WO2003093315A2 - Fragmentos de anticuerpos específicos para el antígeno carcinoembrionario humano (cea) - Google Patents

Fragmentos de anticuerpos específicos para el antígeno carcinoembrionario humano (cea) Download PDF

Info

Publication number
WO2003093315A2
WO2003093315A2 PCT/CU2003/000005 CU0300005W WO03093315A2 WO 2003093315 A2 WO2003093315 A2 WO 2003093315A2 CU 0300005 W CU0300005 W CU 0300005W WO 03093315 A2 WO03093315 A2 WO 03093315A2
Authority
WO
WIPO (PCT)
Prior art keywords
cea
diabody
scfv
cells
human
Prior art date
Application number
PCT/CU2003/000005
Other languages
English (en)
French (fr)
Other versions
WO2003093315A3 (es
Inventor
Jorge Víctor GAVILONDO COWLEY
Marta AYALA ÁVILA
Freya De Los Milagros Freyre Almeida
Boris Ernesto Acevedo Castro
Hanssel BELL GARCÍA
Lourdes Tatiana Roque Navarro
Luis Javier GONZÁLEZ LÓPEZ
José Alberto CREMATA ALVAREZ
Raquel Montesino Segui
Original Assignee
Centro De Ingeniería Genética Y Biotecnología
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR0304649-4A priority Critical patent/BR0304649A/pt
Priority to EP03720119A priority patent/EP1505076B1/en
Priority to KR10-2004-7017674A priority patent/KR100700323B1/ko
Priority to US10/511,794 priority patent/US20050158322A1/en
Priority to JP2004501454A priority patent/JP2006500913A/ja
Priority to DE60327072T priority patent/DE60327072D1/de
Application filed by Centro De Ingeniería Genética Y Biotecnología filed Critical Centro De Ingeniería Genética Y Biotecnología
Priority to AU2003223831A priority patent/AU2003223831A1/en
Priority to MXPA04010695A priority patent/MXPA04010695A/es
Priority to CA002482411A priority patent/CA2482411A1/en
Publication of WO2003093315A2 publication Critical patent/WO2003093315A2/es
Publication of WO2003093315A3 publication Critical patent/WO2003093315A3/es
Priority to US11/731,442 priority patent/US20070199078A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/22Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Neisseriaceae (F)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3007Carcino-embryonic Antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/626Diabody or triabody

