WO2003098291A1 - Faisceau de fibres optiques et procede de fabrication - Google Patents

Faisceau de fibres optiques et procede de fabrication Download PDF

Info

Publication number
WO2003098291A1
WO2003098291A1 PCT/JP2003/005919 JP0305919W WO03098291A1 WO 2003098291 A1 WO2003098291 A1 WO 2003098291A1 JP 0305919 W JP0305919 W JP 0305919W WO 03098291 A1 WO03098291 A1 WO 03098291A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
hydrogen
fiber bundle
deuterium
container
Prior art date
Application number
PCT/JP2003/005919
Other languages
English (en)
French (fr)
Inventor
Shinji Ishikawa
Soichi Endo
Toshihiko Shishido
Ken-Ichiro Miyatake
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to JP2004505759A priority Critical patent/JP3995000B2/ja
Priority to US10/485,558 priority patent/US7277616B2/en
Priority to DE10392596T priority patent/DE10392596T5/de
Publication of WO2003098291A1 publication Critical patent/WO2003098291A1/ja
Priority to US11/896,167 priority patent/US20080190146A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation

Definitions

  • the present invention relates to an optical fiber bundle for transmitting ultraviolet light in which an increase in transmission loss accompanying the transmission of ultraviolet light having a wavelength of 150 nm to 25 Q nm is reduced, and a method for manufacturing the same.
  • UV light emitted by deuterium lamps, KrF excimer lasers, ArF excimer lasers, and F2 excimer lasers has a wavelength of 150 thighs to 250 marshals.
  • the use in is increasing.
  • As a medium for transmitting ultraviolet light in this wavelength range research and development of ultraviolet transmission optical fibers are in progress.
  • the glass is deteriorated due to the transmission of the ultraviolet light and the transmission loss increases.
  • Optical fibers made of silica glass have not completely solved the power problem of excellent UV resistance. It is considered that the increase in transmission loss in the ultraviolet region of the optical fiber made of silica glass is due to the fact that the silica glass is defective due to the irradiation of ultraviolet rays, resulting in light absorption. Therefore, a method of improving ultraviolet resistance by filling defects with hydrogen atoms has been used.
  • Japanese Patent Application Publication No. Hei 6-034830 contains a pure silica core monofluorine-doped quartz clad optical fiber in a stainless steel (SUS) pipe, and the high pressure of 5 to 10 kg / cm2 in the SUS pipe. And a structure in which the outside of the SUS pipe is covered with a heating element so that the hydrogen gas atmosphere can be maintained at a high temperature of 100 to 150 ° C. It is disclosed to be placed in a hydrogen atmosphere.
  • SUS stainless steel
  • Japanese Patent Application Laid-Open Publication No. Hei 6-056457 discloses that an optical fiber preform consisting of pure quartz and a fluorine-doped quartz clad is drawn and a high-temperature optical fiber immediately after drawing is exposed to a hydrogen gas atmosphere. It is disclosed that a large amount of hydrogen diffuses into an optical fiber by exposing an optical fiber to hydrogen gas maintained at a high temperature. You.
  • Japanese Patent Application Publication No. 11-029335 (Reference 3) and Japanese Patent Application Publication No. 10-316445 (Reference 4) show that quartz glass articles are made of hydrogen gas after irradiating electromagnetic waves to glass defects to generate glass defects. Disclosed are methods of immersing in an atmosphere to substantially prevent an increase in light absorption in the ultraviolet region and glass articles thus produced.
  • Japanese Patent Application Publication No. 2000-214336 discloses a quartz glass optical fiber provided with an embedded material formed so that fine particles capable of accumulating hydrogen can be dispersed and distributed around a clad. I have.
  • an optical fiber bundle 14 in which a plurality of optical fibers 11 are loosely bundled, housed in a pipe 13 and both ends are fixed with bases 12.
  • the optical fiber bundle 14 is manufactured by drawing an optical fiber glass base material into an optical fiber, bundling a plurality of the optical fibers, fixing both ends to each other (bundle), and storing the bundle in a pipe. Is done. It is conceivable to combine the above-mentioned technologies, house an optical fiber bundle in a pipe, create a hydrogen-containing atmosphere in the container, and then completely seal the container. However, keeping the inside of the vessel in a hydrogen-containing atmosphere must be compatible with operations involving heat treatment such as welding and sealing, and there is a high risk of explosion. Disclosure of the invention
  • An object of the present invention is to maintain an optical fiber in a hydrogen-containing atmosphere at a wavelength of 150 nm. It is an object of the present invention to provide an ultraviolet light transmitting beam capable of reducing the deterioration of transmission loss at up to 250 nm, and a method for manufacturing an optical beam bundle that can be easily and inexpensively manufactured without danger of explosion when the container is sealed.
  • an optical fiber bundle in which a plurality of optical fibers having a core composed mainly of silica glass and a cladding made of silica glass doped with fluorine and having a smaller refractive index than the core are bundled and housed in a container.
  • the optical fiber is sealed together with hydrogen or deuterium in a sealed container having optically transparent windows at both ends, and the volume of the container is less than 10 times the volume of the glass of the optical fiber.
  • This manufacturing method comprises the steps of: drawing a glass preform having a core composed mainly of silica glass and a cladding made of silica glass doped with fluorine and having a smaller refractive index than the core to form an optical fiber; (A) a step of impregnating the optical fiber with hydrogen or deuterium by keeping it in an atmosphere of deuterium, and before the hydrogen or deuterium is desorbed from the optical fiber, And a step of sealing the container and sealing hydrogen or deuterium desorbed from the optical fiber in the container.
  • FIG. 1A is a perspective view showing an optical fiber bundle 10 which is an example of the embodiment of the present invention
  • FIG. 1B1 is a cross-sectional view of an end of the optical fiber bundle 10
  • FIG. 5 is a graph showing an example of a refractive index profile of an optical fiber in a fiber bundle 10.
  • FIG. 2 is a flowchart showing a manufacturing flow of the optical fiber bundle 10.
