WO2004005561A2 - Synthese d’un materiau composite metal-ceramique a durete renforcee - Google Patents

Synthese d’un materiau composite metal-ceramique a durete renforcee Download PDF

Info

Publication number
WO2004005561A2
WO2004005561A2 PCT/FR2003/002016 FR0302016W WO2004005561A2 WO 2004005561 A2 WO2004005561 A2 WO 2004005561A2 FR 0302016 W FR0302016 W FR 0302016W WO 2004005561 A2 WO2004005561 A2 WO 2004005561A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
alloy
ceramic
process according
synthesis process
Prior art date
Application number
PCT/FR2003/002016
Other languages
English (en)
Other versions
WO2004005561A3 (fr
Inventor
Gérard Bienvenu
Original Assignee
Propension
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Propension filed Critical Propension
Priority to EP03762714A priority Critical patent/EP1520055A2/fr
Priority to AU2003260640A priority patent/AU2003260640A1/en
Publication of WO2004005561A2 publication Critical patent/WO2004005561A2/fr
Publication of WO2004005561A3 publication Critical patent/WO2004005561A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)

Definitions

  • the invention relates to a process for the synthesis of a metal-ceramic composite according to which a mixture of powders composed of a non-oxide ceramic and at least one soft metal is obtained by a step of co-grinding in a grinder, so as to form a powder mixture in which the ceramic is intimately embedded in the metal powder, then the powder mixture is compacted and sintered.
  • Metals or alloys having a particular luster such as gold or silver, have the disadvantage of being metals having a low hardness, which makes them little or not resistant to wear and scratches. It is known to increase their hardness by combining them with harder particles. The existing methods are however not satisfactory. Indeed, these additions of particles can cause the luster of the metal or the alloy to be lost, which poses a problem, in particular in applications such as goldsmithing, jewelry or watchmaking.
  • the document GB575929 describes a material comprising silver or a silver alloy and a hard and powdery material, which can be a carbide or a nitride.
  • the pulverulent material is pressed and sintered before being brought into contact with the silver, the assembly being heated in a reducing atmosphere to a temperature above the melting temperature of the silver.
  • the powdery material and silver can also be mixed together and sintered.
  • the major problem with these liquid phase processes is that the ceramic particles have poor wettability in the liquid phase comprising the soft metal. The ceramic particles then tend not to ally with the metal or the alloy, making the composite materials porous and brittle.
  • the document EP-A-0520465 describes a sintered alloy of golden color, obtained by mixing a titanium nitride, a titanium carbonitride and metals of the iron family. The mixture is sprayed in an organic solvent such as acetone. An organic binder is then added and the mixture is molded and then heated in a non-oxidizing atmosphere, at a temperature between 250 ° C and 500 ° C, so as to remove the organic binder. The mixture is then placed in an oven at a predetermined temperature, adding tungsten and chromium. This process, thanks to the use of a solvent and a large amount of chromium, solves the problem of wettability of the ceramic particles, but it turns out to be difficult to implement.
  • the document EP-A-0130034 describes a process for manufacturing a composite material in which reinforcing particles are distributed in a metallic matrix.
  • a metal powder and reinforcing particles are co-ground in an attritor mill, the assembly then being pressed then sintered at a temperature below that of the solidus of the metal powder.
  • the metals used to form the metallic matrix of the composite material are, in particular, chosen from iron, nickel, titanium, molybdenum, zirconium, copper and aluminum.
  • the particles of reinforcement are chosen from silicon carbides, aluminum oxides, zirconium, garnet, simple or complex carbides, borides, carbo-borides and carbo-nitrides of tantalum, tungsten, hafnium zirconium and titanium and intermetallic compounds.
  • the object of the invention is to provide a process for the synthesis of a non-porous or weakly porous and very slightly brittle composite material, which is simple to implement and which makes it possible to strengthen the hardness, and therefore to improve the resistance to wear and to scratches, of a metal or an alloy having a low initial hardness, preferably while retaining its initial luster or by giving it a particular color.
  • this object is achieved by the fact that the non-oxide ceramic is chosen so as to have a density close to that of the soft metal, the soft metal being chosen from noble metals and copper.
  • the soft metal constitutes one of the components of an alloy.
  • the alloy is formed by a preliminary stage of co-grinding, before being itself co-ground with the ceramic, so that the latter becomes embedded in the powder d 'alloy.
  • an alloy is formed in the mill with at least one metallic addition element, so as to improve the wettability of the ceramic in a liquid phase formed by the alloy during sintering, the temperature of sintering being higher than the temperature of the solidus of the alloy.
  • the invention also relates to a metal-ceramic composite material obtained by the above process, the density of the composite material being between 90% and 100% of that of the metal or of the alloy comprising the metal and the Vickers hardness. of the composite material being greater than 400Hv.
  • Figures 1 and 2 show an attritor mill used in a process for synthesizing a composite material according to the invention.
  • FIG. 3 represents the variation of the density of a complex tantalum and titanium carbide (TaC-TiC) as a function of the content x of TaC in the complex carbide.
  • FIG. 4 represents the variation of the density d of a complex nitride of hafnium and titanium (HfN-T N) as a function of the content x of HfN in the complex nitride.
  • FIG. 5 represents the variation of the density of a gold-silicon-magnesium alloy (Au-Si-Mg) as a function of the percentage of magnesium contained in the alloy.
  • Figure 6 illustrates a phase diagram of the Silver - Silicon (Ag-Si) alloy.
  • the first step in the process for synthesizing a metal-ceramic composite material consists in co-grinding, in a grinder, a non-oxide ceramic powder and a metal powder comprising at least one soft metal whose scratch resistance and resistance to wear should be improved.
  • soft metal is meant a metal having a low hardness and which has little or no resistance to scratches and wear.
  • the non-oxide ceramic is chosen so as to have a density close to that of the soft metal to be reinforced.
  • the mill is preferably a ball mill 1, as shown in FIGS. 1 and 2.
  • the ball mill 1, also called attritor mill, comprises an enclosure 2 in which the powders to be treated 4 and balls 3 of are placed. steel or hard metal, the balls ensuring the co-grinding of the powders.
  • the enclosure 2 is hermetically closed by a cover 5 which may include means 6 for controlling the pressure and the atmosphere, inside the enclosure 2.
  • the crusher is preferably driven in a rotational movement ( Figure 2), around its own axis of symmetry 7 and in a movement of revolution, preferably ellipsoidal, around an axis of revolution 8.
  • This double rotational movement causes shocks between the steel balls and between them and the walls of the enclosure 2.
  • the ductile metal particles are welded by enveloping the ceramic particles, harder than the metal particles, until a homogeneous powder is obtained without particle agglomerates.
  • the soft metals intended to form the composite material are chosen from noble metals and copper.
  • the soft metals can be gold, silver, platinum, palladium and copper. They can be pure, then constituting, on their own, the metallic matrix of the composite material, reinforced by the ceramic particles. They can also be combined with other elements, preferably during a preliminary co-grinding step in the same mill as that used for co-grinding with ceramic.
  • Gold can be, for example, pre-alloyed with other metals such as silver, copper, nickel ...
