WO2004005594A1 - Spinnverfahren - Google Patents

Spinnverfahren Download PDF

Info

Publication number
WO2004005594A1
WO2004005594A1 PCT/EP2003/006786 EP0306786W WO2004005594A1 WO 2004005594 A1 WO2004005594 A1 WO 2004005594A1 EP 0306786 W EP0306786 W EP 0306786W WO 2004005594 A1 WO2004005594 A1 WO 2004005594A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
cooling medium
filament bundle
bundle
cooling
Prior art date
Application number
PCT/EP2003/006786
Other languages
English (en)
French (fr)
Inventor
Hendrik Middeljans
Eric Heuveling
Bastiaan Krins
Johannes Frederik Boer
Original Assignee
Diolen Industrial Fibers B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT03762524T priority Critical patent/ATE527402T1/de
Application filed by Diolen Industrial Fibers B.V. filed Critical Diolen Industrial Fibers B.V.
Priority to ES03762524T priority patent/ES2373379T3/es
Priority to JP2004518590A priority patent/JP4523409B2/ja
Priority to MXPA05000325A priority patent/MXPA05000325A/es
Priority to KR1020057000221A priority patent/KR101143536B1/ko
Priority to CA2491647A priority patent/CA2491647C/en
Priority to BRPI0312457-6A priority patent/BR0312457B1/pt
Priority to EP03762524A priority patent/EP1521869B1/de
Priority to AU2003249886A priority patent/AU2003249886A1/en
Priority to US10/520,064 priority patent/US7731876B2/en
Priority to UAA200500709A priority patent/UA77098C2/uk
Publication of WO2004005594A1 publication Critical patent/WO2004005594A1/de
Priority to US12/732,573 priority patent/US8182915B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • the present invention relates to a method for spinning a multifilament thread from a thermoplastic material comprising the steps in which the melted material is extruded through a plurality of nozzle holes of a spinneret into a bundle of filaments with many filaments and wound up as a thread after solidification, and in which the bundle of filaments is cooled below the spinneret.
  • the present invention further relates to polyester filament yarns and cords containing such polyester filament yarns.
  • thermoplastic polymers The cooling behavior of the thermoplastic polymers is quite complicated and depends on a number of parameters.
  • differences in birefringence behavior occur during cooling the filament cross-section because the filament skin cools faster than the inside, the core, the filaments.
  • the cooling thus largely determines the crystallization of the polymers in the filament, which is noticeable when the filaments are used later, for example in drawing.
  • the method as described in the preamble of claim 1, is characterized in that the cooling is carried out in two stages, the filament bundle being flowed through in a first cooling zone by means of a gaseous cooling medium in such a way that the gaseous one Cooling medium flows through the filament bundle transversely by leaving the filament bundle on the side opposite the upstream side practically completely again, and in a second cooling zone below the first cooling zone the filament bundle is cooled further essentially by self-suction of gaseous cooling medium located in the vicinity of the filament bundle.
  • the present invention is therefore a two-stage cooling.
  • the filament bundle is flowed through by the gaseous cooling medium. It is particularly important that the cooling medium practically completely covers the filament bundle on the side opposite the upstream side leaves again.
  • the cooling medium should therefore not be entrained by the filament bundle in this stage of cooling.
  • the gaseous cooling medium flows through the filament bundle transversely to the direction of movement of the filament bundle, that is to say a so-called transverse blowing is set. This blowing can be designed effectively by suctioning off the gaseous cooling medium after it has flowed through the bundle of threads by means of a suction device.
  • the configuration can be such that the bundle of filaments is passed between a blowing device and a suction device.
  • Another possibility is to divide the filament flow and, for example, to set up a blowing in the middle between two filament flows, such as, for example, through a perforated tube that runs parallel for a certain distance and between the filament flows.
  • the gaseous cooling medium can then be blown outwards from the center of the filament bundle through the filament bundle.
  • the reverse blowing and suction passage would also be conceivable, in that the tube running in the middle of the filament streams serves as suction and the blowing is then carried out from the outside in.
  • the flow velocity of the gaseous cooling medium is between 0.1 and 1 m / s. At these speeds there is a uniform cooling largely without turbulence and formation of skin / core differences in the crystallization.
  • the first cooling zone has a length of between 0.2 and 1.2 m.
  • a flow over this length and under the conditions described above gives the desired degree of cooling in the first zone or stage.
  • the second stage of cooling is carried out by means of so-called self-suction yarn cooling.
  • the filament bundle entrains the gaseous cooling medium, for example ambient air, in its environment and is further cooled.
  • the gaseous cooling medium for example ambient air
  • the self-priming unit can be formed by two perforated plates that run parallel to the filament bundle, so-called double-sided plates.
  • the length is at least 10 cm and can be up to several meters upwards. Lengths of 30 cm to 150 cm are very common for this self-priming section.