  • FIG. 3A is a graph showing a hydrogen concentration distribution in the optical fiber 1 immediately after impregnation with hydrogen
  • FIG. 3B is a graph showing the optical fiber 1 in use and the hydrogen concentration distribution in the container.
  • FIG. 4A is a graph showing a change in transmittance of the optical fiber bundle 10 due to ArF excimer laser irradiation.
  • FIG. 4B is a graph showing an optical fiber bundle before and after ArF excimer laser irradiation. 6 is a graph showing the transmittance of $ 10.
  • FIG. 5A is a graph showing the transmittance change of the optical fiber bundle of the comparative example by ArF excimer laser irradiation
  • FIG. 5B is a graph showing the transmittance of the optical fiber bundle of the comparative example before and after ArF excimer laser irradiation. is there.
  • FIG. 6 is a graph showing the relationship between the initial loss value of the optical fiber and the transmittance after ArF excimer laser irradiation in Example 3.
  • FIG. 7 is a graph showing the transmittance of the optical fiber bundle of Example 3 before and after irradiation with an ArF excimer laser.
  • FIG. 8 is a schematic diagram illustrating an optical fiber bundle.
  • FIG. 9 is a flowchart showing a conventional method. BEST MODE FOR CARRYING OUT THE INVENTION
  • hydrogen is previously contained in an optical fiber made of silicon glass.
  • the optical fiber Before hydrogen is released from the optical fiber, the optical fiber is stored in a sealable container or tube (hereinafter collectively referred to as a container), and the container is sealed. This avoids the danger of sealing the container under a hydrogen atmosphere.
  • the hydrogen contained in the optical fiber remains in the container even if it is detached from the optical fiber, so that the container becomes a hydrogen-containing atmosphere and the generation of glass defects can be suppressed.
  • FIG. 1A is a perspective view showing an optical fiber bundle 10 which is an example of the embodiment of the present invention.
  • the optical fiber bundle 10 includes an optical fiber 1 composed of a core having a high refractive index and a clad having a low refractive index, as shown in FIG. 1C, and a container 3.
  • a large number of optical fibers 1 are bundled, fixed together at both ends, and housed in a container 3 in a loose manner.
  • Ultraviolet light is incident on one end of the container 3, and light transmitted through the fiber is emitted from the other end.
  • 1B1 and FIG. 1B2 are cross-sectional views of the end of the optical fiber bundle 10.
  • the base 2 and the container 3 are welded together, and the base 2 and the window sealing material 6 are welded at the welds 5 and 9, and the window material 7 is attached to the window sealing material 6 with glass solder 8. It is fixed and the container 3 is sealed.
  • FIG. 2 is a flowchart showing a manufacturing flow of the optical fiber bundle 10.
  • an optical fiber preform manufactured by a known method is drawn into an optical fiber.
  • the optical fiber is kept in an atmosphere at a temperature of 60 to 80 ° C. and a hydrogen partial pressure of 5 to 10 atm (0.50 to 1.01 Pa) for 20 to 100 hours to impregnate the optical fiber with hydrogen. .
  • silica glass is placed in an atmosphere with a hydrogen partial pressure of 100 atm, 1.2 mol% of hydrogen can be introduced.
  • the silica glass constituting the optical fiber can contain a relatively large amount of hydrogen by keeping it in a hydrogen atmosphere.
  • the optical fiber for the optical fiber bundle is as small as about 125 to 180 ⁇ , the optical fiber can be immersed in a hydrogen atmosphere at a temperature of 100 ° C for a relatively short time of about 24 to 50 hours, so that the Hydrogen molecule concentration is saturated and a large amount of hydrogen Can be contained.
  • Hydrogen impregnated in the optical fiber gradually desorbs from the glass to the outside when the optical fiber is removed from the hydrogen atmosphere.
  • a number of optical fibers containing a large amount of hydrogen before the desorption are bundled, stored in a container, and hermetically sealed.
  • the order of hydrogen impregnation and bundling is changed. (After bundling, a step of impregnating with hydrogen and deuterium may be performed.)
  • the container is sealed while hydrogen is contained in the glass. However, it becomes possible to confine hydrogen in the container.
  • the hydrogen partial pressure in a closed vessel is defined as (volume of hydrogen contained in glass fiber in standard condition) / (volume of vessel).
  • the hydrogen partial pressure in the container will be higher than the value that can fill defects caused by UV irradiation, and the loss due to the transmission of UV light Can increase the fili.
  • the volume of the container since the optical fiber must be loosely stored in the container, the volume of the container must be at least 1.5 times the volume of the glass part of the optical fiber.
  • the optical fiber used to manufacture the optical fiber bundle 10 preferably has a core made of silica-based glass having a high transmittance in the ultraviolet region, and has a high transmittance after redrawing, and a decrease in transmittance due to ultraviolet irradiation. It is preferable that the amount is small.
  • an optical fiber having a low content of Si-Si type defects, which is considered to be a deterioration precursor that causes glass to deteriorate by ultraviolet light is desirable.
  • An optical fiber having a small number of defects can be obtained from silica glass doped with fluorine or silica glass doped with a high concentration of OH groups.
  • the core before the step of impregnating with hydrogen or deuterium preferably has 100 to 1500 ppm by weight of OH or OD groups and less than 50 ppm by weight of chlorine.
  • the core before the step of impregnating with hydrogen or deuterium is 0 ::! Desirably it has about 2.0% by weight of fluorine and less than 50 ppm by weight of chlorine.
  • silica glass to which fluorine is added has less absorption by Si-OH at a wavelength of less than 200. Accordingly, an optical fiber whose core and cladding are made of silica glass doped with fluorine is particularly suitable for the present invention. It is.
  • the optical fiber after the step of impregnating with hydrogen or deuterium preferably has hydrogen or deuterium of 5 ⁇ 1018 molecules m3 or more. This is because the amount of defects generated by irradiation with ultraviolet light is about IX 1018 molecules / cni3, and about 5 X 1018 molecules / cm3 of hydrogen is required to erase defects. .
  • the volume of the glass of the optical fiber, the content of hydrogen or deuterium in the optical fiber, and the volume of the container are set so that the hydrogen or deuterium gas partial pressure in the container after the sealing step becomes 0.03 atm or more. It is preferable to select it in order to obtain the effect of preventing UV deterioration.
  • a hydrogen partial pressure of 5 atm in the optical fiber container is sufficient.
  • the core has between 100 and 1500 ppm by weight of OH or OD groups and less than 50 ppm by weight of chlorine.
  • the core desirably has 0.1-2.0% by weight of fluorine and less than 50 ppm by weight of chlorine.
  • Table 1 shows the amount of saturated hydrogen in the optical fiber during the hydrogen impregnation step (Fig. 3A) using the equation (1) and the partial pressure of hydrogen and the temperature during the hydrogen impregnation step as parameters.
  • An example of calculating the hydrogen partial pressure in the inside and the amount of saturated hydrogen in the optical fiber (Fig. 3B) is shown.
  • the glass outer diameter of the optical fiber is 125 ⁇
  • the number of optical fibers is 480
  • the inner diameter of the container is ⁇ mm (the container volume is 32.594 mm) It is.
  • the volume of silica glass with a volume of 1 cm3 is 2.208 x 1022 mol. If the impregnation is performed in a hydrogen atmosphere at 100 ° C and 3 atm, sufficient hydrogen can be introduced to fill the defects in the optical fiber.
  • 500 optical fibers saturated with hydrogen at 100 ° are housed in a SUS pipe with an inner diameter of 7 mm and sealed.
  • the partial pressure is 0.04 0.05 atm
  • the hydrogen concentration in the glass is 56 ppm, which is about five times the margin of defect formation.
  • the glass fiber is allowed to stand in a hydrogen atmosphere at 25 ° C and 100 atm for 20 days to saturate the glass fiber with a concentration of about 1 mol%. After that, it is left in the air at 25 ° C for 3 days to reduce the hydrogen concentration to about 15% of the initial value.
  • the fiber is stored in a SUS pipe similar to the previous example and sealed. At this time, the hydrogen partial pressure in the pipe becomes 0.25 0.30 atm. Hydrogen concentration in force lath is 30 35 ppm
  • the amount of defects can be more than 20 times larger than the expected defect formation amount. In this way, the process of once saturating hydrogen molecules to a high concentration and removing a predetermined amount of hydrogen In the case of adding hydrogen, the work of storing in a sealed tube and the work of bundling can be performed during the removal of hydrogen.
  • Examples of the sealable container used in the present invention include a metal and flexible container.
  • the shape of the container is arbitrary, but for example, a tubular shape is used.
  • Metal materials include sus, copper, and aluminum.
  • a window material that has a transparent part at the operating wavelength and has a sealing property against hydrogen gas is shown in Fig. 1B1 or Fig. 1B2.
  • the optical fiber bundle is provided at both ends to seal the inside of the container.
  • the internal transmittance of the window material (the bulk transmittance excluding the effects of surface reflection) is preferably at least 99%.
  • the window material is selected from silica glass, calcium fluoride, and aluminum oxide, and preferably has a thickness of 0.5 mm or more. Thereby, light transmittance and hermetic sealing in the container can be realized.
  • An optical fiber with added silica glass ( ⁇ -1.2%), core diameter of 112 ⁇ , and cladding of 125 ⁇ was obtained.
  • the optical fiber was impregnated with hydrogen at 80 ° (: hydrogen, 5 atm for 60 hours. 500 optical fibers were bundled into an optical fiber bundle of lm length and housed in a SUS pipe. As shown in Fig. 1B1 or Fig.
  • a window material made of silica glass is provided at both ends of the pipe, and a container, a base, and a window sealing member are provided.
  • the obtained optical fiber bundle had a hydrogen concentration of 7 mol ppm or more in the optical fiber.
  • FIG. 4A shows the initial transmittance of the optical fiber bundle at 180 to 300 nm and the transmittance after 108 shots of ArF excimer laser irradiation.
  • the optical fiber bundle of Example 1 has a transmittance change at a wavelength of 193 nm within 5% and an absorption at a wavelength of 215 nm of only 3 to 4%, which is extremely excellent in ultraviolet light resistance. Comparative example
  • an optical fiber bundle was manufactured in the same manner as in Example 1 except that the hydrogen impregnation step was omitted, under the same conditions as in Example 1.
  • An ArF excimer laser was irradiated.
  • Fig. 5A shows the relationship between the transmittance and the number of shots at a wavelength of 193 nm
  • Fig. 5B shows the results of measuring the initial transmittance and the transmittance at 180 to 300 nm after irradiation of 1 X 108 shots.
  • the transmittance at the wavelength of 193 nm is reduced by 20% or more, and the loss occurs at the wavelengths of 215 nm and 200 nm or less.
  • Example 2
  • An optical fiber with a core diameter of 112 ⁇ and a cladding diameter of 125 ⁇ with a core made of silica glass and a cladding made of fluorine-doped silica glass, with initial transmission loss of 2 dB / m, 4 dB / m, 6 dB / 500 pieces of m were prepared, and an optical fiber bundle was produced in the same process as in Example 1.
  • the hydrogen partial pressure in the container of each optical fiber bundle was 5% by volume.
  • Each optical fiber bundle was irradiated with an ArF excimer laser in the same manner as in Example 1.
  • Figure 6 shows the measurement results for each transmittance.
  • Figure 7 shows the results of measuring the initial transmittance of the optical fiber bundle at 180 to 300 nm and the transmittance of the ArF excimer laser after irradiating 108 shots. When ultraviolet rays are irradiated on the silica glass core with the OH group, the reactions represented by the chemical formulas (1) and (2) occur. h
  • the optical fiber bundle for ultraviolet transmission according to the present invention has improved resistance to ultraviolet light, so that the transmission loss increase due to the deterioration of ultraviolet irradiation is reduced. It is very suitable for optical transmission in semiconductor manufacturing equipment, medical equipment, and analyzers that use. All disclosures, including the description, claims, drawings, and abstracts of Japanese Patent Application 2002-143513 (filed on May 17, 2002) are incorporated herein.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Glass Compositions (AREA)