  • This alloy powder is then co-ground with the ceramic, so that the ceramic s 'embedded in the powder of the alloy constituting the metallic matrix of the composite material. This inlaying of the ceramic particles in the metal matrix makes it possible to obtain, in the end, a non-porous and very fragile material.
  • the non-oxide ceramic powder used to strengthen the metal matrix must initially be very fine and regular, with an average particle size of between 0.1 ⁇ m and 5 ⁇ m, and preferably between 0.1 ⁇ m and 1 ⁇ m. This particle size can be obtained by any suitable method, the ceramic powder can, for example, be ground in the attritor mill 1, before being mixed with the metal powder.
  • the non-oxide ceramics used to reinforce the hardness of metals or soft alloys are preferably carbides or nitrides, simple or complex, of a metallic element.
  • the metallic element is preferably chosen from titanium, tantalum, zirconium and hafnium. The choice of ceramics to be used depends not only on the nature, composition and density of the metal or alloy to be reinforced, but also on the brightness of the composite material that one wishes to obtain.
  • a ceramic will be chosen whose density is close to that of the metal or of the alloy to be reinforced, which makes it possible to avoid discharges of the ceramic particles during sintering, in particular in the liquid phase.
  • nitrides and carbides can have a very wide density range, using, for example, nitrides or complex carbides, such as HfN / TiN or TaC / TiC, synthesized according to the process described in document WO-A -9947454.
  • FIGS. 3 and 4 illustrate the variation in the density of the complex carbide TaC / TiC and of the complex nitride HfN / TiN, respectively as a function of the content of HfN and TaN.
  • the density of the carbide is between 4.92 and 14.5 while that of the complex nitride varies from 5.4 to 13.5. This makes it possible to choose the nitrides or carbides most suitable for the metal or the alloy to be reinforced, that is to say those which have a density close to that of the metal or alloy to be reinforced.
  • nitrides and carbides of titanium (TiN, TiC), tantalum (TaN, TaC), zirconium (ZrN, ZrC) and hafnium (HfN, HfC) have a particularly metallic luster in the solid state.
  • Ceramics, such as TiN with a yellow gold luster, TiC with a silver gray luster or TaC with a red gold luster can be incorporated into gold or silver, or to alloys comprising gold or silver, without altering their color. It is also possible to modify the luster of a metal or a metal alloy, by incorporating ceramic particles having a different luster than that of the metal or alloy.
  • the incorporation of TiN or TaC particles in a white metal gives the resulting alloy a golden luster.
  • the homogeneous powder resulting therefrom is compacted so as to obtain a pellet having a minimum porosity.
  • Compaction is carried out by any suitable type of process. It can be carried out either at room temperature, or at a higher temperature but lower than the melting temperature of the metal or at the temperature of the solidus of the alloy comprising the metal to be reinforced.
  • the pellet is then sintered in an oven, preferably under vacuum.
  • the sintering temperature can be lower, either to the melting temperature of the metal to be reinforced, if the latter is not pre-alloyed, or to the solidus temperature of the alloy comprising the metal to be reinforced. In this case, the sintering takes place in the solid phase. Sintering can also be carried out in the liquid phase, that is to say at a temperature higher than the melting temperature of the metal to be reinforced or, where appropriate, at the temperature of the solidus of the alloy. In the case of sintering in the liquid phase, addition elements are preferably added before or during the co-grinding of the ceramic and of the metal or of the alloy to be reinforced.
  • the addition elements improve the wettability of the ceramic particles in the liquid metallic phase as well as the cohesion of the composite material formed.
  • These addition elements are elements having a good affinity with non-oxide ceramics. They are preferably chosen from silicon, magnesium, iron, cobalt, nickel, copper and manganese. They also make it possible to vary the density of the alloy.
  • Silicon forms with gold a eutectic composition at 3.16% by weight of silicon.
  • This eutectic gold-silicon alloy is particularly advantageous for sintering in the liquid phase, because it makes it possible to considerably lower the sintering temperature and reduces the density of the metal alloy, bringing it closer to that of ceramics. The choice of close densities for the ceramic and the metal alloy then allows better stability of the ceramic suspension in the metallic phase.
  • the table also indicates the ceramics which it is preferable to use according to the composition of the alloy Au-Si-Mg, so as to choose ceramics having a density close to that of the alloy.
  • the table above also indicates the maximum quantity of ceramic to be added to 100 grams of Au-Si-Mg alloy, to obtain a composite material comprising 75% gold, i.e. gold with 18 carats.
  • the composite material obtained according to one of the embodiments of the synthesis process preferably has a density of between 90% and 100% of that of the metal or of the alloy intended to be reinforced.
  • the incorporation of hard ceramic particles makes it possible to obtain a composite material having a Vickers hardness greater than 400 Hv.
  • TiN titanium nitride
  • the mixture is then compacted hot at 900 ° C in a graphite mold under a pressure of 140 tonnes / cm 2 , so as to obtain a pellet of 1 cm in diameter and 0.3 cm thick.
  • the pellet is then sintered for one hour, in a oven maintained under vacuum at a temperature of 800 ° C.
  • the composite material has a final Vickers hardness of 450 Hv and a density of 96% compared to the initial density of the Au-Cu-Ag alloy.
  • the addition of TiN allows the composite material to retain the yellow gold color of the initial alloy.
  • a powdery alloy of gold and nickel at 7% was produced in the mill for 50 hours.
  • the alloy was then co-ground with 18% by weight of TiC, then compacted at 930 ° C under a pressure of 150 tonnes / cm 2 .
  • the whole is then sintered at 800 ° C. under vacuum.
  • the composite material has a density close to 99% that of the initial alloy.
  • the hardness after annealing at low temperature is 520 Hv and the wear resistance of the material is 70% higher than that of 18-carat rolled gold.
  • Nickel making it possible to improve the cohesion of titanium carbide and gold from a weight content of 6%, makes it possible to obtain a composite material having the color of white gold.
  • the composite material was obtained according to the procedure of Example 2, by replacing the titanium carbide with titanium nitride.
  • the compaction pressure for example between 120 tonnes / cm 2 and 160 tonnes / cm 2 , it is possible to modify the density and hardness of the composite material obtained.
  • the composite material was obtained by sintering in the liquid phase according to the following procedure:
  • the mixture obtained is then compacted under a pressure of 140 tonnes / cm 2 , then sintered at 800 ° C under vacuum for 3 hours.
  • the melting of the alloy takes place in a temperature range between 400 ° C and 800 ° C.
  • the pellet obtained has a weight of 29.97 g, its density is 11.9, that is to say 97% of that of the Au-Si-Mg alloy.
  • the composite material obtained has the color of yellow gold.
  • the compaction is carried out in the same manner as in Example 1.
  • the sintering was carried out at 1000 ° C. for 3 hours under vacuum, so as to effect sintering in the solid phase.
  • the composite material obtained, of gray appearance, tending towards black, has a density close to 11 and a Vickers hardness of approximately 700 Hv.
  • 0.3 g of silicon powder and 9.305 g of silver powder are co-ground in the attritor mill for 36 hours.
  • the particle sizes of the two powders are between 10 ⁇ m and 50 ⁇ m.
  • the alloy obtained corresponds to a eutectic alloy melting at 835 ° C (see Figure 6).
  • the mixture is compacted under a pressure of 140 tonnes / cm 2 and then sintered at 850 ° C under vacuum.
  • the pellet obtained weighs 19.6 g and has a density of 9.4, having a hardness of 650 Hv and a golden appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

