WO2004007616A1 - 熱可塑性樹脂組成物、その製造方法、およびその成形体 - Google Patents

熱可塑性樹脂組成物、その製造方法、およびその成形体 Download PDF

Info

Publication number
WO2004007616A1
WO2004007616A1 PCT/JP2003/008554 JP0308554W WO2004007616A1 WO 2004007616 A1 WO2004007616 A1 WO 2004007616A1 JP 0308554 W JP0308554 W JP 0308554W WO 2004007616 A1 WO2004007616 A1 WO 2004007616A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
liquid crystal
resin composition
crystal polymer
composition according
Prior art date
Application number
PCT/JP2003/008554
Other languages
English (en)
French (fr)
Inventor
Takanari Yamaguchi
Hiroaki Kumada
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to AU2003281037A priority Critical patent/AU2003281037A1/en
Publication of WO2004007616A1 publication Critical patent/WO2004007616A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic resin composition containing a flat liquid crystal polymer flake, a method for producing the same, and a molded product thereof.
  • thermoplastic resin layer formed from a layer containing a liquid crystal polymer and a thermoplastic resin layer.
  • a layer formed by melting a liquid crystal polymer and a thermoplastic resin is covered with a thermoplastic resin layer to improve the appearance of a multilayer molded product.
  • the problem to be solved by the present invention is to provide a thermoplastic resin molded article which is excellent in gas pallidability, particularly water vapor pallidability, gasoline barrier property, and the like, and a thermoplastic resin composition which provides the molded article. , And a method for producing the same.
  • an object of the present invention is to make a flat liquid crystal polymer flake exist in a thermoplastic resin while maintaining a flat shape. And found that the present invention was completed. In other words, the present invention is
  • the present invention relates to a thermoplastic resin composition characterized by containing a flat liquid crystal polymer flake in a thermoplastic resin,
  • thermoplastic resin molded article comprising at least one layer comprising the thermoplastic resin composition of the above [1],
  • the present invention relates to a method for producing a thermoplastic resin composition which gives the above-mentioned molded article.
  • the plate-like liquid crystal polymer flake of the present invention a plate-like thin flake having substantially no branching and having a greater length and width than the thickness is used.
  • the thickness of the flat liquid crystal polymer flakes is preferably in the range of 0.5 ⁇ m to 100 ⁇ m. More preferably, it is in the range of 3 ⁇ m to 500 ⁇ m, and still more preferably, in the range of 5 ⁇ m to 200 ⁇ m. If the thickness of the flat liquid crystal polymer flakes is less than 0.5 ⁇ m, the gas barrier properties and rigidity tend to decrease.
  • the dispersion of the plate-like liquid crystal polymer flakes tends to be non-uniform when producing a composition with a thermoplastic resin. It also branches into planar liquid crystal polymer flakes, for example, sharp cuts into the flake interior. If the composition is too fine, dispersion tends to be not good when a composition with a thermoplastic resin is produced, which is not preferable. Further, it is preferable that the height and width are larger than the thickness, and more preferable that the height and width are both twice or more and 100 times or less of the thickness, and the ratio of the height to width is 1.5 times. This is the shape described above.
  • the flat plate flake surface is easily aligned in parallel with the surface of the molded body during molding by injection molding, film molding, tube molding, extrusion molding, or the like, which is preferable because the gas ply property is enhanced.
  • the method for obtaining the flat liquid crystal polymer flakes of the present invention is not particularly limited. For example, a method in which a liquid crystal polymer is formed into a film or the like and then the liquid crystal polymer film or the like is subjected to crushing such as cutting, pulverization, and beating. And the like. According to this method, a flat liquid crystal polymer flake having a flat shape can be easily and uniformly obtained and has an average uniform thickness.
  • a device used for cutting a general paper film such as a cutting device using a combination of two blades or a combination of a rotary blade and a fixed blade is used. used.
  • the mechanical beating operation for converting the liquid crystal polymer film or the like into a flat liquid crystal polymer flake
  • various grinders, mills, beaters, Jordan, refiners, and the like can be used.
  • water, an oil agent, a surfactant or the like can be used for the purpose of preventing fusion of the raw material resin.
  • Alcohols such as isopropanol, ethanol, and ethylene dalicol can be added to increase the wettability of the surface and make the beating easier.
  • a molding method for producing a film made of a liquid crystal polymer for obtaining a flat liquid crystal polymer flake, a sheet-shaped molded product, a plate-shaped molded product, or the like examples include a method of obtaining a film by a T-die method or an inflation film forming method, a method of obtaining a sheet or plate by injection molding or hot pressing, and a method of obtaining a cast film by dissolving in a solvent.
  • the length of the film-shaped material is set in advance in one direction of MD or TD to about 0.5 mm to 5 O mm, more preferably to about 0.1 mm to 20 mm.
  • the pulverization easily proceeds, which is preferable.
  • the surface of the liquid crystal polymer film may be subjected to a surface treatment, if necessary, to improve the adhesion between the flat liquid crystal polymer flakes and the thermoplastic resin.
  • a surface treatment method include corona discharge treatment, plasma treatment, flame treatment, sputtering treatment, solvent treatment, ultraviolet treatment, infrared treatment, ozone treatment, and polishing treatment.
  • the flat liquid crystal polymer flake of the present invention is composed of a liquid crystal polymer. Next, the liquid crystal polymer will be described.
  • liquid crystal polymer in the present invention a polymer such as a lyotropic liquid crystal polymer / thermopic liquid crystal polymer or a polymer exhibiting liquid crystallinity in a molten state can be used. Whether a polymer exhibits liquid crystallinity or not can be confirmed by a known method such as examining optical anisotropy in a solution or a molten state.
  • the liquid crystal polymer in the present invention include, in addition to the liquid crystal polyester itself, (A) a liquid crystal polyester resin composition comprising a liquid crystal polyester and a copolymer.
  • aromatic dicarboxylic acids aromatic diols and aromatic hydroxycarboxylic acids
  • ester-forming derivatives thereof may be used instead of these aromatic dicarboxylic acids.
  • the repeating structural unit of the liquid crystal polyester include (1) a repeating structural unit derived from an aromatic dicarboxylic acid, (2) a repeating structural unit derived from an aromatic diol, and (3) a repeating structural unit derived from an aromatic hydroxycarboxylic acid.
  • the present invention is not limited to these.
  • liquid crystal polyester a halogen group, an alkyl group, Those substituted with a hydroxyl group can be used.
  • liquid crystal polyesters a liquid crystal polyester suitable for a balance between heat resistance, mechanical properties, and processability is preferably used.
  • liquid crystal polyesters may be those having an aromatic ring substituted by a halogen group, an alkyl group, or an aryl group.
  • liquid crystal polyesters (I) to (VI) are described in, for example, Japanese Patent Publication No. 47-47970, Japanese Patent Publication No. 63-38888, and Japanese Patent Publication No. 63-3891. Issuer And JP-B-56-18016 and JP-A-2-51523.
  • the repeating unit (a ') is 30 to 80 mole 0/0 below, repeating units (b,) is 0 to: L 0 mole 0/0, repeated
  • the repeating unit (c,) is 10 to 25 mol. / 0 , it is preferable to use a liquid crystal polyester having a repeating unit (d ′) of 10 to 35 mol%.
  • Ar is a divalent aromatic group.
  • Aromatic rings of the above (a ′) to (cT) may be substituted with a halogen group, an alkyl group, or an aryl group.
  • the copolymer of the present invention it is preferable to use a copolymer having a functional group reactive with the liquid crystal polyester.
  • the functional group reactive with the liquid crystal polyester is not particularly limited as long as it has reactivity with the liquid crystal polyester, and specific examples thereof include an oxazolyl group ⁇ an epoxy group and an amino group. These functional groups and the like may be present as a part of other functional groups, such as a glycidyl group.
  • the method for introducing these functional groups into the copolymer is not particularly limited, and can be carried out by a known method.
  • the copolymer in the present invention may be a thermoplastic resin or rubber, or a mixture or a reaction product of a thermoplastic resin and rubber.
  • rubber can be selected.
  • thermoplastic resin refers to a resin that can be molded by melting by heating
  • rubber generally refers to elastic rubber including natural rubber and synthetic rubber.
  • Examples of the rubber having an epoxy group as a specific example of the copolymer (B) having a functional group reactive with the liquid crystal polyester include (meth) acrylic acid ester-ethylene (unsaturated glycidyl carboxylate and / or unsaturated carboxylic acid ester). (Glycidyl ether) copolymer rubber.
  • the (meth) acrylate means an ester obtained from acrylic acid or methacrylic acid and alcohols.
  • alcohols include hydroxyl group-containing compounds having 1 to 8 carbon atoms.
  • Specific examples of (meth) acrylates include methino acrylate, methyl methacrylate, and n-butyl acrylate. Examples thereof include acrylate, n-butyl methacrylate, tert-butynolea acrylate, tert-butyl methacrylate, 2-ethylhexyl acrylate, and 2-ethylhexyl methacrylate.
  • the (meth) acrylate one kind thereof may be used alone, or two or more kinds may be used in combination.
  • R represents a hydrocarbon group having 2 to 13 carbon atoms having an ethylenically unsaturated bond
  • X represents one C (0) 0—, _CH 2 —0— or
  • unsaturated carboxylic acids include, for example, glycidyl phthalate, dalicidyl methacrylate, itaconic acid diglycidinol oleestenole, butenetricarboxylic acid triglycidyl ester, and ⁇ -styrene glycidyl rubinate. it can.
  • the unsaturated glycidyl ether examples include vinyldaricidyl ether, arylglycidinoleether, 2-methylarylglycidylether, and methacrylinole. Examples thereof include glycidinole ether and styrene-p-daricidyl ether.
  • the content of (meth) Atari Le ester monomer unit in the copolymer is preferably from 40 to 97 weight 0/0. Outside this range, the resulting molded article such as a film or sheet tends to have insufficient thermal stability and mechanical properties. A range of 45-70% by weight is more preferable.
  • the content of the ethylene monomer unit is preferably in the range of 3 to 50% by weight, more preferably 10 to 49% by weight.
  • Unsaturation power The content of the glycidyl ether monomer unit of Z or the unsaturated glycidyl ether monomer unit is preferably in the range of 0.1 to 30% by weight.
  • the resulting molded article such as a film or sheet tends to have insufficient thermal stability and mechanical properties. More preferably, it is in the range of 0.5 to 20% by weight.
  • the copolymer rubber can be produced by a usual method, for example, bulk polymerization using a free radical initiator, emulsion polymerization, solution polymerization and the like.
  • Typical polymerization methods are those described in JP-B-48-111388 and JP-A-61-127709, in which a polymerization initiator that generates free radicals is used. It can be manufactured under the conditions of a pressure of 500 kg / cm 2 (49. OMPa) or more and a temperature of 40 to 300 ° C.
  • Examples of the rubber which is a copolymer of the present invention include, in addition to the above rubber, an acrylic rubber having a functional group reactive with a liquid crystal polyester, and a vinyl aromatic hydrocarbon having a functional group reactive with a liquid crystal polyester.
  • a compound-conjugated diene compound copolymer rubber can also be used.
  • the acrylic rubber referred to here is synthesized from a monomer.
  • a monomer is represented by the general formulas (1) to (3).
  • CH 2 CH-C (0) -OR 1 (1)
  • CH 2 CH-C (O) -OR 2 OR 3 (2)
  • CH 2 CR 4 -C (O) -O (R 5 (C (0) 0) n R 6 (3)
  • R 1 represents an alkyl group having 1 to 18 carbon atoms or a cyanoalkyl group.
  • R 2 represents an alkylene group having 1 to 12 carbon atoms, and R 3 represents an alkyl group having 1 to 12 carbon atoms.
  • R 4 represents a hydrogen atom or a methyl group,
