WO2003096501A1 - Amplificateur optique - Google Patents

Amplificateur optique Download PDF

Info

Publication number
WO2003096501A1
WO2003096501A1 PCT/JP2003/005675 JP0305675W WO03096501A1 WO 2003096501 A1 WO2003096501 A1 WO 2003096501A1 JP 0305675 W JP0305675 W JP 0305675W WO 03096501 A1 WO03096501 A1 WO 03096501A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal light
light
amplifying device
control light
Prior art date
Application number
PCT/JP2003/005675
Other languages
English (en)
French (fr)
Inventor
Ken Morito
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2004508538A priority Critical patent/JP4390697B2/ja
Priority to EP03721037A priority patent/EP1505700B1/en
Priority to DE60328480T priority patent/DE60328480D1/de
Publication of WO2003096501A1 publication Critical patent/WO2003096501A1/ja
Priority to US10/959,507 priority patent/US7130112B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5063Amplifier structures not provided for in groups H01S5/02 - H01S5/30 operating above threshold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5063Amplifier structures not provided for in groups H01S5/02 - H01S5/30 operating above threshold
    • H01S5/5072Gain clamping, i.e. stabilisation by saturation using a further mode or frequency

Definitions

  • the present invention relates to an optical amplifier using a semiconductor optical amplifier, and more particularly, to an optical amplifier having a function of controlling the level Z power of an output signal light to be constant (ALC: Auto Level Control, APC: Au to Power Control). Related to the device.
  • ALC Auto Level Control
  • APC Au to Power Control
  • optical amplifiers are used to compensate for such optical loss, an extremely large number of optical amplifiers are required as compared with conventional optical fiber communication systems. In order to achieve this, it is required to be small and capable of operating with low power consumption.
  • such an optical amplifier has a large input dynamic range so that it can cope with large fluctuations in the power level of the input signal light, and further controls the output signal light level Z power to be constant. It is required to have the function to
  • SOAs semiconductor optical amplifiers
  • FIG. 13 is a schematic diagram showing the configuration of a conventional optical amplifier having an optical output level control function.
  • a light source 102 for control light is connected to one input port of wavelength division multiplexing (WDM) 100 for multiplexing signal light and control light.
  • WDM wavelength division multiplexing
  • the other input port of the WDM coupler 100 receives the signal light to be amplified.
  • the output port of the WDM coupler 100 is connected to an SOA 104 that amplifies the signal light multiplexed with the control light by the WDM coupler 100.
  • An optical filter 106 for separating the amplified signal light from the control light is provided on the output side of the SOA 104.
  • an optical splitter 108 for splitting a part of the signal light output from the optical final letter 106 is provided on the output side of the optical filter 106.
  • a power meter 110 for measuring the output of the branched signal light is connected to the minus output port of the optical branching device 108.
  • the power meter 110 is connected to a control unit 112 that controls the light level of the control light based on the measurement result of the signal light output by the power meter 110.
  • the signal light is amplified by the SOA 104 by controlling the optical level of the control light that is multiplexed with the signal light and input to the SOA 104.
  • the rate can be controlled.
  • each component of the conventional optical amplifying device shown in FIG. 13 uses an individual module that inputs and outputs light through an optical fiber.
  • the size of each module was as large as several cm, and the entire optical amplifier required a space of about 10 cm square. For this reason, there was a problem in terms of its size when used as an optical amplifier in a WDM communication system.
  • the conventional optical amplifier shown in FIG. 13 has a problem that the cost is increased because of the large number of lenses, isolators, and Peltier elements used. That is, normally, the control light source 102 has two lenses, one isolator and one Peltier element, and the SOA 104 has four lenses, two isolators and two Of the Peltier device, the WDM coupler 100 has two lenses and a filter Required two lenses each, and it was necessary to use a total of 10 lenses, three isolators, and two Peltier elements in the entire optical amplifier. As described above, the conventional optical amplifier having the function of controlling the optical output level is expensive because of the large number of necessary optical components.
  • An object of the present invention is to provide an optical amplifying device which is small in size, requires a small number of optical components, and has an optical output level control function which does not require a complicated mounting process.
  • Patent Document 1
  • An object of the present invention is to provide an optical amplifying device for controlling an amplification factor of signal light using control light, the light amplifying device being provided on a semiconductor substrate, the control light source outputting the control light, and being provided on the semiconductor substrate.
  • Multiplexing means for multiplexing the signal light and the control light; a semiconductor optical amplifier provided on the semiconductor substrate, for amplifying the multiplexed signal light and the control light;
  • a demultiplexing means provided on a semiconductor substrate and separating the signal light amplified by the semiconductor optical amplifier from the control light and outputting the separated signal light.
  • the above object is to provide first and second 3 dB optical couplers provided on a semiconductor substrate and having two input ports and two output ports, and the first 3 dB optical coupler.
  • a Mach-Zehnder interferometer having first and second optical waveguides optically connecting an output port and the input port of the second 3 dB optical power puller; and Semiconductor optical amplifiers respectively provided on the semiconductor substrate, and control for controlling an amplification factor of signal light input from one of the input ports of the first 3 dB optical coupler. It is achieved by an optical amplifying device having a control light source for inputting light to the Mach-Zehnder interferometer.
  • an optical amplifying device that controls the amplification factor of signal light using control light is provided by Multiplexing means provided on the conductor substrate for multiplexing the signal light and the control light; a semiconductor optical amplifier provided on the semiconductor substrate for amplifying the signal light multiplexed with the control light; and And a demultiplexing unit that separates the signal light amplified by the semiconductor optical amplifier from the control light, so that the size of the optical amplifying device can be reduced as compared with the related art.
  • the number of required optical components can be reduced, and it can be manufactured by the same process as forming an SOA, eliminating the need for a complicated mounting process, and has the function of controlling the light output level.
  • An optical amplifier can be provided at low cost.
  • the signal light and the control light are multiplexed and amplified in the semiconductor optical amplifier, and the semiconductor light is amplified. Since the signal light and the control light that have propagated in the amplifier in opposite directions are separated from each other, it is possible to prevent the generation of a phase conjugate wave due to four-wave mixing without increasing the size of the device and the cost. Also, since the wavelength of the control light can be set with a high degree of freedom, the wavelength of the control light can be set so that sufficient gain saturation can be obtained with a low power, and an optical amplifier with low power consumption is provided. can do.
  • FIG. 1 is a schematic diagram showing the structure of the optical amplifying device according to the first embodiment of the present invention.
  • FIG. 2 is a process sectional view illustrating the method for manufacturing the optical amplifying device according to the first embodiment of the present invention.
  • FIG. 3 is a process sectional view (part 2) illustrating the method for manufacturing the optical amplifying device according to the first embodiment of the present invention.
  • FIG. 4 is a process cross-sectional view (part 3) illustrating the method for manufacturing the optical amplifying device according to the first embodiment of the present invention.
  • FIG. 5 is a process sectional view (part 4) illustrating the method for manufacturing the optical amplifying device according to the first embodiment of the present invention.
  • FIG. 6 is a graph showing a wavelength spectrum showing a phase conjugate wave by four-wave mixing generated when the signal light and the control light propagate in the SOA in the same direction.
  • FIG. 7 is a plan view showing the structure of the optical amplifying device according to the second embodiment of the present invention.
  • FIG. 8 is a plan view showing the structure of the optical amplifying device according to the third embodiment of the present invention.
  • FIG. 9 is a plan view showing the structure of the optical amplifying device according to the fourth embodiment of the present invention.
  • FIG. 1 ⁇ is a graph showing a wavelength spectrum when the signal light and the control light propagate through the SOA in opposite directions.
  • FIG. 11 is a graph showing the dependence of gain change due to light injection on the wavelength of control light.
  • FIG. 12 is a graph showing the dependence of the power of the control light on the wavelength required to keep the output level of the signal light constant.
  • FIG. 13 is a schematic diagram showing the configuration of a conventional optical amplifier having an output level control function.
  • FIG. 1 is a schematic diagram showing the structure of the semiconductor device according to the present embodiment
  • FIGS. 2 to 5 are process cross-sectional views showing a method for manufacturing the optical amplifying device according to the present embodiment.
  • FIG. 1A is a top view of the optical amplifying device according to the present embodiment
  • FIG. 1B is a cross-sectional view taken along the line XX ′ of FIG. 1A
  • FIG. 1 is a cross-sectional view taken along the line XX of FIG.
  • the optical amplifying device has a configuration based on a symmetric Matsuhatsuenda interferometer 12 formed on an ⁇ -type I ⁇ ⁇ substrate 10. That is, as shown in FIG. 1 ⁇ , a 3 dB optical coupler 14 having input ports A and B and output ports C and D and an input port E and 3 dB optical coupler 16 with F and output ports G and H, and output ports C and D of 3 dB optical coupler 14 and input ports E and F of 3 dB optical coupler 16 respectively Optical waveguides 18a and 18b having the same optical path length to be connected are formed. The optical waveguide 18a and the optical waveguide 18b are formed substantially in parallel. Thus, a symmetric Mach-Zehnder interferometer 12 that realizes a filter function for separating signal light and control light is provided on the n-type I ⁇ P substrate 10. It is configured.
  • the input port A of the 3 dB optical coupler 14 is connected to one end of an optical waveguide 20 a formed on an n-type InP substrate 10 and to which signal light to be amplified is input.
  • the other end of the optical waveguide 20a to which the signal light is input is located on the input side end face of the n-type InP substrate 10 for the signal light.
  • the input port B of the 3 dB optical coupler 14 is formed on an n-type InP substrate 10 and has a distributed feedback functioning as a control light source for controlling the amplification rate of signal light by SOA.
  • a type (DFB: Distributed FeedBack) laser 22 is connected via an optical waveguide 20 b formed on an n-type InP substrate 10.
  • the optical waveguides 18a and 18b are provided with SOAs 24a and 24b that amplify light propagating in the optical waveguides 18a and 18b, respectively.
  • the SOAs 24a and 24b can be, for example, polarization-independent semiconductor optical amplifiers.
  • the polarization independent optical semiconductor amplifier is described in detail in, for example, Japanese Patent Application Laid-Open No. 2001-533392 by the present inventor.
  • optical waveguides 26 a and 26 b formed on an n-type InP substrate 10 are connected to output ports G and H of the 3 dB optical coupler 16, respectively.
  • the other ends of the optical waveguide 26 a and the optical waveguide 26 b are located on the end face of the n-type In P substrate 10 on the output side of the signal light.
  • the cross-sectional shape of the region where SOA24a or SOA24b is formed is as shown in FIG. 1B. That is, on the n-type InP substrate 10, a 100 nm-thick, non-strained, 1.2 ⁇ m composition InGaAs optical confinement layer 28 and a thickness of 50 nm , A tensile strain of 0.25%, an InGaAs active layer 30 with a thickness of 100 nm, an unstrained and 1.2 ⁇ m composition InGaAs optical confinement layer 3, 2 are sequentially stacked.
  • the InGaAs light confinement layer 28, the InGaAs active layer 30 and the InGaAs light confinement layer 32 are patterned into a mesa shape that constitutes an optical waveguide.
  • n-type InP substrate 10 On the n-type InP substrate 10 on both sides of the mesa, a p-type InP current confinement layer 34 and an n-type InP current confinement layer 36 are sequentially formed.
  • a P-type InP cladding layer 38 is formed on the entire surface of the n-type InP substrate 10 on which these are formed.
  • an InGaAs contact layer 40 is formed on the p-type In P clad layer 38.
  • the cross-sectional shape of the region where the SOA 24a or SOA 24b is not formed is as shown in FIG. 1C.
  • a 50 nm-thick lower cladding layer 42 made of undoped InP is provided with a strain-free and 1.3 ⁇ m
  • a core layer 44 of 100 nm in thickness made of AsP and an upper cladding layer 46 of 50 nm in thickness made of undoped InP are sequentially laminated.
  • the lower cladding layer 42, the core layer 44, and the upper cladding layer 46 are patterned in a mesa shape forming an optical waveguide.
  • a p-type InP current confinement layer 34 and an n-type InP current confinement layer 36 are sequentially formed. These are formed.
  • a p-type InP cladding layer 38 is formed on the entire surface of the 11-type InP substrate 10.
  • the optical amplifying device is characterized mainly in that the components as the optical amplifying device having the function of controlling the optical output level are monolithically integrated on the same substrate.
  • the optical amplifying device according to the present embodiment can be miniaturized because each component is formed on the same substrate, and its element length can be set to, for example, about 3 mm. . Also, since each component is formed on the same substrate, the number of necessary optical components can be significantly reduced.
  • the conventional optical amplifier shown in Fig. 13 requires a total of 10 lenses, 3 isolators, and 2 Peltier elements, whereas the optical amplifier according to the present embodiment requires them. There are a total of four lenses, two isolators, and one Penoleche element, which significantly reduces the number of optical components required compared to the past.
  • a module mounting step using an optical fiber which requires time and effort, is not required, and mounting can be performed by a process equivalent to that of a normal SOA. Thereby, the cost of the optical amplifying device can be reduced.
  • the signal light to be amplified is input from one end of the optical waveguide 20a.
  • the signal light input to the optical waveguide 20 a is input to the input port A of the 3 dB optical power puller 14.
  • a laser light having a constant power is output as control light in advance, and the power of the laser light is controlled based on the output of the signal light.
  • the control light output from the DFB laser 22 is input to the input port B of the 3 dB optical coupler 14.
  • the amplification rate of the signal light by the SOAs 24a and 24 can be controlled. It is also possible to provide a feedback mechanism for controlling the current injected into the DFB laser 22 based on the output of the signal light, so that the output level of the amplified signal light can be kept constant.
  • the signal light input to the input port A is equally split by the 3 dB optical coupler 14.
  • the equally branched signal light is output from the output port CD of the 3 dB optical coupler 14.
  • control light input to the input port B is equally split by the 3 dB optical coupler 14.
  • the equally branched control light is output from the output port D of the 3 dB optical coupler 14, respectively.
  • the signal light and the control light are equally branched and multiplexed by the 3 dB optical coupler 14, then output from the output ports C and D, and input to the optical waveguides 18a and 18b, respectively.
  • the signal light and control light input to the optical waveguides 18a and 18b, respectively, are amplified by the SOAs 24a and 24b, and then input to the input ports E and F of the 3dB optical coupler 16 respectively. Is done.
  • the SOAs 24a and 24b are of a polarization independent type, a constant amplification factor can be always obtained even when the polarization state of the signal light changes with time. .
  • the signal lights input to the input ports E and F of the 3 dB optical coupler 16 are multiplexed by the 3 dB optical coupler 16.
  • the multiplexed signal light is input to the 3 dB optical coupler ⁇ 14 to which the signal light was input.
  • Output from output port H which is a cross port to output port A.
  • the control lights input to the input ports E and F of the 3 dB optical coupler 16 are also multiplexed by the 3 dB optical coupler 16. Since the path through which the control light has passed is also symmetric, the multiplexed control light is output from the output port G, which is a cross port to the input port B of the 3 dB optical coupler 14. ⁇
  • Symmetric Mach-Zehnder interferometer consisting of 18b and 3dB optical couplers 16
  • the optical filter function of separating the signal light amplified by the SOAs 24a and 24b from the control light is realized.
  • the signal light output from the output port H is output from the other end of the optical waveguide 26b, while the control light output from the output port G is output from the other end of the optical waveguide 26a.
  • the signal light input to the optical waveguide 20a is amplified, and the amplified signal light is spatially separated from the control light and output from the other end of the optical waveguide 26b.
  • FIGS. 2A to 2C, FIGS. 3A to 3C, FIGS. 4A to 4C, FIGS. 5A and 5B are left cross-sectional views of a region where the DFB laser and the SA are formed.
  • FIGS. 2A to 2C, FIGS. 3A to 3C, FIGS. 4A to 4C, FIGS. 5A and 5B each show a process cross-sectional view of a region where an optical waveguide is formed. ing.
  • a diffraction grating is formed in the region where the DFB laser 22 is to be formed on the n-type InP substrate 10.
  • a diffraction grating pattern is formed on a resist film formed by applying a positive resist on an n-type InP substrate 10 by two-beam interference exposure.
  • a mask that does not irradiate the exposure light on the resist film on the DFB laser 22 formation area and development after exposure, diffraction occurs only on the resist film on the DFB laser 22 formation area.
  • a mixed gas of C 2 H 6 , H 2 and O 2 is used.
  • a diffraction grating is formed in the region where the DFB laser 22 is to be formed on the n-type InP substrate 10 by the RIE method using the etching gas as the etching gas.
  • the entire surface of the n-type InP substrate 10 is subjected to, for example, metal organic chemical vapor deposition (MOCVD) to have a thickness of 100 n: m and a non-strained thickness of 1.2 ⁇ m.
  • MOCVD metal organic chemical vapor deposition
  • m InAs optical confinement layer 28 with composition of 50 nm, thickness of 50 nm, tensile strain 0.25% of InGaAs active layer 30 with thickness of 100 nm, thickness of 100 nm, A strain-free and 1.2 ⁇ m-composition InGaAs light-trapping layer 32 is sequentially formed (FIG. 2A).
  • a silicon oxide film 50 is formed on the InGaAs light confinement layer 32 (FIG. 2B).
  • an opening is formed in the silicon oxide film 50 by photolithography and etching to expose a region where the DFB laser 22 and the SOAs 24a and 24b are not formed (FIG. 2C).
  • RIE reactive ion etching
  • the active layer structure is formed only on the regions where the DFB lasers 22 and the SOAs 24a and 24b are to be formed on the n-type InP substrate 10.
  • the silicon oxide film 50 is removed by, for example, wet etching using hydrofluoric acid.
  • a passive layer structure is formed on the n-type InP substrate 10 in a region where the DFB laser 22 and the SOA 24a and 24b are not formed.
  • c to form a silicon oxide film 5 2 on the entire surface of the n-type I n P substrate 1 0 having the active layer structure is formed region and the passive layer structure as described above is formed regions then, lithography And etching technology, the silicon oxide film 52 Waveguides 18a, 18b, 20a, 20b, 26a, 26b, and 3 dB optical couplers 14, 16 are formed in a pattern.
  • the InGaA s optical confinement layer 32 and InGaA s are formed by RIE using the patterned silicon oxide film 52 as a mask and using, for example, a mixed gas of C 2 H 6 , H 2 , and O 2 as an etching gas.
  • the active layer 30, the InGaAs light confinement layer 28, the upper cladding layer 46, the core layer 44, and the lower cladding layer 42 are etched (FIG. 4A).
  • optical waveguides 18a, 18b, 20a, 20b, 26a, 26b, and 3 dB optical couplers 14, 16 are formed in the core layer 44, and the DFB laser 22, SOA 24a,
  • the active layer structure of 24b is formed in a mesa shape.
  • the patterned InGaAs light confinement layer 32, the InGaAs active layer 30, and the InGaAs light confinement layer are formed by MOCV D method.
  • the active layer structure consisting of 28 and the passive layer structure consisting of the upper cladding layer 46, the core layer 44, and the lower cladding layer 42 have a p-type InP current confinement on the n-type InP substrate 10 on both sides.
  • the layer 34 and the n-type InP current confinement layer 36 are selectively grown sequentially.
  • the silicon oxide film 52 is removed by, for example, wet etching using hydrofluoric acid (FIG. 4B).
  • I n P clad layer 38 are sequentially formed and I n Ga A S contact layer 40 (Fig. 4 C).
  • a resist film 54 is formed on the InGaAs contact layer 40.
  • the resist film 54 on the region other than the region where the active layer structure is formed is removed by, for example, direct contact exposure and development after exposure (FIG. 5A).
  • the optical amplifying device according to the present embodiment is manufactured.
  • the size of the optical amplifier can be reduced as compared with the related art. be able to.
  • the number of necessary optical components can be reduced as compared with the conventional case, and it can be manufactured by the same process as forming SO SO. since complicated mounting process is not required - an optical amplifying device having a function of controlling the optical output level can be provided inexpensively c (second embodiment)
  • FIG. 6 is a graph showing a wavelength spectrum showing a phase conjugate wave due to four-wave mixing generated when the signal light and the control light propagate through the SOA in the same direction.
  • FIG. 7 is an optical amplifier according to the present embodiment. It is a top view which shows the structure of. The same components as those of the optical amplifying device according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the DFB laser 22 as a light source for control light is connected to another input port B of the 3 dB optical coupler 14 to which signal light is input. Due to such a configuration, the signal light and the control light propagate through the SOAs 24a and 24b in the same direction.
  • a phase conjugate wave is generated by Four Wave Mixing (FWM). That is, when the signal light of wavelength ⁇ s and the control light of wavelength ⁇ c propagate in the same direction through the SOAs 24 a and 24 b, the phase shared wave of the wavelength 2 s —e e and the wavelength 2 e —; s Occurs.
  • FWM Four Wave Mixing
  • FIG. 6 is a graph showing a wavelength spectrum of output light output from SOA that propagates in the same direction as signal light having a wavelength of 1536 nm and control light having a wavelength of 1550 nm.
  • signal light having a wavelength of 1536 nm and control light having a wavelength of 1550 nm phase conjugate waves having wavelengths of 1522 nm and 1564 nm are generated.
  • phase conjugate waves generated in the SOAs 24a and 24b by the FWM are output from the two output ports G and H of the 3dB optical coupler 16 respectively, and are mixed into the amplified signal light. It becomes a noise component. For this reason, when the signal light is amplified by the optical amplifier according to the first embodiment, it may be necessary to remove a phase conjugate wave that is a noise component. Therefore, for example, it may be necessary to dispose a wavelength filter having a transmission bandwidth that allows transmission of the signal light without transmitting the phase conjugate wave after the output port H of the signal light.
  • an optical amplifier may be introduced into an optical add / drop (OADM) or an optical cross connect (OXC).
  • OADM optical add / drop
  • OXC optical cross connect
  • the optical amplifying device is different from the optical amplifying device according to the first embodiment in that a wavelength tunable filter that is disposed downstream of a signal light output port and has a variable transmission band, It has a main feature of having a control mechanism for controlling based on the wavelength of the signal light.
  • an asymmetric two-branch optical splitter 6 is provided in front of the optical waveguide 20 a via an isolator 56 and lenses 58 a and 58 b arranged on both sides thereof. 0 is provided.
  • the splitting ratio of the optical splitter 60 is, for example, 10: 1.
  • a signal light is input to an input port of the optical splitter 60.
  • the output port with a large branching ratio is the isolator 56
  • a wavelength meter 62 for detecting the signal light output from the output port and measuring the wavelength is connected to an output port having a small branching ratio among the output ports of the optical branching device 60.
  • a wavelength tunable filter 68 is disposed downstream of the optical waveguide 26 b from which the signal light is output, via the isolator 64 and the lenses 66 a and 66 b disposed on both sides thereof. .
  • the wavelength tunable filter 68 is connected to a control unit 70 that controls the transmission band of the wavelength tunable filter 68 based on the measurement result of the wavelength of the signal light by the wavelength meter 62.
  • the optical amplifying device amplifies signal light basically in the same manner as in the case of the optical amplifying device according to the first embodiment.
  • the control unit 70 controls the transmission band of the tunable filter 68 to transmit the signal light without transmitting the phase conjugate wave based on the measurement result of the wavelength of the signal light by the wavelength meter 62.
  • the center wavelength of the transmission band of the wavelength tunable filter 68 is set so as to transmit light. In this way, even if the wavelength of the signal light to be amplified dynamically changes, the phase conjugate wave that is amplified and mixed into the signal light output from one end of the optical waveguide 20b is reliably removed. be able to.
  • the transmission band of the wavelength tunable filter 68 is controlled based on the measurement result of the wavelength of the signal light by the wavelength meter 62, so that the wavelength of the signal light to be amplified dynamically changes. Even if it changes, a phase conjugate wave that becomes a noise component mixed into the signal light can be reliably removed.
  • FIG. 8 is a plan view showing the structure of the optical semiconductor device according to the present embodiment. Note that the same components as those of the optical amplifier according to the first and second embodiments are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the basic configuration of the optical amplifying device according to the present embodiment is the same as that of the optical amplifying device according to the first embodiment.
  • the optical amplifying device according to the present embodiment includes a plurality of signal light sources for removing a phase conjugate wave generated in the SOA by the FWM and mixed into the amplified signal light. It is characterized by having a broadband transmission type wavelength filter 72 having a transmission bandwidth including the above wavelengths.
  • the broadband transmission is performed downstream of the optical waveguide 26 b from which the signal light is output via the isolator 64 and the lenses 66 a and 66 b arranged on both sides thereof.
  • Type wavelength filter 72 is arranged.
  • the broadband transmission type wavelength filter 72 has a wide transmission bandwidth including a plurality of signal light wavelengths in accordance with the wavelength band of the signal light to be amplified. Is set not to be included. Accordingly, the transmission center wavelength of the broadband transmission type wavelength filter 72 need not be variable, and the wavelength meter 62 and the control unit 70 are not required. Therefore, the optical amplifying device according to the present embodiment has a smaller device size and a lower size than the optical amplifying device according to the second embodiment even when the wavelength of the signal light to be amplified fluctuates dynamically. At the cost, the phase conjugate wave that occurs at S ⁇ A 24 a and 24 b can be removed by FWM.
  • FIG. 9 is a plan view showing the structure of the optical amplifying device according to the present embodiment.
  • FIG. 10 is a graph showing a wavelength spectrum when signal light and control light propagate through the SOA in opposite directions. Is a graph showing the dependence of the gain change due to light injection on the wavelength of the control light, and Fig. 12 is a graph showing the dependence of the power of the control light on the wavelength required to maintain the output level of the signal light constant. is there.
  • the same components as those of the optical amplifying device according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the optical amplifying devices according to the second and third embodiments are generated and amplified by the FWM in the SOAs 24a and 24b by the wideband transmission wavelength filters 72, such as the wavelength tunable filters 168 and the like. It was possible to remove the phase conjugate wave mixed into the signal light.
  • the optical amplifiers according to the second and third embodiments also have the following disadvantages.
  • the optical amplifying device includes a wavelength variable filter 68 for removing a phase conjugate wave, a wavelength meter 62 for controlling the transmission band thereof, and a control unit 70.
  • a wavelength variable filter 68 for removing a phase conjugate wave
  • a wavelength meter 62 for controlling the transmission band thereof
  • a control unit 70 for controlling the transmission band thereof.
  • the optical amplifying device according to the third embodiment has a wide band transmission type wavelength finolitter 72 for removing a phase conjugate wave.
  • the phase conjugate wave cannot be removed unless the wavelength of the phase conjugate wave exists outside the wide transmission band of the broadband transmission type wavelength filter 72. For this reason, the removal of the phase conjugate wave was restricted by the control light wavelength; c .
  • the transmission bandwidth of the broadband transmission type wavelength filter 72 is set to a width including at least 150 to 150 nm.
  • the wavelength lambda s of the signal light in any wavelength of 1 5 3 0 ⁇ 1 5 6 0 nm in within range, wavelength 2 3 - l c, wavelength 2 c one; phase conjugate wave of I s Need to be shorter than 1530 nm or longer than 1560 and outside the transmission band of the broadband transmission wavelength filter 72.
  • the wavelength of the control light; I c must be set to 1500 nm or less, or 1590 nm or more.
  • the optical amplifying device according to the present embodiment does not involve an increase in the size and cost of the device and is restricted by the wavelength of the control light. This makes it possible to prevent the occurrence of a phase common wave due to the FWM in the SOAs 24a and 24b.
  • the optical amplifying device according to the present embodiment has a configuration based on a symmetric Mach-Zehnder interferometer 12 formed on an n-type InP substrate 10, similarly to the optical amplifying device according to the first embodiment. ing.
  • the ports of the 3 dB optical couplers 14 and 16 constituting the symmetric Mach-Zehnder interferometer 12 are the same as the input ports A, B, E, F, and the output ports, as in the optical amplifier according to the first embodiment.
  • Ports C, D, G, and H are referred to as follows.
  • input ports B, E, and F are output ports for control light
  • output ports ⁇ , D, and G are control light.
  • Input port for The input port A of the 3 dB optical coupler 14 is connected to an optical waveguide formed on an n-type InP substrate 10 to receive the signal light to be amplified, similarly to the optical amplifier according to the first embodiment.
  • One end of the wave path 20a is connected.
  • the other end of the optical waveguide 20a to which the signal light is input is located on the input-side end face of the signal light of the n-type InP substrate 10.
  • One end of an optical waveguide 20 b formed on an n-type InP substrate 10 is connected to the input port B of the 3 dB optical coupler 14.
  • the other end of the optical waveguide 2 O b is located on the end surface of the n-type In P substrate 10, and unlike the optical amplifier according to the first embodiment, the optical waveguide 20 b has a DFB laser 22. Not connected.
  • An SOA 24a is provided between the output port D of the 3 dB optical power puller 14 and the input port F of the 3 dB optical power puller 16 as in the optical amplifier according to the first embodiment. Are connected by an optical waveguide 18a.
  • An SOA 24 b is provided between the output port C of the 3 dB optical coupler 14 and the input port E of the 3 dB optical coupler 16, as in the optical amplifier according to the first embodiment.
  • Optical waveguides 18b is provided between the output port D of the 3 dB optical power puller 14 and the input port F of the 3 dB optical power puller 16 as in the optical amplifier according to the first embodiment.
  • the optical waveguide 26 a formed on the n-type InP substrate 10 is connected to the output port H of the 3 dB optical power puller 16, similarly to the optical waveguide device according to the first embodiment. ing.
  • the output port G of the 3 dB optical coupler 16 is connected to the optical waveguide 26 a-end formed on the n-type InP substrate 10.
  • a DFB laser 22 as a control light source is connected to the other end of the optical waveguide 26a.
  • optical amplifier according to the present embodiment configured as described above can be manufactured in substantially the same manner as the optical amplifier according to the first embodiment except for the position where the DFB laser 22 is formed.
  • the optical amplifying device has the same output port H as the signal light among the ports of the 3 dB optical power puller 16 having the output port H from which the amplified signal light is output.
  • One of the main features is that a DFB laser 22 as a control light source is connected to the output port G on the side.
  • the signal light to be amplified is input from one end of the optical waveguide 20a as in the optical amplifier according to the first embodiment.
  • the signal light input to the optical waveguide 20 a is input to the input port A of the 3 dB optical coupler 14.
  • a laser beam having a constant power is output as control light in advance, and the power of the laser beam is controlled based on the output of the signal light.
  • the control light output from the DFB laser 22 is input to the output port G of the 3 dB optical coupler 16 after propagating through the optical waveguide 26a.
  • the signal light by the SOAs 24a and 24b is controlled. Can be controlled. It is also possible to provide a feedback mechanism for controlling the current injected into the DFB laser 22 based on the output of the signal light, so that the output level of the amplified signal light can be kept constant.
  • the signal light input to the input port A is equally split by the 3 dB optical coupler 14.
  • the equally branched signal light is output from the output port CD of the 3 dB optical coupler 14.
  • the signal light is equally branched and multiplexed by the 3 dB optical coupler 14, and then output from the output ports C and D, and input to the optical waveguides 18a and 18b, respectively.
  • control light input to the output port G is equally branched by the 3 dB optical coupler 16.
  • the equally branched control light is output from the input ports E and F of the 3 dB optical coupler 16, respectively.
  • the control light is evenly branched and multiplexed by the 3 dB optical coupler 16, then output from the input ports E and F, and propagates in the opposite directions to the signal light. Input to 18a and 18b respectively.
  • the signal light and the control light input to the optical waveguides 18a and 18b so as to propagate in opposite directions are amplified by the SOAs 24a and 24b. Thereafter, the amplified signal light is input to input ports E and F of the 3-dB optical coupler 16 respectively. On the other hand, the amplified control light is input to output ports C and D of the 3-dB optical coupler 14, respectively.
  • the optical amplifying device according to the present embodiment is configured such that the signal light and the control light are input to the SOA 24a It can be considered that the signal light and the control light are multiplexed and amplified within b, and the signal light and the control light that have propagated in the opposite directions through the SOAs 24a and 24b are separated. Thus, in the optical amplifying device according to the present embodiment, the signal light and the control light propagate through the SOAs 24a and 24b in directions opposite to each other.
  • FIG. 10 is a graph showing the wavelength spectrum of the output light on the side where the signal light is output when the signal light and the control light propagate in the SOA in opposite directions.
  • the wavelength of the signal light is 1536 nm
  • the wavelength of the control light is 1550 nm.
  • the signal light is observed together with the reflected component of the control light, but the phase shared wave is not observed.
  • the generation of a phase conjugate wave by the FWM in the S OA can be prevented.
  • the signal lights input to the input ports E and F of the 3 dB optical coupler 16 are multiplexed by the 3 dB optical coupler 16.
  • the multiplexed signal light passes through the output port H which is a cross port with respect to the input port A of the 3 dB optical coupler 14 into which the signal light has been input.
  • the signal light and the control light propagate through the SOAs 24a and 24b in opposite directions, no phase conjugate wave is generated by the FWM in the SOAs 24a and 24b, and the signal light No conjugate wave is mixed.
  • control lights input to the output ports C and D of the 3 dB optical coupler 14 are also multiplexed by the 3 dB optical coupler 14. Since the path through which the control light has passed is also symmetric, the multiplexed control light is output from the input port B, which is a close port to the output port G of the 3 dB optical power puller 16.
  • the symmetric Mach-Zehnder interferometer 12 composed of the 3 dB optical coupler 14, the optical waveguides 18a, 18b, and the 3dB optical coupler 16 having the same optical path length with each other provides the first embodiment.
  • an optical filter function is implemented that separates the signal light amplified by the SOAs 24a and 24b from the control light.
  • the signal light output from the output port H is output from the optical waveguide 26b.
  • the control light output from the other end, while being output from the input port B, is output from the other end of the optical waveguide 20b.
  • the signal light input to the optical waveguide 20a is amplified, and the amplified signal light is spatially separated from the control light and output from the other end of the optical waveguide 26b.
  • the signal light and the control light are propagated through the SOA in opposite directions, so that generation of a phase conjugate wave by the FWM in the SOAs 24a and 24b is prevented.
  • a wavelength filter, a wavelength meter, a control unit, and the like which are included in the optical amplifiers according to the second and third embodiments, become unnecessary, and further downsizing of the device and reduction of the size can be achieved. Cost can be reduced.
  • the optical amplifying device prevents the generation of a phase conjugate wave by propagating the signal light and the control light through the SOA in mutually opposite directions. Prevention of generation of a phase conjugate wave is not restricted by the wavelength of the control light.
  • the wavelength of the control light can be set with a high degree of freedom.
  • the wavelength of the control light since the wavelength of the control light can be set with a high degree of freedom, it is possible to set the wavelength of the control light so that sufficient gain saturation can be obtained at a low power.
  • the element length of the DFB laser 22 as a light source can be shortened. Its power consumption can be reduced.
  • this point will be described in detail.
  • the wavelength of the signal light for this t a sufficient gain L s are designed to give the wavelength lambda c of the control light against the control light and largely deviates from the wavelength s of the signal light SOA Gain is reduced.
  • L s the gain of the DFB laser
  • power consumption also increases.
  • Figure 1 when injected with control light of a constant power is a graph showing the dependence on the wavelength lambda c of the control light of gain variation delta G capable of varying the gain of the signal light.
  • the wavelength lambda s of the signal light is 1 5 6 0 nm.
  • the gain change ⁇ G is 6 dB when the wavelength ⁇ nm of the control light is 154 nm. It is the largest.
  • the control light wavelength; I c is 1500 nm
  • the gain change AG is reduced to 4 dB
  • the control light wavelength e is 159 O nm
  • the gain change is G is reduced to 2 dB.
  • the wavelength of the control light is ⁇ .
  • the gain change ⁇ G is maximum at 8 dB, while when the wavelength ⁇ c of the control light is 1,500 nm, the gain change AG is 55 dB. Decrease.
  • Fig. 12 shows the control light power required to maintain the output level of the signal light at a constant value + 10 dBm.
  • 6 is a graph showing the dependency on. In this case, as in the graph of FIG. 11, the power of the input signal light is 13 dBm, and the wavelength of the signal light; s is 1560 nm.
  • the optical amplifying device can prevent the generation of a phase conjugate wave due to the FWM in the SOA without being limited by the wavelength of the control light, so that the wavelength of the control light can be set with a high degree of freedom. can do. Therefore, it is possible to set the wavelength of the control light so that the above-described gain change AG becomes as large as possible and the power of the control light required to amplify the signal light to a predetermined level becomes as small as possible. it can. As described above, since the wavelength of the control light can be set so that sufficient gain saturation can be obtained with a low power, the element length of the DFB laser 22 as the light source for the control light can be shortened, and the power consumption can be reduced. The power can also be reduced.
  • the material of the optical amplifying device is of InGaAsP / InP type.
  • the material is not limited to this, and InA1GaAs / I Other material systems such as nP system may be used.
  • the DFB laser 22 is used as the control light source.
  • the present invention is not limited to this as long as the light source can be formed on the same substrate together with other components.
  • DBR Distributed Bragg Reflector
  • Other semiconductor lasers such as lasers can be used as the control light source.
  • the present invention is suitable for an optical amplifying device, and in particular, an optical amplifier having a function of controlling an optical output level capable of reducing the number of necessary optical components and enabling downsizing and low power consumption. Useful for equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Description

[技術分野]
本発明は、 半導体光増幅器を用いた光増幅装置に係り、 特に、 出力信号光のレ ベル Zパワーを一定に制御する機能 (A L C : Auto Level Control, A P C : Au to Power Control) を有する光増幅装置に関する。
[背景技術]
近年の通信需要の飛躍的な増大に対して、 波長の異なる複数の信号光を多重化 することにより一本の光ファィバで大容量の情報を伝送することが可能となる波 長多重通信システムの開発が進んでいる。 この波長多重通信システムにおいては、 信号光の合波や分波のために多数の光学部品が用いられるため、 各光学部品にお ける光損失によつて信号光が減衰することとなる。
このような光損失を捕償するために光増幅装置が使用されるが、 従来の光ファ ィバ通信システムと比較して非常に数多くの光増幅装置が必要となるため、 用い る光増幅装置には、 小型であり、 且つ低消費電力動作が可能であることが要求さ れる。
また、 このような光増幅装置には、 入力信号光のパワーレベルの大きな変動に 対応することができるように、 大きな入力ダイナミックレンジを有し、 さらに出 力信号光のレベル Zパワーを一定に制御する機能を備えていること要求されてい る。
各種光増幅器のうち、 半導体光増幅器 (S O A: Semiconductor Optical Ampl ifier) は小型で低消費電力のものであり、 波長多重通信システムに用いる光損 失補償用の光増幅器として期待されている。
本願発明者は、 外部光を注入することにより出力信号光のレベル/パワーを一 定に制御する機能を有する S O Aを用いた光増幅装置を提案している (特許文献 1を参照) 。 外部光を注入することにより出力信号光のレベル Zパワーを一定に 制御する機能を有する従来の S O Aを用いた光増幅装置について図 1 3を用いて 説明する。 図 1 3は従来の光出力レベル制御機能を有する光増幅装置の構成を示 す概略図である。
信号光と制御光とを合波する波長分割多重 (WD M: Wavelength Division Mu ltiplexing) 力ップラー 1 0 0の一の入力ポートに制御光用光源 1 0 2が接続さ れている。 WD Mカップラー 1 0 0の他の入力ポートには増幅すべき信号光が入 力される。 WD Mカップラー 1 0 0の出力ポートには、 WD Mカップラー 1 0 0 により制御光と合波された信号光を増幅する S O A 1 0 4が接続されている。 S O A 1 0 4の出力側には、 増幅された信号光を制御光から分離する光フィルター 1 0 6が設けられている。
さらに、 光フィルター 1 0 6の出力側には、 光フイノレター 1 0 6から出力され た信号光の一部を分岐する光分岐器 1 0 8が設けられている。 光分岐器 1 0 8の —の出力ポートには、 分岐された信号光の出力を計測するパワーメーター 1 1 0 が接続されている。 パワーメーター 1 1 0には、 パワーメーター 1 1 0による信 号光の出力の計測結果に基づき、 制御光の光レベルを制御する制御部 1 1 2が接 続されている。
パワーメーター 1 1 0による信号光の出力の計測結果に基づき、 信号光と合波 して S O A 1 0 4へ入力する制御光の光レベルを制御することにより、 信号光の S O A 1 0 4による増幅率を制御することができる。
しかしながら、 図 1 3に示す従来の光増幅装置の各構成要素には、 光ファイバ により光の入出力が行われる個別のモジュールがそれぞれ用いられていた。 各モ ジュールの大きさは数 c mと大きく、 光増幅装置全体では約 1 0 c m角のスぺー スを必要としていた。 このため、 波長多重通信システムにおける光増幅装置とし て用いるには、 その大きさという点に難点があった。
また、 図 1 3に示す従来の光増幅装置では、 用いられるレンズ、 アイソレータ 及びペルチェ素子の数が多いため、 コス トの上昇を招くという難点もあった。 す なわち、 通常、 制御光用光源 1 0 2には 2個のレンズ、 1個のアイソレータ、 1 個のペルチェ素子が、 S O A 1 0 4には 4個のレンズ、 2個のアイソレータ、 2 個のペルチェ素子が、 WDMカップラー 1 0 0には 2個のレンズ、 フィルターに は 2個のレンズがそれぞれ必要であり、 光増幅装置全体で合計 1 0個のレンズ、 3個のアイソレータ、 2個のペルチェ素子をそれぞれ用いる必要があった。 この ように、 従来の光出力レベルの制御機能を有する光増幅装置は、 必要な光学部品 の点数が多いため高価なものとなっていた。
また、 光増幅装置を構成するモジュールの実装工程において手間を要すること も、 コスト上昇の大きな要因の一つとなっていた。
本発明の目的は、 小型で、 必要な光学部品点数が少なく、 煩雑な実装工程が必 要のない光出力レベルの制御機能を有する光増幅装置を提供することにある。
特許文献 1
特開 2 0 0 2— 2 0 8 7 5 8号公報
[発明の開示]
上記目的は、 制御光を用いて信号光の増幅率を制御する光増幅装置であって、 半導体基板上に設けられ、 前記制御光を出力する制御光用光源と、 前記半導体基 板上に設けられ、 前記信号光と前記制御光とを合波する合波手段と、 前記半導体 基板上に設けられ、 合波された前記信号光と前記制御光とを増幅する半導体光増 幅器と、 前記半導体基板上に設けられ、 前記半導体光増幅器により増幅された前 記信号光を前記制御光から分離して出力する分波手段とを有することを特徴とす る光増幅装置により達成される。
また、 上記目的は、 半導体基板上に設けられ、 2つの入力ポートと 2つの出力 ポートとを有する第 1及び第 2の 3 d B光カップラーと、 前記第 1の 3 d B光力 ップラーの前記出力ポートと前記第 2の 3 d B光力ップラーの前記入力ポートと を光学的に接続する第 1及び第 2の光導波路とを有するマッハツ ンダ干渉器と 前記第 1及び第 2の光導波路のそれぞれに設けられた半導体光増幅器と、 前記半 導体基板上に設けられ、 前記第 1の 3 d B光カップラーの一の前記入力ポートか ら入力される信号光の増幅率を制御するための制御光を前記マッハツエンダ干渉 器に入力する制御光用光源とを有することを特徴とする光増幅装置により達成さ れる。
本発明によれば、 制御光を用いて信号光の増幅率を制御する光増幅装置を、 半 導体基板上に設けられ、 信号光と制御光とを合波する合波手段と、 半導体基板上 に設けられ、 制御光と合波された信号光を増幅する半導体光増幅器と、 半導体基 板上に形成され、 半導体光増幅器により増幅された信号光を制御光から分離する 分波手段とから構成するので、 従来に比べて光増幅装置の小型化を図ることがで きる。 また、 必要な光学部品の点数を削減することができ、 S O Aを形成するの と同等の工程により製造することができ煩雑な実装工程が不要となるので、 光出 力レベルを制御する機能を有する光増幅装置を低廉に提供することができる。 また、 本発明によれば、 信号光と制御光とを半導体光増幅器に互いに逆方向か ら入力することにより、 半導体光増幅器内において信号光と制御光とを合波して 増幅し、 半導体光増幅器を互いに逆方向に伝搬した信号光と制御光とを分離する ので、 装置のサイズの増大及びコストの上昇を伴うことなく、 四光波混合による 位相共役波の発生を防止することができる。 また、 高い自由度で制御光の波長を 設定することができるため、 低いパワーで十分な利得飽和が得られるように制御 光の波長を設定することができ、 低消費電力の光増幅装置を提供することができ る。
[図面の簡単な説明]
図 1は、 本発明の第 1実施形態による光増幅装置の構造を示す概略図である。 図 2は、 本発明の第 1実施形態による光増幅装置の製造方法を示す工程断面図
(その 1 ) である。
図 3は、 本発明の第 1実施形態による光増幅装置の製造方法を示す工程断面図 (その 2 ) である。
図 4は、 本発明の第 1実施形態による光増幅装置の製造方法を示す工程断面図 (その 3 ) である。
図 5は、 本発明の第 1実施形態による光増幅装置の製造方法を示す工程断面図 (その 4 ) である。
図 6は、 信号光と制御光とが S O Aを同一方向に伝搬する場合に発生する四光 波混合による位相共役波を示す波長スペク トルを示すグラフである。
図 7は、 本発明の第 2実施形態による光増幅装置の構造を示す平面図である。 図 8は、 本発明の第 3実施形態による光増幅装置の構造を示す平面図である。 図 9は、 本発明の第 4実施形態による光増幅装置の構造を示す平面図である。 図 1◦は、 信号光と制御光とが S O Aを互いに逆方向に伝搬する場合の波長ス ぺクトルを示すグラフである。
図 1 1は、 光注入による利得変化の制御光の波長に対する依存性を示すグラフ である。
図 1 2は、 信号光の出力レベルを一定に維持するために要する制御光のパワー の波長に対する依存性を示すグラフである。
図 1 3は、 従来の出力レベル制御機能を有する光増幅装置の構成を示す概略図 である。
[発明を実施するための最良の形態]
(第 1実施形態)
本発明の第 1実施形態による光増幅装置及びその製造方法について図 1乃至図 5を用いて説明する。 図 1は本実施形態による半導体装置の構造を示す概略図、 図 2乃至図 5は本実施形態による光増幅装置の製造方法を示す工程断面図である, (光増幅装置)
まず、 本実施形態による光増幅装置について図 1を用いて説明する。 図 1 Aは 本実施形態による光増幅装置の上面図、 図 1 Bは図 1 Aの X— X' 線断面図、 図 1 は図1 の¥—^ 線断面図である。
本実施形態による光増幅装置は、 η型 I η Ρ基板 1 0上に形成された対称マツ ハツエンダ干渉器 1 2を基本とする構成を有している。 すなわち、 η型 Ι η Ρ基 板 1 0上には、 図 1 Αに示すように、 入力ポート A、 Bと出力ポート C、 Dとを 有する 3 d B光カップラー 1 4と、 入力ポート E、 Fと出力ポート G、 Hとを有 する 3 d B光カップラー 1 6と、 3 d B光カップラー 1 4の出力ポート C、 Dと 3 d B光カップラー 1 6の入力ポート E、 Fとをそれぞれ接続する同一光路長の 光導波路 1 8 a、 1 8 bとが形成されている。 光導波路 1 8 aと光導波路 1 8 b とはほぼ平行に形成されている。 こうして、 n型 I η P基板 1 0上に、 信号光と 制御光とを分離するフィルタ一機能を実現する対称マッハツエンダ干渉器 1 2が 構成されている。
3 d B光カップラー 1 4の入力ポート Aには、 n型 I n P基板 1 0上に形成さ れ、 増幅すべき信号光が入力される光導波路 2 0 aの一端が接続されている。 光 導波路 2 0 aの信号光が入力される他端は、 n型 I n P基板 1 0の信号光の入力 側端面に位置している。
3 d B光カップラー 1 4の入力ポート Bには、 n型 I n P基板 1 0上に形成さ れ、 S OAによる信号光の増幅率を制御するための制御光用光源として機能する 分布帰還型 (D F B : Distributed FeedBack) レーザ 2 2が、 n型 I n P基板 1 0上に形成された光導波路 2 0 bを介して接続されている。
光導波路 1 8 a、 1 8 bには、 それぞれ光導波路 1 8 a、 1 8 b内を伝搬する 光を増幅する S OA 2 4 a、 2 4 bが設けられている。 S OA 24 a、 2 4 bは、 例えば、 偏波無依存型の半導体光増幅器とすることができる。 なお、 偏波無依存 型の光半導体増幅器については、 例えば本願発明者による特開平 2 0 0 1 - 5 3 3 9 2号公報に詳述されている。
3 d B光カップラー 1 6の出力ポート G、 Hには、 n型 I n P基板 1 0上に形 成された光導波路 2 6 a、 2 6 bの一端がそれぞれ接続されている。 光導波路 2 6 aと光導波路 2 6 bの他端は、 n型 I n P基板 1 0の信号光の出力側端面に位 置している。
S OA 2 4 a又は S OA 2 4 bが形成された領域の断面形状は、 図 1 Bに示す ようになっている。 すなわち、 n型 I n P基板 1 0上には、 厚さ 1 0 0 nm、 無 歪であり 1. 2 β m組成の I n G a A s光閉じ込め層 2 8と、 厚さ 5 0 nm、 伸 張歪 0. 2 5 %の I n G a A s活性層 3 0と、 厚さ 1 0 0 nm、 無歪であり 1. 2 μ m組成の I n G a A s光閉じ込め層 3 2とが順次積層されている。 I n G a A s光閉じ込め層 2 8、 I n G a A s活性層 3 0、 及ぴ I n G a A s光閉じ込め 層 3 2は、 光導波路を構成するメサ形状にパターユングされている。 メサの両側 の n型 I n P基板 1 0上には、 p型 I n P電流狭窄層 3 4と、 n型 I n P電流狭 窄層 3 6とが順次形成されている。 これらが形成された n型 I n P基板 1 0の全 面には、 P型 I n Pクラッド層 3 8が形成されている。 p型 I n Pクラッド層 3 8上には、 I n G a A sコンタクト層 4 0が形成されている。 S O A 2 4 a又は S O A 2 4 bが形成されていない領域の断面形状は、 図 1 C に示すようになつている。 すなわち、 n型 I n P基板 1 0上には、 アンドープの I n Pからなる厚さ 5 0 n mの下部クラッド層 4 2と、 無歪であり 1 . 3 μ m組 成の I n G a A s Pからなる厚さ 1 0 0 n mのコア層 4 4と、 アンドープの I n Pからなる厚さ 5 0 n mの上部クラッド層 4 6とが順次積層されている。 下部ク ラッド層 4 2、 コア層 4 4、 及び上部クラッド層 4 6は、 光導波路を構成するメ サ形状にパターニングされている。 メサの両側の n型 I n P基板 1 0上には、 p 型 I n P電流狭窄層 3 4と、 n型 I n P電流狭窄層 3 6とが順次形成されている, これらが形成された 11型 I n P基板 1 0の全面には、 p型 I n Pクラッド層 3 8 が形成されている。
このように、 本実施形態による光増幅装置は、 光出力レベルを制御する機能を 有する光増幅装置としての各構成要素が同一基板上にモノリシックに集積されて いることに主たる特徴がある。
従来の光出力レベルを制御する機能を有する光増幅装置では、 その構成要素と なる制御光用光源、 光カップラー、 S O A、 フィルタ一等の各モジュールを、 光 ファイバを介して接続することにより実装していた。 このため小型化が困難であ り、 また、 その実装工程において手間も要していた。
これに対し、 本実施形態による光増幅装置は、 各構成要素が同一基板上に形成 されているために小型化が可能であり、 その素子長を例えば 3 mm程度とするこ とが可能である。 また、 各構成要素が同一基板上に形成されているため、 必要な 光学部品の点数を大幅に削減することができる。 例えば、 図 1 3に示す従来の光 増幅装置では、 合計 1 0個のレンズ、 3個のアイソレータ、 2個のペルチェ素子 を必要としていたのに対し、 本実施形態による光増幅装置で必要となるのは、 合 計 4個のレンズ、 2個のアイソレータ、 1個のぺノレチェ素子であり、 従来に比べ て必要な光学部品点数が大幅に削減されている。 さらに、 従来のように光フアイ バを用いた手間を要するモジュールの実装工程が不要となり、 通常の S O Aの場 合と同等の工程により実装が可能となる。 これにより、 光増幅装置のコストを低 減することができる。
(光増幅装置の動作) 次に、 本実施形態による光増幅装置の動作について図 1を用いて説明する。 増幅すべき信号光は、 光導波路 20 aの一端から入力される。 光導波路 20 a に入力された信号光は、 3 d B光力ップラー 14の入力ポート Aに入力される。 光導波路 2 O bの一端に設けられた DFBレーザ 22からは、 予め一定パワー のレーザ光を制御光として出力しておき、 信号光の出力に基づきレーザ光のパヮ 一を制御する。 DFBレーザ 22から出力された制御光は、 3 d B光カップラー 14の入力ポート Bに入力される。 DFBレーザ 22に注入する電流を制御して 出力されるレーザ光の光レベルを制御することにより、 SOA24 a、 24 に よる信号光の増幅率を制御することができる。 また、 信号光の出力に基づき DF Bレーザ 22に注入する電流を制御するフィードバック機構を設け、 増幅された 信号光の出力レベルが一定になるようにすることも可能である。
入力ポート Aに入力された信号光は、 3 d B光カップラー 14により均等に分 岐される。 均等に分岐された信号光は、 3 d B光カップラー 1 4の出力ポート C Dからそれぞれ出力される。
一方、 入力ポート Bに入力された制御光は、 3 dB光カップラー 14により均 等に分岐される。 均等に分岐された制御光は、 3 d B光カップラー 14の出力ポ 一トじ、 Dからそれぞれ出力される。
こうして、 信号光及び制御光は、 3 d B光カップラー 14により均等に分岐さ れ合波された後に、 出力ポート C、 Dから出力され、 光導波路 1 8 a、 18 bに それぞれ入力される。
光導波路 1 8 a、 1 8 bにそれぞれ入力された信号光及び制御光は、 S O A 2 4 a、 24 bにより増幅された後、 3 d B光カップラー 1 6の入力ポート E、 F にそれぞれ入力される。
ここで、 SOA24 a、 24 bを偏波無依存型のものとした場合には、 信号光 の偏波の状態が時間的に変化した場合にも、 常に一定の増幅率を得ることができ る。
3 d B光カップラー 16の入力ポート E、 Fに入力された信号光は、 3 dB光 カップラー 16により合波される。 このとき、 信号光が通過した経路が対称であ るので、 合波された信号光は、 信号光が入力された 3 dB光カップラ ^14の入 力ポート Aに対してクロスポートである出力ポート Hから出力される。 一方、 3 d B光カップラー 1 6の入力ポート E、 Fに入力された制御光も、 3 d B光カップラー 1 6により合波される。 制御光が通過した経路も対称であるの で、 合波された制御光は、 3 d B光カップラー 14の入力ポート Bに対してクロ スポートである出力ポート Gから出力される。 ·
このように、 3 d B光カップラー 14、 互いに同一光路長の光導波路 1 8 a、
1 8 b、 及び 3 d B光カップラー 1 6から構成される対称マッハツエンダ干渉器
1 2により、 SOA24 a、 24 bにより增幅された信号光を制御光から分離す る光フィルター機能が実現されている。
出力ポート Hから出力された信号光は、 光導波路 26 bの他端から出力される, 一方、 出力ポート Gから出力された制御光は、 光導波路 26 aの他端から出力さ れる。
こう して、 光導波路 20 aに入力された信号光が増幅されるとともに、 増幅さ れた信号光が制御光から空間的に分離されて光導波路 26 bの他端から出力され る。
(光増幅装置の製造方法)
次に、 本実施形態による光増幅装置の製造方法について図 2乃至図 5を用いて 説明する。 なお、 図 2A乃至図 2 C、 図 3A乃至図 3 C、 図 4A乃至図 4 C、 図 5 A及び図 5 Bそれぞれの左図は DFBレーザ及び S〇 Aが形成される領域のェ 程断面図を示し、 図 2A乃至図 2 C、 図 3A乃至図 3 C、 図 4A乃至図 4 C、 図 5 A及び図 5 Bそれぞれの右図は光導波路が形成される領域の工程断面図を示し ている。
まず、 n型 I n P基板 10の DF Bレーザ 22形成予定領域に、 回折格子を形 成する。 例えば、 n型 I n P基板 1 0上にポジ型レジストを塗布して形成したレ ジス ト膜に二光束干渉露光により回折格子パターンを形成する。 次いで、 DFB レーザ 22形成予定領域上のレジス ト膜に露光光が照射されないようなマスクを 用いたダイレクトコンタクト露光及び露光後の現像により、 DFBレーザ 22形 成予定領域上のレジス ト膜のみに回折格子パターンを形成する。 次いで、 回折格 子パターンを形成したレジスト膜をマスクとして、 C2H6、 H2、 及び O2の混合ガ スをエッチングガスとする R I E法により、 n型 I n P基板 1 0の D F Bレーザ 2 2形成予定領域に回折格子を形成する。
次に、 n型 I n P基板 1 0上の全面に、 例えば有機金属気相成長 (MOCVD : Metal Organic Chemical Vapor Deposition) により、 厚さ 1 0 0 n:m、 無 歪であり 1. 2 μ m組成の I n G a A s光閉じ込め層 2 8と、 厚さ 5 0 nm、 伸 張歪 0. 2 5 %の I n G a A s活性層 3 0と、 厚さ 1 0 0 nm、 無歪であり 1 · 2 μ m組成の I n G a A s光閉じ込め層 3 2とを順次形成する (図 2 A) 。
次いで、 I n G a A s光閉じ込め層 3 2上に、 シリ コン酸化膜 5 0を形成する (図 2 B)。
次いで、 フォトリソグラフィー及びエッチング技術により、 シリコン酸化膜 5 0に、 D F Bレーザ 2 2及び S OA 2 4 a、 2 4 bを形成しない領域を露出する 開口部を形成する (図 2 C) 。
次いで、 シリコン酸化膜 5 0をマスクとして、 例えば C2H6、 H2、 及び〇2の混 合ガスをエッチングガスとする反応性ィオンェッチング (R I E : Reactive Ion Etching) 法により、 n型 I n P基板 1 0上の D F Bレーザ 2 2及び S OA 2 4 a、 2 4 bを形成しない領域の I n G a A s光閉じ込め層 3 2、 I n G a A s活 性層 3 0、 及ぴ I n G a A s光閉じ込め層 2 8を除去する (図 3 A) 。
こう して、 n型 I n P基板 1 0の D F Bレーザ 2 2、 S OA 2 4 a、 2 4 bの 形成予定領域上のみに活性層構造が形成される。
次いで、 例えば MOC VD法により、 I n G a A s活性層 44等を除去した n 型 I n P基板 1 0上の D F Bレーザ 2 2及び S OA 2 4 a、 24 bを形成しない 領域に、 下部クラッド層 4 2と、 コア層 4 4と、 上部クラッド層 4 6とを順次積 層する (図 3 B) 。 次いで、 シリコン酸化膜 5 0を、 例えば弗酸を用いたゥエツ トエッチングにより除去する。
こう して、 n型 I n P基板 1 0の D F Bレーザ 2 2、 S OA 2 4 a , 24 bを 形成しない領域上にパッシブ層構造が形成される。
次いで、 上述のように活性層構造が形成された領域とパッシブ層構造が形成さ れた領域とを有する n型 I n P基板 1 0の全面にシリコン酸化膜 5 2を形成する c 次いで、 リソグラフィー及びエッチング技術により、 シリコン酸化膜 5 2を、 光 導波路 18 a、 1 8 b、 20 a、 20 b、 26 a、 26 b、 及び 3 d B光カップ ラー 1 4、 1 6のパターンに形成する。
次いで、 パターユングしたシリコン酸化膜 5 2をマスクとし 、 例えば C2H6、 H2、 及ぴ 02の混合ガスをエッチングガスとする R I E法により、 I nGaA s 光閉じ込め層 32、 I nGaA s活性層 30、 及び I n G a A s光閉じ込め層 2 8と、 上部クラッド層 46、 コア層 44、 及び下部クラッド層 42とをエツチン グする (図 4A) 。
こうして、 光導波路 1 8 a、 1 8 b、 20 a、 20 b、 26 a、 26 b、 及び 3 d B光カップラー 14、 1 6がコア層 44に形成され、 D F Bレーザ 22、 S OA24 a、 24 bの活性層構造がメサ状に形成される。
次いで、 シリコン酸化膜 52をそのまま選択成長マスクとして用い、 MOCV D法により、 パターニングした I n G a A s光閉じ込め層 32、 I nG aA s活 性層 30、 及び I nG a A s光閉じ込め層 28からなる活性層構造と、 上部クラ ッド層 46、 コア層 44、 及び下部クラッド層 42からなるパッシブ層構造の両 側の n型 I n P基板 10上に、 p型 I n P電流狭窄層 34と、 n型 I n P電流狭 窄層 36とを順次選択成長させる。 p型 I n P電流狭窄層 34及び n型 I n P電 流狭窄層 36を形成した後、 シリコン酸化膜 52を、 例えば弗酸を用いたゥエツ トエッチングにより除去する (図 4B) 。
次いで、 例えば MOC VD法により、 全面に、 I n Pクラッド層 38と、 I n Ga A Sコンタクト層 40とを順次形成する (図 4 C) 。
次いで、 I nG a A sコンタクト層 40上にレジスト膜 54を形成する。 次い で、 例えばダイレクトコンタクト露光及び露光後の現像により、 活性層構造が形 成された領域以外の領域上のレジスト膜 54を除去する (図 5A) 。
次いで、 レジスト膜 54をマスクとして、 例えば硫酸及び過酸化水素からなる エッチング液を用いたゥエツトエッチングにより、 活性層構造が形成された領域 上のコンタクト層 40のみを残存させ、 パッシブ層構造が形成された領域上のコ ンタクト層 40を除去する (図 5 B) 。
次いで、 DFBレーザ 22及ぴ SOA24 a、 24 bが形成された領域の!)側、 n側にそれぞれ電極 (図示せず) を形成する。 次いで、 n型 I n P基板 10を劈開面に沿って劈開することにより、 信号光の 入力側端面及び出力側端面を形成する。 次いで、 形成した両端面に、 無反射コー ト膜 (図示せず) を形成する。
こうして、 本実施形態による光増幅装置が製造される。
このように、 本実施形態によれば、 光出力レベルを制御する機能を有する光増 幅装置の各構成要素を同一基板上に形成するので、 従来に比べて光増幅装置の小 型化を図ることができる。 また、 各構成要素を同一基板上に形成することにより- 従来に比べて必要な光学部品の点数を削減することができ、 また、 SO Αを形成 するのと同等の工程により製造することができ煩雑な実装工程が不要となるので- 光出力レベルを制御する機能を有する光増幅装置を低廉に提供することができる c (第 2実施形態)
本発明の第 2実施形態による光増幅装置について図 6を用いて説明する。 図 6 は信号光と制御光とが S OAを同一方向に伝搬する場合に発生する四光波混合に よる位相共役波を示す波長スぺクトルを示すグラフ、 図 7は本実施形態による光 増幅装置の構造を示す平面図である。 なお、 第 1実施形態による光増幅装置と同 様の構成要素については同一の符号を付し説明を省略し或いは簡略にする。
第 1実施形態による光增幅装置では、 信号光が入力される 3 d B光カップラー 14の他の入力ポート Bに制御光用光源としての DFBレーザ 22が接続されて いた。 このような構成のため、 信号光と制御光とは、 SOA24 a、 24 bを同 一方向に伝搬する。
このように、 SOA24 a、 24 bにおいて、 信号光と制御光とが同一方向に 伝搬する場合、 四光波混合 (Four Wave Mixing: FWM) により位相共役波が発 生する。 すなわち、 波長 λ sの信号光と波長 λ cの制御光とが SOA24 a、 24 bを同一方向に伝搬した場合には、 波長 2 s—え eと波長 2 e— ; sの位相共 役波が発生する。
例えば、 図 6は、 波長 1 536 nmの信号光と波長 1 550 nmの制御光と力 同一方向に伝搬する S OAから出力される出力光の波長スぺク トルを示すグラフ である。 波長スぺクトルカ、ら、 波長 1 53 6 nmの信号光と波長 1 550 nmの 制御光とに加えて、 波長 1 522 n m、 1 564 n mの位相共役波が発生してい ることが分かる。
F WMにより S O A 2 4 a、 2 4 bにおいて発生した位相共役波は、 3 d B光 カップラー 1 6の 2つの出力ポート G、 Hからそれぞれ出力することととなり、 増幅された信号光に混入し雑音成分となる。 このため、 第 1実施形態による光増 幅装置により信号光を增幅する場合、 雑音成分となる位相共役波を除去すること が必要となる場合がある。 したがって、 例えば、 信号光の出力ポート Hの後段に 位相共役波を透過せずに信号光を透過する透過帯域幅を有する波長フィルターを 配置することが必要となる場合がある。
ところで、 WD Mシステム等の光通信システムにおいては、 光分岐揷入 (O A D M : Optical Add and Drop) や光クロスコネク卜 ( O X C : Optical Cross Co nnect) 等に光増幅装置が導入される場合が考えられる。 このような場合、 その 光増幅装置が 1波対応であっても、 そこに入力される信号光の波長 λ sが固定さ れておらず、 ある波長帯で動的に変化する場合が想定される。 例えば、 光通信に 用いられる波長帯として最も一般的な Cバンド帯 (1 5 3 0〜 1 5 6 0 n m) 内 で信号光の波長; sが任意に変化するような場合である。
このような場合に、 位相共役波を除去するために、 単に、 信号光の出力ポート Hの後段に Cバンド帯を透過する波長フィルターを配置するのみでは、 次のよう な不都合が想定される。 すなわち、 信号光の波長によっては、 F WMによる位相 共役波の波長が、 波長フィルターの透過帯域内にあるものとなり、 雑音成分とし ての位相共役波を十分に除去することができないこともあり得る。
本実施形態による光増幅装置は、 第 1実施形態による光増幅装置において、 信 号光の出力ポートの後段に配置され、 透過帯域が変化する波長可変フィルターと 波長可変フィルターの透過帯域の中心波長を、 信号光の波長に基づき制御する制 御機構とを有することに主たる特徴がある。
すなわち、 図 7に示すように、 光導波路 2 0 aの前段には、 アイソレータ 5 6 及びその両側に配置されたレンズ 5 8 a、 5 8 bを介して、 非対称 2分岐の光分 岐器 6 0が設けられている。 光分岐器 6 0の分岐比は、 例えば 1 0 : 1となって いる。 光分岐器 6 0の入力ポートには信号光が入力されるようになっている。 光 分岐器 6 0の出力ポートのうち分岐比の大きな出力ポートは、 アイソレータ 5 6 及びその両側に配置されたレンズ 5 8 a、 5 8 bを介して、 光導波路 2 0 aに光 学的に接続されており、 出力ポートから出力される信号光が光導波路 2 0 aに入 力されるようになっている。 また、 光分岐器 6 0の出力ポートのうち分岐比の小 さい出力ポートには、 出力ポートから出力される信号光を検出し、 その波長を計 測する波長計 6 2が接続されている。
一方、 信号光が出力される光導波路 2 6 bの後段には、 アイソレータ 6 4及び その両側に配置されたレンズ 6 6 a、 6 6 bを介して、 波長可変フィルター 6 8 が配置されている。 波長可変フィルター 6 8には、 波長計 6 2による信号光の波 長の計測結果に基づき、 波長可変フィルター 6 8の透過帯域を制御する制御部 7 0が接続されている。
本実施形態による光増幅装置は、 基本的に第 1実施形態による光増幅装置の場 合と同様にして信号光の増幅を行う。 この信号光の増幅の間、 制御部 7 0は、 波 長計 6 2による信号光の波長の計測結果に基づき、 波長可変フィルター 6 8の透 過帯域が位相共役波を透過せずに信号光を透過するものとなるように、 波長可変 フィルター 6 8の透過帯域中心波長を設定する。 こうして、 増幅すべき信号光の 波長が動的に変化するような場合であっても、 増幅されて光導波路 2 0 bの一端 から出力された信号光に混入した位相共役波を確実に除去することができる。 このように、 本実施形態によれば、 波長計 6 2による信号光の波長の計測結果 に基づき、 波長可変フィルター 6 8の透過帯域を制御するので、 増幅すべき信号 光の波長が動的に変化する場合であつても、 信号光に混入した雑音成分となる位 相共役波を確実に除去することができる。
(第 3実施形態)
本発明の第 3実施形態による光増幅装置について図 8を用いて説明する。 図 8 は本実施形態による光半導体装置の構造を示す平面図である。 なお、 第 1及び第 2実施形態による光増幅装置と同様の構成要素については同一の符号を付し説明 を省略し或いは簡略にする。
本実施形態による光增幅装置の基本的構成は、 第 1実施形態による光増幅装置 と同様である。 本実施形態による光増幅装置は、 F WMにより S O Aにおいて発 生し、 増幅された信号光に混入する位相共役波を除去するために、 複数の信号光 の波長を含む透過帯域幅を有する広帯域透過型波長フィルター 7 2を有すること に特徴がある。
すなわち、 図 8に示すように、 信号光が出力される光導波路 2 6 bの後段には、 アイソレータ 6 4及びその両側に配置されたレンズ 6 6 a、 6 6 bを介して、 広 帯域透過型波長フィルター 7 2が配置されている。
広帯域透過型波長フィルター 7 2は、 増幅すべき信号光の波長帯域に応じて複 数の信号光の波長を含む広い透過帯域幅を有するものであり、 この広い透過帯域 幅に位相共役波の波長が含まれないように設定されている。 これにより、 広帯域 透過型波長フィルター 7 2の透過中心波長は可変である必要はなく、 また、 波長 計 6 2や制御部 7 0も不要である。 したがって、 本実施形態による光增幅装置は、 増幅すべき信号光の波長が動的に変動する場合であっても、 第 2実施形態による 光増幅装置と比較して、 小さな装置のサイズで、 低コス トに、 F WMにより S〇 A 2 4 a、 2 4 bにおいて癸生する位相共役波を除去することができる。
(第 4実施形態)
本発明の第 4実施形態による光増幅装置について図 9を用いて説明する。 図 9 は本実施形態による光増幅装置の構造を示す平面図、 図 1 0は信号光と制御光と が S O Aを互いに逆方向に伝搬する場合の波長スぺク トルを示すグラフ、 図 1 1 は光注入による利得変化の制御光の波長に対する依存性を示すグラフ、 図 1 2は 信号光の出力レベルを一定に維持するために要する制御光のパワーの波長に対す る依存性を示すグラフである。 なお、 第 1実施形態による光増幅装置と同様の構 成要素については同一の符号を付し説明を省略し或いは簡略にする。
上記の第 2及び第 3実施形態による光増幅装置は、 それぞれ波長可変フィルタ 一 6 8等、 広帯域透過型波長フィルター 7 2により、 F WMにより S O A 2 4 a、 2 4 bにおいて発生し、 増幅された信号光に混入する位相共役波を除去すること を可能としていた。 しかしながら、 第 2及び第 3実施形態による光増幅装置には、 以下に述べるような不都合も存在していた。
第 2実施形態による光増幅装置は、 位相共役波を除去するために、 波長可変フ ィルター 6 8、 及びその透過帯域を制御するために用いられる波長計 6 2、 制御 部 7 0を有していた。 このため、 部品点数の増大から装置のサイズが大きくなり、 また、 コストが高くなつてしまっていた。
一方、 第 3実施形態による光増幅装置は、 位相共役波を除去するために、 広帯 域透過型波長フイノレター 7 2を有していた。 これにより、 第 2実施形態による光 増幅装置と比較して、 小さい装置サイズで低コス トに、 位相共役波を除去するこ とを実現することができる。 しかしながら、 第 2実施形態による光増幅装置では、 広帯域透過型波長フィルター 7 2の広い透過帯域外に位相共役波の波長が存在し ていないと、 位相共役波を除去することはできない。 このため、 位相共役波の除 去には、 制御光の波長; cによる制約が存在していた。
例えば、 信号光の波長; sの使用帯域を Cバンド全域とした場合、 広帯域透過 型波長フィルター 7 2の透過帯域幅は、 少なくとも 1 5 3 0〜 1 5 6 0 n mを含 む幅に設定される。 この場合、 信号光の波長 λ sが 1 5 3 0〜 1 5 6 0 n mの範 囲内のいずれの波長であっても、 波長 2 3— l c、 波長 2 c一; I sの位相共役 波をともに 1 5 3 0 n mよりも短波、 又は 1 5 6 0 よりも長波なものとして 広帯域透過型波長フィルター 7 2の透過帯域外のものにする必要がある。 このた めには、 制御光の波長; I cは 1 5 0 0 n m以下、 又は 1 5 9 0 n m以上に設定し なければならない。
上記第 2及び第 3実施形態による光増幅装置に対し、 本実施形態による光増幅 装置は、 装置のサイズの増大及ぴコス トの上昇を伴うことなく、 また、 制御光の 波長に制約されることなく、 S O A 2 4 a、 2 4 bにおける F WMによる位相共 役波の発生を防止することを可能にするものである。
まず、 本実施形態による光増幅装置の構造について図 1 0を用いて説明する。 本実施形態による光增幅装置は、 第 1実施形態による光増幅装置と同様に、 n 型 I n P基板 1 0上に形成された対称マッハツ ンダ干渉器 1 2を基本とする構 成を有している。
なお、 対称マッハツエンダ干渉器 1 2を構成する 3 d B光カップラー 1 4、 1 6の各ポートについては、 第 1実施形態による光増幅装置と同様に、 入力ポート A、 B、 E、 F、 出力ポート C、 D、 G、 Hと称することとするが、 以下に述べ るように、 入力ポート B、 E、 Fは制御光に対して出力ポートとなり、 出力ポー ト〇、 D、 Gは制御光に対して入力ポートとなる。 3 d B光カップラー 1 4の入力ポート Aには、 第 1実施形態による光增幅装置 と同様に、 n型 I n P基板 1 0上に形成され、 増幅すべき信号光が入力される光 導波路 2 0 aの一端が接続されている。 光導波路 2 0 aの信号光が入力される他 端は、 n型 I n P基板 1 0の信号光の入力側端面に位置している。
3 d B光カップラー 1 4の入力ポート Bには、 n型 I n P基板 1 0上に形成さ れた光導波路 2 0 bの一端が接続されている。 光導波路 2 O bの他端は、 n型 I n P基板 1 0の端面に位置しており、 第 1実施形態による光増幅装置とは異なり 光導波路 2 0 bには、 D F Bレーザ 2 2は接続されていない。
3 d B光力ップラー 1 4の出力ポート Dと 3 d B光力ップラー 1 6の入力ポー ト Fとの間は、 第 1実施形態による光増幅装置と同様に、 S O A 2 4 aが設けら れている光導波路 1 8 aにより接続されている。 3 d B光カップラー 1 4の出力 ポート Cと 3 d B光カップラー 1 6の入力ポート Eとの間は、 第 1実施形態によ る光増幅装置と同様に、 S O A 2 4 bが設けられている光導波路 1 8 bにより接 続されている。
3 d B光力ップラー 1 6の出力ポート Hには、 第 1実施形態による光增幅装置 と同様に、 n型 I n P基板 1 0上に形成された光導波路 2 6 a—端が接続されて いる。
3 d B光カップラー 1 6の出力ポート Gには、 n型 I n P基板 1 0上に形成さ れた光導波路 2 6 a—端が接続されている。 光導波路 2 6 aの他端には、 第 1実 施形態による光増幅装置とは異なり、 制御光用光源としての D F Bレーザ 2 2が 接続されている。
なお、 上記のように構成される本実施形態による光増幅装置は、 D F Bレーザ 2 2を形成する位置以外は、 第 1実施形態による光増幅装置とほぼ同様にして製 造することができる。
このように、 本実施形態による光増幅装置は、 増幅された信号光が出力される 出力ポート Hを有する 3 d B光力ップラー 1 6のポートのうち、 信号光の出力ポ ート Hと同じ側の出力ポート Gに、 制御光用光源としての D F Bレーザ 2 2が接 続されていることに主たる特徴の一つがある。 以下、 本実施形態による光增幅装 置の動作とともに、 その特徴について詳述する。 増幅すべき信号光は、 第 1実施形態による光增幅装置と同様に、 光導波路 20 aの一端から入力される。 光導波路 20 aに入力された信号光は、 3 dB光カツ ブラー 14の入力ポート Aに入力される。
光導波路 26 aの一端に設けられた DFBレーザ 22からは、 予め一定パワー のレーザ光を制御光として出力しておき、 信号光の出力に基づきレーザ光のパヮ 一を制御する。 DFBレーザ 22から出力された制御光は、 光導波路 26 aを伝 搬した後、 3 d B光カップラー 16の出力ポート Gに入力される。 第 1実施形態 による光増幅装置の場合と同様に、 DFBレーザ 22に注入する電流を制御して 出力されるレーザ光の光レベルを制御することにより、 S OA 24 a、 24 bに よる信号光の増幅率を制御することができる。 また、 信号光の出力に基づき DF Bレーザ 22に注入する電流を制御するフィードバック機構を設け、 増幅された 信号光の出力レベルが一定になるようにすることも可能である。
入力ポート Aに入力された信号光は、 3 d B光カップラー 14により均等に分 岐される。 均等に分岐された信号光は、 3 d B光カップラー 1 4の出力ポート C Dからそれぞれ出力される。 こうして、 信号光は、 3 d B光カップラー 14によ り均等に分岐され合波された後に、 出力ポート C、 Dから出力され、 光導波路 1 8 a、 1 8 bにそれぞれ入力される。
一方、 出力ポート Gに入力された制御光は、 3 d B光カップラー 1 6により均 等に分岐される。 均等に分岐された制御光は、 3 dB光カップラー 1 6の入力ポ 一 E、 Fからそれぞれ出力される。 こう して、 制御光は、 3 dB光カップラー 1 6により均等に分岐され合波された後に、 入力ポート E、 Fから出力され、 信 号光とは互いに逆方向に伝搬するように、 光導波路 1 8 a、 1 8 bにそれぞれ入 力される。
光導波路 1 8 a、 18 bにそれぞれ互いに逆方向に伝搬するように入力された 信号光及び制御光は、 SOA24 a、 24 bにより増幅される。 その後、 増幅さ れた信号光は、 3 dB光カップラー 1 6の入力ポート E、 Fにそれぞれ入力され る。 一方、 増幅された制御光は、 3 dB光カップラー 14の出力ポート C、 Dに それぞれ入力される。 本実施形態による光増幅装置は、 信号光と制御光とを SO A24 a、 24 bに互いに逆方向から入力することにより、 SOA24 a、 24 b内において信号光と制御光とを合波して増幅し、 SOA24 a、 24 bを互い に逆方向に伝搬した信号光と制御光とを分離していると考えることができる。 このように、 本実施形態による光増幅装置では、 信号光と制御光とが互いに逆 方向に SOA24 a、 24 bを伝搬する。
図 1 0は、 信号光と制御光とが SO Aを互いに逆方向に伝搬する場合に信号光 が出力される側の出力光の波長スペク トルを示すグラフである。 この場合、 信号 光の波長は 1 5 36 nmであり、 制御光の波長は 1 5 50 n mである。 この波長 スぺク トルには、 信号光が制御光の反射成分とともに観察されているが、 位相共 役波は観察されていない。 すなわち、 信号光と制御光とを互いに逆方向に S OA を伝搬させることにより、 S OAにおける FWMによる位相共役波の発生を防止 することができることが分かる。
3 d B光カップラー 1 6の入力ポート E、 Fに入力された信号光は、 3 d B光 カップラー 1 6により合波される。 このとき、 信号光が通過した経路が対称であ るので、 合波された信号光は、 信号光が入力された 3 dB光カップラー 14の入 力ポート Aに対してクロスポートである出力ポート Hから出力される。 ここで、 信号光と制御光とは互いに逆方向に S OA 24 a, 24 bを伝搬しているため、 SOA24 a、 24 bにおける FWMによる位相共役波は発生しておらず、 信号 光に位相共役波が混入することもない。
一方、 3 d B光カップラー 14の出力ポート C、 Dに入力された制御光も、 3 dB光カップラー 14により合波される。 制御光が通過した経路も対称であるの で、 合波された制御光は、 3 d B光力ップラー 1 6の出力ポート Gに対してク口 スポートである入力ポート Bから出力される。
このように、 3 dB光カップラー 14、 互いに同一光路長の光導波路 1 8 a、 1 8 b, 及び 3 d B光カップラー 1 6から構成される対称マッハツエンダ干渉器 1 2により、 第 1実施形態による光増幅装置と同様に、 SOA24 a、 24 bに より増幅された信号光を制御光から分離する光フィルター機能が実現されている, 出力ポート Hから出力された信号光は、 光導波路 26 bの他端から出力される, 一方、 入力ポート Bから出力された制御光は、 光導波路 20 bの他端から出力さ れる。 こうして、 光導波路 2 0 aに入力された信号光が増幅されるとともに、 増幅さ れた信号光が制御光から空間的に分離されて光導波路 2 6 bの他端から出力され る。
このように、 本実施形態によれば、 信号光と制御光とを互いに逆方向に S O A を伝搬させるので、 S O A 2 4 a、 2 4 bにおける F WMによる位相共役波の発 生を防止することができる。 これにより信号光に混入した位相共役波を除去する ために、 第 2及び第 3実施形態による光増幅装置が有するような波長フィルター 波長計、 制御部等が不要となり、 更なる装置の小型化及び低コスト化を図ること ができる。
また、 本実施形態による光増幅装置は、 信号光と制御光とを互いに逆方向に S O Aを伝搬させることにより位相共役波の発生を防止するので、 第 3実施形態に よる光増幅装置のように制御光の波長に位相共役波の発生の防止が制約されるこ ともない。 換言すると、 制御光の波長を高い自由度で設定することができる。 このように、 制御光の波長を高い自由度で設定することができるため、 低いパヮ 一で十分な利得飽和が得られるように制御光の波長を設定することが可能となる, これにより、 制御光源としての D F Bレーザ 2 2の素子長を短くすることができ. その消費電力を小さく抑えることできる。 以下、 この点について詳述する。
通常、 S O Aは、 信号光の波長; L sで十分な利得が得られるように設計される t このため、 制御光の波長 λ cが信号光の波長 sから大きく乖離すると制御光に対 する S O Aの利得が低下する。 このような場合に、 制御光により S O Aの利得飽 和を十分に誘起するには、 非常に高いパワーの制御光が必要となるため、 制御光 用光源としての D F Bレーザの素子長を大きくする必要があり、 また、 消費電力 も大きくなってしまう。
図 1 1は、 一定のパワーの制御光を注入したときに、 信号光の利得を変化する ことができる利得変化量 Δ Gの制御光の波長 λ cに対する依存性を示すグラフで ある。 なお、 この場合、 入力される信号光のパワーは一 3 d B m、 信号光の波長 λ sは 1 5 6 0 n mである。
図 1 1中点線のグラフに示す制御光のパワーが + 3 d B mの場合には、 制御光 の波長 λ„が 1 5 4 0 n mのときに、 利得変化量 Δ Gは 6 d Bで最大となる。 こ れに対し、 制御光の波長; I cが 1 500 nmのときには、 利得変化量 AGは 4 d Bに減少し、 また、 制御光の波長え eが 1 5 9 O nmのときには、 利得変化量厶 Gは 2 d Bに減少する。 '
また、 図 1 1中実線のグラフに示す制御光のパワーが + 6 d Bmの場合には、 制御光の波長 λ。が 1 5 50 nmのときに、 利得変化量 Δ Gは 8 d Bで最大とな るのに対し、 制御光の波長 λ cが 1 500 nmのときには、 利得変化量 AGは 5 5 d Bに減少する。
一方、 図 1 2は、 信号光の出力レベルを一定値 + 1 0 d Bmに維持するために 必要な制御光のパワーの制御光の波長え。に対する依存性を示すグラフである。 なお、 この場合も、 図 1 1のグラフと同様に、 入力される信号光のパワーは一 3 dBm, 信号光の波長; sは 1 560 nmである。
図 1 2に示すグラフから明らかなように、 制御光の波長; L cが 1 540 nmの ときには、 必要な制御光のパワーは + 2. 9 dBmである。 これに対し、 制御光 の波長え cが 1 500 nmのときには、 必要な制御光のパワーは + 6. 6 d Bm となり、 制御光の波長 λ cが 1 540 n mの場合と比較して 2倍以上の制御光パ ヮ一が必要となる。
本実施形態による光増幅装置は、 制御光の波長に制限されることなく SO Aに おける F WMによる位相共役波の発生を防止することができるので、 制御光の波 長を高い自由度で設定することができる。 したがって、 上述した利得変化量 AG ができるだけ大きくなり、 かつ、 所定のレベルに信号光を増幅するために必要と なる制御光のパワーができるだけ小さくなるように、 制御光の波長を設定するこ とができる。 このように、 低いパワーで十分な利得飽和が得られるように制御光 の波長を設定することができるので、 制御光用光源としての DFBレーザ 22の 素子長を短くすることができ、 また、 消費電力も小さくすることができる。
(変形実施形態)
本発明の上記実施形態に限らず種々の変形が可能である。
例えば、 上記実施形態では、 光増幅装置の材料を I n G a A s P/ I n P系の ものとしたが、 これに限定されるものではなく、 I n A 1 G a A s / I n P系な どの他の材料系を用いてもよい。 また、 各層の膜厚、 組成等も適宜変更すること ができる。
また、 上記実施形態では、 制御光用光源として D F Bレーザ 2 2を用いたが、 他の構成要素とともに同一基板上に形成することができる光源であれば、 これに 限定されるものではない。 例えば、 分布プラッグ反射型 (D B R : Distributed Bragg Reflector)。レーザ等その他の半導体レーザを制御光用光源として用いる ことができる。
[産業上の利用の可能性]
本発明は、 光增幅装置に適しており、 特に、 必要な光学部品の点数を削減する ことができ、 小型化、 低消費電力化が可能な光出力レベルを制御する機能を有す る光増幅装置に有用である。

Claims

請 求 の 範 囲 1 . 制御光を用いて信号光の増幅率を制御する光増幅装置であって、 半導体基板上に設けられ、 前記制御光を出力する制御光用光源と、
前記半導体基板上に設けられ、 前記信号光と前記制御光とを合波する合波手段 と、
前記半導体基板上に設けられ、 合波された前記信号光と前記制御光とを増幅す る半導体光増幅器と、
前記半導体基板上に設けられ、 前記半導体光増幅器により増幅された前記信号 光を前記制御光から分離して出力する分波手段と
を有することを特徴とする光増幅装置。
2 . 請求の範囲第 1項記載の光増幅装置において、
前記合波手段は、 前記信号光と前記制御光とを前記半導体光増幅装置に互いに 逆方向から入力することにより、 前記半導体光増幅器内において前記信号光と前 記制御光とを合波し、
前記分波手段は、 前記半導体光増幅器を互いに逆方向に伝搬した前記信号光と 前記制御光とを分離する
ことを特徴とする光増幅装置。
3 . 半導体基板上に設けられ、 2つの入力ポートと 2つの出力ポートとを有 する第 1及び第 2の 3 d B光カップラーと、 前記第 1の 3 d B光力ップラーの前 記出力ポートと前記第 2の 3 d B光カップラーの前記入力ポートとを光学的に接 続する第 1及び第 2の光導波路とを有するマツハツ ンダ干渉器と、
前記第 1及ぴ第 2の光導波路のそれぞれに設けられた半導体光増幅器と、 前記半導体基板上に設けられ、 前記第 1の 3 d B光カップラーの一の前記入力 ポートから入力される信号光の増幅率を制御するための制御光を前記マッハッェ ンダ干渉器に入力する制御光用光源と
を有することを特徴とする光増幅装置。
4 . 請求の範囲第 3項記載の光増幅装置において、
前記制御光用光源は、 前記第 1の 3 d B光力ップラーの他の前記入力ポートか ら前記マッハツエンダ干渉器に前記制御光を入力し、
前記信号光が入力される前記入力ポートに対してクロスポートである前記第 2 の 3 d B光カップラーの前記出力ポートから増幅された前記信号光を出力する ことを有することを特徴とする光増幅装置。
5 . 請求の範囲第 3項記載の光増幅装置において、
前記制御光用光源は、 前記第 2の 3 d B光カップラーの前記出力ポートのうち 前記信号光が出力されるのとは別の出力ポートから前記マッハツェンダ干渉器に 前記制御光を入力し、
前記信号光が入力される前記入力ポートに対してクロスポートである前記第 2 の 3 d B光カップラーの他の前記出力ポートから増幅された前記信号光を出力す る
ことを有することを特徴とする光増幅装置。
6 . 請求の範囲第 4項記載の光増幅装置において、
増幅された前記信号光が出力される前記出力ポートの後段に配置され、 前記半 導体光増幅器において四光波混合により発生する位相共役波を除去する波長フィ ルターを更に有する
ことを特徴とする光増幅装置。
7 . 請求の範囲第 6項記載の光増幅装置において、
前記波長フィルターは、 その透過帯域が変化する波長可変フィルタ一であり、 前記信号光の波長を計測する波長計測手段と、
前記波長計測手段の計測結果に基づき、 前記波長フィルターの前記透過帯域を 制御する制御手段とを更に有する
ことを特徴とする光増幅装置。
8 . 請求の範囲第 6項記載の光増幅装置において、
前記波長フィルタ一は、 複数の前記信号光の波長を含む透過帯域幅を有する波 長フイノレターである
ことを特徴とする光増幅装置。
9 . 請求の範囲第 1項乃至第 8項のいずれか 1項に記載の光増幅装置におい て、 前記半導体光増幅器により増幅される前記信号光の光レベルに基づき、 前記制 御光用光源より出力される前記制御光の光レベルを制御し、 前記半導体光増幅器 により増幅された前記信号光の光レベルをほぼ一定に制御する制御手段を更に有 する
ことを特徴とする光増幅装置。
1 0 . 請求の範囲第 1項乃至第 9項のいずれか 1項に記載の光増幅装置にお いて、
前記制御光用光源は、 分布帰還型半導体レーザである
ことを特徴とする光増幅装置。
1 1 . 請求の範囲第 1項乃至第 1 0項のいずれか 1項に記載の光増幅装置に おいて、
前記半導体光増幅器は偏波無依存型の光増幅器であり、 前記信号光が受ける利 得が、 前記信号光の偏波状態によらずほぼ一定である
ことを特徴とする光増幅装置。
PCT/JP2003/005675 2002-05-09 2003-05-07 Amplificateur optique WO2003096501A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004508538A JP4390697B2 (ja) 2002-05-09 2003-05-07 光増幅装置
EP03721037A EP1505700B1 (en) 2002-05-09 2003-05-07 Optical amplifier
DE60328480T DE60328480D1 (de) 2002-05-09 2003-05-07 Optischer verstärker
US10/959,507 US7130112B2 (en) 2002-05-09 2004-10-07 Optical amplifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002133846 2002-05-09
JP2002-133846 2002-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/959,507 Continuation US7130112B2 (en) 2002-05-09 2004-10-07 Optical amplifying device

Publications (1)

Publication Number Publication Date
WO2003096501A1 true WO2003096501A1 (fr) 2003-11-20

Family

ID=29416685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005675 WO2003096501A1 (fr) 2002-05-09 2003-05-07 Amplificateur optique

Country Status (5)

Country Link
US (1) US7130112B2 (ja)
EP (1) EP1505700B1 (ja)
JP (1) JP4390697B2 (ja)
DE (1) DE60328480D1 (ja)
WO (1) WO2003096501A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107140A (ja) * 2009-11-20 2011-06-02 Mitsutoyo Corp 物体表面の高さマップを求める方法及びその装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4431099B2 (ja) * 2005-09-06 2010-03-10 富士通株式会社 波長変換方式、光集積素子及び波長変換方法
EP2521227B1 (en) * 2011-05-04 2016-09-07 Alcatel Lucent Semiconductor optical amplifier device and optical matrix switch
US10429580B2 (en) 2015-08-27 2019-10-01 Bar-Ilan University Multi optically-coupled channels module and related methods of computation
FR3088776B1 (fr) * 2018-11-15 2020-11-20 Commissariat Energie Atomique Source laser a semi-conducteur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258811A (ja) * 1999-03-11 2000-09-22 Mitsubishi Electric Corp 波長変換器及び波長変換装置
JP2001053392A (ja) * 1999-06-03 2001-02-23 Fujitsu Ltd 偏波無依存型半導体光増幅器
JP2002208758A (ja) * 2001-01-09 2002-07-26 Fujitsu Ltd 光増幅装置
JP2003179289A (ja) * 2001-10-05 2003-06-27 Nippon Telegr & Teleph Corp <Ntt> 光増幅器
JP2003186067A (ja) * 2001-12-17 2003-07-03 Fujitsu Ltd モード同期レーザ発振を生じる光干渉計、全光スイッチ、全光反多重化器、全光パルス整形器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758376B2 (ja) 1988-05-26 1995-06-21 浜松ホトニクス株式会社 光波形整形装置
JP2522022B2 (ja) 1988-07-27 1996-08-07 日本電気株式会社 光波形整形装置
JP3226061B2 (ja) 1993-02-19 2001-11-05 キヤノン株式会社 偏光無依存な半導体光増幅器及びそれを用いた光通信システム
JPH08304856A (ja) * 1995-05-01 1996-11-22 Ando Electric Co Ltd 光ファイバ増幅器
DE19522591A1 (de) * 1995-06-19 1997-01-02 Hertz Inst Heinrich Optoelektronische integrierte Schaltung
IT1275554B (it) * 1995-07-14 1997-08-07 Pirelli Cavi Spa Dispositivo per la riduzione del rumore ottico dovuto ad interazione a quattro onde
DE69739702D1 (de) * 1996-09-02 2010-01-28 Nippon Telegraph & Telephone Optische Signalverarbeitungsvorrichtung und optisches Signalverarbeitungsverfahren
US6208454B1 (en) * 1997-12-23 2001-03-27 Agere Systems Optoelectronics Guardian Corp All-optical mach-zehnder wavelength converter with monolithically integrated laser
JP2000012978A (ja) 1998-06-24 2000-01-14 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置
JP2000010136A (ja) 1998-06-24 2000-01-14 Nippon Telegr & Teleph Corp <Ntt> 波長変換器
JP2000323786A (ja) * 1999-05-14 2000-11-24 Fujitsu Ltd 信号光の波形整形のための方法、装置及びシステム
JP2002006352A (ja) 2000-06-22 2002-01-09 Fujitsu Ltd 半導体可変波長変換装置
US6810407B1 (en) * 2000-07-14 2004-10-26 Lucent Technologies Inc. Optical boolean logic devices for data encryption
US6753996B2 (en) * 2000-09-21 2004-06-22 Nippon Telegraph & Telephone Corporation Light-controlled light modulator
US6570697B2 (en) * 2000-10-06 2003-05-27 Alphion Corporation Format insensitive and bit rate independent optical preprocessor
US6563621B2 (en) * 2000-10-06 2003-05-13 Alphion Corporation Bit-rate and format insensitive all-optical clock extraction circuit
US7203427B2 (en) * 2001-05-15 2007-04-10 Alphion Corporation Redundant path all-optical regeneration, reshaping and wavelength conversion for enhanced yield
US6522462B2 (en) * 2001-06-29 2003-02-18 Super Light Wave Corp. All optical logic using cross-phase modulation amplifiers and mach-zehnder interferometers with phase-shift devices
JP2003121889A (ja) * 2001-10-15 2003-04-23 Fujitsu Ltd 光スイッチ及び光デマルチプレクサ
US6768827B2 (en) * 2002-01-16 2004-07-27 The Regents Of The University Of California Integrated optical router
US6751002B2 (en) * 2002-05-06 2004-06-15 Intel Corporation Method and apparatus for semiconductor-based integrated polarization modulator/compensator
US6870967B2 (en) * 2002-10-10 2005-03-22 International Business Machines Corporation Pretrimming of tunable finite response (FIR) filter
AU2003264506B2 (en) * 2002-10-23 2009-05-28 Japan Science And Technology Agency Optical signal amplifying triode and optical signal transfer method, optical signal relay device, and optical signal storage device using the same
EP1677395B1 (en) * 2004-12-28 2012-06-13 Fujitsu Limited Optical amplifying device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258811A (ja) * 1999-03-11 2000-09-22 Mitsubishi Electric Corp 波長変換器及び波長変換装置
JP2001053392A (ja) * 1999-06-03 2001-02-23 Fujitsu Ltd 偏波無依存型半導体光増幅器
JP2002208758A (ja) * 2001-01-09 2002-07-26 Fujitsu Ltd 光増幅装置
JP2003179289A (ja) * 2001-10-05 2003-06-27 Nippon Telegr & Teleph Corp <Ntt> 光増幅器
JP2003186067A (ja) * 2001-12-17 2003-07-03 Fujitsu Ltd モード同期レーザ発振を生じる光干渉計、全光スイッチ、全光反多重化器、全光パルス整形器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1505700A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107140A (ja) * 2009-11-20 2011-06-02 Mitsutoyo Corp 物体表面の高さマップを求める方法及びその装置

Also Published As

Publication number Publication date
EP1505700B1 (en) 2009-07-22
US20050063042A1 (en) 2005-03-24
US7130112B2 (en) 2006-10-31
DE60328480D1 (de) 2009-09-03
EP1505700A1 (en) 2005-02-09
JP4390697B2 (ja) 2009-12-24
JPWO2003096501A1 (ja) 2005-09-15
EP1505700A4 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP2017098362A (ja) 光集積素子及び光通信装置
JP3985159B2 (ja) 利得クランプ型半導体光増幅器
US8031394B2 (en) Wavelength conversion system, optical integrated device and wavelength conversion method
EP1560047B1 (en) Monolithically integrated polarization splitter
JP2011165712A (ja) 半導体光増幅器モジュール
JP2009222790A (ja) 光導波路素子、光集積素子及び光伝送装置
Suzaki et al. Multi-channel modulation in a DWDM monolithic photonic integrated circuit
US7031355B2 (en) High efficiency single and multiple wavelength stabilized systems
US7020168B2 (en) High power multi-frequency laser
JP4390697B2 (ja) 光増幅装置
JP4022792B2 (ja) 半導体光増幅装置
Zali et al. InP monolithically integrated 1× 8 broadcast and select polarization insensitive switch for optical switching systems
JP2002116419A (ja) 光変調装置及びその製造方法
Bernasconi et al. Monolithically integrated 40Gb/s wavelength converter with multi-frequency laser
US7076130B2 (en) Semiconductor optical device having asymmetric ridge waveguide and method of making same
US20030179441A1 (en) Polarisation insensitive optical amplifiers
JP4208126B2 (ja) ゲインクランプ光増幅器モジュール
Bernasconi et al. 40 Gbit/s RZ wavelength converter in a monolithically integrated chip with a tunable laser
WO2003032037A1 (en) Folded light path for planar optical devices
Broeke et al. An all-optical wavelength converter in a layer-stack suitable for compact photonic integration
Mestric et al. Four-channel wavelength selector monolithically integrated on InP
Ishii et al. InP-based photonic integrated devices consisting of arrayed waveguide grating and semiconductor optical amplifiers
JPH06347724A (ja) 偏波無依存光素子
Davies et al. Integrated lossless InGaAsP/InP 1-to-4 optical switch
GB2386752A (en) Optical amplifiers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004508538

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003721037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10959507

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003721037

Country of ref document: EP