La résistance é l'usure et aux rayures des métaux présentant une dureté réduite, est améliorée en incrustant dans une poudre métallique, des particules de céramique non oxyde, comme les nitrures et les carbures, tout en conservant un éclat métallique. L'incrustation des particules de céramique non oxyde se fait par co-broyage avec la poudre métallique dans un broyeur à billes (1). L'ensemble est alors compacté et fritté. Le frittage peut se faire soit en phase solide soit en phase liquide pour la poudre métallique. De manière à améliorer la compatibilité entre les particules de céramique et le métal lors du frittage, la céramique non-oxyde est choisie de manière à avoir une densité proche de celle du métal tendre à renforcer. Le matériau composite métal-céramique obtenu présente une dureté renforcée et une densité proche de celle du métal initial.

Description

Procédé de synthèse d'un matériau composite métal-céramique à dureté renforcée et matériau obtenu par ce procédé.
Domaine technique de l'invention
L'invention concerne un procédé de synthèse d'un composite métal-céramique selon lequel un mélange de poudres composé d'une céramique non oxyde et d'au moins un métal tendre est obtenu par une étape de co-broyage dans un broyeur, de manière à former un mélange pulvérulent dans lequel la céramique est intimement incrustée dans la poudre de métal, puis le mélange de poudres est compacté et fritte.
État de la technique
Les métaux ou les alliages présentant un éclat particulier comme l'or ou l'argent, ont l'inconvénient d'être des métaux présentant une faible dureté, ce qui les rend peu ou pas résistants à l'usure et aux rayures. Il est connu pour augmenter leur dureté de les allier à des particules plus dures. Les procédés existants ne sont cependant pas satisfaisants. En effet, ces ajouts de particules peuvent faire perdre l'éclat du métal ou de l'alliage, ce qui pose problème, notamment dans des applications comme l'orfèvrerie, la bijouterie ou l'horlogerie.
II est cependant possible de conserver cet aspect métallique en ajoutant des particules ayant un aspect métallique, comme des céramiques non-oxydes, soit en les dispersant dans une phase liquide de métal, soit en effectuant un frittage en phase liquide. Ainsi le document GB575929 décrit un matériau comprenant de l'argent ou un alliage d'argent et un matériau dur et pulvérulent, qui peut être un carbure ou un nitrure. Le matériau pulvérulent est pressé et fritte avant d'être mis en contact avec l'argent, l'ensemble étant chauffé dans une atmosphère réductrice à une température supérieure à la température de fusion de l'argent. Le matériau pulvérulent et l'argent peuvent également être mélangés ensemble et frittes. Le problème majeur de ces procédés en phase liquide est que les particules céramiques ont une mauvaise mouillabilité dans la phase liquide comportant le métal tendre. Les particules de céramiques ont alors tendance à ne pas s'allier avec le métal ou l'alliage, rendant les matériaux composites poreux et fragiles.
Le document EP-A-0520465 décrit un alliage fritte de couleur dorée, obtenu en mélangeant un nitrure de titane, un carbonitrure de titane et des métaux de la famille du fer. Le mélange est pulvérisé dans un solvant organique comme l'acétone. Un liant organique est alors ajouté et le mélange est moulé puis chauffé dans une atmosphère non-oxydante, à une température comprise entre 250°C et 500°C, de manière à éliminer le liant organique. Le mélange est ensuite placé dans une étuve à une température prédéterminée, en ajoutant du tungstène et du chrome. Ce procédé, grâce à l'emploi d'un solvant et d'une quantité importante de chrome, résout le problème de mouillabilité des particules de céramique, mais il s'avère difficile à mettre en place.
Le document EP-A-0130034 décrit un procédé de fabrication d'un matériau composite dans lequel des particules de renforcement sont distribuées dans une matrice métallique. Ainsi, une poudre métallique et des particules de renforcement sont co-broyées dans un broyeur attriteur, l'ensemble étant ensuite pressé puis fritte à une température inférieure à celle du solidus de la poudre métallique. Les métaux utilisés pour former la matrice métallique du matériau composite sont, notamment, choisis parmi le fer, le nickel, le titane, le molybdène, le zirconium, le cuivre et l'aluminium. Les particules de renforcement sont choisies parmi les carbures de silicium, les oxydes d'aluminium, le zirconium, le grenat, les carbures simples ou complexes, les borures, les carbo-borures et les carbo-nitrures de tantale, de tungsten, de zirconiumn d'hafnium et de titane et les composés intermétalliques.
Objet de l'invention
L'invention a pour but un procédé de synthèse d'un matériau composite non poreux ou faiblement poreux et très peu fragile, simple à mettre en œuvre et permettant de renforcer la dureté, et donc d'améliorer la résistance à l'usure et aux rayures, d'un métal ou d'un alliage présentant une faible dureté initiale, de préférence tout en conservant son éclat initial ou en lui conférant une couleur particulière.
Selon l'invention, ce but est atteint par les revendications annexées.