  • the second cooling stage is carried out by passing the filaments between perforated materials, e.g. perforated plates, is carried out so that the gaseous cooling medium can hit the filaments during self-suction from two sides.
  • thermocouple the cooling medium which is sucked in through the filament bundle for example by using heat exchangers.
  • This embodiment allows the process to be carried out independently of the ambient temperature, which has an advantageous effect on the long-term stability of the process, for example day-night or summer-winter differences.
  • a so-called heating tube is usually located between the spinneret or nozzle plate and the beginning of the first cooling zone.
  • this element which is familiar to the person skilled in the art, is between 10 and 40 cm long.
  • a bundling step can advantageously be carried out in a manner known per se, e.g. by so-called air movers or air knives. Furthermore, this bundling step can also take place within the second cooling zone.
  • the process according to the invention can also have the filaments drawn in a manner known per se.
  • the term stretching is to be understood here to mean all of the methods customary and familiar to the person skilled in the art for drawing the filaments. This can be done for example by godets, individually or in duos, or the like. It should be expressly mentioned that drawing relates both to drawing ratios greater than 1 and to ratios less than 1. The specialist is familiar with the latter under the term relaxation. Draw ratios greater than and less than 1 certainly occur side by side within a process.
  • the total draw ratio is usually calculated from the ratio of the draw speeds or - if there is also relaxation - the winding speed at the end of the process and the spinning speed of the filaments, i.e. the speed at which the filament bundles pass through the cooling zones.
  • a typical constellation is, for example, a spinning speed of 2760 m / min, stretching at 6000 m / min, additional relaxation after the stretching of 0.5%, i.e. a winding speed of 5970 m / min. This results in an overall draw ratio of 2.16.
  • speeds of at least 2000 m / min are therefore preferred for the winding.
  • the process is technically real
  • speed that can be set.
  • about 6000 m / min are preferred for the upper speed range during winding.
  • a chute may be located upstream of the stretching devices and behind the cooling zones. This element is also known per se.
  • Air or an inert gas such as nitrogen or argon is preferably used as the gaseous cooling medium.
  • thermoplastic materials are polymers such as polyester, polyamide, polyolefin or also mixtures or copolymers of these types.
  • thermoplastic material consists essentially of polyethylene terephthalate.
  • the method according to the invention allows the production of filaments which are particularly well suited for technical applications, in particular for use in tire cord.
  • the process is also well suited for the production of technical yarns.
  • the settings required for the spinning of technical yarns, in particular the choice of the nozzle and the length of the heating tube, are known to the person skilled in the art.
  • the invention is therefore also directed to filament yarns, in particular polyester filament yarns, which can be obtained by the process described above.
  • the present invention is directed to such polyester filament yarns with a book strength T in mN / tex and an elongation at break E in%, in which the product of the tensile strength T and the third root of the elongation at break E (T * E 1/3 ) is at least 1600 mN% is 1/3 / tex.
  • This product is preferably between 1600 and 1800 mN% 1/3 / tex.
  • the invention is directed to polyester filament yarns in which the sum of their elongation in% after application of a specific force EAST (“elongation at specific tension”) of 410 mN / tex and their hot air shrinkage at 180 ° C. (HAS) in %, ie the sum of EAST + HAS, is less than 11%, preferably less than 10.5%.
  • EAST elongation at specific tension
  • the EAST is measured in accordance with ASTM 885 and the HAS is also determined in accordance with ASTM 885, with the proviso that the measurement is carried out at 180 ° C., at 5 mN / tex and over 2 minutes.
  • the present invention is directed to tire cords which contain polyester filament yarns, the cord having a retention capacity Rt in%, which is characterized in that the quality factor Q f , which is the product of T * E 1/3 of the polyester filament yarns and Rt of the cord represents, is greater than 1350 mN% 4/3 / tex.
  • the retention capacity is to be understood as the quotient of the breaking strength of the cord after dipping and the breaking strength of the threads.
  • the quality factor is particularly preferably greater than 1375 mN% 4 3 / tex and is advantageously up to 1800 mN% 4/3 / tex.
  • the invention is illustrated by the examples below, without being limited to these examples.
  • Polyethylene terephthalate granules with a relative viscosity of 2.04 (measured on a solution of 1 g of polymer in 125 g of a mixture of 2,4,6-trichlorophenol and phenol (TCF / F, 7:10 m / m) at 25 ° C. was spun in an Ubbelohde (DIN 51562) viscometer and cooled under the conditions listed in Table 1. The stretching speed was 6000 m / min. An additional relaxation of 0.5% was set, winding speed: 5970 m / min.
  • the yarn properties were determined on three samples and are shown in Table 2.
  • the quality factor Qf is the product of T * E 1/3 and the retention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)

