WO2004005908A1 - バイオセンサ,バイオセンサチップ及びバイオセンサ装置 - Google Patents

バイオセンサ,バイオセンサチップ及びバイオセンサ装置 Download PDF

Info

Publication number
WO2004005908A1
WO2004005908A1 PCT/JP2003/007593 JP0307593W WO2004005908A1 WO 2004005908 A1 WO2004005908 A1 WO 2004005908A1 JP 0307593 W JP0307593 W JP 0307593W WO 2004005908 A1 WO2004005908 A1 WO 2004005908A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosensor
working electrode
counter electrode
terminal
voltage
Prior art date
Application number
PCT/JP2003/007593
Other languages
English (en)
French (fr)
Inventor
Hiroya Ueno
Junji Nakatsuka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2004519207A priority Critical patent/JP4196947B2/ja
Priority to US10/488,325 priority patent/US7540947B2/en
Priority to DE10392159T priority patent/DE10392159B4/de
Publication of WO2004005908A1 publication Critical patent/WO2004005908A1/ja
Priority to US12/360,639 priority patent/US8388820B2/en
Priority to US12/399,444 priority patent/US8231768B2/en
Priority to US12/618,084 priority patent/US8568579B2/en
Priority to US13/481,381 priority patent/US8574423B2/en
Priority to US13/481,413 priority patent/US8496794B2/en
Priority to US13/934,766 priority patent/US8900430B2/en
Priority to US13/934,915 priority patent/US8888975B2/en
Priority to US13/934,847 priority patent/US8888974B2/en
Priority to US14/508,668 priority patent/US9086372B2/en
Priority to US14/508,780 priority patent/US9074997B2/en
Priority to US14/509,762 priority patent/US9080954B2/en
Priority to US14/509,802 priority patent/US9075000B2/en
Priority to US14/509,728 priority patent/US9074999B2/en
Priority to US14/512,243 priority patent/US9068931B2/en
Priority to US14/512,227 priority patent/US9080956B2/en
Priority to US14/512,157 priority patent/US9080955B2/en
Priority to US14/512,207 priority patent/US9080960B2/en
Priority to US14/512,781 priority patent/US9080957B2/en
Priority to US14/512,838 priority patent/US9080958B2/en
Priority to US14/512,817 priority patent/US9074998B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/307Disposable laminated or multilayered electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Definitions

  • the present invention relates to a biosensor and a biosensor device for electronically detecting a binding reaction of a biological substance such as an oligonucleotide, an antigen, an enzyme, a peptide, an antibody, a DNA fragment, an RNA fragment, glucose, lactate, and cholesterol. .
  • a biological substance such as an oligonucleotide, an antigen, an enzyme, a peptide, an antibody, a DNA fragment, an RNA fragment, glucose, lactate, and cholesterol.
  • biosensor device used for detecting the amount of glucose in a blood sample, that is, a blood glucose level, described in Japanese Patent Application No. 11-509644 as a conventional example
  • biosensor refers to a disposable portion including a detection portion of a biological substance
  • biosensor chip refers to a disposable portion having a biosensor and a measurement circuit mounted on a substrate. Points.
  • biosensor device refers to the entire device including a biosensor or a biosensor chip and an analysis circuit and other components.
  • FIG. 45 is a plan view showing the structure of a conventional biosensor.
  • the biosensor 1 1 2 2 shown in FIG. 1 has a working electrode (anode) 1 101 and a counter electrode (cathode) 1 102 opposite to the working electrode 1 1 0 1.
  • a reaction reagent (not shown) composed of an enzyme, a medium, or the like corresponding to the component to be measured is applied to the counter electrode 01 and the counter electrode 112.
  • the working electrode 1101 is led to the working electrode 1103 via a conductive wiring having a wiring resistance Rp1.
  • the counter electrode 1102 is a conductor having a wiring resistance Rm1. It is led to the counter electrode terminal 110 4 through the electric wiring.
  • FIG. 43 is a circuit diagram showing a part of a conventional biosensor device. As shown in the figure, the conventional biosensor device has a configuration in which the working electrode terminal 1103 and the counter electrode terminal 1104 of the biosensor 1122 shown in Fig. 45 are connected to the measurement circuit 1123. Yes.
  • the measurement circuit 1 1 2 3 includes, for example, a reference voltage source 1 1 1 7, a counter electrode voltage application section 1 1 0 6, a working electrode voltage application section 1 1 0 5 having an ammeter, and a signal processing circuit 1 1 2 1
  • the working electrode reference voltage Vpr 1 generated from the reference voltage source 111 is impedance-converted by the working electrode voltage applying unit 111, the working electrode voltage applying unit 111
  • the working electrode terminal 1 1 0 3 is supplied with the working electrode terminal voltage Vpl from 05. At this time, the following equation holds.
  • Vp l Vp r 1, 1)
  • Vp 1 and Vpr 1 in the equation (1) indicate potential or voltage values. The same applies to the following Vml, Vmr ".
  • the value of the current flowing out to the working electrode terminal 1103 is measured by the working electrode voltage application unit 1105, and the working electrode current amount signal s1120 indicating the result is supplied to the signal processing circuit 1121. Paid. In the conventional biosensor device, the concentration of the component to be measured is converted based on the amount of current measured here, and the result is displayed. At this time, if the electrode applied voltage between the working electrode terminal 1103 and the counter electrode terminal 1104 is Vf1, the following equation (3) holds.
  • V f 1 V p r 1-Vm r 1 (3)
  • the voltage applied to the sensor between the working electrode 1101 and the counter electrode 1102 is Vf. Furthermore, when the blood sample is spotted on the biosensor 112, a charge corresponding to the amount of glucose is generated at the working electrode 1101 and the counter electrode 1102, so that a current flows between the electrodes. Here, the current flowing to the working electrode 1101 side flows to If 1 and the counter electrode 1102 side flows. Assuming that the current is I f 2, the following equation holds.
  • FIG. 44 is a circuit diagram showing a conventional biosensor device including a specific circuit configuration example of the working electrode voltage application unit 1105 and the counter electrode voltage application unit 110.
  • the working electrode voltage application unit 1105 has a circuit configuration in which a feedback resistor R f is negatively fed back to the operational amplifier, and the counter electrode voltage application unit 1106 uses the NU11—amplifier as the operational amplifier.
  • the configuration that is, the buffer circuit configuration realizes the above-described functions.
  • FIG. 46 is a plan view showing the structure of the biosensor chip 1124 in the conventional biosensor device shown in FIG. In this example, only one pair of the biosensor 1 1 2 2 and the measurement circuit 1 1 2 3 are formed on the same substrate.
  • the conductive wire on the working electrode side of the wiring resistance Rp 1 and the conductive wire on the opposite electrode side of the wiring resistance Rm 1 The following formula is established with respect to the electrode applied voltage Vf1 and the sensor applied voltage Vf which is a difference voltage between the working electrode voltage Vp and the counter electrode voltage Vm.
  • Vf Vf l-(Rp lxlfl + Rm lxlf 2) (5) Kirchhoff's law is applied to the current I f 1 flowing to the working electrode 1 101 and the current I f 2 flowing to the counter electrode 110 2. The following equation holds.
  • Equation (3) Substituting Equations (3) and (6) into Equation (5) and rearranging them gives the following equation.
  • Vf (Vp rl -Vmr l)-(Rp l + Rm l) xlfl (7) Therefore, the electrode applied voltage (Vp rl—Vmr l) supplied from the measurement circuit 1 1 2 3 to the biosensor 1 1 2 2 ) Drops the potential by (R pl + Rm l) xlfl and becomes the sensor applied voltage V f.
  • the amount of glucose in blood can be easily measured.
  • the current If1 due to the charge generated from the reaction reagent is expressed by the following equation based on the glucose amount Q and the sensor applied voltage Vf.
  • I f 1 f ⁇ Q ⁇ V f ⁇ (8)
  • I f 1 f ⁇ Q, (Vp r 1-Vmr 1) one (R p 1 + Rm 1) x I f 1 ⁇ (9)
  • the biosensor device is formed as a biosensor chip 111
  • fine processing technology is used for the conductive wiring.
  • the size of the biosensor chip will be further miniaturized, in which case the wiring resistance will be higher and a large error will occur, and the measurement accuracy of the biosensor device will be significantly reduced.
  • An object of the present invention is to provide a biosensor and a biosensor device capable of solving the above-mentioned problems of the conventional technology and capable of performing measurement without being affected by the wiring resistance of the conductive wiring.
  • the biosensor according to the present invention includes a working electrode that is in contact with the fluid to be measured at the time of measurement, and a counter electrode that is in contact with the fluid to be measured at the time of measurement and is spaced from the working electrode at an interval for flowing the fluid to be measured.
  • a working electrode terminal connected to the working electrode, a counter electrode terminal connected to the counter electrode, and connected to one or both of the working electrode and the counter electrode to measure Sometimes a reference terminal through which current does not substantially flow.
  • the provision of the reference terminal allows the measurement of the fluid to be measured without being affected by the resistance between the working electrode and the working electrode terminal or between the counter electrode and the counter electrode terminal.
  • a biosensor capable of high-accuracy measurement can be realized.
  • At least one of the working electrode and the counter electrode is immobilized with a biological substance or a microorganism that changes the state of a substance contained in the fluid to be measured, such as a catalytic reaction by an enzyme, an antigen-antibody reaction, This makes it possible to electrically detect changes in the fluid to be measured due to a binding reaction between genes. This enables more detailed measurement than the measurement using fluorescence.
  • the reference terminal is connected only to either the working electrode or the counter electrode, highly accurate measurement can be performed with fewer components compared to the case where both the working electrode and the counter electrode are provided with reference terminals. Can be made possible. Therefore, the biosensor in this case is particularly effective when a reduction in manufacturing cost and a reduction in area are required.
  • the first wiring for connecting the working electrode and the working electrode terminal By further providing a second wiring for connecting the counter electrode and the reference terminal and a third wiring for connecting the counter electrode and the counter electrode, the shapes of these wirings are different. High accuracy measurement can be realized.
  • the reference terminal includes a working electrode reference terminal connected to the working electrode and a counter electrode reference terminal connected to the counter electrode, the reference terminal is compared with a case where the reference terminal is provided only on one of the working electrode and the counter electrode. Measurement can be performed with high accuracy.
  • At least two of the wirings are provided in different wiring layers from each other and at least partially overlap in plan view, so that all wirings are the same wiring
  • the circuit area can be reduced as compared with the case where it is provided in a layer. Since the first wiring and the second wiring are provided in different wiring layers from each other, a circuit area can be reduced by arranging both wirings so as to overlap each other. .
  • the circuit area can be reduced.
  • the working electrode, the counter electrode, the reference terminal, the working electrode terminal, the counter electrode terminal, the first wiring, the second wiring, and the third wiring are provided on a substrate, and the working electrode terminal or the working electrode Since one of the counter electrode terminals is provided on the back surface of the substrate, the wiring area can be made larger, so that the resistance can approach the ideal value of 0 ⁇ .
  • working electrode terminal and the counter electrode terminal may be provided in different wiring layers.
  • the third wiring may be provided over a plurality of wiring layers.
  • the counter electrode When the reference terminal is connected to only one of the working electrode and the counter electrode, the counter electrode is substantially circular, and a part of the inner periphery of the working electrode is a circle having a substantially constant distance from the counter electrode.
  • the circumferential shape makes it possible to make the reaction of the fluid to be measured uniform and to make the electric field applied to the first and counter electrodes uniform, so that the measurement accuracy can be further improved.
  • the reaction of the fluid to be measured can be uniform.
  • the electric field applied to the first and counter electrodes becomes uniform, so that the measurement accuracy can be further improved.
  • the number of electrodes can be reduced, so that the number of manufacturing steps can be reduced.
  • the manufacturing cost can be reduced.
  • the cross-sectional area of the wiring connected to the counter electrode terminal can be increased, the wiring resistance on the counter electrode terminal side can be reduced.
  • the number of electrodes can be reduced even by being integrated. Can be reduced.
  • the resistance of the third wiring can be made closer to the ideal value of 0 ⁇ .
  • the biosensor chip of the present invention has a working electrode that is in contact with the fluid to be measured during measurement, a counter electrode that is in contact with the fluid to be measured at the time of measurement, and is spaced from the working electrode at an interval for flowing the fluid to be measured.
  • a sensor for holding the fluid to be measured a working electrode terminal connected to the working electrode, a counter electrode connected to the counter electrode, and connected to one or both of the working electrode and the counter electrode It has a reference terminal through which a current does not substantially flow during measurement, and includes a biosensor provided on the substrate, and a measurement circuit connected to the biosensor and provided on the substrate.
  • the working electrode and the counter electrode Since at least one of the working electrode and the counter electrode is immobilized with a biological substance or a microorganism that changes the state of a substance contained in the fluid to be measured, quick and detailed measurement can be realized. it can.
  • the reference terminal is connected only to either the working electrode or the counter electrode, highly accurate measurement can be performed with a small number of constituent members.
  • the reference terminal is connected to the working electrode
  • the measurement circuit is connected to the working electrode
  • a working electrode voltage application unit having an ammeter a working electrode potential reference circuit connected to the reference terminal
  • a counter electrode voltage application unit connected to the counter electrode terminal
  • a reference voltage source for supplying a reference voltage to the working electrode potential reference circuit and the counter electrode voltage applying unit, respectively
  • a signal processing circuit for processing a current amount signal output from the working electrode voltage application unit according to the current amount may be provided.
  • the working electrode potential reference circuit generates a signal such that the voltage applied to the reference terminal is substantially equal to the reference voltage supplied to the working electrode potential reference circuit. It is preferable to perform good measurement.
  • the reference terminal is connected to the counter electrode
  • the measurement circuit is a working electrode voltage application unit connected to the working electrode terminal, a counter electrode voltage application unit connected to the counter electrode terminal and having an ammeter, and the reference terminal
  • a reference voltage source for supplying a reference voltage to the counter electrode potential reference circuit and the working electrode voltage applying unit, respectively, according to an amount of current flowing to the counter electrode terminal during measurement.
  • a signal processing circuit for processing a current amount signal output from the counter electrode voltage applying unit may be provided.
  • the counter electrode potential reference circuit generates a signal such that the voltage applied to the reference terminal is substantially equal to the reference voltage supplied to the counter electrode potential reference circuit.
  • the reference terminal is connected to the working electrode
  • the measurement circuit is connected to the working electrode terminal and the reference terminal, and a working electrode voltage application unit having an ammeter; and a counter electrode voltage application unit connected to the counter electrode terminal.
  • a reference voltage source for supplying a reference voltage to each of the working electrode voltage applying unit and the counter electrode voltage applying unit; and an output from the working electrode voltage applying unit according to an amount of current flowing to the working electrode terminal during measurement.
  • the reference terminal is connected to the counter electrode
  • the measurement circuit includes a working electrode voltage application unit connected to the working electrode terminal, a counter electrode voltage application unit connected to the counter electrode terminal and the reference terminal, and having an ammeter.
  • a reference voltage source for supplying a reference voltage to each of the counter electrode voltage applying section and the working electrode voltage applying section, and an output from the counter electrode voltage applying section according to the amount of current flowing to the counter electrode terminal during measurement.
  • the measurement circuit includes: a working electrode voltage application unit connected to the working electrode terminal and the working electrode reference terminal; a counter electrode voltage application unit connected to the counter electrode terminal and the counter electrode reference terminal; Supply a reference voltage to each of the working electrode voltage application sections a first current amount signal output from the working electrode voltage applying section in accordance with the amount of current flowing through the working electrode terminal during measurement, and a current flow rate flowing through the counter electrode terminal during measurement. And a signal processing circuit for processing at least one of the second current amount signals output from the counter electrode voltage applying section.
  • the signal processing circuit can perform measurement using the two current amount signals by processing both the first current amount signal and the second current amount signal. Can be further improved.
  • the substrate on which the biosensor is provided and the substrate on which the measurement circuit is provided are the same substrate, manufacturing can be facilitated.
  • the biosensor chip further includes a common substrate, and the substrate on which the biosensor is provided and the substrate on which the measurement circuit is provided are mounted on the common substrate.
  • Biosensor chips can be manufactured even when they react with biological substances or reagents immobilized on the first and counter electrodes, or when the wiring of the measurement circuit and the wiring of the biosensor cannot be shared. Become like Since the substrate on which the biosensor is provided and the substrate on which the measurement circuit is provided are stacked, the biosensor chip can have a smaller area, and the manufacturing cost can be reduced. .
  • a plurality of the biosensors are provided on the same substrate, and at least two of the biosensors are connected to the same measurement circuit, and the biosensor is connected between the working electrode terminal of each biosensor and the measurement circuit.
  • a switch for turning on or off the connection between the biosensor and the measurement circuit is further provided between the reference terminal and the measurement circuit and between the counter electrode terminal and the measurement circuit.
  • the biosensor device comprises: a working electrode that is in contact with the fluid to be measured at the time of measurement; A sensor electrode for holding the fluid to be measured; a working electrode terminal connected to the working electrode; a counter electrode terminal connected to the counter electrode; and a counter electrode of the working electrode and the counter electrode.
  • a biosensor provided on the substrate, having a reference terminal connected to one or both of them and having substantially no current flowing during measurement, and a measurement provided on the substrate connected to the biosensor A circuit for measuring the concentration of the substance to be measured contained in the fluid to be measured from the value of the current flowing through one or both of the working electrode terminal and the counter electrode terminal during measurement.
  • the target substance can be measured more quickly and with higher precision than before.
  • the reference terminal is connected to either the working electrode or the counter electrode only, measurement with higher accuracy than before can be realized, and compared to the case where reference terminals are provided for both the working electrode and the counter electrode. The number of parts can be reduced.
  • the reference terminal includes a working electrode reference terminal connected to the working electrode, and a counter electrode reference terminal connected to the counter electrode.
  • the measurement circuit is connected to the working electrode terminal and the working electrode reference terminal.
  • a signal processing circuit for processing at least one of the second current amount signals output from the application unit, thereby providing a resistance between the working electrode and the working electrode terminal, and a counter electrode and a counter electrode terminal.
  • the voltage applied to the working electrode reference terminal is substantially equal to the reference voltage supplied to the working electrode voltage application unit, and the voltage applied to the counter electrode reference terminal is supplied to the counter electrode voltage application unit. It is preferable for the measurement to be substantially equal to the reference voltage to be measured.
  • Accurate measurement is possible by further comprising a circuit connected to the measurement circuit for analyzing a signal output from the measurement circuit.
  • the biosensor and the measurement circuit are provided on the same chip, and the chip is replaceable, so that contamination between samples can be prevented and measurement can be simplified.
  • the measuring circuit receives the first current amount signal and the second current amount signal, and outputs a third current amount signal representing an amount of current flowing between the working electrode and the counter electrode to the signal processing circuit.
  • the configuration further includes a current amount signal generation unit that outputs a current signal to the signal processing circuit, so that the configuration of a signal processing circuit provided at a subsequent stage can be simplified, and the device can be downsized.
  • the reference terminal is connected to the working electrode, the measurement circuit is connected to the working electrode terminal, and a working electrode voltage applying unit having an ammeter; a working electrode potential reference circuit connected to the reference terminal; A counter electrode voltage application unit connected to the counter electrode terminal; a reference voltage source for supplying a reference voltage to the working electrode potential reference circuit and the counter electrode voltage application unit; and a current flowing to the working electrode terminal during measurement And a signal processing circuit for processing a current amount signal output from the working electrode voltage applying unit according to the amount.
  • the voltage applied to the reference terminal is referred to the working electrode potential.
  • the working electrode potential reference circuit generates a signal so as to be substantially equal to the reference voltage supplied to the circuit for accurate measurement.
  • the reference terminal is connected to the counter electrode
  • the measurement circuit is a working electrode voltage application unit connected to the working electrode terminal, a counter electrode voltage application unit connected to the counter electrode terminal and having an ammeter, and the reference terminal
  • a reference voltage source for supplying a reference voltage to the counter electrode potential reference circuit and the working electrode voltage applying unit, respectively, according to an amount of current flowing to the counter electrode terminal during measurement.
  • a signal processing circuit for processing a current amount signal output from the counter electrode voltage applying unit may be provided.
  • the counter electrode potential reference circuit generates a signal such that the voltage applied to the reference terminal is substantially equal to the reference voltage supplied to the counter electrode potential reference circuit.
  • the reference terminal is connected to the working electrode
  • the measurement circuit is connected to the working electrode terminal and the reference terminal, and a working electrode voltage applying unit having an ammeter
  • a connected counter electrode voltage applying unit, a reference voltage source for supplying a reference voltage to each of the working electrode voltage applying unit and the counter electrode voltage applying unit, and A signal processing circuit for processing the current amount signal output from the working electrode voltage applying unit may be provided.
  • the reference terminal is connected to the counter electrode
  • the measurement circuit includes a working electrode voltage application unit connected to the working electrode terminal, a counter electrode voltage application unit connected to the counter electrode terminal and the reference terminal, and having an ammeter.
  • a reference voltage source for supplying a reference voltage to each of the counter electrode voltage applying section and the working electrode voltage applying section, and an output from the counter electrode voltage applying section according to the amount of current flowing to the counter electrode terminal during measurement.
  • a signal processing circuit for processing the current amount signal.
  • FIG. 1 is a circuit diagram showing a part of the biosensor device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a part of the biosensor device according to the first embodiment including a specific circuit configuration of a working electrode voltage application unit and a counter electrode voltage application unit.
  • FIG. 3 is a circuit diagram showing a part of a biosensor device according to a sixth embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing a part of a biosensor device according to a sixth embodiment including specific configurations of a working electrode voltage application unit and a counter electrode voltage application unit.
  • FIG. 5 is a circuit diagram showing a part of a biosensor device according to a seventh embodiment of the present invention.
  • FIG. 6 is a circuit diagram illustrating a part of a biosensor device according to a seventh embodiment including specific configurations of a working electrode voltage application unit and a counter electrode voltage application unit.
  • FIG. 7 is a circuit diagram showing a part of a biosensor device according to an eighth embodiment of the present invention.
  • FIG. 15 is a circuit diagram showing a part of a biosensor device according to an eighth embodiment including a general configuration.
  • FIG. 9 is a plan view showing the biosensor according to the first embodiment.
  • FIG. 10 is a diagram showing a biosensor according to the first embodiment in a case where conductive wirings are multilayered.
  • FIG. 11 is a plan view and a perspective view showing a biosensor according to a second embodiment of the present invention.
  • FIG. 12 is a plan view and a perspective view showing a biosensor according to a third embodiment of the present invention.
  • FIG. 13 is a plan view and a perspective view showing a biosensor according to a fourth embodiment of the present invention.
  • FIG. 14 is a plan view and a perspective view showing a biosensor according to a fifth embodiment of the present invention.
  • FIG. 15 is a plan view showing a biosensor chip according to a ninth embodiment of the present invention.
  • FIG. 16 is a plan view showing a first modification of the biosensor chip according to the ninth embodiment.
  • FIG. 17 is a plan view showing a second modified example of the biosensor chip according to the ninth embodiment.
  • FIG. 18 is a plan view showing a third modification of the biosensor chip according to the ninth embodiment.
  • FIG. 19 is a plan view showing a biosensor chip according to the tenth embodiment of the present invention.
  • FIG. 20 is a sectional view of the biosensor chip according to the tenth embodiment.
  • FIG. 21 is a plan view showing a biosensor according to a first embodiment of the present invention.
  • FIG. 22 is a plan view and a perspective view showing a biosensor according to a first embodiment of the present invention. is there.
  • FIG. 23 is a plan view showing a biosensor chip according to a thirteenth embodiment of the present invention. It is.
  • FIG. 24 is a circuit diagram showing a configuration of the biosensor chip according to the fourteenth embodiment of the present invention.
  • FIG. 25 is a plan view showing the biosensor chip according to the fourteenth embodiment.
  • FIG. 26 is a plan view showing a biosensor chip according to a fifteenth embodiment of the present invention.
  • FIG. 27 is a circuit configuration diagram showing a biosensor device according to a sixteenth embodiment of the present invention.
  • FIG. 28 is a circuit diagram showing a biosensor device according to a sixteenth embodiment of the present invention.
  • FIG. 29 is a circuit diagram showing a working electrode voltage application unit and a counter electrode voltage application unit in the biosensor device according to the sixteenth embodiment.
  • FIG. 30 is a circuit configuration diagram showing a biosensor device according to a seventeenth embodiment of the present invention.
  • FIG. 31 is a circuit configuration diagram illustrating a biosensor device according to an eighteenth embodiment of the present invention.
  • FIG. 32 is a plan view of the biosensor according to the nineteenth embodiment of the present invention.
  • FIG. 33 is a plan view showing a biosensor according to a twenty-second embodiment of the present invention.
  • FIG. 34 is a plan view showing a biosensor according to a twenty-first embodiment of the present invention.
  • 5 is a plan view showing a biosensor according to a 22nd embodiment of the present invention.
  • FIG. 36 is a plan view showing a biosensor chip according to a 23rd embodiment of the present invention.
  • FIG. 37 is a plan view showing a biosensor chip according to the twenty-fourth embodiment of the present invention.
  • FIG. 38 is a plan view showing a biosensor chip according to the twenty-fifth embodiment of the present invention.
  • FIG. 39 is a plan view showing a biosensor chip according to the 26th embodiment of the present invention.
  • FIG. 40 is a circuit configuration diagram showing a measurement circuit module according to the 26th embodiment.
  • FIG. 41 is a plan view showing a biosensor chip according to a twenty-seventh embodiment of the present invention.
  • FIG. 42 is a structural diagram showing a biosensor chip according to a twenty-eighth embodiment of the present invention.
  • FIG. 43 is a circuit diagram showing a part of a conventional biosensor device.
  • FIG. 44 is a circuit diagram showing a part of a conventional biosensor device including a specific circuit configuration example of a working electrode voltage applying unit and a counter electrode voltage applying unit.
  • FIG. 45 is a plan view showing the structure of a conventional biosensor.
  • FIG. 46 is a plan view showing the structure of a biosensor chip of the conventional biosensor device shown in FIG. Best Embodiment
  • FIG. 1 is a circuit diagram showing a part of a biosensor device according to a first embodiment of the present invention
  • FIG. 9 is a plan view showing a biosensor according to the first embodiment.
  • the biosensor 15 of the present embodiment includes a working electrode 101, a counter electrode 102 opposite to the working electrode 101, and a working electrode both connected to the working electrode 101. It has a child 103 and a working electrode reference terminal 10, and a counter electrode terminal 104 connected to the counter electrode 102.
  • a 1 (aluminum) and Cu (copper) are between the working electrode 101 and the working electrode terminal 103 and the working electrode reference terminal 10, and between the counter electrode 102 and the counter electrode terminal 104. ) Are connected by conductive wiring made of relatively inexpensive metal.
  • the counter electrode 102 is connected to the counter electrode terminal 104 via a conductive wiring having a sufficient cross-sectional area, the wiring resistance R m on the counter electrode side can be regarded as almost 0 ⁇ . Therefore, the opposite pole 102 The cross-sectional area of the conductive wiring between the counter electrode terminal 104 and the conductive wiring between the working electrode 101 and the working electrode terminal 103 is larger.
  • a sample containing the substance to be measured such as glucose is externally introduced into a reaction section including the working electrode 101 and the counter electrode 102, and measurement is performed.
  • the substance to be measured such as glucose
  • a blood sample contacts glucose oxidase immobilized on the working electrode 101 and the counter electrode 102
  • hydrogen peroxide is generated by a chemical reaction and electrons are generated.
  • a current flows between the electrodes, and by measuring this current, the amount of glucose is measured.
  • Glucose oxidase does not necessarily need to be immobilized on both electrodes, but may be immobilized on either the working electrode 101 or the counter electrode 102.
  • the biosensor device of the present embodiment shown in FIG. 1 includes a measuring circuit connected to the above-described biosensor 15, a working electrode reference terminal 10, a working electrode terminal 103, and a counter electrode terminal 104. 1 and 6 are provided.
  • the measuring circuit 16 includes a working electrode potential reference circuit 8 connected to the working electrode reference terminal 10, a working electrode voltage application section 105 connected to the working electrode terminal 103 and having an ammeter, and a counter electrode terminal. Supply the working electrode reference voltage V pr 1 and the counter electrode reference voltage V mr 1 to the counter electrode voltage applying unit 106 connected to 104, the working electrode potential reference circuit 8 and the counter electrode voltage applying unit 106, respectively. It has a reference voltage source 117 and a signal processing circuit 121 connected to the working electrode voltage applying unit 105.
  • FIG. 2 is a circuit diagram showing the biosensor device of the present embodiment including a specific circuit configuration of the working electrode voltage application unit 105 and the counter electrode voltage application unit 106.
  • the working electrode voltage application unit 105 has a circuit configuration in which a feedback resistor R f is negatively fed back to the operational amplifier
  • the counter electrode voltage application unit 106 has an operational amplifier Nu 1 That is, the above-described function is realized by adopting a buffer circuit configuration.
  • the feature of the biosensor and the biosensor device of the present embodiment is that the electrode connected to the working electrode 101 is divided into two, a working electrode terminal 103 and a working electrode reference terminal 10. This effect will be described below.
  • the counter electrode reference voltage V mr1 generated from the reference voltage source 117 was impedance-converted by the counter electrode voltage application unit 106. Thereafter, the applied voltage Vm 1 is supplied from the counter electrode voltage application unit 106 to the counter electrode terminal 104. At this time, the following equation holds.
  • Vm 1 Vm r 1 (1 0)
  • the working electrode potential reference circuit 8 When the working electrode reference voltage Vp r 1 generated from the reference voltage source 1 17 and the working electrode reference terminal voltage Vp 2 from the working electrode reference terminal 10 are input to the working electrode potential reference circuit 8, The working electrode potential reference circuit 8 generates the working electrode control signal s 13 so that the difference voltage becomes 0 V.
  • the working electrode control signal voltage which is the voltage of the working electrode control signal s 13, is Vpr 2. At this time, the following relationship holds.
  • Vp 2 Vp r l (1 1)
  • Vp 1 Vp r 2 (1 2)
  • the working electrode control signal voltage Vpr 2 is impedance-converted by the working electrode voltage applying unit 105
  • the working electrode control signal voltage Vp r2 is applied from the working electrode voltage applying unit 105 to the working electrode terminal 103. r 2 is supplied.
  • the wiring resistance of the conductive wiring between the working electrode 101 and the working electrode reference terminal 10 is R P 2
  • the working electrode reference terminal current flowing through the wiring is I p 2.
  • the input on the working electrode reference terminal 10 side of the working electrode potential reference circuit 8 has a high input impedance, and the current flowing through the working electrode reference terminal 10 is expressed by the following equation.
  • the working electrode reference terminal voltage Vp 2 and the working electrode voltage Vp satisfy the following equation.
  • V p 2 V p (1 4)
  • V f V p-Vm
  • V f V p 2-Vm 1
  • V f V p r 1-Vm r 1 (1 5)
  • I f 1 f ⁇ Q, (Vp r 1-Vmr 1) ⁇
  • the working electrode terminal voltage Vp 1 is controlled by the working electrode potential reference circuit 8 and the working electrode voltage applying unit 105 as in the following equation.
  • Vp l Vp r 2
  • the biosensor device of the present embodiment includes a biosensor having three electrodes, a working electrode terminal and a working electrode reference terminal branched from a working electrode, and a counter electrode terminal connected to the counter electrode.
  • the working electrode potential reference circuit 8 that generates the working electrode control signal s 13 so that the potential difference between the reference voltage V p 2 and the working electrode reference potential Vp r 1 becomes 0, it is not affected by wiring resistance. It is now possible to make measurements. Therefore, it is possible to perform measurement with higher accuracy than the conventional biosensor device.
  • the measured value is not affected by the wiring resistance, it is not necessary to use expensive noble metal for the wiring as in the related art, and the manufacturing cost can be reduced.
  • the current flowing through the working electrode voltage application unit 105 is processed by the signal processing circuit 121 to calculate the concentration of the substance to be measured, and is displayed on a display unit (not shown) or the like. I do.
  • the conductive wiring may be formed in a multilayer.
  • FIG. 10 is a diagram showing the biosensor of the present embodiment in a case where conductive wirings are multilayered.
  • the conductive wiring connecting the working electrode 101 and the working electrode reference terminal 10 is provided on a different layer from the conductive wiring connecting to the working electrode terminal 103.
  • the conductive wirings are provided so as to overlap each other when viewed in plan.
  • the area can be reduced compared to the biosensor shown in Fig. 9. Can be.
  • reducing the area is advantageous for integrating a biosensor for measuring various types of substances on a chip, and may also reduce manufacturing costs. For example, by combining a biosensor for measuring pudose and a biosensor for measuring liver function such as GOT and GTP to form a multi-layer structure, it is possible to measure other types with a single blood sampling, reducing the burden on patients. Also leads.
  • the multilayer wiring may be applied not only to the working electrode but also to the conductive wiring on the counter electrode side.
  • the wiring area on the counter electrode side becomes smaller, and it becomes more difficult to make the resistance close to zero. Therefore, by forming the wiring on the counter electrode side into multiple layers and making the conductive wiring on the counter electrode side two or more layers, the substantial wiring area can be increased and the resistance value can be reduced.
  • the current market for biosensor devices is a glucose measurement device in which glucose and the like are immobilized on the counter electrode and working electrode, but by changing the substance immobilized on the electrode, It becomes possible to measure a substance that binds to the substance, a substance that reacts, or a substance that is decomposed and synthesized by a catalytic reaction.
  • a substance that binds to the substance, a substance that reacts, or a substance that is decomposed and synthesized by a catalytic reaction For example, by immobilizing a single-stranded DNA to an electrode, it is possible to detect a DNA or an RNA that forms a pair with the DNA. When the DNA becomes double-stranded, the conductivity changes, so that it is possible to detect electrically.
  • This can also be used to test for disease. For example, in the test of AIDS, it takes several months before antibodies are generated, but by performing RNA measurement, infection can be detected immediately after infection.
  • biological substances such as various enzymes may be immobilized on the electrode, or microorganisms may be immobilized.
  • microorganisms may be immobilized.
  • biological substance refers to proteins, amino acids, genes, and other general organic substances contained in the body of an organism.
  • the biosensor according to the present embodiment can perform accurate measurement even in making a treatment plan.
  • the device is useful.
  • the biosensor 15 or the biosensor Although only the sensor and the measuring circuit 16 are disposable, the disposable body including the display unit and various devices may be disposable.
  • the biosensor of the present embodiment requires fewer parts compared to a four-electrode structure, so that cost reduction can be achieved. Also, it is easy to take a large wiring area. Conversely, when high accuracy is required, a biosensor device having a four-terminal structure is preferable. This will be described in detail in a later embodiment.
  • the working electrode terminal and the working electrode reference terminal have a shape that branches off from the working electrode.
  • the conductive wire connected to the working electrode terminal and the working electrode reference terminal are connected to the working electrode reference terminal.
  • the conductive wires to be formed may share a part and have a shape that branches off in the middle.
  • FIG. 11 is a plan view and a perspective view showing a biosensor 70 according to a second embodiment of the present invention.
  • the biosensor of the present embodiment includes a working electrode 101, a counter electrode 102 opposite to the working electrode 101, a working electrode reference terminal 1 connected to the working electrode 101. 0 and the working electrode terminal 103 and the counter electrode terminal 104 connected to the counter electrode 102
  • the feature of the biosensor of the present embodiment is that the counter electrode terminal connected to the counter electrode 102 104 penetrates from the surface on which the working electrode 101 is formed to the back side, and the entire back surface serves as a counter electrode terminal.
  • the wiring resistance value Rm1 on the counter electrode terminal side can be further reduced without changing the size of the biosensor, and a highly accurate biosensor can be realized.
  • the biosensor of the present embodiment has a three-electrode structure provided with a working electrode, a working electrode reference terminal, and a counter electrode, and the counter electrode terminal penetrates from the surface on which the working electrode is formed to the back side, and the back surface High accuracy measurement can be realized by using the whole as the opposite electrode
  • FIG. 12 is a plan view and a perspective view showing a biosensor according to a third embodiment of the present invention.
  • the biosensor of the present embodiment has a substantially circular counter electrode 102, a concentric ring-shaped working electrode 101 surrounding the counter electrode 102 at a fixed interval, and a working electrode 1. It has a working electrode reference terminal 10 and a working electrode terminal 103 connected to 01, and a counter electrode terminal 104 connected to the counter electrode 102.
  • the counter electrode terminal 104 penetrates to the back side of the surface on which the working electrode 101 is formed, and is provided on the entire back surface.
  • the working electrode 101 since the working electrode 101 is formed concentrically, the reaction between the enzyme and the substance to be measured can be performed uniformly. Further, the electric field applied to the working electrode becomes uniform, and the measurement accuracy can be further improved.
  • the counter electrode terminal 104 is provided on the entire back surface, the resistance on the counter electrode side is reduced, and the measurement accuracy is improved.
  • the working electrode 101 is concentric. However, by taking a part of the circumference such as a semicircle, the electric field applied to the working electrode can be uniform. You can also.
  • FIG. 13 is a plan view and a perspective view showing a biosensor according to a fourth embodiment of the present invention.
  • the biosensor 72 of the present embodiment is connected to a working electrode 101, a counter electrode 102 provided to face the working electrode, and a working electrode 101, It has a working electrode terminal 103 provided on the whole, a counter electrode terminal 104 connected to the counter electrode 102 and a counter electrode reference terminal 3.
  • a three-electrode structure may be provided by providing a reference electrode on the counter electrode side. Even in this case, as described in the first embodiment, since the resistance of the conductive wiring does not affect the measured value, highly accurate measurement can be performed. Thus, the conductive wiring can be made of inexpensive metal, and the manufacturing cost can be reduced.
  • the working electrode terminal 103 since the working electrode terminal 103 is formed on the entire back surface of the surface on which the working electrode 101 is formed, the resistance value on the working electrode side is extremely suppressed. Has been. However, the working electrode terminal 103 need not necessarily be provided on the back surface.
  • FIG. 14 is a plan view and a perspective view showing a biosensor according to a fifth embodiment of the present invention.
  • the biosensor 73 of the present embodiment includes a substantially circular working electrode 101, a counter electrode 102 surrounding the working electrode 101 at a predetermined interval, and a working electrode 1 0, and has a working electrode reference terminal 10 and a working electrode terminal 103 provided on the back surface of the substrate, and a counter electrode terminal 104 provided over the entire upper surface of the substrate.
  • the biosensor 73 of the present embodiment since the inner circumference of the working electrode 101 and the counter electrode 102 surrounding the working electrode 101 is concentric, the reaction between the enzyme and the analyte is Can be performed uniformly. In addition, the electric field applied to the electrodes becomes uniform, and the measurement accuracy can be further improved.
  • the counter electrode terminal 104 is provided on the entire upper surface of the substrate, the resistance R m1 on the counter electrode side can be extremely reduced. Therefore, the measurement accuracy of the biosensor of the present embodiment is improved.
  • a biosensor capable of high-accuracy measurement can be realized by making the working electrode of the counter electrode and the inner periphery concentric and providing the counter electrode terminal 104 on the upper surface of the substrate.
  • FIG. 3 is a circuit diagram showing a part of a biosensor device according to a sixth embodiment of the present invention.
  • FIG. 4 shows a specific configuration of a working electrode voltage applying unit 29 and a counter electrode voltage applying unit 28.
  • FIG. 3 is a circuit diagram showing a part of the biosensor device according to the embodiment including the above.
  • the biosensor device includes a biosensor 15 and a measurement circuit 16 connected to the biosensor 15.
  • the biosensor 15 includes a working electrode 101, a counter electrode 102 facing the working electrode 101, a working electrode reference terminal 10 and a working electrode terminal 103 connected to the working electrode 101. And a counter electrode terminal 104 connected to the counter electrode 102. See working electrode 101 and working electrode
  • the terminal 10 and the working electrode terminal 103 are connected by conductive wiring made of Cu, A1, or the like, respectively.
  • the measuring circuit 16 is connected to the working electrode reference terminal 10 and the working electrode terminal 103, and has a working electrode voltage application unit 29 having an ammeter, and a counter electrode voltage application connected to the counter electrode terminal 104.
  • the working electrode reference voltage V pr 1 to the working electrode voltage application unit 29 is a voltage-current conversion circuit disclosed in Japanese Patent Application Laid-Open No. 11-148483 (US Pat. No. 5,986,910).
  • the counter electrode reference voltage Vmr 1 generated from the reference voltage source 117 is subjected to impedance conversion by the counter electrode voltage application unit 28, and then the counter electrode terminal voltage Vm 1 is output from the counter electrode voltage application unit 28. Applied. Then, the following equation holds
  • Vm 1 Vm r 1 (1 8)
  • the working electrode reference voltage Vpr 1 and the working electrode reference terminal voltage Vp 2 of the working electrode reference terminal 10 of the biosensor 15 are input to the working electrode voltage application unit 29, and the voltage difference between them is almost equal.
  • the working electrode control signal voltage Vp 1 is supplied to the working electrode terminal 103 so as to be 0 V. At this time, the following equation holds.
  • Vp 2 Vp r l (1 9)
  • the value of the current flowing out to the working electrode terminal 103 is measured by the working electrode voltage applying unit 29, and the resulting working electrode current amount signal s120 is supplied to the signal processing circuit 122.
  • the result of conversion of the concentration of the component to be measured based on the measured current amount is displayed.
  • the current flowing through the reference electrode is expressed by the following equation.
  • the working electrode reference terminal voltage Vp 2 and the working electrode voltage Vp satisfy the following equation.
  • Vp 2 Vp (2 1) Therefore, the following expression is established with respect to the sensor applied voltage Vf from the expressions (18), (19), (20), and (21).
  • V f V p-Vm
  • V f V p 2-Vm 1
  • V f V p r 1-Vm r 1 (2 2)
  • the effect of the wiring resistance R p 1 of the conductive wiring connecting the working electrode 101 and the working electrode terminal 103 does not occur at all, and for example, the blood glucose level measured by the biosensor device includes an error. Not.
  • the working electrode terminal voltage Vp 1 is controlled by the working electrode voltage application unit 29 as in the following equation.
  • Vp l Vp r l + R p l x l f l (24)
  • the biosensor device according to the present embodiment is different from the biosensor device according to the first embodiment in that the biosensor device includes a working electrode voltage applying unit 29 connected to both the working electrode reference terminal 10 and the working electrode terminal 103. That is. With this structure, a capacitor for stabilizing the circuit can be omitted, so that the area of the entire circuit can be reduced.
  • the working electrode voltage applying section 29 has a structure also serving as the working electrode potential reference circuit, it is possible to realize a highly accurate biosensor device which is not affected by the wiring resistance on the working electrode side.
  • the working electrode reference terminal 10 is connected to the negative input
  • the reference voltage source 1 17 is connected to the positive input
  • the output is Although the example with the operational amplifier connected to the working pole terminal 103 has been shown, There may be.
  • FIG. 5 is a circuit diagram showing a part of a biosensor device according to a seventh embodiment of the present invention.
  • FIG. 6 shows a specific configuration of the working electrode voltage applying unit 19 and the counter electrode voltage applying unit 17.
  • FIG. 3 is a circuit diagram showing a part of the biosensor device according to the embodiment including the above.
  • the biosensor device of the present embodiment includes a biosensor 72 and a measurement circuit 16 connected to the biosensor 72.
  • the biosensor 72 includes a working electrode 101, a counter electrode 102 provided opposite to the working electrode 101, a working electrode terminal 103 connected to the working electrode 101, and a counter electrode. It has a counter electrode terminal 104 connected to 102 and a counter electrode reference terminal 3. Since the cross-sectional area of the conductive wiring connecting the working electrode 101 and the working electrode terminal 103 is sufficiently large, the wiring resistance can be set to almost 0 ⁇ .
  • This biosensor 72 has a structure having a counter electrode reference terminal 3, like the biosensor of the fourth embodiment.
  • the measuring circuit 16 includes a working electrode voltage application unit 19 connected to the working electrode terminal 103, a counter electrode voltage application unit 17 having an ammeter connected to the counter electrode terminal 104, and a counter electrode reference.
  • the counter electrode potential reference circuit 1 connected to the reference electrode 3 and the working electrode voltage applying unit 19 are supplied with the working electrode reference voltage V pr 1 and the counter electrode potential reference circuit 1 are supplied with the counter electrode reference voltage V mr 1.
  • the working electrode voltage applying unit 19 After the working electrode reference voltage V pr 1 generated from the reference voltage source 117 is impedance-converted by the working electrode voltage applying unit 19, the working electrode voltage applying unit 1 The working electrode terminal 103 is supplied with the working electrode terminal voltage V p 1 from 9. At this time, the following equation holds.
  • V 1 V p r 1 (2 5)
  • the counter electrode potential reference circuit 1 When the counter electrode reference voltage V mr 1 generated by the reference voltage source 1 17 and the working electrode reference terminal voltage V m 2 are input to the counter electrode potential reference circuit 1, the counter electrode potential reference circuit 1 outputs the difference voltage. Generates the counter control signal s 6 so that the voltage becomes 0 V. The voltage (working electrode control signal voltage) of the counter electrode control signal s 6 is V mr 2. Then, the following equation holds Z6
  • Vm 2 Vmr 1 (2 6)
  • Vm 1 Vm r 2 (2 7)
  • the current flowing to the counter electrode terminal 104 is measured by the counter voltage applying unit 17, and the result is supplied to the signal processing circuit 122 in the form of a counter current amount signal s 18. Then, the concentration of the component to be measured is converted based on the measured current amount, and the result is displayed.
  • Vf Vp-Vm
  • V f V p 1-Vm 2
  • Vpr1 and Vmr1 are constant, the sensor applied voltage Vf always has a constant value.
  • I f 2 f ⁇ Q, (Vp r l— Vmr l) ⁇
  • the wiring resistance Rm1 of the conductive wiring on the counter electrode 102 side does not affect If 2 flowing through the counter electrode terminal 104, and the blood glucose level measured by the final biosensor device includes an error. Absent.
  • the counter electrode terminal voltage Vm 1 is controlled by the counter electrode potential reference circuit 1 and the counter electrode voltage applying unit 17 as follows.
  • V m 1 V m r 2
  • Vm l Vmr 1 -Rm l x i f 2 (30)
  • the seventh embodiment of the present invention even in a three-electrode structure having the counter electrode terminal 104 and the counter electrode reference electrode 3 on the counter electrode side, high precision is possible regardless of the resistance of the conductive wiring. It can be seen that accurate measurement can be performed. In addition, the number of parts can be reduced as compared with the case where four or more electrodes are provided, for example, so that a biosensor device with low cost and high accuracy can be realized.
  • the counter electrode voltage applying unit 17 has a circuit configuration in which the feedback resistor Rg20 is negatively fed back to the operational amplifier, and the working electrode voltage applying unit 19 has the operational amplifier Nu Nu. 1 1—Amplifier configuration, that is, a noise circuit configuration.
  • the counter electrode voltage applying section 17 and the working electrode voltage applying section 19 exhibit the above-described functions.
  • the counter electrode voltage applying unit 17 and the working electrode voltage applying unit 19 may have other circuit configurations.
  • FIG. 7 is a circuit diagram showing a part of a biosensor device according to an eighth embodiment of the present invention.
  • FIG. 8 shows a specific configuration of the working electrode voltage application unit 31 and the counter electrode voltage application unit 30.
  • FIG. 3 is a circuit diagram showing a part of the biosensor device of the present embodiment including the above.
  • the biosensor device of the present embodiment includes a biosensor 72 and a measurement circuit 16 connected to the biosensor 72.
  • the configuration of the biosensor 72 is the same as that of the seventh embodiment.
  • the measurement circuit 16 is connected to the working electrode voltage applying section 31, the counter electrode terminal 104 and the counter electrode reference electrode 3, and has a counter electrode applying section 30 having an ammeter, and an working electrode voltage applying section 31.
  • the reference voltage source 1 17 supplies the working electrode reference voltage V pr 1 to the counter electrode voltage applying unit 30 and the counter electrode reference voltage V mr 1 to the counter electrode voltage applying unit 30, and the counter electrode current amount signal s 18 from the counter electrode voltage applying unit 30.
  • a signal processing circuit 121 for processing the signal.
  • the difference between the biosensor device of the present embodiment and the seventh embodiment is that there is no counter electrode potential reference circuit 1, and the counter electrode voltage applying section 30 is connected to both the counter electrode terminal 104 and the counter electrode reference electrode 3. That is the point.
  • both the counter electrode reference voltage V mr 1 and the counter electrode reference electrode voltage V m 2 of the counter electrode reference electrode 3 are input to the counter electrode voltage application unit 30 and the difference voltage is
  • the counter electrode control signal voltage V mr 2 is supplied to the counter electrode terminal 104 so as to be 0 V. At this time, the following equation holds.
  • V m 2 V mr 1 (3 1) Further, after the working electrode reference voltage Vpr 1 is subjected to impedance conversion by the working electrode voltage applying unit 31, the voltage Vp 1 is supplied from the working electrode voltage applying unit 31 to the working electrode terminal 103. At this time, the following equation holds.
  • Vp 1 Vp r 1 (3 2)
  • the current flowing to the counter electrode terminal 104 is measured by the counter electrode voltage application unit 30, and the counter current amount signal s 18 indicating the measurement result is supplied to the signal processing circuit 122. Then, in the apparatus main body, the concentration of the component to be measured is converted, and the result is displayed. As in the above-described sixth embodiment, the following equation holds for the sensor applied voltage Vf.
  • Vf Vp— Vm
  • Vf Vp l— Vm2
  • Vf Vp r l -Vmr l (3 3)
  • the sensor applied voltage Vf is a constant voltage.
  • I f 2 f ⁇ Q, (Vp r 1-Vmr 1) ⁇
  • the blood glucose level measured by the biosensor device is not affected by the wiring resistance Rm1 of the conductive wiring on the counter electrode 102 side, and no error occurs.
  • the counter electrode voltage applying unit 30 is configured such that the counter electrode reference electrode 3 is connected to the negative input, the working electrode reference voltage Vmr 1 is connected to the positive input, and the output is the working electrode terminal. It has an operational amplifier connected to 103.
  • This is a voltage-current conversion circuit disclosed in Japanese Patent Application Laid-Open No. H11-154833 (US Pat. No. 5,986,910). Note that other configurations may be used.
  • FIG. 15 is a plan view showing the biosensor chip of the present embodiment
  • FIG. 16 is a plan view showing a first modification of the biosensor chip of the present embodiment
  • FIG. FIG. 18 is a plan view showing a second modified example of the biosensor chip of the embodiment
  • FIG. 18 is a plan view showing a third modified example of the biosensor chip of the present embodiment.
  • the biosensor chip 35 of the present embodiment has a structure in which the measurement circuit 16 and the biosensor according to the first embodiment shown in FIG. 9 are provided on the same substrate. Have.
  • the biosensor and measurement circuit 16 are manufactured using microfabrication technology, and conductive wiring and counter electrode 10 2 connecting the working electrode 101 to the working electrode terminal 103 and the working electrode reference terminal 10
  • the conductive wiring connecting the and the counter electrode terminal 104 is thinned.
  • the conductive wires on the counter electrode side and the working electrode side are made of relatively inexpensive metals such as A1 and Cu.
  • biosensor chip 35 of the present embodiment is detachable from the device main body and is disposable.
  • the size of the measurement part can be reduced, and the biosensor chip can be supplied at low cost using existing mass production technology. It is possible to do.
  • the conductive wiring is thinned, so that the wiring resistances Rpl, Rm1, and Rp2 increase.
  • the biosensor device of the present invention high-precision measurement is realized irrespective of whether the wiring resistance is high or low, and a low-cost biosensor chip used for high-precision measurement is realized. Further, since the size is small, the size of the entire biosensor device can be reduced.
  • the common substrate used is a semiconductor substrate such as a silicon substrate, an insulating substrate such as a S0I (silicon on insulator) substrate, an SOS (silicon on sapphire) substrate, or a glass substrate. Any substrate such as a conductive substrate may be used. However, substrates that do not react with enzymes and reagents applied to biosensor electrodes You need to choose
  • the biosensor in which the conductive wiring shown in FIG. 10 is formed into a multilayer can be provided on a common substrate together with the measurement circuit 16.
  • the area of the biosensor can be further reduced, so that a smaller biosensor chip 37 can be manufactured.
  • the biosensor shown in FIGS. 11 and 12 and the measurement circuit 16 may be provided on the same substrate.
  • the biosensor chip 80 according to this modification has a substrate provided with a biosensor and a substrate provided with a measurement circuit 16 mounted on a common substrate with the measurement circuit 16.
  • a counter electrode terminal is provided on the entire back surface of the substrate provided with the biosensor.
  • a biosensor in which the two electrodes of the counter electrode reference electrode and the counter electrode terminal shown in FIGS. 13 and 14 are connected to the counter electrode has a common circuit board with the measurement circuit 16.
  • a substrate provided with a biosensor and a substrate provided with a measurement circuit 16 are mounted on a common substrate.
  • FIG. 19 is a plan view showing the biosensor chip 40 according to the tenth embodiment of the present invention
  • FIG. 20 is a cross-sectional view showing the biosensor chip 40 according to the present embodiment. .
  • the biosensor chip 40 of the present embodiment includes a sensor chip 38 provided with a biosensor having three electrodes, and a measurement circuit chip 43 provided with a measurement circuit. And a common substrate 60 that supports the sensor chip 38 and the measurement circuit chip 43.
  • the counter electrode terminal 104, the working electrode terminal 103, and the working electrode reference terminal 10 of the biosensor are connected to the measurement circuit chip 43 by wires 39, respectively.
  • the biosensor chip shown in Fig. 15 it is difficult to provide the measurement circuit 16 on the same substrate as the substrate on which the measurement circuit 16 is provided. Therefore, a chip “on” chip structure as in the present embodiment is adopted.
  • a biosensor chip 40 of the present embodiment a biosensor is provided.
  • the substrate provided and the substrate provided with the measurement circuit can be arbitrarily combined.
  • the same substance as the signal wiring of the measurement circuit 16 may not be used for the conductive wiring of the biosensor due to the relationship between the enzyme and the media corresponding to the component to be measured.
  • the configuration as in the present embodiment is useful, and this configuration can realize a biosensor chip having a sufficiently small size.
  • any type of biosensor can be made into a small chip.
  • the manufacturing cost can be reduced.
  • the sensor chip 38 and the measurement circuit chip 43 are arranged on the common substrate 60, but the measurement circuit is directly provided on the sensor chip 38 without the common substrate 60.
  • a structure in which the chip 43 is arranged may be used, and conversely, a biosensor chip having a chip-on-chip structure in which the sensor chip 38 is arranged on the measurement circuit chip 43 may be used.
  • wires are used to connect the sensor chip and the measurement circuit chip.
  • a structure in which the upper surface of the sensor chip and the upper surface of the measurement circuit chip are opposed to each other for bump connection may be adopted.
  • a structure in which the chips are connected to each other by a ball 'grid' array (abbreviated as BGA) or the like may be used.
  • BGA ball 'grid' array
  • the chips can be stacked and connected via the penetrating electrode. These methods shorten the signal transmission path, so the error may be smaller.
  • FIG. 21 is a plan view showing the biosensor according to the eleventh embodiment of the present embodiment.
  • the biosensor 74 of the present embodiment has, for example, three electrodes of the working electrode terminal 103, the working electrode reference terminal 10, and the counter electrode terminal 104 described in the first embodiment. Are formed on the same substrate, and the two counter electrode terminals 104 are shared.
  • the number of electrodes can be reduced, and the size of the biosensor can be reduced and the manufacturing cost can be reduced.
  • the two biosensors using a reaction reagent consisting of enzymes, medias, and the like corresponding to different components to be measured different factors can be measured at once, so that multiple factors can be measured at once. Since the tests can be performed at the same time, the burden on the patient can be reduced.
  • the number of types of biosensors mounted on one biosensor device may be any number as long as it is two or more. Practically, it is preferable to use a single biosensor chip to perform a plurality of tests required for diagnosing a specific disease, or to perform a regular medical checkup quickly with a single biosensor chip. Therefore, FIG. 21 shows an example in which two biosensors are formed on the same substrate, but three or more biosensors may be used.
  • biosensor chip on which the biosensor is mounted is detachable, a different biosensor chip can be selected according to the purpose of inspection without changing the main body of the apparatus.
  • the counter electrode terminals are shared, but any electrode may be used as long as the electrodes can be shared.
  • the adjacent working electrode reference terminals 10 can be shared.
  • FIG. 22 is a plan view and a perspective view showing a biosensor 75 according to the 12th embodiment of the present invention.
  • the biosensor 75 of the present embodiment is obtained by forming the two biosensors according to the second embodiment on the same substrate and sharing the two counter electrode terminals 104. is there. That is, the common counter electrode terminal 104 connected to the two counter electrodes 102 is provided on the entire back surface of the biosensor 75.
  • the counter electrode terminal can be shared.
  • two or more biosensors can be combined into one biosensor.
  • FIG. 23 is a plan view showing a biosensor chip 81 according to a thirteenth embodiment of the present embodiment.
  • the biosensor chip 81 of the present embodiment has three electrodes of a working electrode terminal 103, a working electrode reference terminal 10 and a counter electrode terminal 104. It has two biosensors and a measuring circuit 16 connected to each biosensor. The biosensor and the measurement circuit 16 are provided on the same substrate. The counter electrodes 104 of adjacent biosensors are common to each other.
  • each of the biosensors can measure a different substance, a plurality of measurements can be performed at the same time.
  • FIG. 23 shows an example in which the biosensor and the measurement circuit 16 are arranged side by side, for example, a structure in which a chip having a measurement circuit provided on a biosensor may be stacked.
  • the connection between the measurement circuit and the biosensor may be using a wire, using BGA, or using a through electrode penetrating the substrate.
  • FIG. 24 is a circuit diagram showing the biosensor chip 82 according to the 14th embodiment of the present invention
  • FIG. 25 is a plan view showing the biosensor chip 82 of the present embodiment. .
  • the biosensor chip 82 of the present embodiment includes a first biosensor 58, a second biosensor 59, a first biosensor 58 and a second biosensor 58. And a measurement circuit module 57 connected to the sensor 59.
  • the first biosensor 58 and the second biosensor 59 It has a working electrode terminal, a working electrode reference terminal and a counter electrode, and the counter electrodes are connected to each other.
  • the measurement circuit module 57 includes a measurement circuit 16 connected to the first biosensor 58 and the second biosensor 59, and a working electrode and a working electrode reference terminal of the first biosensor 58. And a first switch group 54 provided between the measuring circuit 16 and the working electrode terminal and the working electrode reference terminal of the second biosensor 59 and the measuring circuit 16. It has a second switch group 56 and a selection control circuit 52 for controlling on / off of the first switch group 54 and the second switch group 56.
  • the selection control circuit 52 supplies the connection control signal s 53 to control the switching of the first switch group 54, and supplies the connection control signal s 55 to supply the connection control signal s 53 to the second switch group 56. Controls switching.
  • control is performed so that the first switch group 54 is turned on and the second switch group 56 is turned off.
  • control is performed so that the first switch group 54 is turned off and the second switch group 56 is turned on.
  • biosensor chip 82 of the present embodiment two biosensors can be measured by only one measurement circuit, so that a plurality of substances can be measured and the chip area can be further reduced. it can.
  • this structure can reduce manufacturing costs.
  • the first switch group 54 and the second switch group 56 may have some ON resistance, but this ON resistance is equivalent to the conductivity of the biosensor. Measurement accuracy does not decrease even in this circuit configuration because it is included in the wiring resistance of the conductive wiring.
  • biosensor chip of the present embodiment two biosensors are formed on the same substrate, but three or more biosensors may be formed.
  • three or more biosensors may be connected to one measurement circuit.
  • the first biosensor 58, the second biosensor 59, and the measurement circuit module 57 are formed on the same substrate.
  • the biosensor and the measurement circuit module are mounted on a common substrate.
  • a structure in which individual chips are installed may be used.
  • a structure in which a plurality of chips are stacked and connected by a BGA, a through electrode, a wire, or the like may be used.
  • the biosensor chip of this embodiment has a biosensor having three electrodes of a working electrode terminal, a working electrode reference terminal, and a counter electrode terminal
  • the biosensor chip has three electrodes of a working electrode terminal, a counter electrode terminal, and a counter electrode reference electrode. May be provided.
  • FIG. 26 is a plan view showing a biosensor chip 83 according to the fifteenth embodiment of the present invention.
  • the biosensor chip 83 includes a working electrode terminal 103, a working electrode reference terminal 10, a counter electrode terminal 104, and a sensor unit 1 for reacting a fluid to be measured.
  • Two biosensors having 31 are provided on a substrate, and one measurement circuit 50 connected to two biosensors is provided on the same substrate.
  • a feature of the biosensor chip 83 of the present embodiment is that the sensor units 1311 of the biosensor corresponding to the components to be measured different from each other are provided adjacent to each other.
  • the reaction section includes a counter electrode and a working electrode coated with a reaction reagent such as an enzyme or a mediator.
  • the reaction portions of the two biosensors are adjacent to each other, two types of measurement can be performed only by spotting one blood sample. This simplifies the spot structure of the biosensor.
  • the blood sample needs to be extremely small, the burden on the subject to collect blood can be extremely reduced.
  • biosensor chip of the present embodiment it is also possible to provide three or more types of biosensor reaction parts adjacent to each other. As a result, three or more types of measurements can be realized with a simpler spotting portion structure. It can also reduce the need for blood samples.
  • FIGS. 27 and 28 show the circuit configuration of the biosensor device according to the sixteenth embodiment of the present invention.
  • the biosensor device shown in these figures has the biosensor 210 of the present invention mounted thereon, and the measurement circuit 220 and the biosensor 210 are electrically connected.
  • the configuration of the biosensor 210 will be described later.
  • the biosensor device includes, in addition to the biosensor 210 and the measurement circuit 220 shown here, a data analysis device and a display section of a measurement result as necessary.
  • the measuring circuit 220 shown in FIG. 27 has a voltage V pl (the first working electrode of the present invention) applied to the working electrode terminal 2 13 a of the biosensor 210 (corresponding to the first working electrode terminal of the present invention).
  • a voltage V m is applied to a working electrode voltage applying section 2 21 A for applying a working electrode voltage, and a counter electrode terminal 214 a of the biosensor 210 (corresponding to the first counter electrode terminal of the present invention).
  • the measurement circuit 220 shown in FIG. 28 is different from the above-described working electrode voltage applying section 2 21 A and the counter electrode voltage applying section 2 2 A counter voltage application unit 222 A is provided, and the signal processing circuit 222 processes the counter current amount signal CV 2 output from the counter voltage application unit 222 A.
  • the working electrode voltage application unit 2 21 refers to the voltage V p 2 of the working electrode reference terminal 2 13 of the biosensor 210.
  • the working electrode voltage application unit 2 21 only refers to the voltage V p 2, the input impedance is high, and the current I p 2 flowing through the working electrode reference terminal 2 13 b is almost zero. Therefore, there is no voltage drop caused by the resistance value R p 2 of the working electrode reference terminal 2 13 b, and the voltage V p 2 is equal to the voltage V p (equivalent to the second working electrode voltage of the present invention).
  • the working electrode voltage applying unit 2 21 refers to the voltage V p of the working electrode 2 11 through the working electrode reference terminal 2 13 b, and is given this voltage V p
  • the voltage V p1 is generated so that the voltage V pr matches.
  • the working electrode voltage application unit 2 21 A has a function of measuring the working electrode current If 1 flowing through the working electrode terminal 2 13 a in addition to the function of the above-described working electrode voltage application unit 2 21. Yes, The counter electrode voltage application section 2 2 2 that outputs the working electrode current amount signal CV 1 corresponding to the measured working electrode current If 1 is a counter electrode terminal 2 1 4 b of the biosensor 2 10 (the second electrode of the present invention). Reference voltage Vm 2). The counter electrode voltage applying section 222 only refers to the voltage Vm2, the input impedance is high, and the current Im2 flowing to the counter electrode terminal 214b is almost zero.
  • the counter electrode voltage applying section 22 2 refers to the voltage Vm of the counter electrode 2 12 through the counter electrode terminal 2 14 b, and generates the voltage Vm 1 so that the voltage Vm matches the given voltage Vmr. ing.
  • the counter electrode voltage application unit 2 2 2 A has a function of measuring the counter electrode current If 2 flowing through the counter electrode terminal 2 14 a in addition to the above function, and the magnitude of the measured counter electrode current If 2
  • the counter current amount signal CV 2 corresponding to is output.
  • Fig. 29 shows some circuit examples of the working electrode voltage application units 221, 22A and the counter electrode voltage application units 222, 22A. The configuration of each circuit shown in FIG.
  • FIG. 29 (a) shows an example of a circuit of the working electrode voltage applying unit 221 or the counter electrode voltage applying unit 222.
  • the working electrode voltage application section 221 or the counter electrode voltage application section 222 shown in FIG. 44 is connected to the voltage supply Vp r or the voltage Vm to the counter electrode voltage source 1106 in the conventional measurement circuit 1 123 shown in FIG.
  • the configuration is such that the output of the voltage reference circuit 430 is provided instead of r.
  • the working electrode voltage application unit 221 will be described as an example.
  • the voltage reference circuit 430 is composed of an operational amplifier, and its inverting input terminal and non-inverting input terminal are supplied with voltages Vp 2 and Vpr, respectively.
  • the voltage reference circuit 430 outputs a voltage so that the voltage Vp 2 is equal to the voltage Vpr.
  • the operational amplifier as the voltage source 420 receives this voltage as an input and outputs a voltage VP1 corresponding to this voltage.
  • FIG. 29 (b) shows a circuit example of the working electrode voltage applying section 221A or the counter electrode voltage applying section 222A.
  • the working electrode voltage application section 22 1 A or the counter electrode voltage application section 22 A shown in FIG. 44 is connected to the voltage source 210 in the conventional biosensor device shown in FIG.
  • the configuration is such that the output of the voltage reference circuit 430 is provided in place of the voltage Vpr1 or the voltage Vmr1.
  • the working electrode voltage application section 222 A will be described as an example.
  • the operational amplifier which is the voltage reference circuit 430, outputs a voltage so that the input voltage Vp2 is equal to the voltage Vpr. This output voltage is supplied to the non-inverting input terminal of the operational amplifier which is the voltage source 420.
  • a resistance element is provided in the negative feedback section of the operational amplifier, and a working electrode current amount signal CV1 corresponding to the magnitude of the working electrode current If1 flowing through the resistance element is output.
  • FIG. 29 (c) shows a circuit example of the working electrode voltage applying unit 22A or the counter electrode voltage applying unit 22A.
  • the working electrode voltage application section 22 A or the counter electrode voltage application section 22 A shown in FIG. 14 includes a voltage reference circuit 43 and a voltage-current conversion circuit 44.
  • This circuit has a configuration similar to that of the voltage-current conversion circuit disclosed in, for example, Japanese Patent Application Laid-Open No. 11-154833 and US Pat. No. 5,986,910.
  • the working electrode voltage application section 22 A will be described as an example.
  • the voltage reference circuit 430 outputs the voltage Vp1 so that the input voltage Vp2 becomes equal to the voltage Vpr.
  • the voltage / current conversion circuit 440 receives a signal for controlling the output of the voltage reference circuit 430 as an input, and outputs a working electrode current amount signal CV1.
  • the voltage Vp 1 is generated by the working electrode voltage application sections 2 21 and 2 21 A so that the voltage Vp and the voltage Vpr match, and applied to the working electrode terminal 2 13 a.
  • the voltage Vp can be fixed at the voltage Vpr even if a voltage drop occurs due to the resistance value Rp1 of the working electrode terminal 2 13 a.
  • the voltage Vm 1 is generated by the counter electrode voltage applying units 22 2 and 22 2 A so that the voltage Vm and the voltage Vmr match, and applied to the counter electrode terminal 2 14 a.
  • the voltage Vm can be fixed at the voltage Vmr even if a voltage drop due to the resistance value Rm1 of the counter electrode terminal 21a occurs.
  • the voltage Vf applied between the working electrode 211 of the biosensor 210 and the counter electrode 212 by the measuring circuit 220 becomes as in the following equation (35).
  • Equation (35) there is no voltage drop due to the wiring resistances R 1 and R m1 of the working electrode terminal 2 13 a and the counter electrode terminal 2 14 a. You can see that. That is, the voltage Vf applied between the working electrode 2 11 and the counter electrode 2 12 is set to a predetermined value regardless of the wiring resistance of the working electrode 2 13 a and the counter electrode 2 14 a of the biosensor 210. It can be. Therefore, the current flowing through the biosensor 210 does not include an error.
  • This current is measured as the working electrode current I: 1 or the counter electrode current If 2 by the working electrode voltage application section 22 1 A or the counter electrode voltage application section 22 A, and the working electrode current signal CV 1 Or it becomes the counter electrode current amount signal CV2.
  • the working electrode current signal CV1 or the counter electrode current signal CV2 is processed by the signal processing circuit 224, and the concentration of the chemical substance to be measured is calculated.
  • the present embodiment regardless of the wiring resistance of the working electrode terminal 2 13 a and the counter electrode terminal 2 14 a of the biosensor 210, between the working electrode 2 1 1 and the counter electrode 2 1 2 A predetermined voltage Vf can be applied. This makes it possible to measure an accurate current that does not include an error, thereby improving the measurement accuracy of the biosensor device.
  • the biosensor device of the present embodiment since the working electrode reference terminal 2 13 b and the counter electrode reference terminal 2 14 b are provided, measurement is made in comparison with the case where only one of the reference terminals is provided. The accuracy can be further improved.
  • the voltage source 420 is omitted, and the output of the voltage reference circuit 430 is directly used as the voltage Vp 1 or The voltage may be Vm1. Further, the voltage source 420 and the voltage reference circuit 430 may be realized by means other than the operational amplifier. Even if such a change is made, the effect of the present invention is not impaired at all.
  • the first voltage applying section for applying the first voltage (for example, the voltage Vp 1) to the first electrode (for example, the working electrode terminal 2 13 a) is a conventional one
  • the second electrode (for example, the counter electrode) is twenty one 2)
  • the counter electrode voltage application section 222 for example, the counter electrode voltage application section 222).
  • the second voltage applying section supplies a third voltage (for example, voltage Vm) of the second pole through a third electrode (for example, counter electrode terminal 2 14 b) connected to the second pole.
  • the second voltage is generated so that the third voltage and the given reference voltage (eg, voltage Vmr) match with reference to the third voltage.
  • the accuracy is improved as compared with the conventional case.
  • a biosensor device can be realized.
  • FIG. 30 shows a circuit configuration of the biosensor device according to the seventeenth embodiment of the present invention.
  • the measuring circuit 22 OA of the present embodiment is described in the 16th embodiment as a means for applying a voltage to the working electrode terminal 2 13 a and the counter electrode terminal 2 14 a of the biosensor 210.
  • the working electrode voltage application section 2 21 A and the counter electrode voltage application section 2 22 A are provided, and the working electrode current signal CV 1 and counter electrode current signal CV 2 output from them are processed to It analyzes chemical substances.
  • the measurement circuit 22 OA will be described, but the description of the contents already described in the 16th embodiment will be omitted, and the same reference numerals as those shown in FIGS. 27 and 28 will be referred to. .
  • the working electrode voltage application section 2 21 A measures the current If 1 flowing through the working electrode terminal 2 13 a as a current flowing through the biosensor 210 and outputs a working electrode current amount signal CV 1.
  • the working electrode voltage application section 2 21 A can have various configurations other than the circuits shown in FIGS. 29 (b) and (c).
  • the counter electrode voltage application unit 222A measures the current If2 flowing through the counter electrode terminal 214a as the current flowing through the biosensor 210, and outputs a counter electrode current amount signal CV2.
  • the counter voltage application section 222A can have various configurations other than the circuits shown in FIGS. 29 (b) and (c).
  • the signal processing circuit 222A processes the working electrode current signal CV1 and the counter electrode current signal CV2.
  • the signal to be processed is a working electrode current amount signal CV
  • the information amount about the current flowing in the biosensor 210 is doubled by using either one of the current signal 1 and the counter electrode current amount signal CV2. Therefore, the S / N ratio can be improved by about 6 db compared to the 16th embodiment.
  • the measurement accuracy of the biosensor device can be further improved (approximately 6 db in S / N ratio). Further, by processing both the working electrode current amount signal C V1 and the counter electrode current amount signal C V2, it is possible to reduce an in-phase noise.
  • FIG. 31 shows a circuit configuration of the biosensor device according to the eighteenth embodiment of the present invention.
  • the measurement circuit 220B of the present embodiment is the same as the measurement circuit 220A of the seventeenth embodiment, except that a current signal generation unit 225 is further provided.
  • the measurement circuit 220B will be described. However, the description of the contents already described in the seventeenth embodiment will be omitted, and the same reference numerals as those shown in FIG.
  • the current amount signal generation unit 225 receives the working electrode current amount signal C V1 and the counter electrode current amount signal C V2 as inputs, and outputs a current amount signal C V representing the magnitude of the current flowing through the biosensor 210.
  • the current amount signal generation unit 225 can be realized by, for example, a differential single converter as shown in FIG. The differential single converter adds two input signals and outputs one signal. That is, in the present embodiment, the current amount signal C V is obtained by adding the working electrode current amount signal C V1 and the counter electrode current amount signal C V2.
  • the signal processing circuit 222B has substantially the same configuration as the signal processing circuit 222 in the measuring circuit 220 of the sixteenth embodiment. Calculate the concentration of the chemical substance.
  • the working electrode current amount signal CV 1 and the counter electrode current amount signal CV 2 are converted by the current amount signal generation unit 2 25 into the negative flow rate signal CV.
  • the configuration of the signal processing circuit 222B can be simplified as compared with the embodiment. As a result, the size of the biosensor device can be reduced, and the cost can be reduced.
  • the configuration of the current signal generator 2 25 is shown in Fig. 3 1 3007593
  • FIG. 32 shows the structure of the biosensor according to the nineteenth embodiment of the present invention.
  • the biosensor 210 of the present embodiment is used, for example, by the measurement circuits 220, 22OA, and 22OB of the above-described first to eighteenth embodiments.
  • the biosensor 210 has a working electrode terminal 2 13 a, 13 b extending from the working electrode 2 11 and a counter electrode terminal 2 14 a, a counter electrode reference terminal 2 14 b extending from the counter electrode 2 12. .
  • a sensor comprising a combination of the working electrode 211 and the counter electrode 212 is coated with a reaction reagent composed of an enzyme, a medium, or the like according to the chemical substance to be measured.
  • binding reactions between a pair of chemical substances such as oligonucleotides, antigens, enzymes, peptides, antibodies, DNA fragments, RNA fragments, glucose, lactate and cholesterol, or between molecular structures can be achieved. It can be detected electronically.
  • the working electrode terminal 2 13 a is a terminal for applying a voltage from the measurement circuit (main body of the device), and the working electrode reference terminal 2 13 b is an electrode for voltage reference.
  • the arrangement of the working electrode terminal 2 13 a and the working electrode reference terminal 2 13 b may be interchanged.
  • the counter electrode terminal 2 14 a is a terminal for voltage application from the measurement circuit
  • the counter electrode reference terminal 2 14 b is a terminal for voltage reference. Again, the arrangement of both terminals can be interchanged.
  • the biosensor 210 When a voltage is applied between the working electrode terminal and the counter electrode terminal, the biosensor 210 generates a current corresponding to the concentration of a specific chemical substance contained in a body fluid such as blood attached to the sensor unit. Flow. At this time, the voltages generated at the working electrode 211 and the counter electrode 212 can be known by referring to the voltages at the working electrode reference terminal and the counter electrode reference terminal, respectively.
  • the biosensor 2 10 is provided with the working electrode terminal 2 13 a, the working electrode reference terminal 2 13 b, and the counter electrode terminal 2 14 a, and the counter electrode reference terminal 2 14 b, respectively.
  • the voltage applied to the working electrode 2 1 1 and the counter electrode 2 1 2 can be adjusted while referring to the voltages at the working electrode 2 1 1 and the counter electrode 2 1 2.
  • the biosensor of this embodiment has one working electrode terminal and one working electrode reference terminal, and also has one counter electrode terminal and one counter electrode reference terminal.
  • each terminal may be further provided. That is, two or more working electrode terminals, working electrode reference terminals, counter electrode terminals, and counter electrode reference terminals may be provided, respectively, and the number of working electrode terminals and counter electrode terminals may be different. Also, the number of working electrode terminals and the number of working electrode reference terminals, or the number of counter electrode terminals and the number of counter electrode reference terminals may be different.
  • the terminal on the first pole (for example, the working electrode 2 1 1) side is The number of terminals on the second pole (for example, the counter electrode 2 1 2) side may be plural. Even in the biosensor having such a structure, one of the plurality of terminals connected to the second pole is used to apply a voltage to the second pole, and another is connected to the second pole. By referring to the voltage at the second pole, a current error due to wiring resistance can be reduced more than in the past.
  • FIG. 33 shows the structure of the biosensor according to the twenty-second embodiment of the present invention.
  • the biosensor 210A of the present embodiment is obtained by forming the electrodes of the biosensor 210 of the ninth embodiment in a multilayer structure.
  • the working electrode terminal 2 13 a and the working electrode reference terminal 2 13 b are layered on each other (overlapping in plan view), and the counter electrode terminal 2 14 a and the counter electrode.
  • the reference terminal 2 14 b is layered.
  • the working electrode terminal and the working electrode reference terminal, and the counter electrode terminal and the counter electrode reference terminal are respectively laminated, but the present invention is not limited to this.
  • the same effect as described above can be obtained by stacking the working electrode terminal and the counter electrode terminal, the working electrode terminal and the counter electrode reference terminal, or the working electrode reference terminal and the counter electrode terminal. Can be.
  • FIG. 34 shows the structure of the biosensor according to the twenty-first embodiment of the present invention.
  • the biosensor 210B of this embodiment is obtained by forming two biosensors 210 of the ninth embodiment on the same substrate.
  • Reaction reagents consisting of enzymes, medias, etc. corresponding to different chemical substances to be measured are applied.
  • the biosensor 210B includes two sensor units, but may include three or more sensor units.
  • FIG. 35 shows the structure of the biosensor according to the second embodiment of the present invention.
  • the biosensor 210C of this embodiment is obtained by combining the counter electrodes 2122a and 212b in the biosensor 210B of the second embodiment.
  • the counter electrode 2 12 in the biosensor 210 C is for the working electrode 2 11 a and also for the working electrode 2 l i b. That is, the working electrodes 2 1 1 a and 2 1 1 b share one counter electrode 2 1 2. Therefore, the counter electrode terminal 2 14 c and the reference electrode terminal 2 14 d in the biosensor 2 10 B can be omitted, and the biosensor 2 10 C has the counter electrode terminal 2 14 a and the counter electrode reference terminal 2 1 4 It is sufficient to have one b and one. Thereby, the size of the biosensor can be further reduced.
  • the two working electrodes 2 1 1 a and 2 1 1 b share the counter electrode 2 1 2.
  • three or more working electrodes are provided in the biosensor, and these working electrodes are used.
  • the poles may share one counter electrode.
  • a plurality of counter electrodes may be provided in the biosensor, and these counter electrodes may share one working electrode.
  • FIG. 36 shows a structure of the biosensor chip according to the twenty third embodiment of the present invention.
  • the biosensor chip 230 of the present embodiment is coated with a reaction reagent consisting of an enzyme, a mediator, or the like according to the chemical substance to be measured, and is applied with a voltage so that the adhered blood and the like are removed. It is equipped with a sensor part 231, which allows current to flow according to the concentration of a specific chemical substance contained in body fluid, and a measuring circuit 2332, which applies a voltage to the sensor part 231, and measures the current flowing at this time. I have.
  • the sensor section 231 and the measurement circuit 232 are electrically connected by working electrode wirings 233a and 233 and counter electrode wirings 234a and 234b.
  • the part consisting of the sensor part 231, the working electrode wirings 23a, 23b and the counter wirings 23a, 23b has the same configuration as the biosensor of the ninth embodiment. ing. That is, the working electrode wiring 2 3 3 a and the counter electrode wiring 2 3 4 a are used to apply voltage to the working electrode 2 11 1 and the counter electrode 2 12, respectively, while the working electrode wiring 2 3 3 b and the counter electrode wiring 2 3 4 b is used for voltage reference of the working electrode 2 11 and the counter electrode 2 12, respectively.
  • the measuring circuit 232 has, for example, the same circuit configuration as the measuring circuits 220, 220A, 220B, 220C described in the first to eighteenth embodiments. ing. That is, the biosensor chip 230 is obtained by forming the biosensor and the biosensor device of the present invention on one chip.
  • the working electrode wirings 23 33 a and 23 33 b and the counter electrode wirings 23 34 a and 24 34 b in the biosensor chip 230 are thinned by fine processing, and the resistance value is increased.
  • a current that is not affected by the resistance value can be measured. Therefore, a highly accurate, ultra-small, and low-cost biosensor chip can be realized.
  • the substrate on which the biosensor chip 230 is formed includes a sensor section 231, a measurement circuit 2 and a sensor section such as a silicon substrate, a silicon “on” insulation substrate, a silicon on ”suffer substrate, and a glass substrate. Any substance or structure may be used as long as it is a substrate on which 32 can be formed.
  • the first voltage applying section for applying the first voltage (for example, voltage V p 1) to the first wiring (for example, working electrode wiring 2 3 3 a) connecting between 3 and 2 is a conventional one
  • the second pole For example, a second voltage (for example, voltage V m 1) applied to a second wiring (for example, counter wiring 2 34 a) connecting the counter electrode 2 1 2) and the measurement circuit 2 32
  • the voltage application unit 2 is the one according to the present embodiment (for example, the counter voltage application unit 222, 222A).
  • the second voltage applying section is connected to the third pole of the second pole through a third wire (for example, a counter electrode wire 234 b) connecting the second pole and the measurement circuit 232.
  • a third wire for example, a counter electrode wire 234 b
  • the second voltage applying section 22 1 and 22 1A and the counter electrode voltage applying section 22 2 and 22 A are omitted from the measurement circuit 23, high accuracy is achieved.
  • an ultra-small and low-cost biosensor chip can be realized.
  • FIG. 37 shows the structure of the biosensor chip according to the twenty-fourth embodiment of the present invention.
  • the biosensor chip 230A of the present embodiment is obtained by forming the wiring in the biosensor chip 230 of the second embodiment in a multilayer structure.
  • the working electrode wirings 2 3 3 a and 2 3 3 b are overlaid, and the counter electrode wirings 2 3 4 a and 2 3 4 b are overlaid.
  • the size of the biosensor chip can be reduced, and the cost can be reduced.
  • the working electrode wiring and the counter electrode wiring are layered.
  • the same effect as described above can be obtained by stacking the working electrode wiring and the counter electrode wiring.
  • FIG. 38 shows the structure of the biosensor chip according to the twenty-fifth embodiment of the present invention.
  • the biosensor chip 230B of the present embodiment is obtained by forming two sensor units and two measurement circuits in the biosensor chip 230 of the second embodiment on the same substrate.
  • a reaction reagent composed of an enzyme, a media, or the like corresponding to a chemical substance to be measured, which is different from each other, is applied to the sensor unit 231a and the sensor unit 231.
  • two sensor units are provided in the biosensor chip 230, but three or more sensor units may be provided.
  • FIG. 39 shows the structure of the biosensor chip according to the 26th embodiment of the present invention.
  • the biosensor chip 230C of the present embodiment is obtained by combining the measurement circuits 2332a and 2332b of the biosensor chip 230 of the twenty-fifth embodiment into a single unit. 3 5
  • FIG. 40 shows the circuit configuration of the measurement circuit module 235.
  • the measuring circuit module 235 is a switch 2336a, 2336b, 236c, 23c for switching connection / disconnection between the measuring circuit 232, the first biosensor 431a and the measuring circuit 2332. 6 d, switch 2 36 e, 2 36 f, 2 36 g, 2 36 h, and switch 2 for switching connection / disconnection between the second biosensor 43 1 b and the measurement circuit 23 2
  • a selection control circuit 237 for controlling the operation of 36 a to 23 h is provided.
  • the switches 236a to 236h and the selection control circuit 237 correspond to the switching means of the present invention.
  • the selection control circuit 237 controls whether all the switches 236a to 236d are closed or opened by the control signal SEL1. Further, the control signal SEL2 controls whether all the switches 2336e to 236h are closed or opened. However, all the switches 236a to 236h shall not be closed at the same time. That is, the selection control circuit 237 selects one of the first biosensor 43 1 a and the second biosensor 43 1 b, and the selected biosensor and the measurement circuit 23 2 Control the switches 2336a to 2336h so that they are electrically connected.
  • the biosensor can be switched, and the number of measurement circuits to be provided is smaller than that of the biosensor chip 230B of the 25th embodiment. Can be reduced. Thereby, the size of the biosensor chip can be further reduced.
  • the switches 236a to 236h are controlled by the two control signals SEL1 and SEL2, but the present invention is not limited to this.
  • the switches 236a to 236h may be controlled only by the control signal SEL1, or the biosensor may be switched by another method.
  • FIG. 41 shows the structure of the biosensor chip according to the 27th embodiment of the present invention.
  • the circuit configuration of the biosensor chip 230D of the present embodiment is the same as that of the biosensor chip 230C of the 26th embodiment.
  • the difference from the biosensor chip 230C is that the sensor units 2311a and 2311b are arranged adjacent to each other. By arranging a plurality of sensor sections 23 la and 23 lb adjacent to each other in this way, analysis of multiple chemical substances can be performed simply by attaching a sample of body fluid such as blood to one point instead of multiple points. It can be carried out.
  • a required amount of a sample of a bodily fluid such as blood is only required in a very small amount, so that the burden on the subject such as blood collection is reduced.
  • the sensor section is adjacent, the structure of the portion where the sample is attached can be simplified. In the biosensor, the same effect as described above can be obtained by arranging the sensor units adjacent to each other.
  • FIG. 42 shows the structure of the biosensor chip according to the twenty-eighth embodiment of the present invention.
  • the biosensor chip 240 of the present embodiment is different from the biosensor chip 230 of the second embodiment in that the sensor section 231 and the measurement circuit 232 of the biosensor chip 230 are different from each other as a sensor chip 241 and a measurement circuit chip 242, respectively. Formed on an integrated circuit, these chips have a chip 'on' chip structure formed on the same substrate.
  • the working electrode terminal 2 1 3a, the working electrode reference terminal 2 1 3b and the counter electrode terminal 2 14a, the counter electrode reference terminal 2 14b of the sensor chip 24 1 and the measuring circuit chip 2 42 are electrically connected to each other by a wire 4 3. Connected.
  • Figure 42 (b) It is sectional drawing in A in FIG.
  • the reaction reagent applied to the sensor portion 231 of the biosensor chip 230 is made of a substrate material on which the measurement circuit chip 242 is formed, that is, the biosensor chip 230. If the material is not compatible with the substrate material in terms of affinity and non-reactivity, it is very difficult to form the sensor section 231 and the measurement circuit chip 2422 on the same substrate. The same applies to the case where the reaction reagent does not match the working electrode wirings 2 33 a and 2 3 3 b and the counter electrode wirings 2 3 4 a and 2 3 4 b. However, in the biosensor chip 240 of the present embodiment, such a problem does not occur because the sensor chip 241 and the measurement circuit chip 242 are formed on different semiconductor integrated circuits.
  • a biosensor chip using various reaction reagents can be realized by forming the biosensor chip into a chip “on” chip structure. Thereby, the range of the measurement target by the biosensor chip is widened.
  • the sensor chip 241 and the measurement circuit chip 242 are arranged on the support substrate, but the present invention is not limited to this.
  • the support substrate may be omitted, and the measurement circuit chip 242 may be directly disposed on the sensor chip 241.On the contrary, the sensor chip 241 may be directly disposed on the measurement circuit chip 242. Is also good.
  • the ball 43 may be replaced by a ball grid array (BGA) or the like instead of the wire 43.
  • the biosensor chip 240 of the present embodiment has the chip-on-chip structure of the biosensor chip 230 of the second embodiment, but the present invention is not limited to this. Not something.
  • the biosensor chips 230A to 230D of the ninth to twenty-seventh embodiments, or those having other configurations can be formed into a chip-on-chip structure.
  • Industrial applicability INDUSTRIAL APPLICABILITY The biosensor device and biosensor of the present invention are preferably used for measuring biological substances, for example, a blood glucose meter.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

明糸田書 バイォセンサ, バイオセンサチップ及びバイオセンサ装置
技術分野
本発明は、 オリゴヌクレオチド、 抗原、 酵素、 ペプチド、 抗体、 DNAフラグ メント、 RNAフラグメント、 グルコース、 乳酸及びコレステロールなどの生体 物質の結合反応を電子的に検出するためのバイォセンサおよびバイォセンサ装置 に関するものである。
背景技術
近年、 使い捨てのサンプル片を用いるバイオセンシング計測器が年々増加して おり、 特に、 血液、 血漿、 尿及び唾液などの生体体液中の特定成分や、 ある細胞 がある時点に創る全ての蛋白質、 すなわち、 プロテオームを、 簡易かつ短時間に 測定及び解析することが期待されている。 また、 将来、 使い捨ての DN Aチップ による遺伝子診断によって、 個人の SNP (S i n g l e Nu c l e o t i d o P o l ymo r p h i smの略) 情報にあった治療や投薬を行うテーラーメ ―ド医療が期待されている。
以下、 従来例としての特願平 1 1— 50 9644号に記載されている血液サン プル中のブドウ糖量、 すなわち、 血糖値の検出に使用されるバイオセンサ装置に ついて説明する。 なお、 本明細書中で 「バイオセンサ」 とは、 生体物質の検出部 を含む使い捨て可能な部分を指し、 「バイオセンサチップ」 とは、 基板上にバイ ォセンサ及び計測回路等を搭載した使い捨て可能な部分を指す。 また、 「バイオ センサ装置」 とは、 バイオセンサまたはバイオセンサチップに解析回路その他の 部分を加えた装置全体を指すものとする。
図 45は、 従来のバイオセンサの構造を示す平面図である。 同図に示すバイオ センサ 1 1 2 2は、 作用極 (陽極) 1 1 0 1と、 作用極 1 1 0 1に対向する対極 (陰極) 1 1 02とを有しており、 作用極 1 1 0 1及び対極 1 1 02には被測定 成分に対応した酵素、 メディ 一夕などよりなる反応試薬 (不図示) が塗布され ている。 作用極 1 1 0 1は配線抵抗 R p 1を有する導電性配線を介して作用極端 子 1 1 0 3へ導かれている。 同様に、 対極 1 1 0 2は配線抵抗 Rm 1を有する導 電性配線を介して対極端子 1 1 0 4へ導かれている。
図 43は、 従来のバイオセンサ装置の一部を示す回路図である。 同図に示すよ うに、 従来のバイオセンサ装置は、 図 45に示すバイォセンサ 1 1 22の作用極 端子 1 1 0 3と対極端子 1 1 04とが計測回路 1 1 2 3に接続された構成を有し ている。 計測回路 1 1 2 3は、 例えば基準電圧源 1 1 1 7と、 対極電圧印加部 1 1 0 6と、 電流計を有する作用極電圧印加部 1 1 0 5と、 信号処理回路 1 1 2 1 とを有している。 従来のバイオセンサ装置では、 基準電圧源 1 1 1 7より発生し た作用極基準電圧 Vp r 1が作用極電圧印加部 1 1 0 5によってィンピーダンス 変換された後、 作用極電圧印加部 1 1 0 5から作用極端子 1 1 0 3に作用極端子 電圧 Vp lが供給される。 このとき、 次式が成り立つ。
Vp l =Vp r 1 、 1 )
ここで、 式 ( 1 ) 中の Vp 1、 Vp r 1は電位あるいは電圧の値を示す。 以下 の Vm l、 Vmr "についても同様である。
また、 基準電圧源 1 1 1 7より発生した対極基準電圧 Vmr 1が対極電圧印加 部 1 1 0 6によってインピーダンス変換された後、 対極電圧印加部 1 1 0 6から に対極端子 1 1 04に対して対極端子電圧 Vm 1が供給される。 このとき、 次式 が成り立つ。
Vm l二 Vmr l ( 2 )
作用極端子 1 1 0 3へ流れ出した電流の値は作用極電圧印加部 1 1 0 5で計測 され、 その結果を示す作用極電流量信号 s 1 1 20は信号処理回路 1 1 2 1に供 給される。 従来のバイオセンサ装置では、 ここで測定された電流量に基づき、 被 測定成分の濃度を換算し結果表示などが行われる。 このとき、 作用極端子 1 1 0 3と対極端子 1 1 04間の電極印加電圧を V f 1とすると次式 ( 3 ) が成り立つ
V f 1 = V p r 1 - Vm r 1 ( 3 )
また、 作用極 1 1 0 1と対極 1 1 0 2間のセンサ印加電圧を V f とする。 さら に、 血液サンプルがバイオセンサ 1 1 2 2に点着するとブドウ糖量に応じた電荷 が作用極 1 1 0 1および対極 1 1 0 2に発生することにより電極間に電流が流れ る。 ここで、 作用極 1 1 0 1側に流れる電流を I f 1、 対極 1 1 0 2側に流れる 電流を I f 2とすると、 次式が成り立つ。
I f 1 = I f 2 ( 4 )
この電流 I f 1を計測回路 1 1 2 3で測定することによりブドゥ糖量、 すなわ ち、 血糖値を計測するのである。
図 44は、 作用極電圧印加部 1 1 0 5と対極電圧印加部 1 1 0 6の具体的な回 路構成例を含む従来のバイオセンサ装置を示す回路図である。 同図に示すように 、 作用極電圧印加部 1 1 0 5はオペアンプに帰還抵抗 R f を負帰還させた回路構 成であり、 対極電圧印加部 1 1 0 6はオペアンプを N U 1 1—アンプ構成、 すな わち、 バッファ回路構成とすることで上述した機能を実現している。
図 4 6は、 図 44で示す従来のバイオセンサ装置のうち、 バイオセンサチヅプ 1 1 24の構造を示す平面図である。 この例では、 バイオセンサ 1 1 2 2と計測 回路 1 1 2 3が同一基板上に 1対のみ形成されている。
また、 図 43に示す従来のバイォセンサ装置において、 バイオセンサ 1 1 2 2 が血糖値を計測する際には、 配線抵抗 Rp 1の作用極側の導電性配線と配線抵抗 Rm 1の対極側の導電性配線によって、 電極印加電圧 V f 1及び作用極電圧 V p と対極電圧 Vmとの差電圧であるセンサ印加電圧 Vf に関して次式が成り立つ。
Vf =Vf l - (Rp l x l f l +Rm l x l f 2) ( 5) また、 作用極 1 1 0 1側に流れる電流 I f 1と対極 1 1 0 2側に流れる電流 I f 2には、 キルヒホッフの法則より次式が成り立つ。
I f 1 = I f 2 ( 6 )
式 ( 3 ) と式 ( 6 ) を式 ( 5 ) に代入して整理すると次式となる。
Vf = (Vp r l -Vmr l ) - (Rp l +Rm l ) x l f l ( 7 ) 従って、 計測回路 1 1 2 3よりバイオセンサ 1 1 2 2へ供給される電極印加電 圧 (Vp r l—Vmr l ) は (R p l +Rm l ) x l f lだけ電位降下し、 セン サ印加電圧 V f となることが分かる。
以上のように、 従来のバイオセンサ装置によれば、 簡便に血液中のグルコース 量を測定することができる。 解決課題 ここで、 反応試薬から発生する電荷による電流 I f 1は、 ブドウ糖量 Qとセン サ印加電圧 V f とにより次式となる。
I f 1 = f {Q^ V f } ( 8 )
従って、 式 (4) を式 ( 3 ) に代入すると
I f 1 = f {Q、 (Vp r 1 - Vmr 1 ) 一 (R p 1 + Rm 1 ) x I f 1 } ( 9 )
すなわち、 作用極 1 1 0 1の導電性配線の配線抵抗 Rp 1と対極 1 1 02の導 電性配線の配線抵抗 Rm 1によって電位降下するため、 電流 I f 1に誤差を生じ 、 最終的にバイオセンサ装置で計測された血糖値に対して誤差が発生してしまう という不具合があつた。
従来、 この不具合を解決するために、 導電性配線として白金 (P t ) 、 金 (A u) 、 銀 (Ag) など低抵抗な貴金属材料が用いられてきたが、 バイオセンサ 1 1 2 2が高価になってしまうという新たな不具合が生じる。 バイオセンサの部分 は基本的に使い捨てであるために、 可能な限り安価であることが求められる。 そ のため、 配線抵抗を低減するための新たな手段が強く求められている。
加えて、 バイオセンサ装置をバイオセンサチヅプ 1 1 2 4として形成する場合 、 導電性配線に微細加工技術が使用される。 また、 将来的にはさらにバイオセン サチップの微細化が進むと考えられ、 その場合には配線抵抗がより高抵抗となる ことによって大きな誤差が発生し、 バイオセンサ装置の測定精度は著しく低下し てしまう。
本発明は、 上述した従来技術の不具合の解決を図り、 導電性配線の配線抵抗に 影響を受けずに測定することが可能なバイオセンサ及びバイオセンサ装置を提供 することを目的とする。
発明の開示
本発明のバイオセンサは、 測定時に被測定流体と接する作用極と、 測定時に上 記被測定流体と接し、 上記被測定流体を流すための間隔を空けて上記作用極に対 向させた対極と、 上記作用極に接続された作用極端子と、 上記対極に接続された 対極端子と、 上記作用極と上記対極のいずれか一方または両方に接続され、 測定 時には実質的に電流が流れない参照端子とを備えている。
この構成により、 参照端子を備えることで作用極と作用極端子との間、 あるい は対極と対極端子との間の抵抗の影響を受けずに被測定流体の測定を行えるよう になるので、 高精度の測定が可能なバイオセンサが実現できる。
上記作用極及び上記対極のうち少なくとも一方には、 上記被測定流体に含まれ る物質の状態を変化させる生体物質または微生物が固定化されていることにより 、 例えば酵素による触媒反応、 抗原抗体反応、 遺伝子間の結合反応などによる被 測定流体の変化を電気的に検出することが可能になる。 これにより、 蛍光を用い る測定に比べ、 より詳細な測定が可能となる。
上記参照端子は、 上記作用極または上記対極のいずれかにのみ接続されている ことにより、 作用極及び対極の両方に参照端子が設けられている場合に比べ、 少 ない構成部材で高精度の測定を可能にすることができる。 従って、 この場合のバ ィォセンサは、 製造コス トの削減や小面積化が要求される場合に特に有効である 上記作用極と上記作用極端子とを接続する第 1の配線と、 上記作用極または上 記対極と上記参照端子とを接続する第 2の配線と、 上記対極と上記対極端子とを 接続する第 3の配線とをさらに備えていることにより、 これらの配線の形状をェ 夫して高精度の測定を実現できる。
上記参照端子は、 上記作用極に接続された作用極参照端子と、 上記対極に接続 された対極参照端子とを含んでいることにより、 参照端子を作用極または対極の 一方にのみ設ける場合に比べて高精度の測定を行なうことができるようになる。 上記作用極と上記作用極端子とを接続する第 4の配線と、 上記作用極と上記作 用極参照端子とを接続する第 5の配線と、 上記対極と上記対極参照端子とを接続 する第 6の配線と、 上記対極と上記対極端子とを接続する第 7の配線とをさらに 備えており、 上記第 4の配線、 上記第 5の配線、 上記第 6の配線、 及び上記第 7 の配線のうち少なく とも 2つの配線は互いに異なる配線層内に設けられ、 且つ平 面的に見て少なく とも一部がオーバ一ラップするように設けられていることによ り、 全ての配線が同一配線層内に設けられる場合に比べ、 回路面積を低減するこ とができる。 上記第 1の配線と上記第 2の配線とは互いに異なる配線層内に設けられている ことにより、 両配線をオーバ一ラヅプするように配置することなどにより、 回路 面積の低減を図ることができる。
上記第 2の配線と上記第 3の配線とは互いに異なる配線層内に設けられている 場合にも、 回路面積の低減を図ることができる。
上記作用極、 上記対極、 上記参照端子、 上記作用極端子、 上記対極端子、 上記 第 1の配線、 上記第 2の配線及び上記第 3の配線は基板上に設けられ、 上記作用 極端子または上記対極端子のうちいずれか一方は上記基板の裏面上に設けられて いることにより、 配線面積をより広く とれるので、 抵抗を理想値である 0 Ωに近 づけることができる。
また、 上記作用極端子と上記対極端子とは互いに異なる配線層内に設けられて いてもよい。
上記第 3の配線が複数の配線層内に亘つて設けられていてもよい。
また、 参照端子が作用極または対極のいずれかのみに接続されている場合には 、 上記対極は略円形であり、 上記作用極の内周の一部は上記対極との距離がほぼ 一定の円周状であることにより、 被測定流体の反応を均一にすることができる上 、 第 1及び対極に加わる電界が均一になるので、 測定精度をより向上させること ができる。
上記作用極は略円形であり、 上記対極の内周の一部は上記作用極との距離がほ ぼ一定の円周状であることによつても、 被測定流体の反応を均一にすることがで きる上、 第 1及び対極に加わる電界が均一になるので、 測定精度をより向上させ ることができる。
上記作用極は複数個設けられており、 上記作用極のそれそれに対向する上記対 極同士は、 一体化されていることにより、 電極数を減らせるので、 製造工程を少 なくすることができ、 製造コストの低減を図ることができる。 また、 対極端子に 接続される配線の断面積を大きくすることができるので、 対極端子側の配線抵抗 を低減することができる。
上記対極は複数個設けられており、 上記作用極のそれぞれに対向する上記作用 極同士は、 一体化されていることによつても電極数を減らせるので、 製造コス ト ? の低減を図ることができる。
上記第 3の配線の断面積は、 上記第 1の配線の断面積よりも大きいことにより 、 第 3の配線の抵抗をより理想値である 0 Ωに近づけることができる。
本発明のバイオセンサチップは、 測定時に被測定流体と接する作用極と、 測定 時に上記被測定流体と接し、 上記被測定流体を流すための間隔を空けて上記作用 極に対向させた対極と、 上記被測定流体を保持するためのセンサ部と、 上記作用 極に接続された作用極端子と、 上記対極に接続された対極端子と、 上記作用極と 上記対極のいずれか一方または両方に接続され、 測定時には実質的に電流が流れ ない参照端子とを有し、 基板上に設けられたバイオセンサと、 上記バイオセンサ に接続され、 基板上に設けられた計測回路とを備えている。
この構成により、 参照端子が作用極及び対極のうちの一方または両方に接続さ れているので、 作用極と作用極端子との間、 あるいは対極と対極端子との間の抵 抗値によらず被測定流体中の測定対象物質を測定することができるようになる。 そのため、 高精度の測定が可能になる。
上記作用極及び上記対極のうち少なくとも一方には、 上記被測定流体に含まれ る物質の状態を変化させる生体物質または微生物が固定化されていることにより 、 迅速且つ詳細な測定を実現することができる。
上記参照端子は、 上記作用極または上記対極のいずれかにのみ接続されている ことにより、 少ない構成部材で高精度の測定を可能にすることができる。
例えば、 上記参照端子は上記作用極に接続され、 上記計測回路は上記作用極端 子に接続され、 電流計を有する作用極電圧印加部と、 上記参照端子に接続された 作用極電位参照回路と、 上記対極端子に接続された対極電圧印加部と、 上記作用 極電位参照回路及び上記対極電圧印加部にそれそれ基準電圧を供給するための基 準電圧源と、 測定時に、 上記作用極端子に流れる電流量に応じて上記作用極電圧 印加部から出力される電流量信号を処理するための信号処理回路とを有していて もよい。
この場合に、 測定時には、 上記参照端子に印加される電圧が上記作用極電位参 照回路に供給される基準電圧とほぼ等しくなるように上記作用極電位参照回路が 信号を発生することが、 精度の良い測定を行なうことで好ましい。 上記参照端子は上記対極に接続され、 上記計測回路は、 上記作用極端子に接続 された作用極電圧印加部と、 上記対極端子に接続され、 電流計を有する対極電圧 印加部と、 上記参照端子に接続された対極電位参照回路と、 上記対極電位参照回 路及び上記作用極電圧印加部にそれぞれ基準電圧を供給するための基準電圧源と 、 測定時に、 上記対極端子に流れる電流量に応じて上記対極電圧印加部から出力 される電流量信号を処理するための信号処理回路とを有していてもよい。
その場合、 測定時には、 上記参照端子に印加される電圧が上記対極電位参照回 路に供給される基準電圧とほぼ等しくなるように上記対極電位参照回路が信号を 発生することが好ましい。
上記参照端子は上記作用極に接続され、 上記計測回路は、 上記作用極端子及び 上記参照端子に接続され、 電流計を有する作用極電圧印加部と、 上記対極端子に 接続された対極電圧印加部と、 上記作用極電圧印加部及び上記対極電圧印加部に それぞれ基準電圧を供給するための基準電圧源と、 測定時に、 上記作用極端子に 流れる電流量に応じて上記作用極電圧印加部から出力される電流量信号を処理す るための信号処理回路とを有していることにより、 作用極電位参照回路を設けな くても測定対象物質を測定することが可能になる。
上記参照端子は上記対極に接続され、 上記計測回路は、 上記作用極端子に接続 された作用極電圧印加部と、 上記対極端子及び上記参照端子に接続され、 電流計 を有する対極電圧印加部と、 上記対極電圧印加部及び上記作用極電圧印加部にそ れそれ基準電圧を供給するための基準電圧源と、 測定時に、 上記対極端子に流れ る電流量に応じて上記対極電圧印加部から出力される電流量信号を処理するため の信号処理回路とを有していることにより、 対極電位参照回路を設けなくても測 定対象物質を測定することが可能になる。
上記作用極に接続された作用極参照端子と、 上記対極に接続された対極参照端 子とを含んでいることにより、 作用極参照端子のみ、 あるいは対極参照端子のみ が設けられる場合に比べて、 測定精度を向上させることができる。
上記計測回路は、 上記作用極端子及び上記作用極参照端子に接続された作用極 電圧印加部と、 上記対極端子及び上記対極参照端子に接続された対極電圧印加部 と、 上記対極電圧印加部及び上記作用極電圧印加部にそれぞれ基準電圧を供給す y るための基準電圧源と、 測定時に、 上記作用極端子に流れる電流量に応じて上記 作用極電圧印加部から出力される第 1の電流量信号と、 上記対極端子に流れる電 流量に応じて上記対極電圧印加部から出力される第 2の電流量信号のうち少なく とも一方を処理するための信号処理回路とを有していてもよい。
この場合、 特に上記信号処理回路は、 上記第 1の電流量信号と上記第 2の電流 量信号の両方を処理することによって、 2つの電流量信号を用いて測定すること ができるので、 測定精度をより向上させることができる。
上記バイオセンサが設けられた基板と上記計測回路が設けられた基板とは同一 基板であることにより、 製造を容易にすることができる。
上記バイオセンサチップは共通基板をさらに有し、 上記バイォセンサが設けら れた基板と上記計測回路が設けられた基板とが上記共通基板上に載置されている ことにより、 例えば計測回路の基板が第 1及び対極に固定化される生体物質や試 薬などと反応してしまう場合や、 計測回路の配線とバイオセンサの配線とが共通 化できない場合にもバイォセンサチップを製造することができるようになる。 上記バイオセンサが設けられた基板と上記計測回路が設けられた基板とが積層 されていることにより、 バイオセンサチップをより小面積化することができる上 、 製造コス トの低減を図ることもできる。
同一基板上に上記バイオセンサが複数個設けられており、 少なく とも 2つの上 記バイオセンサは同一の上記計測回路に接続され、 上記各バイォセンサの上記作 用極端子と上記計測回路との間、 上記参照端子と上記計測回路との間、 及び上記 対極端子と上記計測回路との間には、 上記バイォセンサと上記計測回路との接続 をオンまたはオフにするためのスィッチがさらに設けられていることにより、 計 測回路の必要数を減らすことができるので、 チップ面積をより小さくすることが できる。
同一基板上に上記バイォセンサが複数個設けられており、 2つの上記バイオセ ンサのセンサ部が、 互いに隣接して設けられていることにより、 複数の測定を同 時に行なうことができる上、 必要な試料が極微量で済むようになる。
本発明のバイオセンサ装置は、 測定時に被測定流体と接する作用極と、 測定時 に上記被測定流体と接し、 上記被測定流体を流すための間隔を空けて上記作用極 に対向させた対極と、 上記被測定流体を保持するためのセンサ部と、 上記作用極 に接続された作用極端子と、 上記対極に接続された対極端子と、 上記作用極と上 記対極のいずれか一方または両方に接続され、 測定時には実質的に電流が流れな い参照端子とを有し、 基板上に設けられたバイオセンサと、 上記バイオセンサに 接続され、 基板上に設けられた計測回路とを備え、 測定時に上記作用極端子と上 記対極端子のいずれか一方または両方を流れる電流の値から上記被測定流体に含 まれる測定対象物質の濃度を測定する機能を有することにより、 従来よりも迅速 且つ高精度に目的物質の測定を行うことができる。
上記参照端子は、 上記作用極または上記対極のいずれかにのみ接続されている ことにより、 従来よりも高精度の測定を実現するとともに、 作用極と対極の両方 に参照端子を設ける場合に比べて部品点数を減らすことができる。
上記参照端子は、 上記作用極に接続された作用極参照端子と、 上記対極に接続 された対極参照端子とを含んでおり、 上記計測回路は、 上記作用極端子及び上記 作用極参照端子に接続された作用極電圧印加部と、 上記対極端子及び上記対極参 照端子に接続された対極電圧印加部と、 上記対極電圧印加部及び上記作用極電圧 印加部にそれそれ基準電圧を供給するための基準電圧源と、 測定時に、 上記作用 極端子に流れる電流量に応じて上記作用極電圧印加部から出力される第 1の電流 量信号と、 上記対極端子に流れる電流量に応じて上記対極電圧印加部から出力さ れる第 2の電流量信号のうち少なくとも一方を処理するための信号処理回路と を有していることにより、 作用極と作用極端子との間の抵抗と、 対極と対極端子 との間の抵抗の両方の影響を受けずに測定することができるので、 作用極または 対極の一方にのみ参照端子を接続させる場合に比べて測定精度を向上させること ができる。
測定時には、 上記作用極参照端子に印加される電圧が、 上記作用極電圧印加部 に供給される基準電圧とほぼ等しくなり、 上記対極参照端子に印加される電圧が 、 上記対極電圧印加部に供給される基準電圧とほぼ等しくなることが、 正確な測 定のために好ましい。
上記計測回路に接続され、 上記計測回路から出力された信号を解析するための 回路をさらに備えていることにより、 正確な測定が可能になる。 ^ 上記バイオセンサと上記計測回路とは同一のチップ上に設けられており、 上記 チヅプは交換可能になっていることにより、 試料間の汚染を防ぎ、 測定を簡便に することができる。
上記計測回路は、 上記第 1の電流量信号及び上記第 2の電流量信号を受けて、 上記作用極と上記対極との間に流れる電流量を表す第 3の電流量信号を上記信号 処理回路に出力する電流量信号生成部をさらに有していることにより、 後段に設 けられる信号処理回路の構成を簡略化することができ、 装置の小型化が可能とな る。
上記参照端子は上記作用極に接続され、 上記計測回路は、 上記作用極端子に接 続され、 電流計を有する作用極電圧印加部と、 上記参照端子に接続された作用極 電位参照回路と、 上記対極端子に接続された対極電圧印加部と、 上記作用極電位 参照回路及び上記対極電圧印加部にそれそれ基準電圧を供給するための基準電圧 源と、 測定時に、 上記作用極端子に流れる電流量に応じて上記作用極電圧印加部 から出力される電流量信号を処理するための信号処理回路とを有していてもよい 測定時には、 上記参照端子に印加される電圧が上記作用極電位参照回路に供給 される基準電圧とほぼ等しくなるように上記作用極電位参照回路が信号を発生す ることが、 精度の良い測定のためには好ましい。
上記参照端子は上記対極に接続され、 上記計測回路は、 上記作用極端子に接続 された作用極電圧印加部と、 上記対極端子に接続され、 電流計を有する対極電圧 印加部と、 上記参照端子に接続された対極電位参照回路と、 上記対極電位参照回 路及び上記作用極電圧印加部にそれぞれ基準電圧を供給するための基準電圧源と 、 測定時に、 上記対極端子に流れる電流量に応じて上記対極電圧印加部から出力 される電流量信号を処理するための信号処理回路とを有していてもよい。
この場合、 測定時には、 上記参照端子に印加される電圧が上記対極電位参照回 路に供給される基準電圧とほぼ等しくなるように上記対極電位参照回路が信号を 発生することが、 精度の良い測定のために好ましい。
上記参照端子は上記作用極に接続され、 上記計測回路は、 上記作用極端子及び 上記参照端子に接続され、 電流計を有する作用極電圧印加部と、 上記対極端子に 接続された対極電圧印加部と、 上記作用極電圧印加部及び上記対極電圧印加部に それぞれ基準電圧を供給するための基準電圧源と、 測定時に、 上記作用極端子に 流れる電流量に応じて上記作用極電圧印加部から出力される電流量信号を処理す るための信号処理回路とを有していてもよい。
上記参照端子は上記対極に接続され、 上記計測回路は、 上記作用極端子に接続 された作用極電圧印加部と、 上記対極端子及び上記参照端子に接続され、 電流計 を有する対極電圧印加部と、 上記対極電圧印加部及び上記作用極電圧印加部にそ れそれ基準電圧を供給するための基準電圧源と、 測定時に、 上記対極端子に流れ る電流量に応じて上記対極電圧印加部から出力される電流量信号を処理するため の信号処理回路とを有していてもよい。
また、 装置全体が使い捨て可能であることにより、 より簡便に測定を行なうこ とができる。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係るバイオセンサ装置の一部を示す回路図 である。
図 2は、 作用極電圧印加部と対極電圧印加部の具体的な回路構成を含む第 1の 実施形態に係るバイォセンサ装置の一部を示す回路図である。
図 3は、 本発明の第 6の実施形態に係るバイオセンサ装置の一部を示す回路図 である。
図 4は、 作用極電圧印加部及び対極電圧印加部の具体的な構成を含む第 6の実 施形態に係るバイオセンサ装置の一部を示す回路図である。
図 5は、 本発明の第 7の実施形態に係るバイォセンサ装置の一部を示す回路図 である。
図 6は、 作用極電圧印加部及び対極電圧印加部の具体的な構成を含む第 7の実 施形態に係るバイオセンサ装置の一部を示す回路図である。
図 7は、 本発明の第 8の実施形態に係るバイオセンサ装置の一部を示す回路図 である。
図 8は、 作用極側電位参照電圧源及び対極側電位参照電流計付き電圧源の具体 的な構成を含む第 8の実施形態に係るバイォセンサ装置の一部を示す回路図であ る。
図 9は、 第 1の実施形態に係るバイオセンサを示す平面図である。
図 1 0は、 導電性配線を多層化した場合の第 1の実施形態に係るバイオセンサ を示す図である。
図 1 1は、 本発明の第 2の実施形態に係るバイオセンサを示す平面図及び透視 図である。
図 1 2は、 本発明の第 3の実施形態に係るバイオセンサを示す平面図及び透視 図である。
図 1 3は、 本発明の第 4の実施形態に係るバイオセンサを示す平面図及び透視 図である。
図 1 4は、 本発明の第 5の実施形態に係るバイオセンサを示す平面図及び透視 図である。
図 1 5は、 本発明の第 9の実施形態に係るバイオセンサチップを示す平面図で ある。
図 1 6は、 第 9の実施形態に係るバイオセンサチップの第 1の変形例を示す平 面図である。
図 1 7は、 第 9の実施形態に係るバイオセンサチップの第 2の変形例を示す平 面図である。
図 1 8は、 第 9の実施形態に係るバイオセンサチップの第 3の変形例を示す平 面図である。
図 1 9は、 本発明の第 1 0の実施形態に係るバイオセンサチヅプを示す平面図 である。
図 2 0は、 第 1 0の実施形態に係るバイォセンサチップの断面図である。 図 2 1は、 本発明の第 1 1の実施形態に係るバイォセンサを示す平面図である 図 2 2は、 本発明の第 1 2の実施形態に係るバイオセンサを示す平面図及び透 視図である。
図 2 3は、 本発明の第 1 3の実施形態に係るバイオセンサチヅプを示す平面図 である。
図 2 4は、 本発明の第 1 4の実施形態に係るバイオセンサチップの構成を示す 回路図である。
図 2 5は、 第 1 4の実施形態に係るバイォセンサチッブを示す平面図である。 図 2 6は、 本発明の第 1 5の実施形態に係るバイオセンサチップを示す平面図 である。
図 2 7は、 本発明の第 1 6の実施形態に係るバイオセンサ装置を示す回路構成 図である。
図 2 8は、 本発明の第 1 6の実施形態に係るバイオセンサ装置を示す回路構成 図である。
図 2 9は、 第 1 6の実施形態のバイオセンサ装置において、 作用極電圧印加部 および対極電圧印加部を示す回路図である。
図 3 0は、 本発明の第 1 7の実施形態に係るバイオセンサ装置を示す回路構成 図である。
図 3 1は、 本発明の第 1 8の実施形態に係るバイオセンサ装置を示す回路構成 図である。
図 3 2は、 本発明の第 1 9の実施形態に係るバイオセンサの平面図である。 図 3 3は、 本発明の第 2 0の実施形態に係るバイオセンサを示す平面図である 図 3 4は、 本発明の第 2 1の実施形態に係るバイオセンサを示す平面図である 図 3 5は、 本発明の第 2 2の実施形態に係るバイオセンサを示す平面図である 図 3 6は、 本発明の第 2 3の実施形態に係るバイオセンサチップを示す平面図 である。
図 3 7は、 本発明の第 2 4の実施形態に係るバイオセンサチップを示す平面図 である。
図 3 8は、 本発明の第 2 5の実施形態に係るバイオセンサチップを示す平面図 である。 図 3 9は、 本発明の第 2 6の実施形態に係るバイオセンサチップを示す平面図 である。
図 4 0は、 第 2 6の実施形態に係る計測回路モジュールを示す回路構成図であ る。
図 4 1は、 本発明の第 2 7の実施形態に係るバイオセンサチップを示す平面図 である。
図 4 2は、 本発明の第 2 8の実施形態に係るバイオセンサチップを示す構造図 である。
図 4 3は、 従来のバイォセンサ装置の一部を示す回路図である。
図 4 4は、 作用極電圧印加部及び対極電圧印加部の具体的な回路構成例を含む 従来のバイオセンサ装置の一部を示す回路図である。
図 4 5は、 従来のバイオセンサの構造を示す平面図である。
図 4 6は、 図 4 4に示す従来のバイオセンサ装置のうち、 バイオセンサチヅプ の構造を示す平面図である。 最良の実施形態
以下、 本発明の実施例を図面を用いて説明する。 なお、 各実施例において共逋 の部材には同一符合を付し、 その詳しい説明を省略するものとする。
(第 1の実施形態)
図 1は、 本発明の第 1の実施形態に係るバイォセンサ装置の一部を示す回路図 であり、 図 9は、 第 1の実施形態に係るバイオセンサを示す平面図である。
図 9に示すように、 本実施形態のバイオセンサ 1 5は、 作用極 1 0 1 と、 作用 極 1 0 1に対向する対極 1 0 2と、 共に作用極 1 0 1に接続された作用極端子 1 0 3及び作用極参照端子 1 0と、 対極 1 0 2に接続された対極端子 1 0 4とを有 している。 作用極 1 0 1 と作用極端子 1 0 3及び作用極参照端子 1 0との間、 及 び対極 1 0 2と対極端子 1 0 4との間は、 A 1 (アルミニウム) や C u (銅) な どの比較的安価な金属からなる導電性配線により接続されている。 また、 対極 1 0 2は、 十分な断面積のある導電性配線を介して対極端子 1 0 4に接続されてい るため、 対極側での配線抵抗 R mはほぼ 0 Ωとみなせる。 それ故、 対極 1 0 2と 対極端子 1 0 4との間の導電性配線の断面積は、 作用極 1 0 1 と作用極端子 1 0 3との間の導電性配線の断面積よりも大きくなつている。
グルコースなどの被測定物質を含むサンプルは外部から作用極 1 0 1及び対極 1 0 2を含む反応部に導入され、 測定が行われる。 例えば、 グルコースを測定す る場合、 血液サンプルが作用極 1 0 1及び対極 1 0 2に固定化されたグルコース ォキシダーゼに触れると、 化学反応によって過酸化水素を生じ、 電子が発生する 。 すると、 電極間に電流が流れ、 この電流を測定することで、 グルコース量が測 定される。 なお、 グルコースォキシダーゼは、 必ずしも両極に固定化される必要 はなく、 作用極 1 0 1または対極 1 0 2のいずれか一方に固定化されていればよ い。
次に、 図 1に示す本実施形態のバイオセンサ装置は、 上述のバイオセンサ 1 5 と、 作用極参照端子 1 0、 作用極端子 1 0 3及び対極端子 1 0 4に接続された計 測回路 1 6とを備えている。
計測回路 1 6は、 作用極参照端子 1 0に接続された作用極電位参照回路 8と、 作用極端子 1 0 3に接続され、 電流計を有する作用極電圧印加部 1 0 5と、 対極 端子 1 0 4に接続された対極電圧印加部 1 0 6と、 作用極電位参照回路 8と対極 電圧印加部 1 0 6にそれそれ作用極基準電圧 V p r 1及び対極基準電圧 V m r 1 を供給する基準電圧源 1 1 7と、 作用極電圧印加部 1 0 5に接続された信号処理 回路 1 2 1とを有している。
図 2は、 作用極電圧印加部 1 0 5と対極電圧印加部 1 0 6の具体的な回路構成 を含む本実施形態のバイオセンサ装置を示す回路図である。 同図に示すように、 作用極電圧印加部 1 0 5はオペアンプに帰還抵抗 R f を負帰還させた回路構成で あり、 対極電圧印加部 1 0 6はオペアンプを N u 1 1一アンプ構成、 すなわち、 バッファ回路構成とすることで上述した機能を実現している。
本実施形態のバイオセンサ及びバイオセンサ装置の特徴は、 作用極 1 0 1に接 続される電極を作用極端子 1 0 3 と作用極参照端子 1 0の 2つに分けたことであ る。 この効果を以下に説明する。
まず、 本実施形態のバイオセンサ装置においては、 基準電圧源 1 1 7より発生 した対極基準電圧 V m r 1が対極電圧印加部 1 0 6でインピ一ダンス変換された 後、 対極電圧印加部 1 0 6から対極端子 1 04に印加電圧 Vm 1が供給される。 このとき、 次式が成り立つ。
Vm 1 = Vm r 1 ( 1 0 )
また、 基準電圧源 1 1 7より発生した作用極基準電圧 Vp r 1と、 作用極参照 端子 1 0からの作用極参照端子電圧 Vp 2とが作用極電位参照回路 8に入力され ると、 その差電圧が 0 Vとなるように作用極電位参照回路 8は作用極制御信号 s 1 3を発生する。 作用極制御信号 s 1 3の電圧である作用極制御信号電圧は Vp r 2である。 このとき、 次式の関係が成り立つ。
Vp 2 =Vp r l ( 1 1 )
Vp 1 = Vp r 2 ( 1 2 )
また、 作用極制御信号電圧 Vp r 2が作用極電圧印加部 1 0 5によってインピ 一ダンス変換された後、 作用極電圧印加部 1 0 5から作用極端子 1 0 3に作用極 制御信号電圧 Vp r 2が供給される。
次に、 図 1において、 作用極 1 0 1と作用極参照端子 1 0との間の導電性配線 の配線抵抗を R P 2、 配線を流れる作用極参照端子電流を I p 2とする。
ここで、 作用極電位参照回路 8の作用極参照端子 1 0側の入力は高入力インピ 一ダンスとなっており、 作用極参照端子 1 0に流れる電流は次式となる。
I p 2二 0 ( 1 3 )
従って、 作用極参照端子電圧 Vp 2と作用極電圧 Vpは次式を満足する。
V p 2 = V p ( 1 4)
よって、 式 ( 1 0 ) 、 ( 1 1 ) 、 ( 1 3 ) 、 ( 1 4) よりセンサ印加電圧 Vf には次式が成り立つ。
V f = V p - Vm
= Vp 2 - ( Vm 1 + I f 2 - Rm l )
ここで、 Rm l - Ο Ωより、
V f = V p 2 - Vm 1
= Vp r l— Vmr l
.·. V f = V p r 1 - Vm r 1 ( 1 5 )
すなわち、 センサ印加電圧 V f には常に一定電圧が印加されることになる。 よって、 本実施形態のバイオセンサ装置において式 (8 ) に式 ( 1 5 ) を代入 すると次式となる。
I f 1 = f {Q, (Vp r 1 - Vmr 1 ) }
.·. I f 1 - f ( Q ) ( 1 6 )
従って、 作用極 1 0 1の導電性配線の配線抵抗 R 1による影響は全く発生せ ず、 最終的なバイォセンサ装置で計測された血糖値には誤差が全く発生しない。 ここで、 作用極端子電圧 Vp 1は作用極電位参照回路 8と作用極電圧印加部 1 0 5によって次式のように制御される。
Vp l =Vp r 2
人 Vp l =Vp r l +Rp l x l f l ( 1 7 )
以上のように、 本実施形態のバイオセンサ装置は、 作用極より分岐した作用極 端子及び作用極参照端子と、 対極に接続された対極端子の 3電極を有するバイオ センサを備えること、 及び作用極参照電圧 V p 2と作用極基準電位 Vp r 1との 電位差が 0となるように作用極制御信号 s 1 3を発生する作用極電位参照回路 8 を備えることにより、 配線抵抗の影響を受けずに測定を行なうことが可能になつ ている。 そのため、 従来のバイオセンサ装置に比べて高精度の測定を行うことが できる。