Description

明細書
)製造方法 技術分野
本発明は、 波長 150 nm〜25Q nm の紫外線伝送に伴う伝送損失の増加を低減し た紫外線伝送用光ファイババンドルおよびその製造方法に関する。 背景技術
重水素ランプ、 KrFエキシマレ一ザ、 ArFエキシマレ一ザ、 F2エキシマレ 一ザが発する波長 150 腿〜 250 匪の紫外線は、 フォトリソグラフィ 、 レーザ 加工等の微細加工分野、 あるいは、 殺菌、 消毒等の医療分野での利用が高まって' いる。 この波長領域の紫外線を伝送する媒体として、 紫外線伝送用光ファイバの 研究開発が進んでいる。 紫外線伝送に伴いガラスが劣化して伝送損失が増加する という問題がある。 シリカガラスからなる光ファイバは、 耐紫外線特性に優れる 力 問題を完全に解消できてはいない。 シリカガラスからなる光ファイバの紫外 線領域での伝送損失の増加は、 紫外線の照射によりシリカガラスに欠陥が生じ、 光吸収が生じるためと考えられている。 そこで、 欠陥を水素原子で埋めて耐紫外 線特性を改善する方法が行われている。
日本特許出願公開平 6-034830号 (文献 1) には純粋石英コア一フッ素ドープ 石英クラッドの光ファイバをステンレススチール (SUS)パイプ内に収容し、 SUS パイプ内を 5〜10 kg/cm2 の高圧の水素ガス雰囲気にしうるようにするとともに、 SUSパイプの外側を発熱体でおおって水素ガス雰囲気を 100〜150°Cの高温に維 持できる構造とし、 紫外線伝送中または伝送後に光ファイバを高温高圧の水素雰 囲気中に置くことが開示されている。
日本特許出願公開平 6-056457号 (文献 2) には、 コアが純粋石英、 クラッド がフッ素ドープ石英からなる光ファイバ母材を線引きし、 線引き直後の高温の光 フアイバを水素ガス雰囲気にさらすか、 光フアイバを高温に維持された水素ガス にさらすことにより水素を光ファイバ内に多量に拡散させることが開示されてい る。
日本特許出願公開平 11-029335号 (文献 3)、 日本特許出願公開平 10-316445 号 (文献 4) には、 石英ガラス物品に電磁波を照射してガラス欠陥を生じさせた 後に水素ガスからなる雰囲気中に浸漬して、 紫外線領域での光吸収の増加が実質 的に発生しないようにする方法およびこのようにして製造されたガラス物品が開 示されている。
日本特許出願公開 2000-214336 号 (文献 5) には、 クラッドの周囲に水素を 蓄積できる微粒子を分散して分布できるように形成された包埋物を設けた石英ガ ラス光ファイバが開示されている。
石英系ガラス中に水素を含有させると、 耐紫外線特性が改善されるが、 水素分 子はガラス中を容易に拡散してガラス外へ放出されるので、 長期間に安定した特 性を得ることが難しい。 文献 1 の方法は、 装置が大がかりになる問題がある。 文献 2、 3および 4の方法は有効であるが、 紫外線により生成する欠陥が増加す ると効果が薄れてくるため、 強い紫外線を照射する装置での使用については改善 の余地がある。 文献 5 の方法は、 樹脂や水素吸蔵合金等の水素含有材料を光フ アイバに対して充分量封入する必要がある。 光ファイババンドルでは数百〜数千 本の光ファイバを束ねるため、 大きな容器が必要となり、 望ましくない。
第 8図に示すように、 光ファイバ 11を複数本ルーズに束ね、 パイプ 13に収 容し、 両端部を口金 12で固定した光ファイババンドル 14が知られている。 光 ファイババンドル 14は、 図 9に示すように、 光ファイバ用ガラス母材を線引き し光ファイバとし、 この光ファイバを複数本束ね両端を互いに固定 (バンドル 化) し、 パイプに収納することにより製造される。 前記したような技術を複合し、 パイプ内に光フアイババンドルを収容し、 容器内を水素含有雰囲気としたうえで、 容器を完全密封することが考えられる。 しかし、 容器内を水素含有雰囲気に保つ ておくことと、 溶接 ·封着などの熱処理を伴う操作とを両立させなければならず、 爆発等の危険性が大きい。 発明の開示
本発明の目的は、 光ファイバを水素含有雰囲気中に保持できて、 波長 150 nm 〜250 nmにおける伝送損失の劣化を低減できる紫外線伝送用光' ル、 および、 容器密封時に爆発の危険がなく容易かつ安価に製造できる光' ババンドルの製造方法を提供することである。
目的を達成するため、 シリカガラスを主成分とするコアとフッ素が添加されコ ァよりも屈折率が小さいシリカガラスからなるクラッドを有する光ファイバが複 数本束ねられ容器に収納された光ファイババンドルが提供される。 光ファイバは、 両端に光学的に透明な窓材を有する密閉容器に水素ないし重水素とともに封止さ れており、 容器の容積は、 光ファイバのガラスの体積の 10倍以下である。
また、 光ファイババンドルの製造方法が提供される。 この製造方法は、 シリカ ガラスを主成分とするコアとフッ素が添加されコアよりも屈折率が小さいシリカ ガラスからなるクラッドを有するガラス母材を線引きして光ファイバとする工程 と、 光フアイバを水素な (/ し重水素雰囲気中に保持することにより光ファイバ中 に水素ないし重水素を含浸させる工程と、 光ファイバから水素ないし重水素が脱 離する前に、 光ファイバを光ファイババンドルとして容器内に入れる工程と、 容 器を密封し、 光ファイバより脱離した水素ないし重水素を容器内で封止する工程 を有する。
本発明は、 以下において、 図面を参照して詳細に説明される。 図面は、 説明を 目的とし、 発明の範囲を限定しょうとするものではない。 図面の簡単な説明
第 1A図は、 本発明の実施形態の一例である光ファイババンドル 10 を示す斜 視図、 第 1B1図、 第 1B2図は、 光ファイババンドル 10の端部の断面図、 第 1C 図は、 光ファイババンドル 10 中の光ファイバの屈折率プロファイルの一例を示 すグラフである。
図 2は光ファイババンドル 10の製造フロ一を示す流れ図である。
第 3A図は、 水素含浸直後の光ファイバ 1中の水素濃度分布を示すグラフ、 第
3B図は、 使用中の光ファイバ 1と容器内の水素濃度分布を示すグラフである。 第 4A図は、 ArFエキシマレ一ザ照射による光ファイババンドル 10の透過率 変化を示すグラフ、 第 4B図は、 ArFエキシマレ一ザ照射前後の光ファイババン ドル 10の透過率を示すグラフである。
第 5A図は、 ArFエキシマレ一ザ照射による比較例の光ファイババンドルの透 過率変化を示すグラフ、 第 5B図は、 ArFエキシマレーザ照射前後の比較例の光 フアイババンドルの透過率を示すグラフである。
第 6 図は、 実施例 3 における光ファイバの初期ロス値と、 ArFエキシマレ一 ザ照射後の透過率の関係を示すグラフである。
第 7 図は、 ArFエキシマレ一ザ照射前後の実施例 3の光ファイババンドルの 透過率を示すグラフである。
第 8図は、 光ファイババンドルを説明する模式図である。
第 9図は、 従来法を示した流れ図である。 発明を実施するための最良の形態
本発明の実施形態が、 以下において、 図面を参照して説明される。 図面にお いて、 説明の重複を避けるため、 同じ符号は同一部分を示す。 図面中の寸法の比 率は、 必ずしも正確ではない。
本発明は、 シリ力ガラスからなる光フアイバ中にあらかじめ水素を含有させて おく。 水素が光ファイバから脱離する前に、 光ファイバを密閉可能な容器または 管 (以下容器と総称する) 内に収納し、 容器を封止する。 こうすることで、 水素 雰囲気下で容器を封止する際の危険を回避する。 光ファイバに含有させた水素は 光ファイバから脱離しても容器内には止まるため、 容器内は水素含有雰囲気とな りガラス欠陥の生成を抑制できる。