Abstract

Es wird ein Verfahren zum Spinnen eines multifiten Fadens aus einem thermoplastischen Material vorgeschlagen umfassend die Schritte, bei welchem das aufgeschmolzene Material durch eine Vielzahl von Düsenlöchern einer Spinndüse zu einem Filamentbündel mit vielen Filamenten extrudiert und nach dem Erstarren als Faden aufgewickelt wird, und bei welchem das Filamentbündel unterhalb der Spinndüse abgekühlt wird, was sich dadurch auszeichnet, dass die Abkühlung in zwei Stufen durchgeführt wird, wobei in einer ersten Abkühlzone das Filamentbündel mittels eines gasförmigen Kühlmediums so angeströmt wird, dass das gasförmige Kühlmedium das Filamentbündel quer durchströmt, indem es das Filamentbündel auf der der Anströmseite gegenüberliegenden Seite praktisch vollständig wieder verlässt, und in einer zweiten Abkühlzone unterhalb der ersten Abkühlzone das Filamentbündel im wesentlichen durch Selbstansaugung von in der Umgebung des Filamentbündels befindlichem gasförmigen Kühlmediums weiter abgekühlt wird.

Description

Spinnverfahren
Beschreibung:
Die vorliegende Erfindung betrifft ein Verfahren zum Spinnen eines multifilen Fadens aus einem thermoplastischen Material umfassend die Schritte, bei welchem das aufgeschmolzene Material durch eine Vielzahl von Düsenlöchern einer Spinndüse zu einem Filamentbundel mit vielen Filamenten extrudiert und nach dem Erstarren als Faden aufgewickelt wird, und bei welchem das Filamentbundel unterhalb der Spinndüse abgekühlt wird.
Weiterhin betrifft die vorliegende Erfindung Polyesterfilamentgarne und Corde, die solche Polyesterfilamentgarne enthalten.
Ein Verfahren wie oben beschrieben ist aus der EP-A-1 079 008 bekannt. Dabei werden beim Spinnen die frisch extrudierten Filamente in ihrer Fortbewegung durch einen Luftstrom unterstützt. Dabei kommt es also im wesentlichen zu einer Abkühlung durch einen parallel zum Faden strömenden Kühlmittelstrom. Mit einer solchen Art der Abkühlung werden in aller Regel gute Ergebnisse erreicht, insbesondere bei hohen Abzugsgeschwindigkeiten.
Das Abkühlverhalten der thermoplastischen Polymere ist durchaus kompliziert und von einer Reihe von Parametern abhängig. Insbesondere kommt es während der Abkühlung zur Ausbildung von Unterschieden im Doppelbrechungsverhalten über den Filamentquerschnitt, weil die Filamenthaut schneller abkühlt als das Innere, der Kern, der Filamente. Darüber hinaus treten auf diese Weise auch Unterschiede in der Kristallisation zwischen Filamenten auf. Das Abkühlen bestimmt also im hohen Maße die Kristallisation der Polymere im Filament, was sich beim späteren Einsatz der Filamente, z.B. in der Verstreckung, bemerkbar macht. Für eine Reihe von Anwendungen ist es erwünscht, möglichst rasch nach der Extrusion einen hohen Grad an Abkühlung zu erreichen, um eine rasche Kristallisationsbildung zu fördern.
Die Abkühlungsverfahren des Standes der Technik erreichen diese Anforderungen oftmals nicht oder nicht ausreichend.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Verfügung zu stellen, das für eine effektive Abkühlung der extrudierten Filamente sorgt und dadurch eine gute Kristallisierung in den Filamenten bewirkt, insbesondere auch bei relativ niedrigen Aufwickelgeschwindigkeiten.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass das Verfahren, wie im Oberbegriff des Anspruchs 1 beschrieben, sich dadurch auszeichnet, dass die Abkühlung in zwei Stufen durchgeführt wird, wobei in einer ersten Abkühlzone das Filamentbundel mittels eines gasförmigen Kühlmediums so angeströmt wird, dass das gasförmige Kühlmedium das Filamentbundel quer durchströmt, indem es das Filamentbundel auf der der Anströmseite gegenüberliegenden Seite praktisch vollständig wieder verläßt, und in einer zweiten Abkühlzone unterhalb der ersten Abkühlzone das Filamentbundel im wesentlichen durch Selbstansaugung von in der Umgebung des Filamentbündels befindlichem gasförmigen Kühlmediums weiter abgekühlt wird.
Es handelt sich bei der vorliegenden Erfindung also um eine zweistufige Abkühlung. In der ersten Stufe wird das Filamentbundel mittels des gasförmigen Kühlmediums durchströmt. Dabei ist vor allem entscheidend, dass das Kühlmedium das Filamentbundel praktisch vollständig auf der der Anströmseite gegenüberliegenden Seite wieder verläßt. Das Kühlmedium soll in dieser Stufe der Abkühlung also möglichst nicht von dem Filamentbundel mitgerissen werden. Zur Durchführung dieser ersten Abkühlstufe ist es denkbar, dass das gasförmige Kühlmedium quer zur Bewegungsrichtung der Filamentbundel durch das Filamentbundel strömt, also eine sogenannte Queranblasung eingestellt wird. Diese Anblasung kann dadurch effektiv gestaltet werden, indem das gasförmige Kühlmedium nach dem Durchströmen des Fadenbündels mittels einer Absaugvorrichtung abgesaugt wird. Dadurch kommt es zum einen zu einer guten Ausrichtung des Abkühlstroms, zum anderen ist gewährleistet, dass das