Definitions

  • the present invention relates to the Branch of Immunology and in particular relates to single chain Fv antibody fragments, in their mono and divalent forms (diabody), obtained by recombinant DNA techniques from a mouse monoclonal antibody. of proven clinical efficacy, which is specific for the human carcinoembryonic antigen.
  • the CEA has also been studied for many years as a possible "cellular target" with a view to specifically directing radioactive isotopes for in vivo diagnosis (Goldenberg DM Int. J. of Biol. Markers 7; 183-188, 1992) and the in situ radiotherapy (Ledermann et al., Int. J. Cancer 47; 659-664, 1991). Its use is also contemplated to direct toxins, drugs and other bioactive products towards tumor cells (Bagshawe KD. Drug Dev. Res. 34: 220-230, 1995).
  • Anti-CEA antibodies have been the vehicles used par excellence for these purposes, starting with polyclonal preparations, to subsequently continue with mouse mAbs, their Fab fragments, genetically engineered antibody fragments from mouse mAbs and more recently of murine and human antibody libraries deployed in filamentous phages (Hammarstrom S et al. Cancer Res. 49, 4852-4858, 1989; Hudson PJ Curr. Opinion Immunology 11: 548-557, 1999; Griffiths AD et al. EMBO J. 12, 1993; 725-734; Griffiths AD et al. EMBO J. 13 3245-3260, 1994; W093 / 11236; Chester K et al 1995, WO 95/15341; Alien DJ et al. 1996,
  • CB-CEA.1 or ior-CEA.1 (now referred to as CB / ior-CEA.1) is known from the state of the art.
  • This AcM has a high specificity for human CEA, does not present undesirable cross reactions with molecules such as NCA, nor does it recognize normal tissues, except for normal colon epithelial cells, where CEA can be found usually present and polarized (Tormo B et al. APMIS 97: 1073-1080, 1989).
  • This AcM has very high affinity for CEA (Pérez L et al. Applied Biochem. Biotechnol. 24: 79-82, 1996).
  • scFv single chain Fv antibody
  • RCP polymerase chain reaction
  • the present invention relates to single chain Fv antibody fragments (scFv), in their mono and divalent forms (diabody), obtained by recombinant DNA techniques from the monoclonal antibody (AcM) anti-carcinoembryonic antigen (CEA) CB /ior-CEA.1 (Tormo B et al. APMIS 97: 1073-1080, 1989).
  • This AcM has very high affinity for CEA (Pérez L et al. Applied Biochem. Biotechnol. 24: 79-82, 1996) and has been used successfully in the diagnosis and monitoring of colorectal tumors of man (Oliva JP et al. Rev Esp Med Nuc ⁇ . 13: 4-10, 1994). .
  • the monovalent and diabody scFv fragments do not have Fe domains and have lower molecular sizes than the mouse mAb, which gives them the potential to penetrate tissues better in vivo and to be less immundgenic when applied to humans for diagnostic or therapeutic purposes. .
  • the monovalent and diabody scFv recombinant antibody fragments reported in this invention were developed using PCR and cloning and expression techniques in recombinant microorganisms, from RNA extracted from CB / ior-CEA hybridoma. 1. For the amplification and isolation of the base sequences coding for the VH and VL domains of the AcM, oligonucleotide sets other than those used were used to obtain a scFv previously reported (Ayala et al. Biotechniques 13: 790-799, 1992).
  • the two new monovalent scFv and diabody have, respectively, molecular sizes at least 5 and 2.5 times smaller than the original AcM, which gives them the potential to better penetrate the tissues and be less immunogenic in humans, all of which makes them more attractive and presumably superior than original AcM CB / ior-CEA.1 to direct radioisotopes, drugs, toxins and other bioactive elements to tumors expressing human CEA.
  • the invention demonstrates that it is possible to express the monovalent and diabody scFv fragments in E. coli bacteria and in Pichia pastoris yeast and that these fragments specifically identify in vitro the human CEA bound or not to tumor cells.
  • the monovalent scFv and the radiolabeled diabody identify in vivo tumor cells that express human CEA and that grow as tumors in mice, exhibiting a behavior very similar to that of the AcM CB / ior CEA.1, and a performance much higher than the scFv previously obtained.
  • the present invention also shows methods to purify and characterize the novel scva fragments monovalent and diabody.
  • the antibody fragments described in this invention are useful for application in the diagnosis and therapy of cancer, with the advantages that they come from an AcM of proven clinical efficacy, and that their smaller size and absence of Fe domain allow for a better tissue penetration, as its use in repeated treatments due to its lower capacity to induce a human anti-mouse immunoglobulin response (HAMA; Schroff et al. Cancer Res 45: 879-885, 1985; DeJager et al. Proc. Am. Assoc. Cancer Res. 29: 377, 1988).
  • HAMA responses are inconvenient for treatment since they lead to the neutralization of the biological effect of the administered antibody, the consequent decrease in the dose, and can cause allergic responses, "serum" disease and kidney effects.
  • the terms describe an immunoglobulin or parts thereof with antigenic specificity, whether natural or partially or entirely synthetically produced.
  • the terms also cover any polypeptide or protein that possesses a binding domain that is the antibody binding domain, or homologue to it. These can be produced naturally or synthetically, and in the latter case, totally or partially.
  • Examples of antibodies are the different classes and subclasses of immunoglobulins, and of fragments those contain one or more antigen binding domains such as Fab, scFv, Fv and the diabodies.
  • Antibodies and antibody fragments include any polypeptide that comprises an immunoglobulin binding domain, either naturally or synthetically produced, both in whole and in part and chimeric molecules that comprise an immunoglobulin binding domain, or its equivalent, fused to another polypeptide.
  • binding fragments are: (i) the Fab fragment that includes the VL, VH, CL and CH1 domains of an immunoglobulin; (ii) the Fd fragment, which consists of the VH and CH1 domains; (iii) the Fv fragment, which consists of the VL and VH domains of a single antibody; (iv) the scFv fragment, where the VH and VL domains of a single antibody bind to a peptide binding segment (linker) that allows the two domains to associate to form an antigen binding site (Bird et al, Science 242 : 423-426, 1988; Huston et al, PNAS USA 85: 5879-5883, 1988); (v) "diabody", multivalent or multispecific fragments constructed similarly to scFv, but where the small size of the linker does not allow the VH and VL domains of the same
  • Diabodies and scFv can be constructed without a Fe region, using only the variable domains, potentially reducing the effects of anti-isotype reactions when supplied to humans. They are also particularly useful as they can be produced in E.coli and in recombinant yeasts. Their size smaller than that of a complete immunoglobulin gives them greater potential penetrability in tissues. Antigen binding site
  • an antibody or fragment thereof does not exhibit significant binding to molecules other than its specific binding partner.
  • This term is also applicable to the case where an antigen binding site is specific for a particular epitope that appears in a number of related or unrelated antigens, in which case the binding site will be able to bind to several epitope bearing antigens.
  • specific polypeptide molecules formed by one or more antigen binding sites are obtained from a mouse AcM that is specific for human CEA.
  • the antigen binding site is assembled in the form of a monovalent, divalent or other antibody fragment, depending on the way in which the polypeptide molecule is constructed.
  • the monovalent scFv fragment polypeptide molecule specific for human CEA exhibits an affinity constant for this antigen of (5.0 ⁇ 0.4) x 10 9 L mol "1 , and comprises VH and VL domains linked in that order by a segment of binding (linker) of 14 amino acids, with an amino acid sequence such as that presented in SEQ ID No. 16.
  • the monovalent and diabody scFv fragments do not bind, or do not significantly, with normal tissues or cells of the following normal tissues: liver, kidney, lung, testicles, blood, spleen, pancreas and blood.
  • the monovalent and diabody scFv fragments react exclusively with the products of luminal secretion and in apical areas of some glands.
  • the lack of reactivity of the monovalent scFv fragments and diabody with normal lymphocytes and neutrophils is indicative that there is no significant cross-reactivity level with the NCA antigen (von Kleist S, Burtin P. Immunodiagnosis of Cancer. Marcel Dekker. 322-341, 1979; Buchegger, F. et al. Int. J. Cancer 33; 643-649, 1984).
  • Polypeptide molecules derived from the monovalent and diabody scFv fragments reported in this invention and which retain the ability to bind CEA, the affinity reported for these, specific epitopic recognition and biological and biochemical performance similar and equivalent to the fragments described in this invention are considered forms. equivalent variants and are contained in the present invention.
  • These polypeptide molecules may take the form of other recombinant antibody fragments, such as scFv where the VL domain is preceded to VH, or Fab, Fab ', F (ab') 2, Fabc, Facb, trimeric and tetrameric scFv fragments, etc.
  • Also contained in the present invention are those variant forms of the monovalent scFv fragments and the diabody that comply with the characteristics described in the preceding paragraphs, and which have been derived from the so-called "humanization by reduction of immunogenicity", in which epitopes B and T present in the variable domains are modified so that they do not alter the specificity of antigen recognition, but reduce the immunogenicity of the resulting molecule in humans, for example, as disclosed in Carr FJ et al. 2000 EP 983303A1 and in Rodr ⁇ guez Pérez R et al. US 5712120-A.
  • polypeptide molecules contained in this invention may comprise other amino acids that form a peptide or a polypeptide, or that add to the molecule a functional characteristic different from that of binding to the CEA antigen, such as a label for purify or be identified, an enzyme or its fragments, a biological response modifier, a toxin or drug, and so on.
  • the monovalent scFv and diabody fragments can be supplied in an isolated or purified manner.
  • the present invention provides for the use of some of the polypeptide molecules described above as a diagnostic reagent for human cancer forms expressing CEA, such as colon, lung or breast adenocarcinomas, and others.
  • the CEA-specific polypeptide molecules described above can be radiolabeled and used as imaging agents to specifically demonstrate the presence and location of tumors expressing CEA in man.
  • the present invention provides a method of determining the presence of a cell or tumor expressing CEA, the method being that the cells are contacted with a polypeptide molecule as described, and determining the binding of these to the cells.
  • the method can be developed in vivo, or in a sample of cells removed from the body, either in vitro or ex vivo.
  • the present invention provides a method for the binding of a polypeptide molecule such as those described above to human CEA.
  • This binding can take place in vitro, ex vivo or in vivo. If the binding is in vivo, the method may comprise the administration of the polypeptide molecule to a mammal, be it one or more individuals.
  • the monovalent and diabody scFv fragments according to this invention bind to human CEA expressed by transfected mouse tumor cells, which grow as tumors once transplanted into mice, providing an experimental model useful for the study, the research and development of molecules with specific binding and their properties.
  • the reactivities of the antibodies on cell samples can be detected by any appropriate means. Its mareaje with individual reporter molecules is a possibility.
  • Reporter molecules can generate signals capable of being detected directly or indirectly and preferably measurable.
  • the union of reporter molecules can be direct or indirect, covalent or non-covalent. Binding via a peptide bond can result from the recombinant expression of a gene fusion that binds to the antibody and the reporter molecule.
  • the way to determine the union is not a characteristic of the present invention and those skilled in the art are able to choose a suitable model according to their preference and general knowledge.
  • a radionuclide such as 125 1, 111 ln or 99m Tc is used to label the monovalent and diabody scFv fragments and their equivalent variant forms, if these are preferably located in the tumor, and not in normal tissues, the presence of radioactive marking in Tumor tissue can be detected and quantified using a gamma camera.
  • the image quality of the tumor obtained is directly correlated with the signal background relationship (Goldenberg DM. Int. J. of Biol. Markers 1992, 7; 183-188).
  • the experimental use of 125 l is exemplified in the text.
  • the present invention also offers elements so that the monovalent and diabody scFv fragments and their equivalent variant forms, as described above, can be employed as a therapeutic reagent, for example, when they are coupled, buffered or bound to molecules with therapeutic power, or generated as a recombinant fusion protein.
  • the monovalent and diabody scFv fragments and their equivalent variant forms according to the present invention can be used to direct a toxin, radioactivity, T and NK cells, or other molecules to tumors expressing CEA, or to develop an anti-idiotypic response in the organism that can lead to a desired therapeutic effect.
  • compositions can be administered to individuals, preferably in a "therapeutically effective" amount sufficient to demonstrate a benefit to the patient, in the form of the improvement of at least one symptom.
  • amounts to be administered, the frequency and intervals of administration will depend on the nature and severity of the disease being treated, and these decisions are the responsibility of specialists and other medical doctors. Appropriate doses of an antibody are well known in the art (Ledermann JA et al. Int J. Cancer 47: 659-664, 1991; Bagshawe KD et al. Antibody, Immunoconjugates, and Radiopharmaceuticals 4: 915-922, 1991).
  • a composition can be administered in isolation or in combination with other treatments, either simultaneously or sequentially depending on the disease to be treated.
  • compositions according to the present invention may comprise, in addition to the active ingredient, an accepted pharmaceutical excipient, buffer, stabilizer or carrier, or other well-known materials for those right-handed in art. These materials should not be toxic, should not interfere with the effectiveness of the active ingredient and their precise nature may depend on the route of administration, whether oral, or by injection, for example, intravenous.
  • the monovalent scFv fragments, diabody and their equivalent variant forms according to the present invention can be manufactured by the expression of the nucleic acid encoding it.
  • the nucleic acid encoding any of the polypeptide molecules described above forms part of the present invention, as well as a method for the expression of said nucleic acid.
  • the nucleic acid can encode for the amino acid sequences shown in SEQ ID NO: 16 and 17.
  • vectors can be chosen or constructed. appropriate that contain the regulatory sequences appropriate to the case, including promoter, terminator, enhancer (enhancer), polyadenylation, marker genes and other relevant sequences.
  • Vectors can be plasmidios. Many known techniques and protocols for the manipulation of nucleic acids, for example, the preparation of nucleic acid constructs, polymerase chain reaction, mutagenesis, sequencing, introduction of DNA into cells and gene expression, Protein analysis, and others are described in detail in several references, such as Molecular Cloning: a Laboratory Manual: 2nd edition, Sambrook et al., Cold Spring Harbor Laboratory Press, 1989 or Short Protocols in Molecular Biology, Second Edition, Ausubel et al. . eds., John Wiley & Sons, 1992 or Erlich HA PCR Technology, Stockton Press, 1989. The disclosures that appear in these references are incorporated herein by appointment.
  • Another aspect of the present invention provides a host cell containing a foreign nucleic acid and the methods for introducing said nucleic acid into a host cell.
  • the introduction can use any of the existing techniques for this. For bacterial and yeast cells, this technique can be electroporation.
  • the introduction can be followed by causing or allowing the expression of the nucleic acid, for example, by culturing the host cells under conditions conducive to gene expression.
  • the nucleic acid of the invention is integrated into the genome of the host cell.
  • FIGURE 6 Percentage of the dose injected per gram of tissue is presented, after 24 (striped bars) and 48 (non-scratched bars) hours of inoculating mice with tumors expressing human CEA the following radiolabeled molecules with 125 1: from left to right and in groups of four double bars: (a) dlabody, (b) scFv, (c) F3 and (d) AcM CB / ior-CEA.1. Each bar represents the average of the counts recovered from the organs recovered from 12 mice. The results show that between 24 and 48 hours, the ratio of tumor radioactivity: blood radioactivity remains high for the diabody, scFv, and AcM, with the highest values for the latter, followed by the dimeric molecule. F3 showed very low values, with inappropriate in vivo behavior that can be correlated with its diminished affinity for CEA.
  • EXAMPLE 1 Amplification by PCR, cloning and sequence of the variable domains of the AcM CB / ior-CEA.1
  • RNA purification and amplification of variable regions Total RNA was extracted from 10 6 cells of the CB / ior-CEA.1 mouse hybridoma (Tormo B. et al. APMIS. 97: 1073-1080, 1989) with the TriPure TM reagent (Boehringer-Mannheim).
  • Complementary DNA cDNA was synthesized by First-Strand cDNA Synthesis for RT-PCR (Boehringer-Mannheim), using oligo dT as a primer.
  • the PCR Core kit (Boehringer-Mannheim) was used for CPR.
  • the CPR conditions were: denaturation at 94 ° C, 1 minute, hybridization at 55 ° C, 1 minute, extension at 72 ° C, 1 minute, 25 cycles, with an additional 5 minutes of extension at the temperature already described in the last cycle, all in an MJ Research Minicycler team.
  • the final volumes of each reaction were 100 ⁇ L. All oligonucleotides were used at a final concentration of 1 ⁇ M.
  • the amplified DNA fragments were purified from low melting agarose gels (Sigma), using the QlAquick Gel Extraction Kit (QIAGEN, GmbH), and cloned from independently in the pMOS vector (Amersham Pharmacia Biotech), designed for the "blunt" cloning of DNA fragments.
  • CPR was used for the assembly, in the form of scFv and diabody, of the VH and VL domains contained in plasmids pVH5 and pVL2.
  • Synthetic oligonucleotides were designed on the basis of the VH and VL sequences in plasmids pVH5 and pVL2, so as to include convenient restriction sites for cloning in the pJG-1m vector and incorporate the 14 and 5 amino acid binding segments necessary for the assembly of the monomeric scFv and the diabody (Tables II and III).
  • Diabody.- Linker L2 GGGGS (SEQ ID NO. 6)
  • Oligo 10 Binding segment of 5 amino acids / FR1 VL (SEQ ID No. 12)
  • the pJG-1m vector is a plasmid designed for the expression of antibody fragments towards the periplasm of E. co / (FIGURE 1). Its main elements are the LacZ promoter, a signal peptide, ApaLI and Not I restriction sites for insertion of the fragment gene, a c-myc peptide coding domain and a sequence coding for 6 histidines, the latter with a view to the purification of expression products by affinity chromatography by immobilized metal ions (IMAC; Porath J. Prot. Expr. Purif. 3: 263-281, 1992).
  • IMAC immobilized metal ions
  • selective solid medium LB agar, with 100 ⁇ g / mL ampicillin
