WO2004006363A1 - 電極用添加剤 - Google Patents

電極用添加剤 Download PDF

Info

Publication number
WO2004006363A1
WO2004006363A1 PCT/JP2003/008549 JP0308549W WO2004006363A1 WO 2004006363 A1 WO2004006363 A1 WO 2004006363A1 JP 0308549 W JP0308549 W JP 0308549W WO 2004006363 A1 WO2004006363 A1 WO 2004006363A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
weight
fluoropolymer
polymer
fluorine
Prior art date
Application number
PCT/JP2003/008549
Other languages
English (en)
French (fr)
Inventor
Kenji Ichikawa
Yasuhiko Sawada
Takahiro Taira
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2004006363A1 publication Critical patent/WO2004006363A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode additive used for producing an electrode of a battery or a capacitor.
  • This electrode additive can be used as a binder for lithium ion batteries, lithium polymer batteries, and capacitors.
  • PV DF fluororesin polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • a PVDF binder solution dissolved in an organic solvent is also generally used (see JP-A-9-189023). In this way, when PVDF is used for negative electrode applications, copolymerization of organic acid-based comonomers such as maleic ester which can introduce polar groups such as carboxyl groups into the side chains to improve adhesion is also introduced. (See JP-A-6-172452).
  • PVDF can also be used as a gel electrolyte membrane for a polymer battery (see US Pat. No. 4,840,047).
  • PVDF is copolymerized with a fluorinated monomer such as hexafluoropropylene (HFP) to reduce crystallinity so that it swells easily with electrolyte.
  • HFP hexafluoropropylene
  • PVDF or a copolymer of vinylidene fluoride and hexafluoropropylene (hereinafter referred to as P (VD FH FP)) is one of the fluororesins used for lithium-ion batteries and lithium polymer batteries. Although it is a unique material that is suitable for use, there are also issues in use. Modification of PVDF as a binder for lithium-ion battery anodes by copolymerization of fluorine-containing monomers directly increases the chemical bond of fluorine atoms in the polymer structure more than PVDF, and therefore directly interacts with lithium. Binders used in negative electrodes that are likely to come into contact with and react with, and gel electrolyte membranes that interface with the negative electrode are not preferred in terms of reduction resistance.
  • PVDF As a binder for electrodes, purchase a dry powder that is generally used after dissolving it in NMP or a polymer solution with a polymer concentration of 8% to 12% by weight. At present, there was no alternative but to use it. In addition, when preparing the negative electrode material in the form of an aqueous paste, such as SBR and CMC, it was difficult to uniformly disperse the PVDF and use it in combination with a water-soluble polymer. Furthermore, the use of a high molecular weight PVDF polymer in the form of use in an organic solvent such as NMP is introduced (see Japanese Patent Application Laid-Open No. 9-29023). It is clear that know-how is required for the range and method of use, and it is not easy to use.
  • NMP paste has a problem in that the NMP contains basic components, so that the hydrofluoric acid reaction occurs in the presence of moisture, causing the paste to thicken and gelich (Japanese Patent Laid-Open No. 9-180707). Gazette).
  • an organic acid is added to the paste (see Japanese Patent Application Laid-Open No. 9-36052), or pH adjustment is required (Japanese Patent Application Laid-Open No. 9-180725).
  • Japanese Patent Application Laid-Open No. 9-180725 Japanese Patent Application Laid-Open No. 9-180725
  • An object of the present invention is to reduce the function as a binder due to contact with lithium in an electrode of a lithium ion battery, particularly in the vicinity of a negative electrode, and an electrical reaction, thereby causing peeling of an electrode film from a current collector.
  • An object of the present invention is to provide an electrode additive that is suitable for producing an electrode with a small increase in electrode resistance.
  • various fluoropolymers were studied as a binder for an electrode and a gel electrolyte membrane for a polymer battery, particularly with the aim of maintaining the electrical stability at the negative electrode.
  • the weight of fluorine in the polymer molecular structure is 0 /.
  • F content when the level is equal to or preferably lower than that of PVDF and P (VDF-HFP), the battery using the fluoropolymer as the binder is an excellent battery.
  • the inventors have discovered that they have initial characteristics and battery charge / discharge characteristics, and as a result of further study, have led to the present invention.
  • the present invention provides the following electrode additive, battery, or capacitor electrode, lithium ion battery, or lithium polymer battery.
  • the upper limit of the fluorine content is 67.0% by weight, and the lower limit of the fluorine content is
  • An electrode additive characterized by being 45.0% by weight.
  • Item 2 The electrode additive according to Item 1, which is an additive for a negative electrode.
  • the main component of the surfactant is represented by the general formula (2):
  • a 1 represents one CH (CH.) CH 20 — or one CH (CH 3 ) — CH ? CH 20 — You.
  • R 1 and R 2 represent a hydrogen atom, a branched or straight-chain alkyl group having 1 to 20 carbon atoms, or a branched or straight-chain alkenyl group having 3 to 20 carbon atoms.
  • p is an integer from 0 to 400
  • q is an integer from 1 to 400
  • r is an integer from 0 to 400
  • Item 3 The electrode additive according to Item 1 or 2, which is a nonionic surfactant represented by the formula: Item 4.
  • Item 5 The electrode additive according to any one of Items 1 to 4, having a monomer ratio of (1) to (4).
  • Item 7 The electrode additive according to any one of Items 1 to 6, wherein the fluoropolymer is a fluoropolymer fine particle obtained by emulsion polymerization.
  • Item 8 The electrode additive according to any one of Items 1 to 7, wherein the fluorine-containing polymer is fine particles and has an average particle diameter of 0.02 ⁇ m to 1.0 ⁇ m.
  • Item 9 The lower limit of the weight average molecular weight of the fluoropolymer measured by gel permeation chromatography (solvent is N-methylpyrrolidone, converted to polystyrene) is 150,000 or more, preferably 300,000 or more.
  • Item 9 The electrode additive according to any one of Items 1 to 8, wherein the upper limit is usually 1.2 million, preferably 800,000, and more preferably 600,000.
  • Item 10 Any of items 1 to 9 wherein the fluoropolymer is polyvinylidene fluoride The additive for an electrode according to the above.
  • Item 11 The electrode additive according to any one of Items 1 to 10, wherein the fluorine-containing polymer is a blend of at least two types of polymers.
  • Item 12 An electrode for a battery or capacitor using the electrode additive according to any one of Items 1 to 11.
  • Item 13 A lithium ion battery using the electrode additive according to any one of Items 1 to 11 as an electrode binder.
  • Item 14 A lithium polymer battery using the electrode additive according to any one of Items 1 to 11 as a binder for an electrode.
  • fluorine-containing polymer examples include polyfuidani vinylidene, ethylene / tetrafluoroethylene copolymer, vinylidene fluoride / tetrafluoroethylene / propylene terpolymer, bilidene fluoride / Tetrafluoroethylene / isobutene terpolymer, bi-lidene fluoride / tetrafluoroethylene / methyl vinyl ether terpolymer, vinylidene fluoride Z-hexafluoropropylene copolymer, vinylidene fluoride Z-tetrafluo Ethylene copolymer, futsudani vinylidene / tetrafluoroethylene perfluoronore methylvinylinoleter monoter copolymer, vinylidene fluoride Z-tetrafluoroethylene / chloromouth trifluoroethylene copolymer, vinylidene fluoride Z-te
  • copolymerizable monomer and 0 2 5 mole 0/0, 0: 1 0 mole 0/0, 0-5 mol 0/0, the range of 0-3 mole 0/0 By appropriately copolymerizing in step (1), flexibility, swelling in an electrolytic solution, adhesion to an electrode substrate, and film strength can be controlled.
  • the copolymerizable monomer is not particularly limited, but a monomer exemplified below as ⁇ and is preferable.
  • which is a preferred specific example of the copolymerizable monomer, includes monomers described in JP-A-10-233217.
  • unsaturated hydrocarbon monomers such as ethylene
  • Preferred examples include 1-butene, 2-butene, and other alkyl-butyl ethers, for example, vinyl esters such as methyl-butyl ether, propyl vinyl ether, and vinyl acetate, and butyl fluoride. The range is not limited as long as it does not adversely affect.
  • a monomer substantially similar to the above-mentioned ⁇ is suitable, and in addition, butyl difluoride vinylidene fluoride is preferable.
  • a polyvinylidene fluoride / ethylenetetrafluoroethylene copolymer is used as the first segment, and a vinylidene fluoride / tetrafluoroethylene copolymer or a vinylidene fluoride / hexafluoropropylene copolymer is used.
  • a segmented polymer serving as the second segment can also be used.
  • Blending the electrode additive of the present invention with a fluorine-containing polymer deviating from the preferred fluorine content range derived from the general formula (1) shown in Item 1 or other non-fluorine-containing polymers adversely affects battery characteristics.
  • the range is not limited as long as it is not given.
  • the fluoropolymer of the present invention uses, as an aqueous dispersion, a dispersion prepared by re-dispersion of a water-soluble polymer, a suspension polymerization, a dispersion polymerization, a solution polymerization, a supercritical polymerization, and a re-dispersion of dried fine particles thereof with a surfactant.
  • aqueous dispersion dispersion
  • the molecular weight distribution was measured by gel permeation chromatography (GPC).
  • the analysis conditions were as follows: ⁇ (containing 5 mm o 1 ZL of lithium) was used as the solvent, the measurement temperature was 40 ° C, the sample concentration was 0.15 wt%, and the injection amount was 500 L. Data analysis was performed by conversion.
  • the molecular weight within the range usable in the present invention can be substantially used as long as the molecular weight is at or above a level that can maintain the strength and adhesiveness after electrode coating and drying, and rolling, but the lower limit is preferably about 150,000, and more preferably about 150,000.
  • the molecular weight is about 300,000, most preferably about 400,000, and the upper limit of the molecular weight is usually about 1200, preferably 800,000, and more preferably 600,000.
  • the particle size is too large, the network structure with the active material will have "unevenness” and weak parts will be formed, resulting in poor adhesion to the current collector and bending of the electrode during the electrode manufacturing process. This causes cracking of the electrode, etc., which tends to make it difficult to exhibit electrode performance.
  • the fluoropolymer zW "raw dispersion suitable for the present invention the one obtained by emulsion polymerization as it is or the one obtained by concentrating it is the best.