Abkühlmedium das Filamentbundel auch quantitativ wieder verläßt. So kann die Ausgestaltung z.B. derart erfolgen, dass das Filamentbundel zwischen einer Anblas- und einer Absaugvorrichtung hindurch geführt wird. Eine weitere Möglichkeit besteht darin, den Filamentstrom zu teilen und beispielsweise in der Mitte zwischen zwei Filamentströmen eine Anblasung einzurichten, wie z.B. durch ein perforiertes Rohr, das für eine bestimmte Strecke parallel und zwischen den Filamentströmen herläuft. Man kann dann das gasförmige Kühlmedium von der Mitte der Filamentbundel aus durch die Filamentbundel nach außen blasen. Auch hier ist darauf zu achten, dass das Kühlmedium die Bündel praktisch vollständig wieder verläßt. Selbstverständlich wäre auch die umgekehrte Anblas- und Absaugdurchführung denkbar, indem das in der Mitte der Filamentströme verlaufende Rohr als Absaugung dient und die Anblasung dann von außen nach innen durchgeführt wird.
Es ist bevorzugt für das erfindungsgemäße Verfahren, wenn die Anströmgeschwindigkeit des gasförmigen Kühlmediums zwischen 0,1 und 1 m/s beträgt. Bei diesen Geschwindigkeiten kommt es zu einer gleichmäßigen Abkühlung weitgehend ohne Verwirbelungen und Ausbildung von Haut/Kern-Unterschieden bei der Kristallisation.
Es hat sich darüber hinaus als völlig ausreichend erwiesen, wenn die erste Abkühlzone eine Länge zwischen 0,2 und 1 ,2 m aufweist.
Eine Anströmung über diese Länge und unter den oben beschriebenen Bedingungen ergibt den gewünschten Grad an Abkühlung in der ersten Zone bzw. Stufe. Die zweite Stufe der Abkühlung wird mittels der sogenannten Selbstansaugung („seif suction yarn cooling") durchgeführt. Dabei reißt das Filamentbundel das in seiner Umgebung befindliche gasförmige Kühlmedium, z.B. Umgebungsluft, mit sich und wird dabei weiter abgekühlt. In diesem Fall kommt es zu einer Strömung des gasförmigen Kühlmediums, die weitgehend parallel zur Laufrichtung des Filamentbündels verläuft. Dabei ist es wichtig, dass das gasförmige Kühlmedium wenigstens von zwei Seiten an das Filamentbundel herankommt.
Die Selbstansaugeinheit kann durch zwei perforierte und zum Filamentbundel parallel verlaufende Platten, sogenannte doppelseitige Platten, gebildet werden. Die Länge beträgt mindestens 10 cm und kann nach oben hin durchaus bis zu mehreren Metern betragen. Durchaus üblich sind Längen für diese Selbstansaugungsstrecke von 30 cm bis 150 cm.
Im erfindungsgemäßen Verfahren ist es bevorzugt, dass die zweite Abkühlstufe durch ein Führen der Filamente zwischen perforierten Materialien, wie z.B. perforierten Platten, so durchgeführt wird, dass das gasförmige Abkühlmedium bei der Selbstansaugung von zwei Seiten auf die Filamente treffen kann.
Es hat sich als vorteilhaft dafür erwiesen, wenn in dieser zweiten Abkühlzone des Filamentbündels durch ein perforiertes Rohr geführt wird. Solche „Self-suction- Rohre" sind dem Fachmann bekannt. Sie ermöglichen das Mitreißen des gasförmigen Abkühlmediums durch das Filamentbundel in einer Weise, die Verwirbelungen weitgehend vermeidet.
Es ist möglich, das Kühlmedium, welches durch das Filamentbundel angesaugt wird, zu temperieren, z.B. durch die Verwendung von Wärmeaustauschern. Diese Ausführungsform erlaubt eine von der Umgebungstemperatur unabhängige Prozessführung, was sich vorteilhaft auf die Dauerstabilität des Verfahrens, z.B. Tag-Nacht bzw. Sommer-Winter-Unterschiede, auswirkt. Zwischen der Spinndüse oder Düsenplatte und dem Beginn der ersten Kühlzone befindet sich üblicherweise noch ein sogenanntes Heizrohr. Abhängig vom Filamenttyp ist dieses dem Fachmann geläufige Element zwischen 10 und 40 cm lang.
Zwischen der ersten und der zweiten Kühlzone kann vorteilhafter Weise noch ein Bündelungsschritt in an sich bekannter weise, z.B. durch sogenannte airmover oder airknives, erfolgen. Weiterhin kann dieser Bündelungsschritt auch innerhalb der zweiten Kühlzone stattfinden.
Selbstverständlich kann das erfindungsgemäße Verfahren nach den Abkühlzonen und vor der Aufwicklung noch eine Verstreckung der Filamente in an sich bekannter Weise aufweisen. Unter dem Begriff Verstreckung sollen hier alle üblichen und dem Fachmann geläufigen Methoden verstanden werden, um die Filamente zu verziehen. Dies kann beispielsweise durch Galetten, einzeln oder in Duos, oder ähnliches durchgeführt werden. Es soll ausdrücklich erwähnt werden, dass sich Verstreckung sowohl auf Verstreckverhältnisse größer als 1 als auch auf solche Verhältnisse, die kleiner sind als 1 , bezieht. Letztere Verhältnisse sind der Fachperson unter dem Begriff der Relaxation geläufig. Verstreckverhältnisse größer und kleiner als 1 treten innerhalb eines Prozesses durchaus nebeneinander auf.
Das Gesamtverstreckverhältnis berechnet sich üblicherweise aus dem Verhältnis der Streckgeschwindigkeiten bzw. - wenn auch noch eine Relaxation erfolgt - der Aufwickelgeschwindigkeit am Ende des Prozesses und der Spinngeschwindigkeit der Filamente, d.h. die Geschwindigkeit, mit der die Filamentbundel die Kühlzonen durchlaufen. Eine typische Konstellation ist beispielsweise eine Spinngeschwindigkeit von 2760 m/min, Verstreckung mit 6000 m/min, additioneile Relaxation im Anschluß an die Verstreckung von 0,5 %, d.h. eine Aufwickelgeschwindigkeit von 5970 m/min. Das resultiert in einem Gesamtverstreckverhältnis von 2,16.
Erfindungsgemäß sind daher für die Aufwicklung Geschwindigkeiten von mindestens 2000 m/min bevorzugt. Prinzipiell sind dem Prozess im Rahmen des technisch Reali- sierbaren nach oben hin keine Grenzen hinsichtlich der Geschwindigkeit gesetzt. Allgemein werden für den oberen Geschwindigkeitsbereich bei der Aufwicklung jedoch etwa 6000 m/min bevorzugt.
Bei den an sich üblichen Gesamtverstreckverhältnissen von 1 ,5 bis 3,0 ergeben sich also Bereiche von etwa 500 bis etwa 4000 m/min, bevorzugt 2000 bis 3500 m, für die Spinngeschwindigkeit.
Den Verstreckeinrichtungen vorgelagert und hinter den Kühlzonen kann sich noch ein Fallschacht befinden. Auch dieses Element ist an sich bekannt.
Als gasförmiges Kühlmedium wird bevorzugt Luft oder ein Inertgas, wie Stickstoff oder Argon, eingesetzt.
Das erfindungsgemäße Verfahren ist prinzipiell nicht auf bestimmte Polymerarten beschränkt und läßt sich auf alle zu Filamenten extrudierbaren Polymertypen anwenden. Bevorzugt werden allerdings als thermoplastisches Material Polymere, wie Polyester, Polyamid, Polyolefin oder auch Mischungen bzw. Copolymere aus diesen Typen.
Ganz besonders bevorzugt wird es, wenn das thermoplastische Material im wesentlichen aus Polyethylenterephthalat besteht.
Das Verfahren gemäß der Erfindung erlaubt die Herstellung von Filamenten, die besonders gut für technische Anwendungen geeignet sind, insbesondere für die Verwendung in Reifencord geeignet sind. Weiterhin eignet sich das Verfahren auch gut für die Herstellung von technischen Garnen. Die für die Spinnung von technischen Garnen nötigen Einstellungen, insbesondere die Wahl der Düse sowie die Länge des Heizrohres, sind dem Fachmann bekannt.
Die Erfindung ist daher auch auf Filamentgame, insbesondere auf Polyesterfilamentgarne gerichtet, die nach dem oben beschriebenen Verfahren erhältlich sind. Insbesondere ist die vorliegende Erfindung auf solche Polyesterfilamentgarne mit einer Buchfestigkeit T in mN/tex und einer Bruchdehnung E in % gerichtet, bei denen das Produkt aus der Bruchfestigkeit T und der dritten Wurzel aus der Bruchdehnung E (T*E1/3) mindestens 1600 mN %1/3/tex beträgt. Bevorzugt liegt dieses Produkt zwischen 1600 und 1800 mN %1/3/tex.
Die Messungen der Bruchfestigkeit T sowie der Bruchdehnung E für die Bestimmung des Parameters T*E1/3 erfolgen gemäß ASTM 885 und sind dem Fachmann im übrigen bekannt.
In einer bevorzugten Ausführungsform ist die Erfindung auf Polyesterfilamentgarne gerichtet, bei denen die Summe aus ihrer Dehnung in % nach Anlegung einer spezifischen Kraft EAST („elongation at specific tension") von 410 mN/tex und ihrem Heißluftschrumpf bei 180 °C (HAS) in %, also die Summe aus EAST + HAS, weniger als 11 %, bevorzugt weniger als 10,5 %, beträgt.
Die Messung der EAST erfolgt gemäß ASTM 885 und die Bestimmung des HAS erfolgt ebenfalls nach der ASTM 885, mit der Maßgabe, dass die Messung bei 180 °C, bei 5 mN/tex und über 2 Minuten durchgeführt wird.
Schließlich ist die vorliegende Erfindung auf Reifencorde gerichtet, die Polyesterfilamentgarne enthalten, wobei der Cord einen Retentionsvermögen Rt in % aufweist, die sich dadurch auszeichnen, dass der Qualitätsfaktor Qf, welcher das Produkt aus T*E1/3 der Polyesterfilamentgarne und Rt des Cordes darstellt, größer ist als 1350 mN %4/3/tex.
Unter dem Retentionsvermögen ist der Quotient aus der Bruchfestigkeit des Cordes nach nach dem Dippen und der Bruchfestigkeit der Fäden zu verstehen.
Der Qualitätsfaktor ist besonders bevorzugt größer als 1375 mN %4 3/tex und beträgt vorteilhaft bis zu 1800 mN %4/3/tex . Die Erfindung soll anhand der nachstehenden Beispiele näher erläutert werden, ohne auf diese Beispiele beschränkt zu sein.
Polyethylenterephthalat Granulat mit einer relativen Viskosität von 2,04 (gemessen an einer Lösung von 1 g Polymer in 125 g einer Mischung aus 2,4,6-TrichlorphenoI und Phenol (TCF/F, 7:10 m/m) bei 25 °C in einem Ubbelohde (DIN 51562) Viskosi- meter) wurde gesponnen und unter den in der Tab. 1 aufgeführten Bedingungen abgekühlt. Die Streckgeschwindigkeit betrug 6000 m/min. Es wurde eine additioneile Relaxation von 0,5 % eingestellt, Aufwickelgeschwindigkeit: 5970 m/min.
Tab. 1
Figure imgf000009_0001
Die Garneigenschaften wurden an drei Proben bestimmt und sind in der Tab. 2 dargestellt.
Tab. 2
Figure imgf000010_0001
Schließlich wurden die Cordeigenschaften nach dem Dippen bestimmt und sind in
Tab. 3 zusammengefasst.
Der Qualitätsfaktor Qf ergibt sich als Produkt aus T*E1/3 und der Retention.
Tab. 3
Figure imgf000011_0001