第 1A図は本発明の実施形態の一例である光ファイババンドル 10を示す斜視 図である。 光ファイババンドル 10は、 第 1C図に一例を示すような屈折率の高 いコアと屈折率の低いクラッドからなる光ファイバ 1 と容器 3 とからなる。 光 ファイバ 1 は、 多数本束ねられ、 両端部でまとめて固定され、 容器 3 の中にル ースに収容されている。 容器 3 の一端から紫外光を入射し、 ファイバ中を透過 した光を他端から出射するようになっている。 第 1B1図、 および、 第 1B2図は、 光ファイババンドル 10の端部の断面図である。 口金 2 と容器 3、 また、 口金 2 と窓封止材 6は溶接部 5、 9で溶接され、 窓封止材 6に窓材 7がガラス半田 8で 固定され、 容器 3は封止されている。
図 2は光ファイババンドル 10の製造フローを示す流れ図である。 まず、 公知 の方法で製造した光ファイバ母材を線引きして光ファイバとする。 つづいて、 光 ファイバを、 温度 60〜80°C、 水素分圧 5〜: lO atm (0.50〜: 1.01 Pa) の雰囲気中 に 20〜: 100時間保持し、 光ファイバ中に水素を含浸する。 .
光ファイバを構成するシリカガラスの中の飽和水素量は、 水素分圧 PH2、 温 度 Tを用いて、 式 (1):
(飽和水素量) = SO X PH2 exp(-Es/RT) … (1) で求めることができる (K Noguchi et al., J. Lightwave Techn. Vol. LT-3, No.2; pp.236-243(1985)) o ここで、.
SO = 5.93 x 1016 mol/(cm3 - atm)、
Es = 1.38 102 J/moL
R二 8.314 J/(mol - K)
である。 式 (1) より計算すると、 シリカガラスを水素分圧 100 atmの雰囲気に置 くと、 1.2 mol%の水素を導入できることになる。 このように、 光ファイバを構 成するシリカガラスは、 水素雰囲気中に保持しておくことで比較的多量の水素を 含有できる。
一方、 ガラス中での水素分子拡散係数は、 温度 Tを用いて、 式 (2) : 水素拡散係数 = DO exp(-Ed/RT) … (2) で与えられる。 ここで、
D0 二 14.2 10-4 cm2/s
Ed = 10.8 kcal/(mol - K)
である。 光ファイババンドル用の光ファイバ外径は、 約 125〜180 μηι と細いの で、 温度 100°Cの水素雰囲気中に 24〜50時間程度と比較的短時間光ファイバを 浸漬することにより、 ガラス中の水素分子濃度は飽和し、 多量の水素をガラス中 に含有させることができる。
光ファイバ内に含浸された水素は、 水素雰囲気から光ファイバを取り出すと、 しだいにガラス中から外部に脱離する。 本発明においては、 この脱離の前の水素 を多量に含有する多数の光ファイバを、 バンドル化し、 容器内に収納し、 容器を 密封処理する。 水素含浸とバンドル化との順序を変え (バンドル化後に、 水素な I ^し重水素を含浸させる工程を行つてもよい。) ガラス中に水素が含有された状 態のまま容器を密封するので、 容器内に水素を閉じ込めることが可能となる。 密閉された容器内の水素分圧は、 (ガラスファイバに含有された水素の標準状 態での体積) / (容器体積) で定義される。 容器の容積を光ファイバのガラス部 分の体積の 10倍以下とすれば、 容器内の水素分圧が、 紫外線照射で生じる欠陥 を埋めることができる値以上となり、 紫外線の伝送に伴なう損失の増加を filiえる ことができる。 一方、 光ファイバを容器内にルースに収納しなければならないの で、 容器の容積は光ファイバのガラス部分の体積の 1.5倍以上あることが必要で ある。
光ファイババンドル 10 を製造するのに用いる光ファイバは、 紫外線領域での 透過率が大きいシリカ系ガラスからなるコアを有するものが望ましく、 線引き直 後の透過率が大きく、 紫外線照射による透過率の減少が少ないものほど好ましい。 とくに、 ガラスの紫外線劣化の要因となる劣化前駆体と考えられている Si-Si型 欠陥の含有量が少ない光ファイバが望ましい。 波長 245 nmに現れる Si-Si型欠 陥に由来する吸収の損失が、 水素ないし重水素を含浸させる工程前で 4 dB/m未 満である光ファイバが望ましい。
このように欠陥が少ない光ファイバは、 フッ素を添加したシリカガラスや OH 基を高濃度に添加したシリカガラスから得られる。 水素ないし重水素を含浸させ る工程前のコアは、 100~1500 重量 ppm の OH基または OD基と、 50 重量 ppm 未満の塩素を有しているのが望ましい。 あるいは、 水素ないし重水素を含 浸させる工程前のコアは、 0.:!〜 2.0重量%のふつ素と、 50重量 ppm未満の塩素 を有しているのが望ましい。 とくにフッ素を添加したシリカガラスは波長 200 未満において、 Si-OHによる吸収も少ない。 したがって、 コアおよびクラッ ドがふつ素を添加したシリカガラスからなる光ファイバは、 本発明にとくに好適 である。
水素ないし重水素を含浸させる工程後の光ファイバは、 5 X 1018 分子 m3 以 上の水素ないし重水素を有することが望ましい。 これは、 紫外光の照射により生 成する欠陥の量が I X 1018分子/ cni3 程度であり、 欠陥を消去するのに 5 X 1018 分子/ cm3程度の水素なレ ^し重水素が必要だからである。
封止する工程後の容器内の水素ないし重水素ガス分圧が 0.03 atm以上となる ように、 光ファイバのガラスの体積、 光ファイバ中の水素ないし重水素の含有量、 および、 容器の容積を選択すると、 紫外線劣化防止効果を得るために好ましい。 光ファイバ容器内水素分圧は、 5 atm あれば充分である。 また、' コアは、 100〜 1500 重量 ppm の OH基または OD基と、 50 重量 ppm未満の塩素を有してい るのが望ましい。 あるいは、 コアは、 0.1〜2.0 重量%のふつ素と、 50 重量 ppm未満の塩素を有しているのが望ましい。
表 1に、 式 (1) を用い、 水素含浸工程での水素分圧、 温度をパラメ一夕として、 水素含浸工程での光ファイバ中の飽和水素量 (第 3A 図)、 密封処理後の容器内 の水素分圧と光ファイバ中の飽和水素量 (第 3B図) を計算した例を示す。 すべ ての条件で、 光ファイバのガラス外径は 125 μηι、 光ファイバの本数は 480 本 (光ファイバのガラス部分の体積は 5.89 mm2)、 容器内径は Ί mm (容器の容 積は 32.594 mm) である。 また、 体積 1 cm3のシリカガラスは、 2.208 X 1022 molである。 100°C、 3 atmの水素雰囲気中で含浸処理を行えば、 光ファイバの 中に欠陥を埋めるのに充分な水素を導入することができる。
水素含浸工程 密封処理後
耐紫外線 飽禾ロ水素
条件 水素分 飽和水素量 水素分圧 特性の判
/皿 し m 分ナ
j± atm mol/cm3 atm 定
/cm3
丄 丄 100 1.29x1018 0.0087 2.60x1016 V
2 3 100 3.87x1018 0.0260 7.79x1016 〇
3 5 100 6.46x1018 0.0434 1.30x1017 〇
4 7 100 9.04x1018 0.0608 1.82x1017 〇
5 50 25 1.04x1020 0.9422 2.82x1018 〇
6 100 25 2.80x1020 1.8843 5.64x1018 〇
7 150 25 4.20x1020 2.8265 8.46x1018 〇
8 200 25 5.61x1020 3.7687 1.13x1019 〇
9 250 25 7.01x1020 4.7109 1.41x1019 〇