  • a dispersion is obtained by redispersing a dry powder of a fluoropolymer in water. Although it can be used, it takes time and effort to re-disperse, and the dispersed particle size distribution tends to be non-uniform, and the dispersed particle size is also large. Not very suitable for
  • the average particle diameter of the fluoropolymer fine particles suitable for the present invention is usually 0.02 ⁇ II! About 1.0 ⁇ m, preferably about 0.04 ⁇ m to 0.6 ⁇ m, more preferably about 0.05 im to 0.3 zm, and still more preferably about 0.05 to 0.3. .
  • Methods for measuring the particle size of the aqueous fluoropolymer dispersion include transmission electron microscopy, scanning electron microscopy, centrifugal sedimentation, turbidity, static and dynamic light (laser) scattering, The method is not particularly limited as long as it can measure submicron fine particles, but the particle diameter in the present invention means a value of a weight average particle diameter obtained by a dynamic light scattering method.
  • Microtrac 9340UPA particle size distribution measuring apparatus manufactured by Microtrac Co., Ltd. and the like can be mentioned.
  • the fluorine content in the above-mentioned fluoropolymer (hereinafter may be abbreviated as “F content”) may be determined.
  • the calculated value (F content) of the general formula (1) shown is 67.0% by weight or less, preferably 64.0% by weight or less, more preferably 62.0% by weight or less, and further preferably 60.0% by weight or less. % Or less, and the F content is 45.0% by weight or more, preferably 50.0% by weight or more, more preferably 55.0% by weight or more, and even more preferably 58.0% by weight. weight is 0/0.
  • the F content is less than 45.0% by weight, the heat resistance and solvent resistance of the fluororesin are inferior.
  • the F content (unit is% by weight) is specified by the following method.
  • the calculation of the average molecular weight of the repeating unit is performed by integrating the atomic weight of each element from the molecular formula constituting the repeating unit.
  • the carbon atom weight is 12
  • the hydrogen atom weight is 1
  • the fluorine atom weight is 19
  • the average molecular weight of the repeating unit 12 X 2 + 1 X 2 + 19
  • X 2 64 from the number of carbon atoms 2, the number of hydrogen atoms 2, and the number of fluorine atoms 2.
  • Bilidene fluoride Z-hexafluoropropylene copolymer polyvinylidene fluoride 95 wt 0/0, the hexa full O b propylene 5 weight 0/0 vinylidene fluoride 97.8 mole 0/0, the hexa-average molecular weight of the full O b propylene 2.2 mol 0/0 repeat units: 65. 9
  • Calculation Examples (i) to (iii) are examples of polymers that are good for use in both the positive electrode and the negative electrode as the binder of the present invention.
  • Calculation Examples (iv) and ( V ) are: This is an example of a polymer that is not suitable for use in both poles.
  • the polymer having an F content of as much as 67.0% by weight was inferior in reduction resistance, severely deteriorated at the negative electrode, and had a high polymer content.
  • the binding function is deteriorated, and in terms of battery characteristics, cycle inferiority occurs.
  • the fluoropolymer of the present invention preferably comprises vinylidene fluoride / tetrafluoroethylene
  • the fluoropolymer of the present invention is preferably ethylene / tetrafluoroethylene ZiS
  • Fluoroethylene / vinylidene fluoride terpolymer is exemplified.
  • the aqueous dispersion is generally concentrated to a suitable polymer solids concentration. Concentration methods include reverse osmosis membrane concentration, electrophoresis, and addition of a nonionic surfactant to a fluoropolymer-dispersion, followed by raising to the cloud point of the surfactant to precipitate and concentrate the polymer particles. And concentration by drying to remove water by evaporation or vacuum.
  • concentration methods include reverse osmosis membrane concentration, electrophoresis, and addition of a nonionic surfactant to a fluoropolymer-dispersion, followed by raising to the cloud point of the surfactant to precipitate and concentrate the polymer particles. And concentration by drying to remove water by evaporation or vacuum.
  • the polymer aqueous dispersion obtained by emulsion polymerization must be concentrated and diluted as necessary in the absence of a nonionic surfactant. It is, of course, possible to use in the disposable state obtained by the above method.
  • the surfactant suitable as the electrode additive of the present invention include the following nonionic surfactants. If necessary, anionic surfactants and amphoteric surfactants may be used alone or in combination of two or more.
  • the nonionic surfactant has a performance of stabilizing the dispersion to an extent sufficient to be preserved as an additive for electrodes of a battery or a capacitor composed of a fluoropolymer dispersion.
  • a surfactant examples include a nonionic surfactant, particularly a surface active agent represented by the following formula (2).
  • I 1 , R 2 , A 1 , p, q and r are as defined above.
  • R 1 and R 2 are preferably a hydrogen atom, Branched or straight chain alkyl group or c 3 to c 2,. Is a branched or linear alkyl group,
  • p is an integer from 0 to 400
  • q is an integer from 1 to 400
  • r is an integer from 0 to 400
  • R 1 and R 2 are preferably a hydrogen atom, Ci Cs. Or a linear alkyl group, and more preferably.
  • Examples of the branched or straight-chain alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butynole, isoptinole, sec-butyl, tert-butyl, pentynole, hexinole, heptyl, octyl, and nonyl. , Decyl, pendecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, and eicosyl.
  • C 3 -C 20 preferably C 3 -C 7 alkenyl group, an aryl group (2- And a butenyl group, a pentenyl group, a hexenyl group and a heptenyl group.
  • a 1 is preferably a single-CH (CH 3) CH 2 ⁇ scratch.
  • p is preferably an integer of 0 to 80, more preferably an integer of 0 to 40.
  • q is preferably an integer of 1 to 200, more preferably an integer of 1 to 100.
  • r is preferably an integer of 0 to 200, more preferably an integer of 0 to 100.
  • RR 2 , A 1 , p, q and r are as defined above, eg, HO- (CH (CH 3 ) CH 20 ) 5- (CH 2 CH 20 ) 15- Surfactants such as (CH (CH 3 ) CH 2 0) 5 —H can also be used.
  • Surfactants such as those described above are also less likely to decompose benzene rings and the like in the main chain than polyoxyethylene alkyl phenyl ether (made of union carbide carbide: Triton X-100), and are environmentally friendly. It also does not contain harmful substances and has good thermal decomposability, so it has good decomposability during electrode drying and is suitable for battery applications.
  • surfactants examples include polyoxyethylene alkyl ethers, polyoxyethylene isotridecyl ether (Nippon Oil & Fat Co., Ltd .: Dispanol T TC), and Pronon 102, Pronon Polyoxyethylene polyoxypropylene block polymers such as 104, Pronone 108, Pronon 204, and Pronon 208.
  • surfactants listed below can also be used as long as the physical properties of the battery are not impaired.
  • Surfactants that can be used in combination include polyoxyethylene alkylphenyl ether (Union Carpaidone: h: Triton x—i0 o), higher alcohol sulfate ester salt (eg, sodium lauryl sulfate), nonionic As a surfactant, poly Polyoxyethylene fatty acid esters, sorbitan fatty acid esters, glycerin esters, and the like, and the like. Polyethylene ethylene fatty acid esters, sorbitan fatty acid esters, and glycerin esters are exemplified. But not limited to these.
  • anionic surfactant examples include a fluorinated carboxylic acid-based surfactant and a fluorinated sulfonic acid-based surfactant having a fluoroalkyl group, particularly a perfluoroalkyl group or a fluorinated alkyl group, particularly a parked phenolic alkyl group.
  • a fluorinated carboxylic acid-based surfactant and a fluorinated sulfonic acid-based surfactant having a fluoroalkyl group, particularly a perfluoroalkyl group or a fluorinated alkyl group, particularly a parked phenolic alkyl group.
  • a fluoroalkyl group particularly a perfluoroalkyl group or a fluorinated alkyl group, particularly a parked phenolic alkyl group.
  • Dunidyne DS101 manufactured by Daikin Industries, Ltd., which is an aqueous solution of ammonium perfluoroo
  • surfactant examples include aminoxides.
  • Surfactants comprising aminoxides include dihydroxyethylalkylamine oxide, dimethylalkylamine oxide, and dimethylalkylethoxyamine oxide.
  • Commercially available products include, for example, Nippon Oil & Fats Co .; (Unisafe A—LY).
  • an electrode active material, a conductive agent, a binder, and further a thickener comprising a water-soluble polymer are usually used as an electrode constituent material paste to be applied.
  • an aqueous solution of, for example, carboxyl methylcellulose, methylsenorelose, polyethylene oxide and the like is usually used as a binder for a capacitor electrode.
  • a binder for a capacitor electrode it can be produced by pasting carbon, a binder with a thickener composed of a water-soluble polymer (for example, a cellulose-based), applying, and drying.
  • the electrode constituent material examples include an electrode (positive or negative electrode) active material such as oxides or hydroxides such as conoreto, nickel, manganese, and lithium, and a hydrogen storage alloy, and carbon (graphite, acetylene black). And other conductive agents such as carbon (active 10 carbon, acetylene butyl). Rack, etc.).
  • an electrode positive or negative electrode
  • active material such as oxides or hydroxides such as conoreto, nickel, manganese, and lithium
  • carbon graphite, acetylene black
  • other conductive agents such as carbon (active 10 carbon, acetylene butyl). Rack, etc.).
  • the use as an electrode binder and the method of adding and mixing a fluorine-containing polymer as an aqueous dispersion into an aqueous paste are mainly used, but emulsion polymerization, suspension polymerization, solution polymerization, If it is possible to dissolve or disperse the dry powder of the polymer obtained by critical polymerization, etc. in an organic solvent like a conventional NMP solution of PVDF, use such an organic solvent paste in the coating and drying process. Is also possible. Further, the aqueous dispersion of the present invention may be added with an organic solvent other than water, if necessary. The amount of the organic solvent to be added is not particularly limited as long as it does not affect the original paste properties.
  • the purpose of adding the organic solvent is, for example, to add a low-boiling solvent such as alcohol or to adjust the viscosity of the paste in order to effectively remove the water content of the aqueous paste containing the aqueous dispersion by drying.
  • the organic solvent used is not limited, including water-soluble and water-insoluble.
  • examples include alcohols such as methanol, ethanol, propanol and IPA, ketones such as acetone, MEK and MIBK.
  • Examples include high boiling polar solvents such as DMF and NMP, water-insoluble hydrocarbon solvents such as toluene, xylene and hexane, and fluorine solvents such as fluorine alcohol and HCFC-141b.