Claims

SpinnverfahrenAnsprüche:
1. Verfahren zum Spinnen eines multifilen Fadens aus einem thermoplastischen Material umfassend die Schritte, bei welchem das aufgeschmolzene Material durch eine Vielzahl von Düsenlöchern einer Spinndüse zu einem Filamentbundel mit vielen Filamenten extrudiert und nach dem Erstarren als Faden aufgewickelt wird, und bei welchem das Filamentbundel unterhalb der Spinndüse abgekühlt wird, dadurch gekennzeichnet, dass die Abkühlung in zwei Stufen durchgeführt wird, wobei in einer ersten Abkühlzone das Filamentbundel mittels eines gasförmigen Kühlmediums so angeströmt wird, dass das gasförmige Kühlmedium das Filamentbundel quer durchströmt, indem es das Filamentbundel auf der der Anströmseite gegenüberliegenden Seite praktisch vollständig wieder verläßt, und in einer zweiten Abkühlzone unterhalb der ersten Abkühlzone das Filamentbundel im wesentlichen durch Selbstansaugung von in der Umgebung des Filamentbündels befindlichem gasförmigen Kühlmediums weiter abgekühlt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das gasförmige Kühlmedium nach dem Durchströmen des Fadenbündels mittels einer Absaugvorrichtung abgesaugt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anströmgeschwindigkeit des gasförmigen Kühlmediums zwischen 0,1 und 1 m/s beträgt.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die erste Abkühlzone eine Länge zwischen 0,2 und 1 ,2 m aufweist.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zweite Abkühlstufe durch ein Führen der Filamente zwischen perforierten Materialien, wie z.B. perforierten Platten, so durchgeführt wird, dass das gasförmige Abkühlmedium bei der Selbstansaugung von zwei Seiten auf die Filamente treffen kann.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zweite Abkühlstufe durch Führen des Filamentbündels durch ein perforiertes Rohr durchgeführt wird.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass nach der Abkühlung und vor der Aufwicklung eine Verstreckung der Filamente in an sich bekannter Weise erfolgt.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Aufwicklung bei Geschwindigkeiten von mindestens 2000 m/min erfolgt.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei dem gasförmigen Kühlmedium um Luft oder ein Inertgas handelt.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das thermoplastische Material gewählt wird aus einer Gruppe enthaltend Polyester, Polyamid, Polyolefin oder Mischungen dieser Polymere.
11.Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das thermoplastische Material im wesentlichen aus Polyethylen- terephthalat besteht.
12. Filamentgame, insbesondere Polyesterfilamentgarne, erhältlich nach einem Verfahren gemäß einem oder mehreren der vorangegangenen Ansprüche 1 bis 11.
13. Polyesterfilamentgarne mit einer Buchfestigkeit T in mN/tex und einer Bruchdehnung E in %, wobei das Produkt aus der Bruchfestigkeit T und der dritten Wurzel aus der Bruchdehnung E, T*E1/3, mindestens 1600 mN %1/3/tex beträgt.
14. Polyesterfilamentgarne nach Anspruch 12 oder 13, bei denen die Summe aus ihrer Dehnung in % nach Anlegung einer spezifischen Kraft EAST („elongation at specific tension") von 410 mN/tex und ihrem Heißluftschrumpf HAS bei 180 °C in %, also die Summe aus EAST + HAS, weniger als 11 %, bevorzugt weniger als 10,5 % beträgt.
15. Cord umfassend Polyesterfilamentgarne nach einem oder mehreren der Ansprüche 12 bis 14, wobei der Cord nach dem Dippen ein Retentionsvermögen Rt in % aufweist, dadurch gekennzeichnet, dass der Qualitätsfaktor Qf, das Produkt aus T*E1/3 der Polyesterfilamentgarne und Rt des Cordes, größer ist als 1350 mN %1/3/tex.
PCT/EP2003/006786 2002-07-05 2003-06-26 Spinnverfahren WO2004005594A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA2491647A CA2491647C (en) 2002-07-05 2003-06-26 Spinning method
ES03762524T ES2373379T3 (es) 2002-07-05 2003-06-26 Procedimiento para hilar.
JP2004518590A JP4523409B2 (ja) 2002-07-05 2003-06-26 紡糸法
MXPA05000325A MXPA05000325A (es) 2002-07-05 2003-06-26 Metodo de hilatura.
KR1020057000221A KR101143536B1 (ko) 2002-07-05 2003-06-26 방사방법
AT03762524T ATE527402T1 (de) 2002-07-05 2003-06-26 Spinnverfahren
BRPI0312457-6A BR0312457B1 (pt) 2002-07-05 2003-06-26 mÉtodo para fiar um fio multifilamentar a partir de um material termoplÁstico, fios multifilamentares de poliÉster, e, cordonel para pneu.
US10/520,064 US7731876B2 (en) 2002-07-05 2003-06-26 Spinning method
AU2003249886A AU2003249886A1 (en) 2002-07-05 2003-06-26 Spinning method
EP03762524A EP1521869B1 (de) 2002-07-05 2003-06-26 Spinnverfahren
UAA200500709A UA77098C2 (en) 2002-07-05 2003-06-26 Method for formation of multi-filament thread
US12/732,573 US8182915B2 (en) 2002-07-05 2010-03-26 Spinning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02015058.7 2002-07-05
EP02015058 2002-07-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10520064 A-371-Of-International 2003-06-26
US12/732,573 Division US8182915B2 (en) 2002-07-05 2010-03-26 Spinning method

Publications (1)

Publication Number Publication Date
WO2004005594A1 true WO2004005594A1 (de) 2004-01-15

Family

ID=30011057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/006786 WO2004005594A1 (de) 2002-07-05 2003-06-26 Spinnverfahren

Country Status (18)