  • the recombinant plasmids were selected after purification of the plasmid DNA from several colonies (QIAGEN MiniPrep kit), and the corresponding check by digestion with the restriction enzymes already described for the expected binding products. In the restriction analyzes, bands of approximately 3.5 kb were obtained, corresponding to the linearized vector and bands of approximately 700 bp for the coding genes of the scFv and diabody antibody fragments. Five clones of each of the constructs were sequenced using specific primers designed to hybridize externally to the cloning regions of the pJG-1m vector (Table IV), by procedures described above.
  • the amino acid sequences derived from the base sequences obtained for the monovalent scFv (clone pJG1m-25) and the diabody (clone pJG1m-18) appear in FIGURE 2 (SEQ ID No. 16 and SEQ ID No. 17).
  • the VH and VL sequences now obtained for the new monovalent scFv and the diabody present 16 different amino acids between FR1, CDR2 and FR3 of the VH domain, and 3 different amino acids between FR1 and FR3 of the VL domain.
  • variable domains amplified and cloned from the CB / ior-CEA.1 hybridoma to construct the new monovalent scFv and diabody may come from different RNAs than those used in the amplifications for scFv cloning previously reported.
  • the binding segment of the new monovalent scFv is identical to that of the previously reported scFv.
  • the binding segment of the new divalent scFv (diabody) is different from the scFv previously obtained, since it only comprises 5 amino acids.
  • Procedure (c) Checking the expression of scFv v diabody in E. coli by SDS-PAGE and Western blot.
  • competent TG1 cells of E.coli were independently transformed. This strain allows the periplasmic expression of the heterologous protein, or its exit into the culture medium.
  • the transformed bacteria were plated in selective solid medium and allowed to grow at 37 ° C for 16 hours. A representative colony of each of the two constructions was grown in liquid medium and upon reaching 1 OD 53 on m it was induced for 12 hours by adding 1 mM of IPTG to the culture medium.
  • the cells were centrifuged and the periplasmic content was isolated by osmotic shock and brief sonication (seconds) for evaluation in electrophoresis in 12% SDS-polyacrylamide gels (SDS-PAGE).
  • This test revealed the expression in both cases of proteins of the expected molecular weight (approx. 27 kDa), which were then evaluated by Western Blot using as a primary antibody a specific AcM (9E10) against the c-myc derived peptide containing this protein (1 ⁇ g / mL), followed by rabbit anti-mouse IgG antibodies conjugated to horseradish peroxidase (Sigma).
  • An ELISA assay was performed by coating polyvinyl plates (Costar, 96-well Vinyl Assay Plates) with human CEA (Calbochem 219369), at a concentration of 1 ⁇ g / mL. After the plates were blocked with skim milk, bacterial perlplasma samples corresponding to the two constructs were added in dilutions of 1: 5, 1: 10 and 1: 20 in PBS-2% skim milk, and incubated for 2 hours at temperature environment. AcM 9E10 (1 ⁇ g / mL) was used, followed by anti-mouse IgG antibodies conjugated with horseradish peroxidase (Sigma) for the detection of fragment binding to CEA.
  • the plates were used as a solid phase in ELISA assays where bacterial periplasm samples corresponding to the two constructs were added in dilution of 1: 2, 1: 8 and 1:16 in PBS-2% skim milk, and incubated for 2 hours at room temperature. After several washes, the AcM 9E10 (10 ⁇ g / mL) was used, followed by anti-mouse IgG antibodies conjugated with horseradish peroxidase (Sigma) for the detection of the binding of the fragments to the CEA in the cells.
  • OPD OPD
  • H 2 O 2 H 2 O 2 were used as chromogen and substrate for the development of the reactions and a LabSystems Multiskan MS reader for the quantitative evaluation thereof at 492nm.
  • the supernatants were transferred to a virgin plate.
  • the AcM CB / ior-CEA.1 was used as a positive control.
  • negative controls periplasmic fractions corresponding to TG1 cells transformed with the pJG1 vector without insert, and an unrelated AcM were used.
  • the genes encoding scFv and the diabody were amplified by PCR using as templates the constructs pJG1-25 and pJG1-18, respectively, and oligonucleotides designed to add the Ncol site at the 5 'and 3' ends of the genes in question (Oligos 13 and 14; Table V), with a view to their cloning in the PPS7 pastoris expression vector pPS7.
  • the amplification procedure was similar to that described above.
  • Plasmid pPS7 is an integrative vector that contains a 1.15Kb fragment that corresponds to the alcohol oxidase enzyme promoter (AOX.1) followed by the gene that codes for the secretion signal of the sucrose invertase (sucll) of Saccharamyces cerevisae, a Ncol single cloning site, a 960pb fragment of the glyceraldehyde 3-phosphate dehydrogenase (Gapt) enzyme to ensure termination of transcription, and the HIS3 gene of Saccharamyces cerevisae as a selection marker.
  • This vector also contains a 2.1 kb fragment, corresponding to the 3 'sequence of the AOX.1 gene. All these elements are inserted into a pUC18 vector (Herrera Mart ⁇ nez LS et al., EP0438200 A1).
  • Oligo 15 alcohol oxidase promoter pAOX.1 (SEQ ID No. 20)
  • the cell precipitates were resuspended in 10 mL of methanol-rich medium instead of glycerol as the sole source of carbon (BMMY). From this moment and for 96 hours, the proteins of interest were induced, with the daily addition of pure methanol to a final concentration of 1% in the culture.
  • the MP36his3 strain transformed with a vector without insert was used as a negative control.
  • the cells were centrifuged and the metabolized culture medium was collected during the induction phase, which was centrifuged once more for final clarification and detection of scFv or electrophoresis diabody in SDS-polyacrylamide gels ( SDS-PAGE) at 15%.
  • This assay revealed the expression in both cases of proteins of the expected molecular weight (approx. 27 kDa), which were then evaluated by Western Blot using the AcM 9E10, as the primary antibody, and mouse anti-lgG rabbit antibodies conjugated to peroxidase of Horseradish (Sigma). Transfers were made as described above. In the development DAB (Sigma) was used as an insoluble substrate. For both constructs, recombinant proteins were identified by the AcM 9E10. Procedure (c) Recognition of human CEA by scFv and diabody in ELISA. An ELISA test was carried out very similar to that described above for the material derived from E.coli, using similar solid phases, reagents and coating conditions, incubation, development and positive control.
  • Samples of metabolized culture of the induced recombinant strains were added diluted in PBS-1% milk at a rate of 100 ⁇ l Well, and incubated for 2 hours at room temperature.
  • negative controls were used metabolized media corresponding to strain MP36 hls 3, and an unrelated AcM. Absorbance values at least 4 times higher than those produced by the negative controls were considered positive.
  • samples of metabolized media in the induction phase of the scFv and diabody constructs expressed in Pichia pastoris were positive in their ability to recognize human CEA adsorbed to polyvinyl plates.
  • An ELISA test was carried out very similar to that described above for the material derived from E.coli, using similar culture cells, binding conditions, reagents, incubation and development.
  • To the plates with fixed LoVo, AsPC-1 and LS 174T cells samples of the metabolized culture of induced recombinant P.pastoris strains, diluted in PBS with 2% skim milk, were added and incubated for 2 hours at room temperature with smooth movement In the test the AcM CB / ior-CEA.1 was used as a positive control.
  • the incubation was done at room temperature (RT) for 1 hour in a humid chamber, followed by several washings with cold PBS-BSA-sodium azide, and the addition from AcM 9E10 to the entire monolayer for 1 hour at RT, also in a humid chamber.
  • RT room temperature
  • the monolayer was incubated with anti-mouse IgG antibodies conjugated with fluorescein isothiocyanate (Sigma) diluted 1: 64 in PBS-3% BSA for 30 minutes in the dark and wet chamber.
  • the plates were washed five times with 3% BSA PBS, once with PBS and finally colored with Evans Blue solution for a few minutes.
  • the monolayers were covered with PBS-10% glycerol, sealed with coverslip sheets and examined in the ultraviolet light microscope.
  • These sequences give proteins a very high affinity for metal ions (for example, Zn +2 , Cu +2, Ni +2 ) that can be chelated to different chromatographic supports, allowing easy and reproducible purification.
  • the recombinant bacteria obtained as described above were centrifuged and the periplasmic content was isolated by osmotic shock and brief sonication (seconds), and subsequently dialyzed for 72 hours in the coupling buffer (20 mM Tris-HCI, 1 M NaCI, 20mM Imidazole, pH 7.0).
  • the bacterial periplasm preparations containing the scFv and the diabody were directly and independently applied to a Sepharose-IDA-Cu +2 matrix (Pharmacia).
  • the gels were washed first with 10 times their volume using coupling buffer and then similarly with the wash buffer (20 mM Tris-HCI, 1 M NaCI, 150 mM Imidazole, pH 7.0) for removal of contaminating proteins from E. coli. Elution of scFv and diabody was performed with 20mM Tris-HCI, 1M NaCI, 250mM Imidazole, pH 7.0). Elution peak samples were subjected to an SDS-PAGE 12% to verify the presence of the proteins of interest.
  • the eluted fractions containing the scFv and the diabody were concentrated in UltraFree 15 (Amicon) devices, dialyzed in a buffer solution containing 20 mM Tris-HCI at pH 8.7, and subjected to a second purification step by ion exchange.
  • the samples were applied to a Mono Q column (Pharmacia), and eluted by a linear NaCI gradient, from 0 to 1 M.
  • the samples of the collected peaks were checked by 12% SDS-PAGE.
  • the presence of scFv and diabody was verified at the expected sizes (approximately 27 kDa).
  • the final purity achieved for the two molecules was similar and close to 95%, estimated by SDS-PAGE and silver staining.
  • the pure scFv and diabody spikes were concentrated in UltraFree 15 (Amicon) devices up to 2 mg / mL.
  • the biological activity of the purified preparations was verified by ELISA, following a procedure similar to that described above in this invention. All samples were stored at 4 ° C.
  • EXAMPLE 5 Characterization of the diabody by proteolytic digestion and mass spectrometry.
  • the dialyzed protein was digested with trypsin grade sequence (Promega) at an enzyme: substrate ratio 1:50 for 4 hours at 37 ° C.
  • Proteolytic digestion was stopped by acidifying with an equal volume of a 1% aqueous solution of trifluoroacetic acid and stored at -20 ° C until analysis by liquid chromatography coupled to the mass spectrometer (LC-MS).
  • Triptych digestions were separated by reverse phase chromatography on an AKTA Basic liquid chromatograph (Amershan Pharmacia Biotech) using a linear gradient from 0% to 80% of solution B in 100 minutes.
  • the solutions used to generate the gradient were: A: H 2 0 / TFA 0.05% and B: Acetonitrile / TFA 0.05%.
  • the fractions obtained during prothetic digestion were analyzed by mass spectrometry using electrospray ionization (ESI-MS), when a hybrid LC-MS mass spectrometer with orthogonal QTOF-2 geometry (Mlcromass Ltd.) was connected online to the chromatographic system. .
  • ESI-MS electrospray ionization
  • the mass spectra were acquired from 350 to 1800 in 0.98 seconds and using 0.02 seconds between each of the scans.
  • the mass spectrometer was calibrated with a saline solution composed of a mixture of sodium and cesium iodide.
  • the voltages used in the cone and the capillary were 50 and 3000 volts, respectively.
  • the spectra were processed using the MassLinx v 3.5 software package (Micromass Ltd).
  • FIGURE 4 and its attached Table show the chromatographic profile of the tryptic digestion of the diabody and the summary of the assignment of the tryptic peptides of the diabody.
  • ESI-MS spectra obtained no signals corresponding to the incorrectly linked cysteines were detected, this being appreciated from the summaries of fractions 8 and 12 of the Table attached to FIGURE 4, which contain the peptides ( 20 Phe-Arg 31 ) -SS- ( 87 Ser-Arg 97 ) and ( 43 Val-Lys 148 ) -SS- ( 186 lle-Lys 228 ) linked by disulfide bridges (-SS-) between cysteines 22 and 95, and 147 and 212 respectively.
  • Human CEA (Calbochem) was enzymatically deglycosylated with the endoglycosidase PNGase F (New England Biolabs) specific for N-glycosylation.
  • the CEA was dissolved in 20 mM phosphate buffer pH 7.8 and denatured with SDS and 2-mercaptoethanol at 100 ° C for 5 min. Subsequently, NP-40 detergent and 1 ⁇ L of PNGase F were added at 37 ° C for 2 hours. Control and deglycosylated samples were analyzed in SDS-PAGE with coomasie blue staining, with a considerable decrease in molecular size (around 50%) after digestion with endoglycosidase.
  • the polyclonal antiserum recognized the CEA before and after deglycosylation.
  • Native human CEA samples were analyzed using a Dot Blot system with recognition by specific lectins.
  • the lectins used were the agglutinin of Sambucus nigra (SNA) and the agglutinin of Maackia Amurensis (MAA) specific to terminal sialic acid bound alpha 2.6 and alpha 2.3, respectively.
  • SNA Sambucus nigra
  • MAA Maackia Amurensis
  • the lectins used in these experiments were conjugated to Digoxigenin, which is identified by an anti-Digoxigenin antibody conjugated to alkaline phosphatase.
  • the human CEA was then digested with the NANAsa II enzyme, an exoglycosidase (sialidase) capable of hydrolyzing alpha 2.6 terminal sialic acids. This was followed by the separation of the digestion products in SDS-PAGE, and the study of their recognition by Western Blot, using as primary antibodies the AcM CB / lor-CEA.1 and a human anti-CEA antiserum obtained in mouse. The results obtained showed recognition of the control of native CEA by the two samples, while there was only recognition of CEA digested with NANAsa II by the mouse anti-CEA antiserum.
  • NANAsa II an exoglycosidase capable of hydrolyzing alpha 2.6 terminal sialic acids.
  • the tissue study was performed on selected samples of tumor tissue and normal tissue files, from autopsy material. A minimum panel of tissues was used to verify the recognition flag already deflected for the AcM CB / ior-CEA.1 (Tormo B et al. APMIS 97: 1073-1080, 1989).
  • Histopathology was evaluated in sections stained with hematoxylin-eosin. Consecutive sections of the histopathologically evaluated blocks were used for staining by the immunoperoxidase technique. To do this, the dewaxed and rehydrated sections were treated with 3% H 2 O 2 for 30 minutes to block the endogenous peroxidase, washed in phosphate buffered saline (PBS), and incubated with the samples, diluted in PBS-1. % bovine serum albumin (dilution buffer), for 1 hour.
  • PBS phosphate buffered saline
  • the scFv F3 and the new scFv and diabody reacted exclusively with the products of luminal secretion and in apical areas of some glands .
  • the intensity of the reaction in the case of scFv F3 was lower, an aspect that was also seen later for several tumors.
  • the AcM, and the scFv and the diabody did not demonstrate reactivity with normal lymphocytes and neutrophils suggesting that there is no significant level of cross reactivity with the NCA antigen.
  • scFv F3 manifested a slight recognition of these cells.
  • the AcM, the scFv and the diabody reacted with the majority of the tumors of gastrointestinal origin, and the strong tide was observed in the majority of cases both in the apical surface of the tumor cells and in the cytoplasm. None of these samples marked tumors of hematopoietic, sarcomatous, or other epithelial derivatives, except for a canalicular breast carcinoma and a large cell lung carcinoma.
  • the numbers in the Table represent the cases of positive staining / total cases studied. If there were no parentheses, the staining intensities in the positives were between 2+ and 3+; Ca: carcinoma; ADC: adenocarcinoma; HDG: Hodgkin; BD: well differentiated; MD: moderately differentiated; PD: poorly differentiated.
  • an anti-mouse IgG antibody conjugated to peroxidase (Sigma) was added, in dilution 1: 2500 for 1 hour, at 37 ° C.
  • the substrate used was OPD and the reaction was carried out for 15 minutes.
  • the absorbance reading was performed at 492 nm in a LabSystems Multiskan MS device.
  • Table Vil reflects the Kaff values calculated for each of the variants tested.
  • This last value basically corresponds to that calculated for F3 from measurements made by a different procedure (Pérez L et al. Applied Biochem. Biotechnol. 24: 79-82, 1996).
  • the body has a Kaff of (2.8 ⁇ 0.3) x 10 10 L mol "1 , while for the CB / ior-CEA.1 AcM the Kaff value was (6.1 ⁇ 0.5) x 10 10 L mol " 1 .
  • Kaff affinity constant, calculated as an average of six determinations ⁇ the standard deviation (in brackets).
  • Radiolabelled products were analyzed in thin layer chromatography to determine protein incorporation, finding values between 95 and 98% of radioactivity.
  • the ability of radiolabeled products to detect CEA was tested in a system where polystyrene immunotubes were coated with CEA (5 ⁇ g / mL; Calbochem), blocked, and samples of radiolabeled products adjusted to antibody amounts were added. that could be trapped by this solid phase. After incubation and washing it was determined that 80, 79, 83, and 81% of the radioactivity was trapped by the solid phase, respectively, for the samples (a) - (d) described above, demonstrating that the procedure of Radiolabeling did not significantly affect the biological activity of the antibodies.
  • the B16-CEA13 cells used in these experiments were obtained by transfecting a gene that codes for the extracellular domains of human CEA, cloned into the pDisplay TM vector (Cat. No. V660-20, Invitrogen). The gene was obtained by PCR from RNA extracted from CRL-1682 cells, with oligonucleotides designed from the sequence published for human CEA. Recombinant plasmid pDisplay-CEA was purified and transfected into B16-F10 melanoma cells (ATCC CRL-6475) of C57BI / 6 mouse using Lipofectamine PLUS TM (Gibco-BRL) and 5 ⁇ g of DNA by transfection.
  • FIGURE 6 shows the percentages of radioactivity recovered by studied tissue, at the different times (with respect to the total injected), and the radioactivity relationship in the blood tumor activity.
  • the results shown in the Vlll Table show that between 24 and 48 hours, the radioactivity ratio in blood tumormia remains high for the diabody, scFv, and AcM, with the highest values for the latter, followed by the molecule dimeric
  • the scFv F3 obtained above showed very low values, with inappropriate in vivo behavior that can be correlated with its diminished affinity for CEA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Fragmentos de anticuerpo tipo Fv de cadena sencilla (scFv) mono y divalente (diacuerpo), obtenidos por técnicas de ADN recombinante a partir del anticuerpo monoclonal (AcM) anti-antígeno carcinoembrionario (CEA) CB/ior-CEA.1. Este AcM tiene muy alta afinidad por el CEA y se emplea en el diagnóstico y seguimiento de tumores colorectales del hombre. Como el AcM original, los fragmentos scFv monovalente y diacuerpo exhiben altas afinidades por el CEA humano y reconocen un epítope dependiente de la conservación de carbohidratos. El fragmento scFv monovalente y diacuerpo tienen constantes de afinidad por el CEA de (5.0 ± 0.4) x 109 L mol-1 y (2.8 ± 0.3) x 1010 L mol-1, respectivamente. Estos dos fragmentos no presentan reactividad cruzada con células y tejidos humanos normales, excepto la mucosa colónica normal donde el CEA está ocasionalmente presente. Los fragmentos pueden producirse mediante la expresión en microorganismos recombinantes, a partir del clonaje de secuencias de ácidos nucleicos codificantes para regiones variables obtenidas del hibridoma que produce el AcM CB/ior-CEA.1. Al igual que el AcM original, el scFv monovalente y el diacuerpo tienen la capacidad de identificar in vivo en ratones a células productoras de CEA humano que crecen formando tumores. El scFv monovalente y el diacuerpo tienen un tamaño molecular 5 y 2.5 veces inferior, respectivamente, que el AcM de ratón y no poseen dominios Fc, lo que les confiere el potencial de penetrar mejor los tejidos in vivo y de ser menos inmunogénicos en el hombre.