Plus particulièrement, ce but est atteint par le fait que la céramique non oxyde est choisie de manière à avoir une densité voisine de celle du métal tendre, le métal tendre étant choisi parmi les métaux nobles et le cuivre.
Selon un développement de l'invention, le métal tendre constitue l'un des composants d'un alliage.
Selon un mode de réalisation préférentiel, l'alliage est formé par une étape préliminaire de co-broyage, avant d'être lui-même co-broyé avec la céramique, de manière à ce que celle-ci s'incruste dans la poudre d'alliage. Selon une autre caractéristique de l'invention, un alliage est formé dans le broyeur avec au moins un élément d'addition métallique, de manière à améliorer la mouillabilité de la céramique dans une phase liquide constituée par l'alliage pendant le frittage, la température de frittage étant supérieure à la température du solidus de l'alliage.
L'invention a également pour objet un matériau composite métal-céramique obtenu par le procédé ci-dessus, la densité du matériau composite étant comprise entre 90 % et 100 % de celle du métal ou de l'alliage comportant le métal et la dureté Vickers du matériau composite étant supérieure à 400Hv.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
Les figures 1 et 2 représentent un broyeur attriteur utilisé dans un procédé de synthèse d'un matériau composite selon l'invention.
La figure 3 représente la variation de la densité d'un carbure complexe de tantale et de titane (TaC-TiC) en fonction de la teneur x en TaC dans le carbure complexe. La figure 4 représente la variation de la densité d d'un nitrure complexe de hafnium et de titane (HfN-T N) en fonction de la teneur x en HfN dans le nitrure complexe. La figure 5 représente la variation de la densité d'un alliage Or-Silicium- Magnésium (Au-Si-Mg) en fonction du pourcentage en magnésium contenu dans l'alliage. La figure 6 illustre un diagramme de phase de l'alliage Argent - Silicium (Ag-Si).
Description de modes particuliers de réalisation.
La première étape du procédé de synthèse d'un matériau composite métalcéramique consiste à co-broyer, dans un broyeur, une poudre de céramique non oxyde et une poudre métallique comprenant au moins un métal tendre dont la résistance aux rayures et la résistance à l'usure doivent être améliorées. Par métal tendre, on entend un métal ayant une dureté faible et qui ne résiste peu ou pas aux rayures et à l'usure. La céramique non oxyde est choisie de manière à avoir une densité proche de celle du métal tendre à renforcer.
Cette étape, aussi appelée mécanosynthèse, permet une incrustation optimale des grains de céramique dans la poudre métallique. Le broyeur est de préférence un broyeur à billes 1 , comme représenté sur les figures 1 et 2. Le broyeur à billes 1 , aussi appelé broyeur attriteur, comporte une enceinte 2 dans laquelle sont placées les poudres à traiter 4 et des billes 3 d'acier ou de métal dur, les billes assurant le co-broyage des poudres. L'enceinte 2 est fermée hermétiquement par un couvercle 5 qui peut comporter des moyens de contrôle 6 de la pression et de l'atmosphère, à l'intérieur de l'enceinte 2.
Le broyeur est, de préférence, animé d'un mouvement de rotation (Figure 2), autour de son propre axe de symétrie 7 et d'un mouvement de révolution, de préférence ellipsoïdal, autour d'un axe de révolution 8. Ce double mouvement de rotation provoque des chocs entre les billes d'aciers et entre celles-ci et les parois de l'enceinte 2. Lors de ces chocs, les particules constituant les poudres sont fragmentées. Les particules métalliques ductiles se soudent en enveloppant les particules de céramique, plus dures que les particules métalliques, jusqu'à l'obtention d'une poudre homogène et sans agglomérat de particules.
Les métaux tendres destinés à former le matériau composite sont choisis parmi les métaux nobles et le cuivre. Ainsi, les métaux tendres peuvent être de l'or, de l'argent, du platine, du palladium et du cuivre. Ils peuvent être purs, constituant alors, à eux seuls, la matrice métallique du matériau composite, renforcée par les particules de céramique. Ils peuvent également être alliés à d'autres éléments, de préférence lors d'une étape préliminaire de co-broyage dans le même broyeur que celui utilisé pour le co-broyage avec la céramique. L'or peut être, par exemple, préallié à d'autres métaux comme l'argent, le cuivre, le nickel... Cette poudre d'alliage est ensuite co-broyée avec la céramique, de manière à ce que la céramique s'incruste dans la poudre de l'alliage constituant la matrice métallique du matériau composite. Cette incrustation des particules de céramique dans la matrice métallique permet d'obtenir, au final, un matériau composite non poreux et très peu fragile.
La poudre de céramique non oxyde utilisée pour renforcer la matrice métallique, doit être initialement très fine et régulière, avec une granulométrie moyenne comprise entre 0,1 μm et 5 μm, et de préférence entre 0,1 μm et 1 μm. Cette granulométrie peut être obtenue par tout procédé approprié, la poudre de céramique pouvant, par exemple, être broyée dans le broyeur attriteur 1 , avant d'être mélangée à la poudre métallique. Les céramiques non oxydes utilisées pour renforcer la dureté des métaux ou alliages tendres, sont, de préférence, des carbures ou des nitrures, simples ou complexes, d'un élément métallique. L'élément métallique est, de préférence, choisi parmi le titane, le tantale, le zirconium et le hafnium. Le choix des céramiques à utiliser dépend non seulement de la nature, de la composition et de la densité du métal ou de l'alliage à renforcer, mais aussi de l'éclat du matériau composite que l'on souhaite obtenir.
Ainsi, on choisira une céramique dont la densité est voisine de celle du métal ou de l'alliage à renforcer, ce qui permet d'éviter les rejets des particules de céramique lors du frittage, notamment en phase liquide. En effet, les nitrures et les carbures peuvent avoir une gamme de densité très large, en utilisant, par exemple, des nitrures ou des carbures complexes, comme HfN/TiN ou TaC/TiC, synthétisés selon le procédé décrit dans le document WO-A-9947454. Les figures 3 et 4 illustrent la variation de la densité du carbure complexe TaC/TiC et du nitrure complexe HfN/TiN, respectivement en fonction de la teneur en HfN et TaN. Ainsi la densité du carbure est comprise entre 4,92 et 14,5 tandis que celle du nitrure complexe varie de 5,4 à 13,5. Cela permet de choisir les nitrures ou les carbures les plus adaptés au métal ou à l'alliage à renforcer, c'est-à-dire ceux qui ont une densité proche de celle du métal ou de l'alliage à renforcer.
De plus, les nitrures et les carbures de titane (TiN, TiC), de tantale (TaN, TaC), de zirconium (ZrN, ZrC) et de hafnium (HfN, HfC), présentent à l'état massif un éclat métallique particulièrement intéressant pour les alliages comportant des métaux comme l'or ou l'argent. Les céramiques, comme TiN avec un éclat or jaune, TiC avec un éclat gris argent ou TaC avec un éclat or rouge, peuvent être incorporés à l'or ou l'argent, ou à des alliages comportant de l'or ou de l'argent, sans altérer leur couleur. Il est également possible de modifier l'éclat d'un métal ou d'un alliage métallique, en incorporant des particules de céramique ayant un éclat différent de celui du métal ou de l'alliage. Par exemple, l'incorporation de particules de TiN ou de TaC dans un métal blanc, comme l'argent ou l'or blanc, confère à l'alliage résultant un éclat doré. Après l'incrustation des particules de céramique non oxyde dans la poudre métallique, la poudre homogène en résultant est compactée de manière à obtenir une pastille présentant une porosité minimale. Le compactage est réalisé par tout type de procédé approprié. Il peut être réalisé soit à température ambiante, soit à une température plus élevée mais inférieure à la température de fusion du métal ou à la température du solidus de l'alliage comportant le métal à renforcer.
La pastille est ensuite frittée dans un four, de préférence sous vide. La température de frittage peut être inférieure, soit à la température de fusion du métal à renforcer, si celui-ci n'est pas préallié, soit à la température du solidus de l'alliage comportant le métal à renforcer. Dans ce cas, le frittage a lieu en phase solide. Le frittage peut également être réalisé en phase liquide, c'est-à- dire à une température supérieure à la température de fusion du métal à renforcer ou, le cas échéant, à la température du solidus de l'alliage. Dans le cas d'un frittage en phase liquide, des éléments d'addition sont, de préférence, ajoutés avant ou pendant le co-broyage de la céramique et du métal ou de l'alliage à renforcer.
Les éléments d'addition améliorent la mouillabilité des particules de céramique dans la phase métallique liquide ainsi que la cohésion du matériau composite formé. Ces éléments d'addition sont des éléments ayant une bonne affinité avec les céramiques non-oxydes. Ils sont, de préférence, choisis parmi le silicium, le magnésium, le fer, le cobalt, le nickel, le cuivre et le manganèse. Ils permettent également de faire varier la densité de l'alliage.
Le silicium, par exemple, forme avec l'or une composition eutectique à 3,16 % en poids de silicium. Cet eutectique fond à 363°C et a une densité de 15,7 tandis que l'or pur a une densité de 19,5 et une température de fusion de 1064°C. Cet alliage eutectique Or-Silicium est particulièrement intéressant pour le frittage en phase liquide, car il permet d'abaisser considérablement la température de frittage et diminue la densité de l'alliage métallique, la rapprochant de celle des céramiques. Le choix de densités proches pour la céramique et l'alliage métallique permet alors une meilleure stabilité de la suspension de céramique dans la phase métallique.
Il est possible d'ajouter plusieurs éléments d'addition au métal ou à l'alliage à renforcer, de manière à faire varier la densité de la poudre métallique, par exemple en fonction de celle de la céramique utilisée. Ainsi il est possible d'ajouter, en plus du silicium, du cuivre, de l'argent ou du magnésium. Le tableau suivant et la figure 5 montre l'évolution de la densité de l'alliage Au-Si- Mg, en fonction de la quantité de magnésium ajoutée, l'alliage sans ajout de magnésium étant l'alliage eutectique Au-Si, à 3,16 % en poids de silicium.
Figure imgf000010_0001
Le tableau indique également les céramiques qu'il est préférable d'utiliser en fonction de la composition de l'alliage Au-Si-Mg, de manière à choisir des céramiques ayant une densité proche de celle de l'alliage. Le tableau ci-dessus indique également la quantité maximale de céramique à ajouter à 100 grammes d'alliage Au-Si-Mg, pour obtenir un matériau composite comportant 75 % d'or, c'est-à-dire de l'or à 18 carats.
Le matériau composite obtenu selon l'un des modes de réalisation du procédé de synthèse, a de préférence une densité comprise entre 90 % et 100 % de celle du métal ou de l'alliage destiné à être renforcé. L'incorporation de particules dures de céramique permet d'obtenir un matériau composite ayant une dureté Vickers supérieure à 400 Hv.
Quelques exemples de réalisation sont décrits plus en détail ci-dessous
Exemple 1 :
On mélange dans un broyeur pendant 50 heures
- 10 g de poudre d'or
- 0,93 g de poudre de cuivre
- 0,93 g de poudre d'argent
Puis on ajoute 1 ,47 g de nitrure de titane (TiN) dans le broyeur, le mélange de poudres étant à nouveau co-broyé pendant 50 heures. Le mélange est ensuite compacté à chaud à 900°C dans un moule en graphite sous une pression de 140 tonnes / cm2, de manière à obtenir une pastille de 1 cm de diamètre et de 0,3 cm d'épaisseur. La pastille est ensuite frittée pendant une heure, dans un four maintenu sous vide à une température de 800°C. Le matériau composite a une dureté Vickers finale de 450 Hv et une densité de 96 % par rapport à la densité initiale de l'alliage Au-Cu-Ag. L'ajout de TiN permet au matériau composite de conserver la couleur or jaune de l'alliage initial.
Exemple 2 :
Un alliage pulvérulent d'or et de nickel à 7 % a été réalisé dans le broyeur pendant 50 heures. L'alliage a ensuite été co-broyé avec 18 % en poids de TiC, puis compacté à 930°C sous une pression de 150 tonnes / cm2. L'ensemble est alors fritte à 800°C sous vide. Le matériau composite a une densité voisine de 99 % de celle de l'alliage initial. La dureté après recuit à basse température est de 520 Hv et la résistance à l'usure du matériau est supérieure de 70 % à celle de l'or laminé à 18 carats. Le nickel permettant d'améliorer la cohésion du carbure de titane et de l'or à partir d'une teneur pondérale de 6 %, permet d'obtenir un matériau composite ayant la couleur de l'or blanc.
Exemple 3 :
Le matériau composite a été obtenu selon le mode opératoire de l'exemple 2, en remplaçant le carbure de titane par du nitrure de titane. En faisant varier la pression du compactage, par exemple entre 120 tonnes / cm2 et 160 tonnes / cm2, il est possible de modifier la densité et la dureté du matériau composite obtenu.
L'incorporation de TiN permet de conférer au matériau composite la couleur de l'or jaune, alors que l'alliage initial or-nickel a la couleur de l'or blanc. La résistance à l'usure du matériau composite est de 50 % supérieure à celle de l'or laminé de 18 carats. Exemple 4 :
Le matériau composite a été obtenu par frittage en phase liquide selon le mode opératoire suivant :
- Préparation de l'alliage eutectique or-silicium, à 3,16 % de silicium, en mélangeant dans le broyeur attriteur, pendant 24 heures et sous argon, 30 g d'or et 0,98 g de silicium.
- Ajout de 1 ,124 g de magnésium dans le broyeur et co-broyage du mélange de poudre d'alliage pendant 24 heures sous argon.
- Ajout de 7,85 g de nitrure mixte HfN-TiN, ayant une densité très proche de celle de la phase métallique du mélange de poudre d'alliage. Le co-broyage est poursuivi pendant 24 heures sous argon.
- Le mélange obtenu est alors compacté sous une pression de 140 tonnes / cm2, puis fritte à 800°C sous vide pendant 3 heures. La fusion de l'alliage a lieu dans un intervalle de température compris entre 400°C et 800°C. La pastille obtenue a un poids de 29,97 g, sa densité est de 11 ,9, c'est-à-dire 97 % de celle de l'alliage Au-Si-Mg. Le matériau composite obtenu a la couleur de l'or jaune.
Exemple 5 :
On introduit dans le broyeur :
- 20 g d'alliage d'or blanc, à base d'or et de palladium, ayant une granulométrie de l'ordre de 30 μm
- 5,6g de carbure de titane ayant une granulométrie moyenne de l'ordre de 1μm. Le compactage est fait de la même manière que dans l'exemple 1. Le frittage a été effectué à 1000°C pendant 3 heures sous vide, de manière à effectuer un frittage en phase solide. Le matériau composite obtenu, d'aspect gris, tendant vers le noir, a une densité proche de 11 et une dureté Vickers d'environ 700 Hv.
Exemple 6 :
On co-broye 0,3 g de poudre de silicium et 9,305 g de poudre d'argent dans le broyeur attriteur pendant 36 heures. Les granulométries des deux poudres sont comprises entre 10 μm et 50 μm. L'alliage obtenu correspond à un alliage eutectique fondant à 835°C (voir figure 6). On ajoute ensuite 10 g de nitrure mixte HfN-TiN, contenant 72 % de HfN et 28 % de TiN et on co-broye pendant 36 heures. Le mélange est compacté sous une pression de 140 tonnes / cm2 puis fritte à 850°C sous vide. La pastille obtenue pèse 19,6 g et a une densité de 9,4, présentant une dureté de 650 Hv et un aspect doré.