Country Link
US (2) US7731876B2 (de)
EP (1) EP1521869B1 (de)
JP (1) JP4523409B2 (de)
KR (1) KR101143536B1 (de)
CN (1) CN100390334C (de)
AT (1) ATE527402T1 (de)
AU (1) AU2003249886A1 (de)
BR (1) BR0312457B1 (de)
CA (1) CA2491647C (de)
CZ (1) CZ20056A3 (de)
ES (1) ES2373379T3 (de)
MX (1) MXPA05000325A (de)
PT (1) PT1521869E (de)
RU (1) RU2318930C2 (de)
SI (1) SI1521869T1 (de)
UA (1) UA77098C2 (de)
WO (1) WO2004005594A1 (de)
ZA (1) ZA200500069B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024435A1 (de) * 2004-08-27 2006-03-09 Diolen Industrial Fibers B.V. Spinnverfahren und vorrichtung zu seiner durchführung
WO2008058696A1 (en) 2006-11-18 2008-05-22 Diolen Industrial Fibers B.V. Process for producing a multifilament yarn
WO2009012916A2 (de) * 2007-07-21 2009-01-29 Diolen Industrial Fibers B.V. Spinnverfahren
EP2524981A1 (de) 2011-05-18 2012-11-21 Api Institute Formstabiler Polyestergarn und Herstellung davon

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ302223B6 (cs) * 2005-07-08 2010-12-29 GUMOTEX, akciová spolecnost Prímé osvetlení zrcátka slunecní clony pro motorová vozidla
CN102912464B (zh) * 2012-11-13 2016-08-24 广州市新辉联无纺布有限公司 一种热塑性材料纺丝设备
KR101979353B1 (ko) * 2017-11-01 2019-05-17 효성첨단소재 주식회사 폴리에스터 타이어코드와 이를 이용한 레이디얼 타이어

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334604A2 (de) * 1988-03-24 1989-09-27 Mitsui Petrochemical Industries, Ltd. Verfahren und Vorrichtung zur Abkühlung von aus der Schmelze gesponnenen Fäden
JPH05195309A (ja) * 1992-01-17 1993-08-03 Teijin Ltd ポリエステル繊維の溶融紡糸冷却装置
EP0826802A1 (de) * 1996-08-28 1998-03-04 B a r m a g AG Verfahren zum Spinnen eines multifilen Fadens
JPH1161550A (ja) * 1997-08-13 1999-03-05 Unitika Ltd 溶融紡糸繊維の冷却方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828019Y1 (de) * 1970-03-12 1973-08-21
JPS491005B1 (de) * 1970-11-28 1974-01-11
JPS51209U (de) * 1974-06-20 1976-01-05
JPS5244927B2 (de) * 1975-01-25 1977-11-11
DE2618406B2 (de) * 1976-04-23 1979-07-26 Karl Fischer Apparate- & Rohrleitungsbau, 1000 Berlin Verfahren zum Herstellen vororientierter Füamentgarne aus thermoplastischen Polymeren
JPS58197303A (ja) * 1982-05-13 1983-11-17 Teijin Ltd 溶融紡糸方法
IN167096B (de) * 1985-04-04 1990-09-01 Akzo Nv
US5173310A (en) 1988-03-24 1992-12-22 Mitsui Petrochemical Industries, Ltd. Device for cooling molten filaments in spinning apparatus
DE4320593A1 (de) * 1993-06-22 1995-01-05 Akzo Nobel Nv Multifilament-Garn aus Polyäthylennaphthalat und Verfahren zu seiner Herstellung
SK284749B6 (sk) * 1994-12-23 2005-11-03 Diolen Industrial Fibers B.V. Spôsob výroby priadzí z nekonečných vlákien, použitie polyesterovej priadze získanej týmto spôsobom, výrobky obsahujúce túto priadzu
JP2622674B2 (ja) * 1996-03-21 1997-06-18 アクゾ・ナームローゼ・フェンノートシャップ 工業用ポリエステルヤーン及びそれから作られたコード
TW476818B (en) * 1998-02-21 2002-02-21 Barmag Barmer Maschf Method and apparatus for spinning a multifilament yarn
KR100574180B1 (ko) * 1998-07-23 2006-04-27 바마크 악티엔게젤샤프트 합성 사를 방사하는 방사 장치 및 방법
TW538150B (en) * 1998-11-09 2003-06-21 Barmag Barmer Maschf Method and apparatus for producing a highly oriented yarn
EP1079008A1 (de) 1999-08-26 2001-02-28 B a r m a g AG Verfahren und Vorrichtung zum Spinnen eines multifilen Fadens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334604A2 (de) * 1988-03-24 1989-09-27 Mitsui Petrochemical Industries, Ltd. Verfahren und Vorrichtung zur Abkühlung von aus der Schmelze gesponnenen Fäden
JPH05195309A (ja) * 1992-01-17 1993-08-03 Teijin Ltd ポリエステル繊維の溶融紡糸冷却装置
EP0826802A1 (de) * 1996-08-28 1998-03-04 B a r m a g AG Verfahren zum Spinnen eines multifilen Fadens
JPH1161550A (ja) * 1997-08-13 1999-03-05 Unitika Ltd 溶融紡糸繊維の冷却方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 632 (C - 1132) 24 November 1993 (1993-11-24) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 08 30 June 1999 (1999-06-30) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024435A1 (de) * 2004-08-27 2006-03-09 Diolen Industrial Fibers B.V. Spinnverfahren und vorrichtung zu seiner durchführung
WO2008058696A1 (en) 2006-11-18 2008-05-22 Diolen Industrial Fibers B.V. Process for producing a multifilament yarn
WO2009012916A2 (de) * 2007-07-21 2009-01-29 Diolen Industrial Fibers B.V. Spinnverfahren
WO2009012916A3 (de) * 2007-07-21 2009-06-18 Diolen Ind Fibers Bv Spinnverfahren
US7842208B2 (en) 2007-07-21 2010-11-30 Diolen Industrial Fibers B.V. Spinning method
RU2459892C2 (ru) * 2007-07-21 2012-08-27 Диолен Индастриал Файберс Б.В. Способ формования волокон
CN101981239B (zh) * 2007-07-21 2013-03-06 戴奥伦工业纤维有限公司 纺丝方法
EP2524981A1 (de) 2011-05-18 2012-11-21 Api Institute Formstabiler Polyestergarn und Herstellung davon
WO2012156446A1 (en) 2011-05-18 2012-11-22 Api Institute Dimensionally stable polyester yarn and preparation thereof