10 400 25 + 1.12x1021 7.5374 2.26x1019 〇 本発明により、 容器内にかなり高圧の水素を封入することもできる。 外径 125 μηιの光フアイバを、 20°C 400 atmの水素雰囲気中に 20日間程度放置した後、 内径 7 mmの SUS製パイプを容器として 500本の光ファイバを収納 ·封止する と、 管内の H2 分圧は、 容器内で 7.5 atm にもなる。 このときのガラスフアイ バ中の H2 濃度は 1000 ppm にもなるので、 予想されるガラス欠陥形成量 1 ppm に対し 1000 倍も過剰な量とすることができる。 このような加圧状態に置 く場合は、 容器の密閉構造をこの圧力に耐えるものとする必要がある。
より実用的な例として、 水素を 100° (:、 5 atmの水素雰囲気で飽和させた光フ アイバ 500本を、 内径 7 mmの SUS製パイプ内に収納して密封する。 このとき 管内の水素分圧は 0.04 0.05 atmとなる。 ガラス内の水素濃度は 5 6 ppmと、 欠陥形成量に対して約 5倍のマージンをとることができる。
また、 別の手法例として、 25°C 100 atmの水素雰囲気中に 20日放置し、 水 素をガラスファイバ中に約 l mol%の濃度で飽和させる。 その後、 25°Cで 3 日大 気中で放置し、 水素濃度を初期値の 15%程度まで低減させる。 その後、 フアイ バを先の例と同様の SUS 製パイプ内に収納して密封する方式もある。 この時、 管内の水素分圧は 0.25 0.30 atm となる。 力"ラス中の水素濃度は、 30 35 ppm になり、 想定される欠陥形成量に対し、 20倍以上のマ-シ"ンを持つことが出来る。 このように、 一旦高濃度に水素分子を飽和させて、 所定量の水素を除去する工程 を付加する場合、 密封管への収納作業やバンドル化作業を水素除去の間に行うこ とが出来るので、 作業効率が良い利点がある。
本発明に用いる密封可能な容器としては、 たとえば金属製でかつ可撓性を有す る容器が挙げられる。 容器形状は任意であるが、 たとえば管状のものを使用する。 金属材質としては、 sus、 銅、 アルミニウムが挙げられる。
光ファイババンドルを収納した後に容器を密封する手段としては、 使用波長で 透明な部分を有し、 かつ水素ガスに対し密閉性を有する窓材を、 第 1B1 図、 ま たは、 第 1B2 図に示すように光ファイババンドルの両端部に設けて容器内を封 止する。 窓材の内部透過率 (表面反射の影響を除外したバルクの透過率) は、 99%以上あるのが望ましい。 また、 窓材は、 シリカガラス、 フッ化カルシウム、 酸化アルミニウムより選択され、 .厚みが 0.5 mm以上あるのが望ましい。 これに より、 光の透過性と容器内の密閉封止を実現できる。
実施形態では、 光ファイバを水素に含浸する場合を中心に説明したが、 重水素 を用いても、 時間と温度を少々調整するだけで、 同様の効果が得られる。 実施例 1
光ファイバ母材を線引きして、 コアにフッ素が 1 重量%添加されたシリカ ガ ラス (純シリカ ガラスの屈折率を基準にした比屈折率差 Δ=-0.27%)、 クラッド にフッ素が 4重量。/。添加されたシリカ ガラス (Δ=-1.2%)、 コア径 112 μιη、 ク ラッド怪 125 μιιιの光ファイバを得た。 この光ファイバを 80° (:、 水素 5 atm 60時間の条件で水素含浸処理した。 光ファイバを 500本束ね、 長さ lmの光フ アイババンドルとし、 SUS 製パイプ内に収容した。 このパイプは可撓性を有す る。 容器の密封には第 1B1図、 または、 第 1B2図に示すように、 シリカガラス からなる窓材をパイプの両端部に設け、 容器、 口金、 窓封止部材を溶接により密 封した。 得られた光ファイババンドルは、 光ファイバ中の水素の濃度が 7 mol ppm以上であった。
つぎに、 光ファイババンドルの入射端部から、 ArFエキシマレーザ (波長 193 nm) をパワー 5 mJハンョッ卜で 108 ショット照射し、 波長 193 nmにおける光 ファイババンドルの透過率の変化を測定した。 結果を第 4A図に示す。 また光フ アイババンドルの 180〜300 nmにおける初期透過率と、 ArFエキシマレーザを 108 ショット照射後の透過率とを第 4B図に示す。 実施例 1の光フアイババンド ルは波長 193 nmでの透過率変化が 5%以内であり、 波長 215 nmにおける吸収 も 3〜4%生じているだけであり、 耐紫外線特性が非常に優れる。 比較例
実施例 1 と同様の光ファイバについて、 図 9 の流れ図が示すように、 水素含 浸工程を省略した以外は実施例 1 と同様にして光ファイババンドルを作製し、 実施例 1 と同様の条件で ArFエキシマレ一ザを照射した。 波長 193 nmにおけ る透過率とショット数の関係を第 5A図に、 初期透過率と 1 X 108 ショット照射 後の 180〜300 nmにおける透過率を測定した結果を第 5B図に示す。 比較例の 光ファイババンドルは、 波長 193 nmでの透過率が 20%以上低下し、 波長 215 nmおよび 200 nm以下における損失が発生していて、 耐紫外線特性が劣る。 実施例 2
コアがシリカガラス、 クラッドがふつ素添加シリカガラスからなる、 コア径が 112 μηι, クラッド径が 125 μπιの光フアイバであって、 初期透過損失が 2 dB/m、 4 dB/m, 6 dB/mであるものをそれぞれ 500本用意し、 実施例 1 と同様の工程 で光ファイババンドルを作製した。 各光ファイババンドルの容器内の水素分圧は、 5体積%であった。 各光ファイババンドルについて、 実施例 1 と同様に ArFェ キシマレーザを照射した。 それぞれの透過率を測定した結果を図 6 に示す。 初 期伝送損失が 4 dB/m未満の光ファイバを用いて本発明を適用した光ファイババ ンドルにおいて、 耐紫外線特性が非常に良好であった。 実施例 3
コアが OH基を 0.1重量。 /o添加されたシリカガラス (Δ=-0.01%)、 クラッドが ふつ素を 4.4 重量。/。添加されたシリカガラス (Δ=-1.2%) からなり、 コア径が 112 μηι、 クラッド径が 125 μπιの光ファイバについて、 実施例 1と同様にして 光ファイババンドルとし Ai'F エキシマレーザ光を照射した。 光ファイババンド ルの 180〜300 nm における初期透過率と、 ArFエキシマレ一ザを 108 ショッ 卜照射後の透過率とを測定した結果を図 7に示す。 OH基添加シリカガラスコア に紫外線が照射されると、 化学式 ), ( )で示される反応が生じる。 h
S i : 0 H S i : 0: + : H (a)
h v
S i : + : 0 H (b) 式 (a) の反応で波長 190 runおよび 260 nm帯の吸収が形成され、 式 ( ) の反応 で波長 215 nm帯の吸収が生成する。 このため、 図 7に示す 200 nm以上の波長 で 2つのピークを持つ特性を示した。 OH基添加シ.リカガラスに本発明を適用す るよりも、 ふつ素添加シリカガラスに本発明を適用するほうが、 得られる光ファ ィババンドルの特性上好ましい。 産業上の利用可能性
本発明によると、 光ファイババンドルを容器内に収容し密閉する際に、 容器内 を水素雰囲気で満たす必要がない。 その結果、 密閉作業を容易に安全に行うこと ができ、 製造工程を簡略にできコストの低減が可能となる。 また、 本発明の紫外 線伝送用光ファイババンドルは耐紫外線特性が改善しているので、 紫外線照射劣 化による伝送損失増が低減され、 たとえば ArFエキシマレーザ、 KrFエキシマ レーザ (波長 247 nm) の紫外線を用いる半導体製造装置や医療装置、 分析装置 での光伝送に、 非常に好適である。 日本特許出願 2002-143513 (2002年 5月 17 日出願) の明細書、 クレーム、 図面、 要約書を含むすべての開示は、 本明細書に統合される。