  • R 5 represents an alkylene group having 3 to 30 carbon atoms,
  • R 6 represents an alkyl group having 1 to 20 carbon atoms or a derivative thereof, and n represents an integer of 1 to 20.
  • alkyl acrylate ester represented by the general formula (1) examples include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate, hexyl acrylate, Octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, cyanoethyl acrylate and the like can be mentioned. One or more of these can be used as the main component of the acrylic rubber.
  • alkoxyalkyl acrylate represented by the above general formula (2) examples include methoxyl acrylate, ethoxyxyl acrylate, butoxyxethyl acrylate, ethoxypropyl acrylate, and the like. Can be mentioned. One or more of these can be used as the main component of the acrylic rubber.
  • acrylic acid derivative represented by the general formula (3) for example, methyl attaryloyloxybutyrate, methyl methacryloyloxyheptanoate and the like can be mentioned. One or more of these can be used as the main component of the acrylic rubber.
  • an unsaturated monomer copolymerizable with the monomers represented by the above general formulas (1) to (3) can be used as necessary.
  • Examples of such unsaturated monomers include styrene, ⁇ -methylstyrene, and ⁇ -methylstyrene.
  • the component ratio of the acrylic rubber having a functional group reactive with the liquid crystal polyester at least one kind of monomer selected from the monomers represented by the above general formulas (1) to (3) is used. 40.0 to 99.9% by weight, unsaturated carboxylic acid glycidyl ester and / or unsaturated glycidyl ether to 0.1 to 30.0% by weight, and the above general formulas (1) to (3)
  • the amount of the unsaturated monomer copolymerizable with the monomer represented by the formula (1) is typically from 0.0 to 30.0% by weight.
  • the constituent ratio of the acrylic rubber is within the above range, the composition tends to have good heat resistance, impact resistance, and moldability.
  • the method for producing the acryl rubber is not particularly limited.
  • JP-A-59-11310, JP-A-62-64809, JP-A-3-16000 No. 08, WO95Z047664, and other known polymerization methods can be used.Emulsion polymerization, suspension polymerization, solution polymerization in the presence of a radical initiator can be used. Alternatively, it can be produced by bulk polymerization.
  • the vinyl aromatic hydrocarbon compound having a functional group reactive with the liquid crystal polyester and the conjugated gen compound block copolymer rubber include, for example, (a) a vinyl aromatic hydrocarbon compound.
  • vinyl aromatic hydrocarbon compound of the above (a) examples include styrene, vinyl tonolene, divinyl benzene, a-methinolestyrene, p-methinolestyrene, and birnaphthalene, with styrene being preferred.
  • conjugated diene compounds include butadiene, isoprene, 1,3- 3 Ntajen, 3 can be exemplified such as a single Puchiru 3 Okutajen, blanking Tajen or Isopuren are preferred.
  • Such a vinyl aromatic hydrocarbon compound-conjugated gen compound block copolymer or a hydrogenated product thereof can be produced by a known method.
  • Japanese Patent Publication No. 40-237798 The method is described in, for example, Japanese Unexamined Patent Publication No. Sho 59-133203.
  • the rubber used as the copolymer of the present invention can be vulcanized as necessary and used as a vulcanized rubber.
  • the vulcanization of the above (meth) acrylic acid ester-ethylene-mono (unsaturated carboxylic acid glycidyl ester and Z or unsaturated glycidyl ether) copolymer rubber is carried out by multifunctional organic acids, polyfunctional amine compounds, imidazole aldehydes. This can be achieved by using compounds, but is not limited to these.
  • the copolymer of the present invention is a thermoplastic resin other than rubber.
  • the copolymer is a thermoplastic resin other than rubber, for example,
  • An epoxy group-containing ethylene copolymer obtained by reacting the above (a) and (b), or (a), (b) and (c) can be exemplified.
  • 50 to 99% by weight of ethylene units in the copolymer 0.1 to 30% by weight of unsaturated carboxylic acid glycidyl ester monomer units and Z or unsaturated glycidyl ether monomer units, and
  • the saturated ester compound unit is in the range of 0 to 50% by weight. Further, among these, it is more preferred that the range of the unsaturated carboxylic acid glycidyl ester monomer unit and / or the unsaturated glycidyl ether monomer unit be 0.5 to 20% by weight.
  • ethylenically unsaturated ester compound (c) include, for example, vinegar Carboxylic acid esters such as vinyl acrylate, vinyl propionate, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, methyl methacrylate, and methyl methacrylate; Among them, vinyl acetate, methyl acrylate and ethyl acrylate are preferable.
  • the epoxy group-containing ethylene copolymer include, for example, a copolymer composed of an ethylene unit and a glycidyl methacrylate unit, and a copolymer composed of an ethylene unit and a glycidinolemetharylate unit and a methyl acrylate unit. And a copolymer comprising an ethylene unit, a glycidyl methacrylate unit and an ethyl acrylate unit, and a copolymer comprising an ethylene unit, a glycidyl methacrylate unit and a vinyl acetate unit.
  • 0.5 to 100 gZl A range of 0 min can be used, but it is preferably 2 to 50 g / 10 min. .
  • the melt index of the copolymer may be outside this range, but if the melt index exceeds 100 g / 10 minutes, it tends to be unfavorable in terms of the mechanical properties of the liquid crystal polyester resin yarn. If it is less than 0.5 g / 10 minutes, the compatibility with the liquid crystal polyester of component (A) tends to be poor.
  • the epoxy group-containing ethylene copolymer may have a flexural modulus of 10 to 1300 kg / cm 2 (0.998 to 127.49 MPa). : L 100 kg / cm 2 (l. 96 ⁇ : 107. 87 MPa) is more preferred.
  • the epoxy group-containing ethylene copolymer is usually prepared by subjecting an unsaturated epoxy compound and ethylene to a pressure of 500 to 4000 atm and 100 to 300 ° C in the presence of a radical generator. It is produced by a high-pressure radical polymerization method in which copolymerization is carried out in the presence or absence of a solvent or a chain transfer agent. It can also be produced by a method in which an unsaturated epoxy compound and a radical generator are mixed with polyethylene and melt-grafted and copolymerized in an extruder.
  • an unsaturated carboxylic acid glycidyl ester monomer unit and a Z or unsaturated glycidyl ether monomer unit are contained in the copolymer in an amount of 0.1%.
  • the copolymer of the present invention preferably has a crystal heat of fusion of less than 3 J / g. ⁇
  • the copolymer of the present invention preferably has a viscosity of 3 to 70, more preferably 3 to 30, and particularly preferably 4 to 25.
  • one-one viscosity refers to a value measured using a 100 ° C. large nozzle according to JIS K630. Outside these ranges, the thermal stability of the composition tends to decrease.
  • liquid crystal polyester resin composition in the present invention (A) a liquid crystal polyester as a continuous phase as described above, and (B) a copolymer having a functional group reactive with the liquid crystal polyester as described above as a dispersed phase.
  • a resin composition is used.
  • the gas barrier properties, heat resistance, and the like of the film made of the liquid crystal polyester resin composition tend to be significantly reduced.
  • the details of the mechanism are unknown, but the composition between the component (A) and the component (B) is not known. It is considered that the reaction occurs to cause the component (A) to form a continuous phase and the component (B) to be finely dispersed, thereby tending to improve the moldability of the composition.
  • One embodiment of the above liquid crystal polyester resin composition comprises: (A) 56.0 to 99.9% by weight of a liquid crystal polyester, preferably 70.0 to 99.9% by weight, and more preferably (B) 44.0 to 0.1% by weight, preferably 30.0 to 0.1% by weight of a copolymer having a functional group reactive with the liquid crystal polyester. %, More preferably 20 to 2% by weight. If the content of the component (A) is less than 56.0% by weight, the film obtained from the composition tends to have reduced water vapor barrier properties and heat resistance. On the other hand, if the content of the component () exceeds 99.9% by weight, the molding processability of the composition tends to decrease, and the composition becomes expensive.
  • a known method can be used as a method for producing the liquid crystal polyester resin composition comprising the liquid crystal polyester and the copolymer in the present invention. For example, there is a method in which each component is mixed in a solution state and the solvent is evaporated or precipitated in the solvent. Specifically, a method of kneading each component in a molten state can be selected. For the melt-kneading, a kneading apparatus such as a single-screw or twin-screw extruder and various kinds of generally used extruders can be used. In particular, a biaxial high kneader is preferred.
  • the cylinder set temperature of the kneading apparatus can be selected in the range of 200 to 360 ° C, and furthermore, it can be carried out in the range of 230 to 350 ° C. is there.
  • each component When kneading, each component may be mixed in advance using a device such as a tumbler or a Henschel mixer, or if necessary, mixing may be omitted, and each component may be separately supplied to the kneading device. Can also be used.
  • a device such as a tumbler or a Henschel mixer, or if necessary, mixing may be omitted, and each component may be separately supplied to the kneading device. Can also be used.
  • the liquid crystal polyester resin composition of the present invention may further contain an organic filler, if necessary. Fillers, antioxidants, heat stabilizers, light stabilizers, flame retardants, lubricants, antistatic agents, antioxidants, crosslinking agents, foaming agents, fluorescent agents, surface smoothing agents, surface gloss improvers, fluoroplastics, etc.
  • Various additives such as a release improver can be added during the manufacturing process or in a subsequent processing step. However, it is preferable to use a non-halogen additive or an additive which does not leave ash after burning.
  • liquid crystal polymer such as the above liquid crystal polyester resin composition
  • a flat liquid crystal polymer flake can be obtained according to the method described at the beginning.
  • thermoplastic resin composition of the present invention comprises a flat liquid crystal polymer flake and a thermoplastic resin. Next, the thermoplastic resin will be described.
  • thermoplastic resin used in combination with the flat liquid crystal polymer flakes is not particularly limited.
  • polyamides, polyolefin polymers (including fluorine resins such as PTFE), polyesters and the like are preferably used.
  • polyamides such as nylon 6, nylon 66, nylon 11, nylon 12, and the like are used.
  • polypropylene for example, polypropylene, HDPE (high-density polyethylene, the same applies hereinafter) and the like are used.
  • nylon is preferably used for tubes, polypropylene for injection molding, and HDPE for fuel tanks.
  • the liquid crystal polymer may exist in a shape other than the flat liquid crystal polymer flake.
  • a liquid crystal polymer having a particle shape, a fibrous shape, or the like may be present in addition to the flat liquid crystal polymer flakes.
  • the case where the liquid crystal polymer forms a continuous phase in the thermoplastic resin is not included in the present invention.
  • the thermoplastic resin of the present invention can be added with a conductive medium in an amount sufficient to perform antistatic.
  • the method of the treatment is not limited, but a method of blending a conductive filler and a conductive material at the time of operations such as extrusion molding and melt kneading is preferably used.
  • carbon-based fillers metals (iron, copper, silver, gold, nickel, etc.) and mixtures thereof are preferably used.
  • the carbon-based filler for example, fibrous or powdery carbon black, carbon nanotube, or the like is used.
  • metal for example, metal fibers in the form of fibers or powder, metal fillers, and the like are used.
  • the surface of the molded body is coated with a conductive coating to prevent charging.
  • thermoplastic resin composition of the flat liquid crystal polymer flakes and the thermoplastic resin can be obtained by a generally known method. For example, a method in which both are dry-blended and directly charged into an extruder of a molding machine to obtain a composition and at the same time molding is performed, and a method in which a dry-blended blend is melt-kneaded to obtain a composition.
  • the set temperature of the extruder at the time of molding or the melt extruder at the time of melt-kneading is set to be equal to or lower than the flow start temperature of the liquid crystal polymer as a raw material of the flat liquid crystal polymer flake.
  • the set temperature of the extruder is set to be equal to or higher than the flow start temperature of the thermoplastic resin.
  • the flat liquid crystal polymer flakes can be dispersed in the thermoplastic resin while maintaining the flat shape.
  • compounding ratio of the flat plate-like liquid crystal polymer flake and a thermoplastic resin, flat liquid crystal polymer flake 1-8 0 weight 0/0, the thermoplastic resin is 2 0-9 9 wt% And more preferably 3 to 60% by weight of the flat flake liquid crystal, 40 to 97% by weight of the thermoplastic resin, and more preferably 5 to 55% by weight of the flat flake liquid crystal. %, Thermoplastic resin is in the range of 45-95% by weight. If the content of the flat liquid crystal polymer flakes is less than 1% by weight, the gas composition of the obtained composition tends to be insufficient, and if it is more than 80% by weight, the moldability of the obtained composition is insufficient. !,Tend.
  • the thermoplastic resin preferably forms a continuous phase.
  • the moldability of the thermoplastic resin tends not to be impaired.
  • the molded article of the present invention can be obtained by molding using the thermoplastic resin composition comprising a thermoplastic resin containing a flat liquid crystal polymer flake described above.
  • thermoplastic resin composition comprising a thermoplastic resin containing a flat liquid crystal polymer flake described above.
  • shape and molding method of the molded article obtained from the thermoplastic resin composition of the present invention include an injection molded article, a sheet / film shaped article, a tubular shaped article, a bottle / tank shaped article, and the like.
  • a forming method a forming method capable of maintaining a flat liquid crystal polymer flake in a flat plate shape is preferable.
  • the solvent may be removed after dissolving only the thermoplastic resin in the thermoplastic resin composition of the present invention in a solvent that dissolves the solution and applying it to another substrate or performing coating.
  • This operation is preferable because the shape of the plate-like liquid crystal polymer flakes is maintained so that a high gas pliability can be achieved.
  • thermoplastic resin composition When the thermoplastic resin composition is melted and molded, for example, when a method such as injection molding, hot pressing, film molding, extrusion molding, blow molding, or tube molding is used, the heat that enables the thermoplastic resin composition to be processed is used. Molding at a temperature equal to or higher than the flow start temperature of the plastic resin and equal to or lower than the flow start temperature of the used flat liquid crystal polymer flakes, that is, equal to or lower than the flow start temperature of the liquid crystal polymer that is the raw material of the flat liquid crystal polymer flakes. preferable. By molding at a temperature in this range, the thermoplastic resin forms a continuous phase, and the shape of the flat liquid crystal polymer flakes tends to maintain high gas barrier properties.
  • the thermoplastic resin molded article in the present invention includes a molded article containing at least one layer of a thermoplastic resin composition containing a flat liquid crystal polymer flake in a thermoplastic resin.
  • the thermoplastic resin molded article may be a molded article composed of only a thermoplastic resin composition of a flat liquid crystal polymer flake and a thermoplastic resin, or may be a molded article composed of a thermoplastic resin composition of the present invention. It may be a multilayer thermoplastic resin molded body of a layer made of a thermoplastic resin. In particular, in a molded article such as a film, a sheet, a tube, a bottle, and a tank, a multilayer thermoplastic resin molded article having a layer composed of the thermoplastic resin composition of the present invention and a layer composed of the thermoplastic resin is preferably used.
  • thermoplastic resin molded article for example,
  • a multilayer thermoplastic resin molded article having a layer structure of two or more layers including a layer made of a thermoplastic resin not containing a flat liquid crystal polymer flake is exemplified.
  • the molded body includes a case where the layer (1) is arranged on the entire surface of the front and back surfaces, a case where only the front surface or only the back surface is the layer (1), and the like.
  • the inside of the tube is the layer (1) and the outside is the layer (2), or the outside of the tube is the layer (1) and the inside is the layer (1). 2) is included.
  • thermoplastic resin In the shape of a tube, a tank, a bottle, or the like, a configuration in which a layer containing a flat liquid crystal polymer flake is inside a molded body with respect to a layer made of a thermoplastic resin is preferably used. In this case, it is possible to easily impart other functions to the outer thermoplastic resin, for example, imparting conductivity and imparting abrasion resistance.
  • thermoplastic resin composition of the present invention is used as an intermediate layer and layers made of a thermoplastic resin are arranged on both sides of the intermediate layer is also preferably used.
  • a multilayer molded body having a three- or more-layer structure including the following layers (a) to (c), wherein the multilayer (layer) is located between the force layer (a) and the layer (c) Thermoplastic resin molded articles are exemplified.
  • thermoplastic resin not containing flat liquid crystal polymer flakes
  • the above layer (a) and layer (c) may be layers composed of a thermoplastic resin composition having the same composition or different compositions. It may be a layer made of a thermoplastic resin composition having the following. In this case, not only the outer thermoplastic resin but also the inner thermoplastic resin can be easily provided with other functions such as conductivity imparting and rubbing resistance.
  • thermoplastic resin compositions made of a flat liquid crystal polymer flake and a thermoplastic resin using different thermoplastic resins are used, and the same type of thermoplastic resin is used.
  • Molded articles having two or more layers composed of two kinds of thermoplastic resin compositions having different composition ratios of the flat liquid crystal polymer flakes are also preferably used.
  • the former is particularly preferred in terms of the design for improving the strength as a molded article, and the latter is particularly preferable because of excellent adhesion between the two layers.
  • the molded article of the thermoplastic resin according to the present invention it is preferable to mold the flat liquid crystal polymer flakes in the thermoplastic resin composition so that the plane of the flakes is parallel to the plane of the molded article.
  • a molding condition in which the liquid crystal polymer flake surface is parallel to the film sheet surface is usually selected. Due to the structure of the flat flake of the present invention, a molding method such as ordinary extrusion molding, film molding, bottle molding, tube molding, or the like is preferable because the above structure is easily realized. In addition, the above structure can be realized with respect to the obtained thin film also by a method in which the thermoplastic resin composition is dissolved in a solvent and applied.
  • the obtained polymer was pulverized with a hammer mill manufactured by Hosokawa Micron Co., Ltd. into particles having a size of 2.5 mm or less, and then subjected to 250 g in a rotary kiln under a nitrogen gas atmosphere. By treating with C for 5 hours, a wholly aromatic polyester composed of repeating units represented by the following formula 21 having a flow start temperature of 275 ° C was obtained.
  • the flow temperature using a Shimadzu high reduction type flow tester C FT-500 type, a 4 ° CZ partial heated resin at a heating rate of load l OO kgf Zcm 2
  • liquid crystal polyester is abbreviated as A-1.
  • This polymer showed optical anisotropy at 290 ° C or more under pressure.
  • the structures of the repeating structural units of the liquid crystal polyester A-1 and the ratios thereof are as follows.
  • E indicates ethylene
  • MA indicates methyl acrylate
  • GMA indicates glycidyl methacrylate
  • Oxygen permeability (OTR) measurement In accordance with JIS K7126 (isobaric method), using an oxygen permeability measuring device (OX-TRAN 10 / 50A, manufactured by MOCON), the test gas is 99.99% oxygen, the carrier gas is 98% nitrogen, 2% hydrogen, The measurement was performed at a temperature of 23 ° C. The unit is cc / (m 2 ⁇ 24 hr). Thickness conversion is not performed.
  • the obtained pellets were fed to a 60 mm single screw extruder equipped with a cylindrical die, and were melt-kneaded at a cylinder set temperature of 290 ° C and a screw rotation speed of 60 rpm to obtain a diameter of 70 mm and a lip interval.
  • the molten resin is extruded upward from a cylindrical die with a 1.0 mm die set temperature of 280 ° C.
  • dry air is forced into the hollow part of the cylindrical film to expand the cylindrical film and then cool it. After that, the film was pulled through a nip roll to obtain a film composed of a liquid crystal polyester resin composition.
  • the stretching ratio in the MD direction of the film (removal speed of the resin from the cylindrical die) is set to 10.7, and the blow ratio (diameter of the expanded cylindrical film Z
  • the measured average thickness of the film with a diameter of 3.8 was 25 ⁇ m.
  • this film is abbreviated as G_1.
  • G-1 has an oxygen permeability of 0.6 c cZm 2 'a tm' for 24 h.
  • G-1 was cut to a size of about 1 cm x 3 cm with scissors, and it was cut by a Kumagaya Riki Kogyo Co., Ltd., with 2000 g of water and the distance between the disks adjusted to 0.10 mm by a distance meter in advance. Beat once with the KRK high-concentration disc refiner, ⁇ ⁇ 0.5 mm to lmm, length 1 mn! A ⁇ 2 mm scaly filler was obtained. This scaly filler is sometimes called R_1.
  • R-1 was further beaten 10 times with Kumagaya Riki Kogyo's KRK high-concentration disc cleina which adjusted the distance between the disks to 0.01 mm by reading the distance meter in advance, and dispersed in water. Thereafter, a portion passing through a wire mesh of 100 mesh but not passing through a wire mesh of 200 mesh was dried to obtain a flat liquid crystal polymer flake R-2.
  • the typical size of the flakes observed under a microscope was 25 111 in thickness, 100 to 200 ⁇ in length, and 50 to 100 ⁇ m in width.
  • a tube (T-12) was obtained in the same manner as in Example 1, except that R-2 was changed to 10% by weight.
  • the gas barrier properties measured as a film with a thickness of 300 ⁇ m after cutting out T-2 were 4.2 gZni 2 ⁇ 24 hr with water vapor permeability and 2.5 cc / m 2 ⁇ 24 hr ⁇ atm with oxygen permeability. And was good. Gasoline permeability was less than 0.001 g / m 2 '24 hr (below the measurement limit).
  • HDPE extrusion grade
  • R-2 melt-kneaded at 260 ° C using a twin screw extruder PCM-30 manufactured by Ikegai Iron Works. Got three.
  • C-13 is fed to a 60 mm ⁇ single-screw extruder equipped with a cylindrical die and melt-kneaded at a cylinder set temperature of 260 ° C and a screw rotation speed of 60 rpm, a diameter of 70 mm, a lip interval of 1.0 mm, The molten resin is extruded upward from a cylindrical die at a die setting temperature of 255 ° C.
  • Example 2 A tube having the same shape as in Example 1 was obtained using only nylon 6 used in Example 1.
  • the gas barrier properties measured as a film having a thickness of 300 ⁇ m after being cut open were a water vapor permeability of 20 g / m 2 '24 hr and an oxygen permeability of 4 cc / m 2 '24 hr ⁇ atm. Gasoline permeability was 0.07 g / m 2 . Comparative Example 2
  • a film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 using only HDPE used in Example 1.
  • the water vapor transmission rate was 9 g / m 2 ⁇ 24 hr, and the oxygen transmission rate was 1400 cc / m 2 ⁇ 24 hr ⁇ atm.
  • the water vapor transmission rate was 7.5 g / m 2 '24 hr, and the oxygen transmission rate was 1300 cc Zm 2 ⁇ 24 hr ⁇ atm.
  • the gasoline permeability was 0.19 g / m 2 , which was almost the same as Comparative Example 3.
  • a molded article having excellent heat resistance, gas barrier properties, organic solvent barrier properties, particularly excellent steam barrier properties and gasoline barrier properties such as a resin tube having a layer containing a liquid crystal polymer. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

ガスバリア性、特に水蒸気バリア性、ガソリンバリア性等に優れる熱可塑性樹脂成形体およびこの成形体を与える熱可塑性樹脂組成物を提供すること、ならびにこれらの製造方法を提供すること。[1]熱可塑性樹脂中に、平板状液晶ポリマーフレークを含むことを特徴とする熱可塑性樹脂組成物。[2]上記[1]の熱可塑性樹脂組成物からなる層を少なくとも一層含むことを特徴とする熱可塑性樹脂成形体。[3]上記成形体を与える熱可塑性樹脂組成物の製造方法。

Description

明 細 書 熱可塑性樹脂組成物、 その製造方法、 およびその成形体 技術分野
本発明は平板状液晶ポリマーフレークを含む熱可塑性樹脂組成物、 その製造方 法、 およびその成形体に関する。 背景技術
近年、 自動車分野、 中でも、 燃料輸送用チューブ、 電池ケーシング、 燃料タン ク等においては、 優れた機械的性質、 ガスバリア' 14、 ガソリンパリア性、 アル コールバリア性、 柔軟性、 耐熱性、 水蒸気バリァ性等が求められている。
上記の要求に対して、 例えば液晶ポリマーと熱可塑性樹脂とをブレンドして、 溶融状態で混練し、 押出成形することにより得られる管状成形体が提案されて いる。
しかしながら、 液晶ポリマーと熱可塑性樹脂とを溶融させて成形した場合は ガスパリア性が十分ではなかった。 さらに成形体自体についても、 その表面が フィブリル化し易いため、 製品外観が劣る (特開平 5— 4 2 9 2号公報、 特開 平 5— 1 8 6 6 6 8号公報) 。
また、 液晶ポリマーを含む層と熱可塑性樹脂層から形成される、 多層成形体 についても提案がなされている。 例えば、 液晶ポリマーと熱可塑性樹脂とを溶 融させて形成した層を、 熱可塑性樹脂層で覆うことにより多層成形体の製品外 観について改善が図られている。
しかしながら、 この様な多層成形体は、 分散した液晶ポリマーが糸状、 球状 の形態をとることが多いため、 ガスバリア性が十分でなかった (特開平 8— 3 0 0 5 2 3号公報) 。 発明の開示
かかる実情に鑑み本発明が解決しょうとする課題は、 ガスパリア性、 特に水蒸 気パリア性、 ガソリンバリア性等に優れる熱可塑性樹脂成形体およびこの成形 体を与える熱可塑性樹脂組成物を提供すること、 ならびにこれらの製造方法を 提供することにある。
本発明者らは、 上記課題を解決すべく鋭意検討を行った結果、 平板状液晶ポリ マーフレークを、 平板状の形状を保ったまま、 熱可塑性樹脂中に存在させるこ とが本発明の目的に適うことを見い出し、 本発明を完成させるに至った。 すな わち本'発明は、
[ 1 ] 熱可塑性樹脂中に、 平板状液晶ポリマーフレークを含むことを特徴とす る熱可塑性樹脂組成物に関するものであり、
[ 2 ] 上記 [ 1 ] の熱可塑性樹脂組成物からなる層を少なくとも一層含むこと を特徴とする熱可塑性樹脂成形体に関するものであり、
[ 3 ] 上記成形体を与える熱可塑性樹脂組成物の製造方法に関するものである。 発明を実施するための最良の形態
次に本発明を更に詳細に説明する。
本発明の平板状液晶ポリマーフレークについて説明する。
本発明の平板状液晶ポリマーフレークとしては、 その形状が平板状の薄片で あって、 実質的に枝分かれが無く、 縦、 横の長さが厚みより大きいものが使用 される。 平板状液晶ポリマーフレークの厚みは 0 . 5 μ m〜1 0 0 0 μ mの 範囲であることが好ましい。 より好ましくは 3 μ m〜5 0 0 μ m、 さらに好 ましくは、 5 μ m〜2 0 0 μ mの範囲である。 平板状液晶ポリマーフレーク の厚みが 0 . 5 μ m未満であるとガスバリァ性、 剛性が低下する傾向がある。 また、 1 0 0 0 μ mより厚いと、 熱可塑性樹脂との組成物を製造する場合に平 板状液晶ポリマーフレークの分散が不均一となる傾向がある。 また、 平板状液 晶ポリマーフレークに枝分れ、 例えばフレーク内部に向かっての鋭角な切れ込 み形状等が多いと熱可塑性樹脂との組成物を製造する際に分散が良好でない傾 向があり好ましくない。 さらに、 縦、 横の長さが厚みより大きいことが好まし く、 より好ましくは、 縦横とも、 厚みの 2倍以上 1 0 0 0倍以下、 縦と横の長 さの比が 1 . 5倍以上の形状である。 このような形状を取ることで、射出成形、 フィルム成形、 チューブ成形、 押し出し成形等による成形時に、 平板フレーク 表面が成形体の面に並行に並びやすく、 ガスパリァ性が高くなり好ましい。 本発明の平板状液晶ポリマーフレークを得る方法に特に制限は無いが、 例え ば液晶ポリマーをフィルム等の形状とした後、 この液晶ポリマーフィルム等に 対し、切断、粉碎、 叩解等の破碎を施す方法等が挙げられる。 この方法により、 平板状の形状が容易にかつ均質に得られ、 平均的に均一な厚みを持った平板状 液晶ポリマーフレークが得られる。
本発明の液晶ポリマーフィルム等の切断に際しては、 通常、 2枚の刃の組合 せ、 もしくは回転刃と固定刃による組合せによる切断装置等、 一般的な紙ゃフ イルムの切断に供される装置が使用される。
液晶ポリマーフィルム等を平板状液晶ポリマーフレークとするための機械的 叩解操作の例としては、 例えば各種グラインダー、 ミル、 ビータ一、 ジョルダ ン、 リファイナ一等を使用することができる。 また叩解操作を湿潤状態で行う 場合には原料樹脂の融着を防ぐ目的で、 水または油剤、 界面活性剤等を用いる こともできる。 またィソプロパノール、 エタノール、 エチレンダリコール等の アルコール類を添加し表面の湿潤性を高め、 より叩解が進み易くすることもで きる。
本発明において、 平板状液晶ポリマーフレークを得るための液晶ポリマーか らなるフィルム、 シート状成形体、 板状成形体等を作製するための成形方法等 に特に限定はないが、 例えば、 液晶ポリマーを用いて、 Tダイ法やインフレ一 シヨン成膜法でフィルムを得る方法、 射出成形、 熱プレスによってシートや板 を得る方法、 溶媒に溶解し、 キャストフィルムを得る方法等が挙げられる。 液晶ポリマーフィルムを粉枠する際に、 枝分かれ部分のない平板状液晶ポリ マーフレークを得るためには、 二軸延伸したフィルムを粉碎に用いることが好 ましく、 さらには、 T D方向の延伸率が 2倍以上であるフィルムを用いること が好ましい。 容易にかつ高速で二軸延伸フィルムを得るためには、 インフレ一 ション成膜による方法を採用することができる。
また、 フィルム形状物を粉碎する際、 MDまたは T Dの一方の方向に沿って フィルム形状物の長さをあらかじめ 0 . 5 mm〜5 O mm、更に好ましくは 0 . l mm〜 2 0 mm程度に切断して置くと粉砕が進み易く好適である。
本発明においては、 平板状液晶ポリマーフレークと熱可塑性樹脂との接着性 を向上させるために、 上記液晶ポリマーフィルムの表面に必要に応じて表面処 理を施すことができる。 このような表面処理法としては、 例えばコロナ放電処 理、 プラズマ処理、 火炎処理、 スパッタリング処理、 溶剤処理、 紫外線処理、 赤外線処理、 オゾン処理、 研摩処理などが挙げられる。
本発明の平板状液晶ポリマーフレークは液晶ポリマーからなる。 次にこの液 晶ポリマーについて説明する。
本発明における液晶ポリマーとしては、 リオトロピック液晶ポリマーゃサー モト口ピック液晶ポリマーなどの溶液あるいは溶融状態で液晶性を示す高分子 を用いることができる。 液晶性を示す高分子に該当するか否かは溶液あるいは 溶融状態で光学的異方性を調べる等の公知の手法で確認することができる。 本発明における液晶ポリマーとしては、 液晶ポリエステルそのものの他、 例 えば、 (A) 液晶ポリエステルと共重合体からなる液晶ポリエステル樹脂組成 物を例示することができる。
上記液晶ポリエステルの具体例としては、
(ィ) 芳香族ジカルボン酸と芳香族ジオールと芳香族ヒドロキシカルボン酸と の反応で得られたもの
(口) 異種の芳香族ヒドロキシカルボン酸同士との反応で得られたもの (ハ) 芳香族ジカルボン酸と芳香族ジオールとの反応で得られたもの
(ェ) ポリエチレンテレフタレートなどのポリエステルと芳香族ヒ ドロキシカ ルボン c=との反応で得られたもの . 等が挙げられ、 4 0 0 °C以下の温度で異方性溶融体を形成するものである。 なお、 これらの芳香族ジカルボン酸、 芳香族ジオール及び芳香族ヒドロキシカ ルボン酸の代わりに、 それらのエステル形成性誘導体が使用されることもある。 該液晶ポリエステルの繰返し構造単位としては、 下記の①芳香族ジカルボン 酸に由来する繰返し構造単位、 ②芳香族ジオールに由来する繰返し構造単位、 ③芳香族ヒドロキシカルボン酸に c来する繰返し構造単位を例示することがで きるが、 これらに限定されるもので ない。
①芳香族ジカルボン酸に由来する繰り返し構造単位:
Figure imgf000006_0001
ϋ
Figure imgf000007_0001
②芳香族ジオールに由来する繰返し構造単位:
■〇 o o-
Figure imgf000008_0001
Figure imgf000008_0002
00Zdf/X3d 919ム00請 OAV
Figure imgf000009_0001
③芳香族ヒドロキシカルポン酸に由来する繰返し構造単位
Figure imgf000010_0001
上記の液晶ポリエステルとしては芳香族環にハロゲン基、 アルキル基、 ァリ ール基が置換したものを用いることができる。 液晶ポリエステルの中でも耐熱 性、機械的特性、加工性のバランスに適した液晶ポリエステルは、好ましくは、
Figure imgf000011_0001
なる繰り返し構造単位を含むものであり、 力かる繰り返し構造単位を少なくと も液晶ポリエステル全体の 3 0モル%以上含むものを用いることが好ましい。 液晶ポリエステルの繰返し構造単位の組み合わせとしては、 具体的には下記 ( I ) 〜 (VI) を例示することができる。 下記の液晶ポリエステルには芳香族 環にハロゲン基、 アルキル基、 ァリール基が置換したものを用いることができ る。
Figure imgf000012_0001
Π
o
Figure imgf000012_0002
IT
l7SS800/C00Zdf/X3d 919ム00請 OAV
Figure imgf000013_0001
(ΛΙ)
Figure imgf000013_0002
(Π)
l7SS800/C00Zdf/X3d 919ム00請 OAV
Figure imgf000014_0001
(Λ)
SI
l7SS800/C00Zdf/X3d 919ム00請 OAV (VI)
Figure imgf000015_0001
該液晶ポリエステル (I ) 〜 (VI) の製法については、 例えば特公昭 4 7— 4 7 8 7 0号公報、 特公昭 6 3— 3 8 8 8号公報、 特公昭 6 3— 3 8 9 1号公 報、 特公昭 56— 18016号公報、 特開平 2— 51523号公報などに記載 されている。
本発明において、 高い耐熱性が要求される分野には、 下記の繰り返し単位 (a ' ) が 30〜80モル0 /0、 繰り返し単位 (b, ) が 0〜: L 0モル0 /0、 繰り 返し単位 (c, ) が 10〜25モル。 /0、 繰り返し単位 (d ' ) が 10〜35モ ル%力 らなる液晶ポリエステルを用いることが好ましい。
Figure imgf000016_0001
一- 0— Ar-O†- (d')
(式中、 A rは 2価の芳香族基である。 上記 (a' ) 〜 (cT ) の芳香族環に はハロゲン基、アルキル基、ァリール基が置換したものを用いることができる。) 次に本発明における液晶ポリエステル樹脂組成物の、 液晶ポリエステル以外 の成分である、 共重合体について説明する。
本発明の共重合体については液晶ポリエステルと反応性を有する官能基を有 するものを用いることが好ましい。 液晶ポリエステルと反応性を有する官能基 としては、 液晶ポリエステルと反応性を有するなら特に限定はないが、 具体的 にはォキサゾリル基ゃエポキシ基、 アミノ基等が挙げられる。 これらの官能基 等は他の官能基の一部として存在していてもよく、 そのような例としては例え ばグリシジル基が挙げられる。
これらの官能基を共重合体中に導入する方法としては特に限定されるもので はなく、 公知の方法で行うことができる。 例えば共重合体の合成段階で該官能 基を有する単量体を共重合により導入することも可能であるし、 共重合体に該 官能基を有する単量体をダラフト共重合することも可能である。
本発明における共重合体は、 熱可塑性榭脂であってもゴムであってもよいし、 熱可塑性樹脂とゴムの混合物や反応物であってもよい。 該液晶ポリエステル樹 脂組成物を用いて得られるフィルムまたはシート等の成形体の熱安定性や柔軟 性を重視する場合にはゴムを選択することができる。
ここで熱可塑性樹脂とは加熱により溶融することで成形ができる樹脂をいい、 ゴムとは天然ゴム、 合成ゴムを含む弾性のあるゴムを一般に指す。
まず、 共重合体がゴムである場合について説明する。