Description

MEMORIA DESCRIPTIVA
FRAGMENTOS DE ANTICUERPO ESPECÍFICOS PARA EL ANTÍGENO CARCINOEMBRIONARIO HUMANO (CEA)
CAMPO TÉCNICO
La presente invención se relaciona con la Rama de la Inmunología y en particular se refiere a fragmentos de anticuerpo tipo Fv de cadena sencilla, en sus formas mono y divalente (diacuerpo), obtenidos por técnicas de ADN recombinante a partir de un anticuerpo monoclonal de ratón de eficacia clínica probada, que es específico para el antígeno carcinoembrionario humano.
ANTECEDENTES DE LA INVENCIÓN
El antígeno carcinoembrionario (CEA) es una glicoproteína de unos 180 kDa de peso molecular, secretada preferentemente por las células de los tumores humanos del tracto gastrointestinal y de otros carcinomas, aunque también se puede detectar en algunos tejidos no malignos como la mucosa colónica. Su rol fisiológico no ha sido totalmente dilucidado, y hasta el momento se cree que está asociado de alguna forma a los procesos de adhesión celular. (Gold P, Freedman SO. Journal of Experimental Medicine 122: 467; 1965; Zimmermann W et al. PNAS USA 84: 2960-2964; 1987; Paxton RJ et al. PNAS USA 84: 920-924, 1987; Beauchemin N et al. Molec. Cellular Biol. 7: 3221-3230, 1987; Gold P, Goldenberg NA. MJM 3:46-66, 1997).
El CEA es un integrante de la superfamilia de las inmunoglobulinas, debido a su estructura caracterizada por dominios repetitivos (Oikawa S et al. BBRC 144: 634-642, 1987; Thompson J, Zimmermann W. Tumour Biology 9: 63-83, 1988; Hammarstrom S. Seminars in Cáncer Biology 67-81, 1999). El CEA tiene una alta homología con otras moléculas de esta superfamilia, tales como el NCA, el antígeno del meconio, la Glicoproteína biliar tipo A, y la Glicoproteína b específica del embarazo (von Kleist S, Burtin P. Immunodiagnosis of Cáncer. Marcel Dekker. 322-341, 1979; Buchegger, F. et al. Int. J. Cáncer 33; 643-649, 1984; Matsuoka Y et al. Cáncer Res. 42:2012-2018, 1982; Svenberg T. Int. J. Cáncer 17:588-596, 1976). La elevación en los niveles de CEA circulantes se considera desde hace muchos años como uno de los mejores indicadores de una posible recidiva y/o de metástasis, en pacientes operados de tumores primarios colorectales que expresen este antígeno (Gold P, Goldenberg NA. MJM 3:46-66, 1997). La medición de CEA circulante se ha extendido también como método para el seguimiento de otros carcinomas humanos (mama, pulmón), en los casos en que se hayan podido demostrar niveles pre-operatorios significativos de este marcador tumoral (Gold P, Goldenberg NA. MJM 3:46-66, 1997). Desde el descubrimiento de la tecnología de generación de anticuerpos monoclonales (AcM; Kohler G, Milstein C. Nature 256:52-53, 1975), los inmunoensayos para la medición del CEA circulante han ganado en especificidad y su uso se ha difundido extraordinariamente.
El CEA se ha estudiado también desde hace muchos años como una posible "diana celular" con vistas a dirigir específicamente isótopos radiactivos para el diagnóstico in vivo (Goldenberg DM Int. J. of Biol. Markers 7; 183-188, 1992) y la radioterapia in situ (Ledermann et al., Int. J. Cáncer 47; 659-664, 1991). También se contempla su uso para dirigir toxinas, drogas y otros productos bioactivos hacia las células tumorales (Bagshawe KD. Drug Dev. Res. 34:220-230, 1995).
Los anticuerpos anti-CEA han sido los vehículos empleados por excelencia para estos fines, comenzando con preparaciones policlonales, para seguir posteriormente con AcM de ratón, sus fragmentos Fab, fragmentos de anticuerpos obtenidos por ingeniería genética a partir de los AcM de ratón y más recientemente de bibliotecas de anticuerpos murinos y humanos desplegadas en fagos filamentosos (Hammarstrom S et al. Cáncer Res. 49, 4852-4858, 1989; Hudson PJ Curr. Opinión Immunology 11:548-557, 1999; Griffiths AD et al. EMBO J. 12, 1993; 725-734; Griffiths AD et al. EMBO J. 13 3245-3260, 1994; W093/11236; Chester K et al 1995, WO 95/15341; Alien DJ et al. 1996,
US5872215).
La expresión de anticuerpos y fragmentos de anticuerpos en células procariotas como la E. coli y en otros microorganismos está bien establecido en el arte (Pluckthun, A. Bio/Technology 9: 545-551, 1991; Gavilondo J, Larrick JW. Biotechniques 29: 128-132, 134-136, 2000). La expresión de anticuerpos y fragmentos de anticuerpos en células eucariotas superiores en cultivo también es conocida para aquellos diestros en el arte (Reff ME. Curr. Opinión Biotech. 4: 573-576, 1993; Trill JJ et al. Curr. Opinión Biotech 6: 553-560, 1995).
El AcM de ratón denominado indistintabmente como CB-CEA.1 o ior-CEA.1 (referido desde ahora como CB/ior-CEA.1) es conocido a partir del estado del arte. Este AcM posee una alta especificidad para el CEA humano, no presenta reacciones cruzadas indeseables con moléculas como el NCA, ni reconoce tejidos normales, excepto las células del epitelio normal de colon, donde el CEA se puede encontrar habitualmente presente y polarizado (Tormo B et al. APMIS 97: 1073-1080, 1989). Este AcM tiene muy alta afinidad por el CEA (Pérez L et al. Applied Biochem. Biotechnol. 24: 79-82, 1996). Este AcM marcado con 99mTc ha sido empleado exitosamente en el diagnóstico y seguimiento de tumores colorectales del hombre. Los estudios clínicos de radioinmunodetección diagnóstica demostraron que posee un 91.3% de sensibilidad, un 77.1% de especificidad, y un 82.8% de valor predicitvo positivo (Oliva JP et al. Rev Esp Med Nucí. 13:4-10, 1994). Ello lo hace superior en desempeño al único otro anticuerpo monoclonal antl-CEA empleado actualmente en la clínica en el mundo para estos fines, el CEA-Scan (99 Tc- Arcitumomab) de Immunomedics (Morris Plains, NJ, EEUU).
En 1992 se reportó el desarrollo de un fragmento de anticuerpo Fv de cadena sencilla (scFv), derivado mediante la reacción en cadena de la polimerasa (RCP) a partir de ARN extraído del hibridoma productor del AcM CB/ior-CEA.1 (Ayala M et al. Biotechniques 13: 790-799, 1992). En la estrategia experimental seguida, la amplificación de los dominios variables del CB/ior-CEA.1 se realizó con oligonucleótidos degenerados para las regiones marcos de ambos dominios variables. El scFv se produjo en E. coli y demostró reconocer el CEA en ELISA y en estudios de citoquímicos, pero con una afinidad por el antígeno inmovilizado unas 200 veces inferior al Fab obtenido por vía natural (Pérez L et al. Applied Biochem. Biotechnol. 24: 79-82, 1996). Este mismo fragmento scFv se clonó, expresó y produjo en Pichia pastorís (Freyre FM et al. J Biotechnol. 76(2-3):157-163, 2000) sin que se produjeran mejoras en la afinidad por el CEA humano, y los estudios realizados en animales de experimentación con el fragmento radiomarcado indicaron una biodístríbución anómala (Pimentel GJ et al. Nucí Med Commun. 22:1089-94, 2001), por lo que no se continuó su desarrollo ulterior.
ESENCIA DE LA INVENCIÓN
La presente invención se refiere a fragmentos de anticuerpo tipo Fv de cadena sencilla (scFv), en sus formas mono y divalente (diacuerpo), obtenidos por técnicas de ADN recombinante a partir del anticuerpo monoclonal (AcM) anti-antígeno carcinoembrionario (CEA) CB/ior-CEA.1 (Tormo B et al. APMIS 97: 1073-1080, 1989). Este AcM tiene muy alta afinidad por el CEA (Pérez L et al. Applied Biochem. Biotechnol. 24: 79-82, 1996) y ha sido empleado exitosamente en el diagnóstico y seguimiento de tumores colorectales del hombre (Oliva JP et al. Rev Esp Med Nucí. 13:4-10, 1994). . Los fragmentos scFv monovalente y diacuerpo reportados en la presente invención pueden producirse mediante su expresión en microorganismos recombinantes, como bacterias y levaduras. Al igual que el AcM original, los fragmentos scFv monovalente y diacuerpo son específicos para un epítope del CEA humano que depende de la conservación de los carbohidratos y exhiben altas afinidades por este antígeno. Los fragmentos scFv monovalente y diacuerpo tienen un patrón de reconocimiento in vitro de células y tejidos humanos normales y tumorales semejante al del AcM original y, como este, una vez radiomarcados poseen la capacidad de identificar células tumorales que expresan CEA humano creciendo como tumores en ratones atímicos congénitos. Los fragmentos scFv monovalente y diacuerpo no poseen dominios Fe y poseen tallas moleculares inferiores que el AcM de ratón, lo que les confiere el potencial de penetrar mejor los tejidos in vivo y de ser menos inmundgénicos al ser aplicados en el hombre con propósitos diagnósticos o terapéuticos.
Los fragmentos scFv monovalente y diacuerpo reportados en esta invención poseen importantes diferencias de aminoácidos en los dominios variables de cadena pesada (VH) y ligera (VL), respecto a otro fragmento scFv desarrollado previamente a partir del mismo AcM, y lo superan en afinidad por el CEA, en desempeño para el reconocimiento de células y tejidos, y en eficacia para la localización de tumores que producen CEA humano creciendo in vivo en ratones.
Los fragmentos de anticuerpo recombinantes scFv monovalente y diacuerpo reportados en esta invención se desarrollaron empleando la RCP y técnicas de clonaje y expresión en microorganismos recombinantes, a partir del ARN extraído del hibridoma CB/ior- CEA.1. Para la amplificación y aislamiento de las secuencias de bases codificantes de los dominios VH y VL del AcM se emplearon juegos de oligonucleótidos diferentes a los usados para obtener un scFv antes reportado (Ayala et al. Biotechniques 13: 790-799, 1992). En la invención se muestra que los nuevos scFv monovalente y el diacuerpo poseen importantes diferencias en la secuencias de aminoácidos de los dominios VH y VL, respecto a un scFv obtenido previamente, y que estos se manifiestan en la forma de 16 aminoácidos entre los marcos 1 y 3 (FR3) y la región determinante de la complementaridad 2 (CDR2) del dominio VH diferentes respecto al scFv obtenido previamente, y 3 aminoácidos entre el FR1 y FR3 del dominio VL distintos respecto al scFv obtenido previamente. Ello indica que estos dominios tienen probablemente un origen clonal diferente a los reportados en Ayala et al. Biotechniques 13: 790-799, 1992. En el caso del diacuerpo, este se diferencia del scFv obtenido previamente también en el tamaño y la composición aminoacídica del segmento de unión (linker) que se emplea en la fabricación de la molécula tipo scFv.
Estos cambios se reflejan de forma sorprendente en las propiedades bioquímicas y biológicas de los nuevos fragmentos, y le otorgan un comportamiento muy similar al AcM CB/ior-CEA.1 y muy superior al del scFv reportado anteriormente. El nuevo fragmento scFv monovalente, que posee idéntico segmento de unión (linker) que el scFv antes reportado (Ayala et al. Biotechniques 13: 790-799, 1992) pero los cambios de aminoácidos en los dominios variables mencionados anteriormente, tiene una constante de afinidad por el CEA humano muy superior a la exhibida por el scFv antes reportado. A su vez, el diacuerpo supera en constante de afinidad por el CEA humano a las dos formas scFv monovalentes. Los dos nuevos fragmentos scFv monovalente y diacuerpo conservan las propiedades de especificidad del AcM original en cuanto a reconocimiento del CEA, identificación de células y tejidos tumorales, ausencia de reactividad cruzada con el NCA y capacidad de acumularse selectivamente en un tumor productor de CEA humano transplantado en ratones, todo ello con un desempeño muy superior al scFv obtenido previamente.
Los dos nuevos scFv monovalente y diacuerpo tienen, respectivamente, tamaños moleculares ai menos 5 y 2.5 veces menores que el AcM original, lo que les confiere el potencial para penetrar mejor los tejidos y ser menos inmunogénicos en el humano, todo lo cual los hace más atractivos y presumiblemente superiores que AcM original CB/ior- CEA.1 para dirigir radioisótopos, drogas, toxinas y otros elementos bioactivos a tumores que expresan el CEA humano.
En la presente invención se demuestra como es posible amplificar mediante la RCP los dominios variables VH y VL del AcM CB/ior-CEA.1 empleando oligonucléotidos sintéticos que hibridan en las secuencias de bases que codifican para los péptidos señales y dominios constantes CH1 y Ck. Se muestra también como es posible ensamblar los dominios variables VH y VL amplificados, en este orden, mediante la RCP y obtener diferentes formas de fragmentos scFv manipulando el tamaño del segmento de unión (linker) que conecta estos dominios. Empleando 14 aminoácidos se origina una forma scFv monovalente, y reduciendo estos a cinco se produce una forma scFv tipo diacuerpo.
En la invención se demuestra que es posible expresar los fragmentos scFv monovalente y diacuerpo en la bacteria E. coli y en la levadura Pichia pastoris y que estos fragmentos identifican in vitro de forma específica el CEA humano unido o no a células tumorales. En la presente invención también se demuestra que el scFv monovalente y el diacuerpo radiomarcados identifican in vivo células tumorales que expresan CEA humano y que crecen como tumores en ratones, exhibiendo un comportamiento muy semejante al del AcM CB/ior CEA.1, y un desempeño muy superior al del scFv obtenido previamente. En la presente invención también se muestran métodos para purificar y caracterizar los nuevos fragmentos scFv monovalente y diacuerpo. Los fragmentos de anticuerpo descritos en esta invención son útiles para su aplicación en el diagnóstico y terapia del cáncer, con las ventajas de que provienen de un AcM de probada eficacia clínica, y de que su menor tamaño y ausencia de dominio Fe permiten tanto una mejor penetración en tejidos, como su uso en tratamientos repetidos por su menor capacidad de inducción de una respuesta humana anti-inmunoglobulina de ratón (HAMA; Schroff et al. Cáncer Res 45: 879-885, 1985; DeJager et al. Proc. Am. Assoc. Cáncer Res. 29:377, 1988). Las respuestas HAMA son inconvenientes para el tratamiento ya que llevan a la neutralización del efecto biológico del anticuerpo administrado, la consiguiente disminución de la dosis, y pueden causar respuestas alérgicas, enfermedad del "suero" y afectaciones renales.
TERMINOLOGÍA Anticuerpos y sus Fragmentos Específicos
Los términos describen una inmunoglobulina o partes de esta con especificidad antigénica, ya sean naturales o producidas parcial o totalmente de forma sintética. Los términos cubren también cualquier polipéptido o proteína que posea un dominio de unión que sea el dominio de unión del anticuerpo, u homólogo a este. Estos pueden ser producidos de forma natural o sintética, y en este último caso de manera total o parcial. Ejemplos de anticuerpos son las diferentes clases y subclases de inmunoglobulinas, y de fragmentos aquellos contienen uno o más dominios de unión al antígeno tales como Fab, scFv, Fv y los diacuerpos.
Los anticuerpos y fragmentos de anticuerpos incluyen cualquier polipéptido que comprenda un dominio de unión de inmunoglobulina, ya sea natural o producido de forma sintética, tanto total como parcialmente y moléculas quiméricas que comprendan un dominio de unión de inmunoglobulina, o su equivalente, fusionado a otro polipéptido.
Se ha demostrado que los fragmentos de un anticuerpo completo pueden realizar la función de unir antígenos. Ejemplos de fragmentos de unión son: (i) el fragmento Fab que incluye los dominios VL, VH, CL y CH1 de una inmunoglobulina; (ii) el fragmento Fd , que consiste en los dominios VH y CH1; (iii) el fragmento Fv, que consiste en los dominios VL y VH de un único anticuerpo; (iv) el fragmento scFv , donde los dominios VH y VL de un único anticuerpo se unen con un segmento de unión peptídico (linker) que permite a los dos dominios asociarse para formar un sitio de unión al antígeno (Bird et al, Science 242: 423-426, 1988; Huston et al, PNAS USA 85: 5879-5883, 1988); (v) "diacuerpos", fragmentos multivalentes o multiespecíficos construidos de forma similar al scFv, pero donde el pequeño tamaño del linker no permite a los dominios VH y VL de una misma molécula scFv asociarse entre sí, y los sitios de unión al antígeno se forman mediante la asociación de dos o más scFv (WO94/13804; Holliger P et al. PNAS USA 90 6444-6448, 1993); (vi) otros fragmentos como el dAb (Ward SE et al., Nature 341: 544-546, 1989), regions CDR aisladas, fragmentos F(ab')2 y dímeros biespecíficos de scFv (PCT/US92/09965; Holliger P, Winter G. Current Opinión Biotechnol. 4: 446-449, 1993; de Haard, H et al. Adv. Drug Delivery Rev. 31:5-31 , 1998).
Los diacuerpos y los scFv se pueden construir sin región Fe, usando sólo los dominios variables, reduciendo potencialmente los efectos de reacciones anti-isotipo al ser suministrados a humanos. También son particularmente útiles al poderse producir en E.coli y en levaduras recombinantes. Su tamaño menor al de una inmunoglobulina completa los dota de una mayor penetrabilidad potencial en los tejidos. Sitio de unión al antígeno
Este término describe la parte de un anticuerpo que comprende el área que interactúa específicamente con todo un antígeno o parte del. Cuando el antígeno es grande, un anticuerpo puede unirse sólo a una parte particular del antígeno, cuya parte se denomina epitope. Un sitio de unión de un anticuerpo puede ser proporcionado por uno o más dominios variables de un anticuerpo. Preferiblemente, un sitio de unión a antígeno comprende la región (o dominio) variable de cadena ligera (VL) y la región (o dominio) variable de cadena pesada (VH) de un anticuerpo.
Específico Se refiere a la situación en la cual un anticuerpo o fragmento de este no presenta una unión significativa a otras moléculas diferentes de su pareja de unión específica. Este término es también aplicable al caso donde un sitio de unión a antígeno es específico para un epitope particular que aparece en un número de antígenos relacionados o no, en cuyo caso el sitio de unión será capaz de unirse a varios antígenos de porten el epítope.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Mediante la presente invención se obtienen moléculas polipeptídicas específicas formadas por uno o más sitios de unión al antígeno, provenientes de un AcM de ratón que es específico para el CEA humano. El sitio de unión al antígeno se ensambla en la forma de fragmento de anticuerpo monovalente, divalente u otras, según la forma en que la molécula polipetídica sea construida.
La molécula polipeptídica en forma de fragmento scFv monovalente específico para el CEA humano exhibe una constante de afinidad para este antígeno de (5.0 ± 0.4) x 109 L mol"1, y comprende dominios VH y VL unidos en ese orden por un segmento de unión (linker) de 14 aminoácidos, con una secuencia de aminoácidos como la que se presenta en la SEC ID No. 16.
La molécula polipeptídica en forma de fragmento scFv divalente (diacuerpo) específico para el CEA humano exhibe una constante de afinidad para este antígeno de (2.8 ± 0.3) x 1010 L mol"1, y comprende el apareamiento de dos moléculas idénticas formada cada una por dominios VH y VL unidos en ese orden por un segmento de unión (linker) de cinco aminoácidos, con una secuencia de aminoácidos como la que se presenta en la SEC ID No. 17.
En otro aspecto de la invención, los fragmentos scFv monovalente y diacuerpo no se unen, o no lo hacen de manera significativa, con tejidos normales o con células de los siguientes tejidos normales: hígado, riñon, pulmón, testículos, sangre, bazo, páncreas y sangre. En el caso de la mucosa colónica, los fragmentos scFv monovalente y diacuerpo reaccionan exclusivamente con los productos de secreción luminal y en zonas apicales de algunas glándulas. La ausencia de reactividad de los fragmentos scFv monovalente y diacuerpo con linfocitos y neutrófilos normales es indicativo de que no existe un nivel importante reactividad cruzada con el antígeno NCA (von Kleist S, Burtin P. Immunodiagnosis of Cáncer. Marcel Dekker. 322-341, 1979; Buchegger, F. et al. Int. J. Cáncer 33; 643-649, 1984).
Los fragmentos scFv monovalente y diacuerpo pueden unirse a CEA soluble, CEA adsorbido en superficies sólidas, o CEA asociado a células que lo producen, y a tejidos tumorales entre los que sobresalen los adenocarcinomas colorectales, de mama, de pulmón, de páncreas y de estómago humanos. Los fragmentos scFv monovalente y diacuerpo y el AcM CB/ior-CEA.1 se unen a CEA soluble y adsorbido a superficies sólidas de forma dependiente de la conservación de la glicosilación del CEA humano, lo que sugiere que los carbohidratos de este antígeno están implicados en el reconocimiento.
Moléculas polipeptídicas derivadas de los fragmentos scFv monovalente y diacuerpo reportados en esta invención y que retengan la capacidad de unir CEA, la afinidad reportada para estos, reconocimiento epitopico específico y desempeño biológico y bioquímico semejantes y equivalentes a los fragmentos descritos en esta invención son consideradas formas variantes equivalentes y están contenidas en la presente invención. Estas moléculas polipeptídicas pueden tomar la forma de otros fragmentos de anticuerpo recombinantes, como scFv donde el dominio VL esté antepuesto al VH, o fragmentos Fab, Fab', F(ab')2, Fabc, Facb, scFv triméricos y tetraméricos, etc. (Winter G, Milstein O Nature 349: 293-299,1991; WO94/13804; de Haard, H et al. Adv. Drug Delivery Rev. 31 :5-31, 1998), y se usen otros segmentos de unión (linkers) conocidos en el estado del arte. También pueden estar en la forma de moléculas de anticuerpo biespecíficas, donde una porción de las mismas conserven su especificidad para CEA, y otra tenga una especificidad diferente. Están igualmente contenidas en la presente invención aquellas formas variantes de los fragmentos scFv monovalente y el diacuerpo que cumplan con las características descritas en los párrafos anteriores, y que hayan sido derivadas de la llamada "humanización por reducción de la inmunogenicidad", en que epítopes B y T presentes en los dominios variables son modificados de forma que no alteran la especificidad del reconocimiento antigénico, pero reducen la inmunogenicidad de la molécula resultante en el humano, por ejemplo, como es revelado en Carr FJ et al. 2000 EP 983303A1 y en Rodríguez Pérez R et al. US 5712120-A. Igualmente se consideran formas variantes contenidas en esta invención aquellas producidas por el llamado "transplante de CDR" en que las secuencias de CDR de un primer anticuerpo son colocadas en el marco de secuencias que no son de ese anticuerpo, por ejemplo, como es revelado en EP-B- 0239400, EP-A-184187, GB 2188638A o EP-A-239400, y que retengan la capacidad de unir CEA con afinidad similar, capacidad de competencia, reconocimiento epitopico particular y desempeño biológico y bioquímico semejante y equivalente a los fragmentos scFv monovalente y diacuerpo descritos en esta invención.