Claims

請求の範囲
1. シリ力ガラスを主成分とするコアとフッ素が添加され前記コアよりも屈折率 が小さいシリカガラスからなるクラッドを有する光フアイバが複数本束ねられ容 器に収納された光ファイババンドルであって、
前記光ファィバは、 両端が光学的に透明な密閉容器に水素ないし重水素ととも に封止されており、
前記容器の容積は、 前記光フアイのガラスの体積の 10倍以下である。
2. 請求の範囲 1に記載の光ファイババンドルであって、
前記水素ないし重水素の分圧は 0.03 atm以上である。
3. 請求の範囲 1に記載の光ファイババンドルであって、
前記コアは、 100〜1500 重量 ppm の OH基または OD基と、 50 重量 ppm 未満の塩素を有する。
4. 請求の範囲 1に記載の光ファイババンドルであって、
前記コアは、 0.:!〜 2.0 重量。/。のふつ素と、 50重量 ppm未満の塩素を有する。
5. 請求の範囲 1に記載の光ファイババンドルであって、
前記容器端部に、 前記光ファイババンドルの使用波長における内部透過率が 99%以上であり、 かつ水素ないし重水素ガスに対して密閉性を有する窓材を有す る。
6. 請求の範囲 5に記載の光ファイババンドルであって、
前記窓材は、 シリカガラス、 フッ化カルシウム、 酸化アルミニウムより選択さ れ、 厚みが 0.5 mm以上である。
7. シリカガラスを主成分とするコアとフッ素が添加され前記コアよりも屈折率 が小さいシリカガラスからなるクラッドを有するガラス母材を線引きして光ファ ィバとする工程と、
前記光ファイバを水素ないし重水素雰囲気中に保持することにより前記光ファ ィバ中に水素ないし重水素を含浸させる工程と、
前記光ファイバから前記水素ないし重水素が脱離する前に、 前記光ファイバを 光ファィババンドルとして容器内に入れる工程と、
前記容器を密封し、 前記光ファイバより脱離した水素ないし重水素を前記容器 内で封止する工程を有する光ファイババンドルの製造方法。
8. 請求の範囲 7に記載の光ファイババンドルの製造方法であって、
前記水素ないし重水素を含浸させる工程前の前記コアは、 100〜1500 重量 ppm の OH基または OD基と、 50 重量 ppm未満の塩素を有する。
9. 請求の範囲 Ίに記載の光ファイババンドルの製造方法であって、
前記水素ないし重水素を含浸させる工程前の前記コアは、 0.1〜2.0 重量%の ふつ素と、 50 重量 ppm未満の塩素を有する。
10. 請求の範囲 7に記載の光ファイババンドルの製造方法であって、
前記水素ないし重水素を含浸させる工程前の前記光ファイバの損失は、 波長 245 nmにおいて 4 dB/m未満である。
11. 請求の範囲 Ίに記載の光ファイババンドルの製造方法であって、
前記光ファイバをバンドル化した後に、 前記水素ないし重水素を含浸させるェ 程を行う。
12. 請求の範囲 7に記載の光ファイババンドルの製造方法であって、
前記水素ないし重水素を含浸させる工程後の前記光ファイバは、 5 X 1018 分 子/ cm3 以上の水素ないし重水素を有する。
13. 請求の範囲 7に記載の光ファイババンドルの製造方法であって、 前記封止する工程後の前記容器内の水素ないし重水素の分圧が 0.03 atm以上 となるように、 前記光ファイバのガラスの体積、 前記光ファイバ中の水素ないし 重水素の量、 および、 前記容器の容積を選択する。
PCT/JP2003/005919 2002-05-17 2003-05-13 Faisceau de fibres optiques et procede de fabrication WO2003098291A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004505759A JP3995000B2 (ja) 2002-05-17 2003-05-13 光ファイババンドルとその製造方法
US10/485,558 US7277616B2 (en) 2002-05-17 2003-05-13 Optical fiber bundle and method of manufacturing the same
DE10392596T DE10392596T5 (de) 2002-05-17 2003-05-13 Lichtleitfaserbündel und Verfahren zu dessen Herstellung
US11/896,167 US20080190146A1 (en) 2002-05-17 2007-08-30 Optical fiber bundle and method of manufacture the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002143513 2002-05-17
JP2002-143513 2002-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/896,167 Division US20080190146A1 (en) 2002-05-17 2007-08-30 Optical fiber bundle and method of manufacture the same

Publications (1)

Publication Number Publication Date
WO2003098291A1 true WO2003098291A1 (fr) 2003-11-27

Family

ID=29545022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005919 WO2003098291A1 (fr) 2002-05-17 2003-05-13 Faisceau de fibres optiques et procede de fabrication

Country Status (4)

Country Link
US (2) US7277616B2 (ja)
JP (1) JP3995000B2 (ja)
DE (1) DE10392596T5 (ja)
WO (1) WO2003098291A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022546A1 (ja) * 2015-08-04 2017-02-09 株式会社フジクラ マルチコア光ファイバおよびマルチコア光ファイバの製造方法
US11377384B2 (en) 2017-01-19 2022-07-05 University Of Bath Method of making an imaging fibre apparatus and optical fibre apparatus with different core

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892012B2 (en) * 2001-05-18 2005-05-10 Fujikura, Ltd. Optical fiber bundle unit for transmitting ultraviolet light
US11324553B2 (en) * 2005-11-10 2022-05-10 Biolitec Unternehmensbeteilgungs II AG Side fire optical fiber for high power applications
US8494013B2 (en) 2010-09-17 2013-07-23 Corning Incorporated Photodarkening resistant optical fibers and fiber lasers incorporating the same
PT107061A (pt) * 2013-07-12 2015-01-12 Famolde Fabricaç O E Com Izaç O De Moldes S A Processo de produção de chicotes de iluminação local e respetivo chicote

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988162A (en) * 1988-06-29 1991-01-29 Mitsubishi Cable Industries, Ltd. Radiation resistant multiple fiber
JP2000221355A (ja) * 1999-01-29 2000-08-11 Matsushita Electric Works Ltd 光ファイバ
EP1258754A2 (en) * 2001-05-18 2002-11-20 Fujikura Ltd. Optical fiber bundle unit for transmitting ultraviolet light

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089489B2 (ja) 1991-04-04 1996-01-31 信越化学工業株式会社 耐紫外線性石英ガラスファイバ
US5478371A (en) * 1992-05-05 1995-12-26 At&T Corp. Method for producing photoinduced bragg gratings by irradiating a hydrogenated glass body in a heated state
JPH0634830A (ja) 1992-07-21 1994-02-10 Fujikura Ltd 紫外線伝送用ファイバ
JPH0656457A (ja) 1992-08-12 1994-03-01 Fujikura Ltd 紫外線伝送用ファイバの製造方法
JPH10316445A (ja) 1997-05-16 1998-12-02 Sumitomo Electric Ind Ltd 光ファイバの使用前の処理方法
JP2980094B2 (ja) * 1997-05-16 1999-11-22 住友電気工業株式会社 石英ガラス物品及びその製造方法
JP2000214336A (ja) 1999-01-26 2000-08-04 Yokogawa Electric Corp 石英ガラスファイバ
JP2003035829A (ja) 2001-05-18 2003-02-07 Fujikura Ltd 紫外線伝送用光ファイババンドル
JP2003255155A (ja) 2002-02-27 2003-09-10 Mitsubishi Cable Ind Ltd 紫外線伝送用光ファイバ構造体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988162A (en) * 1988-06-29 1991-01-29 Mitsubishi Cable Industries, Ltd. Radiation resistant multiple fiber
JP2000221355A (ja) * 1999-01-29 2000-08-11 Matsushita Electric Works Ltd 光ファイバ
EP1258754A2 (en) * 2001-05-18 2002-11-20 Fujikura Ltd. Optical fiber bundle unit for transmitting ultraviolet light

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022546A1 (ja) * 2015-08-04 2017-02-09 株式会社フジクラ マルチコア光ファイバおよびマルチコア光ファイバの製造方法
US11377384B2 (en) 2017-01-19 2022-07-05 University Of Bath Method of making an imaging fibre apparatus and optical fibre apparatus with different core
US11577986B2 (en) 2017-01-19 2023-02-14 University Of Bath Method of making an imaging fibre apparatus and optial fibre apparatus with different core

Also Published As

Publication number Publication date
DE10392596T5 (de) 2005-06-30
US7277616B2 (en) 2007-10-02
JP3995000B2 (ja) 2007-10-24
US20080190146A1 (en) 2008-08-14
JPWO2003098291A1 (ja) 2005-09-15
US20060239625A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
KR100359230B1 (ko) 석영유리물품 및 그 제조방법
KR100268559B1 (ko) 석영유리물품및그제조방법
US5223014A (en) Method for splicing and reinforcing carbon coated optical fibers
US6220059B1 (en) Method of coating a UV-fiber with blocking layers and charging the fiber with hydrogen or deuterium
US20080190146A1 (en) Optical fiber bundle and method of manufacture the same
JP2010243869A (ja) 光ファイバ
JP2007272251A (ja) 光ファイババンドル
CN100363765C (zh) 用于光纤的光敏化的方法和设备
JP2004361526A (ja) 光ファイバ及びそれを用いたファイバグレーティングの製造方法
JP3456449B2 (ja) 石英ガラス物品及びその製造方法
EP1394128B1 (en) Optical apparatus
US7813607B2 (en) Optical fiber bundle unit for transmitting ultraviolet light
JP4008116B2 (ja) 紫外線伝送用光ファイバの製造方法
JP2000214336A (ja) 石英ガラスファイバ
RU2222032C2 (ru) Волоконный световод (варианты) и способ его получения
JP2003021731A (ja) 紫外光伝送用バンドルファイバ
JP3960896B2 (ja) 光ファイバの製造方法
JP2023553606A (ja) 放射に対する耐性を有するシリカに基づいた光ファイバ
Oto Resistivity for deep-UV laser irradiation in fluorine doped silica glass fiber
JP2003035829A (ja) 紫外線伝送用光ファイババンドル
JP2006008468A (ja) 被覆光ファイバの製造方法およびその製造方法で作製された被覆光ファイバならびにバンドルライトガイド
Tu et al. Research on the fiber's UV transmission performance influenced by the doping process
JP2003012348A (ja) 光導波路の製造方法
Yang et al. Hermetic sealing of long period fiber gratings
JP2000258641A (ja) ファイバグレーティングの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP US

WWE Wipo information: entry into national phase

Ref document number: 2006239625

Country of ref document: US

Ref document number: 10485558

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004505759

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 10485558

Country of ref document: US