液晶ポリエステルと反応性を有する官能基を有する共重合体 (B) の具体例 としてのエポキシ基を有するゴムとしては、 (メタ) アクリル酸エステルーェ チレン一 (不飽和カルボン酸グリシジルエステルおよび/または不飽和グリシ ジルエーテル) 共重合体ゴム等を挙げることができる。
ここで (メタ) アクリル酸エステルとはアクリル酸またはメタクリル酸とァ ルコール類から得られるエステルを意味する。 アルコール類としては、 炭素原 子数 1〜 8の水酸基含有ィヒ合物が挙げられる。 (メタ) アクリル酸エステルの 具体例としてはメチノレアクリ レート、 メチルメタクリ レート、 n—ブチルァク リ レート、 n—ブチルメタタリ レート、 t e r t—ブチノレアクリ レート、 t e r t _ブチルメタクリ レート、 2—ェチルへキシルアタリ レート、 2—ェチル へキシルメタクリレートなどを挙げることができる。 なお、 (メタ) アクリル 酸エステルとしては、 その一種を単独で使用してもよく、 または二種以上を併 用してもよい。
液晶ポリエステルと反応性を有する官能基を有する共重合体としての上記ゴ ムゃ、 ゴム以外の熱可塑性樹脂中の、 液晶ポリエステルと反応性を有する官能 基中の不飽和カルボン酸グリシジルエステルおよび不飽和グリシジルエーテル を構成する単量体としては、 例えば下記一般式
Figure imgf000018_0001
(式中、 Rは、 エチレン系不飽和結合を有する炭素数 2〜1 3の炭化水素基を 表し、 Xは、 一 C (0) 0—、 _ C H 2—0—または
〇—
Figure imgf000018_0002
を表す。 ) で示される単量体を用いることができる
より具体的に示すと、 不飽和カルボン酸ダリ しては例えば グリシジルァタリレート、 ダリシジルメタクリレート、 イタコン酸ジグリシジ ノレエステノレ、 ブテントリカルボン酸トリグリシジルエステル、 ρ—スチレン力 ルボン酸グリシジルエステルなどを挙げることができる。
不飽和グリシジルエーテルとしては、 例えばビニルダリシジルエーテル、 ァ リルグリシジノレエーテル、 2—メチルァリルグリシジルエーテル、 メタクリノレ グリシジノレエーテル、 スチレン一 p—ダリシジルエーテル等が例示される。 本発明における上記の共重合体ゴムの中でも、 共重合体中の (メタ) アタリ ル酸エステルモノマー単位の含量が 40〜97重量0 /0のものが好ましい。 この 範囲外であると、 得られるフィルムまたはシート等の成形体の熱安定性や機械 的性質が不十分となる傾向がある。 45〜 70重量%の範囲であればより好ま しい。
エチレンモノマー単位の含量については 3〜 50重量%の範囲のものが好ま しく、 さらに好ましくは 10〜49重量%の範囲のものが好ましい。 不飽和力 ルボン酸グリシジルエーテルモノマー単位おょぴ Zまたは不飽和グリシジルェ 一テルモノマー単位の含量については、 好ましくは 0. 1〜30重量%の範囲 である。
この範囲外であると、 得られるフィルムまたはシート等の成形体の熱安定性や 機械的性質が不十分となる傾向がある。 0. 5〜20重量%の範囲であればよ り好ましい。
該共重合体ゴムは、 通常の方法、 例えばフリーラジカル開始剤による塊状重 合、 乳化重合、 溶液重合などによって製造することができる。 なお、 代表的な 重合方法は、 特公昭 48— 1 1 388号公報、 特開昭 61— 1 27709号公 報などに記載された方法であり、 フリ一ラジカルを生成する重合開始剤の存在 下、 圧力 500 k g/cm2 (49. OMP a) 以上、 温度 40〜300°Cの条 件により製造することができる。
本発明の共重合体であるゴムとしては、 上記のゴムに加えて液晶ポリエステ ルと反応性を有する官能基を有するアクリルゴムや、 液晶ポリエステルと反応 性を有する官能基を有するビニル芳香族炭化水素化合物一共役ジェン化合物プ 口ック共重合体ゴムも用いることができる。
ここでいうアクリルゴムは単量体から合成されるが、 この様な単量体として は、 一般式 (1) 〜 (3)
CH2=CH-C(0)-OR 1 (1) CH2=CH-C (O)-OR 2OR 3 (2) CH 2=CR 4-C (O)-O(R 5(C(0)0)n R 6 (3)
(式中、 R 1は炭素原子数 1〜 18のアルキル基またはシァノアルキル基を示す。 R 2は炭素原子数 1〜 12のアルキレン基を、 R 3は炭素原子数 1〜 12のアル キル基を示す。 R 4は水素原子またはメチル基、 R 5は、 炭素原子数 3〜 30の アルキレン基、 R 6は炭素原子数 1〜 20のアルキル基またはその誘導体、 nは 1〜20の整数を示す。 ) で表されるものを使用することができる。
上記一般式( 1 )で表されるアタリル酸アルキルエステルの具体例としては、 例えばメチルァクリレート、 ェチルァクリレート、 プロピルアタリレート、 ブ チルアタリレート、 ペンチルアタリレート、 へキシルアタリレート、 ォクチル アタリレート、 2—ェチルへキシルァクリレート、 ノニルァクリレート、 デシ ルアタリレート、 ドデシルアタリレート、 シァノエチルァクリ レート等を挙げ ることができる。 これらの一種または二種以上を該アクリルゴムの主成分とし て用いることができる。
また、 上記一般式 (2) で表されるァクリル酸アルコキシアルキルエステル としては、例えばメ トキシェチルァクリレート、ェトキシェチルァクリレート、 ブトキシェチルァクリレート、 ェトキシプロピルァクリレート等を挙げること ができる。 これらの一種または二種以上を該アクリルゴムの主成分として用い ることができる。
上記一般式 (3) で表されるアクリル酸誘導体としては、 例えばアタリロイ ルォキシ一酪酸メチルエステル、 メタクリロイルォキシヘプタン酸メチルエス テル等を挙げることができる。 これらの一種または二種以上を該アクリルゴム の主成分として用いることができる。
このようなアクリルゴムの構成成分として、 上記の一般式 (1) 〜 (3) で 表される単量体と共重合可能な不飽和単量体を必要に応じて用いることができ る。
このような不飽和単量体の例としては、 スチレン、 α—メチルスチレン、 ァ クリロニトリノレ、ハロゲン化スチレン、 メタタリロニトリル、 アクリルアミ ド、 メタクリルアミ ド、 ビ-ルナフタレン、 N—メチロールアクリルアミ ド、 酢酸 ビエル、塩化ビニル、 塩化ビニリデン、 ベンジルァクリレート、 メタクリル酸、 ィタコン酸、 フマル酸、 マレイン酸等が挙げられる。
液晶ポリエステルと反応性を有する官能基を有するアクリルゴムの構成成分 比については、 上記の一般式 (1 ) 〜 (3 ) で表される単量体から選ばれる少 なくとも一種の単量体を 4 0 . 0〜 9 9 . 9重量%とし、 不飽和カルボン酸グ リシジルエステルおよび または不飽和グリシジルエーテルを 0 . 1〜 3 0 . 0重量%とし、 上記の一般式 (1 ) 〜 (3 ) で表される単量体と共重合可能な 不飽和単量体を 0 . 0〜3 0 . 0重量%とするのが代表的である。 該アクリル ゴムの構成成分比が上記の範囲内であると、 組成物の耐熱性ゃ耐衝撃性、 成形 加工性が良好となる傾向にある。
該ァクリルゴムの製法は特に限定するものではなく、 例えば特開昭 5 9— 1 1 3 0 1 0号公報、 特開昭 6 2— 6 4 8 0 9号公報、 特開平 3— 1 6 0 0 0 8 号公報、 あるいは WO 9 5 Z 0 4 7 6 4などに記載されているような公知の重 合法を用いることができ、 ラジカル開始剤の存在下で乳化重合、 懸濁重合、 溶 液重合あるいはバルク重合で製造することができる。
上記アクリルゴムの他、 前記液晶ポリエステルと反応性を有する官能基を有 するビニル芳香族炭化水素化合物一共役ジェン化合物プロック共重合体ゴムと しては、 例えば ( a ) ビニル芳香族炭化水素化合物を主体とするシーケンスと ( b ) 共役ジェン化合物を主体とするシーケンスからなるブロック共重合体を エポキシ化して得られるゴム、 該ブロック共重合体の水添物をェポキシ化して 得られるゴム等が挙げられる。
上記 ( a ) のビニル芳香族炭化水素化合物としては、 例えば、 スチレン、 ビ ニルトノレェン、 ジビニルベンゼン、 aーメチノレスチレン、 p—メチノレスチレン、 ビュルナフタレンなどを挙げることができ、 中でもスチレンが好ましい。
共役ジェン化合物としては、 例えば、 ブタジエン、 ィソプレン、 1, 3—ぺ ンタジェン、 3一プチルー 3—ォクタジェンなどを挙げることができ、 ブ タジェンまたはィソプレンが好ましい。
かかるビニル芳香族炭化水素化合物一共役ジェン化合物プロック共重合体ま たはその水添物は、 公知の方法で製造することができ、 例えば、 特公昭 4 0— 2 3 7 9 8号公報、 特開昭 5 9— 1 3 3 2 0 3号公報等にその方法が記載され ている。
本発明の共重合体として用いるゴムは必要に応じて加硫を行い、 加硫ゴムと して用いることができる。
上記の (メタ) アクリル酸エステル一エチレン一 (不飽和カルボン酸グリシ ジルエステルおよび Zまたは不飽和グリシジルエーテル) 共重合体ゴムの加硫 は、 多官能性有機酸、 多官能性ァミン化合物、 イミダゾールイヒ合物などを用い ることで達成されるが、 これらに限定されるものではない。
次に、 本発明の共重合体がゴム以外の熱可塑性樹脂である場合について説明 する。 共重合体がゴム以外の熱可塑性樹脂の場合は、 例えば、
( a ) エチレン
( b ) 不飽和カルボン酸グリシジルエステルモノマーおよび/または不飽和グ リシジノレエーテノレモノマー
( c ) エチレン系不飽和エステルイ匕合物
以上の (a ) と (b ) 、 または (a ) と (b ) と (c ) とを反応させて得ら れるエポキシ基含有エチレン共重合体を例示することができる。 中でも、 共重 合体中のエチレン単位が 5 0〜9 9重量%、 不飽和カルボン酸グリシジルエス テルモノマー単位およぴ Zまたは不飽和グリシジルエーテルモノマー単位が 0 . 1〜 3 0重量%、 エチレン系不飽和エステル化合物単位が 0〜 5 0重量%の範 囲のものであることが好ましい。 さらにはこれらの中でも不飽和カルボン酸グ リシジルエステルモノマー単位および/または不飽和グリシジルエーテルモノ マー単位の範囲が 0 . 5〜 2 0重量%であればより好ましい。
上記のエチレン系不飽和エステル化合物 (c ) の具体例としては、 例えば酢 酸ビニル、 プロピオン酸ビニル、 アクリル酸メチル、 アクリル酸ェチル、 ァク リル酸プチル、 メタクリル酸メチル、 メタクリル酸ェチル、 メタクリル酸プチ ル等のカルボン酸ビュルエステル、 ひ, —不飽和カルボン酸アルキルエステ ル等が挙げられるが、 中でも酢酸ビニル、 アクリル酸メチル、 アクリル酸ェチ ルが好ましい。
該エポキシ基含有エチレン共重合体の具体例としては、 例えばエチレン単位 とグリシジルメタタリレート単位からなる共重合体、 エチレン単位とグリシジ ノレメタタリレート単位おょぴアクリル酸メチル単位からなる共重合体、 ェチレ ン単位とグリシジルメタクリレート単位おょぴァクリル酸ェチル単位からなる 共重合体、 ェチレン単位とグリシジルメタクリレート単位および酢酸ビニル単 位からなる共重合体等が挙げられる。
該エポキシ基含有エチレン共重合体については、 メルトインデックス (J I
S K6760に従い、 190°C、 2. 16 k g荷重の条件で測定) 0. 5〜100 gZl 0分の範囲のものを使用することができるが、 2〜50 g/ 10分であることが好ましい。 共重合体のメルトインデックスはこの範囲外で あってもよいが、 メルトインデックスが 100 g/10分を越えると液晶ポリ エステル樹脂糸且成物にした時の機械的物性の点で好ましくない傾向にあり、 0. 5 g/10分未満では成分 (A) の液晶ポリエステルとの相溶性が劣る傾向に める。
また、 該エポキシ基含有エチレン共重合体については、 曲げ弾性率が 10〜 1300 k g/c m 2 (0. 98〜: 127. 49 MP a) の範囲のものを選ぶこ とができるが、 20〜: L 100 k g/cm2 (l. 96〜: 107. 87MP a) のものがさらに好ましい。
曲げ弾性率がこの範囲外であると組成物の成形加工性や機械的性質が不十分 となる傾向がある。
該エポキシ基含有エチレン共重合体は、 通常不飽和エポキシ化合物とェチレ ンをラジカル発生剤の存在下、 500〜4000気圧、 100〜300°Cで適 当な溶媒や連鎖移動剤の存在下または不存在下に共重合させる高圧ラジカル重 合法により製造される。 また、 ポリエチレンに不飽和エポキシ化合物おょぴラ ジカル発生剤を混合し、 押出機の中で溶融グラフト共重合させる方法によって も製造することができる。
本発明の共重合体としては、 不飽和カルボン酸グリシジルエステルモノマー 単位および Zまたは不飽和グリシジルエーテルモノマー単位が共重合体中に 0 .
:!〜 3 0重量。 /0含まれるものを用いることが好ましレ、。 共重合体に含まれる該 モノマー単位の重量%が 0 . 1重量%未満であると、 液晶ポリエステルとの相 互作用が小さく、 微分散しにくくなつて結果として成膜性が悪くなつたり、 得 られたフィルムの性能が悪くなつたりする傾向がある。 また、 3 0重量%より 多いと反応性が高くなり自己架橋などが発生しゃすくなり、 結果として得られ たフィルムの外観が悪くなる傾向がある。
本発明の共重合体は、 結晶の融解熱量が 3 J / g未満のものを用いることが 好ましい。 ■
結晶の融解熱量が 3 J Z g以上であると、 溶融不良によりフィルム上にプッ などが発生する傾向がある。
また本発明の共重合体は、 ム一-一粘度が 3〜 7 0のものが好ましいが、 3 〜3 0のものがより好ましく、 さらには 4〜 2 5のものが特に好ましい。
ここでいぅム一-一粘度は、 J I S K 6 3 0 0に準じて 1 0 0 °Cラージ口 —ターを用いて測定した値をいう。 これらの範囲外であると、 組成物の熱安定 性が低下する傾向にある。
本発明における液晶ポリエステル樹脂組成物としては、 前記のような (A) 液晶ポリエステルを連続相とし、 前記のような (B ) 液晶ポリエステルと反応 性を有する官能基を有する共重合体を分散相とする樹脂組成物を用いることが 好ましい。
液晶ポリエステルが連続相でない場合には、 液晶ポリエステル樹脂組成物か らなるフィルムのガスバリァ性、 耐熱性などが著しく低下する傾向にある。 このような液晶ポリエステル (A) と共重合体 (B ) との液晶ポリエステル 樹脂組成物においては、 機構の詳細は不明ではあるが、 該組成物の成分 (A) と成分 (B ) との間で反応が生起し、 成分 (A) が連続相を形成するとともに 成分 (B ) が微細分散し、 そのために該組成物の成形性が向上する傾向にある ものと考えられる。
上記の液晶ポリエステル樹脂組成物の一実施態様は、 (A) 液晶ポリエステ ルを 5 6 . 0〜9 9 . 9重量%、 好ましくは 7 0 . 0〜9 9 . 9重量%、 さら に好ましくは 8 0〜 9 8重量%とし、 ( B ) 液晶ポリエステルと反応性を有す る官能基を有する共重合体を 4 4 . 0〜0 . 1重量%、 好ましくは 3 0 . 0〜 0 . 1重量%、 さらに好ましくは 2 0〜 2重量%含有する樹脂糸且成物である。 成分 (A) が 5 6 . 0重量%未満であると該組成物から得られるフィルムの 水蒸気バリア性、 耐熱性が低下する傾向がある。 また、 成分 ( ) が9 9 . 9 重量%を超えると該組成物の成形加工性が低下する傾向があり、 また価格的に も高価なものとなる。
本発明における液晶ポリエステルおよび共重合体からなる液晶ポリエステル 樹脂組成物を製造する方法としては公知の方法を用いることができる。 たとえ ば、 溶液状態で各成分を混合し、 溶剤を蒸発させるか、 溶剤中に沈殿させる方 法が挙げられる。 具体的には溶融状態で各成分を混練する方法を選ぶことがで きる。 溶融混練には一般に使用されている一軸または二軸の押出機、 各種の- ーダ一等の混練装置を用いることができる。 特に二軸の高混練機が好ましい。 溶融混練に際しては、 混練装置のシリンダー設定温度は 2 0 0〜3 6 0 °Cの 範囲を選ぶことができ、 さらには 2 3 0〜3 5 0 °Cの範囲で実施することが可 能である。
混練に際しては、 各成分は予めタンブラ一もしくはヘンシェルミキサーのよ うな装置で各成分を均一に混合してもよいし、 必要な場合には混合を省き、 混 練装置にそれぞれ別個に定量供給する方法も用いることができる。
本発明の液晶ポリエステル樹脂組成物には、 必要に応じて、 さらに、 有機充 填剤、 酸化防止剤、 熱安定剤、 光安定剤、難燃剤、 滑剤、 帯電防止剤、 防鲭剤、 架橋剤、 発泡剤、 蛍光剤、 表面平滑剤、 表面光沢改良剤、 フッ素樹脂などの離 型改良剤などの各種の添加剤を製造工程中あるいはその後の加工工程において 添加することができるが、 ハロゲン以外のものや燃焼後に灰分が残らないもの を用いることが好ましい。
上記の液晶ポリエステル樹脂組成物等の液晶ポリマーを用い、 冒頭に説明し た方法に従って、 平板状液晶ポリマーフレークを得ることができる。
本発明の熱可塑性樹脂組成物は平板状液晶ポリマーフレークと熱可塑性樹脂 とから構成される。 次にこの熱可塑性樹脂について説明する。
平板状液晶ポリマーフレークと組み合わせる熱可塑性樹脂は、 特に制限は無 いが、 例えば、 ポリエステル、 ポリアミド、 ポリアリーレンスルフイド、 ポリ カーボネート、 ポリアリレート、 ポリアリーレンォキシド、 ポリオレフイン系 重合体 (P T F Eなどのフッ素系樹脂を含む) 、 ポリスチレン、 ポリオキシメ チレン、 エチレン一酢酸ビニル共重合体、 ポリ塩化ビュル、 ポリ塩化ビニリデ ン等や、 これらの熱可塑性樹脂を含む樹脂組成物等が挙げられる。 中でも、 チ ユーブ成形等の成形性やパリア性能と言う観点からは、 例えばポリアミド、 ポ リオレフイン系重合体 (P T F Eなどのフッ素系樹脂を含む) 、 ポリエステル 等が好ましく用いられる。 より好ましくは、 例えばポリアミドとしてはナイ口 ン 6、 ナイロン 6 6、 ナイロン 1 1、 ナイロン 1 2等が用いられる。 ポリオレ フィン系重合体としては、 例えばポリプロピレン、 H D P E (高密度ポリェチ レン、 以下同じ。 ) 等が用いられる。 特にチューブ用としてはナイロンが、 射 出成形用としてはポリプロピレンが、 燃料タンク用としては H D P Eが好まし く用いられる。
上記熱可塑性樹脂には、 液晶ポリマーが平板状液晶ポリマーフレーク以外の 形状で存在しても良い。 例えば、 粒子状、 繊維状等の形状の液晶ポリマーが、 平板状液晶ポリマーフレーク以外に存在しても良い。 ただし、 液晶ポリマーが 該熱可塑性樹脂中で連続相を形成する場合は本発明には含まれない。 本発明の熱可塑性樹脂には、 帯電防止を行うに十分な量の導電媒体を添加す ることができる。 その処理の方法に制限は無いが、 押出成形や溶融混練等の操 作時等に導電フィラー、導電材を配合する方法が好ましく用いられる。例えば、 炭素系フイラ一、 金属 (鉄、 銅、 銀、 金、 ニッケルなど) とそれらの混合体が 好ましく用いられる。 炭素系フイラ一としては、 例えば繊維状、 粉末状のカー ボンブラック、カーボンナノチューブ等が用いられる。金属としては、例えば、 繊維状、 粉末状等の金属ファイバー、 金属フイラ一等が用いられる。 さらに成 形した後に、 成形体の表面に導電コーティングすることで帯電を防止すること もできる。 このように成形品に対し静電防止処理を行うことで、 ガソリンなど の有機溶媒がチューブ内を長時間流動しても成形体が帯電することはなく、 発 火等を防止することができ安全上好ましい。
平板状液晶ポリマーフレークと熱可塑性樹脂との熱可塑性樹脂組成物は通常 知られている方法で得ることができる。 例えば、 両者をドライブレンドし、 そ のまま成形機の押出機に投入して組成物を得ると同時に成形する方法、 ドライ プレンドしたプレンド物を溶融混練して組成物を得る方法等が挙げられる。 成形時の押出機や溶融混練時の押出機の設定温度は、'平板状液晶ポリマーフ レークの原料となる液晶ポリマーの流動開始温度以下に設定される。 設定温度 が液晶ポリマーの流動開始温度より高いと、 液晶ポリマーが部分的に溶融し、 結果として得られた組成物において、 フレークの平板状の形状が保てずに球状 に分散したり、 フィブリル状、 糸状の形態で分散し、 得られた成形体のガスバ リァ性が十分でなくなる場合があり好ましくない。 液晶ポリマーフレークを均 一に熱可塑性樹脂中に分散させるためには、 押出機の設定温度を熱可塑性樹脂 の流動開始温度以上に設定することが好ましい。
上記操作により、 平板状液晶ポリマーフレークを、 平板状の形状を保ったま ま、 熱可塑性樹脂中に分散させることができる。
本発明の、 平板状液晶ポリマーフレークと熱可塑性樹脂との配合比は、 平板 状液晶ポリマーフレークが 1〜 8 0重量0 /0、 熱可塑性樹脂が 2 0〜 9 9重量% の配合範囲であることが好ましく、 より好ましくは平板フレーク状液晶が 3〜 6 0重量%、 熱可塑性樹脂が 4 0〜 9 7重量%、 さらに好ましくは平板フレー ク状液晶が 5〜 5 5重量%、 熱可塑性樹脂が 4 5〜 9 5重量%の範囲である。 平板状液晶ポリマーフレークが 1重量%未満であると、 得られた組成物のガス パリア性が十分でない傾向があり、 8 0重量%より多いと、 得られた組成物の 成形性が十分でな!、傾向がある。
組成物中で、 熱可塑性樹脂は連続相を形成していることが好ましい。 熱可塑 性樹脂が連続相を形成することで熱可塑性樹脂の成形性が損なわれない傾向が ある。
先に説明した、 平板状液晶ポリマーフレークを含む熱可塑性樹脂からなる熱 可塑性樹脂組成物を用いて成形することにより、 本発明の成形体が得られる。 本発明における熱可塑性樹脂組成物より得られる成形体の形状、 成形方法に 特に制限は無い。 成形体の形状としては、 射出成形品、 シート · フィルム状成 形品、 チューブ状成形品、 ボトル · タンク状成形品等が挙げられる。 成形方法 としては、 平板状液晶ポリマーフレークが平板状の形状を保つことのできる成 形方法が好ましい。 例えば、 本発明の熱可塑性樹脂組成物中の熱可塑性樹脂の みを溶解する溶媒に溶かし、他基材に塗付したり、コーティングを行ったのち、 溶媒を除去しても良い。 本操作によって、 平板状液晶ポリマーフレークの形状 が保たれることで高いガスパリァ性が達成することができ好ましい。
熱可塑性樹脂組成物を溶融して成形する場合、 例えば射出成形、 熱プレス、 フィルム成形、押出成形、ブロー成形、チューブ成形等の方法を用いる場合は、 熱可塑性樹脂組成物が加工可能となる熱可塑性樹脂の流動開始温度以上の温度 で、 かつ、 用いた平板状液晶ポリマーフレークの流動開始温度以下、 すなわち 平板状液晶ポリマーフレークの原料である液晶ポリマーの流動開始温度以下の 温度で成形することが好ましい。 この範囲の温度で成形することにより、 熱可 塑性樹脂が連続相を形成し、 かつ、 平板状液晶ポリマーフレークの形状が保た れることで高いガスバリア性が保持される傾向がある。 本発明における熱可塑性樹脂成形体は、 熱可塑性樹脂中に、 平板状液晶ポリ マーフレークを含む熱可塑性樹脂組成物からなる層を、 少なくとも一層含有す る成形体を含む。
例えば、 熱可塑性樹脂成形体は、 平板状液晶ポリマーフレークと熱可塑性榭 脂との熱可塑性樹脂組成物のみからなる成形体であっても良いし、 本発明の熱 可塑性樹脂組成物からなる層と熱可塑性樹脂からなる層の多層熱可塑性樹脂成 形体であっても良い。 特に、 フィルム、 シート、 チューブ、 ボトル、 タンクな どの成形体においては、 本発明の熱可塑性樹脂組成物からなる層と熱可塑性榭 脂からなる層の多層熱可塑性樹脂成形体が好ましく用いられる。
多層熱可塑性樹脂成形体としては、 例えば、
( 1 ) 平板状液晶ポリマーフレークを含む熱可塑性樹脂からなる層、 および
( 2 ) 平板状液晶ポリマーフレークを含まない熱可塑性樹脂からなる層を含む 二層以上の層構造を有する多層熱可塑性樹脂成形体が例示される。 成形体が例 えばシート状等の平面構造では、表面と裏面の全面に層 (1 ) を配置する場合、 表面のみ、 あるいは裏面のみが層 (1 ) である場合等が含まれる。
成形体が例えば管状等の形状の場合、 管の内側が層 (1 ) であり、 かつ外側 が層 (2 ) である場合や、 管の外側が層 (1 ) であり、 かつ内側が層 (2 ) で ある場合が含まれる。
チューブ、 タンク、 ボトル等の形状においては、 平板状液晶ポリマーフレー クを含む層が、 熱可塑性樹脂からなる層に対して、 成形体の内側となる構成が 好ましく用いられる。 この場合、 外側の熱可塑性樹脂には、 例えば、 導電性付 与、 耐擦動性付与等、 他の機能を容易に付与することが可能である。
さらに、 本発明の熱可塑性樹脂組成物からなる層を中間層とし、 熱可塑性樹 脂からなる層を中間層の両側に配置する構成も好ましく用いられる。
例えば、 下記の層 (ィ) 〜層 (ハ) を含む三層以上の層構造を有する多層成 形体であって、 層 (口) 力 層 (ィ) と層 (ハ) との間にある多層熱可塑性樹 脂成形体が挙げられる。 (ィ) 平板状液晶ポリマーフレークを含まない熱可塑性樹脂からなる層
(口) 平板状液晶ポリマーフレークを含む熱可塑性樹脂からなる層
(ハ) 平板状液晶ポリマーフレークを含まない熱可塑性樹脂からなる層 上記の層 (ィ) と層 (ハ) は同じ組成を有する熱可塑性樹脂組成物からなる 層であっても良いし、 異なる組成を有する熱可塑性樹脂組成物からなる層であ つても良い。 この場合、 外側の熱可塑性樹脂のみならず、 内側の熱可塑性樹脂 に対しても、 例えば、 導電性付与、 耐擦動性等の他の機能を容易に付与するこ とが可能となる。
さらに、 用途によって、 異なる熱可塑性樹脂を用いた、 平板状液晶ポリマー フレークと熱可塑性樹脂による 2種の熱可塑性樹脂組成物からなる層を多層に した成形品、 さらに、 同種の熱可塑性樹脂を用い、 平板状液晶ポリマーフレー クの組成比を変えた 2種の熱可塑性樹脂組成物からなる層を多層にした成形品 等も好ましく用いられる。 前者は、 成形品としての強度向上等の設計がしゃす く、 後者は、 2層間の接着に優れていて特に好ましい。