また、 測定値が配線抵抗の影響を受けないので、 従来のように高価な貴金属を 配線に用いる必要がなくなり、 製造コストの低減を図ることができる。
なお、 本実施形態のバイオセンサ装置では、 作用極電圧印加部 1 05に流れた 電流を信号処理回路 1 2 1で処理して被測定物質の濃度を算出し、 図示しない表 示部などで表示する。
また、 本実施形態のバイオセンサ装置において、 導電性配線を多層化してもよ い。
図 1 0は、 導電性配線を多層化した場合の本実施形態のバイオセンサを示す図 である。 同図に示す例では、 作用極 1 0 1と作用極参照端子 1 0を接続する導電 性配線が作用極端子 1 0 3に接続する導電性配線とは異なる層に設けられており 、 2つの導電性配線が平面的に見て互いにオーバ一ラヅプして設けられている。 このような構造により、 図 9に示すバイオセンサに比べて面積を小さくするこ とができる。 また、 小面積化することにより、 多種類の物質を測定するバイオセ ンサをチップに集積するのに有利となる上、 製造コス トの低減を図れる可能性も ある。 例えば、 プドウ糖測定用のバイオセンサと、 G O T、 G T Pなどの肝機能 測定用のバイオセンサを組み合わせて多層化することにより、 一度の採血で他種 類の測定ができることとなり、 患者の負担軽減にもつながる。
また、 配線の多層化は、 作用極のみならず対極側の導電性配線に適用してもよ い。 微細化が進むに従って、 対極側の配線面積は狭くなるので、 抵抗を 0に近づ けるのが難しくなつてくる。 そのため、 対極側の配線を多層化して対極側の導電 性配線を 2層以上とすることで、 実質的な配線面積を広げることができ、 抵抗値 を低減することが可能となる。
なお、 現在のバイオセンサ装置で広く販売されているのは、 対極及び作用極に グルコースォキシダ一ゼ等を固定化したグルコース測定用装置であるが、 電極に 固定化する物質を変えることで、 該物質と結合する物質、 あるいは反応する物質 、 または触媒反応により分解及び合成される物質を測定することが可能になる。 例えば、 電極に 1本鎖の D N Aを固定することにより、 この D N Aと対を作る D N Aあるいは R N Aを検出することができる。 D N Aが 2本鎖になることにより 、 導電性が変化するので、 電気的に検出することが可能となる。 これは、 病気の 検査にも利用することができる。 例えば、 エイズの検査などでは、 抗体が生じる までに数ケ月の期間を要するが、 R N A測定を行なうことにより、 感染後速やか に感染を検出することができる。
その他にも、 各種酵素などの生体物質を電極に固定化してもよいし、 微生物を 固定化してもよい。 例えば、 二酸化炭素を資化する微生物を固定化することによ り、 血液中の二酸化炭素を測定することもできる。 なお、 ここで生体物質とは、 生物の体内に含まれるタンパク質、 アミノ酸、 遺伝子その他の有機物全般を指す ものとする。
また、 蛍光を利用する比色定量に比べ電気的定量はより詳細に測定値を把握す ることができるので、 治療計画を立てる上でも、 精密に測定を行うことができる 本実施形態のバイオセンサ装置は有用である。
なお、 本実施形態のバイオセンサ装置では、 バイオセンサ 1 5、 またはバイオ センサ及び計測回路 1 6のみが使い捨てであつたが、 表示部や各種機器を備える 装置本体ごと使い捨てにしてもよい。
なお、 対極側にも対極参照端子を設けた 4端子構造を取ることもできるが、 本 実施形態のバイオセンサは、 4電極構造に比べて部品点数が少なくてよいので、 低コス ト化が図れ、 また配線面積を広く取りやすい。 逆に、 高い精度が要求され る場合には、 4端子構造のバイオセンサ装置が好ましい。 これについては後の実 施形態で詳述する。
なお、 本実施形態のバイオセンサにおいて、 作用極端子と作用極参照端子とは 、 作用極から分岐する形状となっているが、 作用極端子に接続される導電性配線 と作用極参照端子に接続される導電性配線が一部を共用し、 途中から分岐するよ うな形状であってもよい。
(第 2の実施形態)
図 1 1は、 本発明の第 2の実施形態に係るバイオセンサ 7 0を示す平面図及び 透視図である。
同図に示すように、 本実施形態のバイオセンサは、 作用極 1 0 1 と、 作用極 1 0 1に対向する対極 1 0 2と、 作用極 1 0 1に接続された作用極参照端子 1 0及 び作用極端子 1 0 3 と、 対極 1 0 2に接続された対極端子 1 0 4とを有している 本実施形態のバイオセンサの特徴は、 対極 1 0 2に接続された対極端子 1 0 4 が、 作用極 1 0 1の形成された面から裏側へ貫通し、 裏面全体が対極端子となつ ていることである。
このような構造によれば、 バイオセンサのサイズを変えずに対極端子側の配線 抵抗値 R m 1をさらに小さくすることができ、 高精度なバイオセンサを実現でき る。
以上のように本実施形態のバイオセンサによれば、 作用極、 作用極参照端子、 対極を設けた 3電極構造を有し、 対極端子が作用極の形成された面から裏側へ貫 通し、 裏面全体が対極となることにより、 高精度の測定を実現することができる
(第 3の実施形態) J. 図 1 2は、 本発明の第 3の実施形態に係るバイオセンサを示す平面図及び透視 図である。
同図に示すように、 本実施形態のバイオセンサは、 ほぼ円形の対極 1 0 2と、 対極 1 0 2を一定間隔空けて囲む同心円のリング状をした作用極 1 0 1 と、 作用 極 1 0 1に接続された作用極参照端子 1 0及び作用極端子 1 0 3 と、 対極 1 0 2 に接続された対極端子 1 0 4とを有している。 対極端子 1 0 4は、 作用極 1 0 1 が形成された面の裏側へ貫通し、 裏面全体に設けられている。
本実施形態のバイオセンサでは、 作用極 1 0 1が同心円状に形成されているの で、 酵素と被測定物質との反応を均一に行わせることが可能になる。 また、 作用 極にかかる電界が均一になり、 より測定精度を向上させることができる。
また、 第 2の実施形態と同様に、 対極端子 1 0 4が裏面全体に設けられている ことにより、 対極側での抵抗が低減され、 測定精度が向上している。
このように、 本実施形態のバイオセンサによれば、 従来に比べ、 著しく高精度 の測定を行うことができる。
なお、 本実施形態のバイオセンサにおいて、 作用極 1 0 1は同心円状であった が、 例えば半円状など、 円周の一部の形を取ることで、 作用極にかかる電界を均 一にすることもできる。
(第 4の実施形態)
図 1 3は、 本発明の第 4の実施形態に係るバイオセンサを示す平面図及び透視 図である。 同図に示すように、 本実施形態のバイオセンサ 7 2は、 作用極 1 0 1 と、 作用極に対向するように設けられた対極 1 0 2と、 作用極 1 0 1に接続され 、 裏面全体に設けられた作用極端子 1 0 3と、 対極 1 0 2に接続された対極端子 1 0 4及び対極参照端子 3とを有している。
本実施形態のように、 対極側に参照電極を設けて 3電極構造とすることもでき る。 この場合でも、 第 1の実施形態で説明したように、 導電性配線の抵抗が測定 値に影響を与えないので、 高精度の測定が可能となる。 このため、 導電性配線を 安価な金属で構成することができ、 製造コス トの低減を図ることができる。 なお、 図 1 3に示す例では、 作用極端子 1 0 3が作用極 1 0 1が形成された面 の裏面全体に形成されていることにより、 作用極側の抵抗値が著しく小さく抑え られている。 ただ、 必ずしも裏面に作用極端子 1 0 3が設けられていなくともよ い。
以上のように、 本実施形態のバイオセンサによれば、 高精度の測定が実現でき る。 また、 微細化による配線抵抗の問題を解決することができるので、 微細化が 進んでも測定精度は低下しない。
(第 5の実施形態)
図 1 4は、 本発明の第 5の実施形態に係るバイオセンサを示す平面図及び透視 図である。 同図に示すように、 本実施形態のバイオセンサ 7 3は、 ほぼ円形の作 用極 1 0 1と、 一定の間隔を空けて作用極 1 0 1を囲む対極 1 0 2と、 作用極 1 0 1に接続され、 基板の裏面上に設けられた作用極参照端子 1 0及び作用極端子 1 0 3と、 基板の上面全体に亘つて設けられた対極端子 1 0 4とを有している。 本実施形態のバイオセンサ 7 3によれば、 作用極 1 0 1及び作用極 1 0 1を囲 む対極 1 0 2の内周が同心円状になっているので、 酵素と被測定物質との反応を 均一に行わせることが可能になる。 また、 電極にかかる電界が均一になり、 より 測定精度を向上させることができる。
加えて、 対極端子 1 0 4が基板の上面全体に設けられているので、 対極側の抵 抗 R m 1を非常に小さく抑えることができる。 そのため、 本実施形態のバイオセ ンサは、 測定精度が向上している。
このように、 対極の作用極と内周を同心円状にし、 対極端子 1 0 4を基板の上 面上に設けることで、 高精度の測定が可能なバイオセンサが実現できる。
(第 6の実施形態)
図 3は、 本発明の第 6の実施形態に係るバイォセンサ装置の一部を示す回路図 であり、 図 4は、 作用極電圧印加部 2 9及び対極電圧印加部 2 8の具体的な構成 を含む本実施形態のバイオセンサ装置の一部を示す回路図である。
図 3に示すように、 本実施形態のバイオセンサ装置は、 バイオセンサ 1 5と、 バイオセンサ 1 5に接続された計測回路 1 6とを備えている。
バイオセンサ 1 5は、 作用極 1 0 1 と、 作用極 1 0 1に対向する対極 1 0 2と 、 作用極 1 0 1に接続された作用極参照端子 1 0及び作用極端子 1 0 3と、 対極 1 0 2に接続された対極端子 1 0 4とを有している。 作用極 1 0 1 と作用極参照 端子 1 0及び作用極端子 1 0 3との間はそれぞれ Cuや A 1などからなる導電性 配線によって接続されている。
また、 計測回路 1 6は、 作用極参照端子 1 0及び作用極端子 1 0 3に接続され 、 電流計を有する作用極電圧印加部 2 9と、 対極端子 1 04に接続された対極電 圧印加部
28と、 作用極電圧印加部 2 9に作用極基準電圧 V p r 1を、 対極電圧印加部 2 8に対極基準電圧 Vmr 1それそれ供給する基準電圧源 1 1 7と、 作用極電圧印 加部 2 9に入力された電流を処理するための信号処理回路 1 2 1とを有している 。 ここで、 作用極電圧印加部 2 9は特開平 1 1一 1 5 48 3 3号公報 (米国特許 第 5, 9 86, 9 1 0号) で開示された電圧電流変換回路である。
本実施形態のバイオセンサ装置において、 基準電圧源 1 1 7より発生した対極 基準電圧 Vmr 1は対極電圧印加部 28でィンピーダンス変換された後、 対極電 圧印加部 28から対極端子電圧 Vm 1が印加される。 このとき、 次式が成り立つ
Vm 1 = Vm r 1 ( 1 8 )
また、 作用極基準電圧 Vp r 1 とバイオセンサ 1 5の作用極参照端子 1 0の作 用極参照端子電圧 V p 2とが作用極電圧印加部 2 9に入力され、 その差電圧がほ ぼ 0 Vとなるよう作用極端子 1 0 3に作用極制御信号電圧 Vp 1が供給される。 このとき、 次式が成り立つ。
Vp 2 =Vp r l ( 1 9 )
作用極端子 1 0 3へ流れ出した電流の値は作用極電圧印加部 2 9で計測され、 その結果である作用極電流量信号 s 1 2 0は信号処理回路 1 2 1に供給される。 その測定した電流量に基づき被測定成分の濃度を換算した結果表示などが行われ る。
また、 作用極電圧印加部 2 9の作用極参照端子 1 0入力は高入力インピーダン スであるので、 参照電極に流れる電流は次式となる。
I p 2 = 0 ( 2 0 )
従って、 作用極参照端子電圧 Vp 2と作用極電圧 Vpとは次式を満足する。
Vp 2 = Vp ( 2 1 ) よって、 式 ( 1 8 ) 、 ( 1 9 ) 、 ( 20 ) 、 ( 2 1 ) よりセンサ印加電圧 V f に関して次式が成り立つ。
V f = V p一 Vm
= Vp 2 - ( Vm 1 + I f 2 · R m 1 )
ここで、 Rm l - Ο Ωより、
V f = V p 2 - Vm 1
= V p r 1— V m r 1
.·. V f = V p r 1 - Vm r 1 (2 2 )
すなわち、 センサ印加電圧 Vf には、 常に一定電圧が印加されることになる。 よって、 本実施形態 6において式 (8 ) に式 ( 2 2 ) を代入すると次式となる。
I f l = f {Q、 (Vp r 1 - Vmr 1 ) }
. I f 1 = f ( Q ) ( 2 3 )
従って、 作用極 1 0 1と作用極端子 1 0 3とを結ぶ導電性配線の配線抵抗 R p 1による影響は全く発生せず、 バイオセンサ装置で計測された例えば血糖値には 、 誤差が含まれない。
ここで、 作用極端子電圧 Vp 1は作用極電圧印加部 2 9によって次式のように 制御される。
Vp l =Vp r l +R p l x l f l (24)
本実施形態のバイォセンサ装置が第 1の実施形態に係るバイォセンサ装置と異 なるのは、 作用極参照端子 1 0及び作用極端子 1 0 3の両方に接続される作用極 電圧印加部 2 9を備えていることである。 この構造により、 回路を安定させるた めのコンデンサを省くことができるので、 回路全体の面積を小さくすることがで きる。
このように、 作用極電圧印加部 2 9が作用極電位参照回路も兼ねる構造であつ ても、 作用極側の配線抵抗の影響を受けない高精度のバイォセンサ装置を実現す ることができる。
なお、 図 4に示すように、 作用極電圧印加部 2 9の具体例として負側の入力に 作用極参照端子 1 0が、 正側の入力に基準電圧源 1 1 7に接続され、 出力が作用 極端子 1 03に接続されたオペアンプを有する例を示したが、 これ以外の構成で あってもよい。
(第 7の実施形態)
図 5は、 本発明の第 7の実施形態に係るバイォセンサ装置の一部を示す回路図 であり、 図 6は、 作用極電圧印加部 1 9及び対極電圧印加部 1 7の具体的な構成 を含む本実施形態のバイオセンサ装置の一部を示す回路図である。
図 5に示すように、 本実施形態のバイオセンサ装置は、 バイオセンサ 7 2とバ ィォセンサ 7 2に接続する計測回路 1 6とを備えている。
バイオセンサ 7 2は、 作用極 1 0 1 と、 作用極 1 0 1に対向して設けられた対 極 1 0 2と、 作用極 1 0 1に接続された作用極端子 1 0 3と、 対極 1 0 2に接続 された対極端子 1 0 4及び対極参照端子 3とを有している。 作用極 1 0 1 と作用 極端子 1 0 3とを接続する導電性配線の断面積は十分大きいので、 配線抵抗はほ ぼ 0 Ωとすることができる。 このバイォセンサ 7 2は、 第 4の実施形態のバイォ センサと同じく、 対極参照端子 3を有する構造である。
また、 計測回路 1 6は、 作用極端子 1 0 3に接続された作用極電圧印加部 1 9 と、 対極端子 1 0 4に接続され、 電流計を有する対極電圧印加部 1 7と、 対極参 照電極 3に接続された対極電位参照回路 1 と、 作用極電圧印加部 1 9に作用極基 準電圧 V p r 1を、 対極電位参照回路 1には対極基準電圧 V m r 1をそれそれ供 給する基準電圧源 1 1 7と、 入力された電流に応じて対極電圧印加部 1 7から出 力される対極電流量信号 s 1 8を処理するための信号処理回路 1 2 1 とを有して いる。
本実施形態のバイオセンサ装置においては、 基準電圧源 1 1 7より発生した作 用極基準電圧 V p r 1が作用極電圧印加部 1 9によりィンピ一ダンス変換された 後、 作用極電圧印加部 1 9から作用極端子 1 0 3に作用極端子電圧 V p 1が供給 される。 このとき、 次式が成り立つ。
V 1 = V p r 1 ( 2 5 )
また、 基準電圧源 1 1 7より発生した対極基準電圧 V m r 1 と作用極参照端子 電圧 V m 2とが対極電位参照回路 1に入力されると、 対極電位参照回路 1は、 そ の差電圧が 0 Vとなるよう対極制御信号 s 6を発生する。 この対極制御信号 s 6 の電圧 (作用極制御信号電圧) は、 V m r 2である。 このとき、 次式が成り立つ Z6
Vm 2 = Vmr 1 ( 2 6)
Vm 1 = Vm r 2 ( 2 7 )
図 5において、 対極端子 1 04へ流れ出した電流は対極電圧印加部 1 7で計測 され、 その結果は対極電流量信号 s 1 8の形で信号処理回路 1 2 1に供給される 。 そして、 測定した電流量に基づき被測定成分の濃度を換算し結果表示などが行 われる。
上述の第 1の実施形態と同様にして、 センサ印加電圧 V f に関して次式が成り 立つ。
Vf =Vp-Vm
二 Vp l— ( Vm 2 + I f 1 · R p 1 )
ここで、 Rp l = 0 Qより、
V f = V p 1 - Vm 2
二 Vp r l— Vmr l
.·. Vf =Vp r 1 - Vmr 1 ( 28 )
V p r 1と Vmr 1とは一定であるので、 センサ印加電圧 V f は常に一定値と なる。
よって、 本実施形態 3において式 ( 8 ) に式 ( 28) を代入すると次式となる。
I f 2 = f {Q、 (Vp r l— Vmr l ) }
.'. I f 2 = f ( Q ) ( 2 9 )
従って、 対極 1 0 2側の導電性配線の配線抵抗 Rm 1は対極端子 1 0 4を流れ れる I f 2に影響を与えず、 最終的なバイォセンサ装置で計測された血糖値は誤 差を含まない。
ここで、 対極端子電圧 Vm 1は対極電位参照回路 1と対極電圧印加部 1 7によ つて次式のように制御される。
V m 1 = V m r 2
.·. Vm l =Vmr 1 -Rm l x i f 2 ( 3 0 )
以上のように、 本発明の第 7の実施形態によれば、 対極側に対極端子 1 04と 対極参照電極 3とを有する 3電極構造であっても導電性配線の抵抗によらず高精 度な測定を行えることが分かる。 その上、 例えば 4つ以上の電極を設ける場合に 比べて部品点数が少なくて済むため、 低コス トで高精度のバイオセンサ装置を実 現することができる。
また、 図 6に示す回路の具体例では、 対極電圧印加部 1 7はオペアンプに帰還 抵抗 R g 2 0を負帰還させた回路構成であり、 作用極電圧印加部 1 9はオペアン プを N u 1 1—アンプ構成、 すなわち、 ノ ヅファ回路構成としている。 これによ り、 対極電圧印加部 1 7及び作用極電圧印加部 1 9が上述の機能を発揮する。 な お、 対極電圧印加部 1 7及び作用極電圧印加部 1 9がこれ以外の回路構成を有し ていてもよい。
(第 8の実施形態)
図 7は、 本発明の第 8の実施形態に係るバイォセンサ装置の一部を示す回路図 であり、 図 8は、 作用極電圧印加部 3 1及び対極電圧印加部 3 0の具体的な構成 を含む本実施形態のバイォセンサ装置の一部を示す回路図である。
図 7に示すように、 本実施形態のバイオセンサ装置は、 バイオセンサ 7 2とバ ィォセンサ 7 2に接続された計測回路 1 6とを備えている。
このうち、 バイォセンサ 7 2の構成は第 7の実施形態と同一である。
そして、 計測回路 1 6は、 作用極電圧印加部 3 1と、 対極端子 1 0 4及び対極 参照電極 3に接続され、 電流計を有する対極電圧印加部 3 0と、 作用極電圧印加 部 3 1に作用極基準電圧 V p r 1を、 対極電圧印加部 3 0に対極基準電圧 V m r 1をそれぞれ供給する基準電圧源 1 1 7と、 対極電圧印加部 3 0からの対極電流 量信号 s 1 8を処理するための信号処理回路 1 2 1 とを有している。
本実施形態のバイオセンサ装置が第 7の実施形態と異なっているのは、 対極電 位参照回路 1がなく、 対極電圧印加部 3 0が対極端子 1 0 4と対極参照電極 3の 両方に接続されている点である。
図 7に示す本実施形態のバイオセンサ装置において、 対極基準電圧 V m r 1 と 対極参照電極 3の対極参照電極電圧 V m 2とは共に対極電圧印加部 3 0に入力さ れ、 その差電圧が 0 Vとなるよう対極端子 1 0 4に対して対極制御信号電圧 V m r 2が供給される。 このとき、 次式が成り立つ。
V m 2 = V m r 1 ( 3 1 ) また、 作用極基準電圧 Vp r 1が作用極電圧印加部 3 1によりインピーダンス 変換された後、 作用極電圧印加部 3 1から作用極端子 1 0 3に電圧 Vp 1が供給 される。 このとき、 次式が成り立つ。
Vp 1 = Vp r 1 ( 3 2 )
一方、 対極端子 1 04へ流れ出した電流は対極電圧印加部 3 0で計測され、 計 測結果を示す対極電流量信号 s 1 8は信号処理回路 1 2 1に供給される。 そして 、 装置本体において、 被測定成分の濃度を換算し結果表示などが行われる。 前述した第 6の実施形態と同様に、 センサ印加電圧 Vf には次式が成り立つ。
Vf =Vp— Vm
= V 1 - ( Vm 2 + I f 1 · R p 1 )
ここで、 Rp l - Ο Ωより、
Vf =Vp l— Vm2
= Vp r l— Vmr l
.·. Vf = Vp r l -Vmr l (3 3 )
すなわち、 センサ印加電圧 Vf は一定電圧であることになる。
よって、 式 (8) に式 (3 3 ) を代入すると次式となる。
I f 2 = f {Q、 (Vp r 1 - Vmr 1 ) }
人 I f 2 = f ( Q ) (3 )
従って、 バイオセンサ装置で計測された血糖値は、 対極 1 0 2側の導電性配線 の配線抵抗 Rm 1による影響受けず、 誤差は発生しない。
以上のように、 対極参照電極 3と対極端子 1 04とが共に対極電圧印加部 3 0 に接続される場合にも、 高精度の測定が実現できる。
また、 図 8に示す回路の具体例では、 対極電圧印加部 3 0は負側の入力に対極 参照電極 3が、 正側の入力に作用極基準電圧 Vmr 1に接続され、 出力が作用極 端子 1 0 3に接続されたオペアンプを有している。 これは、 特開平 1 1— 1 54 83 3号公報 (米国特許第 5, 9 8 6 , 9 1 0号) で閧示された電圧電流変換回 路である。 なお、 これ以外の構成であってもよい。
(第 9の実施形態)
本発明の第 9の実施形態に係るバイオセンサチップについて、 以下に説明する 図 1 5は、 本実施形態のバイオセンサチップを示す平面図であり、 図 1 6は、 本実施形態のバイオセンサチップの第 1の変形例を示す平面図であり、 図 1 7は 、 本実施形態のバイオセンサチップの第 2の変形例を示す平面図であり、 図 1 8 は、 本実施形態のバイオセンサチップの第 3の変形例を示す平面図である。 図 1 5に示すように、 本実施形態のバイオセンサチヅプ 3 5は、 図 9に示す第 1の実施形態に係るバイオセンサと、 計測回路 1 6とが同一基板上に設けられた 構造を有している。 バイオセンサや計測回路 1 6は微細加工技術を用いて製造さ れており、 作用極 1 0 1 と作用極端子 1 0 3及び作用極参照端子 1 0を接続する 導電性配線や対極 1 0 2 と対極端子 1 0 4とを接続する導電性配線は薄膜化され ている。 また、 対極側及び作用極側の導電性配線は例えば A 1や C uなどの比較 的安価な金属で構成されている。
また、 本実施形態のバイオセンサチップ 3 5は、 装置本体から取り外し可能と なっており、 使い捨て可能である。
このように、 バイオセンサと計測回路 1 6とを一体化して 1チヅプ化すること により、 測定部分の小型化が実現されるとともに、 既存の大量生産技術を用いて 該バイオセンサチップを安価に供給することが可能となる。
なお、 微細加工技術を用いて形成された場合、 導電性配線は薄膜化されるため 配線抵抗 R p l、 R m 1及び R p 2は高抵抗化する。 しかしながら、 本発明のバ ィォセンサ装置では、 配線抵抗の高低の如何に関係なく高精度な計測が実現され るため、 高精度の測定に用いられ、 且つ低価格のバイオセンサチップが実現する 。 また、 サイズが小さいことから、 バイオセンサ装置全体のサイズを小さくする ことができる。
なお、 第 1の実施形態のバイオセンサに限らず、 これまで説明したすべてのバ ィォセンサについて計測回路と共にチヅプ化することが可能である。
また、 本実施形態のバイオセンサチップでは、 用いる共通の基板はシリコン基 板などの半導体基板や S 0 I ( Si l icon on Insulator) 基板、 S O S ( Sil icon on Sapphire )基板、 ガラス基板などの絶縁性基板など、 いかなる基板であっても よい。 ただし、 バイオセンサの電極に塗布する酵素及び試薬類と反応しない基板 を選ぶ必要がある。
また、 図 1 6に示すように、 図 1 0に示す導電性配線を多層化した場合のバイ ォセンサであっても、 計測回路 1 6と共に共通の基板上に設けることができる。 導電性配線を多層化することにより、 バイオセンサの面積がさらに小さくできる ので、 より小型のバイオセンサチップ 3 7を製造することができる。
あるいは、 図 1 7に示すように、 図 1 1、 1 2に示すバイオセンサと計測回路 1 6とを同一基板上に設けてもよい。 この変形例に係るバイオセンサチップ 8 0 は、 計測回路 1 6との共通基板の上に、 バイオセンサを設けた基板と計測回路 1 6を設けた基板とを搭載している。 そして、 バイオセンサが設けられた基板の裏 面全体には対極端子が設けられている。
また、 図 1 8に示すように、 図 1 3、 1 4に示した対極参照電極と対極端子と の 2電極が対極に接続されたバイォセンサであっても計測回路 1 6と共通の基板 上に設けることができる。 具体的には、 バイオセンサを設けた基板と計測回路 1 6を設けた基板とを共通基板上に搭載する。
(第 1 0の実施形態)
図 1 9は、 本発明の第 1 0の実施形態に係るバイオセンサチップ 4 0を示す平 面図であり、 図 2 0は、 本実施形態に係るバイオセンサチップ 4 0を示す断面図 である。
図 1 9、 2 0に示すように、 本実施形態のバイオセンサチヅプ 4 0は、 3電極 を有するバイオセンサが設けられたセンサチップ 3 8と、 計測回路が設けられた 計測回路チヅプ 4 3 と、 センサチップ 3 8及び計測回路チヅプ 4 3を支持する共 通基板 6 0とを有している。 そして、 バイオセンサのうち対極端子 1 0 4 , 作用 極端子 1 0 3及び作用極参照端子 1 0はそれぞれワイヤ 3 9により計測回路チッ プ 4 3と接続されている。
計測回路が設けられた基板が、 バイオセンサ中の酵素ゃメデイエ一夕一を含む 反応試薬等と親和性が悪い場合や反応性がある場合などは、 図 1 5に示すバイォ センサチップのように、 計測回路 1 6が設けられた基板と同一の基板上に設ける ことが難しい。 そのため、 本実施形態のようなチップ ' オン ' チヅプ構造が取ら れる。 本実施形態のバイオセンサチヅプ 4 0においては、 バイオセンサが設けら れた基板と計測回路が設けられた基板とを任意に組み合わせることができる。 また、 バイオセンサの導電性配線にも被測定成分に対応した酵素、 メディエー 夕との関係から、 計測回路 1 6の信号配線と同一物質を用いることができない場 合がある。 その場合にも、 本実施形態のような構成が有用であり、 この構成によ つて十分サイズの小さいバイオセンサチップが実現できる。
本実施形態のようなチップ · オン 'チップ構造を取ることにより、 どのような 種類のバイオセンサであっても小型のチヅプ状にすることができる。 かつ、 特殊 な工程を含まないので、 製造コス トも安くすることが可能である。
なお、 本実施形態のバイオセンサチップにおいては、 共通基板 6 0上にセンサ チヅプ 3 8と計測回路チップ 4 3とを配置したが、 共通基板 6 0がなく、 直接セ ンサチップ 3 8上に計測回路チップ 4 3を配置する構造でもよいし、 逆に、 計測 回路チップ 4 3上にセンサチヅプ 3 8を配置したチヅプ · オン · チップ構造を有 するバイォセンサチヅプであっても良い。
また、 本実施形態では、 センサチップと計測回路チップとの接続にワイヤを用 いたが、 センサチップの上面と計測回路チップの上面とを対向させてバンプ接続 させる構造を取ってもよい。 また、 チップ同士をボール ' グリ ッ ド ' アレイ (略 して B G A ) などで結線した構造であっても良い。 あるいは、 基板を貫通するパ ッ ドまたは電極を設ける場合には、 チップ同士を積層しても貫通電極経由で接続 することもできる。 これらの方法により信号伝達経路が短くなるので、 より誤差 が小さくなる可能性がある。
(第 1 1の実施形態)
図 2 1は、 本実施形態の第 1 1の実施形態に係るバイオセンサを示す平面図で ある。
図 2 1に示すように、 本実施形態のバイオセンサ 7 4は、 例えば第 1の実施形 態で説明した作用極端子 1 0 3、 作用極参照端子 1 0、 対極端子 1 0 4の 3電極 を有するバイオセンサを 2個、 同一基板上に形成し、 2つの対極端子 1 0 4を共 通化している。 ここで、 2つの対極端子 1 0 4を共通化していることにより、 電 極数が低減され、 バイオセンサの小型化、 製造コス トの低減などを図ることがで きる。 このように、 異なる被測定成分に対応した酵素、 メデイエ一夕などよりなる反 応試薬を用いたバイオセンサを 2個配置することで、 一度に異なる因子を測定す ることができるため、 複数の検査を同時に行うことができるので、 患者の負担を 軽減することができる。 1つのバイオセンサ装置に搭載するバイオセンサの種類 は 2種以上であればいくつでもよい。 実用的には、 1つのバイオセンサチップで 特定の疾患の診断に必要な複数の検査を行えるようにしたり、 定期検診を 1つの バイオセンサチップで迅速に行なうことなどが好ましい。 そのため、 図 2 1では バイオセンサが 2個、 同一基板上に形成する例を示したが、 バイオセンサが 3個 以上であっても良い。
また、 このバイオセンサを搭載したバイオセンサチップは取り外し可能である ので、 装置本体はそのままで、 検査目的に応じて異なるバイオセンサチヅプを選 択することもできる。
なお、 本実施形態のバイオセンサでは、 対極端子同士を共通化したが、 共通化 できる電極であれば、 いずれであっても良い。 例えば、 3電極を有する 2つのバ ィォセンサを互いに対称の形に配置すれば、 隣接する作用極参照端子 1 0を共通 化することもできる。
(第 1 2の実施形態)
図 2 2は、 本発明の第 1 2の実施形態に係るバイオセンサ 7 5を示す平面図及 び透視図である。
同図に示すように、 本実施形態のバイオセンサ 7 5は、 第 2の実施形態に係る 2個のバイオセンサを同一基板上に形成し、 2つの対極端子 1 0 4を共通化した ものである。 つまり、 バイオセンサ 7 5の裏面全面には、 2つの対極 1 0 2に接 続された共通の対極端子 1 0 4が設けられている。
このように、 裏面全面に対極端子が設けられているバイオセンサの場合でも、 2つ以上配置し、 対極端子を共通化することによって、 異なる被測定物質を同時 に測定することが可能となり、 且つ電極数を削減し、 小型化を図ることができる 。 また、 電極数が減るので、 製造も容易となる。 また、 バイオセンサの対極端子 は、 共通化することによってさらに大きい面積を確保できることになり、 抵抗値 を理想値の 0 Ωに近づけることができる。 なお、 本実施形態では 2個のバイオセンサを配置したが、 3個以上のバイオセ ンサを配置しても良い。
また、 第 5の実施形態のように、 対極が基板上面の全面に設けられたバイオセ ンサを複数個配置する場合も、 対極端子を共通化することができる。
また、 対極側または作用極側の導電性配線や電極を多層化した場合でも、 2個 以上のバイオセンサを 1つのバイオセンサにまとめることができる。
(第 1 3の実施形態)
図 2 3は、 本実施形態の第 1 3の実施形態に係るバイオセンサチップ 8 1を示 す平面図である。
同図に示すように、 本実施形態のバイオセンサチップ 8 1は、 作用極端子 1 0 3、 作用極参照端子 1 0及び対極端子 1 0 4の 3電極を有するそれぞれがセンサ 部 1 3 1を有するバイオセンサ 2個と、 それそれのバイオセンサに接続された計 測回路 1 6とを有している。 そして、 バイオセンサと計測回路 1 6とは同一基板 上に設けられている。 また、 隣接するバイオセ サの対極端子 1 0 4は互いに共 通となっている。
バイオセンサの各々は、 互いに異なる物質を測定することが可能となっている ため、 同時に複数の測定が可能となる。
なお、 図 2 3ではバイォセンサと計測回路 1 6を並べて配置する例を示したが 、 例えばバイオセンサの上に計測回路を設けたチップを積層するような構造であ つてもよい。 その場合、 計測回路とバイオセンサとの接続は、 ワイヤを用いても よいし、 B G Aを用いてもよいし、 基板を貫通する貫通電極を用いてもよい。
(第 1 4の実施形態)
図 2 4は、 本発明の第 1 4の実施形態に係るバイオセンサチップ 8 2を示す回 路図であり、 図 2 5は、 本実施形態のバイオセンサチップ 8 2を示す平面図であ る。
図 2 4に示すように、 本実施形態のバイオセンサチヅプ 8 2は、 第 1のバイオ センサ 5 8と、 第 2のバイオセンサ 5 9と、 第 1のバイオセンサ 5 8及び第 2の バイオセンサ 5 9に接続された計測回路モジュール 5 7とを有している。
図 2 5に示すように、 第 1のバイオセンサ 5 8, 第 2のバイオセンサ 5 9のそ れそれは作用極端子、 作用極参照端子及び対極を有しており、 互いの対極は接続 されている。
そして、 計測回路モジュール 5 7は、 第 1のバイオセンサ 5 8及び第 2のパイ ォセンサ 5 9に接続された計測回路 1 6と、 第 1のバイオセンサ 5 8の作用極端 子及び作用極参照端子と計測回路 1 6との間に設けられた第 1のスィツチ群 5 4 と、 第 2のバイオセンサ 5 9の作用極端子及び作用極参照端子と計測回路 1 6と の間に設けられた第 2のスィッチ群 5 6と、 第 1のスイッチ群 5 4及び第 2のス イッチ群 5 6のオン、 オフを制御するための選択制御回路 5 2とを有している。 選択制御回路 5 2は、 接続制御信号 s 5 3を供給して第 1のスィ ッチ群 5 4の スィツチングを制御し、 接続制御信号 s 5 5を供給して第 2のスィツチ群 5 6の スィツチングを制御している。 具体的には、 第 1のバイオセンサ 5 8で測定する 場合には第 1のスイ ッチ群 5 4がオンに、 第 2のスィヅチ群 5 6がオフになるよ う制御し、 第 2のバイオセンサ 5 9で測定する場合には第 1のスィツチ群 5 4が オフに、 第 2のスィ ヅチ群 5 6がオンになるように制御する。
本実施形態のバイオセンサチップ 8 2によれば、 2個のバイオセンサに対して 1つの計測回路のみで測定できるため、 複数の物質を測定することができる上、 チヅプ面積をさらに小さくすることができる。 また、 この構造により、 製造コス トの低減も図られる。
本実施形態のバイォセンサチヅプにおいては、 第 1のスイッチ群 5 4及び第 2 のスィツチ群 5 6が多少のオン抵抗を持つ場合があるが、 このオン抵抗は等価的 にバイオセンサの導電性配線の配線抵抗に含まれるため、 本回路構成においても 測定精度は低下しない。
なお、 本実施形態のバイオセンサチップでは、 同一基板上に 2個のバイオセン ザが形成されていたが、 3個以上のバイオセンサが形成されていてもよい。 また 、 スイ ッチによって計測されるバイオセンサが選択できるので、 3個以上のバイ ォセンサが 1つの計測回路に接続されていてもよい。
また、 本実施形態では第 1のバイオセンサ 5 8, 第 2のバイオセンサ 5 9と計 測回路モジュール 5 7とを同一基板上に形成したが、 共通基板の上にバイオセン サ及び計測回路モジュールを有する個々のチヅプが搭載されている構造でも良い また、 複数のチップが積層され、 B G Aや貫通電極、 またはワイヤなどで接続 されている構造であってもよい。
なお、 本実施形態のバイオセンサチップは、 作用極端子、 作用極参照端子、 対 極端子の 3電極を有するバイオセンサを有していたが、 作用極端子、 対極端子、 対極参照電極の 3電極を有するバイオセンサを有していてもよい。
(第 1 5の実施形態)
図 2 6は、 本発明の第 1 5の実施形態に係るバイオセンサチップ 8 3を示す平 面図である。
図 2 6に示すように、 本実施形態のバイオセンサチップ 8 3は、 作用極端子 1 0 3、 作用極参照端子 1 0、 対極端子 1 0 4及び被測定流体を反応させるための センサ部 1 3 1を有するバイオセンサが基板上に 2個設けられており、 同一基板 上に 2個のバイォセンサに接続された 1つの計測回路 5 0が設けられている。 本実施形態のバイオセンサチップ 8 3の特徴は、 互いに異なる被測定成分に対 応したバイオセンサのセンサ部 1 3 1が隣接して設けられていることである。 こ の反応部には、 酵素またはメディエー夕などよりなる反応試薬が塗布された対極 及び作用極が含まれている。
本実施形態のバイォセンサチヅプでは、 2つのバイォセンサの反応部が隣接し ているので、 血液サンプルを 1点のみ点着するだけで 2種類の測定ができる。 こ のため、 バイオセンサの点着部構造が簡素化される。 また、 血液サンプルが極微 小量ですむことにより、 被験者の採血の負担が非常に軽くて済む。
なお、 本実施形態のバイオセンサチップにおいて、 3種類以上のバイオセンサ の反応部を互いに隣接させて設けることも可能である。 これにより、 3種類以上 の測定をより簡単な点着部構造で実現することができる。 また、 血液サンプルの 必要量も少なくすることができる。
(第 1 6の実施形態)
これまでの実施形態では、 3つの端子を有しているバイオセンサと、 これを有 するバイォセンサチヅプ及びバイォセンサ装置とを説明したが、 これ以降の実施 形態では、 バイオセンサが 4つの端子を有する例について説明する。 図 2 7および図 2 8は、 本発明の第 1 6の実施形態に係るバイオセンサ装置の 回路構成を示す。 これらの図に示すバイオセンサ装置は、 本発明のバイオセンサ 2 1 0が装着され、 計測回路 2 2 0とバイォセンサ 2 1 0とが電気的に接続され た状態にある。 バイオセンサ 2 1 0の構成については後述する。 なお、 バイオセ ンサ装置は、 ここで示すバイオセンサ 2 1 0や計測回路 2 2 0の他、 必要に応じ てデータ解析装置や測定結果の表示部などを備えている。
図 2 7に示した計測回路 2 2 0は、 バイオセンサ 2 1 0の作用極端子 2 1 3 a (本発明の第 1の作用極端子に相当) に電圧 V p l (本発明の第 1の作用極電圧 に相当) を印加する作用極電圧印加部 2 2 1 Aと、 バイオセンサ 2 1 0の対極'端 子 2 1 4 a (本発明の第 1の対極端子に相当) に電圧 V m 1 (本発明の第 1の対 極電圧に相当) を印加する対極電圧印加部 2 2 2と、 作用極電圧印加部 2 2 1 A および対極電圧印加部 2 2 2にそれぞれ電圧 V p r (本発明の作用極基準電圧に 相当) および電圧 V m r (本発明の対極基準電圧に相当) を供給する基準電圧源 2 2 3と、 作用極電圧印加部 2 2 1 Aから出力される作用極電流量信号 C V 1 を 処理する信号処理回路 2 2 4とを備えている。
一方、 図 2 8に示した計測回路 2 2 0は、 上記の作用極電圧印加部 2 2 1 Aお よび対極電圧印加部 2 2 2に代えて、 それそれ作用極電圧印加部 2 2 1および対 極電圧印加部 2 2 2 Aを備え、 信号処理回路 2 2 4は、 対極電圧印加部 2 2 2 A から出力される対極電流量信号 C V 2を処理するものである。
作用極電圧印加部 2 2 1は、 バイオセンサ 2 1 0の作用極参照端子 2 1 3 の 電圧 V p 2を参照する。 作用極電圧印加部 2 2 1は、 電圧 V p 2を参照するのみ であり、 入力インピーダンスは高く、 作用極参照端子 2 1 3 bに流れる電流 I p 2はほぼゼロである。 したがって、 作用極参照端子 2 1 3 bの抵抗値 R p 2に起 因する電圧降下はなく、 電圧 V p 2と電圧 V p (本発明の第 2の作用極電圧に相 当) とは等しいと考えてよく、 実質的に、 作用極電圧印加部 2 2 1は、 作用極参 照端子 2 1 3 bを通じて作用極 2 1 1の電圧 V pを参照し、 この電圧 V pと与え られた電圧 V p rとが一致するように、 電圧 V p 1を生成している。
作用極電圧印加部 2 2 1 Aは、 上記の作用極電圧印加部 2 2 1の機能に加えて 、 作用極端子 2 1 3 aに流れる作用極電流 I f 1を計測する機能を有しており、 計測した作用極電流 I f 1の大きさに応じた作用極電流量信号 CV 1を出力する 対極電圧印加部 2 2 2は、 バイォセンサ 2 1 0の対極端子 2 1 4 b (本発明の 第 2の対極端子に相当) の電圧 Vm 2を参照する。 対極電圧印加部 22 2は、 電 圧 Vm2を参照するのみであり、 入カインピ一ダンスは高く、 対極端子 2 14 b に流れる電流 I m 2はほぼゼロである。 したがって、 対極端子 2 1 4 bの抵抗値 Rm 2に起因する電圧降下はなく、 電圧 Vm2と電圧 Vm (本発明の第 2の対極 電圧に相当) とは等しいと考えてよく、 実質的に、 対極電圧印加部 22 2は、 対 極端子 2 14 bを通じて対極 2 1 2の電圧 Vmを参照し、 この電圧 Vmと与えら れた電圧 Vm rとが一致するように、 電圧 Vm 1を生成している。
対極電圧印加部 2 2 2 Aは、 上記の機能に加えて、 対極端子 2 1 4 aに流れる 対極電流 I f 2を計測する機能を有しており、 計測した対極電流 I f 2の大きさ に応じた対極電流量信号 CV 2を出力する。
図 2 9は、 作用極電圧印加部 2 2 1, 2 2 1 Aおよび対極電圧印加部 222, 2 2 2 Aのいくつかの回路例を示したものである。 以下、 同図に示した各回路の 構成について順に説明する。
図 2 9 (a) は、 作用極電圧印加部 2 2 1または対極電圧印加部 22 2の回路 例を示す。 同図に示した作用極電圧印加部 22 1または対極電圧印加部 222は 、 図 44に示した従来の計測回路 1 1 23における対極側電圧源 1 1 0 6に、 電 圧 Vp rまたは電圧 Vm rに代えて電圧参照回路 43 0の出力を与える構成とな つている。 以下、 作用極電圧印加部 2 2 1を例に説明する。
電圧参照回路 43 0は、 オペアンプによって構成され、 その反転入力端子およ び非反転入力端子には、 それぞれ電圧 Vp 2, Vp rが与えられる。 電圧参照回 路 43 0は、 電圧 V p 2と電圧 Vp rとが等しくなるように電圧を出力する。 電 圧源 42 0であるオペアンプはこの電圧を入力とし、 この電圧に相当する電圧 V P 1を出力する。
図 2 9 (b) は、 作用極電圧印加部 22 1 Aまたは対極電圧印加部 2 2 2 Aの 回路例を示す。 同図に示した作用極電圧印加部 22 1 Aまたは対極電圧印加部 2 2 2 Aは、 図 44に示した従来のバイオセンサ装置における電圧源 2 1 0に、 電 圧 Vp r 1または電圧 Vmr 1に代えて電圧参照回路 4 3 0の出力を与える構成 となっている。 以下、 作用極電圧印加部 2 2 1 Aを例に説明する。
電圧参照回路 4 3 0であるオペアンプは、 入力とする電圧 Vp 2と電圧 Vp r とが等しくなるように、 電圧を出力する。 この出力電圧は、 電圧源 42 0である オペアンプの非反転入力端子に与えられる。 このオペアンプの負帰還部には抵抗 素子が設けられており、 この抵抗素子を流れる作用極電流 I f 1の大きさに応じ た作用極電流量信号 CV 1が出力される。
図 2 9 ( c ) は、 作用極電圧印加部 2 2 1 Aまたは対極電圧印加部 2 2 2 Aの 回路例を示す。 同図に示した作用極電圧印加部 2 2 1 Aまたは対極電圧印加部 2 2 2 Aは、 電圧参照回路 4 3 0および電圧電流変換回路 4 4 0を有する。 本回路 は、 たとえば、 特開平 1 1一 1 5 48 3 3号公報や米国特許第 5 9 8 6 9 1 0号 明細書に開示された電圧電流変換回路と同様の構成をしている。 以下、 作用極電 圧印加部 2 2 1 Aを例に説明する。
電圧参照回路 4 3 0は、 入力とする電圧 Vp 2と電圧 Vp rとが等しくなるよ うに、 電圧 Vp 1を出力する。 電圧電流変換回路 44 0は、 電圧参照回路 4 3 0 の出力を制御する信号を入力とし、 作用極電流量信号 CV 1を出力する。
次に、 本実施形態の計測回路 2 2 0によってバイオセンサ 2 1 0に印加される 電圧、 および計測される電流について説明する。
作用極電圧印加部 2 2 1, 2 2 1 Aによって、 電圧 Vpと電圧 Vp rとが一致 するように、 電圧 Vp 1が生成され、 作用極端子 2 1 3 aに印加される。 これに より、 作用極端子 2 1 3 aの抵抗値 R p 1に起因する電圧降下が発生しょうとも 、 電圧 Vpを電圧 V p rに固定することができる。
同様に、 対極電圧印加部 2 2 2, 2 2 2 Aによって、 電圧 Vmと電圧 Vmrと が一致するように、 電圧 Vm 1が生成され、 対極端子 2 1 4 aに印加される。 こ れにより、 対極端子 2 1 aの抵抗値 Rm 1に起因する電圧降下が発生しょうと も、 電圧 Vmを電圧 Vm rに固定することができる。
したがって、 計測回路 2 2 0によってバイオセンサ 2 1 0の作用極 2 1 1 と対 極 2 1 2との間に印加される電圧 Vf は、 次式 ( 3 5 ) のようになる。
V f = (Vp r-Vmr) ( 3 5 ) そして、 式 ( 8 ) および式 ( 35 ) から、 電圧の印加によってバイオセンサ 2 1 0に流れる電流 I f は、 次式 ( 3 6 ) のようになる。
I f = f {Q, Vp r-Vmr} ( 3 6 )
式 ( 3 5 ) と式 ( 7 ) とを比較すると、 式 ( 3 5 ) では、 作用極端子 2 1 3 a および対極端子 2 1 4 aの配線抵抗 R 1 , R m 1による電圧降下が無いことが わかる。 すなわち、 バイォセンサ 2 1 0の作用極端子 2 1 3 aおよび対極端子 2 14 aの配線抵抗に因らず、 作用極 2 1 1と対極 2 1 2との間に印加される電圧 Vf を所定値とすることができる。 したがって、 バイオセンサ 2 1 0に流れる電 流は、 誤差を含んでいない。 そして、 この電流は、 作用極電流 I : 1または対極 電流 I f 2として作用極電圧印加部 2 2 1 Aまたは対極電圧印加部 2 2 2 Aによ つて計測され、 作用極電流量信号 CV 1または対極電流量信号 CV 2となる。 作 用極電流量信号 CV 1または対極電流量信号 CV 2は、 信号処理回路 2 24によ つて処理され、 測定対象の化学物質の濃度が算出される。
以上、 本実施形態によると、 バイオセンサ 2 1 0の作用極端子 2 1 3 aおよび 対極端子 2 1 4 aの配線抵抗に因らず、 作用極 2 1 1と対極 2 1 2との間に所定 の電圧 V f を印加することができる。 これにより、 誤差を含まない正確な電流が 計測可能となり、 バイオセンサ装置の測定精度を向上させることができる。 特に 、 本実施形態のバイオセンサ装置によると、 作用極参照端子 2 1 3 b及び対極参 照端子 2 1 4 bを設けていることにより、 いずれか一方の参照端子のみを設ける 場合に比べて測定精度をさらに向上させることが可能となっている。
なお、 図 2 9 (a) に示した作用極電圧印加部 2 2 1または対極電圧印加部 2 22において、 電圧源 4 20を省略し、 電圧参照回路 43 0の出力をそのまま電 圧 Vp 1または電圧 Vm 1としてもよい。 また、 電圧源 4 2 0および電圧参照回 路 43 0は、 オペアンプ以外で実現してもよい。 このような変更を加えても、 本 発明が奏する効果を何ら損なうものではない。
また、 作用極 2 1 1および対極 2 1 2のいずれか一方を第 1の極とし、 他方を 第 2の極としたとき、 第 1の極 (たとえば、 作用極 2 1 1 ) に接続された第 1の 電極 (たとえば、 作用極端子 2 1 3 a) に第 1の電圧 (たとえば、 電圧 Vp 1 ) を印加する第 1の電圧印加部は従来のものとし、 第 2の極 (たとえば、 対極 2 1 2 ) に接続された第 2の電極 (たとえば、 対極端子 2 1 4 a) に第 2の電圧 (た とえば、 電圧 Vm l ) を印加する第 2の電圧印加部は、 本実施形態に係るもの ( たとえば、 対極電圧印加部 2 2 2 ) とする。 そして、 この第 2の電圧印加部は、 第 2の極に接続された第 3の電極 (たとえば、 対極端子 2 1 4 b) を通じて第 2 の極の第 3の電圧 (たとえば、 電圧 Vm) を参照し、 この第 3の電圧と与えられ た基準電圧 (たとえば、 電圧 Vmr) とが一致するように、 第 2の電圧を生成す る。 このように、 作用極電圧印加部 2 2 1, 2 2 1 Aおよび対極電圧印加部 2 2 2, 22 2 Aのいずれか一方を省略した場合でも、 従来と比較して、 より精度の 向上したバイオセンサ装置を実現することができる。
(第 1 7の実施形態)
図 30は、 本発明の第 1 7の実施形態に係るバイォセンサ装置の回路構成を示 す。 本実施形態の計測回路 2 2 O Aは、 バイオセンサ 2 1 0の作用極端子 2 1 3 aおよび対極端子 2 14 aに電圧を印加する手段として、 それそれ、 第 1 6の実 施形態で説明した作用極電圧印加部 2 2 1 Aおよび対極電圧印加部 2 2 2 Aを備 え、 これらから出力される作用極電流量信号 CV 1および対極電流量信号 CV 2 を処理して、 測定対象の化学物質の分析を行うものである。 以下、 計測回路 2 2 O Aについて説明するが、 第 1 6の実施形態において既に説明した内容について は説明を省略し、 図 27および図 28に付した符号と同一の符号を付して参照す る。
作用極電圧印加部 2 2 1 Aは、 バイォセンサ 2 1 0に流れる電流として作用極 端子 2 1 3 aに流れる電流 I f 1を計測し、 作用極電流量信号 CV 1を出力する 。 作用極電圧印加部 2 2 1 Aは、 図 2 9 (b) および ( c ) に示した回路のほか さまざまな構成が可能である。
対極電圧印加部 2 22 Aは、 バイオセンサ 2 1 0に流れる電流として対極端子 2 14 aに流れる電流 I f 2を計測し、 対極電流量信号 CV 2を出力する。 対極 電圧印加部 2 22 Aは、 図 2 9 (b) および ( c) に示した回路のほかさまざま な構成が可能である。
信号処理回路 2 2 4 Aは、 作用極電流量信号 CV 1および対極電流量信号 CV 2を処理する。 第 1 6の実施形態では、 処理される信号が作用極電流量信号 CV 1および対極電流量信号 C V 2のいずれか一方であつたが、 本実施形態では、 こ れらをいずれも用いることによって、 バイオセンサ 2 1 0に流れる電流に関する 情報量が 2倍になる。 したがって、 第 1 6の実施形態と比較して、 S / N比を約 6 d b向上させることができる。
以上、 本実施形態によると、 バイオセンサ装置の測定精度をさらに ( S / N比 で約 6 d b ) 向上させることができる。 また、 作用極電流量信号 C V 1および対 極電流量信号 C V 2の双方を処理することによって、 同相のノイズを低減するこ とができるという効果を奏する。
(第 1 8の実施形態)
図 3 1は、 本発明の第 1 8の実施形態に係るバイオセンサ装置の回路構成を示 す。 本実施形態の計測回路 2 2 0 Bは、 第 1 7の実施形態の計測回路 2 2 0 Aに 、 さらに電流量信号生成部 2 2 5を備えたものである。 以下、 計測回路 2 2 0 B について説明するが、 第 1 7の実施形態において既に説明した内容については説 明を省略し、 図 3 0に付した符号と同一の符号を付して参照する。
電流量信号生成部 2 2 5は、 作用極電流量信号 C V 1および対極電流量信号 C V 2を入力とし、 バイオセンサ 2 1 0に流れる電流の大きさを表す電流量信号 C Vを出力とする。 電流量信号生成部 2 2 5は、 たとえば、 図 3 1に示すように、 差動シングル変換器によって実現可能である。 差動シングル変換器は、 入力とす る 2つの信号を加算し、 一の信号を出力する。 すなわち、 本実施形態において、 電流量信号 C Vは、 作用極電流量信号 C V 1 と対極電流量信号 C V 2とが加算さ れたものである。
信号処理回路 2 2 4 Bは、 第 1 6の実施形態の計測回路 2 2 0における信号処 理回路 2 2 4とほぼ同様の構成をしており、 電流量信号 C Vを入力とし、 測定対 象の化学物質の濃度を算出する。
以上、 本実施形態によると、 電流量信号生成部 2 2 5によって作用極電流量信 号 C V 1および対極電流量信号 C V 2がーの竃流量信号 C Vに変換されるため、 第 1 7の実施形態と比較して、 信号処理回路 2 2 4 Bの構成を簡易化することが できる。 これにより、 バイオセンサ装置を小型化することができ、 さらには、 低 コス ト化を図ることができる。 なお、 電流量信号生成部 2 2 5の構成は、 図 3 1 3007593
42 に示した差動シングル変換器以外でも実現可能である。
(第 1 9の実施形態)
図 3 2は、 本発明の第 1 9の実施形態に係るバイオセンサの構造を示す。 本実 施形態のバイオセンサ 2 1 0は、 たとえば、 上記の第 1から第 1 8の実施形態の 計測回路 2 2 0 , 2 2 O A, 2 2 O Bによって使用されるものである。
バイオセンサ 2 1 0は、 作用極 2 1 1から延びる作用極端子 2 1 3 a, 1 3 b および対極 2 1 2から延びる対極端子 2 1 4 a, 対極参照端子 2 1 4 bを備えて いる。 図示していないが、 作用極 2 1 1および対極 2 1 2の組み合わせからなる センサ部には、 測定対象の化学物質に応じて酵素ゃメデイエ一夕などからなる反 応試薬が塗布されている。 バイオセンサ 2 1 0を用いることによって、 オリゴヌ クレオチド、 抗原、 酵素、 ペプチド、 抗体、 DNAフラグメント、 RNAフラグ メント、 グルコース、 乳酸およびコレステロールなどの 1対の化学物質、 または 分子構造間での結合反応を電子的に検出することができる。
作用極端子 2 1 3 aは、 計測回路 (装置本体) からの電圧印加用の端子であり 、 作用極参照端子 2 1 3 bは、 電圧参照用の電極である。 ただし、 作用極端子 2 1 3 aと作用極参照端子 2 1 3 bの配置は入れ替えてもよい。
同様に、 対極端子 2 1 4 aは、 計測回路からの電圧印加用の端子であり、 対極 参照端子 2 1 4 bは、 電圧参照用の端子である。 ここでも、 両端子の配置を互い に入れ替えることができる。
そして、 バイオセンサ 2 1 0は、 作用極端子と対極端子との間に電圧が印加さ れることによって、 センサ部に付着された血液などの体液に含まれる特定の化学 物質の濃度に応じた電流を流す。 このとき作用極 2 1 1および対極 2 1 2に生じ ている電圧は、 それそれ作用極参照端子および対極参照端子の電圧を参照するこ とによって知ることができる。
以上、 本実施形態によると、 バイオセンサ 2 1 0に作用極端子 2 1 3 a, 作用 極参照端子 2 1 3 bおよび対極端子 2 14 a, 対極参照端子 2 1 4 bをそれぞれ 設けることによって、 作用極 2 1 1および対極 2 1 2の電圧を参照しながら、 作 用極 2 1 1および対極 2 1 2に印加される電圧を調整することができ、 作用極 2 1 1 と対極 2 1 2との間に印加される電圧を所定値にすることができる。 これに より、 作用極端子 2 1 3 a , 作用極参照端子 2 1 3 bおよび対極端子 2 1 4 a , 対極参照端子 2 1 4 bに接続される配線に低抵抗の貴金属を用いなくとも、 配線 抵抗による電流誤差を無くすことが可能となる。
なお、 本実施形態のバイオセンサは、 作用極端子と作用極参照端子とを 1つず つ有し、 対極端子と対極参照端子も 1つずつ有しているが、 本発明はこれに限定 されるものではなく、 各端子をさらに設けてもよい。 すなわち、 作用極端子、 作 用極参照端子、 対極端子、 対極参照端子はそれぞれ 2個以上設けられていてもよ く、 作用極端子と対極端子との個数が異なっていてもよい。 また、 作用極端子の 数と作用極参照端子の数、 あるいは対極端子の数と対極参照端子の数が異なって いてもよい。
また、 作用極 2 1 1および対極 2 1 2のいずれか一方を第 1の極とし、 他方を 第 2の極としたとき、 第 1の極 (たとえば、 作用極 2 1 1 ) 側の端子を 1個とし 、 第 2の極 (たとえば、 対極 2 1 2 ) 側の端子を複数個としてもよい。 このよう な構造をしたバイオセンサであっても、 第 2の極に接続された複数の端子のうち 、 いずれかを第 2の極に電圧を印加するためのものとし、 別のいずれかを第 2の 極の電圧を参照するためのものとすることによって、 従来と比較して、 配線抵抗 による電流誤差をより低減することができる。
(第 2 0の実施形態)
図 3 3は、 本発明の第 2 0の実施形態に係るバイオセンサの構造を示す。 本実 施形態のバイオセンサ 2 1 O Aは、 第 1 9の実施形態のバイオセンサ 2 1 0の電 極を重層構造にしたものである。 同図に示すように、 作用極端子 2 1 3 aと作用 極参照端子 2 1 3 bとが互いに重層される (平面的に見てォ一バーラヅプする) とともに、 対極端子 2 1 4 aと対極参照端子 2 1 4 bとが重層されている。 これ により、 バイォセンサを小型化することができ、 さらには、 低コス ト化を図るこ とができる。
なお、 本実施形態では、 作用極端子と作用極参照端子、 および対極端子と対極 参照端子とがそれぞれ重層されているが、 本発明はこれに限定されるものではな い。 例えば、 作用極端子と対極端子、 作用極端子と対極参照端子、 あるいは作用 極参照端子と対極端子とを重層することによつても、 上記と同様の効果を得るこ とができる。
(第 2 1の実施形態)
図 3 4は、 本発明の第 2 1の実施形態に係るバイオセンサの構造を示す。 本実 施形態のバイオセンサ 2 1 0 Bは、 第 1 9の実施形態のバイオセンサ 2 1 0を 2 個、 同一の基板上に形成したものである。 図示していないが、 作用極 2 1 1 aお よび対極 2 1 2 aの組み合わせからなるセンサ部と、 作用極 2 1 1 bおよび対極 2 1 2 bの組み合わせからなるセンサ部とには、 互いに異なる測定対象の化学物 質に対応した酵素ゃメディエー夕などからなる反応試薬が塗布されている。 この ように、 同一の基板上に複数センサ部を設けることによって、 一度に複数の化学 物質の測定が可能となり、 より高性能かつ低価格なバイオセンサを実現すること ができる。
なお、 本実施形態では、 バイオセンサ 2 1 0 Bにセンサ部を 2個備えているが 、 3個以上備えるようにしてもよい。
(第 2 2の実施形態)
図 3 5は、 本発明の第 2 2の実施形態に係るバイオセンサの構造を示す。 本実 施形態のバイオセンサ 2 1 0 Cは、 第 2 1の実施形態のバイオセンサ 2 1 0 Bに おける対極 2 1 2 a, 2 1 2 bを 1個にまとめたものである。 バイオセンサ 2 1 0 Cにおける対極 2 1 2は、 作用極 2 1 1 aに対するものでもあるし、 また、 作 用極 2 l i bに対するものでもある。 すなわち、 作用極 2 1 1 a, 2 1 1 bは、 一の対極 2 1 2を共用している。 したがって、 バイオセンサ 2 1 0 Bにおける対 極端子 2 1 4 c , 対極参照端子 2 1 4 dが省略可能となり、 バイオセンサ 2 1 0 Cは、 対極端子 2 1 4 aと対極参照端子 2 1 4 bとを 1個ずつ備えればよくなる 。 これにより、 バイオセンサをさらに小型化することができる。
なお、 本実施形態では、 2個の作用極 2 1 1 a, 2 1 1 bがーの対極 2 1 2を 共用しているが、 バイオセンサに 3個以上の作用極を設けて、 これら作用極が一 の対極を共用するようにしてもよい。 また、 これとは逆に、 バイオセンサに複数 の対極を設けて、 これら対極が一の作用極を共用するようにしてもよい。
(第 2 3の実施形態)
図 3 6は、 本発明の第 2 3の実施形態に係るバイオセンサチップの構造を示す 。 本実施形態のバイオセンサチップ 2 3 0は、 測定対象の化学物質に応じた酵素 ゃメディエー夕などからなる反応試薬が塗布され、 電圧が印加されることによつ て、 付着された血液などの体液に含まれる特定の化学物質の濃度に応じた電流を 流すセンサ部 2 3 1 と、 センサ部 2 3 1に電圧を印加し、 このとき流れる電流を 計測する計測回路 2 3 2とを備えている。 また、 センサ部 2 3 1と計測回路 2 3 2とは、 作用極配線 2 3 3 a, 2 3 3 および対極配線 2 3 4 a, 2 3 4 bによ つて電気的に接続されている。
センサ部 2 3 1、 作用極配線 2 3 3 a, 2 3 3 bおよび対極配線 2 3 4 a , 2 3 4 bからなる部分は、 第 1 9の実施形態のバイオセンサと同様の構成をしてい る。 すなわち、 作用極配線 2 3 3 aおよび対極配線 2 3 4 aは、 それぞれ作用極 2 1 1および対極 2 1 2への電圧印加に用いられる一方、 作用極配線 2 3 3 bお よび対極配線 2 3 4 bは、 それぞれ作用極 2 1 1および対極 2 1 2の電圧参照に 用いられる。 また、 計測回路 2 3 2は、 たとえば、 第 1から第 1 8の実施形態で 説明した計測回路 2 2 0 , 2 2 0 A , 2 2 0 B , 2 2 0 Cと同様の回路構成をし ている。 すなわち、 バイオセンサチップ 2 3 0は、 本発明のバイオセンサおよび バイオセンサ装置を 1チヅプ上に形成したものである。
バイオセンサチヅプ 2 3 0における作用極配線 2 3 3 a, 2 3 3 bおよび対極 配線 2 3 4 a, 2 3 4 bは、 微細加工により薄膜化され、 抵抗値が増すことにな る。 しかし、 本実施形態によると、 上記の説明の通り、 この抵抗値に影響されな い電流を計測することができる。 したがって、 高精度で超小型、 かつ低価格なバ ィォセンサチップを実現することができる。
なお、 バイオセンサチップ 2 3 0が形成される基板は、 シリコン基板、 シリコ ン ' オン ' イ ンシユレ一夕基板、 シリコン . オン ' サフアイァ基板、 ガラス基板 などの、 センサ部 2 3 1および計測回路 2 3 2が形成可能な基板であれば、 どの ような物質や構造であってもよい。
また、 作用極 2 1 1および対極 2 1 2のいずれか一方を第 1の極とし、 他方を 第 2の極としたとき、 第 1の極 (たとえば、 作用極 2 1 1 ) と計測回路 2 3 2と を接続する第 1の配線 (たとえば、 作用極配線 2 3 3 a ) に第 1の電圧 (たとえ ば、 電圧 V p 1 ) を印加する第 1の電圧印加部は従来のものとし、 第 2の極 (た とえば、 対極 2 1 2 ) と計測回路 2 3 2とを接続する第 2の配線 (たとえば、 対 極配線 2 3 4 a ) に第 2の電圧 (たとえば、 電圧 V m 1 ) を印加する第 2の電圧 印加部は、 本実施形態に係るもの (たとえば、 対極電圧印加部 2 2 2 , 2 2 2 A ) とする。 そして、 この第 2の電圧印加部は、 第 2の極と計測回路 2 3 2とを接 鐃する接続する第 3の配線 (たとえば、 対極配線 2 3 4 b ) を通じて第 2の極の 第 3の電圧 (たとえば、 電圧 V m ) を参照し、 この第 3の電圧と与えられた基準 電圧 (たとえば、 電圧 V m r ) とが一致するように、 第 2の電圧を生成する。 こ のように、 計測回路 2 3 2において、 作用極電圧印加部 2 2 1, 2 2 1 Aおよび 対極電圧印加部 2 2 2, 2 2 2 Aのいずれか一方を省略した場合でも、 高精度で 超小型、 かつ低価格なバイオセンサチップを実現することができる。
(第 2 4の実施形態)
図 3 7は、 本発明の第 2 4の実施形態に係るバイオセンサチヅプの構造を示す 。 本実施形態のバイオセンサチップ 2 3 0 Aは、 第 2 3の実施形態のバイオセン サチップ 2 3 0における配線を重層構造にしたものである。 同図に示すように、 作用極配線 2 3 3 a , 2 3 3 bが重層されるとともに、 対極配線 2 3 4 a, 2 3 4 bが重層されている。 これにより、 バイオセンサチップを小型化することがで き、 さらには、 低価格化を図ることができる。
なお、 本実施形態では、 作用極配線どう しおよび対極配線どうしを重層してい るが、 作用極配線と対極配線とを重層することによつても、 上記と同様の効果を 得ることができる。
(第 2 5の実施形態)
図 3 8は、 本発明の第 2 5の実施形態に係るバイオセンサチップの構造を示す 。 本実施形態のバイオセンサチヅプ 2 3 0 Bは、 第 2 3の実施形態のバイオセン サチップ 2 3 0におけるセンサ部および計測回路をそれぞれ 2個、 同一の基板上 に形成したものである。 図示していないが、 センサ部 2 3 1 aとセンサ部 2 3 1 とには、 互いに異なる測定対象の化学物質に対応した酵素ゃメディエー夕など からなる反応試薬が塗布されている。 このように、 同一の基板上に複数センサ部 を設けることによって、 一度に複数の化学物質の測定が可能となり、 より高性能 かつ低価格なバイオセンサチップを実現することができる。 Λη
47 なお、 本実施形態では、 バイオセンサチヅプ 2 3 0 Βにセンサ部を 2個備えて いるが、 3個以上備えるようにしてもよい。
(第 2 6の実施形態)
図 3 9は、 本発明の第 2 6の実施形態に係るバイオセンサチップの構造を示す 。 本実施形態のバイォセンサチップ 2 3 0 Cは、 第 2 5の実施形態のバイオセン サチップ 2 3 0 Βにおける計測回路 2 3 2 a, 2 3 2 bを一つにまとめ、 計測回 路モジュール 2 3 5としたものである。
図 40は、 計測回路モジュール 2 3 5の回路構成を示す。 計測回路モジュール 23 5は、 計測回路 23 2、 第 1のバイオセンサ 43 1 aと計測回路 2 3 2との 接続/開放を切り換えるスィツチ 2 3 6 a, 2 3 6 b, 2 36 c, 2 3 6 d、 第 2のバイォセンサ 4 3 1 bと計測回路 23 2との接続/開放を切り換えるスィ ッ チ 2 3 6 e, 2 3 6 f , 2 3 6 g , 2 3 6 h、 およびスィ ヅチ 2 3 6 a〜 2 3 6 hの動作を制御する選択制御回路 2 3 7を備えている。 なお、 スィ ッチ 2 3 6 a 〜 2 3 6 hおよび選択制御回路 2 3 7は、 本発明の切替手段に相当するものであ る。
選択制御回路 2 3 7は、 制御信号 S E L 1によって、 スイ ッチ 2 3 6 a〜 2 3 6 dをすベて閉じるかまたは開くかの制御をする。 また、 制御信号 S E L 2によ つて、 スィヅチ 2 3 6 e〜 2 36 hをすベて閉じるかまたは開くかの制御をする 。 ただし、 すべてのスイ ッチ 23 6 a〜2 3 6 hは、 同時に閉じることはないも のとする。 すなわち、 選択制御回路 2 37は、 第 1のバイオセンサ 43 1 a, 第 2のバイオセンサ 4 3 1 bのいずれか一つを選択して、 この選択したバイオセン ザと計測回路 2 3 2とが電気的に接続されるように、 スイ ッチ 2 3 6 a〜 2 3 6 hを制御する。
バイオセンサ 43 1 a , バイオセンサ 4 3 l bと計測回路 2 3 2との間にスィ ヅチ 2 3 6 a〜 2 3 6 hを設けることによって抵抗値が増すことになる。 しかし 、 既に述べたように、 本発明によると、 この抵抗値に関係なく、 正確な電流を計 測することができる。
以上、 本実施形態によると、 バイオセンサの切り替えが可能となり、 第 2 5の 実施形態のバイオセンサチヅプ 2 3 0 Bと比較して、 備えるべき計測回路の個数 を削減することができる。 これにより、 バイオセンサチップをさらに小型化する ことができる。
なお、 本実施形態では、 2つの制御信号 SE L 1, S E L 2によってスイッチ 23 6 a〜 2 3 6 hを制御しているが、 本発明はこれに限定されるものではない 。 たとえば、 制御信号 S E L 1のみでスイ ッチ 23 6 a〜 2 3 6 hを制御するよ うにしてもよいし、 これ以外の方法でバイオセンサの切り替えを行うようにして もよい。
(第 2 7の実施形態)
図 4 1は、 本発明の第 2 7の実施形態に係るバイオセンサチップの構造を示す 。 本実施形態のバイオセンサチップ 2 3 0 Dの回路構成は、 第 2 6の実施形態の バイオセンサチップ 230 Cと同様である。 バイオセンサチップ 2 30 Cと異な る点は、 センサ部 2 3 1 a, 2 3 1 bが隣接して配置されている点である。 この ように複数のセンサ部 2 3 l a, 2 3 l bを隣接して配置することによって、 血 液などの体液のサンプルを複数点ではなく一点にのみ付着させるだけで、 複数の 化学物質の分析を行うことができる。
以上、 本実施形態によると、 必要とされる血液などの体液のサンプルが微小量 で済むため、 被験者の採血などの負担が軽減される。 また、 センサ部が隣接する ことによって、 サンプルを付着させる部分の構造を簡素化することができる。 なお、 バイオセンサにおいて、 センサ部を隣接して配置することによって、 上 記と同様の効果を得ることができる。
(第 2 8の実施形態)
図 42は、 本発明の第 28の実施形態に係るバイオセンサチップの構造を示す 。 本実施形態のバイオセンサチップ 240は、 第 2 3の実施形態のバイオセンサ チヅプ 2 3 0におけるセンサ部 2 3 1および計測回路 23 2を、 それぞれセンサ チヅプ 24 1および計測回路チヅプ 242として互いに異なる半導体集積回路に 形成し、 これらチヅプが同一の基板上に形成されたチップ ' オン ' チップ構造を なしている。 センサチヅプ 24 1における作用極端子 2 1 3 a, 作用極参照端子 2 1 3 bおよび対極端子 2 1 4 a, 対極参照端子 2 1 4 bと、 計測回路チップ 2 42とは、 ワイヤ 4 3によって電気的に接続されている。 なお、 図 42 (b ) は 、 同図 ( a ) における Aでの断面図である。
第 2 3の実施形態では、 バイオセンサチヅプ 2 3 0におけるセンサ部 2 3 1に 塗布される反応試薬が、 計測回路チップ 2 4 2が形成される基板材料、 すなわち バイオセンサチップ 2 3 0の基板材料と、 親和性や非反応性などの点で適合しな い場合、 センサ部 2 3 1 と計測回路チップ 2 4 2とを同一の基板上に形成するこ とが非常に困難となる。 また、 反応試薬と作用極配線 2 3 3 a, 2 3 3 bおよび 対極配線 2 3 4 a, 2 3 4 bとが適合しない場合も同様である。 しかし、 本実施 形態のバイオセンサチヅプ 2 4 0は、 センサチヅプ 2 4 1および計測回路チップ 2 4 2が互いに異なる半導体集積回路に形成されているため、 このような問題は 生じない。
以上、 本実施形態によると、 バイオセンサチップをチップ ' オン 'チップ構造 にすることによって、 さまざまな反応試薬を用いたバイオセンサチップを実現す ることができる。 これにより、 バイオセンサチップによる測定対象の範囲が広が る。
なお、 本実施形態では、 支持基板上にセンサチップ 2 4 1および計測回路チッ プ 2 4 2を配置しているが、 本発明はこれに限定されるものではない。 支持基板 を省略し、 センサチップ 2 4 1上に直接、 計測回路チップ 2 4 2を配置してもよ いし、 逆に、 計測回路チヅプ 2 4 2上に直接、 センサチヅプ 2 4 1を配置しても よい。
また、 ワイヤ 4 3によってセンサチヅプ 2 4 1と計測回路チヅプ 2 4 2とを結 線しているが、 ワイヤ 4 3に代えて、 ボール · グリッ ド · アレイ ( B G A ) など で結線してもよい。
また、 本実施形態のバイオセンサチヅプ 2 4 0は、 第 2 3の実施形態のバイオ センサチップ 2 3 0をチヅプ · オン · チヅプ構造としたものであるが、 本発明は これに限定されるものではない。 たとえば、 第 9から第 2 7の実施形態のバイオ センサチヅプ 2 3 0 A〜2 3 0 D、 あるいはそれ以外の構成のものをチップ · ォ ン · チヅプ構造とすることも可能である。 産業上の利用可能性 本発明のバイオセンサ装置及びバイオセンサは、 例えば血糖値の測定器など、 生体物質の測定に好ましく用いられれる。

Claims

言青求の範 囲
1 . 測定時に被測定流体と接する作用極と、
測定時に上記被測定流体と接し、 上記被測定流体を流すための間隔を空けて上 記作用極に対向させた対極と、
上記作用極に接続された作用極端子と、
上記対極に接続された対極端子と、
上記作用極と上記対極のいずれか一方または両方に接続され、 測定時には実質 的に電流が流れない参照端子と
を備えているバイオセンサ。
2 . 請求項 1のバイオセンサにおいて、
上記作用極及び上記対極のうち少なくとも一方には、 上記被測定流体に含まれ る物質の状態を変化させる生体物質または微生物が固定化されていることを特徴 とするバイオセンサ。
3 . 請求項 1のバイオセンサにおいて、
上記参照端子は、 上記作用極または上記対極のいずれかにのみ接続されている ことを特徴とするバイオセンサ。
4 . 請求項 3のバイオセンサにおいて、
上記作用極と上記作用極端子とを接続する第 1の配線と、
上記作用極または上記対極と上記参照端子とを接続する第 2の配線と、 上記対極と上記対極端子とを接続する第 3の配線と
をさらに備えていることを特徴とするバイォセンサ。
5 . 請求項 1のバイオセンサにおいて、
上記参照端子は、
上記作用極に接続された作用極参照端子と、
上記対極に接続された対極参照端子と
を含んでいることを特徴とするバイオセンサ。
6 . 請求項 5のバイオセンサにおいて、
上記作用極と上記作用極端子とを接続する第 4の配線と、
上記作用極と上記作用極参照端子とを接続する第 5の配線と、 上記対極と上記対極参照端子とを接続する第 6の配線と、
上記対極と上記対極端子とを接続する第 7の配線と
をさらに備えており、
上記第 4の配線、 上記第 5の配線、 上記第 6の配線、 及び上記第 7の配線のう ち少なくとも 2つの配線は互いに異なる配線層内に設けられ、 且つ平面的に見て 少なくとも一部がオーバ一ラップするように設けられていることを特徴とするバ ィォセンサ。
7 . 請求項 4のバイオセンサにおいて、
上記第 1の配線と上記第 2の配線とは互いに異なる配線層内に設けられている ことを特徴とするバイオセンサ。
8 . 請求項 4のバイオセンサにおいて、
上記第 2の配線と上記第 3の配線とは互いに異なる配線層内に設けられている ことを特徴とするバイオセンサ。
9 . 請求項 4のバイオセンサにおいて、
上記作用極、 上記対極、 上記参照端子、 上記作用極端子、 上記対極端子、 上記 第 1の配線、 上記第 2の配線及び上記第 3の配線は基板上に設けられ、
上記作用極端子または上記対極端子のうちいずれか一方は上記基板の裏面上に 設けられていることを特徴とするバイオセンサ。
1 0 . 請求項 4のバイオセンサにおいて、
上記作用極端子と上記対極端子とは互いに異なる配線層内に設けられているこ とを特徴とするバイォセンサ。
1 1 . 請求項 1 0のバイオセンサにおいて、
上記第 3の配線が複数の配線層内に直って設けられていることを特徴とするバ ィォセンサ。
1 2 . 請求項 1 0のバイオセンサにおいて、
上記対極は略円形であり、
上記作用極の内周の一部は上記対極との距離がほぼ一定の円周状であることを 特徴とするバイオセンサ。
1 3 . 請求項 1 0のバイオセンサにおいて、 上記作用極は略円形であり、
上記対極の内周の一部は上記作用極との距離がほぼ一定の円周状であることを 特徴とするバイオセンサ。
1 4 . 請求項 4または 5のバイオセンサにおいて、
上記作用極は複数個設けられており、
上記作用極のそれそれに対向する上記対極同士は、 一体化されていることを特 徴とするバイォセンサ。
1 5 . 請求項 5のバイオセンサにおいて、
上記対極は複数個設けられており、
上記作用極のそれぞれに対向する上記作用極同士は、 一体化されていることを 特徴とするバイオセンサ。
1 6 . 請求項 4のバイオセンサにおいて、
上記第 3の配線の断面積は、 上記第 1の配線の断面積よりも大きいことを特徴 とするバイオセンサ。
1 7 . 測定時に被測定流体と接する作用極と、 測定時に上記被測定流体と接し 、 上記被測定流体を流すための間隔を空けて上記作用極に対向させた対極と、 上 記被測定流体を保持するためのセンサ部と、 上記作用極に接続された作用極端子 と、 上記対極に接続された対極端子と、 上記作用極と上記対極のいずれか一方ま たは両方に接続され、 測定時には実質的に電流が流れない参照端子とを有し、 基 板上に設けられたバイオセンサと、
上記バイオセンサに接続され、 基板上に設けられた計測回路と
を備えているバイオセンサチヅプ。
1 8 . 請求項 1 7のバイオセンサチヅプにおいて、
上記作用極及び上記対極のうち少なくとも一方には、 上記被測定流体に含まれ る物質の状態を変化させる生体物質または微生物が固定化されていることを特徴 とするバイオセンサチップ。
1 9 . 請求項 1 7のバイオセンサチヅプにおいて、
上記参照端子は、 上記作用極または上記対極のいずれかにのみ接続されている ことを特徴とするバイオセンサチップ。
2 0 . 請求項 1 9のバイオセンサチヅプにおいて、
上記参照端子は上記作用極に接続され、
上記計測回路は、
上記作用極端子に接続され、 電流計を有する作用極電圧印加部と、
上記参照端子に接続された作用極電位参照回路と、
上記対極端子に接続された対極電圧印加部と、
上記作用極電位参照回路及び上記対極電圧印加部にそれぞれ基準電圧を供給す るための基準電圧源と、
測定時に、 上記作用極端子に流れる電流量に応じて上記作用極電圧印加部から 出力される電流量信号を処理するための信号処理回路と
を有していることを特徴とするバイオセンサチヅプ。
2 1 . 請求項 2 0のバイオセンサチヅプにおいて、
測定時には、 上記参照端子に印加される電圧が上記作用極電位参照回路に供給 される基準電圧とほぼ等しくなるように上記作用極電位参照回路が信号を発生す ることを特徴とするバイォセンサチップ。
2 2 . 請求項 1 9のバイオセンサチヅプにおいて、
上記参照端子は上記対極に接続され、
上記計測回路は、
上記作用極端子に接続された作用極電圧印加部と、
上記対極端子に接続され、 電流計を有する対極電圧印加部と、
上記参照端子に接続された対極電位参照回路と、
上記対極電位参照回路及び上記作用極電圧印加部にそれぞれ基準電圧を供給す るための基準電圧源と、
測定時に、 上記対極端子に流れる電流量に応じて上記対極電圧印加部から出力 される電流量信号を処理するための信号処理回路と
を有していることを特徴とするバイオセンサチヅプ。
2 3 . 請求項 2 2のバイオセンサチヅプにおいて、
測定時には、 上記参照端子に印加される電圧が上記対極電位参照回路に供給さ れる基準電圧とほぼ等しくなるように上記対極電位参照回路が信号を発生するこ とを特徴とするバイオセンサチヅプ。
2 4 . 請求項 1 9のバイオセンサチヅプにおいて、
上記参照端子は上記作用極に接続され、
上記計測回路は、
上記作用極端子及び上記参照端子に接続され、 電流計を有する作用極電圧印加 部と、
上記対極端子に接続された対極電圧印加部と、
上記作用極電圧印加部及び上記対極電圧印加部にそれぞれ基準電圧を供給する ための基準電圧源と、
測定時に、 上記作用極端子に流れる電流量に応じて上記作用極電圧印加部から 出力される電流量信号を処理するための信号処理回路と
を有していることを特徴とするバイオセンサチヅプ。
2 5 . 請求項 1 9のバイオセンサチヅプにおいて、
上記参照端子は上記対極に接続され、
上記計測回路は、
上記作用極端子に接続された作用極電圧印加部と、
上記対極端子及び上記参照端子に接続され、 電流計を有する対極電圧印加部と 上記対極電圧印加部及び上記作用極電圧印加部にそれぞれ基準電圧を供給する ための基準電圧源と、
測定時に、 上記対極端子に流れる電流量に応じて上記対極電圧印加部から出力 される電流量信号を処理するための信号処理回路と
を有していることを特徴とするバイオセンサチヅプ。
2 6 . 請求項 1 7のバイオセンサチヅプにおいて、
上記参照端子は、
上記作用極に接続された作用極参照端子と、
上記対極に接続された対極参照端子と
を含んでいることを特徴とするバイオセンサチップ。
2 7 . 請求項 2 6のバイオセンサチヅプにおいて、 上記計測回路は、
上記作用極端子及び上記作用極参照端子に接続された作用極電圧印加部と、 上記対極端子及び上記対極参照端子に接続された対極電圧印加部と、 上記対極電圧印加部及び上記作用極電圧印加部にそれぞれ基準電圧を供給する ための基準電圧源と、
測定時に、 上記作用極端子に流れる電流量に応じて上記作用極電圧印加部から 出力される第 1の電流量信号と、 上記対極端子に流れる電流量に応じて上記対極 電圧印加部から出力される第 2の電流量信号のうち少なく とも一方を処理するた めの信号処理回路と
を有していることを特徴とするバイオセンサチヅプ。
2 8 . 請求項 2 7のバイオセンサチヅプにおいて、
上記信号処理回路は、 上記第 1の電流量信号と上記第 2の電流量信号の両方を 処理することを特徴とするバイオセンサチップ。
2 9 . 請求項 1 7のバイオセンサチップにおいて、
上記バイオセンサが設けられた基板と上記計測回路が設けられた基板とは同一 基板であることを特徴とするバイオセンサチップ。
3 0 . 請求項 1 7のバイオセンサチップにおいて、
上記バイオセンサチップは共通基板をさらに有し、
上記バイオセンサが設けられた基板と上記計測回路が設けられた基板とが上記 共通基板上に載置されていることを特徴とするバイォセンサチップ。
3 1 . 請求項 1 7のバイオセンサチヅプにおいて、
上記バイオセンサが設けられた基板と上記計測回路が設けられた基板とが積層 されていることを特徴とするバイォセンサチヅプ。
3 2 . 請求項 1 7のバイオセンサチヅプにおいて、
同一基板上に上記バイオセンサが複数個設けられており、 少なくとも 2つの上 記バイオセンサは同一の上記計測回路に接続され、
上記各バイォセンサの上記作用極端子と上記計測回路との間、 上記参照端子と 上記計測回路との間、 及び上記対極端子と上記計測回路との間には、 上記バイオ センサと上記計測回路との接続をオンまたはオフにするためのスィツチがさらに 設けられていることを特徴とするバイオセンサチップ。
3 3 . 請求項 2 6のバイオセンサチヅプにおいて、
同一基板上に上記バイォセンサが複数個設けられており、 2つの上記バイオセ ンサのセンサ部が、 互いに隣接して設けられていることを特徴とするバイオセン サチップ。
3 4 . 測定時に被測定流体と接する作用極と、 測定時に上記被測定流体と接し 、 上記被測定流体を流すための間隔を空けて上記作用極に対向させた対極と、 上 記被測定流体を保持するためのセンサ部と、 上記作用極に接続された作用極端子 と、 上記対極に接続された対極端子と、 上記作用極と上記対極のいずれか一方ま たは両方に接続され、 測定時には実質的に電流が流れない参照端子とを有し、 基 板上に設けられたバイオセンサと、
上記バイオセンサに接続され、 基板上に設けられた計測回路と
を備え、
測定時に上記作用極端子と上記対極端子のいずれか一方または両方を流れる電 流の値から上記被測定流体に含まれる測定対象物質の濃度を測定する機能を有す るバイオセンサ装置。
3 5 . 請求項 3 4のバイオセンサ装置において、
上記作用極及び上記対極のうち少なくとも一方には、 上記測定対象物質を変化 させる生体物質または微生物が固定化されていることを特徴とするバイオセンサ
3 6 . 請求項 3 4のバイオセンサ装置において、
上記参照端子は、 上記作用極または上記対極のいずれかにのみ接続されている ことを特徴とするバイオセンサ装置。
3 7 . 請求項 3 4のバイオセンサ装置において、
上記参照端子は、
上記作用極に接続された作用極参照端子と、
上記対極に接続された対極参照端子と
を含んでおり、
上記計測回路は、 上記作用極端子及び上記作用極参照端子に接続された作用極電圧印加部と、 上記対極端子及び上記対極参照端子に接続された対極電圧印加部と、 上記対極電圧印加部及び上記作用極電圧印加部にそれそれ基準電圧を供給する ための基準電圧源と、
測定時に、 上記作用極端子に流れる電流量に応じて上記作用極電圧印加部から 出力される第 1の電流量信号と、 上記対極端子に流れる電流量に応じて上記対極 電圧印加部から出力される第 2の電流量信号のうち少なくとも一方を処理するた めの信号処理回路と
を有していることを特徴とするバイオセンサ装置。
3 8 . 請求項 3 4のバイオセンサ装置において、
測定時には、 上記作用極参照端子に印加される電圧が、 上記作用極電圧印加部 に供給される基準電圧とほぼ等しくなり、
上記対極参照端子に印加される電圧が、 上記対極電圧印加部に供給される基準 電圧とほぼ等しくなることを特徴とするバイオセンサ装置。
3 9 . 請求項 3 4のバイオセンサ装置において、
上記計測回路に接続され、 上記計測回路から出力された信号を解析するための 回路をさらに備えていることを特徴とするバイオセンサ装置。
4 0 . 請求項 3 4のバイオセンサ装置において、
上記バイオセンサと上記計測回路とは同一のチップ上に設けられており、 上記チヅプは交換可能になっていることを特徴とするバイオセンサ装置。
4 1 . 請求項 3 7のバイオセンサ装置において、
上記計測回路は、
上記第 1の電流量信号及び上記第 2の電流量信号を受けて、 上記作用極と上記 対極との間に流れる電流量を表す第 3の電流量信号を上記信号処理回路に出力す る電流量信号生成部をさらに有していることを特徴とするバイオセンサ装置。
4 2 . 請求項 3 6のバイオセンサ装置において、
上記参照端子は上記作用極に接続され、
上記計測回路は、
上記作用極端子に接続され、 電流計を有する作用極電圧印加部と、 上記参照端子に接続された作用極電位参照回路と、
上記対極端子に接続された対極電圧印加部と、
上記作用極電位参照回路及び上記対極電圧印加部にそれぞれ基準電圧を供給す るための基準電圧源と、
測定時に、 上記作用極端子に流れる電流量に応じて上記作用極電圧印加部から 出力される電流量信号を処理するための信号処理回路と
を有していることを特徴とするバイオセンサ装置。
4 3 . 請求項 4 2のバイオセンサ装置において、
測定時には、 上記参照端子に印加される電圧が上記作用極電位参照回路に供給 される基準電圧とほぼ等しくなるように上記作用極電位参照回路が信号を発生す ることを特徴とするバイオセンサ装置。
4 4 . 請求項 3 7のバイオセンサ装置において、
上記参照端子は上記対極に接続され、
上記計測回路は、
上記作用極端子に接続された作用極電圧印加部と、
上記対極端子に接続され、 電流計を有する対極電圧印加部と、
上記参照端子に接続された対極電位参照回路と、
上記対極電位参照回路及び上記作用極電圧印加部にそれぞれ基準電圧を供給す るための基準電圧源と、
測定時に、 上記対極端子に流れる電流量に応じて上記対極電圧印加部から出力 される電流量信号を処理するための信号処理回路と
を有していることを特徴とするバイオセンサ装置。
4 5 . 請求項 4 4のバイオセンサ装置において、
測定時には、 上記参照端子に印加される電圧が上記対極電位参照回路に供給さ れる基準電圧とほぼ等しくなるように上記対極電位参照回路が信号を発生するこ とを特徴とするバイオセンサ装置。
4 6 . 請求項 3 7のバイオセンサ装置において、
上記参照端子は上記作用極に接続され、
上記計測回路は、 上記作用極端子及び上記参照端子に接続され、 電流計を有する作用極電圧印加 部と、
上記対極端子に接続された対極電圧印加部と、
上記作用極電圧印加部及び上記対極電圧印加部にそれぞれ基準電圧を供給する ための基準電圧源と、
測定時に、 上記作用極端子に流れる電流量に応じて上記作用極電圧印加部から 出力される電流量信号を処理するための信号処理回路と
を有していることを特徴とするバイオセンサ装置。
4 7 . 請求項 3 7のバイオセンサ装置において、
上記参照端子は上記対極に接続され、
上記計測回路は、
上記作用極端子に接続された作用極電圧印加部と、
上記対極端子及び上記参照端子に接続され、 電流計を有する対極電圧印加部と 上記対極電圧印加部及び上記作用極電圧印加部にそれそれ基準電圧を供給する ための基準電圧源と、
測定時に、 上記対極端子に流れる電流量に応じて上記対極電圧印加部から出力 される電流量信号を処理するための信号処理回路と
を有していることを特徴とするバイオセンサ装置。
4 8 . 請求項 3 4のバイオセンサ装置において、
装置全体が使い捨て可能であることを特徴とするバイオセンサ装置。
PCT/JP2003/007593 2002-07-02 2003-06-16 バイオセンサ,バイオセンサチップ及びバイオセンサ装置 WO2004005908A1 (ja)

Priority Applications (23)

Application Number Priority Date Filing Date Title
JP2004519207A JP4196947B2 (ja) 2002-07-02 2003-06-16 バイオセンサ,バイオセンサチップ及びバイオセンサ装置
US10/488,325 US7540947B2 (en) 2002-07-02 2003-06-16 Biosensor, biosensor chip, and biosensor device
DE10392159T DE10392159B4 (de) 2002-07-02 2003-06-16 Biosensor, Biosensorchip und Biosensoreinrichtung
US12/360,639 US8388820B2 (en) 2002-07-02 2009-01-27 Biosensor, biosensor chip and biosensor device
US12/399,444 US8231768B2 (en) 2002-07-02 2009-03-06 Biosensor, biosensor chip and biosensor device
US12/618,084 US8568579B2 (en) 2002-07-02 2009-11-13 Biosensor, biosensor chip and biosensor device
US13/481,413 US8496794B2 (en) 2002-07-02 2012-05-25 Biosensor, biosensor chip and biosensor device
US13/481,381 US8574423B2 (en) 2002-07-02 2012-05-25 Biosensor, biosensor chip and biosensor device
US13/934,766 US8900430B2 (en) 2002-07-02 2013-07-03 Biosensor, biosensor chip and biosensor device
US13/934,915 US8888975B2 (en) 2002-07-02 2013-07-03 Biosensor, biosensor chip and biosensor device
US13/934,847 US8888974B2 (en) 2002-07-02 2013-07-03 Biosensor, biosensor chip and biosensor device
US14/508,668 US9086372B2 (en) 2002-07-02 2014-10-07 Biosensor, biosensor chip and biosensor device
US14/508,780 US9074997B2 (en) 2002-07-02 2014-10-07 Biosensor, biosensor chip and biosensor device
US14/509,762 US9080954B2 (en) 2002-07-02 2014-10-08 Biosensor, biosensor chip and biosensor device
US14/509,802 US9075000B2 (en) 2002-07-02 2014-10-08 Biosensor, biosensor chip and biosensor device
US14/509,728 US9074999B2 (en) 2002-07-02 2014-10-08 Biosensor, biosensor chip and biosensor device
US14/512,243 US9068931B2 (en) 2002-07-02 2014-10-10 Biosensor, biosensor chip and biosensor device
US14/512,227 US9080956B2 (en) 2002-07-02 2014-10-10 Biosensor, biosensor chip and biosensor device
US14/512,157 US9080955B2 (en) 2002-07-02 2014-10-10 Biosensor, biosensor chip and biosensor device
US14/512,207 US9080960B2 (en) 2002-07-02 2014-10-10 Biosensor, biosensor chip and biosensor device
US14/512,781 US9080957B2 (en) 2002-07-02 2014-10-13 Biosensor, biosensor chip and biosensor device
US14/512,838 US9080958B2 (en) 2002-07-02 2014-10-13 Biosensor, biosensor chip and biosensor device
US14/512,817 US9074998B2 (en) 2002-07-02 2014-10-13 Biosensor, biosensor chip and biosensor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-193547 2002-07-02
JP2002193547 2002-07-02
JP2002304858 2002-10-18
JP2002-304858 2002-10-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/618,084 Continuation US8568579B2 (en) 2002-07-02 2009-11-13 Biosensor, biosensor chip and biosensor device

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US13934766 A-371-Of-International 2003-06-16
US10488325 A-371-Of-International 2003-06-16
US10/488,325 A-371-Of-International US7540947B2 (en) 2002-07-02 2003-06-16 Biosensor, biosensor chip, and biosensor device
US12/360,639 Continuation US8388820B2 (en) 2002-07-02 2009-01-27 Biosensor, biosensor chip and biosensor device
US12/399,444 Continuation US8231768B2 (en) 2002-07-02 2009-03-06 Biosensor, biosensor chip and biosensor device
US14/512,838 Continuation US9080958B2 (en) 2002-07-02 2014-10-13 Biosensor, biosensor chip and biosensor device

Publications (1)

Publication Number Publication Date
WO2004005908A1 true WO2004005908A1 (ja) 2004-01-15

Family

ID=30117372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007593 WO2004005908A1 (ja) 2002-07-02 2003-06-16 バイオセンサ,バイオセンサチップ及びバイオセンサ装置

Country Status (5)

Country Link
US (21) US7540947B2 (ja)
JP (1) JP4196947B2 (ja)
CN (2) CN101255455B (ja)
DE (10) DE10397015A5 (ja)
WO (1) WO2004005908A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124331A1 (en) 2004-06-18 2005-12-29 Roche Diagnostics Gmbh System and method for quality assurance of a biosensor test strip
JP2008511841A (ja) * 2004-08-31 2008-04-17 ライフスキャン・スコットランド・リミテッド 自動較正センサの製造方法
JP2008525813A (ja) * 2004-12-29 2008-07-17 ライフスキャン・スコットランド・リミテッド 改良型測定回路内蔵検体測定装置
JP2009518630A (ja) * 2005-12-03 2009-05-07 タイコ・サーマル・コントロールズ・エルエルシー 有機液体検出用センサー
US7727467B2 (en) 2003-06-20 2010-06-01 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US8287703B2 (en) 1999-10-04 2012-10-16 Roche Diagnostics Operations, Inc. Biosensor and method of making
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8328719B2 (en) 2004-12-29 2012-12-11 Lifescan Scotland Limited Method of inputting data into an analyte testing device
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
CN109321431A (zh) * 2018-11-27 2019-02-12 西安良升生物科技有限公司 一种快速诊断心肌缺血的电极片装置及其制备方法和应用

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
CA2448790C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Electric lancet actuator
ES2335576T3 (es) 2001-06-12 2010-03-30 Pelikan Technologies Inc. Aparato y procedimiento de toma de muestras de sangre.
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
ES2336081T3 (es) 2001-06-12 2010-04-08 Pelikan Technologies Inc. Dispositivo de puncion de auto-optimizacion con medios de adaptacion a variaciones temporales en las propiedades cutaneas.
AU2002344825A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7198606B2 (en) 2002-04-19 2007-04-03 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7540947B2 (en) 2002-07-02 2009-06-02 Panasonic Corporation Biosensor, biosensor chip, and biosensor device
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
WO2004107975A2 (en) 2003-05-30 2004-12-16 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8679853B2 (en) 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
CN1839313B (zh) * 2003-06-20 2011-12-14 霍夫曼-拉罗奇有限公司 涉及电化学生物传感器的设备和方法
EP1671096A4 (en) 2003-09-29 2009-09-16 Pelikan Technologies Inc METHOD AND APPARATUS FOR PROVIDING IMPROVED SAMPLE CAPTURING DEVICE
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
WO2005065414A2 (en) 2003-12-31 2005-07-21 Pelikan Technologies, Inc. Method and apparatus for improving fluidic flow and sample capture
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc METHOD AND APPARATUS FOR MANUFACTURING A DEVICE FOR SAMPLING LIQUIDS
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US20060182656A1 (en) * 2004-06-18 2006-08-17 Tom Funke Dispenser for flattened articles
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
AU2007250086B2 (en) 2006-05-08 2013-07-18 Bayer Healthcare Llc Electrochemical test sensor with reduced sample volume
US7794658B2 (en) * 2007-07-25 2010-09-14 Lifescan, Inc. Open circuit delay devices, systems, and methods for analyte measurement
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
FR2936167A1 (fr) * 2008-09-23 2010-03-26 Commissariat Energie Atomique Micro-dispositif d'analyse d'echantillons liquides.
JP5502413B2 (ja) * 2008-10-31 2014-05-28 シスメックス株式会社 検査チップ、被検物質検出装置および被検物質の特異的検出方法
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2013157263A1 (ja) * 2012-04-19 2013-10-24 パナソニック株式会社 生体情報測定装置とそれを用いた生体情報測定方法
US20130330761A1 (en) 2012-06-12 2013-12-12 Celcuity, LLC Whole cell assays and methods
TWI486584B (zh) * 2012-11-23 2015-06-01 Univ Nat Chi Nan Electric resistance type biosensor and its manufacturing method
CN105122047A (zh) * 2012-12-27 2015-12-02 赛诺瓦系统股份有限公司 pH计
CN105143435A (zh) * 2013-02-28 2015-12-09 远程医疗零距离公司 用于评估样品的微生物含量的诊断装置
US20150041328A1 (en) * 2013-08-07 2015-02-12 Xagenic Inc. Sensor growth controller
WO2015089380A2 (en) 2013-12-12 2015-06-18 Celcuity Llc Assays and methods for determining the responsiveness of an individual subject to a therapeutic agent
KR101585313B1 (ko) * 2014-01-06 2016-01-13 재단법인 다차원 스마트 아이티 융합시스템 연구단 정전 용량을 이용한 바이오센서 및 시료 유입 감지 방법
TWI512287B (zh) * 2014-03-31 2015-12-11 Taidoc Technology Corp 具有樣品偵測功能的電化學生物感測器裝置、系統以及偵測方法
US20160188898A1 (en) * 2014-12-31 2016-06-30 Netapp, Inc. Methods and systems for role based access control in networked storage environment
US20160218866A1 (en) * 2015-01-27 2016-07-28 Qualcomm Incorporated Group key announcement and distribution for a data link group
US11998319B2 (en) 2015-03-09 2024-06-04 CoreSyte, Inc. Device for measuring biological fluids
US11883011B2 (en) * 2015-03-09 2024-01-30 CoreSyte, Inc. Method for manufacturing a biological fluid sensor
WO2017132567A1 (en) 2016-01-28 2017-08-03 Roswell Biotechnologies, Inc. Massively parallel dna sequencing apparatus
CN109071212A (zh) 2016-01-28 2018-12-21 罗斯韦尔生物技术股份有限公司 使用大规模分子电子传感器阵列测量分析物的方法和装置
CA3053103A1 (en) 2016-02-09 2017-08-17 Roswell Biotechnologies, Inc. Electronic label-free dna and genome sequencing
US10597767B2 (en) 2016-02-22 2020-03-24 Roswell Biotechnologies, Inc. Nanoparticle fabrication
US9990235B2 (en) * 2016-04-15 2018-06-05 Google Llc Determining tasks to be performed by a modular entity
US9829456B1 (en) 2016-07-26 2017-11-28 Roswell Biotechnologies, Inc. Method of making a multi-electrode structure usable in molecular sensing devices
CN110383064B (zh) * 2016-10-24 2021-06-29 豪夫迈·罗氏有限公司 校正生物传感器的导电元件中的无补偿电阻的方法以及装置和系统
CN106725470B (zh) * 2016-11-22 2023-12-19 南通九诺医疗科技有限公司 一种连续或非连续的生理参数分析系统
JP2020515817A (ja) * 2016-12-29 2020-05-28 アドール ダイアグノスティクス エス.アール.エル. 電気泳動用途のための電気泳動チップ
KR102622275B1 (ko) 2017-01-10 2024-01-05 로스웰 바이오테크놀로지스 인코포레이티드 Dna 데이터 저장을 위한 방법들 및 시스템들
EP3571286A4 (en) 2017-01-19 2020-10-28 Roswell Biotechnologies, Inc SOLID STATE SEQUENCING DEVICES WITH TWO-DIMENSIONAL LAYER MATERIALS
AU2018239989A1 (en) 2017-03-20 2019-08-08 Celcuity Inc. Methods of measuring signaling pathway activity for selection of therapeutic agents
KR20240122598A (ko) 2017-04-25 2024-08-12 로스웰 엠이 아이엔씨. 분자 센서들을 위한 효소 회로들
US10508296B2 (en) 2017-04-25 2019-12-17 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
CN110651182B (zh) * 2017-05-09 2022-12-30 罗斯威尔生命技术公司 用于分子传感器的结合探针电路
WO2019046589A1 (en) 2017-08-30 2019-03-07 Roswell Biotechnologies, Inc. PROCESSIVE ENZYME MOLECULAR ELECTRONIC SENSORS FOR STORING DNA DATA
KR20200064076A (ko) * 2017-09-29 2020-06-05 베링거잉겔하임베트메디카게엠베하 회로 배열의 테스팅 및 교정
US11100404B2 (en) 2017-10-10 2021-08-24 Roswell Biotechnologies, Inc. Methods, apparatus and systems for amplification-free DNA data storage
JP2019074442A (ja) * 2017-10-18 2019-05-16 ルネサスエレクトロニクス株式会社 インピーダンス測定用半導体回路及び血糖値計
CN109374714B (zh) * 2018-10-25 2023-11-14 深圳刷新生物传感科技有限公司 组装式生物传感器芯片
EP4076159A4 (en) * 2019-12-19 2023-08-30 Qorvo US, Inc. COAXIAL PLUG
CO2021005504A1 (es) * 2021-04-27 2022-10-31 Pontificia Univ Javeriana Dispositivo para la medición electrónica y electroquímica de concentraciones de analitos en muestras biológicas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215208A (ja) * 2000-02-01 2001-08-10 Nec Corp 化学センサカートリッジ及びそれを備えた化学センサ並びにそれを用いた試料の測定方法
JP2001330581A (ja) * 2000-05-19 2001-11-30 Matsushita Electric Ind Co Ltd 基質濃度定量法
JP2002168821A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd バイオセンサ

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922205A (en) * 1973-08-20 1975-11-25 Dow Chemical Co Portable polarographic analyzer and quick polarographic determinations
GB1448715A (en) 1973-10-15 1976-09-08 Dow Chemical Co Instruments and method for polarographic deteminations
US4013522A (en) * 1974-01-23 1977-03-22 Siemens Aktiengesellschaft Method and apparatus for measuring the concentration of carbon monoxide
US4011746A (en) * 1976-02-02 1977-03-15 Simmonds Precision Products, Inc. Liquid density measurement system
US4227984A (en) * 1979-03-01 1980-10-14 General Electric Company Potentiostated, three-electrode, solid polymer electrolyte (SPE) gas sensor having highly invariant background current characteristics with temperature during zero-air operation
DE2910608C2 (de) * 1979-03-17 1981-12-17 Kernforschungsanlage Jülich GmbH, 5170 Jülich Messgerät für die praktisch simultane Δ T, T-Messung
US4326927A (en) * 1980-07-25 1982-04-27 Becton, Dickinson And Company Method and device for the detection and measurement of electrochemically active compounds
US4627906A (en) * 1983-10-03 1986-12-09 The Regents Of The University Of California Electrochemical sensor having improved stability
US4795542A (en) * 1986-04-24 1989-01-03 St. Jude Medical, Inc. Electrochemical concentration detector device
US4822474A (en) * 1987-04-30 1989-04-18 Pennwalt Corporation Residual analyzer assembly
JPS6423155A (en) * 1987-07-17 1989-01-25 Daikin Ind Ltd Electrode refreshing device for biosensor
EP0359831B2 (en) * 1988-03-31 2007-06-20 Matsushita Electric Industrial Co., Ltd. Biosensor and process for its production
GB2229005A (en) * 1989-03-10 1990-09-12 Plessey Co Plc Biosensor device
US5985129A (en) * 1989-12-14 1999-11-16 The Regents Of The University Of California Method for increasing the service life of an implantable sensor
US4999582A (en) * 1989-12-15 1991-03-12 Boehringer Mannheim Corp. Biosensor electrode excitation circuit
JPH0820412B2 (ja) 1990-07-20 1996-03-04 松下電器産業株式会社 使い捨てセンサを用いた定量分析方法、及び装置
DE4100727C2 (de) 1991-01-09 1994-12-22 Klein Karl Dittmar Dr Analytisches Verfahren für Enzymelektrodensensoren
DE4123348A1 (de) * 1991-07-15 1993-01-21 Boehringer Mannheim Gmbh Elektrochemisches analysesystem
US5264103A (en) 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
US5217595A (en) * 1991-10-25 1993-06-08 The Yellow Springs Instrument Company, Inc. Electrochemical gas sensor
DE9422381U1 (de) * 1993-06-08 2000-11-23 Roche Diagnostics Corp., Indianapolis, Ind. Biosensor-Meßgerät, das den korrekten Elektrodenkontakt detektiert und zwischen Teststreifen und Prüfstreifen unterscheidet
CA2153883C (en) * 1993-06-08 1999-02-09 Bradley E. White Biosensing meter which detects proper electrode engagement and distinguishes sample and check strips
US5352351A (en) 1993-06-08 1994-10-04 Boehringer Mannheim Corporation Biosensing meter with fail/safe procedures to prevent erroneous indications
AU7226994A (en) 1993-07-28 1995-02-28 Novo Nordisk A/S Reference electrode
US5536249A (en) * 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
JP3061351B2 (ja) * 1994-04-25 2000-07-10 松下電器産業株式会社 特定化合物の定量法およびその装置
DE19526734A1 (de) * 1995-07-21 1997-01-23 Siemens Ag Optische Struktur und Verfahren zu deren Herstellung
US5698083A (en) * 1995-08-18 1997-12-16 Regents Of The University Of California Chemiresistor urea sensor
EP1182438B1 (de) * 1995-11-24 2004-01-28 ABB PATENT GmbH Verfahren zum Betrieb einer Temperaturfühleranordnung
US5746511A (en) * 1996-01-03 1998-05-05 Rosemount Inc. Temperature transmitter with on-line calibration using johnson noise
JPH09274010A (ja) 1996-04-04 1997-10-21 Matsushita Electric Ind Co Ltd 基質の定量法
JPH1134460A (ja) * 1997-07-15 1999-02-09 Alps Electric Co Ltd ローラースタンプの製造装置、並びにローラースタンプの製造方法
TR200000200T2 (tr) 1997-07-22 2000-05-22 Kyoto Daiichi Kagaku Co., Ltd. Konsantrasyon ölçüm cihazı, konsantrasyon ölçüm cihazı için test şeridi, biyosensor sistemi, ve test şeridi üzerinde terminal oluşturma yöntemi
JP3465840B2 (ja) 1997-11-21 2003-11-10 松下電器産業株式会社 電圧電流変換回路
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US7494816B2 (en) * 1997-12-22 2009-02-24 Roche Diagnostic Operations, Inc. System and method for determining a temperature during analyte measurement
WO1999053301A1 (en) 1998-04-14 1999-10-21 The Regents Of The University Of California Sensor probe for determining hydrogen peroxide concentration and method of use thereof
SE512039C2 (sv) * 1998-05-06 2000-01-17 Cll Connectors & Cables Ab Anordning för elektrokemisk mätning innefattande en elektronikenhet för signalbehandling i en roterbar axel
JP2002514452A (ja) * 1998-05-13 2002-05-21 シグナス, インコーポレイテッド 生理学的検体の測定のための信号処理
DK1053043T3 (da) * 1998-05-13 2002-11-18 Cygnus Therapeutic Systems Opsamlingsenheder til transdermale prøveudtagningssystemer
WO1999058973A1 (en) * 1998-05-13 1999-11-18 Cygnus, Inc. Method and device for predicting physiological values
CA2332112C (en) * 1998-05-13 2004-02-10 Cygnus, Inc. Monitoring of physiological analytes
JPH11344460A (ja) * 1998-06-02 1999-12-14 Matsushita Electric Ind Co Ltd 液体および培地の評価法
DE19842735A1 (de) * 1998-09-18 2000-03-23 Torsten Vos Elektrochemischer Sensor mit direkt elektrisch heizbaren Elektrodenflächen
ATE241933T1 (de) * 1998-09-30 2003-06-15 Cygnus Therapeutic Systems Verfahren und vorrichtung zum vorhersagen von physiologischen messwerten
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
DE69904956T2 (de) * 1998-10-28 2003-11-13 Cygnus, Inc. Testsatz und verfahren zur qualitätsprüfung von einem iontophoretischen probenahmesystem
US5977757A (en) * 1998-11-02 1999-11-02 Hewlett-Packard Company Power supply having automatic voltage sensing
US6176989B1 (en) * 1998-12-28 2001-01-23 Teledyne Technologies Incorp. Electrochemical gas sensor
US6615078B1 (en) 1999-04-22 2003-09-02 Cygnus, Inc. Methods and devices for removing interfering species
KR100445489B1 (ko) * 1999-11-15 2004-08-21 마츠시타 덴끼 산교 가부시키가이샤 바이오 센서, 박막 전극 형성 방법, 정량 장치, 및 정량방법
AU2001228915A1 (en) 2000-03-22 2001-10-03 All Medicus Co., Ltd. Electrochemical biosensor test strip with recognition electrode and readout meter using this test strip
US6473018B2 (en) * 2000-04-13 2002-10-29 Matsushita Electric Industrial Co., Ltd. Delta sigma analog-to-digital converter
WO2001088534A2 (en) * 2000-05-16 2001-11-22 Cygnus, Inc. Methods for improving performance and reliability of biosensors
EP2096436B1 (en) * 2000-11-30 2014-11-19 Panasonic Healthcare Co., Ltd. Method of quantifying a substrate
JP2003043009A (ja) * 2001-07-30 2003-02-13 Matsushita Electric Ind Co Ltd 生体試料の発する物理化学的変化を検出するデバイスおよび装置
US6908535B2 (en) * 2002-03-06 2005-06-21 Medtronic, Inc. Current-to-voltage-converter for a biosensor
US6946299B2 (en) 2002-04-25 2005-09-20 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US20030204313A1 (en) 2002-04-26 2003-10-30 Yao Ou-Yang Biosensing meter
US7540947B2 (en) 2002-07-02 2009-06-02 Panasonic Corporation Biosensor, biosensor chip, and biosensor device
KR100485671B1 (ko) * 2002-09-30 2005-04-27 주식회사 인포피아 바이오 센서의 시료 반응결과 측정장치 및 그 방법
US20040106190A1 (en) * 2002-12-03 2004-06-03 Kimberly-Clark Worldwide, Inc. Flow-through assay devices
US7645373B2 (en) * 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US8206565B2 (en) * 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US7718439B2 (en) * 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7601299B2 (en) * 2004-06-18 2009-10-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7418285B2 (en) * 2004-12-29 2008-08-26 Abbott Laboratories Analyte test sensor and method of manufacturing the same
US7695600B2 (en) * 2005-06-03 2010-04-13 Hypoguard Limited Test system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215208A (ja) * 2000-02-01 2001-08-10 Nec Corp 化学センサカートリッジ及びそれを備えた化学センサ並びにそれを用いた試料の測定方法
JP2001330581A (ja) * 2000-05-19 2001-11-30 Matsushita Electric Ind Co Ltd 基質濃度定量法
JP2002168821A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd バイオセンサ

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287703B2 (en) 1999-10-04 2012-10-16 Roche Diagnostics Operations, Inc. Biosensor and method of making
US8551308B2 (en) 1999-10-04 2013-10-08 Roche Diagnostics Operations, Inc. Biosensor and method of making
US8119414B2 (en) 2003-06-20 2012-02-21 Roche Diagnostics Operations, Inc. Test strip with slot vent opening
US8142721B2 (en) 2003-06-20 2012-03-27 Roche Diagnostics Operations, Inc. Test strip with slot vent opening
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US7727467B2 (en) 2003-06-20 2010-06-01 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
US8211379B2 (en) 2003-06-20 2012-07-03 Roche Diagnostics Operations, Inc. Test strip with slot vent opening
US7829023B2 (en) 2003-06-20 2010-11-09 Roche Diagnostics Operations, Inc. Test strip with vent opening
US7879618B2 (en) 2003-06-20 2011-02-01 Roche Diagnostics Operations, Inc. Method and reagent for producing narrow, homogenous reagent strips
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US7749437B2 (en) 2003-06-20 2010-07-06 Roche Diagnostics Operations, Inc. Method and reagent for producing narrow, homogenous reagent stripes
US8222044B2 (en) 2003-06-20 2012-07-17 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
EP2325629A1 (en) * 2004-06-18 2011-05-25 Roche Diagnostics GmbH Method for quality assurance of a biosensor test strip
JP2011053232A (ja) * 2004-06-18 2011-03-17 F Hoffmann-La Roche Ag バイオセンサー試験片の品質保証システムおよび方法
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip
JP4722917B2 (ja) * 2004-06-18 2011-07-13 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト バイオセンサー試験片の品質保証システムおよび方法
EP2330413A1 (en) * 2004-06-18 2011-06-08 Roche Diagnostics GmbH Method for quality assurance of a biosensor test strip
US20120097536A1 (en) * 2004-06-18 2012-04-26 Celentano Michael J System and method for quality assurance of a biosensor test strip
WO2005124331A1 (en) 2004-06-18 2005-12-29 Roche Diagnostics Gmbh System and method for quality assurance of a biosensor test strip
JP2008510127A (ja) * 2004-06-18 2008-04-03 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト バイオセンサー試験片の品質保証システムおよび方法
EP1761763B1 (en) * 2004-06-18 2013-09-18 Roche Diagnostics GmbH System and method for quality assurance of a biosensor test strip
US8361291B2 (en) * 2004-06-18 2013-01-29 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
JP2008511841A (ja) * 2004-08-31 2008-04-17 ライフスキャン・スコットランド・リミテッド 自動較正センサの製造方法
US8348843B2 (en) 2004-12-29 2013-01-08 Lifescan Scotland Limited Method of inputting data into an analyte testing device
US8328719B2 (en) 2004-12-29 2012-12-11 Lifescan Scotland Limited Method of inputting data into an analyte testing device
JP2008525813A (ja) * 2004-12-29 2008-07-17 ライフスキャン・スコットランド・リミテッド 改良型測定回路内蔵検体測定装置
JP2013140174A (ja) * 2005-12-03 2013-07-18 Tyco Thermal Controls Llc 有機液体検出用センター
JP2009518630A (ja) * 2005-12-03 2009-05-07 タイコ・サーマル・コントロールズ・エルエルシー 有機液体検出用センサー
CN109321431A (zh) * 2018-11-27 2019-02-12 西安良升生物科技有限公司 一种快速诊断心肌缺血的电极片装置及其制备方法和应用

Also Published As

Publication number Publication date
US8388820B2 (en) 2013-03-05
JPWO2004005908A1 (ja) 2005-11-04
US20100140087A1 (en) 2010-06-10
US8888974B2 (en) 2014-11-18
US20150021178A1 (en) 2015-01-22
US20120234677A1 (en) 2012-09-20
US20140008217A1 (en) 2014-01-09
CN1613009A (zh) 2005-05-04
US20140008218A1 (en) 2014-01-09
DE10397002A5 (de) 2013-05-08
US8574423B2 (en) 2013-11-05
US8496794B2 (en) 2013-07-30
US9074998B2 (en) 2015-07-07
CN100454013C (zh) 2009-01-21
US20150060305A1 (en) 2015-03-05
US20140008216A1 (en) 2014-01-09
JP4196947B2 (ja) 2008-12-17
US20150053560A1 (en) 2015-02-26
US20150060306A1 (en) 2015-03-05
DE10397018A5 (de) 2015-05-28
US20040251131A1 (en) 2004-12-16
DE20321777U1 (de) 2009-12-31
US20150053557A1 (en) 2015-02-26
DE10397017A5 (de) 2015-05-28
DE10397002B4 (de) 2015-04-30
US8900430B2 (en) 2014-12-02
DE10397016A5 (de) 2015-05-28
US8888975B2 (en) 2014-11-18
US20150060271A1 (en) 2015-03-05
US9080956B2 (en) 2015-07-14
DE10394377B4 (de) 2015-05-13
DE10397003B4 (de) 2015-04-30
US9080958B2 (en) 2015-07-14
CN101255455A (zh) 2008-09-03
US9074999B2 (en) 2015-07-07
US20120228160A1 (en) 2012-09-13
DE20321781U1 (de) 2009-12-31
US20090188792A1 (en) 2009-07-30
US9080957B2 (en) 2015-07-14
US9086372B2 (en) 2015-07-21
US20150053559A1 (en) 2015-02-26
DE10392159B4 (de) 2011-12-29
US7540947B2 (en) 2009-06-02
US9080954B2 (en) 2015-07-14
CN101255455B (zh) 2012-07-25
US20150068892A1 (en) 2015-03-12
US9074997B2 (en) 2015-07-07
US20090223817A1 (en) 2009-09-10
US8568579B2 (en) 2013-10-29
US9068931B2 (en) 2015-06-30
DE10392159T5 (de) 2004-10-14
US9080960B2 (en) 2015-07-14
US8231768B2 (en) 2012-07-31
US9080955B2 (en) 2015-07-14
US9075000B2 (en) 2015-07-07
US20150053558A1 (en) 2015-02-26
DE10397003A5 (de) 2013-05-23
US20150060304A1 (en) 2015-03-05
US20150060270A1 (en) 2015-03-05
US20150072402A1 (en) 2015-03-12
DE10397015A5 (de) 2015-05-28

Similar Documents

Publication Publication Date Title
JP4196947B2 (ja) バイオセンサ,バイオセンサチップ及びバイオセンサ装置
JP4189424B2 (ja) バイオセンサチップおよびバイオセンサ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP US

WWE Wipo information: entry into national phase

Ref document number: 2004519207

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10488325

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038019019

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607