WO2004001092A1 - AlRuスパッタリングターゲット及びその製造方法 - Google Patents

AlRuスパッタリングターゲット及びその製造方法 Download PDF

Info

Publication number
WO2004001092A1
WO2004001092A1 PCT/JP2003/005757 JP0305757W WO2004001092A1 WO 2004001092 A1 WO2004001092 A1 WO 2004001092A1 JP 0305757 W JP0305757 W JP 0305757W WO 2004001092 A1 WO2004001092 A1 WO 2004001092A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
sintering
intermetallic compound
producing
target
Prior art date
Application number
PCT/JP2003/005757
Other languages
English (en)
French (fr)
Inventor
Akira Hisano
Original Assignee
Nikko Materials Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Company, Limited filed Critical Nikko Materials Company, Limited
Priority to JP2004515475A priority Critical patent/JPWO2004001092A1/ja
Priority to US10/479,687 priority patent/US20040144204A1/en
Publication of WO2004001092A1 publication Critical patent/WO2004001092A1/ja
Priority to US11/733,016 priority patent/US7767139B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to an A1Ru sputtering target suitable for forming a film for an A1Ru sputtering target, particularly a hard disk, and a method for producing the same.
  • a target consisting of a positive electrode and a negative electrode is opposed to each other, and a high voltage is applied between these substrates and the target under an inert gas atmosphere. This is done by generating an electric field.
  • the ionized electrons collide with the inert gas to form a plasma, and the cations in the plasma collide with the surface of the target (negative electrode), causing the constituent atoms of the target to strike.
  • This is based on the principle that the ejected atoms are attached to the opposing substrate surface to form a film.
  • Such sputtering methods include a radio frequency sputtering (RF) method, a magnetron sputtering method, a DC (direct current) sputtering method, and the like, which are used as appropriate depending on the target material and film forming conditions.
  • RF radio frequency sputtering
  • magnetron sputtering method magnetron sputtering method
  • DC (direct current) sputtering method and the like, which are used as appropriate depending on the target material and film forming conditions.
  • the composition of A 1 Ru sputtering target is A 1-50 at% Ru, but the melting temperature of this composition is 2000 ° C or higher. Is difficult in terms of manufacturing cost.
  • the SEM image, Ru distribution image, A1 distribution image, and ⁇ distribution image of the surface of a conventional sintered body of A1-50 at% Ru are shown in Fig. 5, Fig. 6, Fig. 7, and Fig. 8, respectively. Shown.
  • the SEM image shows the presence of many large grains. Chemically, A1, Ru, and A1-Ru alloys are in a non-uniform state. In addition, as shown in FIGS. 6 and 7, it can be seen that Ru and A1 are remarkably segregated. Furthermore, as shown in FIG. 8, oxygen is distributed in large amounts and non-uniformly.
  • the present invention enables stable and low-cost production of an A 1 Ru sputtering target that has a uniform structure and can significantly reduce oxygen, and prevents or suppresses the generation of particles.
  • the purpose is to increase the product yield of film formation.
  • the present invention provides an A 1 Ru sputtering target suitable for forming a film for a hard disk and a method for producing the same.
  • the present inventors have conducted intensive research, and as a result, by improving the powder manufacturing process and the sintering process, it has been possible to reduce oxygen and prevent or suppress the generation of particles. It was found that the manufacturing yield could be significantly improved.
  • the present invention is based on this finding,
  • An A 1 Ru sputtering target characterized by being a sintered body comprising at least 95 vol.% Of A 1 Ru intermetallic compound.
  • HIP hot isostatic pressing
  • the method for producing an A1Ru sputtering one-gate described in each of 4 to 9 above, wherein the oxygen content of the evening-get is 1500 w tp pm or less 1 1.95 vol.% The method for producing an A 1 Ru sputtering gate according to any one of the above items 4 to 10, wherein the sintered body is a sintered body made of the above A 1 Ru intermetallic compound.
  • FIG. 1 is a view showing an SEM image of an A 1 Ru intermetallic compound sintered body sputtering target of the present invention
  • FIG. 2 is a diagram showing an A 1 Ru intermetallic compound sintered body sputtering ring of the present invention
  • FIG. 3 is a view showing a target Ru distribution image
  • FIG. 3 is a view showing an A 1 Ru intermetallic compound sintered object sputtering target A 1 distribution image of the present invention
  • FIG. 4 is a view showing an A 1 Ru of the present invention.
  • FIG. 5 is a diagram showing an SEM image of a conventional A 1-50 at% Ru sintered body
  • FIG. 5 is a diagram showing a SEM image of a conventional A 1-50 at% Ru sintered body.
  • FIG. 5 is a diagram showing a SEM image of a conventional A 1-50 at% Ru sintered body.
  • FIG. 7 is a diagram showing an Ru distribution image of the A 1—50 at% Ru sintered target of FIG. 7, and FIG. 7 is a diagram showing an A 1 distribution image of the conventional A 1—50 at% Ru sintered target.
  • FIG. 8 is a view showing an O distribution image of a conventional A 1-50 at% Ru sintered compact.
  • the A 1 Ru sputtering target of the present invention has a great feature in that it is a sintered body composed of 95 vol.% Or more of A 1 Ru intermetallic compound. Since a uniform structure of A 1 Ru intermetallic compound can be obtained, there is a remarkable effect that a uniform film can be formed during sputtering film formation. From the viewpoint of homogeneity, it is desirable that the structure be composed of only A 1 Ru intermetallic compound. However, the presence of less than 5 vol.% Of free Al, Ru, or other intermetallic compounds will greatly affect the quality of film formation However, this level of content is acceptable.
  • the oxygen content of the A 1 Ru sputtering target of the present invention is 1500 wt ppm or less, the oxygen content is extremely reduced, and the surface of the target is uniform. Further, an A 1 Ru sputtering target having a relative density of 90% or more can be obtained.
  • FIG. 1 shows an SEM image as an example of the A 1 Ru sputtering target of the present invention. As shown in Fig. 1, a uniform surface was obtained.
  • FIG. 2 and Fig. 3 show the same distribution image of Ru and A1, however, it can be seen that there is no big prayer in the target and that the uniformity is excellent.
  • Figure 4 shows the same distribution image of oxygen.
  • FIG. 4 shows that the oxygen content is extremely small and dispersed.
  • a 1 and formulating the Ru material such that the target composition ⁇ or after Atomai's powder is A 1 13 Ru 4 (eight 1 and scale 1: molar ratio of about 3-4: about 1) and then melt at high frequency.
  • the high-frequency melting can reduce the oxygen content in the molten metal or ingot to 10 Owt ppm or less.
  • the grinding of the ingot after dissolution ⁇ may be a Atomaizu powder mainly composed of A 1 13 R u 4 intermetallic compound by a gas atomizing method.
  • the gas atomizing method By using the gas atomizing method, the oxygen content can be further reduced.
  • this A 1 13 Ru 4 mixture of Ru powder intermetallic compound powder as a main component sintering by hot pressing or hot isostatic pressing (HIP).
  • the mixing amount of Ru powder is such that the A 1 Ru intermetallic compound is finally obtained.
  • powders other than such an average particle size can be used according to sintering conditions.
  • Sintering temperature 1300 ⁇ : L 500 ° C, sintering at sintering pressure of 15 OKg f / cm 2 or more. Sintering in a vacuum is desirable to further reduce oxygen. This makes it possible to obtain a sputtering getter made of an A 1 Ru intermetallic compound having an oxygen content of 150 Owt ppm or less and a relative density of 90% or more. Examples and comparative examples
  • A1 and Ru raw materials were mixed together and high frequency (vacuum) -dissolved raw material 2 OKg so that A1 3.25 mol: Ru 1 mol respectively.
  • the dissolution temperature was 1650 ° C.
  • the mixing amount of the Ru powder was such that the A 1 Ru intermetallic compound was finally obtained.
  • sintering was performed by hot pressing in an Ar atmosphere. Sintering was performed at a sintering temperature of 1350 ° C and a sintering pressure of 20 OKg f / cm 2 to obtain a sintered block. Furthermore, this block was cut out and processed into a target by surface grinding and the like.
  • A1 and Ru raw materials were mixed together and high frequency (vacuum) -dissolved raw material 2 OKg so that A1 3.25 mol: Ru 1 mol respectively.
  • the dissolution temperature was 1650 ° C.
  • the oxygen content in the molten metal could be set to 5 Ow t pm.
  • the mixing amount of the Ru powder was such that the A 1 Ru intermetallic compound was finally obtained.
  • the mixing amount of the Ru powder was such that the A 1 Ru intermetallic compound was finally obtained. .
  • a sputtering target of an A 1 Ru intermetallic compound having an oxygen content of 107 Owt ppm and a relative density of 95% was obtained.
  • the presence ratio of the A I Ru intermetallic compound in the evening target was 99.9 vol.%, Indicating that the target had a structure equivalent to that in Figs.
  • a mixed powder prepared by mixing raw material powders of A1 and Ru having an average particle diameter of 75 m so as to have a molar ratio of A11: 1: Ru1 was filled in a graphite die for sintering.
  • sintering was performed by hot pressing in an Ar atmosphere. Sintering was performed at a sintering temperature of 600 ° C. and a sintering pressure of 20 OKg f Zcm 2 to obtain a sintered block. Furthermore, this block was cut out and processed into a target by performing surface grinding and the like.
  • a sputtering target of A 1 Ru having an oxygen content of 250 Owt ppm and a relative density of 70% was obtained.
  • A′1, Ru, and A 1 Ru intermetallic compound were mixed, and the ratio of Al Ru intermetallic compound was 20 vol.%.
  • This target organization had the same organization as that shown in Figs.
  • the A 1 Ru sputtering target falling within the scope of the present invention shown in the examples can obtain a uniform structure of A 1 Ru intermetallic compound. For this reason, the number of particles can be remarkably reduced in sputtering film formation, and a uniform film can be formed.
  • the oxygen content of the A 1 Ru intermetallic compound sputtering target of the present invention is 150 Owt ppm or less, has an extremely reduced oxygen content, and has a uniform target surface (erosion surface). Further, an A 1 Ru intermetallic compound sputtering target having a relative density of 90% or more can be easily obtained. And there is no big prayer in the target, and it has excellent uniformity.
  • the oxygen content in the molten metal or in the ingot can be reduced to 10 Owtppm or less by high frequency melting of the A1 and the Ru raw material.
  • dissolution ⁇ ingot may be a powder based on A 1 13 Ru 4 metals intermetallic compounds by gas atomization.
  • Use of the gas atomization method has the feature that the oxygen content can be further reduced.
  • Sintering is performed at a sintering temperature of 1300 to 1500 ° C and a sintering pressure of 150 kg g / cm 2 or more. By sintering in a vacuum, the oxygen content can be further reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

本発明は、95vol.%以上のAlRu金属間化合物からなる焼結体であることを特徴とするAlRuスパッタリングターゲットに関するものであり、均一な組織を持ち、酸素を低減できるAlRuスパッタリングターゲットを安定してかつ低コストで製造できるようにするとともに、パーティクルの発生を防止又は抑制し、成膜の製品歩留りを上げる。

Description

明 細 書
A 1 R uスパッタリング夕一ゲット及びその製造方法 技術分野
本発明は、 A 1 R uスパッタリング夕 ^"ゲット、 特にハードディスク用の膜 形成に好適な A 1 R uスパッタリングターゲット及びその製造方法に関する。 背景技術
近年、 ハードディスクのデ一夕密度向上のために、 多くの材料が検討されて いるが、 中でも A 1 R uを構成要素とする多層膜を用いた媒体 (磁性層とのサ ンドィツチ構造のエレメントからなる) が記録密度を大きく向上させることが できることが分かり、 これを用いて近い将来ディスク面積 1平方ィンチ当たり 1 0 0ギガピットのデータが保存できるようになると言われている。
スパッタリング法によって多層膜を形成するには、 通常正の電極と負の電極と からなるターゲットとを対向させ、 不活性ガス雰囲気下でこれらの基板と夕ーゲ ッ卜の間に高電圧を印加して電場を発生させて行われる。
上記高電圧の印加により、 電離した電子と不活性ガスが衝突してプラズマが形 成され、 このプラズマ中の陽イオンがターゲット (負の電極) 表面に衝突して夕 ーゲットの構成原子が叩き出され、 この飛び出した原子が対向する基板表面に付 着して膜が形成されるという原理を用いたものである。
このようなスパッタリング法には高周波スパッタリング (R F ) 法、 マグネト ロンスパッタリング法、 D C (直流) スパッタリング法などがあり、 夕一ゲッ ト材料や膜形成の条件に応じて適宜使用されている。
従来の A 1 R uスパッタリングターゲットにおいて、 特に問題となるのは夕 ーゲットの材質が均一でなく、 また酸素含有量が高いことが上げられる。 このようなターゲットを使用すると、 スパッ夕膜を形成する際にパーティク ルの発生が多くなり、 膜の不均一化さらには成膜不良品が発生し、 歩留りが低 下するという問題があった。
A 1 Ruスパッタリング夕ーゲットの使用条件として、 組成的には A 1― 5 0 a t %R uが使用されるが、 この組成の溶解温度は 2000° C以上なので、 溶解铸造品をターゲットとすることは製造コストからみても困難である。
このため、 等モルの A 1と Ruの粉末を使用し、 これを混合して焼結した A 1 - 50 a t %Ruの焼結体ターゲッ卜が用いられている。
従来の A 1 - 50 a t %Ruの焼結体夕一ゲット表面の S EM画像、 Ru分 布画像、 A 1分布画像、 〇分布画像を、 それぞれ図 5、 図 6、 図 7、 図 8に示 す。
図 5に示すように、 SEM画像では多数の大きな粒の存在が認められる。 化 学成分的には A 1、 Ru、 A 1—Ru合金が不均一に分散している状態である。 また、 図 6及び図 7に示すように、 Ru及び A 1は著しく偏析しているのが 分かる。 さらに、 図 8に示すように、 酸素が多量に、 かつ不均一に分布してい る。
以上から、 A 1— 50 a t %Ruの焼結体夕一ゲットを製造する際に、 単に 等モルの A 1と Ruの粉末を使用したのでは、 酸素含有量が多く、 また不均一 な組織となっており、 これがスパッタリングの際の、 パーティクル発生の原因 となった。 また、 このような従来の製法では、 酸素含有量を焼結体ターゲット から減少させることができないという問題を有していた。 発明の開示
本発明は、 均一な組織を持ち、 酸素を著しく低減できる A 1 Ruスパッ夕リン グターゲットを安定して、 かつ低コストで製造できるようにするとともに、 パ —ティクルの発生を防止又は抑制し、 成膜の製品歩留りを上げることを目的と する。
これによつて、 ハードディスク用の膜形成に好適な A 1 Ruスパッタリング ターゲット及ぴその製造方法を提供するものである。 上記の課題を解決するために、 本発明者らは鋭意研究を行った結果、 粉末の製 造工程及び焼結工程を改善することにより、 酸素を低減しかつパーティクルの発 生を防止又は抑制して、 製造歩留りを著しく向上できるとの知見を得た。
本発明はこの知見に基づき、
1. 95 v o l . %以上の A 1 Ru金属間化合物からなる焼結体であることを 特徴とする A 1 Ruスパッタリングターゲット
2. 酸素含有量が 150 Owt p pm以下であることを特徴とする上記 1記載の A 1 R uスパッタリングターゲット
3. 相対密度 90 %以上であることを特徴とする上記 1又は 2記載の A 1 Ruス ノ、。ッタリングターゲット
4. 原料となる A 1と Ruを高周波溶解し、 溶解後のインゴットを粉砕するか 又はアトマイズ法により A 113Ru4金属間化合物を主成分とする粉末とし、 こ の A 113Ru4金属間化合物を主成分とする粉末に Ru粉を混合した後、 ホット プレス又は熱間静水圧プレス (H I P) により焼結することを特徴とする A 1 Ruスパッタリング夕一ゲットの製造方法
5. 高周波溶解により溶湯中又はインゴット中の酸素含有量を 10 Owt ppm 以下とすることを特徴とする上記 4記載の A 1 Ruスパッタリング夕一.ゲッ卜の 製造方法
6. 1300〜1 500 ° Cで焼結することを特徴とする上記 4又は 5記載の A 1 Ruスパッタリングターゲットの製造方法
7. 15 OKg f /cm2以上の焼結圧力で焼結することを特徴とする上記 4〜 6のそれぞれに記載の A 1 Ruスパッタリング夕一ゲットの製造方法
8. 平均粒径が 50〜10 O imの粉末を用いて焼結することを特徴とする上記 4〜マのそれぞれに記載の A 1 Ruスパッタリングターゲッ卜の製造方法
9. 真空中で焼結することを特徴とする上記 4〜 8のそれぞれに記載の A 1 Ru スパッタリングターゲッ卜の製造方法 10. 夕ーゲットの酸素含有量が 1500w t p pm以下であることを特徴とす る上記 4〜 9のそれぞれに記載の A 1 R uスパッタリング夕一ゲッ卜の製造方法 1 1. 95 vo l . %以上の A 1 Ru金属間化合物からなる焼結体であること を特徴とする上記 4〜10のそれぞれに記載の A 1 Ruスパッタリング夕一ゲッ 卜の製造方法
12. 相対密度 90%以上であることを特徴とする上記 4~1 1のそれぞれに記 載の A 1 Ruスパッタリングターゲットの製造方法
を提供する。 図面の簡単な説明
図 1は、 本発明の A 1 Ru金属間化合物焼結体スパッタリングタ一ゲッ卜の SEM画像を示す図であり、 図 2は、 本発明の A 1 Ru金属間化合物焼結体ス パッ夕リングターゲット Ru分布画像を示す図であり、 図 3は、 本発明の A 1 Ru金属間化合物焼結体スパッタリング夕ーゲット A 1分布画像を示す図であ り、 図 4は、 本発明の A 1 Ru金属間化合物焼結体スパッタリングターゲット 0分布画像を示す図であり、 図 5は、 従来の A 1 - 50 a t %Ru焼結体夕一 ゲットの S EM画像を示す図であり、 6は、 従来の A 1— 50 a t %Ru焼 結体ターゲットの R u分布画像を示す図であり、 図 7は、 従来の A 1— 50 a t %Ru焼結体ターゲットの A 1分布画像を示す図であり、 図 8は、 従来の A 1 - 50 a t %Ru焼結体夕一ゲッ卜の O分布画像を示す図である。 発明の実施の形態
本件発明の A 1 Ruスパッタリングターゲットは、 95vo l. %以上の A 1 Ru金属間化合物からなる焼結体である点に大きな特徴を有する。 A 1 Ru金 属間化合物という均一な組織を得ることができるため、 スパッタリング成膜の 際に均一な膜を形成することができるという著しい効果がある。 均一性からは A 1 Ru金属間化合物のみの組織であることが望ましいが、 5 v o l . %未満のフリーの A l、 Ru又は他の金属間化合物等の存在は、 成膜 φ品質に大きな影響を与えるものではないので、 この程度の含有量は許容され る。
また、 本発明の A 1 Ruスパッタリングターゲットの酸素含有量は 1500w t ppm以下であり、 極めて低減された酸素含有量を有し、 ターゲットの表面は 均一である。 さらに、 相対密度 90%以上の A 1 Ruスパッタリングターゲット を得ることができる。
本発明の A 1 Ruスパッタリングターゲッ卜の一例である S EM画像を図 1に 示す。 図 1に示すように、 均一な表面が得られている。
また、 図 2及び図 3は、 Ru及び A 1の同分布画像を示すが、 ターゲット内に 大きな偏祈がなく、 均一性に優れていることが分かる。 さらに、 図 4に酸素の同 分布画像を示す。 図 4では酸素量が極めて少なくかつ分散していることが分かる。 本発明の夕一ゲットの製造に際しては、 A 1と Ru原料を铸造後又はァトマィ ズ粉の目標組成が A 113Ru4となるように調合 (八 1と尺1:のモル比は、 約 3 〜4 : 1程度とする) して高周波溶解する。 高周波溶解により溶湯中又はインゴ ット中の酸素含有量を 10 Owt p pm以下とすることができる。
溶解した後、 铸造してインゴット得、 これを粉砕して A 113Ru4金属間化合 物を主成分とする粉末を得る。 この成分比の溶解は、 比較的低温である約 14 00〜1450 ° C溶解させることができ、 上記に述べた 2000 ° Cのよう な高温を必要としない。 また、 得られた A 113Ru4金属間化合物は破砕し易い ので、 粉末の製造が容易であるという特徴がある。
溶解錶造後のインゴットの粉砕に替えて、 ガスアトマイズ法により A 113R u4金属間化合物を主成分とするァトマイズ粉とすることもできる。 ガスアトマ ィズ法を使用することにより、 酸素含有量をさらに低減することができる。 次に、 この A 113Ru4金属間化合物を主成分とする粉末に Ru粉を混合し、 ホットプレス又は熱間静水圧プレス (H I P) により焼結する。 Ru粉の混合 量は、 最終的に A 1 Ru金属間化合物が得られる量とする。 平均粒径が 50〜
100 mの粉末を用いて焼結することが望ましい。 なお、 焼結条件に応じて、 このような平均粒径以外の粉末を使用することもできる。
焼結温度は、 1300〜: L 500° Cとし、 15 OKg f /cm2以上の焼結 圧力で焼結する。 より酸素を低減させるために、 真空中で焼結することが望まし い。 これによつて、 酸素含有量が 150 Owt p pm以下、 相対密度 90 %以上 である A 1 Ru金属間化合物からなるスパッタリング夕一ゲットを得ることが できる。 実施例および比較例
以下、 実施例および比較例に基づいて説明する。 なお、 本実施例はあくまで 一例であり、 この例によって何ら制限されるものではない。 すなわち、 本発明 は特許請求の範囲によってのみ制限されるものであり、 本発明に含まれる実施 例以外の種々の変形を包含するものである。
(実施例 1)
A 1と Ruの原料を、 それぞれ A 1 3. 25モル: Ru 1モルとなるように、 調合した原料 2 OKgを高周波 (真空) 溶解した。 溶解温度は、 1650 ° C であった。 この高周波真空溶解により溶湯中の酸素含有量を 5 Owt ppmとす ることができた。
溶解後、 铸造してインゴット得、 これを粉砕して A 113Ru4金属間化合物を 主成分とする粉末とした。 また、 得られた A 113Ru4金属間化合物は脆く、 容 易に粉砕することができ、 平均粒径 75 mの粉末が得られた。 .
この A 113Ru4金属間化合物を主成分とする粉末に同様の粒径を有する Ru 粉を混合し、 この混合粉を焼結用のグラフアイトダイスに充填した。 Ru粉の 混合量は、 最終的に A 1 Ru金属間化合物が得られる量とした。 次に、 A r雰囲気中でホットプレスにより焼結した。 焼結温度は 1 350 ° C, 焼結圧力 20 OKg f /cm2で焼結し、 焼結体ブロックを得た。 さらにこ のブロックを切り出し、 表面研削等を行なってターゲットに加工した。
これによつて、 酸素含有量は 145 Ow t p pm、 相対密度 85%である A 1 Ru金属間化合物のスパッタリング夕一ゲットを得ることができた。 夕一ゲッ ト中の A 1 Ru金属間化合物の比率は 99. 5%であり、 図 1〜図 4と同等の 組織を持つターゲットであゥた。 '
(実施例 2)
A 1と Ruの原料を、 それぞれ A 1 3. 25モル: Ru 1モルとなるように、 調合した原料 2 OKgを高周波 (真空) 溶解した。 溶解温度は、 1650 ° C であった。 この高周波真空溶解により溶湯中の酸素含有量を 5 Ow t p pmとす ることができた。
溶解後、 铸造してインゴット得、 これを粉碎して A 113Ru4金属間化合物を 主成分とする粉末とした。 また、 得られた A 113Ru4金属間化合物は脆く、 容 易に粉砕することができ、 平均粒径 75 imの粉末が得られた。
この A 113Ru4金属間化合物を主成分とする粉末に同様の粒径を有する Ru 粉を混合し、 この混合粉を焼結用のグラフアイトダイスに充填した。 Ru粉の 混合量は、 最終的に A 1 Ru金属間化合物が得られる量とした。
次に、 真空中でホットプレスにより焼結した。 焼結温度は 1450° C、 焼結 圧力 20 OKg f /cm2で焼結し、 焼結体ブロックを得た。 さらにこのブロッ クを切り出し、 表面研削等を行なってターゲットに加工した。
これによつて、 酸素含有量は 135 Ow t p pm、 相対密度 91 %である A 1 Ru金属間化合物のスパッタリングターゲットを得ることができた。 夕一ゲッ ト中の A 1 Ru金属間化合物の比率は 99. 7 v o l . %であり、 図 1〜図 4 と同等の組織を持つ夕ーゲッ卜であった。 このようにして得た A 1 Ru金属間化合物からなる焼結体夕一ゲットを用い てスパッタリングを実施したところパーティクルの発生は殆どなく、 長時間に 亘って均一な膜を形成することができた。
(実施例 3 )
A 1と Ruの原料を、 それぞれ A 1 3. 25モル: Ru 1モルとなるように、 調合した原料 20 Kgを高周波 (真空) 溶解した。 溶解温度は、 1 650 ° C であった。 この高周波真空溶解により溶湯中の酸素含有量を 5 Owt p pmとす ることができた。
溶解後、 铸造してインゴット得、 これを粉砕して A 113Ru4金属間化合物を 主成分とする粉末とした。 また、 得られた A 113Ru4金属間化合物は脆く、 容 易に粉碎することができ、 平均粒径 75 の粉末が得られた。
この A 113Ru4金属間化合物を主成分とする粉末に同様の粒径を有する Ru 粉を混合し、 この混合粉を焼結用のグラフアイトダイスに充填した。 Ru粉の 混合量は、 最終的に A 1 Ru金属間化合物が得られる量とした。.
,次に、 真空中でホットプレスにより焼結した。 焼結温度は 1550° C、 焼結 圧力 200 Kg ί /cm2で焼結し、 焼結体ブロックを得た。 さらにこのブロッ クを切り出し、 表面研削等を行なってターゲットに加工した。
これによつて、 酸素含有量は 107 Owt ppm、 相対密度 95%である A 1 Ru金属間化合物のスパッタリングターゲットを得ることができた。 夕一ゲッ ト中の A I Ru金属間化合物の存在比率は 99. 9 vo l . %であり、 図 1〜 図 4と同等の組織を持つターゲッ卜であった。
このようにして得た A 1 Ru金属間化合物からなる焼結体ターゲットを用い てスパッタリングを実施したところパーティクルの発生は殆どなく、 長時間に 亘って均一な膜を形成することができた。 (比較例 1 )
平均粒径 75 mの A 1と Ruの原料粉末を、 それぞれ A 1 1モル: Ru 1 モルとなるように調合した混合粉を焼結用のグラフアイトダイスに充填した。 次に、 A r雰囲気中でホットプレスにより焼結した。 焼結温度は 600° C、 焼結圧力 20 OKg f Zcm2で焼結し、 焼結体ブロックを得た。 さらにこのブ ロックを切り出し、 表面研削等を行なってターゲッ卜に加工した。
これによつて、 酸素含有量は 250 Owt p pm、 相対密度 70%である A 1 Ruのスパッタリングターゲットを得ることができた。 ターゲット中には、 A '1、 Ru、 A 1 Ru金属間化合物が混在した状態であり、 A l Ru金属間化合 物の比率は 20 v o l . %であった。 このターゲットの組織は、 図 5〜図 8と 同等の組織を持つターゲッ卜であった。
このようにして得た焼結体ターゲットを用いてスパッタリングを実施したと ころパーティクルの発生は異常に増大し、 均一な膜を形成することができず、 不良品の発生が生じた。 発明の効果
以上から明らかなよう'に、 実施例に示す本発明の範囲に入る A 1 Ruスパッタ リングターゲットは、 A 1 Ru金属間化合物という均一な組織を得ることがで きる。 このため、 スパッタリング成膜においてパーティクル数を著しく減少さ せることができると共に、 均一な成膜が可能となる。
また、 本発明の A 1 Ru金属間化合物スパッタリング夕ーゲッ卜の酸素含有 量は 150 Owt ppm以下であり、 極めて低減された酸素含有量を有し、 ター ゲット表面 (エロージョン面) が均一である。 さらに、 相対密度 90%以上の A 1 Ru金属間化合物スパッタリングターゲットを容易に得ることができる。 そ して、 ターゲット内に大きな偏祈がなく、 均一性に優れている。 本発明のターゲットの製造に際しては、 A 1と Ru原料を高周波溶解すること により溶湯中又はインゴット中の酸素含^"量を 10 Owt ppm以下とすること ができる。 溶解した後、 铸造してインゴット得、 これを粉砕して A 113Ru4金 属間化合物を主成分とする粉末とするが、 この成分比の溶解は、 比較的低温で ある約 1400〜 1450° C溶解させることができるという特徵を有し、 製 造コストを低減させることができる。 また、 得られた A 113Ru4金属間化合物 は脆く、 破碎し易いので、 粉砕工程のコスト低減が可能であるという利点があ る。
溶解铸造インゴットの粉砕に替えて、 ガスアトマイズ法により A 113Ru4金 属間化合物を主成分とする粉末とすることもできる。 ガスァトマイズ法を使用 することにより、 酸素含有量をさらに低減することができるという特徴を有す る。
焼結温度を 1300〜1500 ° Cとし、 150 K g ί / c m2以上の焼結圧 力で焼結するが、 真空中で焼結することによってさらに酸素含有量を低減するこ とができる。

Claims

請 求 の 範 囲 1. 95 v o l . %以上の A 1 R u金属間化合物からなる焼結体であること を特徴とする A 1 Ruスパッタリングタ一ゲット。
2. 酸素含有量が 150 Owt p pm以下であることを特徴とする請求の範囲 第 1項記載の A 1 Ruスパッタリングターゲット。
3. 相対密度 90 %以上であることを特徴とする請求の範囲第 1項又は第 2項 記載の A 1 Ruスパッタリングターゲット。
4. 原料となる A 1と Ruを高周波溶解し、 溶解後のインゴットを粉砕する か又はァトマイズ法により A 1 i 3 R u 4金属間化合物を主成分とする粉末とし、 この A l 13Ru4金属間化合物を主成分とする粉末に Ru粉を混合した後、 ホッ トプレス又は熱間静水圧プレス (H I P) により焼結することを特徴とする A 1 Ruスパッタリングターゲットの製造方法。
5. 高周波溶解により溶湯中又はインゴット中の酸素含有量を 10 Ow t p p m以下とすることを特徴とする請求の範囲第 4項記載の A 1 Ruスパッタリング ターゲッ卜の製造方法。
6. 1300〜 1500° Cで焼結することを特徴とする請求の範囲第 4項又 は第 5項記載の A 1 Ruスパッタリング夕ーゲットの製造方法。
7. 15 OKg f /cm2以上の焼結圧力で焼結することを特徴とする請求の 範囲第 4項〜第 6項のそれぞれに記載の A 1 Ruスパッタリングターゲットの製 造方法。
8. 平均粒径が 50〜100 mの粉末を用いて焼結することを特徴とする請 求の範囲第 4項〜第 7項のそれぞれに記載の A 1 Ruスパッタリングタ一ゲット の製造方法。
9. 真空中で焼結することを特徴とする請求の範囲第 4項〜第 8項のそれぞれ に記載の A 1 Ruスパッタリング夕一ゲットの製造方法。
10. ターゲットの酸素含有量が 150 Owt p pm以下であることを特徴と する請求の範囲第 4項〜第 9項のそれぞれに記載の A 1 Ruスパッタリング夕一 ゲットの製造方法。
1 1. 95 vo l . %以上の A 1 Ru金属間化合物からなる焼結体であること を特徴とする請求の範囲第 4項〜第 10項のそれぞれに記載の A 1 Ruスパッ夕 リングターゲットの製造方法。
12. 相対密度 90%以上であることを特徴とする請求の範囲第 4項〜第 11 項のそれぞれに記載の A 1 R uスパッタリング夕一ゲットの製造方法。
PCT/JP2003/005757 2002-06-24 2003-05-08 AlRuスパッタリングターゲット及びその製造方法 WO2004001092A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004515475A JPWO2004001092A1 (ja) 2002-06-24 2003-05-08 AlRuスパッタリングターゲット及びその製造方法
US10/479,687 US20040144204A1 (en) 2002-06-24 2003-05-08 Airu spattering target and method for preparation thereof
US11/733,016 US7767139B2 (en) 2002-06-24 2007-04-09 AlRu sputtering target and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-182713 2002-06-24
JP2002182713 2002-06-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/479,687 A-371-Of-International US20040144204A1 (en) 2002-06-24 2003-05-08 Airu spattering target and method for preparation thereof
US11/733,016 Division US7767139B2 (en) 2002-06-24 2007-04-09 AlRu sputtering target and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2004001092A1 true WO2004001092A1 (ja) 2003-12-31

Family

ID=29996662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005757 WO2004001092A1 (ja) 2002-06-24 2003-05-08 AlRuスパッタリングターゲット及びその製造方法

Country Status (4)

Country Link
US (2) US20040144204A1 (ja)
JP (2) JPWO2004001092A1 (ja)
TW (1) TWI225893B (ja)
WO (1) WO2004001092A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134743A1 (ja) * 2005-06-16 2006-12-21 Nippon Mining & Metals Co., Ltd. ルテニウム合金スパッタリングターゲット
WO2009151032A1 (ja) * 2008-06-09 2009-12-17 株式会社コベルコ科研 Al基合金スパッタリングターゲット材の製造方法
US9675796B2 (en) 2013-11-10 2017-06-13 Brainsgate Ltd. Implant and delivery system for neural stimulator
US10271907B2 (en) 2015-05-13 2019-04-30 Brainsgate Ltd. Implant and delivery system for neural stimulator
WO2022004354A1 (ja) * 2020-06-30 2022-01-06 株式会社フルヤ金属 スパッタリングターゲット及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724364B1 (en) * 2004-03-01 2014-01-22 JX Nippon Mining & Metals Corporation Method of forming an HP Ruthenium powder and a sputtering target therefrom
US8510672B2 (en) * 2004-08-17 2013-08-13 Dirtt Environmental Solutions Ltd Automatically creating and modifying furniture layouts in design software
US7871564B2 (en) * 2005-10-14 2011-01-18 Jx Nippon Mining & Metals Corporation High-purity Ru alloy target, process for producing the same, and sputtered film
DE102005054463B4 (de) * 2005-11-08 2016-10-27 Hansgrohe Se Beschichteter Gegenstand, Beschichtungsverfahren sowie Target für ein PVD-Verfahren
WO2007062089A1 (en) * 2005-11-22 2007-05-31 Bodycote Imt, Inc. Fabrication of ruthenium and ruthenium alloy sputtering targets with low oxygen content
US8118984B2 (en) * 2006-02-22 2012-02-21 Jx Nippon Mining & Metals Corporation Sintered sputtering target made of refractory metals
JP5459494B2 (ja) * 2010-03-28 2014-04-02 三菱マテリアル株式会社 磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法
WO2014021139A1 (ja) 2012-07-30 2014-02-06 Jx日鉱日石金属株式会社 ルテニウムスパッタリングターゲット及びルテニウム合金スパッタリングターゲット
JP6461543B2 (ja) * 2013-10-08 2019-01-30 株式会社フルヤ金属 アルミニウムと希土類元素との合金ターゲット及びその製造方法
WO2015146604A1 (ja) 2014-03-27 2015-10-01 Jx日鉱日石金属株式会社 Ni-P合金又はNi-Pt-P合金からなるスパッタリングターゲット及びその製造方法
KR102150214B1 (ko) * 2019-12-03 2020-08-31 주식회사 이엠엘 물리증착용 고내식 컬러 합금 소재 및 고밀도 타겟 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317082A (ja) * 1997-05-20 1998-12-02 Sumitomo Metal Mining Co Ltd ターゲット材用Al系合金とその製造方法
WO1999034028A1 (en) * 1997-12-24 1999-07-08 Kabushiki Kaisha Toshiba SPUTTERING TARGET, Al INTERCONNECTION FILM, AND ELECTRONIC COMPONENT
JPH11293454A (ja) * 1998-04-14 1999-10-26 Hitachi Metals Ltd Al系スパッタリング用ターゲット材及びその製造方法
US20020014406A1 (en) * 1998-05-21 2002-02-07 Hiroshi Takashima Aluminum target material for sputtering and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011554A (en) * 1989-12-26 1991-04-30 General Electric Company Ruthenium aluminum intermetallic compounds
JP4058777B2 (ja) * 1997-07-31 2008-03-12 日鉱金属株式会社 薄膜形成用高純度ルテニウム焼結体スパッタリングターゲット及び同ターゲットをスパッタリングすることによって形成される薄膜
JP2989169B2 (ja) * 1997-08-08 1999-12-13 日立金属株式会社 Ni−Al系金属間化合物ターゲットおよびその製造方法ならびに磁気記録媒体
JP2000017433A (ja) * 1998-07-07 2000-01-18 Hitachi Metals Ltd B2規則格子金属間化合物ターゲットおよび磁気記録媒体
JP2000034563A (ja) * 1998-07-14 2000-02-02 Japan Energy Corp 高純度ルテニウムスパッタリングターゲットの製造方法及び高純度ルテニウムスパッタリングターゲット
EP1724364B1 (en) * 2004-03-01 2014-01-22 JX Nippon Mining & Metals Corporation Method of forming an HP Ruthenium powder and a sputtering target therefrom
CN101198717B (zh) * 2005-06-16 2010-10-13 日矿金属株式会社 钌合金溅射靶
US7871564B2 (en) * 2005-10-14 2011-01-18 Jx Nippon Mining & Metals Corporation High-purity Ru alloy target, process for producing the same, and sputtered film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317082A (ja) * 1997-05-20 1998-12-02 Sumitomo Metal Mining Co Ltd ターゲット材用Al系合金とその製造方法
WO1999034028A1 (en) * 1997-12-24 1999-07-08 Kabushiki Kaisha Toshiba SPUTTERING TARGET, Al INTERCONNECTION FILM, AND ELECTRONIC COMPONENT
JPH11293454A (ja) * 1998-04-14 1999-10-26 Hitachi Metals Ltd Al系スパッタリング用ターゲット材及びその製造方法
US20020014406A1 (en) * 1998-05-21 2002-02-07 Hiroshi Takashima Aluminum target material for sputtering and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134743A1 (ja) * 2005-06-16 2006-12-21 Nippon Mining & Metals Co., Ltd. ルテニウム合金スパッタリングターゲット
JPWO2006134743A1 (ja) * 2005-06-16 2009-01-08 日鉱金属株式会社 ルテニウム合金スパッタリングターゲット
JP5234735B2 (ja) * 2005-06-16 2013-07-10 Jx日鉱日石金属株式会社 タンタル−ルテニウム合金スパッタリングターゲット
WO2009151032A1 (ja) * 2008-06-09 2009-12-17 株式会社コベルコ科研 Al基合金スパッタリングターゲット材の製造方法
US9675796B2 (en) 2013-11-10 2017-06-13 Brainsgate Ltd. Implant and delivery system for neural stimulator
US10512771B2 (en) 2013-11-10 2019-12-24 Brainsgate Ltd. Implant and delivery system for neural stimulator
US10271907B2 (en) 2015-05-13 2019-04-30 Brainsgate Ltd. Implant and delivery system for neural stimulator
WO2022004354A1 (ja) * 2020-06-30 2022-01-06 株式会社フルヤ金属 スパッタリングターゲット及びその製造方法

Also Published As

Publication number Publication date
US20070175753A1 (en) 2007-08-02
US7767139B2 (en) 2010-08-03
JP2008179892A (ja) 2008-08-07
JPWO2004001092A1 (ja) 2005-10-20
TW200400276A (en) 2004-01-01
TWI225893B (en) 2005-01-01
US20040144204A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US20210237153A1 (en) Sintered compact target and method of producing sintered compact
US7767139B2 (en) AlRu sputtering target and manufacturing method thereof
TWI488984B (zh) A sintered body, a sintered body, a sputtering target and a sputtering target-supporting plate assembly
US8430978B2 (en) Sputtering target and method for production thereof
JP4965579B2 (ja) Sb−Te基合金焼結体スパッタリングターゲット
US20110284373A1 (en) Inorganic-Particle-Dispersed Sputtering Target
JPWO2006059429A1 (ja) Sb−Te系合金焼結体スパッタリングターゲット
JP2005533182A (ja) ホウ素/炭素/窒素/酸素/ケイ素でドープ処理したスパッタリングターゲットの製造方法
US7943021B2 (en) Sb-Te alloy sintered compact target and manufacturing method thereof
JP4851672B2 (ja) 改良されたスパッタリングターゲット及びその製法並びに使用
WO2004044260A1 (ja) スパッタリングターゲット及び同製造用粉末
JP2000309865A (ja) Ni−P合金スパッタリングターゲット及びその製造方法
JP7153729B2 (ja) スパッタリングターゲット及び磁性膜
JP7178707B2 (ja) MgO-TiO系スパッタリングターゲットの製造方法
JP7317741B2 (ja) スパッタリングターゲット、磁性膜、及びスパッタリングターゲット作製用の原料混合粉末
US10612128B2 (en) Sputtering target comprising Al—Te—Cu—Zr-based alloy and method of manufacturing same
JP2002115050A (ja) 焼結スパッタリングターゲット材
JP2007291522A (ja) マンガン合金スパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004515475

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10479687

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP SG US