本発明における熱可塑性榭脂の成形体では、 該熱可塑性樹脂組成物中の平板 状液晶ポリマーフレークの平面が、 成形体の面と並行になるように成形するこ とが好ましい。 例えばフィルムシートの場合では、 フィルムシート面に液晶ポ リマーフレークの面が並行となる成形条件が通常選択される。 本発明の平板状 フレークの構造上、 通常の押し出し成形、 フィルム成形、 ボトル成形、 チュー ブ成形等の成形方法が上記構造が実現されやすく好ましい。 また、 該熱可塑性 樹脂組成物を溶媒に溶解して塗付する方法によっても、 得られた薄膜に対して 上記構造を実現することができる。
(実施例)
以下、 実施例により本発明を説明するが、 これらは単なる例示であり、 本発 明はこれらに限定されることはない。 (1) 成分 (A) の液晶ポリエステル
(i) p—ヒ ドロキシ安息香酸 16. 6 k g (12. 1モル) と 6—ヒ ドロキ シー 2—ナフトェ酸 8. 4 k g (45モル) および無水酢酸 18. 6 k g (1 82モル) を櫛型撹拌翼付きめ重合槽に仕込み、 窒素ガス雰囲気下で攪拌しな がら昇温し、 320°Cで 1時間、 そしてさらに 2. 0 t o r rの減圧下に 32 0°Cで 1時間重合させた。 この間に、 副生する酢酸を系外へ排出し続けた。 そ の後、 系を除々に冷却し、 180°Cで得られたポリマーを系外へ取出した。 この得られたポリマーを細川ミクロン(株)製のハンマーミルで粉碎し、 2. 5 mm以下の粒子としたあと、 ロータリーキルン中で窒素ガス雰囲気下に 25 0。Cで 5時間処理することによって、 流動開始温度が 275 °Cの粒子状の下記 化 21の繰り返し単位からなる全芳香族ポリエステルを得た。
ここで、 流動開始温度とは、 島津社製高化式フローテスター C FT— 500型 を用いて、 4 °CZ分の昇温速度で加熱された樹脂を、 荷重 l O O k g f Zcm2
(9. 8 IMP a ) のもとで、 内径 lmm、 長さ 1 Ommのノズルから押し出 すときに、 溶融粘度が 48000ボイズ (4800 P a · s) を示す温度のこ とをいう。
以下該液晶ポリエステルを A— 1と略記する。 このポリマーは加圧下で 29 0 °c以上で光学異方性を示した。
液晶ポリエステル A— 1の繰り返し構造単位の構造とその比率は次の通りで ある。
Figure imgf000032_0001
Figure imgf000032_0002
73: 27
(2) 成分 (B) の共重合体
以下において、 Eはエチレン、 MAはアクリル酸メチル、 GMAはグリシジ ルメタタリレートをそれぞれ示す。
(i) 住友化学工業 (株)製、 ポンドファースト 7 L
E/GMA/MA=67/3/30重量比の共重合体、 MFR = 9 ここで MFRは、 J I S K6760に準じて、 190 °C、 2. 16 k g/ cm 2荷重で測定した値である。 以下、 この共重合体を B— 1と略称することが める。
(3) 物性の測定法
(i) 酸素透過度 (OTR) 測定 J I S K7126 (等圧法) に従って、 酸素透過度測定装置 (OX— TR AN 10/50 A、 MO CON社製) を用い、テストガスは酸素 99. 99 %、 キャリアガスは窒素 98 %水素 2 %、 温度 23 °Cの条件で測定した。 単位は c c/ (m2 · 24 h r ) である。 厚み換算は行っていない。
(ii)水蒸気透過率: J I S Z 0208 (カップ法) に準拠して温度 40°C 、 相対湿度 90%の条件で測定した。 単位は gZ (m 2 · 24 h r · 1 a t m) である。 厚み換算は行っていない。
(iii) ガソリン透過度:得られたチューブに市販のレギュラーガソリンを封 入し、 23°C、 相対湿度 50%の室内に放置して、 重量減少の経時変化から 1 日当たり、 m2当たりに換算した。 単位は (g/m2 ' 24h r) である。 厚 み換算は行っていない。 .
A— 1 95. 0質量0 /0および B— 1 を 5. 0質量0 /0となるようにへンシ エルミキサーで混合した。 次いで、 日本製鋼 (株)製 TEX— 30型二軸押出機 を用いてシリンダー設定温度 310°C、 スクリユー回転数 200 r p mで溶融 混練を行ってペレツトを得た。 得られたペレツト (P— 1と略称することがあ る) は加圧下で 288 °C以上で光学的異方性を示した。 該ペレツ トの流動開始 温度は 276°Cであった。
次に、 得られたペレツトを、 円筒ダイを備えた 60 mm の単軸押出機に供 給して、 シリンダー設定温度 290°C、 スクリユー回転数 60 r p mで溶融混 練し、 直径 70mm、 リップ間隔 1. 0 mm、 ダイ設定温度 280 °Cの円筒ダ ィから上方へ溶融樹脂を押出し、 その際この筒状フィルムの中空部へ乾燥空気 を圧入して筒状フィルムを膨張させ、 続いて冷却させた後、 ニップロールに通 して引取り、 液晶ポリエステル樹脂組成物からなるフィルムを得た。
この際フィルム MD方向の延伸倍率 (引き取り速度ノ円筒ダイスからの樹脂 吐出速度) を 10. 7、 ブロー比 (膨張した筒状フィルムの直径 Zダイスの直 径) を 3. 8としたフィルムの実測平均厚さは 25 〃 mであった。 以下、 この フィルムを G_ 1と略記する。
G- 1の酸素透過度は 0. 6 c cZm 2 ' a tm ' 24 h水蒸気透過率度は 0.
2 g/m2 · a t m · 24 hであった。
G— 1をはさみでおよそ 1 cmX 3 cmの大きさに裁断し、 それを 2000 gの水とともに、 あらかじめディスク間距離を距離計の読みで 0. 1 0mmに 調整した熊谷理機工業社製の K R K高濃度ディスクレフアイナ一で一回叩解し て、 Ψ畐 0. 5mm〜lmm、 長さ 1 mn!〜 2 mmの鱗片状フイラ一を得た。 こ の鱗片状フイラ一を R_ 1と呼ぶことがある。
さらに、 R— 1をあらかじめディスク間距離を距離計の読みで 0. 0 1mm に調整した熊谷理機工業社製の K R K高濃度デイスクレフアイナ一でさらに 1 0回叩解し、 水に分散させた後、 1 00メッシュの金網を通過し、 かつ、 20 0メッシュの金網を通過しない部分を乾燥させ、 平板状液晶ポリマーフレーク R— 2を得た。 顕微鏡で観察して確認できたフレークの代表的なサイズは、 厚 み 2 5 111、 縦 1 00〜200 μ πι、 幅 50〜: 1 00 ί mであった。 実施例 1
市販のナイロン 6 (押出しグレード) を 70重量%、 R— 2を 30重量%を ドライブレンドし、 池貝鉄工製二軸押出機 P CM— 30を用い、 24 5°Cで溶 融混練を行い、 組成物 C— 1を得た。 C一 1を東洋精機製二軸コニカル押出機
30 R 1 5 0に直径 2 5mm、 リップ間隔 1. 0 mmの樹脂吐出部を持つイン フレーションダイスを設置した装置を用いて、 シリンダ一平均設定温度 2 5 0°C、ダイス設定温度 25 5°Cで、 φ 1 6mmX φ 1 5. 4 mmのチューブ(Τ 一 1) を得た。 Τ— 1を切り開いて厚み 300 μ mの、 フィルム状として測定 したガスパリァ性は、 水蒸気透過度が 3 g /m2 · 24 h r、 酸素透過度が 1. 5 c c/m2 ♦ 24 h r · a tmと良好であった。 ガソリン透過度は 0. 00 1 g/m2 · 24 h r以下 (測定限界以下) であった。 また、 チューブ斜断面を顕微鏡で観察したところ、 平板状液晶ポリマーフレ ークの形状はほぼ保たれ、 かつ、 フレークの面はチューブの接線にほぼ並行で あつ 。 実施例 2
市販のナイロン 6 (押出しグレード) を 90重量0 /。、 R— 2を 10重量%と した以外は実施例 1と同様にして、 チューブ (T一 2) を得た。 T—2を切り 開いて厚み 300 μ mのフィルム状として測定したガスバリア性は、 水蒸気透 過度が 4. 2 gZni2 · 24 h r、 酸素透過度が 2. 5 c c/m2 · 24 h r · a t mと良好であった。ガソリン透過度は 0. 001 g/m2' 24h r以下(測 定限界以下) であった。
また、 チューブ斜断面を顕微鏡で観察したところ、 平板状液晶ポリマーフレ ークの形状はほぼ保たれ、 かつ、 フレークの面はチューブの接線にほぼ並行で あつに。 実施例 3
市販の HDPE (押し出しグレード) 80重量% R— 2を 20重量%をド ライブレンドし、 池貝鉄工製二軸押出機 P CM— 30を用い、 260°Cで溶融 混練を行い、 組成物 C _ 3を得た。 C一 3を円筒ダイを備えた 60 mm φ の単 軸押出機に供給して、 シリンダー設定温度 260°C、 スクリユー回転数 60 r pmで溶融混練し、 直径 70mm、 リップ間隔 1. 0 mm、 ダイ設定温度 25 5 °Cの円筒ダイから上方へ溶融樹脂を押出し、 その際この筒状フィルムの中空 部へ乾燥空気を圧入して筒状フィルムを膨張させ、 続いて冷却させた後、 ニッ プロールに通して引取り、 熱可塑性樹脂組成物からなるフィルムを得た。 この 際フィルム MD方向の延伸倍率 (引き取り速度 Z円筒ダイスからの樹脂吐出速 度) を 12. 1、 ブロー比 (膨張した筒状フィルムの直径 Zダイスの直径) を 1. 7とした。 得られたフィルムの実測平均厚さは 50 μ mであった。 該フィ ルムの水蒸気透過度が 3 g/m2 · 24 h r、 酸素透過度が 34 5. 0 c cZ m2 · 24 h r · a t mと良好であった。 ガソリン透過度は 0. 04 g/m2 · 24 h rであった。
また、 フィルム斜断面を顕微鏡で観察したところ、 平板状液晶ポリマーフレ ークの形状はほぼ保たれ、 かつ、 平板状液晶ポリマーフレークの面はフィルム 面にほぼ並行であった。 比較例 1
実施例 1に用いたナイロン 6のみで、 実施例 1と同様の形状のチューブを得 た。 切り開いて厚み 3 0 0 μ mのフィルム状として測定したガスバリア性は、 水蒸気透過度が 2 0 g/m2 ' 24 h r、酸素透過度が 4 c c/m2 ' 24 h r · a t mであった。 ガソリン透過度は、 0. 0 7 g/m2であった。 比較例 2
市販のナイロン 6 (押出しグレード) を 7 0重量0 /0、 P— 1を 3 0重量%を ドライブレンドし、 池貝鉄工製二軸押出機 P CM— 3 0を用い、 24 0°Cで溶 融混練を行い、 組成物 X— 1を得た。 X— 1は均質ではなく、 チューブ成形、 フィルム成形できなかつた。 比較例 3
実施例 1に用いた HDP Eのみで、 実施例 1と同様の方法で 5 0 μ m厚みの フィルムを得た。 水蒸気透過度が 9 g/m2 · 24 h r、 酸素透過度が 1 4 0 0 c c/m2 · 2 4 h r · a t mであった。 ガソリン透過度は、 0. 2 gZm2で あつ 7こ。 比較例 4
実施例 3の HD P Eを 8 0重量%、 A— 1を 2 0重量0 /0ドライブレンドし、 池貝鉄工製二軸押出機 P CM— 3 0を用い、 A— 1の流動開始温度以上の 3 0 0°Cで溶融混練を行い、 糸且成物 X— 2を得た。 X— 2を円筒ダイを備えた 6 0 mm φ の単軸押出機に供給して、 シリンダー設定温度 25 0°C、 スクリユー回 転数 6 0 r p mで溶融混練し、 直径 7 0 mm、 リップ間隔 1. 0 mm、 ダイ設 定温度 2 5 5°Cの円筒ダイから上方へ溶融樹脂を押出し、 その際この筒状フィ ルムの中空部へ乾燥空気を圧入して筒状フィルムを膨張させようとしたが、 穴 があいてフィルム成形できなかった。
引き続き、 シリンダー設定温度 2 9 5°C、 ダイ設定温度 2 9 5°Cとして、 同 様にして押し出して膨張させ、 続いて冷却させた後、 ニップロールに通して引 取り、 X— 2からなるフィルムを得た。 この際フィルム MD方向の延伸倍率(引 き取り速度/円筒ダイスからの樹脂吐出速度) を 1 2. 1、 プロ一比 (膨張し た筒状フィルムの直径/ダイスの直径) を 1. 7とし、 実測平均厚み 5 0 m のフイノレムをえた。
水蒸気透過度が 7. 5 g/m2 ' 24 h r、酸素透過度が 1 3 0 0 c c Zm2 · 24 h r · a t mであった。 ガソリン透過度は、 0. 1 9 g/m2と、 比較例 3 とほぼ同じ結果を得た。
フィルム斜断面を顕微鏡で観察したところ、 液晶ポリマーの形状は、 針状、 紡錘形、 球状となっており、 平板状ではなかった。 産業上の利用可能性
本発明により、 耐熱性、 ガスバリア性、 有機溶剤パリア性、 特に、 水蒸気バリ ァ性とガソリンバリア性に優れる成形体、 例えば液晶ポリマーを含む層を有す る樹脂製チューブ等を市場に提供することができる。