Also Published As

Publication number Publication date
JP4523409B2 (ja) 2010-08-11
KR20050099493A (ko) 2005-10-13
US8182915B2 (en) 2012-05-22
US20100175361A1 (en) 2010-07-15
CN1665970A (zh) 2005-09-07
US7731876B2 (en) 2010-06-08
ES2373379T3 (es) 2012-02-02
CA2491647C (en) 2011-09-27
CN100390334C (zh) 2008-05-28
RU2005101741A (ru) 2006-01-20
KR101143536B1 (ko) 2012-05-09
JP2005535793A (ja) 2005-11-24
CZ20056A3 (cs) 2005-05-18
BR0312457A (pt) 2005-04-19
EP1521869A1 (de) 2005-04-13
BR0312457B1 (pt) 2013-03-19
PT1521869E (pt) 2012-01-03
ATE527402T1 (de) 2011-10-15
MXPA05000325A (es) 2005-08-19
EP1521869B1 (de) 2011-10-05
ZA200500069B (en) 2006-07-26
SI1521869T1 (sl) 2012-03-30
RU2318930C2 (ru) 2008-03-10
AU2003249886A1 (en) 2004-01-23
CA2491647A1 (en) 2004-01-15
US20050147814A1 (en) 2005-07-07
UA77098C2 (en) 2006-10-16

Similar Documents

Publication Publication Date Title
DE68924623T2 (de) Polytetrafluorethylenfilament und Verfahren zur Herstellung derselben.
DE3781313T2 (de) Verfahren und vorrichtung.
EP0494852B1 (de) Verfahren zur Herstellung eines cellulosischen Formkörpers
DE69711754T2 (de) Verfahren zum Nassspinnen von Aramid-Polymer welches Salze enthält
EP2028296B1 (de) Verfahren zur Herstellung von synthetischen Filamenten aus einem Kunststoffblend
DE2048006A1 (de) Verfahren und Vorrichtung zur Herstel lung eines vliesahnhchen Flachenstuckes
EP0407901B1 (de) Verfahren zur Herstellung von Polyäthylenfäden durch Schnellspinnen von ultrahochmolekularem Polyäthylen
DE69729700T2 (de) Ein Vorläuferfaserbündel für die Zubereitung von einem Kohlenstofffaserbündel, ein Kohlenstofffaserbündel und ein Verfahren zu dessen Herstellung
DE1940621A1 (de) Verfahren und Vorrichtung zum Schmelzspinnen von Fasern
DE69926056T2 (de) Industrielle Polyesterfaser und Verfahren zu seiner Herstellung
DE10200406A1 (de) Spinnvorrichtung und -verfahren mit turbulenter Kühlbeblasung
EP2171138B1 (de) Spinnverfahren
DE3486303T2 (de) Verfahren zur Herstellung eines Filaments aus Polyethylen.
DE2752838C2 (de) Verfahren zur Herstellung von Spaltfasern, Fäden oder Bändchen
DE19653451C2 (de) Verfahren zur Herstellung eines Polyester-Multifilamentgarnes
DE69515089T2 (de) Heterofilament-Verbundgarn und verstärkte Bündel aus Heterofilamenten und Draht
WO2004005594A1 (de) Spinnverfahren
DE69726017T2 (de) Bikomponentenfasern in mantelkernstruktur, welche fluor polymere enthalten und verfahren zu deren herstellung und benutzung
CH631495A5 (de) Streckspinnverfahren fuer die herstellung von polyester-endlosgarn.
WO2002053814A1 (de) Verfahren zum spinnstrecken von schmelzgesponnenen garnen
DE69126914T2 (de) Verfahren zum Spinnen von synthetischen Fasern mit hoher Festigkeit, hohem Modul und niedrigem Schrumpf
DE69715867T2 (de) Ultra-orientierte kristalline filamente und verfahren eu ihrer herstellung
DE3036683C2 (de) Verfahren zum Schmelzspinnen von synthetischen Polymeren
WO2006024435A1 (de) Spinnverfahren und vorrichtung zu seiner durchführung
WO1992001093A1 (de) Verfahren und vorrichtung zum herstellen von kunststoffäden oder -fasern aus polymeren, insbesondere polyamid, polyester oder polypropylen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003762524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3024/CHENP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005/00069

Country of ref document: ZA

Ref document number: 2491647

Country of ref document: CA

Ref document number: 200500069

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/000325

Country of ref document: MX

Ref document number: PV2005-6

Country of ref document: CZ

Ref document number: 20038159252

Country of ref document: CN

Ref document number: 1020057000221

Country of ref document: KR

Ref document number: 2004518590

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2005101741

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10520064

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003762524

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2005-6

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1020057000221

Country of ref document: KR