Además de las secuencias de anticuerpo, las moléculas polipeptídicas contenidas en esta invención pueden comprender otros aminoácidos que formen un péptido o un polipéptido, o que añadan a la molécula una característica funcional diferente de la de unir al antígeno CEA, como por ejemplo una marca para purificarlas o ser identificadas, una enzima o sus fragmentos, un modificador de la respuesta biológica, una toxina o droga, y así sucesivamente.
De acuerdo a esta invención los fragmentos scFv monovalente y diacuerpo pueden ser suministrados de forma aislada o purificada.
La presente invención prevé el uso de alguna de las moléculas polipeptídicas descritas arriba como un reactivo diagnóstico para formas de cáncer humano que expresan el CEA, como por ejemplo, los adenocarcinomas de colon, pulmón o mama, y otros. las moléculas polipeptídicas específicas al CEA descritas arriba pueden ser radiomarcadas y empleadas como agentes para obtener imágenes para demostrar de forma específica la presencia y localización de tumores que expresan CEA en el hombre. La presente invención proporciona un método de determinar la presencia de una célula o tumor que expresen CEA, siendo el método el poner en contacto las células con una molécula polipeptídica como las descritos, y determinando la unión de estas a las células. El método puede ser desarrollado in vivo, o en una muestra de células removidas del cuerpo, ya sea in vitro o ex vivo.
La presente invención proporciona un método para la unión de una molécula polipeptídica como las descritas antes, al CEA humano. Esta unión puede tener lugar in vitro, ex vivo o in vivo. Si la unión es in vivo, el método puede comprender la administración de la molécula polipeptídica a un mamífero, sea uno o varios individuos. Como se demuestra experimentalmente aquí, los fragmentos scFv monovalente y diacuerpo de acuerdo a esta invención se unen al CEA humano expresado por células tumorales de ratón transfectadas, que crecen como tumores una vez trasplantadas a ratones, proporcionando un modelo experimental útil para el estudio, la investigación y el desarrollo de moléculas con unión específica y de sus propiedades. Las reactividades de los anticuerpos sobre muestras celulares se pueden detectar mediante cualquier medio apropiado. Su mareaje con moléculas reporteras individuales es una posibilidad. Las moléculas reporteras pueden generar señales capaces de ser detectadas de forma directa o indirecta y preferentemente medibles. La unión de las moléculas reporteras puede ser directa o indirecta, covalente o no covalente. La unión mediante un enlace peptídico puede resultar de la expresión recombinante de una fusión génica que una al anticuerpo y la molécula reportera. La forma de determinar la unión no es una característica de la presente invención y aquellos diestros en el arte son capaces de escoger un modelo adecuado de acuerdo a su preferencia y conocimientos generales. Cuando se use un radionúclido como 125 1, 111ln o 99mTc para marcar los fragmentos scFv monovalente y diacuerpo y sus formas variantes equivalentes, si estos se localizan preferiblemente en el tumor, y no en los tejidos normales, la presencia del mareaje radioactivo en el tejido tumoral puede ser detectado y cuantificado usando una cámara gamma. La calidad de la imagen del tumor obtenida se correlaciona directamente con la relación seña fondo (Goldenberg DM. Int. J. of Biol. Markers 1992, 7; 183-188). El uso experimental de 125l se ejemplifica en el texto.
La presente invención también ofrece elementos para que los fragmentos scFv monovalente y diacuerpo y sus formas variantes equivalentes, como descritos antes, puedan ser empleados como un reactivo terapéutico, por ejemplo, cuando se acoplan, cojugan o unen a moléculas con poder terapéutico, o se generan como una proteína recombinante de fusión. Los fragmentos scFv monovalente y diacuerpo y sus formas variantes equivalentes de acuerdo a la presente invención pueden ser usados para dirigir una toxina, radiactividad, células T y NK, u otras moléculas a tumores que expresan CEA, o para desarrollar una respuesta anti-idiotípica en el organismo que pueda conducir a un efecto terapéutico deseado. De acuerdo a ello, otros aspectos de la invención proporcionan elementos para métodos de tratamiento que comprenden la administración de un fragmento scFv monovalente, diacuerpo o sus formas variantes equivalentes como medicamentos o composiciones farmacéuticas. De acuerdo a la presente invención, las composiciones pueden ser administradas a individuos, preferiblemente en una cantidad "terapéuticamente efectiva" suficiente para demostrar un beneficio al paciente, en forma del mejoramiento de al menos un síntoma. Detalles relativos a la cantidad a administrar, la frecuencia e intervalos de administración, dependerán de la naturaleza y severidad de la enfermedad que es tratada, y estas decisiones son la responsabilidad de especialistas y otros doctores en medicina. Las dosis apropiadas de un anticuerpo son bien conocidas en el arte (Ledermann J. A. et al. Int J. Cáncer 47: 659-664, 1991; Bagshawe KD et al. Antibody, Immunoconjugates, and Radiopharmaceuticals 4: 915-922, 1991).
Una composición puede administrarse aisladamente o en combinación con otros tratamientos, ya sea de forma simultánea o secuencial dependiente de la enfermedad que vaya a ser tratada.
Las composiciones farmacéuticas de acuerdo a la presente invención, y para ser empleadas de acuerdo a la presente invención, pueden comprender, además del ingrediente activo, un excipiente, tampón, estabilizador o "carrier" farmacéutico aceptados, u otros materiales bien conocidos para aquellos diestros en el arte. Estos materiales no deben ser tóxicos, no deben interferir con la eficacia del ingrediente activo y su naturaleza precisa puede depender de la ruta de administración, sea oral, o por inyección, por ejemplo, endovenosa.
Los fragmentos scFv monovalente, diacuerpo y sus formas variantes equivalentes de acuerdo a la presente invención pueden ser fabricados por la expresión del ácido nucleico que lo codifica. El ácido nucleico que codifica para cualquiera de las moléculas polipeptídicas descritos antes forma parte de la presente invención, como también un método para la expresión de dicho ácido nucleico. En una realización preferente, el ácido nucleico puede codificar para las secuencias de aminoácidos que se muestran en las SEC ID No. 16 y 17. Para la expresión recombinante de los fragmentos scFv monovalente, diacuerpo y sus formas variantes equivalentes se pueden escoger o construir vectores apropiados que contengan las secuencias regulatorias adecuadas al caso, incluyendo promotor, terminador, aumentador (enhancer), poliadenilación, genes marcadores y otras secuencias pertinentes. Los vectores pueden ser plasmidios. Muchas técnicas y protocolos conocidos para la manipulación de ácidos nucleicos, por ejemplo, la preparación de construcciones de ácidos nucleicos, la reacción en cadena de la polimerasa, la mutagénesis, la secuenciación, la introducción de ADN en células y la expresión de genes, el análisis de proteínas, y otras se describen en detalle en varias referencias, como Molecular Cloning: a Laboratory Manual: 2nd edition, Sambrook et al., Cold Spring Harbor Laboratory Press, 1989 ó Short Protocols in Molecular Biology, Second Edition, Ausubel et al. eds., John Wiley & Sons, 1992 ó Erlich HA PCR Technology, Stockton Press, 1989. Las revelaciones que aparecen en estas referencias se incorporan en este documento mediante su cita. Otro aspecto de la presente invención proporciona una célula hospedera conteniendo un ácido nucleico foráneo y los métodos para introducir dicho ácido nucleico en una célula hospedera. La introducción puede emplear cualquiera de las técnicas existentes para ello. Para las células bacterianas y de levaduras, esta técnica puede ser la electroporación. A la introducción puede seguir el provocar o permitir la expresión del ácido nucleico, por ejemplo, cultivando las células hospederas bajo condiciones propicias para la expresión del gen. En una realización, el ácido nucleico de la invención se integra en el genoma de la célula hospedera.
Luego de su producción, los fragmentos scFv monovalente, diacuerpo y sus formas variantes equivalentes pueden ser usados en cualquiera de las formas reveladas aquí, tales como en la formulación de una composición como un farmacéutico, o un producto diagnóstico, tal como un juego de reactivos que comprenda además del miembro de unión específica uno o más reactivos para determinar la unión del miembro a células o a CEA no unido a células, como discutido antes.
Otros aspectos ulteriores de esta invención y sus realizaciones serán aparentes para aquellos expertos en el arte. Para que se comprenda completamente la presente invención, se proporcionan ejemplos solo para ejemplificar y no para limitar la extensión y alcance de la misma. Se hace referencia a las siguientes figuras:
BREVE DESCRIPCIÓN DE LAS FIGURAS
FIGURA 1: se presenta un esquema del vector pJG-1m empleado para la expresión del scFv monovalente y el diacuerpo en E. coli. Correspondiente a la zona del vector marcada con la barra horizontal gruesa, se presentan en la figura las secuencias de bases del sitio de clonaje para fragmentos, el péptido c-myc, el dominio de 6 histidinas y algunas regiones intery post dominios (SEC ID No. 13).
FIGURA 2: se presentan los alineamientos de las secuencias de aminoácidos (en códigos de una letra) deducidas de las obtenidas de nucleótidos para (1) el fragmento scFv monovalente (SEC ID No. 16) y (2) el fragmento scFv divalente (diacuerpo) (SEC ID No. 17). El orden de los dominios en ambas construcciones es VH-segmento de unión-VL. Aparecen en negritas los aminoácidos de los segmentos de unión empleados en cada una de las dos moléculas.
FIGURA 3: se ejemplifica el reconocimiento de: (A)AcM CB/ior-CEA.1, (B) scFv monovalente, y (C) diacuerpo, por el CEA expresado en células tumorales AsPC-1 (ATCC
CRL-1682) de cultivo, mediante la técnica de inmunofluorescencia indirecta. En A, B y C se observa la fluorescencia característica de membrana y del citoplasma cercano a esta.
El aumento es de 200x.
FIGURA 4: se presenta el perfil cromatográfico de la digestión proteolítica del diacuerpo y la asignación de péptidos trípticos obtenidos por espectromtería de masas. Arriba: Perfil cromatográfico de la digestión tríptica del diacuerpo. Abajo: Tabla resumen de la asignación de los péptidos trípticos del diacuerpo. M/z exp: masa experimental; m/z teórica: masa teórica; Z: carga. En los espectros obtenidos no se detectaron señales que correspondieran a cisteínas incorrectamente enlazadas. FIGURA 5: se resume la verificación de la secuencia de aminoácidos del diacuerpo (SEC ID No. 21). En letras negritas se destacan las regiones de la secuencia de la proteína que fueron verificadas por espectrometría de masas, y en itálicas aquellas zonas de las secuencia que no se recuperaron luego de la digestión tríptica. Las zonas en negritas coinciden totalmente con la secuencia de aminoácidos deducida de las secuencia de bases del diacuerpo.También se aprecian en la porción C-terminal la secuencia del péptido c-myc y de las seis histidinas finales, que aporta el vector pJG-1m (FIGURA 1).
FIGURA 6: se presenta el porciento de la dosis inyectada por gramo de tejido, después de 24 (barras rayadas) y 48 (barras sin rayar) horas de ser inoculadas a ratones con tumores que expresan CEA humano las siguientes moléculas radiomarcadas con 1251: de izquierda a derecha y en grupos de cuatro dobles barras: (a) dlacuerpo, (b) scFv, (c) F3 y (d) AcM CB/ior-CEA.1. Cada barra representa la media de los conteos recuperados de los órganos recuperados de 12 ratones. Los resultados en demuestran que entre las 24 y 48 horas, la relación de radiactividad en tumor:radiactividad en sangre se mantiene alta para el diacuerpo, el scFv, y el AcM, con los mayores valores para este último, seguido por la molécula dimérica. El F3 mostró valores muy bajos, con un comportamiento in vivo inadecuado que se puede correlacionar con su afinidad disminuida por el CEA.
Todos los documentos mencionados aquí son incorporados por referencia. EJEMPLOS DE REALIZACIÓN
EJEMPLO 1. Amplificación por RCP, clonaje y secuencia de los dominios variables del AcM CB/ior-CEA.1
Procedimiento (a) Purificación de ARN y amplificación de regiones variables Se extrajo ARN total a partir de 106 células del hibridoma de ratón CB/ior-CEA.1 (Tormo B. et al. APMIS. 97: 1073-1080, 1989) con el reactivo TriPure™ (Boehringer-Mannheim). Se sintetizó el ADN complementario (ADNc) mediante el juego First-Strand cDNA Synthesis for RT-PCR (Boehringer-Mannheim), usando oligo dT como cebador.
Se utilizó la técnica de la reacción en cadena de la polimerasa (RCP) para la amplificación específica de los genes de los dominios variables de cadena pesada y ligera. Los oligonucleótidos sintéticos empleados se diseñaron sobre la base de las secuencias consenso para IgG y cadenas kappa de ratón, reportadas por Kabat E. et al. (US Department of Health and Human Services, NIH, 1991) y experimentos conducidos anteriormente en este laboratorio (Coloma, MJ etal. Biotechniques 11 : 152-156, 1991). Las secuencias de los oligonucleótidos empleados en la RCP aparecen en la Tabla I.
Tabla I. Oligonucleótidos sintéticos empleados en la RCP para la amplificación de las secuencias que codifican para los dominios variables de cadena pesada (VH) y ligera (VL) del AcM CB/ior-CEA.1. Cadena pesada. -
Oligo 1. Péptido señal de VH. (SEC ID No. 1)
5'... GGGGATATCCACCATGRACTTCGGGYTGAGCTKGGTTTT...3' Oligo 2. Región CH1 (SEC ID No. 2)
5'... AYCTCCACACACAGGRCCAGTGGATAGAC...3' Cadena ligera. -
Oligo 3. Péptido señal de VL. (SEC ID No. 3) 5\.. GGGGATATCCACCATGGAGWCACAKWCTCAGGTCTTTRTA...3' Oligo 4. Región Ckappa (SEC ID No. 4) 5'... ACTGGATGGTGGGAAGATGGA...3'
Para la RCP se empleó el juego PCR Core kit (Boehringer-Mannheim). Las condiciones de la RCP fueron: desnaturalización a 94°C, 1 minuto, hibridación a 55°C, 1 minuto, extensión a 72°C, 1 minuto, 25 ciclos, con 5 minutos adicionales de extensión a la temperatura ya descrita en el último ciclo, todo en un equipo MJ Research Minicycler. Los volúmenes finales de cada reacción fueron 100 μL.Todos los oligonucleótidos se emplearon a concentración final de 1 μM.
Los fragmentos de ADN amplificados, con las tallas esperadas de alrededor de 320-350 pb, se purificaron de geles de agarosa de bajo punto de fusión (Sigma), usando el juego QlAquick Gel Extraction Kit (QIAGEN, GmbH), y se clonaron de manera independiente en el vector pMOS (Amersham Pharmacia Biotech), diseñado para el clonaje "blunt" de fragmentos de ADN.
Procedimiento (b). Secuencia nucleotídica de los dominios variables Para la determinación de la secuencia nucleotídica de los dominios variables de las cadenas ligera y pesada clonados en el vector pMOS se utilizaron los oligos recomendados por el fabricante (Amersham Pharmacia Biotech). La secuencia de bases se realizó mediante secuenciación automática, utilizando un equipo ALFexpress II de Pharmacia (Amersham Biosciences), y el juego "Termo Sequenase Cy 5 Dye Terminator Kit". Se seleccionaron los plasmidios pVL2 y pVH5 como representativos de las secuencias de VL y VH, respectivamente. EJEMPLO 2. Ensamblaje del scFv y diacuerpo, expresión en E. coli y demostración de su reconocimiento de CEA humano
Procedimiento (a). Re-amplificación de los dominios variables y ensamblaje del scFv y diacuerpo
Se usó la RCP para el ensamblaje, en forma de scFv y diacuerpo, de los dominios VH y VL contenidas en los plasmidios pVH5 y pVL2. Los oligonucleótidos sintéticos se diseñaron sobre la base de las secuencias de VH y VL en los plasmidios pVH5 y pVL2, de forma que incluyeran sitios de restricción convenientes para el clonaje en el vector pJG-1m e incorporaran los segmentos de unión de 14 y 5 aminoácidos necesarios para el ensamblaje del scFv monomérico y el diacuerpo (Tablas II y III).
Tabla II. Secuencias de aminoácidos de los segmentos de unión (linkers) usados para la construcción de los fragmentos scFv y diacuerpo.
ScFv.- ünker L1 : EGKSSGSGSESKVD ( SEC ID NO . 5 )
Diacuerpo.- Linker L2: GGGGS ( SEC ID NO . 6)
Tabla III. Oligonucleótidos sintéticos empleados en la RCP para el ensamblaje del scFv y del diacuerpo.
Oligo 5. ApaL1- FR1 VH (SEC ID No. 7)
5 ' . . . TCTCACAGTGCACAGGAAGTGAΆGCTGGTGGAGTCTGGG . . .3 '
Oligo 6. Segmento de unión de 14 aminoácidos /FR4 VH (SEC ID No. 8)
5 ' . . . GTCGACTTTGGATTCGGAGCCTGATCCTGAGGATTTACCCTCTGΆGGΆGACTGTGAGAGTGGT . . .3 ' Oligo 7. Segmento de unión de 14 aminoácidos/FR1 VL (SEC ID No. 9)
5 ' . . . GAGGGTAAATCCTCAGGATCΆGGCTCCGAATCCAAAGTCGACGACATTGTGATGACCCAGTC . . .3 '
Oligo 8. Not l- FR4 VL (SEC ID No. 10)
5 ' . . . ZVAGGAAAAAAGCGGCCGCTTTCAGCTCCAGCTTGGTT . . .3 '
Oligo 9. Segmento de unión de 5 aminoácidos /FR4 VH (SEC ID No. 11) 5 ' . . . GAGCCGCCGCCACCTGAGGAGACTGTGAGAGTGGT . . .3 '
Oligo 10. Segmento de unión de 5 aminoácidos/FR1 VL (SEC ID No. 12)
5 ' . . . GGTGGCGGCGGCTCTGACATTGTGATGACCCAGTCT . . .3 '
Para el ensamblaje de los fragmentos, en un primer paso se realizaron RCP independientes donde se amplificaron: 1. Para los dominios que darían origen al scFv monovalente.- Reacción 1: usando el templado pVH5 con los oligonucleótidos 5 y 6 (Tabla III). Reacción 2: usando el templado pVL2 con los oligonucleótidos 7 y 8 (Tabla III).
2. Para los dominios que darían origen al diacuerpo.- Reacción 3: usando el templado pVH5 con los oligonucleótidos 5 y 9 (Tabla III). Reacción 4; usando el templado pVL2 con los oligonucleótidos 8 y 10 (Tabla III).
Las condiciones y reactivos empleados para la RCP fueron los ya descritos más arriba. Todos los oligonucleótidos se emplearon a concentración final de 1 μM.
Para el ensamblaje del scFv se realizó una nueva RCP donde se colocaron 4 μL de las reacciones 1 y 2, junto a los oligonucleótidos 5 y 8 (Tabla III) en concentración final de 1 μM, y los oligonucleótidos 6 y 7 (Tabla III) en concentración final de 0.01 μM.
Para el ensamblaje del diacuerpo se realizó una nueva RCP donde se colocaron 4 μL de las reacciones 3 y 4, junto a los oligonucleótidos 5 y 8 (Tabla III) en concentración final de 1 μM, y los oligonucleótidos 9 y 10 (Tabla III) en concentración final de 0.01 μM. Los fragmentos de ADN amplificados se detectaron como bandas mayoritarias de aproximadamente 700 pb, que se aislaron de geles de agarosa de bajo punto de fusión, de forma similar a la que se describe anteriomente. Procedimiento (b). Clonaje en el vector pJG-1m.
El vector pJG-1m es un plasmidio diseñado para la expresión de fragmentos de anticuerpos hacia el periplasma de E. co/ (FIGURA 1). Como elementos principales tiene el promotor LacZ, un péptido señal, sitios de restricción ApaLI y Not I para la inserción del gen del fragmento, un dominio codificante del péptido c-myc y una secuencia que codifica para 6 histidinas, esta última con vistas a la purificación de los productos de expresión mediante cromatografía de afinidad por iones metálicos inmovilizados (IMAC; Porath J. Prot. Expr. Purif. 3: 263-281, 1992). Las secuencias de bases del vector donde se encuentran los sitios de restricción para el clonaje del scFv en cuestión, y para aminoácidos C-terminales que se añaden al mismo aparecen en la FIGURA 1 (SEC ID No. 13).
Tanto los fragmentos de ADN correspondientes al scFv y al diacuerpo, como el vector pJG-1m, se digirieron con las enzimas de restricción ApaLI y Not I (Promega), y las bandas y vector se ligaron independiente empleando T4 ADN ligasa (Promega). Los productos de la reacciones de ligazón se emplearon para la transformación de E. coli competentes (cepa XL-1Blue; Stratagene) mediante electroporación, y las células transformadas se plaquearon en medio sólido selectivo (LB agar, con 100 μg/mL de ampicillina) y se crecieron durante 16 horas a 37°C. Los métodos empleados se describen en Molecular Cloning, A Laboratory Manual, Second Edition. Sambrook, Fritsch, Maniatis. 1989.
Los plásmidos recombinantes se seleccionaron después de la purificación del ADN plasmídico a partir de varias colonias (QIAGEN MiniPrep kit), y el correspondiente chequeo por digestión con las enzimas de restricción ya descritas para los productos de ligazón esperados. En los análisis de restricción se obtuvieron bandas de aproximadamente 3,5 kb, correspondientes al vector linealizado y bandas de aproximadamente 700 pb para los genes codificantes de los fragmentos de anticuerpo tipo scFv y diacuerpo. Se secuenciaron cinco clones de cada una de las construcciones utilizando cebadores específicos diseñados que hibridan externamente a las regiones de clonaje del vector pJG-1m (Tabla IV), mediante procedimientos descritos anteriormente.
Tabla IV. Oligonucleótidos sintéticos para la secuenciación de las bases de los scFv y diacuerpo ensamblados mediante RCP y clonados en el vector pJG-1m. Oligo 11. (SEC ID No. 14)
5 ' ... GTTGTTCCTTTCTATTCTCAC ...3 ' Oligo 12. (SEC ID No.15)
5 ' ... CTCTTCTGAGATGAGTTTTTGTTC ...3 '
Las secuencias de aminoácidos derivadas de las secuencias de bases obtenidas para el scFv monovalente (clon pJG1m-25) y el diacuerpo (clon pJG1m-18) aparecen en la FIGURA 2 (SEC ID No. 16 y SEC ID No. 17). Respecto a un scFv desarrollado anteriormente (Ayala M et al. Biotechniques 13: 790-799, 1992), las secuencias de VH y VL ahora obtenidas para el nuevo scFv monovalente y el diacuerpo presentan 16 aminoácidos diferentes entre el FR1 , CDR2 y FR3 del dominio VH, y 3 aminoácidos distinto entre el FR1 y FR3 del dominio VL. Estos resultados indican que los dominios variables amplificados y clonados a partir del hibridoma CB/ior-CEA.1 para construir los nuevos scFv monovalente y diacuerpo pueden provenir de ARN diferentes a los utilizados en las amplificaciones para los clonajes del scFv reportado previamente. El segmento de unión del nuevo scFv monovalente es idéntico al del scFv reportado previamente. El segmento de unión del nuevo scFv divalente (diacuerpo) es diferente al del scFv obtenido previamente, pues sólo comprende 5 aminoácidos. En estos experimentos se verificaron también las secuencias de los segmentos de unión L1 y L2, que aparecen en la Tabla II. Procedimiento (c) Comprobación de la expresión del scFv v diacuerpo en E. coli mediante SDS-PAGE y Western blot. Con los plásmidos pJG1m-25 y pJG1m-18, conteniendo la información para los dos fragmentos de anticuerpo, se transformaron de forma independiente células competentes TG1 de E.coli. Esta cepa permite la expresión periplasmática de la proteína heteróloga, o su salida hacia el medio de cultivo. Las bacterias transformadas se plaquearon en medio sólido selectivo y se dejaron crecer a 37°C por 16 horas. Una colonia representativa de cada una de las dos construcciones se creció en medio liquido y al alcanzar 1 DO53onm se indujo por 12 horas añadiendo 1 mM de IPTG al medio de cultivo. Las células se centrifugaron y el contenido periplasmático se aisló mediante shock osmótico y sonicación breve (segundos) para su evaluación en electroforesis en geles de SDS- poliacrilamida (SDS-PAGE) al 12%. Este ensayo reveló la expresión en ambos casos de proteínas del peso molecular esperado (aprox. 27 kDa), que luego se evaluaron por Western Blot utilizando como anticuerpo primario un AcM específico (9E10) contra el péptido derivado del c-myc que contiene esta proteína (1 μg/mL), seguido por anticuerpos de conejo anti-lgG de ratón conjugados con peroxidasa de rábano picante (Sigma). La transferencia de las proteínas desde la SDS-PAGE a nitrocelulosa Hybond C Extra (Amersham Life Sciences) se ejecutó en un equipo de transferencia semi-seca (BioRad). En el revelado se empleó DAB (Sigma ) como sustrato insoluble. Para las dos construcciones, las proteínas recombinantes con la talla mencionada fueron identificadas con el AcM 9E10. Procedimiento (d) Reconocimiento específico del CEA humano por el scFv v el diacuerpo en ELISA.
Se realizó un ensayo ELISA recubriendo placas de polivinilo (Costar, 96-well Vinyl Assay Plates) con CEA humano (Calbochem 219369), a una concentración de 1 μg/mL. Luego de bloqueadas las placas con leche descremada, las muestras de perlplasma bacteriano correspondientes a las dos construcciones se añadieron en diluciones de 1 : 5, 1 :10 y 1 :20 en PBS-leche descremada 2%, e incubaron por 2 horas a temperatura ambiente. Se empleó el AcM 9E10 (1 μg/mL), seguido de anticuerpos anti IgG de ratón conjugados con peroxidasa de rábano picante (Sigma) para la detección de la unión de los fragmentos al CEA. Luego de varios lavados, se emplearon OPD (Sigma) y H O2 como cromógeno y sustrato para el revelado de las reacciones, y un lector LabSystems Multiskan MS para la evaluacón cuantitativa de las mismas a 492nm. En el ensayo se utilizó como control positivo el AcM CB/ ior-CEA.1. Como controles negativos se emplearon fracciones periplasmáticas correspondiente a células TG1 transformadas con el vector pJG-1m sin inserto, y un AcM no relacionado. También se recubrieron placas con los siguientes antígenos irrelevantes: 10 μg/mL de seroalbúmina bovina (BSA, Sigma), 10 μg/mL de ovalbúmina, 10 μg/mL de lisozima, 10 μg/mL de keyhole limpet haemocyanin (Sigma). En todas las placas se incluyeron pozos donde sólo se colocó solución salina tamponada con fosfatos (PBS) sin antígeno (blanco). Se consideraron positivos aquellos valores de absorbancia al menos 4 veces mayores que los producidos por los controles negativos.
En estos experimentos las muestras de periplasma de las construcciones del scFv y del diacuerpo resultaron positivas en cuanto a su capacidad de reconocimiento de CEA humano adsorbido a placas de polivinilo. Estas mismas muestras fueron negativas para todos los antígenos irrelevantes.
Procedimiento (e) Reconocimiento del CEA humano asociado a células por el scFv y el diacuerpo mediante ELISA e inmunofluorescencia indirecta. Las líneas celulares de tumores humanos LoVo (ATCC CCL-229 ), AsPC-1 (ATCC CRL- 1682) y LS 174T (ATCC CL-188), todas que expresan CEA en cultivo, se sembraron en placas de poliestireno de 96 pocilios (Costar). Una vez alcanzada la confluencia, los pocilios se lavaron dos veces con PBS, escurrieron, y secaron al aire. Seguidamente se fijaron las células al plástico mediante una mezca 1:1 (v:v) de acetona-metanol frío, por 3 minutos. Luego de varios lavados con agua destilada para eliminar residuos, las placas se emplearon como fase sólida en ensayos de ELISA donde las muestras de periplasma bacteriano correspondientes a las dos construcciones se añadieron en dilución de 1: 2, 1:8 y 1:16 en PBS-leche descremada 2%, e incubaron por a 2 horas a temperatura ambiente. Luego de varios lavados, se empleó el AcM 9E10 (10 μg/mL), seguido por anticuerpos anti IgG de ratón conjugados con peroxidasa de rábano picante (Sigma) para la detección de la unión de los fragmentos al CEA en las células. Se emplearon OPD (Sigma) y H2O2 como cromógeno y sustrato para el revelado de las reacciones y un lector LabSystems Multiskan MS para la evaluación cuantitativa de las mismas a 492nm. Para el paso de lectura, los sobrenadantes se transfirieron a una placa virgen. En el ensayo se utilizó como control positivo el AcM CB/ior-CEA.1. Como controles negativos se emplearon fracciones periplasmáticas correspondiente a células TG1 transformadas con el vector pJG1 sin inserto, y un AcM no relacionado. También se usó como control negativo una placa con células humanas HEK 293 (ATCC CRL-1573), que no expresan CEA. Los criterios de positividad fueron semejantes que para el ELISA descrito en el Procedimiento anterior.
En este experimento las muestras de periplasma de las construcciones del scFv y del diacuerpo reconocieron sólo a las células LoVo, AsPC-1 y LS 174T. Los controles negativos fueron todos negativos. Se demostró de esta forma la capacidad del scFv y del diacuerpo de identificar el CEA humano sobre células tumorales humanas que expresan este antígeno, fijadas sobre placas de poliestireno, mediante ELISA. En otro experimento, se sembraron células LoVo, AsPC-1 y LS 174T, en placas de poliestireno de 35 mm de diámetro (Costar) y cultivaron hasta alcanzar la confluencia. Las placas se lavaron dos veces con PBS, escurrieron, dejaron secar al aire, y se fijaron las células al plástico mediante una mezca 1:1 (v:v) de acetona-metanol frío. Luego de varios lavados con agua destilada para eliminar residuos, las placas se emplearon como fase sólida en ensayos de inmunofluorescencia indirecta. Para ello se definieron zonas circulares en la superficie con células fijadas, en las cuales se incubaron de forma independiente muestras de periplasma bacteriano correspondientes a las dos construcciones, en diluciones de 1: 2, 1:4 y 1:8, en PBS-3% BSA. Se emplearon los mismos controles positivos y negativos que en el experimento del ELISA de células. La incubación se hizo a temperatura ambiente (TA) por 1 hora en cámara húmeda, seguida de varios lavados con PBS-3% BSA frío, y la adición de AcM 9E10 (10 μg/mL) a toda la monocapa por una hora a TA, también en cámara húmeda. Luego de varios lavados con PBS- 3% BSA frío, la monocapa se incubó con anticuerpos anti IgG de ratón conjugados con isotiocianato de fluoresceína (FITC, Sigma) diluidos 1:64 en PBS-3% BSA, por 30 minutos, en la oscuridad y cámara húmeda, se lavaron cinco veces con PBS-3% BSA, una vez con PBS y finalmente colorearon con solución de Azul de Evans por unos minutos. Las monocapas se cubrieron con PBS-10% glicerol, sellaron con láminas cubreobjeto y examinaron en un aditamento de luz fluorescente reflejada Olympus BH2- RFL, montado sobre un microscopio Olympus BHT. También se usó como control negativo placas con células humanas HEK 293. Se estableció como criterio de positividad la presencia de fluorescencia verde manzana sobre la membrana y citoplasma de las células, siempre y cuando esta no existiera con las muestras controles negativos, ni en las células humanas negativas a CEA. En este experimento las muestras de periplasma de las construcciones del scFv y del diacuerpo reconocieron sólo las células LoVo, AsPC-1 y LS 174T. Los controles negativos fueron negativos. Se demostró de esta forma la capacidad del scFv y del diacuerpo para la identificación de CEA humano sobre células tumorales humanas que expresan este antígeno, fijadas sobre placas de poliestireno, mediante inmunofluorescencia indirecta. Un ejemplo de los resultados se muestra en la FIGURA 3. EJEMPLO 3.- Expresión del scFv y diacuerpo en Pichia pastoris y demostración de su reconocimiento de CEA humano
Procedimiento (a) Re-amplificación del scFv y el diacuerpo y clonaie en el vector pPS7. Los genes que codifican para el scFv y el diacuerpo se amplificaron mediante la RCP utilizando como moldes las construcciones pJG1-25 y pJG1-18, respectivamente, y oligonucleótidos diseñados para adicionar el sitio Ncol en los extremos 5' y 3' de los genes en cuestión (Oligos 13 y 14; Tabla V), con vistas a su clonaje en el vector de expresión pPS7 de Pichia pastoris. El procedimiento de amplificación fue semejante al descrito anteriormente. El plasmidio pPS7 es un vector integrativo que contiene un fragmento de 1.15Kb que corresponde al promotor de la enzima alcohol oxidasa (AOX.1) seguido del gen que codifica para la señal de secreción de la sucrosa invertasa (sucll) de Saccharamyces cerevisae, un sitio único de clonación Ncol, un fragmento de 960pb de la enzima gliceraldehído 3-fosfato dehidrogenasa (Gapt) para garantizar la terminación de la transcripción, y el gen HIS3 de Saccharamyces cerevisae como marcador de selección. Además este vector contiene un fragmento de 2.1 kb, correspondiente a la secuencia 3' del gen AOX.1. Todos estos elementos están insertados en un vector pUC18 (Herrera Martínez LS et al. , EP0438200 A1).
Tabla V. Oligonucleótidos sintéticos empleados en la RCP para la amplificación y modificación de las secuencias que codifican para las primeras bases de la VH y últimas de la VL , con vistas al clonaje del scFv y el diacuerpo en el vector pPS7, y en la secuenciación de estos clonajes.
Oligo 13. Neo 1 - bases 1 a la x de FR1 VH (SEC ID No. 18)
5'...CATGCCATGGGGAATCCGAAGTGAAGCTGGTGGAG...3'
Oligo 14. Neo 1 - 6 histidinas (antisentido) (SEC ID No. 19) 5'... CATGCCATGGATCCCGGGGTGATGGTGATGGTGATG...3'
Oligo 15. promotor alcohol oxidasa pAOX.1 (SEC ID No. 20)
5'... GACTGGTTCCAATTGACAAGC...3'
Luego de la digestión Ncol (Promega) de las bandas amplificadas correspondientes al scFv y al diacuerpo, estas se ligaron independientemente al vector pPS7 previamente digerido con la misma enzima, y los productos de la ligazón se emplearon para transformar de forma independiente la cepa XL-1Blue de E. coli. Se analizaron colonias aisladas correspondientes a la transformación de la cepa con cada vector recombinante utilizando un RCP de colonias con un cebador que híbrida en el promotor (Oligo 15, Tabla V) y otro para el extremo 3'de la VL (Oligo 8, Tabla III). Se seleccionaron aquellas que resultaron contener el inserto correctamente orientado. La secuenciación de los genes clonados se realizó según el procedimiento descrito anteriormente ( EJEMPLO 1 procedimiento b), empleando el Oligo 15 (Tabla V). Las secuencias obtenidas para los dominios VH y VL de los plasmidios recombinantes pPSM2 (scFv) y pPSM3 (diacuerpo) concordaron con las anteriormente citadas en los SEC ID No. 16 y No. 17). Se obtuvieron cepas recombinantes de Pichia pastorís con estos dos plasmidios mediante la electroporación de la cepa salvaje MP36 his 3 (Yong V et al. Biotechnol. Applic. 9: 55- 61, 1992) con con los dos plasmidios mencionados, previamente digeridos con la enzima de restricción Pvull (Promega), y seleccionando en medio mínimo deficiente de histidina. Producto de los diferentes mecanismos de recombinación de los plasmidios recombinantes con sitios específicos en el genoma de Pichia pastoris, se lograron aislar para cada construcción dos tipos de fenotipos diferentes de cepas secretoras: (a) cepas cuyo gen del AOX.1 no fue afectado durante el evento de recombinación y por consiguiente crecieron en un medio con metanol y mostraron un crecimiento similar al de la cepa salvaje (Mut+) y (b) cepas cuyo gen de AOX.1 fue reemplazado por el cassete de expresión y manifestaron un crecimiento lento en presencia de metanol (Mut s).
Procedimiento (b) Estudios de expresión
Los estudios de expresión de los fragmentos de anticuerpo se realizaron partiendo de las colonias prototróficas His+ crecidas en placas con medio selectivo MD (base nitrogenada de levadura, biotina, dextrosa). Se inocularon 10 mL de medio rico tamponado BMGY (extracto de levadura, peptona, fosfato de potasio, base nitrogenada de levadura, biotina y glicerol) en tubos de 50 mL, con las colonias en cuestión y se colocaron a 28°C con rotación de 150 rpm. Cuando los cultivos alcanzaron 2 unidades de D.O a 600 nm, medidas en un equipo SPECTRONIC GÉNESIS 2, se centrifugó a 2000 rpm, durante 10 minutos. Los precipitados celulares se resuspendieron en 10 mL de medio rico con metanol en lugar de glicerol como fuente única de carbono (BMMY). A partir de este momento y durante 96 horas se procedió a la inducción de las proteínas de interés, con la adición diaria de metanol puro hasta una concentración final de 1% en el cultivo. Como control negativo se empleó la cepa MP36his3 transformada con un vector sin inserto. Culminado el período de cultivo las células se centrifugaron y se colectó el medio de cultivo metabolizado durante la fase de inducción, el cual se centrifugó una vez mas para su clarificación final y detección del scFv o el diacuerpo en electroforesis en geles de SDS-poliacrilamida (SDS-PAGE) al 15%. Este ensayo reveló la expresión en ambos casos de proteínas del peso molecular esperado (aprox. 27 kDa), que luego se evaluaron por Western Blot utilizando el AcM 9E10, como anticuerpo primario, y anticuerpos de conejo anti-lgG de ratón conjugados con peroxidasa de rábano picante (Sigma). Las transferencias se realizaron como descrito arriba. En el revelado se empleó DAB (Sigma) como sustrato insoluble. Para las dos construcciones, las proteínas recombinantes fueron identificadas por el AcM 9E10. Procedimiento (c) Reconocimiento del CEA humano por el scFv y el diacuerpo en ELISA. Se realizó un ensayo ELISA muy semejante al descrito anteriormente para el material derivado de E.coli, empleando similares fase sólidas, reactivos y condiciones de recubrimiento, incubación, revelado y control positivo. Las muestras de cultivo metabolizado de las cepas recombinantes inducidas se añadieron diluidas en PBS-1% de leche a razón de 100 μlJpozo, y se incubaron por 2 horas a temperatura ambiente. Como controles negativos se emplearon medios metabolizados correspondiente a la cepa MP36 hls 3, y un AcM no relacionado. Se consideraron positivos aquellos valores de absorbancia al menos 4 veces mayores que los producidos por los controles negativos.
En este experimento las muestras de medios metabolizados en fase de inducción de las construcciones del scFv y del diacuerpo expresados en Pichia pastoris resultaron positivas en cuanto a su capacidad de reconocimiento de CEA humano adsorbido a placas de polivinilo.
Procedimiento (d) Reconocimiento del CEA humano asociado a células mediante ELISA de células e inmunofluorescencia indirecta. Se realizó un ensayo ELISA muy semejante al descrito anteriormente para el material derivado de E.coli, empleando similares células de cultivo, condiciones de fijación, reactivos, incubación y revelado. A las placas con células LoVo, AsPC-1 y LS 174T fijadas se les añadieron las muestras del cultivo metabolizado de cepas de P.pastoris recombinantes inducidas, diluidas en PBS con leche descremada al 2%, e incubaron durante 2 horas a temperatura ambiente con movimiento suave. En el ensayo se utilizó como control positivo el AcM CB/ior-CEA.1. Como controles negativos se emplearon cultivos metabolizados en fase de inducción de la cepa MP36 his transformada con el vector pPS7 sin inserto, y un AcM no relacionado. También se usó como control negativo una placa con células humanas HEK 293. En este experimento se demostró la capacidad del scFv y del diacuerpo de identificar de forma específica el CEA humano sobre células tumorales humanas fijadas sobre soporte de poliestireno, mediante ELISA.
Se realizó un ensayo de inmunofluorescencia indirecta muy semejante al descrito anteriormente para el material derivado de E.coli, empleando similares células de cultivo, condiciones de fijación, reactivos, incubación, revelado, montaje, observación al microscopio y criterio de positividad. A las placas con células LoVo, AsPC-1 y LS 174T fijadas, se les definieron zonas independientes en la superficie cubierta, en las cuales se aplicaron las muestras de cultivos inducidos de las cepas recombinantes correspondientes a las dos construcciones, y negativas, diluidas en PBS - 3% BSA - 0,02 % de azida sódica. La incubación se hizo a temperatura ambiente (TA) por 1 hora en cámara húmeda, seguida de varios lavados con PBS frío-BSA-azida sódica, y la adición de AcM 9E10 a toda la monocapa por 1 hora a TA, también en cámara húmeda. Luego de varios lavados con PBS 3% BSA frío, la monocapa se incubó con anticuerpos anti IgG de ratón conjugados con isotiocianato de fluoresceína (Sigma) diluidos 1 :64 en PBS-3% BSA por 30 minutos en la oscuridad y cámara húmeda. Las placas se lavaron cinco veces con PBS 3% BSA, una vez con PBS y finalmente se colorearon con solución de Azul de Evans por unos minutos. Las monocapas se cubrieron con PBS-10% glicerol, sellaron con láminas cubreobjeto y examinaron en el microscopio de luz ultravioleta.
En el ensayo se utilizó como control positivo el AcM CB/ior-CEA.1. Como controles negativos se emplearon el medio de cultivco inducido de MP36 his 3 transformada con el pPS7 sin inserto, y un AcM no relacionado. También se usó como control negativo una placa con células HEK 293. En este experimento las muestras de medio de culivos inducidos de las cepas recombinantes de levadura secretoras del scFv y del diacuerpo reconocieron sólo las células LoVo, AsPC-1 y LS 174T. Los controles negativos fueron negativos. Se demostró la capacidad del scFv y del diacuerpo producidos en Pichia pastoris para la identificación de CEA humano sobre células tumorales humanas que expresan este antígeno fijadas sobre placas de poliestireno, mediante inmunofluorescencia indirecta.
EJEMPLO 4. Purificación del scFv y diacuerpo producidos en bacterias.
Procedimiento (a) Purificación de los fragmentos scFv y diacuerpo, utilizando cromatografía de afinidad por iones metálicos inmovilizados (IMAC) e intercambio iónico.
Para la purificación se aprovechó la presencia del dominio de seis histidinas en la proteína recombinante, aportado por el vector pJG-1m. Estas secuencias confieren a las proteínas una afinidad muy alta por iones metálicos (por ejemplo, Zn+2, Cu+2, Ni+2) que pueden ser quelados a diferentes soportes cromatográficos, posibilitando una purificación fácil y reproducible.
Las bacterias recombinantes obtenidas tal como descrito anteriormente se centrifugaron y el contenido periplasmático se aisló mediante shock osmótico y sonicación breve (segundos), y posteriormente se dializó por 72 horas en el tampón de acomplamiento (Tris-HCI 20 mM, 1 M NaCI, 20mM Imidazol, pH 7.0). Las preparaciones de periplasma bacteriano conteniendo el scFv y el diacuerpo se aplicaron directa e independientemente a una matriz de Sefarosa-IDA-Cu+2 ( Pharmacia). Una vez acopladas las proteínas, los geles se lavaron primero con 10 veces su volumen empleando tampón de acoplamiento y seguidamente de forma similar con el tampón de lavado (Tris-HCI 20 mM, 1 M NaCI, 150 mM Imidazol, pH 7.0) para la eliminación de proteínas contaminantes de E. coli. La elución del scFv y el diacuerpo se realizó con Tris-HCI 20mM, 1 M NaCI, 250 mM Imidazol, pH 7.0). Las muestras de los picos de elución se sometieron a una SDS-PAGE 12% para verificar la presencia de las proteínas de interés. Las fracciones eluídas contienendo el scFv y el diacuerpo se concentraron en dispositivos UltraFree 15 (Amicon), se dializaron en una solución tampón contiendo Tris-HCI 20 mM a pH 8.7, y se sometieron a un segundo paso de purificación mediante intercambio iónico. Para ello, las muestras se aplicaron a una columna Mono Q (Pharmacia), y eluyeron mediante un gradiente lineal de NaCI, desde 0 a 1 M. Las muestras de los picos colectados se chequearon por SDS-PAGE 12 %. Se verificó la presencia del scFv y diacuerpo a las tallas esperadas (aproximadamente 27 kDa). La pureza final alcanzada para las dos moléculas fue semejante y cercana al 95%, estimada mediante SDS-PAGE y tinción de plata. Los picos de scFv y diacuerpo puros se concentraron en dispositivos UltraFree 15 (Amicon) hasta 2 mg/mL. Se verificó la actividad biológica de las preparaciones purificadas mediante ELISA, siguiendo un procedimiento semejante al descrito anteriormente en esta invención. Todas las muestras se conservaron a 4°C.
Procedimiento (b) Análisis del scFv y el diacuerpo mediante gel filtración Se estudiaron mediante cromatografía de tamiz molecular el scFv y el diacuerpo purificados tal como en el procedimiento anterior, para determinar la homogeneidad de las muestras y la presencia de multímeros. Para ello se empleó Superdex 200 (Pharmacia) y un proceso convencional de filtración en gel mediante un equipo de HPLC. Se determinó que el scFv se concentró en un pico mayoritario de aproximadamente 27kDa, correspondiente a una forma monomérica. El diacuerpo apareció de manera mayoritaria con una talla de aproximadamente 45kDa, que se correspondiente con una forma dimérica.
EJEMPLO 5. Caracterización del diacuerpo mediante digestión proteolítica y espectrometría de masas. El diacuerpo purificado se dializó durante toda la noche a 4 °C contra una solución tampón de NH4HCO3 al 1%, pH=8.3, que contenía Urea a una concentración de 2 mol/L. La proteína dializada se digirió con tripsina grado secuencia (Promega) a una relación enzima:sustrato 1:50 durante 4 horas a 37 °C. La digestión proteolítica se detuvo al acidificar con igual volumen de una solución acuosa de ácido trifluoracético al 1% y se guardó a -20 °C hasta el momento del análisis por cromatografía líquida acoplada al espectrómetro de masas (LC-MS).
Las digestiones trípticas se separaron por cromatografía de fase reversa en un cromatógrafo líquido AKTA Basic (Amershan Pharmacia Biotech) utilizando un gradiente lineal desde 0% hasta 80% de la solución B en 100 minutos. Las soluciones utilizadas para generar el gradiente fueron: A: H20 / TFA 0.05 % y B: Acetonitrilo / TFA 0.05 %. Las fracciones obtenidas durante la digestión protelítica se analizaron por espectrometría de masa utilizando la ionización por electrospray (ESI-MS), al conectar en línea al sistema cromatográfico un espectrómetro de masas LC-MS híbrido con geometría ortogonal QTOF-2 (Mlcromass Ltd.). Durante la medición de LC-MS los espectros de masas se adquirieron desde 350 hasta 1800 en 0.98 segundos y utilizando 0.02 segundos entre cada uno de los barridos. El espectrómetro de masas se calibró con una solución salina compuesta por una mezcla de yoduro de sodio y cesio. Los voltajes empleados en el cono y el capilar fueron de 50 y 3000 volts, respectivamente. Los espectros se procesaron mediante el paquete de programas MassLinx v 3.5 (Micromass Ltd).
En la FIGURA 4 y su Tabla adjunta se aprecian el perfil cromatográfico de la digestión tríptica del diacuerpo y el resumen de la asignación de los péptidos trípticos del diacuerpo. En los espectros ESI-MS obtenidos no se detectaron señales que correspondieran a las cisteínas incorrectamente enlazadas, apreciándose esto de los resúmenes de las fracciones 8 y 12 de la Tabla adjunta a la FIGURA 4, que contienen a los péptidos (20Phe-Arg31)-S-S-(87Ser-Arg97) y ( 43Val-Lys148)-S-S-(186lle-Lys228) enlazados por puentes de disulfuro (-S-S-) entre las cisteínas 22 y 95, y 147 y 212, respectivamente.
De los péptidos analizados por ESI-MS se pudo obtener el 92% de la secuencia del diacuerpo en una sola digestión proteolítica (FIGURA 5). En esta secuencia hay una total coincidencia con la secuencia de aminoácidos deducida de las secuencia de bases realizadas a los dominios VH y VL (SEC ID No. 16 y 17) amplificados por RCP a partir de ARN total del hibridoma productor del AcM CB/ior-CEA.1, del segmento de unión de 5 aminoácidos (SEC ID No. 10), y en la porción C-terminal, de la secuencia del péptido c- myc y las seis histidinas finales, que aporta el vector pJG-1m (FIGURA 2). EJEMPLO 6. Estudios de reconocimiento del CEA deglicosilado.
EL CEA humano (Calbochem) se desglicosiló enzimáticamente con la endoglicosidasa PNGasa F (New England Biolabs) específica para N-glicosilación. El CEA se disolvió en buffer fosfato 20 mM pH 7.8 y se desnaturalizó con SDS y 2-mercaptoetanol a 100°C por 5 min. Posteriormente se adicionó detergente NP-40 y 1 μL de PNGasa F a 37°C por 2 horas. Las muestras control y la desglicosilada se analizaron en SDS-PAGE con tinción por azul coomasie observándose una disminución considerable de la talla molecular (alrededor del 50%) después de la digestión con la endoglicosidasa. Se realizó un Western blot empleando (a) AcM CB/ior-CEA.1, (b) el fragmento scFv divalente (diacuerpo) purificado o (c) un antisuero anti-CEA humano obtenido en ratón, como anticuerpos primarios, seguidos por anticuerpos policlonales anti-Fab del AcM CB/ior- CEA.1 conjugados a peroxidasa de rábano picante para (a) y (b), y anti-lgG de ratón conjugados a peroxidasa de rábano picante para (c). La transferencia y revelado fue semejante a como fue descrito anteriormente en esta invención para los Western blots. El AcM CB/ior-CEA.1 y el diacuerpo sólo reconocieron el antígeno no deglicosilado. El antisuero policlonal reconoció al CEA antes y después de deglicosilado. Se analizaron muestas de CEA humano nativo mediante un sistema Dot Blot con reconocimiento por lectinas específicas. Las lectinas empleadas fueron la aglutinina de Sambucus nigra (SNA) y la aglutinina de Maackia Amurensis (MAA) especificas a ácido siálico terminal enlazados alfa 2,6 y alfa 2,3, respectivamente. Las lectinas empleadas en estos experimentos estaban conjugadas a Digoxigenina, que es identificada por un anticuerpo anti-Digoxigenina conjugado a fosfatasa alcalina. Las muestras positivas a la interacción lectina-oligosacárido se revelaron por reacción con sustrato específico a la fosfatasa (una mezcla de cloruro de 4-nitro azul tetrazolium y 5-bromo-4-cloro-3-indolyl- fosfato). En este experimento se utilizó como control positivo a ambas lectinas la Fetuina. El CEA nativo fue reconocido por SNA y no por la MAA, lo que indicó una alta prevalencia de ácidos siálicos terminales enlazados alfa 2,6.
Se procedió entonces a la digestión del CEA humano con la enzima NANAsa II, una exoglicosidasa (sialidasa) capaz de hidrolizar los ácidos siálicos terminales alfa 2,6. A esto siguió la separación de los productos de la digestión en SDS-PAGE, y el estudio del reconocimiento de los mismos mediante Western Blot, empleando como anticuerpos primarios el AcM CB/lor-CEA.1 y un antisuero anti-CEA humano obtenido en ratón. Los resultados obtenidos arrojaron reconocimiento del control de CEA nativo por las dos muestras, mientras que sólo hubo reconocimiento del CEA digerido con NANAsa II por parte del antisuero anti-CEA en ratón.
EJEMPLO 7. Estudio inmunocito e histoquímico en tejidos humanos normales y tumorales.
El estudio en tejidos se realizó en muestras seleccionadas de archivos de tejidos tumorales y tejidos normales, provenientes de material de autopsias. Se empleó un panel mínimo de tejidos para verificar el pailón de reconocimiento ya descrtio para el AcM CB/ior-CEA.1 (Tormo B et al. APMIS 97: 1073-1080, 1989). Los especímenes incluyeron: carcinomas de pulmón, piel, mama, cervix, esófago y riñon, adenocarcinomas de colon, próstata, páncreas, vesícula, intestino delgado y estómago, tumores de origen neural, hematopoyético y sarcomatoso, así como mucosa colónica normal y tejidos normales como hígado, riñon, pulmón, testículos, bazo y páncreas, incluyéndose además células de la sangre. El estudio se realizó siguiendo los procedimientos antes reportados (Tormo B et al. APMIS 97: 1073-1080, 1989), con algunas variaciones. Los especímenes de tejido se fijaron en solución de formalina al 10% tamponada, de dehidrataron, aclararon y embebieron en parafina de acuerdo a procedimientos de rutina. La histopatología se evaluó en cortes teñidos con hematoxilina-eosina. Se emplearon secciones consecutivas de los bloques evaluados histopatológicamente para la tinción por la técnica de inmunoperoxidasa. Para ello, las secciones desparafinas y rehidratadas se trataron con 3% H2O2 for 30 minutos para bloquear la peroxidasa endógena, se lavaron en solución salina tamponada con fosfatos (PBS), e incubaron con las muestras, diluidas estas en PBS-1% seroalbúmina bovina (tampón de dilución), por 1 hora. Seguidamente las láminas se incubaron por 30 minutos con una dilución 1:100 de anticuerpo IgG policlonal de conejo biotinilado, obtenido por inmunización con el Fab del CB/ior-CEA.1, y finalmente por igual tiempo con una dilución 1:500 de un complejo peroxidasa-estreptavidina (Amersham).
Las muestras examinadas fueron:
(a) El AcM CB/ior-CEA.1 (control positivo) a concentración de 20 μg/mL
(b) El scFv purificado de E. coli, tal como descrito en el EJEMPLO 4 procedimiento (a), a concentraciones de 50 μg/mL
(c) El diacuerpo purificado de E. coli, tal como descrito en el EJEMPLO 4 procedimiento (a), a concentraciones de 50 μg/mL
(d) El scFv obtenido anteriormente y denominado "F3" en estos Ejemplos (Ayala et al. Biotechniques 13: 790-799, 1992; Pérez L et al. Applied Biochem. Biotechnol. 24: 79- 82, 1996), purificado y a concentraciones de 50 y 100 μg/mL
Todas las diluciones se hicieron en el tampón de dilución y las incubaciones a temperatura ambiente, en cámara húmeda. Entre cada paso se realizaron 3 lavados de 1 minuto con tampón de dilución o PBS. La reacción de inmunoperoxidasa se desarrolló mediante una incubación de 5-10 minutos con una solución que contenía 3 mg de 3-3 diaminobencidina, 5 mL de PBS y 5 mL de H2O2 al 30%. Las láminas se contratiñieron con hematoxilina de Mayer. La reacción color café caraterístlca se registró como: negativa, o positiva en tres niveles de intensidad ascendente (1+, 2+, 3+). En cada cada lámina se realizó el mareaje con la muestra en cuestión, y en una zona adyacente con el tampón de dilución como control negativo. Para los estudios en células de la sangre, se eliminaron primero los eritrocitos, y las células blancas remanentes se aplicaron sobre láminas portaobjetos recubiertas de gelatina, y se fijaron con acetona:metanol 1:1 (v:v). El resto de la técnica se desarrolló básicamente como descrito arriba. En la Tabla VI se resumen los resultados obtenidos, según el tejido estudiado. Los tejidos normales estudiados (hígado, riñon, pulmón, testículos, sangre, bazo, páncreas) no fueron identificados por los fragmentos ni por el AcM. En el caso de la mucosa colónica, y coincidentemente con lo obtenido antes para el AcM CB/ior-CEA.1, el scFv F3, y los nuevos scFv y diacuerpo reaccionaron exclusivamente con los productos de secreción luminal y en zonas apicales de algunas glándulas. La intensidad de la reacción en el caso de scFv F3 fue menor, aspecto este que también se vio luego para varios tumores. En el caso de las células de la sangre, el AcM, y el scFv y el diacuerpo no demostraron reactividad con linfocitos y neutrófilos normales lo que sugiere que no existe un nivel importante reactividad cruzada con el antígeno NCA. Por el contrario, el scFv F3 manifestó un ligero reconocimiento de estas células. El AcM, el scFv y el diacuerpo reaccionaron con la mayoría de los tumores de origen gastrointestinal, y se observó el mareaje fuerte en la mayoría de los casos tanto en la superficie apical de las células tumorales como en el citoplasma. Ninguna de estas muestras marcaron tumores de origen hematopoyético, sarcomatoso, u otros derivados de epitelio, excepto un carcinoma de mama canalicular y un carcinoma a células grandes de pulmón. En los casos de adenocarcinomas de colon bien diferenciados el mareaje fue intenso en la zona apical del citoplasma y en los productos de secreción luminales, mientras que en los moderadamente y pobremente diferenciados el mareaje se observó en todo el citoplasma. Excepto en unas muy pocas muestras, las intensidades de tinción fueron muy similares para estas tres moléculas. En el caso del F3, se observó una disminución general de la intensidad de tinción, a pesar de que se ensayaron en algunas ocasiones concentraciones dos veces mayores que las empleadas para el scFv y el diacuerpo. La baja intensidad de la tinción puede haber provocado que algunas muestras identificadas por los demás anticuerpos no fueran reconocidas por el F3. Tabla VI. Estudio inmunocito e histoquímico con diferentes anticuerpos.
Figure imgf000031_0001
Figure imgf000032_0001
Nota: Los números de la Tabla representan los casos de tinción positiva/casos totales estudiados. De no exitir paréntesis, las intensidades de tinción en los positivos fueron de entre 2+ y 3+; Ca: carcinoma; ADC: adenocarcinoma; HDG: Hodgkin; BD: bien diferenciado; MD: medianamente diferenciado; PD: pobremente diferenciado. (*): el mareaje aparece circunscrito a los productos de secreción luminal y a zonas apicales de algunas glándulas; (a): los casos positivos presentaron tinciones de intensidad clasificables como 1+; (b) reconocimiento de linfocitos y eosinófilos con intensidad clasificable como 1+; (c) 2 de los 6 casos positivos presentaron tinciones de intensidad clasificable como 1+.
EJEMPLO 8. Determinación de la constante de afinidad
Para la determinación de la constante de afinidad se utilizó un método de ELISA no competitivo (Beatty JD et al. J. Immunol Meth. 100: 173-184, 1987) basado en la ley de acción de masas. La constante de afinidad Kaff es igual a [AgAb]/[Ag][Ab], donde AgAb es el complejo antígeno anticuerpo en LΛnol (M"1), [Ag] es la concentración de antígeno libre (mol), y [Ab] es la concentración de anticuerpo libre (mol).
Se emplearon cuatro diluciones dobles seriadas de CEA humano (Calbochem) en el recubrimiento de las placas de ELISA de polivinilo (Costar). Las placas se bloquearon utilizando PBS-leche descremada al 1%. Las muestras (scFv F3, scFv, diacuerpo, AcM CB/ior-CEA.1, todos purificados) se aplicaron a las placas a varias concentraciones. Luego de lavados, los pocilios correspondientes a las tres primeras muestras se incubaron con el AcM 9E10 (10 μg/mL), mientras que en aquellos correspondientes al CB/lor-CEA.1 se empleó solución de bloqueo. En el siguiente paso se añadió un anticuerpo anti IgG de ratón conjugado con peroxidasa (Sigma), en dilución 1:2500 durante 1 hora, a 37°C. El sustrato empleado fue OPD y se la reacción se desarrolló durante 15 minutos. La lectura de la absorbancia se realizó a 492 nm en un equipo LabSystems Multiskan MS.
Los valores de densidad óptica (DO) para cada caso se plotearon en el eje de las ordenadas (y), reflejándose en el eje de las abscisas (x) la concentración expresada en ng/mL en una escala de logaritmo base 10. Se tomó la DO 100 como aquella a la cual la señal se mantenía al máximo. Para cada curva se calculó la mitad de la DO 100 (DO 50). Se determinaron los valores de concentración de la muestra a DO 50 para cada curva, y se realizaron los cálculos de la afinidad mediante la siguiente formula: Kaff= (n-1)/2(n), donde n= [Ab']t/[Ab]t. [Ab'jt es el valor de concentración de la muestra que corresponde a un valor de DO 50 para la concentración mayor de antígeno a comparar y [Ab]t es s el valor de concentración de muestra que corresponde a un valor de DO 50 para la concentración menor de antígeno a comparar. Se realizaron las seis determinaciones de afinidad posibles para las 4 curvas obtenidas, estimándose la Kaff final como el promedio de estos.
La Tabla Vil refleja los valores de Kaff calculados para cada una de las variantes ensayadas. El scFv posee una Kaff de (5.0 ± 0.4) x 109 L mol"1, mas de un orden y medio de magnitud mayor que la obtenida para el F3 (Kaff= (9.2 ± 0.8) x 107 L mol"1). Este último valor se corresponde básicamente con el calculado para el F3 a partir de mediciones efectuadas por un procedimiento diferente (Pérez L et al. Applied Biochem. Biotechnol. 24: 79-82, 1996). El dlacuerpo posee una Kaff de (2.8 ± 0.3) x 1010L mol"1, mientras que para el AcM CB/ior-CEA.1 el valor de Kaff fue de (6.1 ± 0.5) x 1010L mol"1.
Tabla Vil. Valores de constante de afinidad calculados ara los desarrolladas
Figure imgf000033_0001
Kaff: constante de afinidad, calculada como promedio de seis determinaciones ± la desviación estándar (entre paréntesis).
EJEMPLO 9.- Determinación del reconocimiento específico in vivo de fragmentos y anticuerpo marcados con 25l, en ratones C57BI/6 portadores del tumores inducidos por la inoculación de las células B16-CEA13. Para la determinación del reconocimiento específico in vivo de los fragmentos de anticuerpo, se marcaron con 125l (Amersham, UK) mediante el método de lodogen (Fraker PJ, Speck JC Jr. Biochem Biophys Res Comm 80:849-857, 1978) las siguientes moléculas:
(a) scFv purificado de £. coli ; (actividad específica 1.1 MBq/5 μg) (b) diacuerpo purificado de E. coli ; (actividad específica: 1.2 MBq/5 μg)
(c) AcM CB/ior-CEA.1; (actividad específica: 1.8 MBq/5 μg) (d) ScFv F3, purificado (Ayala et al. Biotechniques 13: 790-799, 1992; Pérez L et al. Applied Biochem. Biotechnol. 24: 79-82, 1996) (actividad específica: 1.0 MBq/5 μg).
Los productos radiomarcados se analizaron en cromatografía de capa delgada para determinar la Incorporación a proteína, encontrándose valores de entre 95 y 98% de la radiactividad. La capacidad de los productos radiomarcados para detectar CEA se ensayó en un sistema donde se recubrieron inmunotubos de poliestireno con CEA (5 μg/mL; Calbochem), se bloquearon, y se les añadieron muestras de los productos radiomarcados, ajustadas a las cantidades de anticuerpo que podían ser atrapadas por esta fase sólida. Luego de la incubación y el lavado se determinó que el 80, 79, 83, y 81% de la radiactividad se atrapaba por la fase sólida, respectivamente, para las muestras (a)- (d) descritas arriba, demostrando que el procedimiento de radiomarcaje no afectó sensiblemente la actividad biológica de los anticuerpos.
Para estudiar la biodistribución se formaron 4 grupos de animales, cada uno con 12 ratones C57BI/6 (CENPALAB, Cuba). Los animales se inocularon con 1 x 106 células B16-CEA13/animal, por vía intra-axilar. Los tumores se hicieron visibles y palpables (aproximadamente 0.3-0.5 g) a los 7 días, luego de lo cual los ratones se inyectaron por la vena de la cola con el producto radiomarcado en cuestión, y se sacrificaron a las 12, 24 y 48 horas, removiéndose quirúrgicamente el tumor y los siguientes tejidos normales: bazo, hígado, riñon, intestino, músculo, médula y sangre. La acumulación de radiactividad se expresó como porciento de la dosis inyectada por gramo de tejido. La calibración se realizó mediante una muestra estándar de la dosis inyectada. La radiactividad se determinó empleando un contador de centelleo gamma.
Las células B16-CEA13 empleadas en estos experimentos se obtuvieron mediante la transfección de un gen que codifica para los dominios extracelulares del CEA humano, clonado en el vector pDisplay™ (Cat. No. V660-20, Invitrogen). El gen se obtuvo por RCP a partir de ARN extraído de células CRL-1682, con oligonucleótidos diseñados a partir de la secuencia publicada para el CEA humano. El plasmidio recombinante pDisplay-CEA se purificó y transfectó a células de melanoma B16-F10 (ATCC CRL-6475) de ratón C57BI/6 empleando Lipofectamine PLUS™ (Gibco-BRL) y 5 μg de ADN por transfección. La selección de los transfectantes estables se realizó con 4.0 mg/mL de sulfato de geneticlna (G418; Gibco-BRL) por 14 días, luego de los cual las células de cultivo sobrevivientes se clonaron por dilución limitante y aquellos clones que expresaban CEA humano en su superfcicie se identificaron mediante inmunofluorescencia indirecta, empleando el AcM CB/ior-CEA.1 como anticuerpo primario y anticuerpos anti IgG de ratón conjugados con FITC (Sigma) para el revelado. Se encontró que un 73% de los clones presentaban más del 80% de sus células con flurescencia de membrana específica, indicando que exponían el CEA humano correctamente foldeado y glicosilado en su superficie. Como controles se emplearon las células B16-F10 sin transfectar. Las réplicas de los clones seleccionados como positivos mediante inmunofluorescencia indirecta se multiplicaron e inyectaron de forma independiente a ratones C57BI/6, a razón de 1 x 106 células por animal, por la via intra axilar. De los 10 clones que dieron origen a tumores, se escogió aquel con las características de crecimiento más rápido y progresivo, que se denominó B16-CEA13, para los experimentos que aquí se reportan.
La FIGURA 6 muestra los porcientos de radiactividad recuperada por tejido estudiado, a los diferentes tiempos (respecto al total inyectado), y la relación radiactividad en el tumoπradiactividad en sangre. Los resultados recogidos en la Tabla Vlll demuestran que entre las 24 y 48 horas, la relación de radiactividad en tumoπradiactividad en sangre se mantiene alta para el diacuerpo, el scFv, y el AcM, con los mayores valores para este último, seguido por la molécula dimérica. El scFv F3 obtenido anteriormente mostró valores muy bajos, con un comportamiento in vivo inadecuado que se puede correlacionar con su afinidad disminuida por el CEA.
Tabla Vlll. Relación radiactividad en tumoπradiactrvidad en sangre para ratones C57BI/6 trasplantados con el melanoma de ratón B16-CEA13, que expresa CEA humano. Los valores corresponden luego de 24 y 48 horas de inyectados los animales con las diferentes moléculas radiomarcadas con 125l. Cada relación se calculó a partir de los valores medios derivados de los tejidos recuperados de 12 ratones.
Figure imgf000035_0001

Claims

REIVINDICACIONESFRAGMENTOS DE ANTICUERPO ESPECÍFICOS PARA EL ANTÍGENO CARCINOEMBRIONARIO HUMANO (CEA)
1. Un fragmento de anticuerpo tipo scFv monomérico obtenido a partir del ARN extraído del hibridoma productor del AcM CB/ior-CEA.1 específico para al antígeno carcinoembrionario (CEA) humano soluble, adsorbido a superficies sólidas, o presente en células, con una constante de afinidad por el CEA de (5.0 ± 0.4) x 109 L mol"1 y un reconocimiento por dicho antígeno dependiente de la conservación de la glicosidación del mismo.
2. Un fragmento de anticuerpo tipo scFv monomérico de acuerdo con la reivindicación 1, caracterizado porque su secuencia aminoacídica es la referida en SEC ID No 16.
3. Un fragmento de anticuerpo tipo scFv divalente (diacuerpo) obtenido a partir del ARN extraído del hibridoma productor del AcM CB/ior-CEA.1 específico para al antígeno carcinoembrionario (CEA) humano soluble, adsorbido a superficies sólidas, o presente en células, con una constante de afinidad por el CEA de (2.8 ± 0.3) x 1010 L mol"1 y un reconocimiento por dicho antígeno dependiente de la conservación de la glicosidación del mismo.
4. Un fragmento de anticuerpo tipo scFv divalente (diacuerpo) de acuerdo con la reivindicación 3, caracterizado porque las secuencia aminoacídica es la referida en
SEC ID No. 17.
5. Fragmentos de anticuerpos de acuerdo con las reivindicaciones de la 1 a la 4 caracterizados porque son empleados para la identificación de células tumorales que expresen CEA humano.
6. Fragmentos de anticuerpos recombinantes o sintéticos específicos para CEA humano caracterizados porque comprenden las secuencias aminoacídicas de dominios variables VH y VL reportadas en SEC ID 16 y SEC ID 17, unidas artificialmente en forma de fragmentos Fab y otras variantes de scFv, anticuerpos biespecíficos, o fusionados a dominios activos desde el punto de vista biológico o bioquímico.
7. Fragmentos de anticuerpos de acuerdo con la reivindicaciones 1 a la 6 caracterizados porque son producidos en bacterias y levaduras recombinantes, en otros microorganismos recombinantes, en células de mamíferos o insectos transfectadas, o en organismos modificados genéticamente.
8. Fragmentos de anticuerpos de acuerdo con las reivindicaciones 1 a la 7 caracterizados porque adicionalmente contienen una marca radiactiva o detectable por otro método, o un agente químico o biológico con potencial antitumoral.
9. Composición farmacéutica que contiene fragmentos de anticuerpos de acuerdo a las reivindicaciones 1 a la 8, para el tratamiento de tumores humanos que expresan
CEA.
10. Composición farmacéutica que contiene fragmentos de anticuerpos de acuerdo a las reivindicaciones 1 a la 8, para la radiolocalización in vivo de tumores humanos que expresan CEA mediante técnicas de imágenes.
11. Reactivo para el diagnóstico in vitro o ex vivo que contiene fragmentos de anticuerpos de acuerdo a las reivindicaciones 1 a la 8, para la detección de CEA humano unido o no a células.
12. Células que expresan fragmentos de anticuerpos de acuerdo a las reivindicaciones 1 a la 8, obtenidas mediante la manipulación genética por vía del ADN recombinante, siendo estas células bacterias, levaduras, células de insectos, células de mamíferos, o células vegetales.
13. Organismos multicelulares que expresan fragmentos de anticuerpos de acuerdo a las reivindicaciones 1 a la 8, obtenidos mediante la manipulación genética por vía del ADN recombinante, siendo estos organismos animales transgénicos o plantas transgénlcas.
14. Vectores que codifican para fragmentos de anticuerpos de acuerdo a las reivindicaciones 1 a la 8, obtenidos mediante la manipulación genética por vía del ADN recombinante, siendo estos vectores plasmidios o secuencias capaces de integrarse en células hospederas.
PCT/CU2003/000005 2002-04-29 2003-04-28 Fragmentos de anticuerpos específicos para el antígeno carcinoembrionario humano (cea) WO2003093315A2 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP03720119A EP1505076B1 (en) 2002-04-29 2003-04-28 Specific antibody fragments for the human carcinoembryonic antigen (cea)
KR10-2004-7017674A KR100700323B1 (ko) 2002-04-29 2003-04-28 인간 암배항원에 특이적인 항체 단편
US10/511,794 US20050158322A1 (en) 2002-04-29 2003-04-28 Specific antibody fragments for the human carcinoembryonic antigen (cea)
JP2004501454A JP2006500913A (ja) 2002-04-29 2003-04-28 ヒト癌胎児性抗原(cea)用の特異的抗体断片
DE60327072T DE60327072D1 (de) 2002-04-29 2003-04-28 Spezifische antikörperfragmente für das humane carcinoembryonic antigen (cea)
BR0304649-4A BR0304649A (pt) 2002-04-29 2003-04-28 Fragmento de anticorpo, composição farmacêutica, reagente para diagnóstico in vitro ou ex vivo, células e organismos multicelulares que expressam fragmentos de anticorpos e vetores codificadores de fragmentos de anticorpos
AU2003223831A AU2003223831A1 (en) 2002-04-29 2003-04-28 Specific antibody fragments for the human carcinoembryonic antigen (cea)
MXPA04010695A MXPA04010695A (es) 2002-04-29 2003-04-28 Fragmentos de anticuerpo especificos para el antigeno carcinoembrionario humanos (cea).
CA002482411A CA2482411A1 (en) 2002-04-29 2003-04-28 Antibody fragments specific for human carncinoembryonic antigen (cea)
US11/731,442 US20070199078A1 (en) 2002-04-29 2007-03-30 Antibody fragments specific for human carcinoembryonic antigen (CEA)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU20020086A CU23228A1 (es) 2002-04-29 2002-04-29 Fragmentos de anticuerpos especificos para el antigeno carcinoembrionario humano (cea) secuencias de sus regiones variables y vectores para la expresion microbiana de los mismos
CUCU2002/0086 2002-04-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/731,442 Division US20070199078A1 (en) 2002-04-29 2007-03-30 Antibody fragments specific for human carcinoembryonic antigen (CEA)

Publications (2)

Publication Number Publication Date
WO2003093315A2 true WO2003093315A2 (es) 2003-11-13
WO2003093315A3 WO2003093315A3 (es) 2004-01-08

Family

ID=40293094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2003/000005 WO2003093315A2 (es) 2002-04-29 2003-04-28 Fragmentos de anticuerpos específicos para el antígeno carcinoembrionario humano (cea)

Country Status (17)

Country Link
US (2) US20050158322A1 (es)
EP (1) EP1505076B1 (es)
JP (1) JP2006500913A (es)
KR (1) KR100700323B1 (es)
CN (1) CN1326877C (es)
AR (1) AR039454A1 (es)
AT (1) ATE427967T1 (es)
AU (1) AU2003223831A1 (es)
BR (1) BR0304649A (es)
CA (1) CA2482411A1 (es)
CU (1) CU23228A1 (es)
DE (1) DE60327072D1 (es)
ES (1) ES2325492T3 (es)
MX (1) MXPA04010695A (es)
RU (1) RU2294939C2 (es)
WO (1) WO2003093315A2 (es)
ZA (1) ZA200408720B (es)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110001A2 (es) * 2006-03-29 2007-10-04 Centro De Ingenieria Genetica Y Biotecnologia Moléculas quiméricas fusionadas a matrilina 1, de uso terapéutico.
RU2493166C1 (ru) * 2012-04-09 2013-09-20 Общество с ограниченной ответственностью "Технофарма" Наноантитело, специфически связывающее белок сеа, способ его использования для детекции этого белка
CN104628859A (zh) * 2015-01-26 2015-05-20 佳德资本投资管理(Bvi)有限公司 抗人癌胚抗原抗体及其编码基因和应用
US9193794B2 (en) 2006-06-07 2015-11-24 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
US9334329B2 (en) 2007-12-18 2016-05-10 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
US9771431B2 (en) 2011-10-11 2017-09-26 Ccam Biotherapeutics Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (CEACAM)
US10550196B2 (en) 2014-04-27 2020-02-04 Famewave Ltd. Humanized antibodies against CEACAM1
US11427647B2 (en) 2014-04-27 2022-08-30 Famewave Ltd. Polynucleotides encoding humanized antibodies against CEACAM1

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607985B (zh) * 2008-12-24 2013-03-27 中国科学院生物物理研究所 抗人cea的单克隆抗体,包含其的组合物,及其用途
PT2424896E (pt) * 2009-04-30 2015-11-30 Univ Ramot Anticorpos anti-ceacam1 e métodos de utilização dos mesmos
CN107663240B (zh) * 2016-07-29 2021-01-12 中国人民解放军第四军医大学 高度糖基化cea特异性结合的单链抗体及其在检测和治疗上的应用
CN111499750B (zh) * 2016-12-04 2022-02-08 深圳市国创纳米抗体技术有限公司 一种抗癌胚抗原的高中和活性纳米抗体及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOLLIGER P. ET AL.: ""Diabodies": Small bivalent and bispecific antibody fragments" PROC. NATL. ACAD. SCI., vol. 90, Julio 1993 (1993-07), XP002251701 *
SE-HO KIM ET AL.: "Characterization of Monoclonal Antibodies Against Carcinoembryonic Antigen (CEA) and Expression in E. coli" HYBRIDOMA, vol. 20, num. 4, Agosto 2001 (2001-08), XP002251700 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110001A2 (es) * 2006-03-29 2007-10-04 Centro De Ingenieria Genetica Y Biotecnologia Moléculas quiméricas fusionadas a matrilina 1, de uso terapéutico.
WO2007110001A3 (es) * 2006-03-29 2007-11-15 Ct Ingenieria Genetica Biotech Moléculas quiméricas fusionadas a matrilina 1, de uso terapéutico.
US9193794B2 (en) 2006-06-07 2015-11-24 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
US9334329B2 (en) 2007-12-18 2016-05-10 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
US9771431B2 (en) 2011-10-11 2017-09-26 Ccam Biotherapeutics Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (CEACAM)
US11891453B2 (en) 2011-10-11 2024-02-06 Famewave Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (CEACAM)
RU2493166C1 (ru) * 2012-04-09 2013-09-20 Общество с ограниченной ответственностью "Технофарма" Наноантитело, специфически связывающее белок сеа, способ его использования для детекции этого белка
US10550196B2 (en) 2014-04-27 2020-02-04 Famewave Ltd. Humanized antibodies against CEACAM1
US11427647B2 (en) 2014-04-27 2022-08-30 Famewave Ltd. Polynucleotides encoding humanized antibodies against CEACAM1
US11866509B2 (en) 2014-04-27 2024-01-09 Famewave Ltd. Humanized antibodies against CEACAM1
CN104628859A (zh) * 2015-01-26 2015-05-20 佳德资本投资管理(Bvi)有限公司 抗人癌胚抗原抗体及其编码基因和应用

Also Published As

Publication number Publication date
US20070199078A1 (en) 2007-08-23
KR100700323B1 (ko) 2007-03-29
EP1505076B1 (en) 2009-04-08
WO2003093315A3 (es) 2004-01-08
AU2003223831A1 (en) 2003-11-17
KR20050007376A (ko) 2005-01-17
ZA200408720B (en) 2006-03-29
RU2294939C2 (ru) 2007-03-10
ATE427967T1 (de) 2009-04-15
CA2482411A1 (en) 2003-11-13
AR039454A1 (es) 2005-02-23
CN1649901A (zh) 2005-08-03
US20050158322A1 (en) 2005-07-21
ES2325492T3 (es) 2009-09-07
JP2006500913A (ja) 2006-01-12
CU23228A1 (es) 2007-09-26
MXPA04010695A (es) 2005-02-17
BR0304649A (pt) 2004-07-20
EP1505076A2 (en) 2005-02-09
CN1326877C (zh) 2007-07-18
RU2004134601A (ru) 2005-07-10
DE60327072D1 (de) 2009-05-20

Similar Documents

Publication Publication Date Title
US20070199078A1 (en) Antibody fragments specific for human carcinoembryonic antigen (CEA)
ES2932777T3 (es) Sustratos de matriptasa y activador del plasminógeno-u y otros motivos escindibles y métodos de uso de los mismos
ES2219699T3 (es) Anticuerpo monoclonal br110 y usos del mismo.
ES2141467T5 (es) Anticuerpos anti-cd30 que evitan la escision proteolitica y liberacion del antigeno cd30 fijado a la membrana.
ES2400082T3 (es) Anticuerpo monoclonal aislado o fragmento del mismo de unión al antígeno de membrana específico de la próstata, sus conjugados y usos
ES2307824T3 (es) Uso de anticuerpos contra el antigeno muc18.
JP3492373B2 (ja) モノクローナル抗体
ES2437515T3 (es) Fragmento scFv anti-glicoproteína VI para el tratamiento de la trombosis
CN111201240B (zh) 特异性地结合muc1的抗体及其用途
JP2002516610A (ja) グリコシル化し得る抗原結合単鎖タンパク質、それらの生成および使用
US20180155449A1 (en) Covalent disulfide-linked diabodies and uses thereof
JP6233933B2 (ja) 葉酸リセプターα及びβを認識する抗体
US11198738B2 (en) Therapeutic antibodies and uses thereof
CA2097060A1 (en) Bifunctional antibodies and method of preparing same
ES2711978T3 (es) Anticuerpos contra el antígeno de células madre específico de la próstata y su uso
ES2528718T3 (es) Diana para linfocitos B
EP4299589A1 (en) Anti-human cd73 antibody and use thereof
CN113045659B (zh) 抗cd73人源化抗体
JP5881085B2 (ja) 膵臓癌の治療用及び診断用の組成物
TW202241519A (zh) 腫瘤特異性密連蛋白18﹒2抗體藥物結合物
WO1998012227A1 (en) Recombinant single chain antibodies directed against the gp54 cancer marker, composition comprising same and use thereof
US20220288223A1 (en) Activatable specific binding member complexes, and methods of making and using same
CN112292393A (zh) 双功能血脑疗法
JPH07504668A (ja) 抗体の免疫原性の選択的改変法
CN116925220A (zh) Il20rb中和抗体及其医药用途

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 3090/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2482411

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004/08720

Country of ref document: ZA

Ref document number: 200408720

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/010695

Country of ref document: MX

Ref document number: 2004501454

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038096587

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047017674

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003223831

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003720119

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004134601

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020047017674

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003720119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10511794

Country of ref document: US