Claims

Revendications
1. Procédé de synthèse d'un composite métal-céramique selon lequel un mélange de poudres composé d'une céramique non oxyde et d'au moins un métal tendre est obtenu par une étape de co-broyage dans un broyeur (1 ), de manière à former un mélange pulvérulent dans lequel la céramique est intimement incrustée dans la poudre de métal, puis le mélange de poudres est compacté et fritte, procédé caractérisé en ce que la céramique non oxyde est choisie de manière à avoir une densité voisine de celle du métal tendre, le métal tendre étant choisi parmi les métaux nobles et le cuivre.
2. Procédé de synthèse selon la revendication 1 , caractérisé en ce que la température de frittage est inférieure à la température de fusion du métal.
3. Procédé de synthèse selon la revendication 1 , caractérisé en ce que le métal tendre constitue l'un des composants d'un alliage.
4. Procédé de synthèse selon la revendication 3, caractérisé en ce l'alliage est formé par une étape préliminaire de co-broyage, avant d'être lui-même co-broyé avec la céramique, de manière à ce que celle-ci s'incruste dans la poudre d'alliage.
5. Procédé de synthèse selon la revendication 4, caractérisé en ce que la température de frittage est inférieure à la température du solidus de l'alliage.
6. Procédé de synthèse selon l'une quelconque des revendications 1 , 3 et 4, caractérisé en ce qu'un alliage est formé dans le broyeur avec au moins un élément d'addition métallique, de manière à améliorer la mouillabilité de la céramique dans une phase liquide constituée par l'alliage pendant le frittage, la température de frittage étant supérieure à la température du solidus de l'alliage.
7. Procédé de synthèse selon la revendication 6, caractérisé en que l'élément d'addition est choisi parmi le silicium, le magnésium, le fer, le cobalt, le nickel, le cuivre et le manganèse.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la céramique non oxyde a une granulométrie comprise entre 0,1 μm et 5 μm.
9. Procédé de synthèse selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la céramique non oxyde est choisie parmi les nitrures et les carbures d'un élément métallique.
10. Procédé de synthèse selon la revendication 9, caractérisé en ce que l'élément métallique est choisi parmi le titane, le tantale, le zirconium et le hafnium.
11. Procédé de synthèse selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le broyeur est un broyeur (1 ) à billes, animé d'un mouvement de rotation autour de son propre axe de symétrie (7) et d'un mouvement de révolution autour d'un axe de révolution (8).
12. Matériau composite métal-céramique obtenu par le procédé selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que la densité du matériau composite est comprise entre 90 % et 100 % de celle du métal ou de l'alliage comportant le métal, la dureté Vickers du matériau composite étant supérieure à 400Hv.
PCT/FR2003/002016 2002-07-04 2003-06-30 Synthese d’un materiau composite metal-ceramique a durete renforcee WO2004005561A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03762714A EP1520055A2 (fr) 2002-07-04 2003-06-30 Procede de synthese d un materiau composite metal-ceramique a durete renforcee et materiau obtenu par ce procede
AU2003260640A AU2003260640A1 (en) 2002-07-04 2003-06-30 Synthesis of a metal-cermet composite with reinforced hardness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0208357A FR2841804B1 (fr) 2002-07-04 2002-07-04 Procede de synthese d'un materiau composite metal-ceramique a durete renforcee et materiau obtenu par ce procede
FR02/08357 2002-07-04

Publications (2)

Publication Number Publication Date
WO2004005561A2 true WO2004005561A2 (fr) 2004-01-15
WO2004005561A3 WO2004005561A3 (fr) 2004-10-21

Family

ID=29725144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002016 WO2004005561A2 (fr) 2002-07-04 2003-06-30 Synthese d’un materiau composite metal-ceramique a durete renforcee

Country Status (4)

Country Link
EP (1) EP1520055A2 (fr)
AU (1) AU2003260640A1 (fr)
FR (1) FR2841804B1 (fr)
WO (1) WO2004005561A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139403A1 (fr) * 2006-05-31 2007-12-06 The University Of Waikato Procédé de production d'alliages métalliques et de poudres intermétalliques
CN105728709A (zh) * 2016-03-15 2016-07-06 昆明理工大学 一种颗粒增强金属基复合材料的制备方法
CN111269030A (zh) * 2020-01-21 2020-06-12 徐州凹凸光电科技有限公司 一种一体式金属/陶瓷复合材料的制备方法及其应用
EP3943630A1 (fr) 2020-07-22 2022-01-26 The Swatch Group Research and Development Ltd Composant pour pièce d'horlogerie ou de bijouterie en cermet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738817A (en) * 1968-03-01 1973-06-12 Int Nickel Co Wrought dispersion strengthened metals by powder metallurgy
EP0130034A1 (fr) * 1983-06-24 1985-01-02 Inco Alloys International, Inc. Procédé de préparation de matériaux composites
EP0620286A1 (fr) * 1993-03-18 1994-10-19 Hitachi, Ltd. Pièce métallique contenant les particules céramique, méthode pour sa production et ses utilisations
DE19953780C1 (de) * 1999-11-04 2001-04-12 Dresden Ev Inst Festkoerper Verfahren zur Herstellung von Halbzeug und Formkörpern aus partikelverstärkten Silberbasiswerkstoffen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738817A (en) * 1968-03-01 1973-06-12 Int Nickel Co Wrought dispersion strengthened metals by powder metallurgy
EP0130034A1 (fr) * 1983-06-24 1985-01-02 Inco Alloys International, Inc. Procédé de préparation de matériaux composites
EP0620286A1 (fr) * 1993-03-18 1994-10-19 Hitachi, Ltd. Pièce métallique contenant les particules céramique, méthode pour sa production et ses utilisations
DE19953780C1 (de) * 1999-11-04 2001-04-12 Dresden Ev Inst Festkoerper Verfahren zur Herstellung von Halbzeug und Formkörpern aus partikelverstärkten Silberbasiswerkstoffen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139403A1 (fr) * 2006-05-31 2007-12-06 The University Of Waikato Procédé de production d'alliages métalliques et de poudres intermétalliques
AU2007268370B2 (en) * 2006-05-31 2011-01-20 Waikatolink Limited Method for producing metal alloy and intermetallic products
AU2007268370B8 (en) * 2006-05-31 2011-06-23 Waikatolink Limited Method for producing metal alloy and intermetallic products
CN105728709A (zh) * 2016-03-15 2016-07-06 昆明理工大学 一种颗粒增强金属基复合材料的制备方法
CN105728709B (zh) * 2016-03-15 2018-03-06 昆明理工大学 一种颗粒增强金属基复合材料的制备方法
CN111269030A (zh) * 2020-01-21 2020-06-12 徐州凹凸光电科技有限公司 一种一体式金属/陶瓷复合材料的制备方法及其应用
EP3943630A1 (fr) 2020-07-22 2022-01-26 The Swatch Group Research and Development Ltd Composant pour pièce d'horlogerie ou de bijouterie en cermet
WO2022017697A2 (fr) 2020-07-22 2022-01-27 The Swatch Group Research And Development Ltd Composant pour piece d'horlogerie ou de bijouterie en cermet

Also Published As

Publication number Publication date
FR2841804B1 (fr) 2005-02-18
AU2003260640A8 (en) 2004-01-23
FR2841804A1 (fr) 2004-01-09
WO2004005561A3 (fr) 2004-10-21
EP1520055A2 (fr) 2005-04-06
AU2003260640A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
CA1340873C (fr) Procede pour reduire la despersion des valeurs des caracteristiques mecaniques d'alliages de tungstene-nickel-fer
FR2963792A1 (fr) Compositions de carbure cemente a liant a base d'alliage cobalt-silicium
WO1998015373A1 (fr) Piece d'usure composite
CN1929991B (zh) 耐磨材料
FR2514788A1 (fr) Alliage dur fritte
WO2004005561A2 (fr) Synthese d’un materiau composite metal-ceramique a durete renforcee
EP2683841A1 (fr) Materiau composite comprenant un metal precieux, procede de fabrication et utilisation d'un tel materiau
FR2583777A1 (fr) Cermet fritte contenant zrb2
EP0591305B1 (fr) Cermets a base de borures des metaux de transition, leur fabrication et leurs applications
FR3121375A1 (fr) Procédé de fabrication de piece en métaux précieux à base de frittage SPS et piece en métaux précieux ainsi obtenue
FR2672619A1 (fr) Materiau composite a base de tungstene et procede pour sa preparation.
JP7429432B2 (ja) 加圧焼結体及びその製造方法
JP2005298832A (ja) カラー金合金
BE898530A (fr) Procédé d'atomisation rotatif.
RU2470083C1 (ru) Способ получения твердого сплава на основе литого эвтектического карбида вольфрама и твердый сплав, полученный этим способом
FR2607741A1 (fr) Procede d'obtention de materiaux composites, notamment a matrice en alliage d'aluminium, par metallurgie des poudres
JPS62211340A (ja) 耐食性硬質合金
FR3121374A1 (fr) Procédé de fabrication de pieces métalliques et pieces métalliques obtenues à base de frittage SPS
JPH03202430A (ja) マグネシウム系焼結合金およびマグネシウム系複合材料の製造方法
JP2023048855A (ja) 硬質焼結体、硬質焼結体の製造方法、切削工具、耐摩耗工具および高温用部材
WO2023110997A1 (fr) Matériau composite à matrice métallique pour pièce d'horlogerie
JPH06340941A (ja) ナノ相複合硬質材料とその製造方法
FR2692184A1 (fr) Procédé de fabrication d'un alliage métallique en poudre.
FR2795430A1 (fr) Materiau tungstene a haute densite fritte a basse temperature
JPH1136037A (ja) 硬質モリブデン合金、耐摩耗性合金、耐摩耗性焼結合金およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003762714

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003762714

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP