールに変換する工程と、変換されたイソマルトオリゴ糖アルコールを採取する工程とを付加してなるイソマルトオリゴ糖アルコールの製造方法。
PCT/JP2021/027319 2020-07-22 2021-07-21 パノース分解酵素とその製造方法並びに用途 WO2022019330A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022538041A JPWO2022019330A1 (ja) 2020-07-22 2021-07-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-125033 2020-07-22
JP2020125033 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019330A1 true WO2022019330A1 (ja) 2022-01-27

Family

ID=79729590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027319 WO2022019330A1 (ja) 2020-07-22 2021-07-21 パノース分解酵素とその製造方法並びに用途

Country Status (2)

Country Link
JP (1) JPWO2022019330A1 (ja)
WO (1) WO2022019330A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033717A1 (fr) * 2001-10-18 2003-04-24 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Processus de production d'isomaltose et d'isomaltitol et utilisation de ces composes
US6562600B1 (en) * 2001-06-25 2003-05-13 The United States Of America As Represented By The Secretary Of Agriculture Production of cyclic alternan tetrasaccharides from oligosaccharide substrates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562600B1 (en) * 2001-06-25 2003-05-13 The United States Of America As Represented By The Secretary Of Agriculture Production of cyclic alternan tetrasaccharides from oligosaccharide substrates
WO2003033717A1 (fr) * 2001-10-18 2003-04-24 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Processus de production d'isomaltose et d'isomaltitol et utilisation de ces composes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COTE, G.L. AHLGREN, J.A.: "The hydrolytic and transferase action of alternanase on oligosaccharides", CARBOHYDRATE RESEARCH, PERGAMON, GB, vol. 332, no. 4, 15 June 2001 (2001-06-15), GB , pages 373 - 379, XP004247902, ISSN: 0008-6215, DOI: 10.1016/S0008-6215(01)00106-9 *

Also Published As

Publication number Publication date
JPWO2022019330A1 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
JP3557289B2 (ja) 非還元性糖質からトレハロースを遊離する組換え型耐熱性酵素
JP2001520525A (ja) スクロースをグルコース及びフルクトースへ処理する方法
TW591109B (en) Recombinant DNA comprising DNA encoding enzyme, and processes of preparing said enzyme
KR20060119889A (ko) 환상 말토실 말토오스 및 환상 말토실 말토오스 생성효소와이들의 제조 방법 및 용도
JP3810457B2 (ja) マルトースをトレハロースに変換する組換え型耐熱性酵素
JP3557288B2 (ja) 還元性澱粉糖から末端にトレハロース構造を有する非還元性糖質を生成する組換え型耐熱性酵素
EP1335020B1 (en) Polypeptides having alpha-isomaltosyl transferase activity
TW201040270A (en) Cellobiose 2-epimeraze, its preparation and uses
CA2434414C (en) Polypeptide having .alpha.-isomaltosylglucosaccharide-forming enzyme activity
KR101013195B1 (ko) 2-0-α-D-글루코피라노실-L―아스코르빈산의제조방법
JP3559609B2 (ja) 組換え型酵素とその製造方法並びに用途
WO2022019330A1 (ja) パノース分解酵素とその製造方法並びに用途
JP3557272B2 (ja) 組換え型酵素とその製造方法並びに用途
EP1445325B1 (en) Processes for producing isomaltose and isomaltitol and use thereof
JP2022024332A (ja) イソマルトースの製造方法
JP6417061B1 (ja) α−1,6−グルコシル転移活性を有する酵素
KR20100096568A (ko) 전세포를 이용한 당전이 방법
JP7441178B2 (ja) シクロイソマルトテトラオース、シクロイソマルトテトラオース生成酵素とそれらの製造方法並びに用途
JP5714241B2 (ja) α−グルコシダーゼとその製造方法並びに用途
WO2021019912A1 (ja) α-1,6-グルコシル転移反応を触媒する活性を有するタンパク質
JP2022024348A (ja) イソマルトオリゴ糖の製造方法
JP3779034B2 (ja) β−フラクトフラノシダーゼ活性を有するポリペプチド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846520

Country of ref document: EP

Kind code of ref document: A1