Claims

請求の範囲
1 . 熱可塑性樹脂中と平板状液晶ポリマーフレークからなり、 熱可塑性樹脂 中に、 平板状液晶ポリマーフレークを含む熱可塑性樹脂組成物。
2 . 平板状液晶ポリマーフレークの含量が、 1〜8 0重量%である請求項 1 に記載の熱可塑性樹脂組成物。
3 . 平板状液晶ポリマ^"フレークの厚みが 0 . 5 μ m〜1 0 0 0 μ mであ り、 縦、 横の長さが厚みの 2倍以上 1 0 0 0倍以下である請求項 1に記載の熱 可塑性樹脂組成物。
4 . 平板状液晶ポリマーフレークが、 液晶ポリマーフィルムを破碎して得ら れたものである請求項 1に記載の熱可塑性樹脂組成物。
5 . 液晶ポリマーが、 液晶ポリエステルからなる請求項 1に記載の熱可塑性 樹脂組成物。
6 . 液晶ポリマーが、 (A) 液晶ポリエステルを連続相とし、 (B ) 液晶ポ リエステルと反応性を有する官能基を有する共重合体を分散相とする、 液晶ポ リエステル樹脂組成物からなる請求項 1に記載の熱可塑性榭脂組成物。
7 . 液晶ポリエステル榭脂,袓成物中における、 (A) 液晶ポリエステルの含 量が 5 6 . 0〜 9 9 . 9重量%であり、 ( B ) 液晶ポリエステルと反応性を有 する官能基を有する共重合体の含量が 4 4 . 0〜0 . 1重量%である請求項 6 に記載の熱可塑性樹脂組成物。
8 . 液晶ポリエステルと反応性を有する官能基が、 ォキサゾリル基、 ェポキ シ基またはァミノ基である請求項 6〜 7のいずれかに記載の熱可塑性樹脂組成 物。
9 . 共重合体 (B ) 力 不飽和カルボン酸グリシジルエステルモノマー単位 および/または不飽和グリシジルエーテルモノマー単位を 0 . 1〜 3 0重量% 含有する共重合体である請求項 6に記載の熱可塑性樹脂組成物。
1 0 . 共重合体 (B ) 力 エポキシ基を有するゴムである請求項 6に記載の 熱可塑性樹脂組成物。
1 1. エポキシ基を有するゴムが、 (メタ) アクリル酸エステル一エチレン - (不飽和カルボン酸グリシジルエステルおよぴノまたは不飽和グリシジルェ 一テル) 共重合体ゴムである請求項 10に記載の熱可塑性樹脂組成物。
12. 共重合体ゴムにおける、 (メタ) アクリル酸エステルモノマー単位の 含量が 40〜9 7重量0 /0、 エチレンモノマー単位の含量が 3〜50重量0 /0、 不 飽和カルボン酸グリシジルエステルモノマー単位および Zまたは不飽和グリシ ジルエーテルモノマー単位の含量が 0. 1〜 30重量%である請求項 1 1に記 載の熱可塑性樹脂組成物。
1 3. (メタ) アクリル酸エステルが、 メチルアタリレート、 メチルメタク リレート、 n—ブチノレアクリ レート、 n—ブチノレメタクリ レート、 t e r t— プチ/レアタリレート、 t e r t—ブチルメタクリ レート、 2—ェチルへキシノレ アタリレート、 および 2—ェチルへキシルメタクリレートよりなる群から選ば れる少なくとも 1種を含むものである請求項 1 1〜1 2のいずれかに記載の熱 可塑性樹脂組成物。
14. 共重合体 (B) 1 エポキシ基を有する熱可塑性樹脂である請求項 6 に記載の熱可塑性樹脂組成物。
1 5. エポキシ基を有する熱可塑性樹脂が、 エチレン一 (不飽和カルボン酸 グリシジルェステルおよぴ /または不飽和グリシジルエーテル) 一エチレン系 不飽和エステ^^からなるエポキシ基含有エチレン共重合体である請求項 14に 記載の熱可塑性樹脂組成物。
1 6. エポキシ基含有エチレン共重合体における、 エチレンモノマー単位の 含量が 50〜9 9重量%、 不飽和カルボン酸グリシジルエステルモノマー単位 および/または不飽和グリシジルエーテルモノマー単位の含量が 0. 1〜30 重量%、 エチレン系不飽和エステルモノマー単位の含量が 0〜 50重量%であ る請求項 15記載の熱可塑性樹脂組成物。
1 7. 液晶ポリエステル (A) 1S 下記の繰り返し構造単位を少なくとも全体 の 3 0モル%含むものである請求項 6〜のいずれかに記載の熱可塑性樹脂組成 物。
Figure imgf000040_0001
1 8 . 液晶ポリエステル (A) 力 芳香族ジカルボン酸と芳香族ジオールと 芳香族ヒドロキシカルボン酸とを反応させて得られるものである請求項 6〜の レヽずれかに記載の熱可塑性樹脂組成物。
1 9 . 液晶ポリエステル (A) 力 異種の芳香族ヒドロキシカルボン酸の組 合せを反応させて得られるものである請求項 6に記載の熱可塑性樹脂組成物。
2 0 . 液晶ポリマーフィルムがインフレーション成膜法により得られたフィ ルムである請求項 4に記載の熱可塑性樹脂組成物。
2 1 . 熱可塑性樹脂がポリアミド樹脂、 ポリオレフイン樹脂、 およぴポリエ ステル樹脂からなる群から選ばれる少なくとも 1種以上の樹脂を含む請求項 1 に記載の熱可塑性樹脂組成物。
2 2 . 平板状液晶ポリマーフレークと熱可塑性樹脂とを、 平板状液晶ポリマ 一フレークの流動開始温度以下の温度で混練する請求項 1に記載の熱可塑性樹 脂組成物の製造方法。
2 3 . 請求項 1に記載の熱可塑性樹脂組成物を、 その熱可塑性樹脂の流動開 始温度以上、 平板状液晶ポリマーフレークの流動開始温度以下の温度範囲で成 形する熱可塑性樹脂成形体の製造方法。
2 4 . 請求項 1に記載の熱可塑性樹脂組成物からなる熱可塑性樹脂成形体。
2 5 . 請求項 1に記載の熱可塑性樹脂糸且成物からなる層を少なくとも一層含 むことを特徴とする熱可塑性榭脂成形体。
2 6 . 下記の層 (1 ) 〜層 (2 ) を含む二層以上の層構造を有する多層成形 体であって、 層 (1 ) が多層成形体表面にある、 請求項 2 5に記載の熱可塑性 樹脂成形体。
( 1 ) 平板状液晶ポリマーフレークを含む熱可塑性樹脂からなる層
( 2 ) 平板状液晶ポリマーフレークを含まない熱可塑性樹脂からなる層
2 7 . 下記の層 (i) 〜層 (iii) を含む三層以上の層構造を有する多層成形 体であって、 層 (ii) 1S 層 (i) と層 (iii) との間にある、 請求項 2 5に記 載の熱可塑性樹脂成形体。
(i) 平板状液晶ポリマーフレークを含まない熱可塑性樹脂からなる層
(ii) 平板状液晶ポリマーフレークを含む熱可塑性樹脂からなる層
(iii) 平板状液晶ポリマーフレークを含まない熱可塑性樹脂からなる層
2 8 . チューブ形状を有する請求項 2 4に記載の熱可塑性樹脂成形体。
2 9 . 帯電防止処理が施されている請求項 2 4に記載の熱可塑性樹脂成形体。
PCT/JP2003/008554 2002-07-11 2003-07-04 熱可塑性樹脂組成物、その製造方法、およびその成形体 WO2004007616A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281037A AU2003281037A1 (en) 2002-07-11 2003-07-04 Thermoplastic resin composition, process for producing the same, and molded object thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-202397 2002-07-11
JP2002202397A JP3915616B2 (ja) 2002-07-11 2002-07-11 熱可塑性樹脂組成物、その製造方法、およびその成形体

Publications (1)

Publication Number Publication Date
WO2004007616A1 true WO2004007616A1 (ja) 2004-01-22

Family

ID=30112624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008554 WO2004007616A1 (ja) 2002-07-11 2003-07-04 熱可塑性樹脂組成物、その製造方法、およびその成形体

Country Status (3)

Country Link
JP (1) JP3915616B2 (ja)
AU (1) AU2003281037A1 (ja)
WO (1) WO2004007616A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062987A (ja) * 2009-09-18 2011-03-31 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法および液晶ポリエステルフィルム
WO2014188830A1 (ja) 2013-05-22 2014-11-27 株式会社村田製作所 フィブリル化液晶ポリマーパウダー、フィブリル化液晶ポリマーパウダーの製造方法、ペースト、樹脂多層基板、および、樹脂多層基板の製造方法
US11849642B2 (en) * 2020-04-17 2023-12-19 Wisconsin Alumni Research Foundation 3D printed and in-situ poled flexible piezoelectric pressure sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664653A (ja) * 1992-08-13 1994-03-08 Kuwabara Yasunaga 圧潰性容器
JPH07304936A (ja) * 1994-03-16 1995-11-21 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
EP1172201A2 (en) * 2000-06-20 2002-01-16 Sumitomo Chemical Company, Limited Elastomer molded product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664653A (ja) * 1992-08-13 1994-03-08 Kuwabara Yasunaga 圧潰性容器
JPH07304936A (ja) * 1994-03-16 1995-11-21 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
EP1172201A2 (en) * 2000-06-20 2002-01-16 Sumitomo Chemical Company, Limited Elastomer molded product

Also Published As

Publication number Publication date
JP2004043624A (ja) 2004-02-12
JP3915616B2 (ja) 2007-05-16
AU2003281037A1 (en) 2004-02-02

Similar Documents

Publication Publication Date Title
WO2014097947A1 (ja) 樹脂組成物およびその成形品
US6843887B2 (en) Low hygroscopic paper and method of producing the same
JP3493983B2 (ja) 液晶ポリエステル樹脂組成物、それを用いてなるシートもしくはフィルム、および該シートもしくはフィルムの製造方法
WO2004007616A1 (ja) 熱可塑性樹脂組成物、その製造方法、およびその成形体
TWI240672B (en) Elastomer molded product
JP4524861B2 (ja) 多孔質フィルムの製造方法
JP4032781B2 (ja) 分岐状液晶ポリマーフィラー及びその製造方法
JP2000080254A (ja) 液晶ポリエステル樹脂組成物、並びに、液晶ポリエステル樹脂組成物フィルムおよびその製造方法
JP4619106B2 (ja) 樹脂組成物およびその成形体
JP3988775B2 (ja) 液晶ポリマー
JP3650459B2 (ja) 液晶ポリエステル樹脂組成物フィルムおよびその製造方法
JP4869860B2 (ja) ブロー成形用液晶性樹脂組成物
JP2008133328A (ja) ポリフェニレンエーテル系樹脂組成物の製造方法
JP3648863B2 (ja) パウチ用包材
JP3339296B2 (ja) 液晶ポリエステル樹脂組成物フィルム及びその製造方法
JP2000309648A (ja) フィルム
US20020048681A1 (en) Laminate of liquid crystalline polymer
JP2004182920A (ja) 液晶ポリマー樹脂組成物およびその成形体
JP3539145B2 (ja) 管状成形体
JP2002080645A (ja) エラストマー成形体
JP2004115704A (ja) ポリエステル系熱可塑性樹脂組成物およびそのフィルム
JPH11302402A (ja) 遮光性フィルム
JP2002327392A (ja) 低吸湿紙及びその製造方法
JP2003105178A (ja) 無機化合物を含有した液晶性樹脂、その製造方法及びその用途
JP2001302819A (ja) フィルムおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase