JP2009222790A - 光導波路素子、光集積素子及び光伝送装置 - Google Patents

光導波路素子、光集積素子及び光伝送装置 Download PDF

Info

Publication number
JP2009222790A
JP2009222790A JP2008064520A JP2008064520A JP2009222790A JP 2009222790 A JP2009222790 A JP 2009222790A JP 2008064520 A JP2008064520 A JP 2008064520A JP 2008064520 A JP2008064520 A JP 2008064520A JP 2009222790 A JP2009222790 A JP 2009222790A
Authority
JP
Japan
Prior art keywords
waveguide
optical
tapered
width
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008064520A
Other languages
English (en)
Inventor
Seuk Hwan Chung
錫煥 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008064520A priority Critical patent/JP2009222790A/ja
Priority to US12/401,315 priority patent/US20090232445A1/en
Publication of JP2009222790A publication Critical patent/JP2009222790A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】光導波路素子において、コンパクトな素子サイズで多チャンネル化を可能とし、低波長依存性や低偏光依存性を実現しながら、チャネル間アンバランスを抑制し、作製トレランスを大きくする。
【解決手段】光導波路素子であって、単一モードの一の第1導波路1と、複数の第2導波路2と、一端が第1導波路1に接続され、他端が第2導波路2に接続され、一端から他端へ向けて幅が広くなるテーパ状導波路3とを備え、テーパ状導波路3の一端の幅は、単一モード条件を満たすように設定されている。
【選択図】図1

Description

本発明は、例えば光通信システムで用いられる光導波路素子、光集積素子及び光伝送装置に関する。
近年、波長多重信号処理方式が導入され、光通信システムにおける伝送容量が飛躍的に増大している。
光通信システムでは、様々な光信号処理を行なうために、光信号を分岐したり、結合したりする光カプラが必要となる。
このような光通信システムで用いられる光カプラ(光分岐・合波素子)に求められる条件としては、動作波長の広帯域性(低波長依存性)、偏光無依存性(低偏光依存性)、大きな作製トレランス、コンパクトさ、モノリシック集積性などを挙げることができる。
例えば、モノリシック集積化に適した光カプラとして、Y分岐結合器[例えば図20(a)参照]、方向性結合器[例えば図20(b)参照]、スターカプラ(例えば図21参照)、多モード干渉(MMI:multimode interference)結合器(例えば図22参照)、モード変換型結合器などがある。
特開平3−138606号公報 特開平4−30108号公報 特開2002−243961号公報
しかしながら、例えば図20(a),(b)に示すように、Y分岐結合器や方向性結合器は、多チャネル化に伴ってチャネル数が増加すると、素子サイズが大幅に増大してしまう。
スターカプラは、カプラ領域で光強度分布がガウス関数型になるため、出力側でチャネル間アンバランスが生じることが懸念される。
MMI結合器は、素子長がMMI領域の幅の2乗に比例するため、多チャネル化に伴ってチャネル数が増加すると、素子が大型化するとともに、波長依存性や偏光依存性も顕著になる。
これに対し、テーパ状導波路を用いるモード変換型結合器は、例えばMMI結合器と比較してチャネル数の増加に応じた素子サイズの増大が小さく、コンパクトな素子サイズで多チャネル化が可能である。また、波長依存性や偏光依存性も小さい。
しかしながら、テーパ状導波路の幅広端に複数の出力導波路が接続されるモード変換型結合器では、中央から両端へ向かうにつれて透過率が低下する傾向があり、出力側でチャネル間アンバランスが生じることが懸念される。
また、本発明者が鋭意検討した結果、モード変換型結合器に用いられるテーパ状導波路の幅広端における光強度分布を平坦にするには、テーパ状導波路の長さを精度良く制御することが必要であり、作製トレランスが小さいことがわかった。
そこで、コンパクトな素子サイズで多チャンネル化を可能とし、低波長依存性や低偏光依存性を実現しながら、チャネル間アンバランスを抑制し、作製トレランスを大きくしたい。
このため、本光導波路素子は、単一モードの一の第1導波路と、複数の第2導波路と、一端が第1導波路に接続され、他端が第2導波路に接続され、一端から他端へ向けて幅が広くなるテーパ状導波路とを備え、テーパ状導波路の一端の幅は、単一モード条件を満たすように設定されていることを要件とする。
本光集積素子は、上記の光導波路素子と、上記の光導波路素子が形成されている半導体基板上に集積された光機能素子とを備えることを要件とする。
本光伝送装置は、上記の光導波路素子を備えることを要件とする。
したがって、本光導波路素子、光集積素子及び光伝送装置によれば、コンパクトな素子サイズで多チャンネル化を可能とし、低波長依存性や低偏光依存性を実現しながら、チャネル間アンバランスを抑制し、作製トレランスを大きくすることができるという利点がある。
以下、図面により、本実施形態にかかる光導波路素子、光集積素子及び光伝送装置について、図1〜図19を参照しながら説明する。
本実施形態にかかる光導波路素子は、図1に示すように、テーパ状導波路を用いて光信号を合分岐するモード変換型光カプラ20(光合分岐器素子;光分岐・合波素子;光分岐結合器)であって、単一モードの一の入力導波路(第1導波路)1と、複数(ここでは8つ)の出力導波路(第2導波路)2と、一端が入力導波路1に接続され、他端が出力導波路2に接続され、一端(入力側の端部;入力端)から他端(出力側の端部;出力端)へ向けて幅が徐々に広くなるテーパ状導波路3とを備える。
なお、このような光カプラ20は、例えば光通信システム内で、光信号を分岐したり、結合(合波)したりする素子として単体で用いられるほか、高機能化のために複数の能動素子や受動素子を集積させた光集積素子において、これらの素子を接続するのに幅広く使用される。また、ここでは、入力導波路1、出力導波路2、テーパ状導波路3を含む全体をモード変換型光カプラとしているが、テーパ状導波路3をモード変換型光カプラと見て、これに入力導波路1及び出力導波路2が接続されていると見ることもできる。
特に、本実施形態では、図1に示すように、テーパ状導波路3は、入力導波路1側から出力導波路2側へ向けて線形的に(非断熱的に)幅が広くなるテーパ状導波路である。このテーパ状導波路3は、その出力端(最広端)における光強度分布が平坦になるように、数値解析的手法によって最適化されたテーパ形状になっている。つまり、テーパ状導波路3の形状によって、高次モードの励振が制御され、モード変換が行なわれるようになっている。このため、テーパ状導波路3をモード変換導波路ともいう。
このテーパ状導波路3の入力端の幅(最狭端幅;Var)は、図1に示すように、入力導波路1の幅(Win)と等しくなっている(Var=Win)。なお、テーパ状導波路3の入力端の幅は、入力導波路1の幅と等しくなくても良く、単一モード条件を満たすように設定されていれば良い。
このため、入力導波路1を伝播してきた入力光は、テーパ状導波路3に単一モード入力されることになる。つまり、入力光がテーパ状導波路3に入射する際に、高次モードは励振されない。この場合、テーパ状導波路3に入射した単一モード入力光は、テーパ状導波路3内を伝搬する間に、自己結像現象(自己結像効果)を起こさないで、順次励振する高次モードと結合し、モード変換を受けることになる。
また、本実施形態では、図1に示すように、テーパ状導波路3の出力端は、複数の出力導波路2が接続されている領域Xの両外側へ突出した各領域Y(各領域Yの長さをDwとする)を有する。このテーパ状導波路3の出力端の幅(最広端幅)は、この出力端における光強度分布に応じて設定されている。つまり、テーパ状導波路3の出力端における光強度分布は放物線形状になるが(例えば図5参照)、テーパ状導波路3の出力端の複数の出力導波路2が接続されている領域Xにおいて、光強度分布(光強度特性)が平坦になり、この領域Xの両外側へ突出した各領域Yにおいて、光強度分布が大きく変化するようにしている。
このため、テーパ状導波路3の最広端幅は、各出力導波路2の幅及び各出力導波路2間の間隔を足し合わせた合計よりも所定値以上広くなっている。つまり、図1に示すDwの値(Dw幅)の2倍が、テーパ状導波路3の最広端幅と各出力導波路2の幅及び各出力導波路2間の間隔を足し合わせた合計との差分になっている。
さらに、本実施形態では、複数の出力導波路2は、互いに等しい透過特性を有するようにそれぞれの幅(Wout)が設定されている。ここでは、各出力導波路2の幅は数値解析的手法によって最適化されている。なお、図1中、4つの出力導波路に付されている番号1〜4は、図2のPort1-4に対応している。
特に、複数の出力導波路2のうち最外側に位置する出力導波路(テーパ状導波路3の出力端の両側に最も近い位置に設けられる出力導波路)2A,2Bは、図1に示すように、テーパ状導波路3の出力端に向けて幅が徐々に広くなるテーパ部2AX,2BXを有する。これらのテーパ部2AX,2BXは、高次モードを単一モードに変換しうる大きさのテーパ角度を有する。これにより、これらのテーパ部2AX,2BXを光が伝播する間に高次モードが単一モードに変換されることになる。
ところで、本実施形態では、上述のように、テーパ状導波路3の入力端の幅(Var)を、単一モード条件を満たすように設定しているため、基本モードと2次の高次モードとの干渉を避けることができ、これにより、作製トレランスを大幅に増大させることができる。これについて、以下、より詳細に説明する。
ここで、図2は、本モード変換型光カプラの透過特性(Power ratio)及び光強度分布を示している。
ここでは、入力側に1つのポート(入力ポート;入力導波路)を有し、出力側に8つのポート(出力ポート;出力導波路)を有する1×8モード変換型光カプラ20とし、入力導波路1及び出力導波路2の幅をいずれも1.6μmとし、テーパ状導波路3の最狭端幅、最広端幅をそれぞれ1.6μm、62μmとし、各出力導波路2間の間隔を3.5μmとし、最外側の出力導波路2A,2Bのテーパ部2AX,2BXの最広端幅、最狭端幅、長さをそれぞれ4.0μm、1.6μm、100μm(100μm長の幅テーパ導波路部)としている(図1参照)。
これに対し、図3は、本モード変換型光カプラの比較例の構成を示す模式図であり、図4は、この比較例のモード変換型光カプラの透過特性(Power ratio)及び光強度分布を示している。なお、図3中、4つの出力導波路に付されている番号1〜4は、図4のPort1-4に対応している。
本モード変換型光カプラ20の構成に対して、比較例の構成は、図3に示すように、テーパ状導波路の最狭端幅(Var)が異なっている。つまり、比較例の構成では、テーパ状領域の最狭端幅(Var)が入力導波路の幅(Win)よりも広くなっており、その幅が高次モードを励振させるのに十分な幅となっている。この比較例の構成では、テーパ状導波路の最狭端幅、最広端幅をそれぞれ3.0μm、60μmとしており、その他の寸法は上述の実施形態のものと同一にしている。
なお、図2、図4では、4チャネルの透過特性[1つの入力ポートから入力された光のパワーに対する4つの出力ポート(Port1-4)のそれぞれから出力された光のパワーの割合;光透過率]のみ示しているが、中心軸に対して左右対称構造になっているため、残りの4チャネルの透過特性はこれらの透過特性と同一になる。
まず、比較例の構造(図3参照)では、図4に示すように、テーパ状導波路の長さ(L)を最適な長さ(ここでは230μm近傍)に設定し、入力光がテーパ状導波路に入射する際に、意図的に単一モード以外の高次モードを励振させることで、各チャネルの透過特性のばらつき(透過特性のチャネル間アンバランス;チャネル間偏差)を抑え、テーパ状導波路の出射端における光強度分布が平坦になるようにしている。
しかしながら、図4に示すように、テーパ状導波路の長さが最適な長さよりも少し短くなったり(ここでは200μm近傍)、あるいは、少し長くなったり(ここでは260μm近傍)すると、各チャネルの透過特性のばらつきが大きくなり、テーパ状導波路の出力端における光強度分布の平坦性が崩れてしまう。
このため、各チャネルの透過特性のばらつきを小さくし、テーパ状導波路の出射端における光強度分布を平坦にするために、テーパ状導波路の長さを精度良く制御することが必要になる。つまり、図3に示す比較例の構成は、作製トレランスが小さい。
ここで、図6は、比較例のテーパ状導波路の出力端(最広端)における光強度分布(相対的光強度分布)を示している。なお、図6では、テーパ状導波路の長さ(テーパ長)を210μm,240μm,270μmとした場合の光強度分布の特性をそれぞれ示している。
図6に示すように、比較例の構成(図3参照)では、テーパ状導波路の長さが、長くなったり、短くなったりして、最適値(ここでは240μm)から30μm程度ずれると、平坦な光強度分布が崩れてしまうことがわかる。つまり、比較例の構成では、入力光がテーパ状導波路に入射する際に、意図的に単一モード以外の高次モードを励振させるようになっているため、テーパ状導波路の長さが少しずれると、テーパ状導波路の出力端において基本モードと2次高次モードとの間の干渉の影響が出てしまい、テーパ状導波路の出力端における光強度分布の平坦性が崩れてしまう。
このため、作製誤差などによってテーパ状導波路の長さがずれてしまうと、テーパ状導波路の出力端における光強度分布が平坦にならないため、作製歩留まりが良くない。
これに対し、本モード変換型光カプラ20では、図2に示すように、各チャネルの透過特性のばらつきが小さい領域が比較例の場合よりも広くなっており、テーパ状導波路3の長さ(L)が変化しても、テーパ状導波路3の出力端における平坦な光強度分布が維持されていることがわかる。
例えば、各チャネルの透過特性のばらつきの許容範囲を0.5dBとすると、図4に示すように、上記比較例の構成における素子長マージンは9μm程度であるのに対し、図2に示すように、本モード変換型光カプラ20における素子長マージンは55μm程度となる。つまり、本モード変換型光カプラ20は、比較例のものに対して、素子長マージンが6倍以上になっており、作製トレランスが大幅に増大することがわかる。
ここで、図5は、本モード変換型光カプラ20のテーパ状導波路の出力端(最広端)における光強度分布(相対的光強度分布)を示している。なお、図5では、テーパ状導波路の長さ(テーパ長)を250μm,280μm,310μmとした場合の光強度分布の特性をそれぞれ示している。
図5に示すように、本モード変換型光カプラ20の構造(図1参照)では、テーパ状導波路3の長さが、長くなったり、短くなったりして、最適値(ここでは280μm)から30μm程度ずれても(ここでは250μm〜310μmの範囲内で)、平坦な光強度分布が維持されていることがわかる。つまり、本モード変換型光カプラ20の構造では、テーパ状導波路3に単一モード入力されるため、入力光がテーパ状導波路3に入射する際に、高次モードは励振されない。このため、基本モードと2次高次モードとの間の干渉によって、テーパ状導波路3の出力端における光強度分布の平坦性が崩れてしまうことはない。
したがって、作製誤差などによってテーパ状導波路3の長さがずれてしまっても、テーパ状導波路3の出力端における光強度分布の平坦性は維持されるため、各チャネルの透過特性のばらつきを抑えたモード変換型光カプラ20を高歩留まりで作製できることになる。
ところで、テーパ状導波路3の出力端における光強度分布は、放物線形状になり、両側で光の強度が急激に変化することになる(例えば図5参照)。この場合、テーパ状導波路3の出力端の複数の出力導波路2が接続されている領域X(例えば図1参照)内で光の強度が急激に変化してしまうと、大きなチャネル間アンバランスが生じてしまうことになる。
そこで、本実施形態では、図1に示すように、テーパ状導波路3の出力端を、複数の出力導波路2が接続されている領域Xの両外側へ突出した各領域Yを有するものとし、これらの領域Yの幅Dwをテーパ状導波路3の出力端における光強度分布に応じて適性値に設定している。
これにより、テーパ状導波路3の出力端の複数の出力導波路2が接続されている領域Xにおいて光強度分布が平坦な形状になるようにしている。つまり、テーパ状導波路3の出力端に接続される複数の出力導波路2のそれぞれに伝播される光の強度(各チャネルの光透過率)をほぼ同等にすることができ、チャネル間アンバランスを抑えることができる。
ここで、図7は、本モード変換型光カプラ20のテーパ状導波路3の複数の出力導波路2が接続されている領域Xの両外側へ突出した各領域Yの長さ(Dw値)に対するチャネル間アンバランスを表す値(dB)を示している。なお、この数値シミュレーションにおける各パラメータは、図2の場合と同様である。
なお、ここでは、チャネル間アンバランスを表す値は、各出力ポートの透過率の中の最大透過率と最小透過率との差分である。また、テーパ状導波路3の長さはそれぞれのDw値に対する最適値としている。
テーパ状導波路3の出力端における光強度分布は放物線形状になるため(図5参照)、図7に示すように、Dw値が0に近づくほど、チャネル間アンバランスが大きくなる一方、Dw値が増大するにつれて、チャネル間アンバランスが低減することがわかる。
例えば、Dw値が10μmの場合(2×Dw値=20μm)、チャネル間アンバランスは0.11dBまで減少する。そして、Dw値が10μm(合計20μm)以上であれば、チャネル間アンバランスは0.5dB以下に保たれることがわかる。このように、Dw値というパラメータは、チャネル間アンバランスを解消するために非常に重要な値である。
ここで、図8は、本モード変換型光カプラの透過特性(transmittance;Power ratio)とDw値との関係を示している。
なお、図8では、4チャネルの透過特性[1つの入力ポートから入力された光のパワーに対する4つの出力ポート(Port1-4)のそれぞれから出力された光のパワーの割合;光透過率]のみ示しているが、中心軸に対して左右対称構造になっているため、残りの4チャネルの透過特性はこれらの透過特性と同一になる。
図8に示すように、Dw値が10μm(合計20μm)以上であれば、各チャネルの透過特性のばらつきが抑えられ、チャネル間アンバランスが0.5dB以下になることがわかる。
次に、本実施形態にかかる光導波路素子(モード変換型光カプラ)の製造方法(半導体光導波路作製プロセス)について、図9を参照しながら説明する。
まず、n型InP基板10上(あるいはアンドープInP基板)上に、例えば有機金属気相成長法(MOVPE法)によって、アンドープGaInAsPコア層11(発光波長1.30μm,層厚0.2μm)、アンドープ(あるいはp型ドープ)InP層12(層厚2.0μm)を順にエピタキシャル成長させる(図9参照)。
次に、上述のようにしてエピタキシャル成長を行なったウェハの表面上に、例えばSiO膜を例えば蒸着装置などによって成膜し、例えば光露光プロセスによって、モード変換型光カプラ20を形成するための導波路パターンをパターニングする。
次いで、このようにしてパターニングされたSiO膜をマスクとして、例えば誘導結合型プラズマ反応性イオンエッチング(ICP−RIE;Inductive Coupled Plasma-Reactive Ion Etching)などの方法でドライエッチングを行ない、例えば高さ3μm程度のハイメサ導波路ストライプ構造13を形成する(図9参照)。
次に、例えばMOVPE法によって、半絶縁性InP埋込層14によってハイメサ導波路ストライプ構造13が埋め込まれるように埋込結晶成長を行なって、高抵抗埋込導波路構造を形成する(図9参照)。
このような作製プロセスを経て、本モード変換型光カプラ20が完成する(図9参照)。
ここで、図10(a),(b)は、このような作製プロセスを経て作製されたモード変換型光カプラの入出力透過特性(規格化透過率)を示している。つまり、図10(a)は、テーパ状導波路3の長さが250μmの場合のTEモード入力光における入出力透過特性(規格化透過率)を示しており、図10(b)は、テーパ状導波路3の長さが300μmの場合のTEモード入力光における入出力透過特性(規格化透過率)を示している。
なお、ここでは、素子パラメータとして、Dw値を13μmとし、テーパ状導波路3の最広端幅を68.1μmとしている。その他のパラメータ(入力導波路1及び出力導波路2の幅、テーパ状導波路3の最狭端幅、各出力導波路2間の間隔、最外側の出力導波路2A,2Bのテーパ部2AX,2BXの最広端幅、最狭端幅、長さ)については、図2の場合と同様である。
本モード変換型光カプラ20は大きな作製トレランスを有するため、図10(a),(b)に示すように、素子長が50μm又はそれ以上変化しても、各出力ポート(各出力導波路2)の透過率はほぼ一定に保たれていることがわかる。また、素子長が変化しても、SバンドからCバンドに至る波長範囲でほぼ平坦な透過特性になっており、低波長依存性を有することがわかる。
なお、ここでは、TMモード入力光における入出力透過特性を示していないが、TMモード入力光における入出力透過特性も、TEモード入力光における入出力透過特性と同様に低波長依存性を有することが実験的に確認できた。
ここで、図11(a),(b)は、本モード変換型光カプラにおけるチャネル間アンバランスを表す特性を示している。つまり、図11(a)は、入力光波長(λ)が1.53μmの場合のTEモード入力光及びTMモード入力光の各チャネル(各出力ポート)の透過率(Transmittance;透過特性)を示しており、図11(b)は、入力光波長が1.55μmの場合のTEモード入力光及びTMモード入力光の各チャネル(各出力ポート)の透過率(Transmittance;透過特性)を示している。なお、素子パラメータは、図10(a)の場合と同様である。
図11(a),(b)に示すように、入力光波長によらず、チャネル間アンバランスは1.5dB以下に抑えられていることがわかる。また、偏光依存性も1dB以下に抑えられており、低偏光依存性を有することがわかる。
これに対し、図12(a),(b)は、上述の比較例の場合(図3参照)のチャネル間アンバランスを表す特性を示している。つまり、図12(a)は、入力光波長が1.53μmの場合のTEモード入力光及びTMモード入力光の各チャネル(各出力ポート)の透過率(Transmittance;透過特性)を示しており、図12(b)は、入力光波長が1.55μmの場合のTEモード入力光及びTMモード入力光の各チャネル(各出力ポート)の透過率(Transmittance;透過特性)を示している。なお、素子パラメータは、図3の場合と同様である。
上述の比較例の場合、図12(a),(b)に示すように、本モード変換型光カプラの場合(図11参照)と比較して、チャネル間アンバランスが4dB程度、偏光依存性が2dB程度となっており、チャネル間アンバランスが顕著に大きくなっていることがわかる。また、テーパ状導波路の長さに対する特性変化が大きく、作製トレランスが小さいことが実験的に確認されている。
このような結果から、本モード変換型光カプラ20の構成は、チャネル間バランス及び作製トレランスの点で非常に有効であることが確認されている。
したがって、本実施形態にかかる光導波路素子(モード変換型光カプラ)によれば、コンパクトな素子サイズで多チャンネル化を可能とし、低波長依存性や低偏光依存性を実現しながら、チャネル間アンバランスを抑制し、作製トレランスを大きくすることができるという利点がある。
つまり、本光導波路素子(モード変換型光カプラ)の構成によれば、テーパ状導波路3の出力端における光強度分布の平坦性が、素子長が変化しても(例えば50μm以上変化しても)ほぼ一定に維持され、高作製トレランスを実現することができるため、チャネル間バランスに優れた特性(高チャネル間バランス特性)を有する高性能な光導波路素子(モード変換型光カプラ)20を、安価な光露光装置を用いても、高い歩留まりで作製できることになる。
なお、上述の実施形態では、テーパ状導波路3が、線形的に幅が広くなるテーパ状導波路(側面が平面になっているテーパ状導波路;直線的に変化するテーパを有する直線テーパ状導波路)である場合を例に挙げて説明しているが、これに限られるものではなく、テーパ状導波路の形状は、テーパ状導波路内で自己結像現象を起こさない範囲で種々変形することができる。
例えば、図13に示すように、テーパ状導波路は、指数関数的に幅が広くなるテーパ状導波路3A(側面が曲面になっているテーパ状導波路;曲線的に変化するテーパを有する曲線テーパ状導波路)であっても良い。なお、図13中、4つの出力導波路に付されている番号1〜4は、図14のPort1-4に対応している。また、このようなテーパ状導波路3Aを有するモード変換型光カプラ20も、上述の実施形態と同様の作製プロセスで作製することができる。
ここで、図14は、指数関数的に幅が広くなるテーパ状導波路3Aを有するモード変換型光カプラ20の透過特性(Power ratio)を示している。
なお、図14では、4チャネルの透過特性[1つの入力ポートから入力された光のパワーに対する4つの出力ポート(Port1-4)のそれぞれから出力された光のパワーの割合;光透過率]のみ示しているが、中心軸に対して左右対称構造になっているため、残りの4チャネルの透過特性はこれらの透過特性と同一になる。
また、ここでは、素子パラメータとして、テーパ状導波路3Aの最広端幅を108μmとしている。その他のパラメータ(入力導波路1及び出力導波路2の幅、テーパ状導波路3Aの最狭端幅、各出力導波路2間の間隔、最外側の出力導波路2A,2Bのテーパ部2AX,2BXの最広端幅、最狭端幅、長さ)については、図2の場合と同様である。
上述の実施形態の場合と同様に、指数関数的に幅が広くなるテーパ状導波路3Aを有する構造を採用した場合も、図14に示すように、テーパ状導波路3Aの長さ(L)が変化しても、各出力ポート(各チャネル)の透過特性のばらつきが小さい状態が維持されていることがわかる。このため、テーパ状導波路3Aの長さが変化しても、テーパ状導波路3Aの出力端における平坦な光強度分布が維持されることになる。
例えば、各チャネルの透過特性のばらつきの許容範囲を0.5dBとすると、図14に示すように、本モード変換型光カプラ20における素子長マージンは45μm程度となり、上述の実施形態の場合と同様に、作製トレランスが大幅に増大することがわかる。
また、上述の実施形態では、1×8モード変換型光カプラを例に挙げて説明しているが、これに限られるものではなく、本発明はこれ以外のポート数を有するものに対しても適用可能であることは言うまでもない。
また、上述の実施形態では、1×8モード変換型光カプラを光分岐器として用いる場合の素子特性を示して説明しているが、入出力を逆にして光結合器(光合波器)として用いる場合にも上述の実施形態の場合と同様の効果が得られる。
この場合、モード変換型光カプラは、単一モードの一の出力導波路(第1導波路)と、複数の入力導波路(第2導波路)と、一端が出力導波路に接続され、他端が入力導波路に接続され、一端(出力側の端部;出力端)から他端(入力側の端部;入力端)へ向けて幅が徐々に広くなるテーパ状導波路とを備えるものとし、テーパ状導波路の一端の幅を、単一モード条件を満たすように設定すれば良く、その他の構成、製造方法等も、入出力を逆にして上述の第1実施形態の場合と同様にすれば良い。
また、上述の実施形態では、半導体基板上にモード変換型光カプラ20のみを備える光導波路素子を例に挙げて説明しているが、例えば、このような光導波路素子(モード変換型光カプラ)20が形成されている半導体基板上に、半導体光増幅器、半導体レーザ(レーザ光源)、光変調器、位相変調器、光フィルタなどの他の光機能素子及び光導波路を集積させることによって高機能な光集積素子を構成することもできる。
例えば図15に示すように、単一の半導体基板(同一半導体基板)21上に、上述の実施形態にかかる光導波路素子(モード変換型光カプラ)20と、半導体光増幅器(SOA)22A,22Bと、光導波路23A,23Bとをモノリシックに集積させて、光集積素子としての光ゲートスイッチ24を構成することができる。ここでは、モード変換型光カプラ20の入力側に複数の曲げ導波路(入力導波路)23Aを介して複数のSOA22A(SOAゲートアレイ)を接続し、モード変換型光カプラ20の出力側に1つの光導波路(出力導波路)23Bを介して1つのSOA22Bを接続している。
このように構成される光ゲートスイッチ24では、入力側に位置する複数のSOA22Aの電流制御によって、任意のチャネルの光信号を取り出すことができる。この際に、上述の実施形態にかかるモード変換型光カプラ20による低波長依存性、低偏光依存性及び高チャネル間バランス特性によって波長多重された光信号や偏光制御されていない光信号に対して光強度が一定に保たれ、高品質な光信号処理が可能となる。
また、例えば図16に示すように、単一の半導体基板(同一半導体基板)31上に、上述の実施形態にかかる光導波路素子(モード変換型光カプラ)20と、半導体レーザ(LD;レーザダイオード)32と、半導体光増幅器(SOA)33と、光導波路34A,34Bとをモノリシックに集積させて、光集積素子としての波長可変レーザ(波長可変光源)35を構成することもできる。ここでは、モード変換型光カプラ20の入力側に複数の曲げ導波路(入力導波路)34Aを介して複数の半導体レーザ32を接続し、モード変換型光カプラ20の出力側に1つの光導波路(出力導波路)34Bを介してSOA33を接続している。
なお、半導体レーザ32としては、例えば温度調整可能な分布帰還型(DFB:distributed feedback)レーザや電流注入制御型TDA(tunable distributed amplification)−DFBレーザなどを用いることができる。この場合、各半導体レーザ32が数nm程度の波長範囲にわたって波長を変化させることができるため、上述の実施形態にかかるモード変換型光カプラ20を用いて波長可変レーザを構成すれば、Cバンド及びLバンド全体にわたる広帯域波長可変動作が可能となる。また、上述の実施形態にかかるモード変換型光カプラによる低波長依存性及び高チャネル間バランス特性によって全てのチャネルにわたってレーザ出力パワーを一定に保つことも可能になる。
また、例えば図17に示すように、単一の半導体基板(同一半導体基板)41上に、上述の実施形態にかかる光導波路素子(モード変換型光カプラ)20と、半導体レーザ(LD;レーザダイオード)42と、半導体光増幅器(SOA)43と、光変調器(MOD)44と、光導波路45A,45Bをモノリシックに集積させて、光集積素子としての外部変調器集積型波長可変レーザ(外部変調器集積型波長可変光源)46を構成することもできる。ここでは、モード変換型光カプラ20の入力側に複数の曲げ導波路(入力導波路)45Aを介して複数の半導体レーザ42を接続し、モード変換型光カプラ20の出力側に1つの光導波路(出力導波路)45Bを介してSOA43及びMOD44を接続している。
また、例えば図18に示すように、単一の半導体基板(同一半導体基板)51上に、上述の実施形態にかかる光導波路素子(モード変換型光カプラ)20と、半導体レーザ(LD;レーザダイオード)52と、光変調器(MOD)53と、半導体光増幅器(SOA)54と、光導波路55A,55Bをモノリシックに集積させて、光集積素子56を構成することもできる。ここでは、モード変換型光カプラ20の入力側に複数の曲げ導波路(入力導波路)55Aを介して複数の半導体レーザ52及び複数のMOD53を接続し、モード変換型光カプラ20の出力側に1つの光導波路(出力導波路)55Bを介してSOA54を接続している。
また、例えば図19に示すように、単一の半導体基板(同一半導体基板)61上に、上述の実施形態にかかる光導波路素子(モード変換型光カプラ)20と、半導体レーザ(LD;レーザダイオード)[又は半導体光増幅器(SOA)]62と、半導体光増幅器(SOA)63と、光フィルタ(OF)64と、光導波路65A,65Bとをモノリシックに集積させて、光集積素子66を構成することもできる。ここでは、モード変換型光カプラ20の入力側に複数の曲げ導波路(入力導波路)65Aを介して複数の半導体レーザ(又はSOA)62を接続し、モード変換型光カプラ20の出力側に1つの光導波路(出力導波路)65Bを介してSOA63及びOF64を接続している。この構成により、SOAの自然放出光成分を除去することができる。また、波長多重信号列が入力された場合、任意の波長成分のみを取り出すことも可能になる。
このような光集積素子(上述の光導波路素子を含む)によって高機能な光信号処理が可能となるため、このような高機能な光集積素子(上述の光導波路素子を含む)を備えるものとして送信装置又は受信装置を構成することで、送信装置又は受信装置の高性能化を図ることができ、さらには、この送信装置又は受信装置を、光伝送路を介して接続して光伝送装置を構成することで、光伝送装置の高性能化を図ることができる。
また、本発明は、上述した実施形態及びその変形例に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
以下、上述の実施形態及び変形例に関し、更に、付記を開示する。
(付記1)
単一モードの一の第1導波路と、
複数の第2導波路と、
一端が前記第1導波路に接続され、他端が前記第2導波路に接続され、前記一端から前記他端へ向けて幅が広くなるテーパ状導波路とを備え、
前記テーパ状導波路の前記一端の幅は、単一モード条件を満たすように設定されていることを特徴とする光導波路素子。
(付記2)
前記テーパ状導波路の前記他端は、前記複数の第2導波路が接続されている領域の両外側へ突出する領域を有することを特徴とする、付記1記載の光導波路素子。
(付記3)
前記各領域の長さが、10μm以上であることを特徴とする、付記2記載の光導波路素子。
(付記4)
前記テーパ状導波路の前記他端の幅は、前記他端における光強度分布に応じて設定されていることを特徴とする、付記1〜3のいずれか1項に記載の光導波路素子。
(付記5)
前記テーパ状導波路の前記一端の幅は、前記第1導波路の幅と等しいことを特徴とする、付記1〜4のいずれか1項に記載の光導波路素子。
(付記6)
前記テーパ状導波路は、線形的に幅が広くなるテーパ状導波路であることを特徴とする、付記1〜5のいずれか1項に記載の光導波路素子。
(付記7)
前記テーパ状導波路は、指数関数的に幅が広くなるテーパ状導波路であることを特徴とする、付記1〜5のいずれか1項に記載の光導波路素子。
(付記8)
前記複数の第2導波路は、互いに等しい透過特性を有するようにそれぞれの幅が設定されていることを特徴とする、付記1〜7のいずれか1項に記載の光導波路素子。
(付記9)
前記複数の第2導波路のうち最外側に位置する第2導波路は、前記テーパ状導波路の前記他端に向けて幅が広くなるテーパ部を有することを特徴とする、付記1〜8のいずれか1項に記載の光導波路素子。
(付記10)
前記テーパ部は、高次モードを単一モードに変換しうる大きさのテーパ角度を有することを特徴とする、付記9記載の光導波路素子。
(付記11)
前記テーパ状導波路の長さが、250μm〜310μmの範囲内であることを特徴とする、付記1〜10のいずれか1項に記載の光導波路素子。
(付記12)
付記1〜11のいずれか1項に記載の光導波路素子と、
前記光導波路素子が形成されている半導体基板上に集積された光機能素子とを備えることを特徴とする光集積素子。
(付記13)
前記光機能素子として、前記光導波路素子の前記第1導波路に接続された光増幅器と、前記光導波路素子の前記第2導波路に接続された光増幅器とを備えることを特徴とする、付記12記載の光集積素子。
(付記14)
前記光機能素子として、前記光導波路素子の前記第2導波路に接続されたレーザと、前記光導波路素子の前記第1導波路に接続された光増幅器とを備えることを特徴とする、付記12記載の光集積素子。
(付記15)
前記光機能素子として、前記光導波路素子の前記第2導波路に接続されたレーザと、前記光導波路素子の前記第1導波路に接続された光増幅器及び光変調器とを備えることを特徴とする、付記12記載の光集積素子。
(付記16)
前記光機能素子として、前記光導波路素子の前記第2導波路に接続されたレーザ及び光変調器と、前記光導波路素子の前記第1導波路に接続された光増幅器とを備えることを特徴とする、付記12記載の光集積素子。
(付記17)
前記光機能素子として、前記光導波路素子の前記第2導波路に接続されたレーザ又は光増幅器と、前記光導波路素子の前記第1導波路に接続された光増幅器及び光フィルタとを備えることを特徴とする、付記12記載の光集積素子。
(付記18)
付記1〜11のいずれか1項に記載の光導波路素子を備えることを特徴とする、光伝送装置。
(付記19)
付記12〜17のいずれか1項に記載の光集積素子を備えることを特徴とする、光伝送装置。
本発明の一実施形態にかかる光導波路素子(モード変換型光カプラ)の構成を示す模式図である。 本発明の一実施形態にかかる光導波路素子(モード変換型光カプラ)の透過特性及び光強度分布を示す図である。 本発明の一実施形態の比較例にかかる光導波路素子(モード変換型光カプラ)の構成を示す模式図である。 本発明の一実施形態の比較例にかかる光導波路素子(モード変換型光カプラ)の透過特性及び光強度分布を示す図である。 本発明の一実施形態にかかる光導波路素子(モード変換型光カプラ)のテーパ状導波路の最広端における光強度分布を示す図である。 本発明の一実施形態の比較例にかかる光導波路素子(モード変換型光カプラ)のテーパ状導波路の最広端における光強度分布を示す図である。 本発明の一実施形態にかかる光導波路素子(モード変換型光カプラ)におけるDw値とチャネル間アンバランスを表す値との関係を示す図である。 本発明の一実施形態にかかる光導波路素子(モード変換型光カプラ)の透過特性とDw値との関係を示す図である。 本発明の一実施形態にかかる光導波路素子(モード変換型光カプラ)の構成を示す模式的断面図である。 (a),(b)は、本発明の一実施形態にかかる光導波路素子(モード変換型光カプラ)の入出力透過特性(規格化透過率)を示す図である。 (a),(b)は、本発明の一実施形態にかかる光導波路素子(モード変換型光カプラ)のチャネル間アンバランスを表す特性を示す図である。 (a),(b)は、本発明の一実施形態の比較例にかかる光導波路素子(モード変換型光カプラ)のチャネル間アンバランスを表す特性を示す図である。 本発明の一実施形態の変形例にかかる光導波路素子(モード変換型光カプラ)の構成を示す模式図である。 本発明の一実施形態の変形例にかかる光導波路素子(モード変換型光カプラ)の透過特性を示す図である。 本発明の一実施形態にかかる光集積素子の構成例を示す模式図である。 本発明の一実施形態にかかる光集積素子の他の構成例を示す模式図である。 本発明の一実施形態にかかる光集積素子の他の構成例を示す模式図である。 本発明の一実施形態にかかる光集積素子の他の構成例を示す模式図である。 本発明の一実施形態にかかる光集積素子の他の構成例を示す模式図である。 (a)はY分岐結合器を示す模式図であり、(b)は方向性結合器を示す模式図である。 スターカプラを示す模式図である。 多モード干渉(MMI)結合器を示す模式図である。
符号の説明
1 入力導波路(第1導波路)
2 出力導波路(第2導波路)
2A,2B 最外側に位置する出力導波路
2AX,2BX テーパ部
3 テーパ状導波路
10 n型InP基板
11 GaInAsPコア層
12 InP層
13 ハイメサ導波路ストライプ構造
14 半絶縁性InP埋込層
20 モード変換型光カプラ(光導波路素子)
21,31,41,51,61 半導体基板
22A,22B 半導体光増幅器
23A,23B 光導波路
24 光ゲートスイッチ(光集積素子)
32 半導体レーザ
33半導体光増幅器
34A,34B 光導波路
35 波長可変レーザ
42 半導体レーザ
43 半導体光増幅器
44 光変調器
45A,45B 光導波路
46 外部変調器集積型波長可変レーザ
52 半導体レーザ
53 光変調器
54 半導体光増幅器
55A,55B 光導波路
56 光集積素子
62 半導体レーザ又は半導体光増幅器
63 半導体光増幅器
64 光フィルタ
65A,65B 光導波路
66 光集積素子
X 複数の出力導波路が接続されている領域
Y 領域Xの両外側へ突出した各領域

Claims (10)

  1. 単一モードの一の第1導波路と、
    複数の第2導波路と、
    一端が前記第1導波路に接続され、他端が前記第2導波路に接続され、前記一端から前記他端へ向けて幅が広くなるテーパ状導波路とを備え、
    前記テーパ状導波路の前記一端の幅は、単一モード条件を満たすように設定されていることを特徴とする光導波路素子。
  2. 前記テーパ状導波路の前記他端は、前記複数の第2導波路が接続されている領域の両外側へ突出する領域を有することを特徴とする、請求項1記載の光導波路素子。
  3. 前記テーパ状導波路の前記一端の幅は、前記第1導波路の幅と等しいことを特徴とする、請求項1又は2記載の光導波路素子。
  4. 前記テーパ状導波路は、線形的に幅が広くなるテーパ状導波路であることを特徴とする、請求項1〜3のいずれか1項に記載の光導波路素子。
  5. 前記テーパ状導波路は、指数関数的に幅が広くなるテーパ状導波路であることを特徴とする、請求項1〜3のいずれか1項に記載の光導波路素子。
  6. 前記複数の第2導波路は、互いに等しい透過特性を有するようにそれぞれの幅が設定されていることを特徴とする、請求項1〜5のいずれか1項に記載の光導波路素子。
  7. 前記複数の第2導波路のうち最外側に位置する第2導波路は、前記テーパ状導波路の前記他端に向けて幅が広くなるテーパ部を有することを特徴とする、請求項1〜6のいずれか1項に記載の光導波路素子。
  8. 前記テーパ部は、高次モードを単一モードに変換しうる大きさのテーパ角度を有することを特徴とする、請求項7記載の光導波路素子。
  9. 請求項1〜8のいずれか1項に記載の光導波路素子と、
    前記光導波路素子が形成されている半導体基板上に集積された光機能素子とを備えることを特徴とする光集積素子。
  10. 請求項1〜8のいずれか1項に記載の光導波路素子を備えることを特徴とする、光伝送装置。
JP2008064520A 2008-03-13 2008-03-13 光導波路素子、光集積素子及び光伝送装置 Withdrawn JP2009222790A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008064520A JP2009222790A (ja) 2008-03-13 2008-03-13 光導波路素子、光集積素子及び光伝送装置
US12/401,315 US20090232445A1 (en) 2008-03-13 2009-03-10 Optical waveguide device, optical integrated device and optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064520A JP2009222790A (ja) 2008-03-13 2008-03-13 光導波路素子、光集積素子及び光伝送装置

Publications (1)

Publication Number Publication Date
JP2009222790A true JP2009222790A (ja) 2009-10-01

Family

ID=41063117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064520A Withdrawn JP2009222790A (ja) 2008-03-13 2008-03-13 光導波路素子、光集積素子及び光伝送装置

Country Status (2)

Country Link
US (1) US20090232445A1 (ja)
JP (1) JP2009222790A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690902B1 (ja) * 2013-10-15 2015-03-25 株式会社フジクラ 基板型光導波路素子
JPWO2016056498A1 (ja) * 2014-10-06 2017-07-20 古河電気工業株式会社 半導体光集積素子およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482346B2 (ja) * 2010-03-18 2014-05-07 富士通株式会社 光導波路素子及びそのような光導波路素子を備えた光受信機
US9606293B2 (en) * 2015-06-29 2017-03-28 Elenion Technologies, Llc Bent taper with varying widths for an optical waveguide
US9829632B2 (en) 2015-06-29 2017-11-28 Elenion Technologies, Llc Bent and tapered optical waveguide for mode converter and polarization rotator
US11536901B2 (en) * 2018-08-13 2022-12-27 The Regents Of The University Of Colorado, A Body Corporate Compact and efficient integrated photonic device for coupling light on- and off-chip

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066866B2 (ja) * 1989-10-25 2000-07-17 三菱瓦斯化学株式会社 光分岐器
US20010046363A1 (en) * 2000-03-03 2001-11-29 Purchase Ken G. Variable optical attenuators and optical shutters using a coupling layer in proximity to an optical waveguide (II)
JP4127975B2 (ja) * 2001-02-16 2008-07-30 富士通株式会社 光導波装置
US7006719B2 (en) * 2002-03-08 2006-02-28 Infinera Corporation In-wafer testing of integrated optical components in photonic integrated circuits (PICs)
GB0216319D0 (en) * 2002-07-13 2002-08-21 Alcatel Optronics Uk Ltd Improved optical splitter
JP2005266381A (ja) * 2004-03-19 2005-09-29 Nec Corp 導波路型光スプリッタ及びこれを備えた導波路型光モジュール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690902B1 (ja) * 2013-10-15 2015-03-25 株式会社フジクラ 基板型光導波路素子
JP2015079053A (ja) * 2013-10-15 2015-04-23 株式会社フジクラ 基板型光導波路素子
US9335472B2 (en) 2013-10-15 2016-05-10 Fujikura Ltd. Planar optical waveguide device and DP-QPSK modulator
JPWO2016056498A1 (ja) * 2014-10-06 2017-07-20 古河電気工業株式会社 半導体光集積素子およびその製造方法
US10241267B2 (en) 2014-10-06 2019-03-26 Furukawa Electric Co., Ltd. Semiconductor optical integrated device including a reduced thickness upper cladding layer in a ridge waveguide portion, and method of manufacturing the same
US10534131B2 (en) 2014-10-06 2020-01-14 Furukawa Electric Co., Ltd. Semiconductor optical integrated device having buried hetero structure waveguide and deep ridge waveguide

Also Published As

Publication number Publication date
US20090232445A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
US8358885B2 (en) Optical semiconductor device, manufacturing method thereof and optical transmission device
JP5811273B2 (ja) 光素子、光送信素子、光受信素子、ハイブリッドレーザ、光送信装置
EP1560047B1 (en) Monolithically integrated polarization splitter
JP5357214B2 (ja) 光集積回路
US7085453B2 (en) Optical functional device and optical module
JPH11330619A (ja) 光デバイス
JP2009222790A (ja) 光導波路素子、光集積素子及び光伝送装置
CN113937617B (zh) 一种多波长激光器
US9927676B2 (en) Optical device with integrated reflector(s) comprising a loop reflector integrating a mach-zehnder interferometer
JP4620562B2 (ja) 光増幅素子
JP4962279B2 (ja) 半導体素子、半導体光集積素子及び光伝送装置
JP2016018894A (ja) 集積半導体光素子
CN113644543B (zh) 一种波长可调谐的半导体激光器
US7130112B2 (en) Optical amplifying device
JP4554209B2 (ja) 光フィルタ
JP2003066391A (ja) 多波長光変調装置及びその製造方法
JP4208126B2 (ja) ゲインクランプ光増幅器モジュール
JP7189431B2 (ja) 波長可変レーザ
JP4041361B2 (ja) 光増輻器モジュール
JP3887738B2 (ja) 半導体光集積回路装置及びその製造方法
Hammood et al. Broadband Optical Add-Drop Filters Enabled by Silicon Photonic Sub-wavelength-grating-assisted Waveguides
JP2019152717A (ja) 波長合波器
JP2004126207A (ja) 導波路型光フィルタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100818