  • the paste pH is on the acid or alkaline side due to the influence of the active material, the aluminum or copper of the current collector may corrode or elute, or the binder itself may degrade due to hydrolysis or deoxidation.
  • inorganic and organic acids such as nitric acid, acetic acid, maleic acid, succinic acid, and citric acid, ammonia water, NaOH, K
  • An alkali such as OH, and a pH adjuster may be appropriately added.
  • the fluorinated polymer according to the present invention as a gel electrolyte membrane for a polymer battery
  • the polymer alone is formed into a film by a solvent casting method, a melt molding method, or the like. At that time, it is also possible to form a porous film.
  • the method of forming the porous film is not limited.
  • powders and fibrous substances can be added regardless of inorganic or organic materials, composite films, laminated films, cross-linked films, etc. Reinforcement can also be provided.
  • the gel electrolyte of lithium polymer batteries can be used. It can also be used as a binder for electrodes used when manufacturing electrodes for batteries or capacitors.However, by utilizing the water repellent for electrodes and its electrical stability at the negative electrode, the gel electrolyte of lithium polymer batteries can be used. It can also be used as a binder for electrodes used when manufacturing electrodes for batteries or capacitors.However, by utilizing the water repellent for electrodes and its electrical stability at the negative electrode, the gel electrolyte of lithium polymer batteries can be used. It can also be used as
  • a base material for heat-resistant fiber woven fabric such as glass fiber or carbon fiber is used for transport belts, film construction materials (tent films), and gland packing. It can be suitably used for applications such as bag filters.
  • synthetic resin such as epoxy resin, polyurethane foam, rigid polyurethane rubber, etc., using non-adhesiveness. ⁇ Rubber molding dies and papermaking dryers. ⁇ Coating on cylinder rolls.Reaction using chemical resistance.
  • the present invention makes it possible to use an aqueous dispersion of a fluorine-containing polymer as a binder for an electrode of a lithium ion battery with good adhesiveness and to be able to be used for both a positive electrode and a negative electrode, and particularly good for a negative electrode.
  • the purpose is to develop a fluorine-containing polymer.
  • PTFE and the like have good acid resistance, but the negative electrode has poor reduction resistance, so that only the positive electrode is used, and it is necessary to use different electrode binders for the negative electrode and the positive electrode.
  • PVDF is the only fluoropolymer binder that can be used in both electrodes.However, by adopting the NMP solvent paste application process, which is a common electrode manufacturing method, the viscosity of the NMP solvent paste is increased. There are many problems to be improved, such as a limitation on the use of molecular weight for aptitude, and a structure that is weak to base in the molecular structure of PVDF. Actually, when a high molecular weight PVDF is used as an electrode, a strong electrode having high flexibility can be manufactured.
  • polymer fine particles obtained by emulsion polymerization of a polymer such as PVDF, ETFE, and a trace-denatured polymer of which the fluorine-containing weight% in the polymer is equivalent to or less than PVDF are nonionic.
  • An aqueous dispersion stabilized with a water-soluble surfactant was used as a binder, and a water-soluble paste thickened by a water-soluble high molecule such as carboxymethyl cellulose was applied.
  • the viscosity of NMP paste increases so far as it cannot be applied with PVDF, so that high-molecular-weight PVDF and copolymers that could not be used can be used in the required amount without increasing the paste viscosity.
  • uniform dispersion in the electrode material became possible.
  • the fluoropolymer was emulsified and polymerized in a 6-L stainless steel autoclave according to a conventional method to obtain a fluoropolymer dispersion having a melting point and a solid concentration shown in Table 1 below.
  • the polymerization temperature is 80 ° C
  • the initiator is ammonium persulfate (APS)
  • the aqueous solution of ammonium perfluorooctanoate (PFOA) is emulsifier (trade name: DS101, manufactured by Daikin Industries)
  • the chain is Polymerization was carried out using isopropyl alcohol (IPA) as the transfer agent.
  • IPA isopropyl alcohol
  • Vd F vinylidene fluoride
  • TFE tetrafluoroethylene
  • HFP Hexafluoroethylene
  • Et Ethylene
  • P VDF Polyfutsudani vinylidene
  • PTFE Polytetrafluoroethylene
  • MMME Monomethyl maleate
  • P VF Polyfluorinated dispanol
  • T OC Polyoxyethylene isotridecyl ether (Nippon Yushi
  • Pronon 104 Polyoxetylenepolyoxypropylene block polymer (manufactured by NOF Corporation)
  • the concentration method of the fluorine-containing polymer dispersion shown in the reference example after adding the surfactant according to the present invention to the dispersion after polymerization and performing primary stabilization, it is possible to use the dispersion point at or above the cloud point of the surfactant all day and night.
  • the method include a phase separation method in which a concentrated dispersion is obtained at a constant temperature, and other generally known methods such as a membrane separation method and an electric concentration method.
  • the surfactant according to the present invention is additionally added to the finish to secure the dispersion stability during storage or transportation, and the stability and liquid Finally, by taking into account the handling properties such as the viscosity of the polymer, a fluoropolymer discharge with a polymer solids concentration of 55% by weight was obtained.
  • An electrode for a battery was prepared using the fluorine-containing polymer dispersion shown in Table 1 as a binder. The following method was used to formulate the battery.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • 92 parts by weight of lithium cobaltate and acetylene black 3 parts by weight and 5 parts by weight of PVDF polymer were added, uniformly mixed, and slurried to obtain a positive electrode paste.
  • This positive electrode paste was applied to the surface of an aluminum foil by a doctor blade method, dried at 120 ° C for 30 minutes, and then vacuum-dried at 100 ° C for about 10 hours to remove water. Was used as a positive electrode.
  • a 1.5% aqueous solution of carboxymethylcellulose was used for the negative electrode, and the polymer solid content concentration of the polymer dispersion shown in Table 1 was adjusted to 10 parts by weight with respect to 90 parts by weight of graphite. Then, a paste adjusted to a viscosity applicable with a doctor blade by additionally adding a 1.5% carboxymethylcellulose aqueous solution was used as a negative electrode paste.
  • This negative electrode paste was applied to the surface of a copper foil by a doctor blade method.First, only water was dried at 120 ° C., and then heated at about the polymer melting point shown in Table 1 for about 5 to 30 minutes. Adhesion to the current collector by polymer fusion was performed. After that, vacuum drying was performed again at 120 ° C. for 10 hours to remove water to obtain a negative electrode.
  • a part for a 210-coin battery was prepared, and a positive electrode plate, a negative electrode plate, and a microporous membrane using polypropylene as a separator were prepared in advance by punching out the same diameter as the inside diameter of the coin-type battery.
  • the battery voltage is charged and discharged between the 4. 2 V Kakara 3 V Was carried out.
  • the initial capacity is set as the capacity at the 5th cycle, and compared with the capacity after 50 cycles, the capacity retention rate is 90% or more (A;) or less than 90% (B). It was determined that the battery was superior or inferior.
  • Example 10 Measurement of battery physical properties of a coin battery manufactured using dispersion as a binder for an electrode
  • the discharge capacity after 50 cycles was a good result.
  • the electrode preparation conditions were not changed due to the blending, and the cycle characteristics were not adversely affected.
  • the difference in the electrode preparation conditions is that the polymer melting point used is 168 ° C and 148 ° C, and the polymer is dried at 148 ° C, which is the lower melting point. That is, the electrodes were produced only by fusion bonding.
  • the initial cause of concern was that the adhesion of the electrode to the current collector was inferior to those in Examples 1 and 7 in which each polymer was used alone, but there was no problem as described above.
  • Example 11 Using the concentrated dispersion used in Reference Example 3, in a 1.5% aqueous solution of CMC, 92 parts by weight of lithium copartate, 3 parts by weight of acetylene black, and 5 parts by weight of PVDF polymer The slurry was uniformly mixed and slurried, and was applied to an aluminum foil with a doctor blade and dried. A positive electrode having good adhesion was produced. Also, when compared with the electrodes made of PVDF having a molecular weight of 250,000 used as the binder for the positive electrode in Examples 1 to 9, the PVDF of Reference Example 3 was a high molecular weight type. When the hand is bent about 90 times at 90 degrees, less powder The electrode was excellent in flexibility.
  • Comparative Example 4 Similarly, the polymer after polymerization of PVDF used in Reference Example 3 was coagulated and dried, and NMP was adjusted to have a solid content of 6% by weight. Was added to the NMP solution in an amount of 92 parts by weight of lithium cobalt oxide, 3 parts by weight of acetylene black, and 5 parts by weight of PVDF polymer. could not. In order to reduce the viscosity, NMP was increased and the slurry was re-slurried. As a result, uniform film thickness control was not possible.
  • Example 11 shows that the PVDF is not dissolved in water as a solvent but is dispersed, and that the paste viscosity does not increase with the molecular weight.
  • Example 12 using the PVDF dispersion described in Reference Example 1 (particle diameter 0.25 ⁇ ), an electrode was produced with the same formulation as in Example 11, and a 90-degree bending test was performed. The results of visual observation of the state are shown in the table below.
  • Example 13 a sample having a molecular weight almost the same as that described in Reference Example 1 and a small particle diameter of 0.8 m was used, and as Comparative Example 5, a sample having a particle size of 1.2 ⁇ m was used. Tested as in Example 12. As shown in Table 4, the smaller the particle size, the better the film adhesion was obtained.
  • the adhesion to the current collector was good, and the current collector was thin and cracked.
  • the surface that did not come off is smooth without unevenness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明の電極用添加剤は、界面活性剤を含む含フッ素ポリマーの水性分散体からなり、そのポリマー分子構造中のフッ素含有率の上限値が67.0以下、かつフッ素含有率の下限値が45.0以上となる場合に、特に負極での電気化学的安定性に優れ、良好な電池初期特性、電池充放電特性を発現する。

Description

電極用添加剤
技術分野
本発明は、 電池またはキャパシターの電極を作製する時に用いる電極用添加剤 に関する。 この電極用添加剤は、 リチウムイオン電池、 リチウムポリマー電池、 キャパシターの結着剤として用いることができる。
背景技術
リチウムイオン電池及びリチウムポリマー電池用のパインダ一は、 添加量のほ とんどが電極中に存在するため、 二次電池では充放電挙動中に電気化学的な反応 の影響を受けやすい。 さらに、 含フッ素ポリマーバインダーにとっては、 正極と 負極では優位性が正反対の関係にある。 すなわち、 正極では耐酸化性が要求され るため、 バインダーとしてのポリマー中に、 C一 F結合をより多く含んだ構造が 安定である。代表的にはポリテトラフルォロエチレン(PTFE)があげられる。 一方、負極では、耐還元性が必要となるため、 フッ素を含まない構造、例えば、 ポリエチレン、 ポリプロピレン、 スチレンブタジエンラバー (SBR)、 ブタジェ ン系ゴム、 EPDMゴム、 カルボキシルメチルセルロース (CMC) などが知ら れている (特開平 4-342966号公報、特開平 5— 21068号公報、特開平 5— 74461号公報参照)。 また、耐薬品性、耐熱性、耐汚染性などのパランス がとれた材料選択をするため、 フッ素樹脂のポリフッ化ビニリデン (以下、 PV DFという) を N—メチルピロリ ドン (以下、 NMPという) などの有機溶剤に 溶解させた PVDFバインダー溶液も一般的に使用されている (特開平 9一 28 9023号参照)。 このように、 PVDFを負極用途で使用する際には、接着性を 向上するためカルボキシル基などの極性基を側鎖に導入できるマレイン酸エステ ルなどの有機酸系コモノマーを共重合することも紹介されている (特開平 6— 1 72452号参照)。
更に、 PVDFは、 ポリマー電池用ゲル電解質膜としても利用できることが知 られる (米国特許 4384047号参照)。 ポリマー電池特性向上のため、 PVD Fは、 へキサフルォロプロピレン (HFP) などの含フッ素モノマーと共重合さ せ、 結晶性を低下させることにより電解液で膨潤しやすいように工夫してかつ、 伝導性を向上させた上で使用されている (特表平 8— 5 0 7 4 0 7号参照)。 上記のように、 P V D Fもしくは、 フッ化ビニリデンとへキサフルォロプロピ レンのコポリマー (以下、 P (VD F-H F P) という) は、 フッ素樹脂の中でも リチウムイオン電池、 及びリチウムポリマー電池用途として、 両極で使用適性の あるユニークな材料であるが、 使用上の課題も存在する。 リチウムイオン電池負 極用バインダーとして、 P V D Fを含フッ素モノマーの共重合により変性するこ とは、 P VD F以上にポリマー構造中にフッ素原子の化学結合を増やすことにな るため、 リチウムと直接的に接触、 反応する可能性の高い負極内で使用されるバ インダー、 及ぴ負極と界面接触するゲル電解質膜では、 耐還元性の点から好まし くない。
また、 P VD Fを電極用バインダーとして使用する際は、 一般的に NMPに溶 解してから使用するタイプの乾燥粉末、 もしくは既にポリマー濃度が 8重量%〜 1 2重量%のポリマー溶液を購入使用するしか手段はないのが現状であった。 ま た、 負極材料調製を S B Rや CM Cなどのように、 水性ペースト状で行う場合に は、 P VD Fでは、 均一分散や水溶性ポリマーとの併用は困難であった。 更に、 NMPなどの有機溶剤での使用形態で、 P VD Fの高分子量ポリマーを使用する ことが紹介されているが(特開平 9— 2 8 9 0 2 3号公報参照)、やはり、溶解温 度範囲や使用方法にノゥハウが必要であり、 容易に使用できるものでないことは 明かである。 更には、 NMPペーストは NMPが塩基性成分を含むために水分存 在下で脱フッ酸反応が起こり、ペーストが増粘、ゲルィヒするなどの問題がある(特 開平 9 - 1 8 0 7 2 5号公報参照)。それを解決するため、ペースト中に有機酸を 添加したり(特開平 9— 3 0 6 5 0 2号公報参照)、 p H調整が必要であったり(特 開平 9 _ 1 8 0 7 2 5号公報参照)、水分管理が必要であったりと、使用上ノゥハ ゥが必要であることも実際の使用者にとっては、 极レヽづらレ、使用形態であつた。 更に、 バインダーとしての機能を複合ィ匕させるため、 他のポリマーとのブレンド 使用も検討されたようであるが、 実際の使用には、 NMPに溶解し、 かつ、 NM P溶液中で P V D F層と他のブレンドポリマー層とに相分離しないことが必要で あり、 ここでもポリマーブレンドの組み合わせの制限も小さくない (特開平 9一 1 9 9 1 3 3号公報参照)。 本発明の目的は、 リチウムイオン電池の電極内、 特に負極近傍でのリチウムと の接触、 及び電気ィ匕学的反応により、 バインダーとして機能低下、 それに伴う電 極膜の集電体からの剥離や電極抵抗の増加が少な!/、電極を作製するために好適な 電極用添加剤を提供することにある。
発明の開示
本発明では、 電極用バインダー、 及びポリマー電池用ゲル電解質膜として、 特 に負極での電気ィ匕学的安定性の保持を目指し、含フッ素ポリマーを種々検討した。 その結果、 ポリマー分子構造中のフッ素の重量0 /。 (以後、含 F率)、 が PVDFお ょぴ、 P (VDF— HF P) と同等レベル、 好ましくはそれ以下となる場合に、 その含フッ素ポリマーをバインダ一として使用した電池が、優れた電池初期特性、 電池充放電特性を有することを発見し、 さらに検討を重ねた結果、 本発明に至つ た。
本発明は、 以下の電極用添加剤、 電池、 またはキャパシター用の電極、 リチウ ムイオン電池、 またはリチウムポリマー電池を提供するものである。
項 1. 界面活性剤を含む含フッ素ポリマーの水性分散体からなる電極用添加剤 であって、 含フッ素ポリマーの一般式 (1) : フッ素含有率 (重量。 /0) =
, (繰り返し単位の分子構造式中のフッ素原子の平均数 Xフッ素原子量 (19)) , ,
(繰り返し単位の一平均分子量)
で示されるフッ素含有率の上限値が 67.0重量%、かつフッ素含有率の下限値が
45.0重量%であることを特徴とする電極用添加剤。
項 2. 負極用添加剤である、 項 1に記載の電極用添加剤。
項 3. 界面活性剤の主成分が、 一般式 (2) :
R1-0-(CH2CH20)q-(A1)p-(CH2CH20)r-R2 (2)
(式中 A1は一 CH(CH。)CH20—または一 CH(CH3)— CH?CH20—を示 す。
R 1、 R 2は水素原子、 炭素数 1〜 20の分岐、 もしくは直鎖状アルキル基、 ま たは炭素数 3〜 20の分岐もしくは直鎖状アルケニル基を示す。
pは 0〜 400の整数、 qは 1〜 400の整数、 rは 0〜 400の整数であり、 5≤p + q + r≤1000 及び 1≤ (q + r ) /p≤ 800 (pが 0でな いとき) である。
ただし、 p = 0の時は r = 0 ;
l≤p≤400の時は、 0≤ r≤400である。)
で示される非イオン性界面活性剤である項 1又は 2に記載の電極用添加剤。 項 4. ポリマー固形分に対して界面活性剤を 0. 1〜 25重量%使用する項 1〜 3のいずれかに記載の電極用添加剤。
項 5. 含フッ素ポリマーが、 フッ化ビニリデン/テトラフルォロエチレン/ひ = 100〜 40/0〜 35,0〜 25 (モル0 /0) (ここで、 はフッ化ビニリデン 及びテトラフルォロエチレンと共重合しうる 1種類以上の単量体である) のモノ マー比率を有する項 1〜 4のいずれかに記載の電極用添加剤。
項 6. 含フッ素ポリマーが、 エチレン/テトラフルォロエチレン/ = 30〜 60/30〜70/0〜25 (モル%) (ここで、 ]3はエチレン及びテトラフル ォロエチレンと共重合しうる 1種類以上の単量体である) のモノマー比率を有す る項 1〜4のいずれかに記載の電極用添加剤。
項 7. 含フッ素ポリマーが、 乳化重合により得られた含フッ素ポリマー微粒子 である、 項 1〜 6に記載のいずれかに記載の電極用添加剤。
項 8. 含フッ素ポリマーは微粒子であり、かつ、率均粒子径が 0.02 μ m〜 1 · 0 μ mである項 1〜 7のいずれかに記載の電極用添加剤。
項 9. 含フッ素ポリマーの、 ゲルパーミエーシヨンクロマトグラフィー法 (溶 媒は N—メチルピロリ ドン、 ポリスチレン換算) で測定した重量平均分子量の下 限が、 15万以上、 好ましくは 30万以上、 であり、 上限は通常 120万、 好ま しくは 80万、 より好ましくは 60万である項 1〜8のいずれかに記載の電極用 添加剤。
項 10. 含フッ素ポリマーがポリフッ化ビニリデンである項 1〜 9のいずれか に記載の電極用添加剤。
項 1 1 . 含フッ素ポリマーが、 少なくとも 2種類のポリマーのブレンドである 項 1〜 1 0のいずれかに記載の電極用添加剤。
項 1 2 . 項 1〜: 1 1のいずれかに記載の電極用添加剤を使用した電池、 または キャパシター用の電極。
項 1 3 . 項 1〜: 1 1のいずれかに記載の電極用添加剤を電極用結着剤として使 用したリチウムイオン電池。
項 1 4 . 項 1〜: 1 1のいずれかに記載の電極用添加剤を電極用結着剤として使 用したリチウムポリマー電池。
本発明において使用することができる含フッ素ポリマーとしては、 ポリフツイ匕 ビニリデン、 エチレン/テトラフルォロエチレン共重合体、 フッ化ビニリデン / テトラフルォロエチレン/プロピレン三元共重合体、 フッ化ビエリデン /テトラ フルォロエチレン/ィソブテン三元共重合体、 フッ化ビ-リデン /テトラフルォ 口エチレン/メチルビニルエーテル三元共重合体、 フッ化ビ二リデン Zへキサフ ルォ口プロピレン共重合体、 フッ化ビニリデン Zテトラフルォロエチレン共重合 体、 フツイ匕ビ-リデン /テトラフルォロエチレン パーフノレオ口メチルビニノレエ 一テル共重合体、 フッ化ビニリデン Zテトラフルォロエチレン/クロ口トリフル ォロエチレン共重合体、 フッ化ビニリデン Zテトラフルォロエチレン zへキサブ ルォ口プロピレン共重合体、 フッ化ビニリデン /テトラフルォロエチレン zパー フルォロプロピルビエルエーテル共重合体、 フッ化ビ二リデン /テトラフルォロ エチレン zへキサフルォロプロピレン共重合体エラストマ一などが挙げられる。 また、上記ポリマーに、共重合可能な単量体を 0〜 2 5モル0 /0、 0〜: 1 0モル0 /0、 0〜 5モル0 /0、 0〜 3モル0 /0の範囲で適宜共重合させることにより、 柔軟性や、 電解液への膨潤性、 電極基板への接着性、 膜強度を制御することができる。 共重 合可能な単量体は、 特に制限されないが、 α及び として以下に例示される単量 体が好ましい。
特に、 共重合可能な単量体の好ましい具体例である αとしては、 特開平 1 0― 2 3 3 2 1 7号公報に記載の単量体が挙げられる。 中でも特に、 負極での電気的 安定性の面からは、不飽和炭化水素系モノマー、例えば、エチレン、 1 -ブテン、 2 -ブテンや、 その他アルキルビュルエーテル、 例えばメチルビュル エーテル、 プロピルビニルエーテル、 酢酸ビニルなどのビニルエステル、 フッ化 ビュルなどが好ましいものとして挙げられるが、 これに共重合可能であり、 電池 特性に悪影響を与えない範囲であれは限定されるものではない。
また、 ]3としては、 前記 αとほぼ同様なモノマーが適しているが、 それに加え て、 フッ化ビュルゃフツイヒビニリデンが好ましい。
また、 ポリフッ化ビニリデンゃエチレンノテトラフルォロエチレン共重合体を 第一セグメントとし、 フッ化ビニリデン /テトラフルォロェチレン共重合体やフ ッ化ビニリデン /へキサフルォロプロピレン共重合体を第二セグメントとするセ グメント化ポリマーなども使用可能である。
また、 本発明の電極用添加剤に、 項 1に示す一般式 (1 ) で導かれる好ましい フッ素含有率範囲からはずれる含フッ素ポリマーや、 その他非フッ素ポリマーを プレンドすることについては、 電池特性に悪影響を与えない範囲であれは限定さ れるものではない。
本発明の含フッ素ポリマーは、 乳ィ匕重合、 懸濁重合、 分散重合、 溶液重合、 超 臨界重合、 及びその乾燥微粒子を界面活性剤で再分散したデイスパージョンを水 性分散体として使用することも可能であるが、 重合後に既に微粒子の水性分散体 (デイスパージヨン) になっている し化重合での作製が好ましい。 なお、 分子量 分布はゲルパーミエーシヨンクロマトグラフィー (G P C) 法により測定した。 分析条件は、 溶剤に ΝΜΡ (臭ィ匕リチウム 5 mm o 1 Z L入り) を使用、 測定 温度 4 0 °C、サンプル濃度は 0 . 1 5重量%、打ちこみ量 5 0 0 Lで行い、 ポリ スチレン換算でデータ解析を行った。 本発明で使用可能な範囲の分子量は、 電極 塗布乾燥、 圧延後の強度、 接着性が保持できるレベルの分子量以上であれば実質 的に使用できるが、 好ましくは下限約 1 5万、 さらに好ましくは約 3 0万、 最も 好ましくは約 4 0万であり、 分子量上限は、 通常 1 2 0万、 好ましくは 8 0万、 更に好ましくは 6 0万が望ましい。
本発明における含フッ素ポリマー微粒子の平均粒子径が小さいほど、 バインダ 一としての活物質の結合力において優れている。 微粒子であるほど、 活物質間に 均一に分散するため、 活物質とのネットワークが均一になるため力、 電極保持力 が高くなる傾向がある。 反対に、 粒子径があまりに大きいと、 活物質とのネット ワーク構造に "ムラが生じ" 弱い部分ができるため、 集電体との密着性が悪くな つたり、 電極製造工程などの電極折り曲げなどで電極の割れなどが生じ、 電極性 能を発揮しにくいものになってしまう傾向がある。
本発明に適した含フッ素ポリマー zW"生分散体は、 乳化重合により得られるもの をそのまま、 もしくは濃縮して得られたのものが最もよい。 含フッ素ポリマーの 乾燥粉末を水に再分散したようなものは、 使用は可能であるが、 再分散に手間や 時間がかかることや、 分散粒子径分布が不均一になりやすく、 力つ分散粒子径も 大きくなるため、 電池性能の面から、 本発明にはあまり適さない。
本発明に適した、含フッ素ポリマー微粒子の平均粒子径は、通常 0. 02 μ II!〜 1. 0 μ m程度、 好ましくは 0. 04 μ m〜 0. 6 μ m程度、 より好ましくは 0. 05 im〜0. 3 zm程度、 更に好ましくは、 0. 0 5〜0. である。 なお、 含フッ素ポリマー水性分散体の粒子径を測定する方法としては、 透過型 電子顕微鏡観察、 走査型電子顕微鏡観察、 遠心沈降法、 濁度法、 静的および動的 光 (レーザー) 散乱法、 などサブミクロン微粒子を測定できる方法であれば特に 限定するものではないが、 本発明における粒子径とは、 動的光散乱法により求め られる重量平均粒子径の値を意味する。 使用装置としては、 例えば、 マイクロト ラック社製のマイクロトラック 9340UPA (粒度分布測定装置) などが挙げ られる。
次に、本発明のポリマーを、特に負極用の電池バインダーに使用する場合には、 上記紹介した含フッ素ポリマー中のフッ素含有率(以下、 「含 F率」 と略記するこ とがある) を示す一般式 (1) の計算値 (含 F率) が 6 7. 0重量%以下、好まし くは 64. 0重量%以下、 より好ましくは 62. 0重量%以下、 更に好ましくは 60. 0重量%以下になることが望ましく、 かつ、 含 F率は 45. 0重量%以上、 好ましくは 50. 0重量%以上、 より好ましくは 5 5. 0重量%以上、更に好まし くは 58. 0重量0 /0である。含 F率が 45. 0重量%未満では、 フッ素樹脂の耐熱 性、 耐溶剤性などが劣るためである。
なお、 含 F率 (単位は重量%) は以下の方法で規定される。
一般式 (1) フッ素含有率 =
(繰り返し単位の分子構造式中のフッ素原子の平均数 Xフッ素原子量 (19))
100 X
(繰り返し単位の平均分子量)
なお、繰り返し単位の平均分子量の計算は、繰り返し単位を構成する分子式から、 各元素の原子量を積算して行う。
(繰り返し単位の平均分子量の計算例)
ポリフッ化ビニリデンの繰り返し単位の平均分子量
炭素原子量 12、 水素原子量 1、 フッ素原子量 19として、 炭素数 2、 水素数 2、 フッ素数 2より、 繰り返し単位の平均分子量 = 1 2 X 2 + 1 X 2 + 1 9 X 2 = 64となる。
以下、 各種ポリマー毎の、 含 F率計算例を示す。 計算例 (i) ポリフッ化ビニリデン: 一 (C2H2F2) n
繰り返し単位の平均分子量 64
含 F率: 1 00X (2 X 19) /64 = 59.4重量% 計算例(ii)エチレン/テトラフルォロエチレン共重合体:
一(C2H4)m(C2F4)n
繰り返し単位の平均分子量 64 (m= nの場合)
含 F率二 1 00 X (0. 50 X (0 X 1 9) + 0.50 X (4 X 19)) /64 = 59.4重量% 計算例(iii) フッ化ビ-リデン Zへキサフルォロプロピレン共重合体: フッ化ビニリデン 95重量0 /0、 へキサフルォロプロピレン 5重量0 /0 フッ化ビニリデン 97.8モル0 /0、 へキサフルォロプロピレン 2.2モル0 /0 繰り返し単位の平均分子量: 65. 9
含 F率 = 1 00 X (0. 978 X (2 X 19 ) + 0.022 X ( 6 X 19))/65.9 60. 2重」 計算例(iv) フッ化ビニリデン /テトラフルォロエチレン共重合体
(フツイ匕ビニリデン 6 0モル0 /0、 テトラフルォ口エチレン 40モル0 /0) 繰り返し単位の平均分子量: 78. 4
含 率= 1 00 X (0. 6 X (2 X 1 9) +0. 4 X (4 X 1 9)) /78. 4 = 6 7. 9重量% 計算例 (V) ポリテトラフルォロエチレン: 一 (C2F4) n
繰り返し単位の平均分子量: 1 00
含 率= 1 00 X (4 X 1 9) /1 00
= 76. 0重量%
上記のように、 計算例(i)〜(iii)が本発明の結着剤として正極、 負極両方の使 用で良好なポリマー例であり、計算例 (iv)、計算例 (V)は、両極での使用に適さな いポリマー例である。 計算例(iv)、 計算例 (V)は、 含 F率が 6 7. 0重量%ょり大 きなポリマーであるため、 耐還元性に劣り、 負極での劣化が激しく、 ポリマー硬 ィ匕、 結着機能の低下が生じ、 電池特性的にはサイクル劣ィ匕が起こるものと思われ る。
1つの好ましい実施形態において、 本発明の含フッ素ポリマーは、 好ましくは フッ化ビニリデン /テトラフルォロエチレンノ<¾
= 1 00〜40/0〜35Z0〜25 (モル0 /0) ;
好ましくは
= 1 00〜70/0 20 Z 0〜 1 0 (モル0 /0)
より好ましくは
= 1 00〜80/0 1 0 0〜1 0 (モル%)
更に好ましくは、
= 1 00〜 90/0〜 5/0〜 5
(ここで、 ひはフッ化ビニリデン及ぴテトラフルォロエチレンと共重合しうる 種類以上の単量体である) のモノマー比率を有する。 例えば、 1 00/0/0のポリフッ化ビニリデン、 9 7/0/3 (α :へキサ フルォ口プロピレン)のフッ化ビニリデン /へキサフルォロプロピレン共重合体、 90/10/0のフッ化ビニリデン /テトラフルォロエチレン共重合体、 9 / 4/2 (a :へキサフルォロプロピレン) のフッ化ビニリデン /テトラフルォロ エチレン/へキサフルォロプロピレン三元共重合体、 50/30/20のフツイ匕 ビニリデン zテトラフルォロエチレン/ェチレン三元共重合体が挙げられる。 他の好ましい実施形態において、 本発明の含フッ素ポリマーは、 好ましくはェ チレン/テトラフルォロエチレン ZiS
^sc^e oZsc^yoZc^s s (モル0 /0) :
好ましくは
= 30〜5 0/40 6 0 Z 0〜 20 (モル0 /0)
より好ましくは
= 30〜4 5/40 5 5/ 5 1 5 (モル0 /0)
(ここで、 ]3はエチレン及びテトラフルォロエチレンと共重合しうる 1種類以上 の単量体である) のモノマー比率を有する。
例えば、 48/52/0及び 35/65 / 0のエチレン /テトラフルォロェチ レン共重合体、 46/50/4、及び 40/50/10 (/3 :フッ化ビニリデン) のエチレン/テトラフルォロエチレン/フッ化ビニリデン三元共重合体が挙げら れる。
次に、 本発明の含フッ素ポリマー水性分散体の作製方法について記述する。 該 水性分散体は、 一般的に、 適当なポリマー固形分濃度に濃縮処理される。 濃縮方 法は、 逆浸透膜濃縮法、 電気泳動法、 及び含フッ素ポリマーデイスパージヨンに 非イオン性界面活性剤を加えた後、 界面活性剤の曇点まで上昇させてポリマー粒 子を沈殿濃縮させる方法、 蒸発もしくは真空により水分を除去する乾燥濃縮など が挙げられる。 また、 デイスパージヨンの保存安定性に問題はあるが、 乳化重合 により得られたポリマーの水性分散体を、 非イオン性界面活性剤の存在しない状 態で、 必要に応じて濃縮、 希釈することにより得られたデイスパージヨン状態で 使用することも、 もちろん可能である。
次に、 上記のように、 一般的に行われる濃縮過程では、 ポリマー粒子同士の凝 集、 沈殿などを防止する目的で、 色々な界面活性剤が使用される。 本発明の電極 用添加剤として適している界面活性剤としては、 以下に示すような非イオン性界 面活性剤を挙げることができる。 なお、 必要に応じてァニオン性界面活性剤、 両 性界面活性剤を、 単独であるいは 2種以上を組み合わせて使用してもよい。 上記非ィオン性界面活性剤は、 含フッ素ポリマーのディスパージョンからなる 電池またはキャパシターの電極用添加剤として保存し得るに十分な程度に、 ディ スパージョンを安定ィヒさせる性能を有する。
このような界面活性剤としては、 非イオン性界面活性剤、 特に下記式 (2) で 表される界面活个生剤が例示される。
R1— O— (CHoCH2〇) q—( 1)。一(CH2CH。0) R: (2)
(式中、 I 1、 R2, A1, p、 q及び rは、 前記に定義されたとおりである)
R1, R 2は、好ましくは水素原子、
Figure imgf000012_0001
の分岐、 もしくは直鎖状アルキル 基、 または c3〜c2。の分岐、 もしくは直鎖状アルケ-ル基であり、
pは 0〜 400の整数、 qは 1〜 400の整数、 rは 0〜 400の整数であり、
5≤p + q + r≤1000 及ぴ 1≤ (q+ r ) /p≤ 800 (pが 0でな レヽとき) である。
ただし、 p = 0の時は r = 0 ;
l ^p 400の時は、 0≤r≤400である。
R1, R2は、 好ましくは水素原子、 Ci Cs。の分岐、 もしくは直鎖状アルキ ル基、 より好ましくはじェ〜。^の分岐、 もしくは直鎖状アルキル基、 更に好ま しくはじ 〜じァの分岐、 もしくは直鎖状アルキノレ基、 特に好ましくは、 C Cg の分岐、 もしくは直鎖状アルキル基である。
Figure imgf000012_0002
の分岐、 もしくは直鎖状 アルキゾレ基としては、 メチル、 ェチル、 n—プロピル、 イソプロピル、 n—ブチ ノレ、 イソプチノレ、 s e c—プチル、 t e r t一ブチル基、 ペンチノレ基、 へキシノレ 基、 ヘプチル、 ォクチル、 ノニル、 デシル、 ゥンデシル、 ドデシル、 テトラデシ ル、 へキサデシル、 ォクタデシル、 アイコシルが挙げられる。
C3〜C20、 好ましくは C3〜C7のァルケ-ル基としては、 ァリル基 (2—プ 口べ-ノレ基)、 ブテュル基、ペンテュル基、 へキセニル基、 ヘプテニル基が挙げら れる。
A1は、 好ましくは一 CH (CH3) CH2〇一である。
pは好ましくは 0〜 80の整数、より好ましくは 0〜 40の整数が挙げられる。 qは好ましくは 1〜200の整数、 より好ましくは 1〜 100の整数が挙げら れる。
rは好ましくは 0〜200の整数、 より好ましくは 0〜100の整数が挙げら れる。
また、 上記の式 (2) の A1と (CH2CH20) が入れ替わった構造をした界面 活性剤、
R'-O- (A1) q— (CH2CH20) p- (A1) r一 R2
(式中 R R2, A1, p、 q及び rは前記に定義されたとおりである)、例えば、 HO-(CH(CH3) CH20)5-(CH2CH20)15-(CH(CH3)CH20) 5— H のような界面活性剤も使用可能である。
上記のような界面活性剤は、 また、 ポリオキシエチレンアルキルフエニルエー テル (ユニオンカーバイドネ土製: トライトン X— 100) などと比べ、 主鎖中に ベンゼン環などの分解しにくく、 かつ環境的にも有害な物質を含まないものであ り、 更に熱分解性が良好であるため、 電極乾燥過程での分解飛散性がよく、 電池 用途には適している。
これら界面活性剤としては、例えば、ポリォキシエチレンアルキルエーテル類、 ポリォキシエチレンィソトリデシルエーテノレ (日本油脂㈱製:ディスパノール T 〇 C)、 日本油脂株式会社製の、 プロノン 102, プロノン 104, プロノン 10 8, プロノン 204, プロノン 208などのポリオキシエチレンポリオキシプロ ピレンプロックポリマーが挙げられる。
ただし、 電池物性をそこなわない程度に限り、 下記に列記した界面活性剤も併 用可能である。
併用可能な界面活性剤としては、 ポリオキシエチレンアルキルフエニルエーテ ル(ユニオンカーパイドネ: h : トライトン x—i 0 o)、高級アルコール硫酸ェ ステル塩(例:ラウリル硫酸ナトリゥム)、非イオン性界面活性剤としては、 ポリ ォキシエチレンィソトリデシルエーテル(日本油脂㈱製:ディスパノール T〇C)、 ポリオキシエチレンォキシプロピレントリデシルエーテルなど、 ポリオキシェチ レン脂肪酸エステル類、 ソルビタン脂肪酸エステル類、 グリセリンエステル類、 などが例示されるがこれらに限定されない。
ァニオン性界面活性剤としては、 フルォロアルキル基、 特にパーフルォロアル キル基またはク口口フルォロアルキル基、 特にパーク口口フノレオ口アルキル基を 有する含フッ素カルボン酸系または、 含フッ素スルホン酸系界面活性剤を挙げる ことができる。 市販品としては、 例えば、 パーフルォロオクタン酸アンモニゥム の水溶液であるダイキン工業株式会社製 ュニダイン D S 1 0 1を挙げることが できる。
上記界面活性剤と併用可能な界面活性剤としては、 アミンォキサイド類が挙げ られる。
アミンォキサイド類からなる界面活性剤としては、 ジヒドロキシェチルアルキ ルァミンォキシド、 ジメチルアルキルァミンォキシド、 ジメチルアルキルェトキ シアミンォキシドがある。 市販品としては、 例えば、 日本油脂株式会ネ: [^のジヒ ドロキシェチルラウリルアミンォキシド (ュニセーフ A— L E )、ジメチルラウリ ノレァミン才キシド(ュニセーフ A_ LM)、ジメチルラウリルェトキシアミンォキ シド (ュニセーフ A— L Y) などが挙げられる。
本発明の含フッ素ポリマー水性分散体を電池用パインダーとして使用する方法 としては、 通常は塗布する電極構成材料ペーストとして電極活物質、 導電剤、 結 着剤に更に水溶性高分子からなる増粘剤、例えばカルポキシルメチルセルロース、 メチルセノレロース、 ポリエチレンォキシドなどの水溶液を使用するのが一般的で ある。 キャパシター電極用結着剤として使用する場合も同様に、 カーボン、 結着 剤を水溶性高分子 (例えばセルロース系) 力 らなる増粘剤でペースト化し塗布、 乾燥することにより作製が可能である。
ここで言う電極構成材料としては、たとえば、コノ レト、ニッケル、マンガン、 リチウムなどの酸化物もしくは水酸化物または水素吸蔵合金などの電極 (正極ま たは負極) 活物質、 カーボン (黒鉛、 アセチレンブラックなど) 等の導電剤が例 示され、 キャパシタの電極構成材料としては、 カーボン (活十生炭、 アセチレンブ ラックなど) が例示される。
また、 近年ではリチウムイオン電池の新規負極活物質としては、 従来の焼成炭 素質材料でなく、より高容量が期待できるケィ素を用いたもの、例えば L i x S i ( 0≤x≤ 5 ) (特開平 7 - 2 9 6 0 2号、 特開 2001- 006682参照)、 シリコン単結 晶の利用したもの(特開平 5 - 7 4 4 6 3号参照)や、その他には希土類元素や金 属間化合物を含むようなもの (特開 2003- 086176参照) の報告もあり、 本発明の 電極用添加剤は、 これらの負極活物質とともに使用することができる。
なお、 本発明では、 電極用バインダーとしての使用を、 含フッ素ポリマーを水 性分散体として水性ペーストに添加混合する方法を主な使用形態としているが、 乳化重合、 懸濁重合、 溶液重合、 超臨界重合などで得られたポリマーの乾燥粉末 を、 従来の P VD Fの NMP溶液のように有機溶剤に溶解、 もしくは分散が可能 な場合は、 そのような有機溶剤ペーストの塗布乾燥工程での使用も可能である。 また、 本発明における水性分散体には、 必要に応じて水以外の有機溶剤を添カロ してもよい。 有機溶剤の添加量については、 本来のペースト性状に影響を及ばさ ない限り、 特に制限ははない。 有機溶剤を添加する目的としては、 例えば、 水性 分散体を添加した水性ペーストの水分を乾燥により効果的に除去するためアルコ ールなどの低沸点溶剤を加えたり、 ペーストの粘度調整することなどがあげられ る。 なお、 使用される有機溶剤には、 水溶性、 非水溶性含め限定はないが、 例と しては、 メタノール、 エタノール、 プロパノール、 I P Aなどのアルコーノレ類、 アセトン、 ME K、 M I B Kなどのケトン、 DMF、 NMPなどの高沸点極性溶 剤、 トルエン、 キシレン、 へキサンなどの非水溶性の炭ィヒ水素系溶剤、 フッ素ァ ルコールや H C F C— 1 4 1 bなどのフッ素系溶剤などである。
さらに、 活物質の影響のためペースト p Hが酸やアル力リ側であると、 集電体 のアルミや銅が腐食、 溶出したり、 バインダー自体が加水分解や脱酸を起こして 劣化する可能性もあるため、 そのようなことが起こらないように、 p H調整のた め硝酸、 酢酸、 マレイン酸、 コハク酸、 クェン酸などの無機、 有機酸や、 アンモ ユア水、 N a O H、 K OHなどのアルカリ、 その他 p H調整剤などを適宜添加し てもよい。
本発明に係る含フッ素ポリマーをポリマー電池用ゲル電解質膜として使用する 場合は、ポリマー単体を溶媒キャスト法や、溶融成形法などで製膜する。その際、 多孔膜化することも可能である。 多孔膜化の手法は問わない。 また、 ゲル膜の強 度、 耐熱 '生能などを向上するために、 無機系、 有機系材料を問わず粉末、 繊維状 物質の添加、 複合膜化、 積層膜化、 架橋膜ィ匕などの補強を施すこともできる。 電池またはキャパシターの電極を作製するときに用いる電極用結着剤として有 用であるが、 電極用撥水剤、 及ぴその負極での電気的安定性を利用して、 リチウ ムポリマー電池のゲル電解質としても使用可能である。
また、 電極用途でなくても、 一般の含フッ素ポリマーディスパージヨンが使用 される水性塗料やコーティング剤、 ガラスクロス含浸用塗料などに使用すること もできる。
また、 一般の含フッ素水性ディスパージョンが使用される用途、 たとえば水性 塗料としてガラス繊維やカーボン繊維等の耐熱繊維織物の基材に被覆し搬送用べ ルト、膜構築材料(テント膜)、 グランドパッキン、バグフィルタ一等に用いる用 途等に好適に用いることができる。 更には、 非粘着性を利用してエポキシ樹脂、 ゥレタンフォーム、 硬質ゥレタンゴム等の合成樹脂 ·ゴム成形金型や製紙乾燥口 ール ·シリンダーロールにコーティングする用途、 耐薬品性を利用して反応釜、 ダクト、 配管、 バルブ、 ポンプ等の耐食コーティング用途、 その他前述の膜構築 材料 (テント膜) の接着剤用途や電気絶縁用キャストフィルムにも応用できる。 本発明は、 含フッ素ポリマーの水性分散体をリチウムイオン電池の電極用結着 剤に使用する際、 接着性良好でかつ、 正極、 負極両方での使用を可能とし、 特に 負極での使用が良好である含フッ素ポリマーの開発を目的とする。
通常、 P T F Eなどはその耐酸ィヒ性良好な特性の反面、 負極では耐還元性が劣 り、 正極のみの使用となり、 負極と正極で、 異なる電極用バインダーを使用する 必要があった。 また、 含フッ素ポリマー結着剤で P VD Fは唯一、 両極での使用 が可能な樹脂であつたが、 一般的な電極製造方法である NMP溶剤ペースト塗布 工程の採用により、 NMP溶剤ペーストの粘度適性ィ匕のために分子量の使用制限 範囲があったり、 P VD Fの分子構造上、 塩基に弱い構造であったりと、 改良す べき問題点も多レ、材料であった。実際に、高分子量 P VD Fを電極にした際には、 電極の柔軟十生が高い、 強度のある電極が作製できる。 本発明では、 PVDF、 ETFE、 及ぴそれらの微量変性ポリマーなど、 ポリ マー中の含フッ素重量%が PVDF相当、 もしくはそれ以下となるポリマーを、 乳化重合することにより得られたポリマー微粒子を非ィオン性界面活性剤で安定 化した水性分散体を結着剤とし、 カルボキシルメチルセルロースなどの水溶性高 分子により増粘した水溶性ペーストを塗布する方法を採用した。 それにより、 P VDFではこれまで、 塗布不可能なまで NMPペースト粘度が上昇するため、 使 用できないでいた高分子量 PVDFや、 そのコポリマーなどを、 ペースト粘度を 上昇させることなく必要量使用することができ、 かつ電極材料中への均一分散が 可能となった。
発明を実施するための最良の形態
以下に、 本発明の実施例について説明する。
参考例 1〜12 :含フッ素ポリマーデイスパージヨンの作製
常法に従い、 6 L-ステンレス製ォートクレーブ中で含フッ素ポリマーの乳化重 合を行い、 以下の表 1に示される融点及び固形分濃度を有する含フッ素ポリマー のディスパージョンを得た。
いずれも、 重合温度は 80°C、 開始剤はアンモニゥムパーサルフェート (AP S),乳化剤にパーフルォロオクタン酸アンモニゥム塩(PFOA)水溶液(商品 名: D S 101、 ダイキン工業製)、連鎖移動剤にィソプロピルアルコール ( I P A) を使用して重合を行った。 分子量調整は、 重合圧力と、 連鎖移動剤、 開始剤 の量により調節した。
表 1
Figure imgf000018_0001
注) Vd F : フッ化ビニリデン、 TFE :テトラフルォロエチレン、
HFP :へキサフルォロエチレン、 E t :エチレン、
P VDF :ポリフツイ匕ビニリデン、 PTFE :ポリテトラフルォロエチレン、 MMME :マレイン酸モノメチルエステル、 P VF :ポリフッ化ビュル ディスパノール T OC :ポリォキシエチレンィソトリデシルエーテル (日本油脂
㈱製)
プロノン 104、 プロノン 204 :ポリォキシェチレンポリォキシプロピレンプ ロックポリマー (日本油脂㈱製)
Mw: GPC (NMP溶剤、 ポリスチレン換算) の重量平均分子量 製造例 1 :界面活性剤を使用して安定ィ匕された含フッ素ポリマーデイスパージョ ンの調製
参考例で示された含フッ素ポリマーディスパージョンの適した濃縮方法として、 重合後のディスパージヨンに本発明に係る界面活性剤を加え一次安定ィ匕させた後、 界面活性剤の曇点以上で一昼夜恒温にすることで濃縮されたディスパージョンを 得る相分離法や、 その他にも、 膜分離法、 電気濃縮法などの一般に知られた方法 が挙げられる。 このようにして、 固形分濃度を 40 65重量%程度に濃縮した 後、 保存もしくは運搬時の分散安定性確保のため、 仕上げに本発明に係る界面活 性剤を追加添加し、 安定性や液の粘性など取り扱い性を考慮した調整を施すなど して、 最終的にポリマー固形分濃度 55重量%の含フッ素ポリマーディスパージ ョンが得られた。
実施例 1〜 9及ぴ比較例:!〜 3 : ディスパージョンを電極用結着剤として用い て作製したコィン電池の電池物性測定
.表 1に示される含フッ素ポリマーデイスパージョンを結着剤として用いて電池 用電極を作製した。 電池作製の処方としては、 以下の方法で行った。
正極には、 分子量 2 5万の P VD Fを固形分濃度を 6重量%に調整したポリフッ 化ビニリデンの NMP (N-メチル - 2 -ピロリドン) 溶液に、 コバルト酸リチウム 9 2重量部、 アセチレンブラック 3重量部、 P V D Fポリマー 5重量部になるよ う、 添加し、 均一混合し、 スラリー化し、 正極ペーストとした。
この正極ペーストをアルミニウム箔の表面にドクターブレード法により塗布し、 1 2 0 °Cで 3 0分乾燥させた後、 1 0 0 °Cで真空乾燥を約 1 0時間行い、 水分除 去したものを正極とした。
負極には、 1 · 5 %カルボキシメチルセルロース水溶液を用い、黒鉛 9 0重量部 に対して、 表 1記載のポリマーデイスパージヨンのポリマー固形分濃度を 1 0重 量部相当量を、 均一なスラリーィ匕し、適宜、 1 . 5 %カルボキシメチルセルロース 水溶液を追添加することにより、 ドクタープレードで塗布可能な粘度に調整した ペーストを、 負極ペーストとした。
この負極ペーストを銅箔の表面にドクターブレード法により塗布し、 まず、 1 2 0 °Cで水分のみ乾燥した後、 表 1記載のポリマー融点近傍で、約 5〜 3 0分程 度加熱し、ポリマー融着による集電体への接着を施した。その後、再ぴ、 1 2 0 °C で 1 0時間真空乾燥を行い、 水分を除去し負極とした。
2 0 1 6コイン型電池用部品を準備し、 あらかじめ同コイン型電池の内径と同 様の径に打ち抜いた正極板、.負極板、 さらにセパレータとしてポリプロピレンを 用いた微多孔膜を準備した。
電解液としては電解質を 1モル · d m一3の L i P F 6として、 E C (炭酸ェチ レン) と EMC (炭酸ェチルメチル)の 1: 2体積比混合溶媒を用いて作製した。 以上の部品を用いることにより 2 0 1 6コイン型電池を作製した。
作製された電池は内部の幾何面積に対して電流密度が 0 . 5 Α · c m—2となるよ うに電流値をセットし、 電池電圧が 4 . 2 Vカゝら 3 Vの間で充放電を実施した。 この際、 初期容量を 5サイクル目の容量とし、 5 0サイクル後の容量と比較する ことで、容量の保持率が 9 0 %以上 (A;)、 または 9 0 %未満 (B ) の基準により 電池の優劣を判定することとした。
電池測定結果:
実施例及び比較例全ての電池ともに電極塗膜の結着性は良好であった。しかし、 電池特性においては、 実施例 1〜9までは、 ほぼ問題ないレベルであつたが、 比 較例 1〜 3は 5 0サイクル後の放電容量は初期の 9 0 %未満となっており、 実施 例と比べ劣るものであった。 特に、 比較例 3の P T F Eを負極バインダーで使用 した場合、 途中で充電できなくなった。 結果を表 2に示した。
表 2
Figure imgf000020_0001
表 2のような結果になったのは、 他のポリマーと比べ含 F率が高く、 更に、 T F E連鎖部分も多く存在しているため、 負極でのフッ素引き抜き反応がより多く起 こり、 電極内でのポリマー劣化が進行していったため、 電極抵抗が上昇したため と考えられる。 また、 P VD Fの中で、 分子量が極端に大きなものになるほど、 電極の結着性能が向上しているためと考えられる。 実施例 1 0 : ディスパージョンを電極用結着剤として用いて作製したコイン電 池の電池物性測定
表 1で示される含フッ素ポリマーデイスパージヨンのうち、 参考例 1と参考例 7の 2種類のデイスパージヨンを、 重量比で 5 0 / 5 0になるよう、 デイスパー ジョンブレンドしたものを用いて、 実施例 1〜 9と同様の処方で、 正極と、 負極 とを作製し、 実施例 1〜 9と同様に電池特性を測定した。 ただし、 負極作製時の 乾燥温度は、 ブレンドポリマーのうち、 低い方の融点を持つ、 参考例 7のポリマ 一融点である 1 4 8 °Cで行った。
結果は、 表 3にあるように、 5 0サイクル後の放電容量は良好な結果となり、 特にブレンドしたことによる電極作製条件の違レ、からサイクル特性劣化へ悪影響 を与えることなかつた。 電極作製条件の違レヽとは、 使用ポリマー融点が 1 6 8 °C と 1 4 8 °Cと異なるためにポリマーの融点が低い方の 1 4 8 °Cで乾燥し、 参考例 7のポリマーの融解接着のみで電極作製を行つたことである。当初の懸念要因は、 電極の集電体への接着性が各々ポリマーを単体で使用した実施例 1、 実施例 7の 場合と比べて劣ることであつたが、 前述のように問題なかった。
表 3
Figure imgf000021_0001
実施例 1 1及び比較例 4
(実施例 1 1 ) : 参考例 3で使用した濃縮ディスパージョンを使用して、 CMC 1 . 5 %水溶液にコパルト酸リチウム 9 2重量部、アセチレンブラック 3重量部、 P VD Fポリマー 5重量部になるよう、 均一混合しスラリー化したものを、 ドク ターブレードでアルミ箔に塗布し乾燥した。 接着性良好な正極が作製できた。 ま た、 実施例 1〜 9の正極用バインダーとして使用した分子量 2 5万の P V D Fで 作製した電極と比較してみたところ、 参考例 3の P VD Fが高分子量タィプであ つためか、 電極を手で 9 0度に約 5回程度折り曲げた際に、 粉落ちが少なく、 柔 軟性の優れた電極であつた。
(比較例 4 ): 同様に、参考例 3で使用した P V D Fの重合上がりのポリマーを 凝析、 乾燥したものを、 NM Pに固形分濃度を 6重量%になるように調整したポ リフッ化ビニリデンの NM P溶液に、 コバルト酸リチウム 9 2重量部、 ァセチレ ンブラック 3重量部、 P V D Fポリマー 5重量部になるよう添加し、均一混合し、 スラリー化したところ、 ペーストが増粘してうまく増粘できなかった。 また、 粘 度を下げるため、 NM Pを増量して再度スラリー化したが、 添カ卩した NM P量が 多すぎたためか、 ドクターブレードでアルミ塗布した際に、 塗布ペースト膜のは しが流れてしまい、 均一な膜厚制御ができなかった。
これは、 P V D Fの分子量が、 従来より非常に高いため、 NM Pペースト粘度が 上がりすぎてしまうことが原因である。 一方、 実施例 1 1では、 P V D Fが溶剤 である水に溶解せず、 分散している状態であり、 ペースト粘度は分子量に伴って 上昇することがないことを表している。
実施例 1 2、 1 3及び比較例 5
実施例 1 2として、 参考例 1記載の P V D Fディスパージョン (粒子径 0 . 2 5 μ τα) を用いて、 実施例 1 1と同様の処方で電極を作製し、 9 0度折り曲げ試験 をした。 その状態を目視観察した結果を下表に示した。 実施例 1 3として、 参考 例 1記載の分子量とほぼ同じ分子量で、 粒子径が 0 · 0 8 mと小さいものを、 比較例 5としては、 粒子径 1 . 2 μ mのものを、 各々実施例 1 2と同様に試験し た。 表 4に示すように、 粒子径の小さなものほど、 塗膜密着性の良好な膜が得ら れた。
表 4
含フッ
粒子径
実施例 素ポリ 塗布乾燥後の電極(目視) 電極折り曲げ後(目視)
( m)
マー
集電体との密着性は良好で、集電細いひび割れでたが、膜
12 PVDF 0.25 体から浮いた部分見当たらず。表ははがれなかった。膜が浮 面も凹凸なくなめらか いた部分が増えた 集電体との密着性は良好で、集電
細いひび割れでたが、膜
13 PVDF 0.08 体から浮いた部分見当たらず。表
ははがれなかった 面も凹凸なくなめらか
集電体との密着性悪く、集電体か
折り曲げでほとんどはがれ 比較例 5 PVDF 2.5 ら浮いた部分多い。表面凹凸も多

Claims

請求の範囲
1. 界面活性剤を含む含フッ素ポリマーの水性分散体からなる電極用添加剤 であって、 含フッ素ポリマーの一般式 (1) : フッ素含有率 (重量%) =
(繰り返し単位の分子構造式中のフッ素原子の平均数 Xフッ素原子量 (19)) ω
(繰り返し単位の平均分子量) '
で示されるフッ素含有率の上限値が 67.0重量%、かつフッ素含有率の下限値が 45. 0重量%であることを特 ί敷とする電極用添加剤。
2. 負極用添加剤である、 請求項 1に記載の電極用添加剤。
3. 界面活性剤の主成分が、 一般式 (2) :
R1-0-(CH2CH2O)n-(A1)p-(CH2CH20) r-R2 (2) (式中 A1は一 CH(CH3)〇1120—または_〇11(〇1^3)—。?12。1120—を示 す。
R 1、 R 2は水素原子、 炭素数 1〜 20の分岐、 もしくは直鎖状アルキル基、 ま たは炭素数 3〜 20の分岐もしくは直鎖状ァルケ-ル基を示す。
pは 0〜400の整数、 qは 1〜400の整数、 rは 0〜 400の整数であり、 5≤p + q + r≤ 1000 及び 1≤ (q + r) /p≤ 800 (pが 0でな いとき) である。
ただし、 =0の時はで =0 ;
l≤p≤400の時は、 0≤ r≤400である。)
で示される非イオン性界面活性剤である請求項 1又は 2に記載の電極用添加剤。
4. ポリマー固形分に対して界面活性剤を 0.1〜 25重量%使用する請求項 1〜 3のいずれかに記載の電極用添加剤。
5. 含フッ素ポリマーが、 フッ化ビニリデン /テトラフルォロエチレン ひ = 100〜40 0〜35/0〜25 (モル0 /0) (ここで、 (¾はフッ化ビニリデン 及ぴテトラフルォロエチレンと共重合しうる 1種類以上の単量体である) のモノ マー比率を有する請求項 1〜 4のいずれかに記載の電極用添加剤。
6 . 含フッ素ポリマーが、 エチレン Zテトラフルォロエチレン Ζ ι8 == 3 0〜 6 0 Z 3 0〜 7 0 / 0〜 2 5 (モル0 /0) (ここで、 j3はエチレン及びテトラフル ォロエチレンと共重合しうる 1種類以上の単量体である) のモノマー比率を有す る請求項 1 〜 4のいずれかに記載の電極用添加剤。
7 . 含フッ素ポリマーが、 乳化重合により得られた含フッ素ポリマー微粒子 である、 請求項 1 〜 6に記載のいずれかに記載の電極用添加剤。
8 . 含フッ素ポリマーは微粒子であり、かつ、平均粒子径が 0 . 0 2 μ m〜 1 . 0 μ mである請求項 1〜 7のいずれかに記載の電極用添加剤。
9 . 含フッ素ポリマーのゲルパーミエーシヨンクロマトグラフィ一法 (溶媒 は N—メチルピロリ ドン、 ポリスチレン換算) で測定した重量平均分子量が 1 5 万以上、 好ましくは 3 0万以上であることを特徴とする請求項:!〜 8のいずれか に記載の電極用添加剤。
1 0 . 含フッ素ポリマーがポリフッ化ビニリデンである請求項 1〜 9のいず れかに記載の電極用添加剤。
1 1 . 含フッ素ポリマーが、 少なくとも 2種類のポリマーのブレンドである 請求項 1〜 1 0のいずれかに記載の電極用添加剤。
1 2 . 請求項 1〜 1 1のいずれかに記載の電極用添加剤を使用した電池、 ま たはキャパシター用の電極。
1 3 . 請求項:!〜 1 1のいずれかに記載の電極用添加剤を電極用結着剤とし て使用したリチウムィオン電池。
1 4 . 請求項:!〜 1 1の!/ヽずれかに記載の電極用添加剤を電極用結着剤とし て使用したリチウムポリマー電池。
PCT/JP2003/008549 2002-07-05 2003-07-04 電極用添加剤 WO2004006363A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-197975 2002-07-05
JP2002197975A JP2004039569A (ja) 2002-07-05 2002-07-05 電極用添加剤

Publications (1)

Publication Number Publication Date
WO2004006363A1 true WO2004006363A1 (ja) 2004-01-15

Family

ID=30112415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008549 WO2004006363A1 (ja) 2002-07-05 2003-07-04 電極用添加剤

Country Status (2)

Country Link
JP (1) JP2004039569A (ja)
WO (1) WO2004006363A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318634B2 (en) 2011-07-13 2016-04-19 Denka Company Limited Vinylidene fluoride resin composition, resin film, back sheet for solar cells, and solar cell module
CN110226249A (zh) * 2017-11-14 2019-09-10 株式会社Lg化学 正极浆料组合物以及包括该组合物的用于锂二次电池的正极和锂二次电池
WO2023097467A1 (zh) * 2021-11-30 2023-06-08 宁德时代新能源科技股份有限公司 正极浆料组合物及包含其的正极极片、二次电池、电池模块、电池包和用电装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893229B1 (ko) * 2006-02-06 2009-04-16 주식회사 엘지화학 전극 활물질에 계면활성제를 포함하고 있는 리튬 이차전지
JP2008234851A (ja) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP5509644B2 (ja) * 2009-03-24 2014-06-04 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池
WO2010134465A1 (ja) * 2009-05-18 2010-11-25 旭硝子株式会社 含フッ素結着剤
WO2011129410A1 (ja) * 2010-04-16 2011-10-20 旭硝子株式会社 含フッ素バインダー組成物、それを用いた二次電池用電極合剤、二次電池用電極及び二次電池
JP6326255B2 (ja) * 2014-03-19 2018-05-16 三洋化成工業株式会社 電池用添加剤
JP6829943B2 (ja) * 2016-03-10 2021-02-17 株式会社クレハ ゲル状電解質およびその調製方法
JP6829941B2 (ja) * 2016-03-10 2021-02-17 株式会社クレハ ゲル状電解質およびその調製方法
JP2019040665A (ja) * 2017-08-22 2019-03-14 トヨタ自動車株式会社 非水電解質二次電池用正極の製造方法
JP2019071294A (ja) * 2019-02-06 2019-05-09 株式会社クレハ 水性ラテックス、セパレータ/中間層積層体、及び非水電解質二次電池用構造体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306474A (ja) * 1996-05-14 1997-11-28 Kazuo Tagawa 電極用塗布ペースト及び非水系二次電池電極
US5714282A (en) * 1995-05-23 1998-02-03 Tagawa; Kazuo Coating paste and a nonaqueous electrode for a secondary battery
JPH10302799A (ja) * 1997-04-25 1998-11-13 Jsr Corp 非水系電池電極用バインダー
WO2001078171A1 (en) * 2000-04-07 2001-10-18 Daikin Industries, Ltd. Additive for electrode
JP2002158012A (ja) * 2000-11-21 2002-05-31 Seimi Chem Co Ltd 非水系電池用の電極体製造用スラリー組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714282A (en) * 1995-05-23 1998-02-03 Tagawa; Kazuo Coating paste and a nonaqueous electrode for a secondary battery
JPH09306474A (ja) * 1996-05-14 1997-11-28 Kazuo Tagawa 電極用塗布ペースト及び非水系二次電池電極
JPH10302799A (ja) * 1997-04-25 1998-11-13 Jsr Corp 非水系電池電極用バインダー
WO2001078171A1 (en) * 2000-04-07 2001-10-18 Daikin Industries, Ltd. Additive for electrode
JP2002158012A (ja) * 2000-11-21 2002-05-31 Seimi Chem Co Ltd 非水系電池用の電極体製造用スラリー組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318634B2 (en) 2011-07-13 2016-04-19 Denka Company Limited Vinylidene fluoride resin composition, resin film, back sheet for solar cells, and solar cell module
CN110226249A (zh) * 2017-11-14 2019-09-10 株式会社Lg化学 正极浆料组合物以及包括该组合物的用于锂二次电池的正极和锂二次电池
US11233242B2 (en) 2017-11-14 2022-01-25 Lg Energy Solution, Ltd. Positive electrode slurry composition, and positive electrode for secondary battery and lithium secondary battery which include the composition
CN110226249B (zh) * 2017-11-14 2022-05-24 株式会社Lg化学 正极浆料组合物以及包括该组合物的用于锂二次电池的正极和锂二次电池
WO2023097467A1 (zh) * 2021-11-30 2023-06-08 宁德时代新能源科技股份有限公司 正极浆料组合物及包含其的正极极片、二次电池、电池模块、电池包和用电装置

Also Published As

Publication number Publication date
JP2004039569A (ja) 2004-02-05

Similar Documents

Publication Publication Date Title
JP6002577B2 (ja) 水性ポリフッ化ビニリデン組成物
EP3484933B1 (en) Fluorinated surfactant-free aqueous dispersion of a vinylidene fluoride copolymer comprising hydroxyl groups
KR101993590B1 (ko) 수분산 불소중합체 조성물
CN104396048B (zh) 用于锂离子电池的整合式电极隔膜组件
JP2016033913A (ja) 二次電池用セパレータ及び二次電池
CN112055883A (zh) 在电化学装置中使用的含氟聚合物粘结剂涂料
WO2001078171A1 (en) Additive for electrode
JP2009155558A (ja) 溶融加工性含フッ素ポリマーの製造方法
WO2012043765A1 (ja) 非水系二次電池用正極合剤、それを用いた非水系二次電池用正極および二次電池
WO2004006363A1 (ja) 電極用添加剤
WO2018216348A1 (ja) 二次電池用セパレータ及び二次電池
JP6065689B2 (ja) 二次電池電極用バインダーの製造方法、二次電池電極の製造方法、及び二次電池の製造方法
CN117280484A (zh) 含氟聚合物粘合剂
JP6430617B1 (ja) 非水電解液二次電池
US20240222635A1 (en) Fluoropolymer binder
WO2023127432A1 (ja) 非水電解質二次電池用バインダー、電極合剤、電極、および電池
WO2020025772A1 (en) Battery separator coating

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR