WO2003091766A1 - Polarizer, polarization light source and image displayunit using them - Google Patents

Polarizer, polarization light source and image displayunit using them Download PDF

Info

Publication number
WO2003091766A1
WO2003091766A1 PCT/JP2003/004872 JP0304872W WO03091766A1 WO 2003091766 A1 WO2003091766 A1 WO 2003091766A1 JP 0304872 W JP0304872 W JP 0304872W WO 03091766 A1 WO03091766 A1 WO 03091766A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
axis direction
light
polarizer
reflective
Prior art date
Application number
PCT/JP2003/004872
Other languages
English (en)
French (fr)
Inventor
Kazutaka Hara
Minoru Miyatake
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US10/509,700 priority Critical patent/US7443585B2/en
Priority to KR1020047016797A priority patent/KR100955445B1/ko
Priority to EP03717612A priority patent/EP1498751A4/en
Publication of WO2003091766A1 publication Critical patent/WO2003091766A1/ja
Priority to US12/236,976 priority patent/US7746555B2/en
Priority to US12/781,398 priority patent/US7982952B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a polarizing element, and more particularly, to a polarized light source with excellent light utilization efficiency of diffused light emitted from a light source and high brightness, and various image devices such as a liquid crystal display device with good visibility and an organic EL bright display device
  • the present invention relates to a polarizing element suitable for use in a PDP, a CDP, etc. Background technology
  • a technique of condensing light emitted from a light source in a front direction to improve luminance is generally used. More specifically, for example, a lens, a mirror (reflection layer), a prism, or the like is used to condense or collimate light by using refraction or reflection to improve luminance.
  • a liquid crystal display device For example, in a liquid crystal display device, light emitted from a light source is condensed in a front direction by a prism sheet or the like, and is efficiently incident on a liquid crystal display element to improve luminance.
  • a prism sheet or the like when the light is condensed by the prism sheet, a large difference in refractive index is necessary in principle, so that it is necessary to install the device through an air layer or the like. This may cause unnecessary light loss due to unnecessary reflection and scattering, and also requires a large number of components.
  • this brightness enhancement system is provided with a reflective layer on the lower surface of the light guide plate and a reflective polarizer on the exit surface. System. Then, the light incident on the system is separated into transmitted light and reflected light depending on the polarization state, and the reflected light is reflected through the reflection layer on the lower surface of the light guide plate and re-emitted from the emission surface.
  • Improve brightness For example, circular polarization reflection separation using a cholesteric liquid crystal is described in detail in JP-A-3-54906, JP-A-6-324333, JP-A-7-36032, and the like. .
  • Such a brightness enhancement system can provide a sufficient effect for a light source whose light collection property has been improved by a prism sheet or the like in advance, as compared to a case where it is applied to a light source with a strong diffusion property. There is a problem that it is difficult.
  • a brightness enhancement technology for collimating light from a light source using a special optical film instead of using a lens, a mirror, a prism, or the like has been studied.
  • a typical method for example, there is a method using a combination of an emission light source and a band-pass filter. More specifically, for example, Japanese Patent Application Laid-Open Nos. Hei 6-230590, Philips No. 02-158089, Japanese Patent Application Laid-Open No.
  • an object of the present invention is to provide a polarizing element that can efficiently reflect obliquely transmitted light to the light source side without impairing the transmission polarization characteristics of vertically incident light.
  • a polarizing element of the present invention includes at least a two-layer reflective polarizer and a retardation layer disposed therebetween, and the two-layer reflective polarizer has a clockwise circular shape.
  • a reflective circular polarizer that selectively transmits one of polarized light and left-handed circularly polarized light and selectively reflects the other, and the two-layer reflective circular polarizer has a selective reflection wavelength band in the selective reflection of polarized light.
  • is the wavelength of light incident on the retardation layer
  • R is the absolute value of the phase difference (in-plane phase difference) between the X-axis direction and the ⁇ -axis direction with respect to the incident light from the ⁇ -axis direction (normal direction), and the X-axis direction is the phase difference
  • the ⁇ -axis direction is a direction perpendicular to the X-axis direction in the plane of the retardation layer (in-plane propagation).
  • the ⁇ -axis direction is a thickness direction of the retardation layer perpendicular to the X-axis direction and the ⁇ -axis direction,
  • R ′ is an absolute value of a phase difference between the X′-axis direction and the Y′-axis direction with respect to incident light from a direction inclined by 30 ° or more with respect to the ⁇ -axis direction
  • the X′-axis direction is The direction perpendicular to the incident direction of the incident light that is inclined by 30 ° or more with respect to the axial direction, and is the axial direction in the plane of the retardation layer, wherein the Y′-axis direction is perpendicular to the incident direction and the X′-axis direction.
  • FIG. 1 is a diagram illustrating a mechanism of simultaneously exhibiting light-collecting properties and an improvement in intensity in an embodiment in which a reflective circular polarizer and a C plate are combined in a polarizing element of the present invention.
  • FIG. 2 is a diagram illustrating symbols representing natural light, circularly polarized light, and linearly polarized light in the present invention.
  • FIG. 3 is a schematic diagram of circular polarization using a combination of a linear polarizer and a 14-wave plate. '
  • FIG. 4 shows a reflective linear polarizer in the polarizing element of the present invention.
  • FIG. 8 is a diagram showing a mechanism of simultaneous generation of light-collecting performance and luminance improvement of an embodiment in which a plate and a quarter-wave plate are combined.
  • FIG. 5 is a schematic view showing an angle formed by each layer in the polarizing element of FIG. 4.
  • FIG. 6 shows a reflecting linear polarizer and a quarter-wave plate with N z ⁇ 2 in the polarizing element of the present invention.
  • FIG. 6 is a diagram illustrating a mechanism of simultaneous expression of light-collecting properties and luminance improvement of the combined embodiment.
  • FIG. 7 is a schematic diagram showing an angle formed by each layer in the polarizing element of FIG. 6.
  • FIG. 8 shows a polarizing element of the present invention, a reflective linear polarizer and a half-wave plate with N z ⁇ 1.5.
  • FIG. 6 is a diagram showing a mechanism of simultaneously exhibiting light-collecting properties and luminance enhancement in an embodiment combining the above.
  • FIG. 9 is a schematic diagram showing an angle formed by each layer in the polarizing element in FIG. 8.
  • FIG. 10 is a schematic diagram showing an example of optical characteristics of a negative C plate.
  • FIG. 11 is a schematic diagram of a retardation layer including liquid crystal molecules that are homeotropically orientated.
  • FIG. 12 is a schematic diagram of a retardation layer including a discotic liquid crystal.
  • FIG. 13 is a schematic diagram of a retardation layer containing an inorganic layered compound.
  • FIG. 14 is a diagram illustrating an example of a bonding angle of each layer when a reflective linear polarizer, a C plate, and a quarter-wave plate are combined in the polarizing element of the present invention.
  • FIG. 15 is an explanatory diagram showing a light conversion path in the polarizing element of FIG. 14 as a Poincare sphere.
  • FIG. 16 is a diagram showing the light-collecting and brightness improving performance of the polarizing element of the first embodiment.
  • Figure 17 shows the focusing and brightness enhancement performance of the polarizing elements of Examples 5 and 6.
  • the polarizing element of the present invention having the above-described configuration efficiently reflects obliquely transmitted light to the light source side without impairing the transmission polarization characteristics of vertically incident light that contributes to front luminance. I found what I could do. Further, it is possible to further improve the luminance by converting the obliquely transmitted light (reflected polarized light) reflected to the light source side into light that can contribute to the improvement of the front luminance. Furthermore, the polarizing element of the present invention has such light-collecting properties and a function of improving brightness by retroreflection, so that the light-collecting function and the parallelizing function are less dependent on the light source type.
  • the in-plane retardation R is not more than ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ) as described above, but the polarization state of incident light from the ⁇ ⁇ axis direction (normal direction) is maintained as it is. From the viewpoint, it is better to be as small as possible, preferably ⁇ 20 or less, more preferably ⁇ 50 or less, and ideally 0.
  • Such a retardation layer having no or extremely small in-plane retardation and having a retardation only in the thickness direction is called a C-plate (C-p 1 ate), and its optical axis is aligned with its in-plane direction. Present in the vertical thickness direction.
  • the C-p 1 ate is a positive (positive) C-p 1 ate when the optical characteristic condition satisfies the following formula (VI), and a negative (negative) C- Called p 1 ate.
  • Typical negative C-plates include, for example, biaxially stretched polycarbonate (PC) or polyethylene terephthalate (PET) films, cholesteric liquid crystals, films with a reflective wavelength band shorter than visible light, and discotic liquid crystals.
  • a typical positive C plate is, for example, a vertically aligned liquid crystal film.
  • nx, ny and nz are, X axis in the optical layer such as. the C one ⁇ 1 at e, Y-axis and Z-axis
  • the X-axis direction is a direction (in-plane slow axis direction) where the refractive index is maximum in the plane of the layer, and the Y-axis direction is a plane of the layer.
  • a direction perpendicular to the X-axis direction (in-plane fast axis direction), and the Z-axis direction is a thickness direction of the layer perpendicular to the X-axis direction and the Y-axis direction.
  • the retardation layer in the present invention is not particularly limited as long as it satisfies the optical characteristic conditions of the formulas (I) and (II). It is preferable that the selective reflection wavelength band of the retardation layer exists in a wavelength region other than the visible light region (380 nm to 780 nm). The reason why the selective reflection wavelength band is set to a wavelength region other than the visible light region (380 nm to 780 nm) is to prevent coloring in the visible light region.
  • the selective reflection wavelength band of the cholesteric liquid crystal layer can be uniquely determined from the cholesteric chiral pitch and the refractive index of the liquid crystal, and the central wavelength ⁇ of the selective reflection is represented by the following equation (VIII).
  • ⁇ D (VIII)
  • n an average refractive index of cholesteric liquid crystal molecules
  • p is a chiral pitch.
  • the value of the central wavelength of the selective reflection wavelength band may be longer than the visible light region, for example, in the near infrared region, but if it exists in the ultraviolet region of 350 nm or less, the optical rotation It is more preferable because there is no possibility that a complicated phenomenon occurs due to the influence.
  • the type of the cholesteric liquid crystal is not particularly limited and can be appropriately selected. Examples thereof include a polymerized liquid crystal obtained by polymerizing a liquid crystal monomer, a liquid crystal polymer exhibiting cholesteric liquid crystallinity at a high temperature, and a mixture thereof. . Further, the liquid crystallinity of the cholesteric liquid crystal may be either lyotropic or samotopic, but from the viewpoint of easy control and easy formation of a monodomain, it is more preferable that the cholesteric liquid crystal be a liquid crystal having satopic mouth. preferable. Also, the method for producing the cholesteric liquid crystal is not particularly limited, and a known method can be appropriately used.
  • the material that can be used for the production of the partially crosslinked polymer material having cholesteric liquid crystallinity is not particularly limited, and is optional.
  • the cholesteric liquid crystal can be obtained by, for example, mixing a nematic liquid crystal monomer or a polymerizable mesogen compound with a chiral agent and reacting the mixture.
  • the polymerizable mesogenic compound is not particularly limited, and examples thereof include compounds described in W ⁇ 93 / 22397, EP0261217, DE195504224, DE44081171, and GB2280445.
  • a non-chiral compound or a chiral compound may be used, and it may be any of mono-, di- and poly-reactive, and can be synthesized by a known method.
  • Specific examples of the polymerizable mesogen compound include, for example, ⁇ 243 (trade name) of 883 ?, E7 (trade name) of Merck, and LC—Si 1 of Wacker-Cem. 1 icon—CC 37 67 (product name).
  • the chiral agent is not particularly limited, either.
  • chiral compounds include, for example, non-polymerizable chiral compounds such as Merck's S101, R811, and CB15 (all of which are trade names); There are chiral agents such as 56 (trade name).
  • the method for producing the retardation layer containing the cholesteric liquid crystal compound is not particularly limited, and a conventional cholesteric liquid crystal layer forming method can be used as appropriate.
  • the base material may be, for example, a base material such as polyimide, polypinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, etc. on a base material having a birefringence retardation as small as possible such as triacetyl cellulose or amorphous polyolefin.
  • a base material such as polyimide, polypinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, etc.
  • a base material having a birefringence retardation as small as possible such as triacetyl cellulose or amorphous polyolefin.
  • An alignment film formed by forming a film and rubbing with a rayon cloth or the like, or an alignment film formed by forming an oblique vapor deposition layer of SiO 2 on a similar base material can be used.
  • a substrate such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) that has been stretched to give a liquid crystal alignment capability, and the surface of the stretched substrate further has a fine abrasive such as bengara.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a device for forming a retardation layer containing a cholesteric liquid crystal compound on the substrate The physical method is as follows, for example. That is, first, a solution of a liquid crystal polymer is applied on the surface of the base material having a liquid crystal alignment ability, and dried to form a liquid crystal layer.
  • the solvent of the solution is not particularly limited, but examples thereof include a chlorine-based solvent such as methylene chloride, trichloroethylene, and tetrachloroethylene; a ketone-based solvent such as acetone, methylethylketone (MEK), and cyclohexanone; and toluene.
  • Aromatic solvents such as cycloheptane; amide solvents such as N-methylpyrrolidone; and ether solvents such as tetrahydrofuran. These may be used alone or in combination of two or more. You may use together.
  • the coating method is not particularly limited. For example, a spin coating method, a roll coating method, a flow coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, a gravure printing method, or the like is appropriately used. Can be done.
  • a heated melt of a liquid crystal polymer preferably a heated melt in a state of exhibiting an isotropic phase
  • a method such as solidification may be used. Such a method has the advantage that the working environment is hygienically good because no solvent is used.
  • a desired retardation layer is obtained by fixing the alignment state of the cholesteric liquid crystal molecules in the liquid crystal layer.
  • the method of immobilization is not particularly limited, and an appropriate method may be selected according to the case.
  • the liquid crystal layer is heated to a temperature equal to or higher than the glass transition temperature and lower than the isotropic phase transition temperature, and the liquid crystal polymer molecules are heated.
  • the structure may be fixed by irradiation with energy such as ultraviolet rays or an ion beam at the stage when the orientation state is formed.
  • the liquid crystal monomer may be used in place of the liquid crystal polymer, or may be used in combination with the liquid crystal polymer. At this time, necessary A chiral agent or an alignment aid may be added according to the conditions.
  • the base material may be used integrally with the retardation layer containing the cholesteric liquid crystal compound for the polarizing element. Further, in the case where the thickness of the base material divided by the birefringence may hinder the function of the polarizing element, for example, the retardation layer is peeled off from the base material or transferred onto another base material. May be used.
  • a retardation layer containing a rod-shaped liquid crystal compound fixed in a homeotropic opening pick alignment state is also preferable.
  • the type of the homeotropic liquid crystal is not particularly limited and may be appropriately selected. Examples thereof include a polymerized liquid crystal obtained by polymerizing a liquid crystal monomer, a liquid crystal polymer exhibiting nematic liquid crystallinity at a high temperature, and a mixture thereof. No.
  • the polymerized liquid crystal can be obtained by adding an alignment aid or the like as necessary to the liquid crystal monomer, and polymerizing by irradiation with ionizing radiation such as an electron beam or ultraviolet light or heat.
  • the liquid crystal properties may be either lyotropic or thermopic, but from the viewpoint of easy control and easy formation of a monodomain, it is desirable that the liquid crystal be a liquid crystal with a monopic.
  • the liquid crystal monomer is not particularly limited, and includes, for example, a polymerizable mesogen compound.
  • the polymerizable mesogen compound is not particularly limited, either. For example, it is the same as the cholesteric liquid crystal.
  • the method for forming such a retardation layer is not particularly limited, and a known method can be used as appropriate.
  • it can be formed using an alignment film or the like as in the case of the cholesteric liquid crystal.
  • the homeotropic pick orientation can be obtained, for example, by applying the homeostpic liquid crystal on a film on which a vertical alignment film (such as a long-chain alkylsilane) is formed, and developing and fixing a liquid crystal state.
  • a retardation layer containing a discotic liquid crystal compound fixed in a nematic phase or a columnar phase orientation state is also preferable.
  • a retardation layer is made of, for example, a discotic liquid crystal material having a negative uniaxial property, such as a phthalocyanine or a triphenylene compound having a molecular spread in a plane, a nematic phase or a columnar phase. It can be expressed and its state can be fixed and formed.
  • a specific forming method is not particularly limited, and a known method can be appropriately used.
  • the retardation layer includes an inorganic layered compound having negative uniaxiality, and the orientation state of the inorganic layered compound is such that the optical axis direction of the retardation layer is a direction perpendicular to a plane (normal direction). It is also preferable to use a retardation layer fixed such that The method for forming such a retardation layer is not particularly limited, and a known method can be appropriately used. The details of the negative uniaxial inorganic layered compound are described in Japanese Patent Application Laid-Open No. Hei 6-82777.
  • FIGS. 11 to 13 show a retardation layer having a fixed homeotropic aperture orientation, a retardation layer using discotic liquid crystal, and a retardation layer made of an inorganic layered compound, respectively.
  • the figures represented by the symbols 1101, 1200, and 1301 represent the homeotropic liquid crystal molecules, discotic liquid crystal molecules, and flakes of negative uniaxial inorganic layered compound crystals, respectively.
  • a retardation layer containing a biaxially oriented non-liquid crystal polymer is also preferable.
  • the method for forming such a retardation layer is not particularly limited, and a known method can be appropriately used.
  • Examples thereof include a method of biaxially stretching a polymer film having a positive refractive index anisotropy, Examples of the method include a method of pressing a plastic resin, a method of cutting out a parallel-oriented crystal, and the like.
  • the solution may be applied to a substrate, dried, and formed into a film to obtain a C-pate.
  • the non-liquid crystal polymer is not particularly limited.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate Polymers
  • cell-based polymers such as diacetyl cellulose, triacetyl cell mouth, etc.
  • acryl-based polymers such as polymethyl methacrylate
  • styrene-based polymers such as polystyrene, acrylonitrile-styrene copolymer (AS resin)
  • AS resin acrylonitrile-styrene copolymer
  • bis Polyolefins such as phenol A and carbonic acid copolymers
  • polyolefins containing cyclo-structures such as polyethylene or polypropylene
  • linear or branched polyolefins such as ethylene and propylene copolymers
  • polynorpolene and chlorides.
  • Amide polymers such as vinyl polymer, nylon, aromatic polyamide, imide polymer, sulfone polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl Alcow Preferred are vinyl polymers, vinylidene chloride-based polymers, vinyl butyral-based polymers, arylate-based polymers, polyoxymethylene-based polymers, and epoxy-based polymers, and these may be used alone or in combination of two or more. . Further, an appropriate additive may be appropriately added to these polymer materials for any purpose such as imparting extensibility and shrinkage.
  • non-liquid crystal polymer examples include a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a cyano group in a side chain.
  • resin compositions examples include a resin composition having an alternating copolymer of isobutene and N-methylenmaleimide and an acrylonitrile / styrene copolymer.
  • the polyimide film material for example, materials described in US Pat. No. 5,580,950 and US Pat. No. 5,580,964 are also suitably used as a retardation layer made of a non-liquid crystalline polymer. Can be used.
  • the two-layer reflective polarizer selectively transmits one of clockwise circularly polarized light and counterclockwise circularly polarized light and selectively reflects the other.
  • the polarizer (reflective circular polarizer) has a polarization separation function for natural light incident from a wide angle, and has advantages such as simple design and manufacture.
  • the reflective circular polarizer is not particularly limited, but for example, a cholesteric liquid crystal having a fixed planar alignment state is more preferable.
  • the type of the cholesteric liquid crystal is not particularly limited and can be appropriately selected.
  • a polymerized liquid crystal obtained by polymerizing a liquid crystal monomer, a liquid crystal polymer exhibiting cholesteric liquid crystallinity at high temperature, and Mixtures thereof can be used.
  • the polymerized liquid crystal can be prepared by adding a chiral agent or an alignment aid as necessary to the liquid crystal monomer, and polymerizing by irradiation with ionizing radiation such as an electron beam or an ultraviolet ray or heat.
  • the cholesteric liquid crystal may be either lyotropic or thermostatic, but may be a thermotropic liquid crystal from the viewpoint of easy control and easy formation of a monodomain. More preferred.
  • the reflective circular polarizer includes, for example, a sheet including a layer made of a cholesteric liquid crystal polymer, a sheet in which the layer is laminated on a glass plate or the like, and a cholesteric liquid crystal polymer.
  • a cholesteric liquid crystal polymer examples include, but are not limited to, films.
  • the method for forming such a cholesteric liquid crystal layer is not particularly limited.
  • the cholesteric liquid crystal layer can be formed in the same manner as the phase difference layer containing the cholesteric liquid crystal compound.
  • the cholesteric liquid crystal is more preferably aligned as uniformly as possible in the layer.
  • the selective reflection wavelength band is greater than the visible light region or the light source emission wavelength band from the viewpoint of the performance of the polarizing element, and the selective reflection wavelength band is cholesteric as described above. It can be uniquely determined from the chiral pitch and the refractive index of the liquid crystal.
  • the reflective circular polarizer The cholesteric liquid crystal layer forming the layer may be formed, for example, by laminating a plurality of layers having different selective reflection wavelength bands or a single layer having a pitch changed in the thickness direction.
  • a plurality of cholesteric liquid crystal layers laminated on a base material may be prepared in advance, and these may be further laminated.
  • a method in which an alignment film is formed on a cholesteric liquid crystal layer and another cholesteric liquid crystal layer is stacked thereon is more preferable from the viewpoint of thinning and the like.
  • the polarizing element of the present invention further includes another layer having a 1Z4 wavelength plate function at least in a front direction, and this layer is a reflective circle located on the viewing side of the two-layer reflective circular polarizer. More preferably, it is arranged further outside the polarizer. With this configuration, circularly polarized light transmitted through the reflective circular polarizer can be changed to linearly polarized light, and can be used efficiently.
  • a polarizing element further includes an absorbing dichroic polarizing plate, and the absorbing dichroic polarizing plate is further disposed outside the another layer having a quarter-wave plate function in the at least frontal direction. Especially preferred.
  • the absorption dichroic polarizing plate is not particularly limited, but for example, iodine or a hydrophilic high molecular film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film.
  • a hydrophilic high molecular film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film.
  • Examples include absorption-type polarized light that is drawn by adsorbing a dichroic substance such as a dichroic dye, and a polyene oriented film such as a dehydrated product of polyvinyl alcohol or a dehydrochlorinated product of polyvinyl chloride.
  • a polarizing plate having a transparent protective layer comprising a plastic coating layer or a film laminating layer for protecting water resistance or the like on one side or both sides of the film may also be used.
  • transparent fine particles are contained in the transparent protective layer to give a fine uneven structure on the surface.
  • transparent fine particles For example, inorganic fine particles such as silica, alumina, titania zirconia, tin oxide, indium oxide, cadmium oxide, and antimony oxide having an average particle size of 0.5 to 5 m are exemplified.
  • organic fine particles such as a crosslinked or uncrosslinked polymer may also be used.
  • FIG. 1 is a view showing one embodiment of the polarizing element of the present invention.
  • this polarizing element includes a cholesteric liquid crystal circular polarizer 201 (hereinafter sometimes referred to as “layer 1”), a C-plate 202 (hereinafter sometimes referred to as “layer 2”), The main components of the cholesteric liquid crystal circular polarizer 203 (hereinafter sometimes referred to as “layer 3”) are stacked in this order, and light enters from the layer 1 side.
  • the directions of rotation of circularly polarized light passing through the two layers of reflective circular polarizers are the same.
  • the bonding direction may be arbitrary. For this reason, the narrowing angle range of the parallel light conversion has isotropic and symmetric characteristics.
  • FIG. 2 is a diagram for explaining symbols representing natural light, circularly polarized light, and linearly polarized light in the present invention.
  • the rotation directions of the circularly polarized light a and the circularly polarized light b are opposite to each other, and the linearly polarized light c and the linearly polarized light d are orthogonal to each other.
  • a light source supplied from a backlight That is, the vertically incident natural light 1 is polarized and separated by the circular polarizer 201 (layer 1), and is separated into two circularly polarized lights, ie, transmitted light 3 and reflected light 2. The direction of rotation of each circularly polarized light is opposite.
  • the transmitted light 3 passes through the retardation layer 202 (layer 2) and becomes the transmitted light 4.
  • the transmitted light 4 passes through the circular polarizer 203 (layer 3) and becomes the transmitted light 5.
  • the transmitted light 5 is used for a liquid crystal display device disposed thereon.
  • the obliquely incident natural light 6 is polarized and separated by the circular polarizer 201, and is separated into two circularly polarized lights, ie, the transmitted light 8 and the reflected light 7.
  • the direction of rotation of each circularly polarized light is opposite.
  • phase difference value is given 1Z2 wavelengths, and becomes the transmitted light 9.
  • the transmitted light 9 is reflected by the circular polarizer 203 and becomes light 10.
  • the reflected light 10 is affected by the phase difference when passing through the retardation layer 202 and becomes the transmitted light 11.
  • the transmitted light 11 has its rotation inverted due to the effect of the phase difference.
  • the transmitted circularly polarized light 5 is converted into linearly polarized light by a 1Z4 wavelength plate (not shown), it can be used for a liquid crystal display device without causing absorption loss. As described above, the light is condensed and the luminance is increased by the polarizing element of FIG. Next, the selective reflection wavelength band of the reflective polarizer will be described.
  • the selective reflection wavelength bands of the two-layer reflective polarizer in the present invention may be the same or different.
  • one reflective polarizer may reflect at the full wavelength of visible light and the other may partially reflect, but at least some of the selective reflection wavelength bands overlap each other.
  • the selective reflection wavelength band of the reflective polarizer may be appropriately designed in accordance with the purpose of use of the polarizing element, the members used in combination, the type of light source, and the like.
  • its selective reflection is achieved for high light. That is, specifically, the overlapping region of the selective reflection wavelength bands in the two-layer reflective polarizer preferably includes a wavelength range of 540 to 560 nm.
  • the selective reflection wavelength band can be uniquely determined from the cholesteric chiral pitch and the refractive index of the liquid crystal.
  • the characteristics are uniform in the visible light range, or at least the emission spectrum region of the light source (mostly around 435 nm to 610 nm). It is more preferable to be able to improve the power.
  • the selective reflection spectrum of the cholesteric liquid crystal shifts to the shorter wavelength side (blue shift) for obliquely incident light
  • the overlapping wavelength region covers a longer wavelength region than 610 nm. It is more preferable that Since the selective reflection wavelength bandwidth required on the long wavelength side largely depends on the angle and wavelength of the incident light from the light source, the long wavelength end is set arbitrarily according to the required specifications.
  • the angle of light emitted from the light guide plate is about 60 ° from the normal direction.
  • the amount of the blue shift tends to increase as the incident angle increases, and is generally about 100 nm at around 60 °. Therefore, when a three-wavelength cold cathode tube is used for the backlight and the red emission line spectrum is 61 nm, the overlapping region of the selective reflection wavelength band is longer than 71 O nm. It just needs to reach the side.
  • the selective reflection wavelength bands overlap in the entire visible light wavelength region, that is, in the range of 38Onm to 780nm.
  • the backlight light source emits only a specific wavelength, for example, in the case of a colored cold-cathode tube, it is sufficient that only the obtained bright line can be shielded. Also, if the light emitted from the backlight is narrowed to some extent in the front direction from the beginning due to the design of microlens dots, prisms, etc. processed on the surface of the body, the transmitted light at a large incident angle Since it can be neglected, it is not necessary to extend the selective reflection wavelength greatly to the longer wavelength side. Next, the retardation value of the retardation layer will be described.
  • the oblique retardation value R ′ of the retardation layer (see equation (II)) is ideally ⁇ ⁇ 2 ( ⁇ ) because the light transmitted through the retardation layer is totally reflected by the reflective polarizer. Is the wavelength of the incident light), but in practice it is not exactly; Furthermore, since the oblique phase difference value R ′ varies depending on the incident angle of light, and generally tends to increase as the incident angle increases, the angle of total reflection and the like must be adjusted in order to cause efficient polarization conversion. It is necessary to determine it appropriately taking into consideration. For example, to completely reflect the light at an angle of about 60 ° from the normal, the phase difference measured at 60 ° may be determined so that the phase difference is about ⁇ 2.
  • the method of adjusting the oblique retardation value R ′ is not particularly limited, and a known method can be used as appropriate.
  • the retardation layer is a biaxially stretched film
  • the stretching ratio or film It can be controlled by the thickness and the like.
  • the transmitted light by the reflective polarizer may change its polarization state due to the birefringence of the reflective polarizer itself such as a C plate.
  • a reflective circular polarizer including a cholesteric liquid crystal layer may have some properties as a retardation layer, for example, a negative C plate, due to the twisted structure of the cholesteric liquid crystal compound. Therefore, the oblique retardation value R ′ of the retardation layer can be adjusted to a value smaller than ⁇ 2 in consideration of the retardation of the reflective polarizer.
  • R ′ may be ⁇ / 8 or more as in the above formula (II).
  • the upper limit value of R ′ is not particularly limited, and may be appropriately set according to the purpose as described above. As described above, the smaller the in-plane retardation R (see the above formula (I)), the better.
  • FIG. 10 shows a relationship between the phase difference with respect to the incident angle of the C plate and a refractive index ellipsoid that simply shows the optical anisotropy of the C plate.
  • Fig. 10 shows an example where the biaxial orientation of the birefringent resin has a front phase difference of 0 and an oblique phase difference of 1 Z 2 wavelengths. Become.
  • the embodiment using the reflective circular polarizer has been described.
  • the embodiment is not limited to the above, and various modifications are possible.
  • the retardation layer may use a half-wave plate (also referred to as a half-wave retarder) instead of the C plate.
  • the polarizing element of the present invention includes at least a two-layer reflective circular polarizer and a 1Z two-wave plate disposed therebetween, and the two-layer reflective circular polarizer is capable of selectively reflecting polarized light.
  • Polarizers in which at least a part of the selective reflection wavelength band overlaps with each other may be used.
  • the rotation directions of the circularly polarized light passing through each of the two layers of the reflective circular polarizers are opposite to each other, and the oblique phase difference value in the 1Z two-wave plate is 0 or ⁇ . Ideally there is.
  • the phase difference value in the oblique direction it is necessary to consider the phase difference value of the reflective circular polarizer as in the case of using the C plate.
  • problems such as anisotropy and coloring due to the azimuth of the tilted axis may occur.
  • coloring can be canceled using layers with different wavelength dispersion characteristics
  • the reflective polarizer may be a reflective linear polarizer. More specifically, the polarizing element of the present invention includes at least two layers of reflective polarizers and an intermediate layer disposed therebetween, wherein the two layers of reflective polarizers have orthogonal linearly polarized light. One of them is selectively transmitted and the other is selectively
  • the two-layer reflective linear polarizer has at least a part of the selective reflection wavelength band in the selective reflection of polarized light overlapping with each other, and the intermediate layer includes one optical layer.
  • the intermediate layer has a laminated structure of two or more optical layers, and the intermediate layer has a function of transmitting incident linearly polarized light with or without changing the polarization direction according to the incident direction.
  • the in-plane slow axis direction of the two-layer reflective linear polarizer transmits light incident from a direction perpendicular to the light incident surface (normal direction) of the incident linearly polarized light, and is incident obliquely.
  • Polarizing elements may be arranged at such an angle as to efficiently reflect the reflected light.
  • a polarizing element for example, an element in which a C plate is sandwiched by a combination of a reflective linear polarizer and a 1 wavelength plate (also referred to as a 1Z4 wavelength phase difference plate) is preferable. More specifically, it includes at least two layers of reflective linear polarizers, a retardation layer disposed between them, and at least two layers of 1Z4 wavelength plates, and one of the 1Z4 wavelength plates A layer is disposed between one of the reflective linear polarizers and the retardation layer, and another quarter-wave plate is disposed between the other reflective linear polarizer and the retardation layer.
  • the two-layer reflective linear polarizer is arranged, and at least a part of the selective reflection wavelength band in the selective reflection of polarized light overlaps with each other, and the quarter-wave plate located on one surface side of the retardation layer is
  • the in-plane slow axis forms an angle of 40 ° to 50 ° with the polarization axis of the reflective linear polarizer located on the same side, and the 1Z4 wave plate located on the other surface side of the retardation layer is
  • the in-plane slow axis forms an angle of 140 ° to 150 ° with the polarization axis of the reflective linear polarizer located on the same side, and the two-layer quarter-wave plate Angle inner slow axis together forms the polarizing element is preferably any.
  • the retardation layer needs to satisfy the conditions of the following formulas (I) and (III).
  • the reflective circular polarizer and the reflective linear polarizer have an advantage that there is no dependence on the incident angle as compared with the prism-type reflective polarizer based on the principle such as the Brewster angle. If the C plate is simply sandwiched between the reflective linear polarizers, the optical axis of the light beam incident on the C plate from an oblique direction is always orthogonal to the light beam direction, so that no phase difference occurs and no polarization conversion is performed. Therefore, the linearly polarized light is converted to circularly polarized light by a quarter-wave plate having a slow axis direction at 45 ° or 145 ° with respect to the polarization axis of the reflection linear polarizer, and then is inverted by the phase difference of the C plate.
  • the quarter-wave plate and half-wave plate in the present invention are not particularly limited, and known ones can be appropriately used. Specifically, for example, a uniaxially or biaxially stretched polymer film and a layer in which a liquid crystal compound is hybrid-oriented (uniaxially oriented in a planar direction and further oriented in a thickness direction) are exemplified. .
  • the method of controlling the in-plane retardation and the thickness direction retardation in the ⁇ ⁇ wavelength plate and the 1Z2 wavelength plate is not particularly limited.
  • the control is performed by adjusting a stretching ratio, a film thickness, and the like. it can.
  • the polymer that can be used for the polymer film is not particularly limited.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphtholate
  • cellulosic polymers such as diacetyl cellulose and triacetyl cellulose
  • acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile and styrene Styrene-based polymers
  • polymers AS resin
  • polyphenol-based polymers such as bisphenol A / carbonic acid copolymer
  • linear or branched polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer.
  • Polyolefins having a cyclo structure such as polynorpolene, polychlorinated polymers, vinyl chloride-based polymers, amide polymers such as nylon and aromatic polyamides, imid-based polymers, sulfone-based polymers, polyethersulfone-based polymers, Preferred are ether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, and epoxy polymer. These may be used alone or in combination of two or more. Further, an appropriate additive may be appropriately added to these polymer materials for any purpose such as imparting elongation and shrinkage.
  • the method for producing the polymer film is not particularly limited, and examples thereof include those produced by a casting method (extrusion molding method) and those produced by melting the polymer material, forming a film, and then stretching the film. The latter is preferred from the viewpoint of mechanical strength and the like.
  • polymer film examples include a polymer film described in Japanese Patent Application Laid-Open No. 2001-343529 (W 201/37007).
  • material of the polymer film examples include a thermoplastic resin having a substituted or unsubstituted imido group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a cyano group in a side chain.
  • the resin composition examples thereof include a resin composition having an alternating copolymer of isobutene and N-methylenemaleimide and an acrylonitrile / styrene copolymer.
  • the reflective linear polarizer of the present invention is not particularly limited, and a known linear polarizer can be appropriately used.
  • a stretched film having optical anisotropy or a laminate thereof can be used.
  • the material of the stretched film for example, the same materials as those of the 1Z4 wavelength plate and the 1/2 wavelength plate can be used.
  • FIG. 4 is a schematic diagram illustrating the polarizing element of the present embodiment.
  • this polarizing element includes a reflection linear polarizer 404 (hereinafter sometimes referred to as “layer 4”), a quarter-wave plate 405 (hereinafter sometimes referred to as “layer 5”), and a C-plate 406. (Hereinafter sometimes referred to as “layer 6”), a quarter-wave plate 407 (hereinafter sometimes referred to as “layer 7”), and a reflective linear polarizer 408 (hereinafter sometimes referred to as “layer 8”). ) Are stacked in this order, and light enters from the layer 4 side.
  • FIG. 5 is a schematic diagram showing a bonding angle of each main component in the polarizing element of FIG.
  • the angle between the polarization axis of the linear polarizer 404 and the in-plane slow axis of the 1Z4 wavelength plate 405 is 40 ° to 50 °, and the polarization axis of the linear polarizer 408 and the in-plane slowness of the 1Z4 wavelength plate 407.
  • the angle with the axis is between 140 ° and 150 °.
  • the angle formed by each component is not particularly limited, and set 1 (combination of linear polarizer 404 and 1 Z4 wave plate 405) and set 2 (combination of linear polarizer 408
  • set 1 combination of linear polarizer 404 and 1 Z4 wave plate 405
  • set 2 combination of linear polarizer 408
  • FIG. 14 shows an example in which the set 2 in the examples shown in FIGS. 4 and 5 is rotated by 90 °. Performance similar to 4 and 5 can be demonstrated.
  • the bonding angle is arbitrary.
  • Light 14 is separated into linearly polarized light 15 and linearly polarized light 16 orthogonal thereto, and light 15 is transmitted through layer 4 and light 16 is reflected.
  • the linearly polarized light 5 passes through the quarter-wave plate 405 (layer 5) and is converted into circularly polarized light 17.
  • Circularly polarized light 17 does not change its polarization state and transmits C-p 1 ate 406 (layer 6) as circularly polarized light 18.
  • the circularly polarized light 18 passes through the 174 wavelength plate 407 (layer 7) and is converted into linearly polarized light 19.
  • the linearly polarized light 19 does not change its polarization state, and is transmitted as the linearly polarized light 20 through the reflective linear polarizer 408 (layer 8).
  • the linearly polarized light 20 enters a device (such as a liquid crystal display device) and is transmitted without loss.
  • a device such as a liquid crystal display device
  • natural light 21 from the oblique direction is incident on the layer 4 from the backlight.
  • Light 21 is separated into linearly polarized light 22 and linearly polarized light 23 orthogonal thereto, and light 22 is transmitted through layer 4 (reflective linear polarizer) and light 23 is reflected.
  • the linearly polarized light 22 passes through the layer 5 (1/4 wavelength plate) and is converted into circularly polarized light 24.
  • the circularly polarized light 24 receives a phase difference of 1/2 wavelength, and the direction of rotation is reversed to become circularly polarized light 25.
  • the circularly polarized light 25 passes through the layer 7 (1/4 wavelength plate) and is converted into linearly polarized light 26.
  • the linearly polarized light 26 is reflected by the layer 8 (reflective linear polarizer) to become a linearly polarized light 27.
  • the linearly polarized light 28 passes through the layer 7 (1/4 wavelength plate) and is converted into circularly polarized light 28.
  • the circularly polarized light 28 receives a phase difference of 1Z2 wavelength when transmitting through the layer 6 (C plate), and the rotation direction is reversed to become the circularly polarized light 29.
  • Circularly polarized light 29 passes through layer 5 (1/4 wavelength plate) and is converted to linearly polarized light 30.
  • the linearly polarized light 30 does not change its polarization state and passes through the layer 4 (reflective linear polarizer) as the linearly polarized light 31.
  • the reflected light 16, 23 and 31 is returned to the backlight and recycled.
  • the recycling mechanism is the same as in the first embodiment.
  • the angle between the polarization axis of the reflective linear polarizer and the in-plane slow axis of the quarter-wave plate in the set 1 and the set 2 (FIG. 5) is an ideal system. Theoretically, it is 45 ° and one 45 °.
  • the properties of actual reflective polarizers and wave plates are not perfect in the visible light range, and there are subtle changes for each wavelength, which may cause problems such as coloring. Therefore, if the color tone is compensated by slightly changing the angle and the entire system is rationally optimized, the above-mentioned problems such as coloring can be solved.
  • the adjustment is limited to a range within ⁇ 5 °.
  • the preferred range of the selective reflection wavelength band of the reflective linear polarizer is the same as that of the reflective circular polarizer.
  • the point that the wavelength characteristic of the transmitted light shifts to the shorter wavelength side with respect to the incident light in the oblique direction is the same as that of the reflective circular polarizer, so that the light incident at a deep angle can function sufficiently outside the visible light range. It is preferable to have sufficient polarization characteristics and phase difference characteristics on the long wavelength side.
  • the preferable range of the oblique retardation value R ′ (formula (Ilf)) in the retardation layer (C plate) of the present embodiment can be adjusted based on the same concept as in the case of using a reflective circular polarizer. Good. However, since a reflection linear polarizer generally has a smaller phase difference characteristic than a reflection circular polarizer, R ′ needs to be not less than 1/8 wavelength but not less than 1/4 wavelength.
  • Fig. 15 shows the change in the polarization state between the two reflective polarizers due to the 1Z 4 wavelength plate, C plate and 1/4 wavelength plate when obliquely incident light is incident on the polarizer in Fig. 14. Shown on Poincare sphere.
  • This figure shows how linearly polarized light incident from the first reflective polarizer is converted to reverse linearly polarized light via circularly polarized light.
  • this figure is a reference material showing an example of the present invention, and does not limit the present invention in any way.
  • the front phase difference (in-plane phase difference) is ⁇ / 4, and the thickness direction phase difference is ⁇ / 2 or more.
  • the polarizing element of the present invention includes at least two layers of reflective linear polarizers and two layers of quarter-wave plates disposed therebetween, and the two layers of reflective linear polarizers select polarization.
  • the in-plane slow axis of one of the quarter-wave plates is 40 ° to 50 ° with the polarization axis of the reflective linear polarizer located on the same side.
  • the in-plane slow axis of the other quarter-wave plate makes an angle of ⁇ 40 ° to 150 ° with the polarization axis of the reflective linear polarizer located on the same side.
  • the angle between the in-plane slow axes of the quarter-wave plate is arbitrary, and each of the 1Z4 wave plates may be a polarizing element that satisfies the condition of the following formula (IV).
  • nx, 11 and 112 are the refractive indices in the X-axis direction, Y-axis direction and Z-axis direction of the 1/4 wavelength plate, respectively, and the X-axis direction is the in-plane of the 1Z4 wavelength plate.
  • the Y-axis direction is a direction perpendicular to the X-axis direction in the plane of the 1Z4 wave plate (in-plane fast axis direction).
  • the Z-axis direction is a thickness direction of the quarter-wave plate perpendicular to the X-axis direction and the Y-axis direction.
  • the material of the quarter-wave plate and the reflective linear polarizer, and the method of controlling the in-plane retardation and the thickness direction retardation are not particularly limited, and are, for example, as described in the second embodiment.
  • FIG. 6 is a schematic diagram illustrating the polarizing element of the present embodiment.
  • this polarizing element is Photon 609 (hereinafter sometimes referred to as “layer 9”), / 4 wavelength plate 6 10 (hereinafter sometimes referred to as “layer 10”), 1Z4 wavelength plate 6 1 1 (hereinafter “layer 11”) )
  • the reflective linear polarizer 6 1 2 (hereinafter sometimes referred to as “layer 1 2”) are laminated in this order, and light is incident from the layer 9 side. I do.
  • FIG. 7 is a schematic diagram showing a bonding angle of each main component in the polarizing element of FIG.
  • the angle between the polarization axis of the linear polarizer 609 and the in-plane slow axis of the 1Z4 wavelength plate 610 is 40 ° to 50 °, and the polarization axis of the linear polarizer 6 1 2 and the 1/4 wavelength plate 6
  • the angle of 11 with the in-plane slow axis is between 140 ° and 150 °.
  • each component is not particularly limited, and set 1 (combination of linear polarizer 609 and quarter-wave plate 6 10) and set 2 (linear The same performance can be exerted even if the polarizer 6 12 and the 1/4 wavelength plate 6 11 1) are arbitrarily rotated.
  • the axes of the upper and lower linear polarizers are parallel, and the axis of the 1Z4 wavelength plate is orthogonal, but the present invention is not limited to this.
  • natural light 32 is vertically incident from the backlight (light source).
  • the natural light 32 is separated into the linearly polarized light 33 and the linearly polarized light 34 orthogonal thereto by the layer 9 (reflective linear polarizer).
  • the linearly polarized light 33 is transmitted through the layer 9 and the linearly polarized light 34 is reflected.
  • the linearly polarized light 33 is transmitted through the layer 10 and the layer 11 (a 1/4 wavelength plate).
  • the in-plane slow axes of layers 10 and 11 are orthogonal. Therefore, when considered as a combination of the layers 10 and 11, the front phase difference (in-plane phase difference) is zero. Therefore, when the linearly polarized light 33 passes through the layers 10 and 11, it becomes linearly polarized light 35 without changing its polarization state.
  • the linearly polarized light 35 passes through the layer 12 (reflective linear polarizer) without changing its polarization state, and becomes linearly polarized light 36.
  • the linearly polarized light 36 is transmitted to the device (such as a liquid crystal display device) without loss.
  • the natural light 37 is separated by the layer 9 (reflective linear polarizer) into a linearly polarized light 38 and a linearly polarized light 39 orthogonal thereto, and the linearly polarized light 38 is transmitted through the layer 9 and the linearly polarized light 39 is reflected.
  • the linearly polarized light 38 is obliquely incident on the layer 10 and the layer 11, and when transmitted through these layers, the polarization axis direction changes by 90 ° due to the influence of the phase difference in the thickness direction to become linearly polarized light 40.
  • the linearly polarized light 40 enters the layer 12 (reflective linear polarizer).
  • the linearly polarized light 41 is affected by the phase difference when transmitting through the layers 11 and 10 as in (9), and the polarization axis direction changes by 90 °, causing the linearly polarized light 41 to change.
  • the linearly polarized light 42 passes through the layer 9 (reflective linear polarizer) without changing its polarization state, and becomes linearly polarized light 43.
  • the reflected lights 34, 39 and 43 are returned to the backlight and recycled.
  • the recycling mechanism is the same as in Embodiments 1 and 2.
  • the polarizing element according to the present embodiment can exhibit the same performance as the polarizing element according to the second embodiment, and has the advantage of being more excellent in production efficiency than the polarizing element according to the second embodiment because the C plate can be omitted.
  • the one-to-four wavelength plate in the present embodiment is not particularly limited, and is as described above. For example, a biaxially stretched polyforce monopoly (PC), polyethylene terephthalate (PET) film, or hybrid A layer of an oriented liquid crystal compound is more preferred.
  • the range of the angle between the reflective linear polarizer and the quarter-wave plate is as described above, and the fine adjustment may be made based on the same concept as in the second embodiment.
  • the selective reflection wavelength band of the reflective linear polarizer is the same as in the first and second embodiments.
  • the use efficiency of obliquely incident light changes by changing the value of N z (Equation (IV)).
  • the preferable range is not particularly limited, and is different from Embodiments 1 and 2. Adjustments may be made based on the same concept to obtain optimal light use efficiency. The point that it is necessary to consider the phase difference of the reflective polarizer is the same as in the above embodiments. (Embodiment 4)
  • the front phase difference (in-plane phase difference) is ⁇ / 2
  • the thickness direction phase difference is The same effect can be obtained by using a biaxial film having two or more films.
  • the Nz coefficient needs to be 1.5 or more. That is, the polarizing element of the present invention includes at least a two-layer reflective linear polarizer and a half-wave plate disposed therebetween, and the two-layer reflective linear polarizer is capable of selectively reflecting polarized light.
  • the 1Z2 wave plate may be a polarizing element that forms an angle of 140 ° to 150 ° with the polarization axis of the reflection linear polarizer, and satisfies the following condition (V).
  • Nz (n X-n z) / (n x-n y) In equation (V),
  • nx, ny, and nz are the refractive indices in the X-axis direction, the Y-axis direction, and the Z-axis direction in the half-wave plate, respectively, and the X-axis direction is within the plane of the half-wave plate.
  • the direction in which the refractive index is the maximum (in-plane slow axis direction), and the Y-axis direction is a direction perpendicular to the X-axis direction in the plane of the half-wave plate (in-plane fast axis direction).
  • the Z-axis direction is a thickness direction of the 1Z2 wave plate perpendicular to the X-axis direction and the Y-axis direction.
  • the material and the manufacturing method of the reflective linear polarizer and the wavelength plate are not particularly limited, and are the same as those of the other embodiments.
  • FIG. 8 is a schematic diagram illustrating the polarizing element of the present embodiment.
  • this polarizing element includes a reflective linear polarizer 813 (hereinafter sometimes referred to as “layer 13”), a 1Z2 wave plate 814 (hereinafter sometimes referred to as “layer 14”), and a reflective linear polarizer.
  • 81 5 (hereinafter sometimes referred to as “Layer 15”) are stacked in this order. Light enters from the layer 13 side.
  • FIG. 9 is a schematic diagram showing a bonding angle of each main component in the polarizing element of FIG.
  • the angle between the polarization axis of the linear polarizer 813 and the in-plane slow axis of the 1Z2 wavelength plate 814 is 40 ° to 50 °, and the polarization axis of the linear polarizer 815 and the in-plane slowness of the 1Z2 wavelength plate 814.
  • the angle between the axis and the axis is between -40 ° and 150 °. Therefore, the in-plane slow axes of the two-layered linear polarizers are necessarily substantially orthogonal to each other.
  • the polarizing element of the present embodiment can exhibit the same performance as the polarizing elements of the second and third embodiments, and has an advantage that the production efficiency is further improved because the number of layers is small.
  • natural light 47 is vertically incident from a backlight (light source).
  • the natural light 47 is separated by the layer 13 into a linearly polarized light 48 and a linearly polarized light 49 orthogonal thereto, and the linearly polarized light 48 passes through the layer 13 and is linearly polarized.
  • the linearly polarized light 50 passes through the layer 15 (reflective linear polarizer) without changing its polarization state, and becomes linearly polarized light 51.
  • the transmitted linearly polarized light 51 is transmitted to a device (such as a liquid crystal display device) without loss.
  • the natural light 52 is separated into the linearly polarized light 53 and the linearly polarized light 54 orthogonal thereto by the layer 13 (reflective linear polarizer).
  • the linearly polarized light 53 is transmitted through the layer 13 and the linearly polarized light 54 is reflected. .
  • the linearly polarized light 53 is obliquely incident on the layer 14 (1/2 wavelength plate), and is transmitted as linearly polarized light 55 without changing its polarization axis direction.
  • the linearly polarized light 56 enters the layer 14 and passes through without changing the polarization axis direction to become linearly polarized light 57.
  • the reflected light 49, 54 and 58 is returned to the backlight side and recycled.
  • the recycling mechanism is the same as in the other embodiments.
  • the range of the angle between the reflective linear polarizer and the 1Z2 wavelength plate is as described above, and the fine adjustment may be performed based on the same concept as in the second and third embodiments.
  • the selective reflection wavelength band of the reflective linear polarizer is also the same as in the first to third embodiments.
  • the use efficiency of obliquely incident light changes by changing the value of N z (Equation (V)).
  • the preferred range is not particularly limited, and the first to third embodiments are not limited. Adjustments may be made based on the same concept as described above to obtain optimal light use efficiency. The point that it is necessary to consider the phase difference of the reflection polarizer is the same as in the above embodiments.
  • the present invention has been described based on Embodiments 1 to 4.
  • the present invention is not limited to the above description, and various modifications can be made without departing from the gist of the present invention.
  • the polarizing element of the present invention may appropriately include other optical layers and other components within a range in which the object can be achieved, in addition to the above components.
  • the materials, manufacturing methods, and the like of the components such as the C plate, the reflective polarizer, and the wavelength plate are as described above.
  • the manufacturing method of the polarizing element of the present invention is not particularly limited, but the polarizing element can be manufactured by laminating the above-described respective components and other components as necessary.
  • the form of lamination is not particularly limited, and the respective components may be simply placed one on top of the other, but from the viewpoints of workability and light use efficiency, the respective components are formed of a translucent adhesive or pressure-sensitive adhesive. It is preferable that the layers are stacked via layers.
  • the adhesivesive and the “adhesive”, but among the adhesives, those that are relatively easy to peel or re-adhere are referred to as “adhesives” for convenience.
  • the adhesive or pressure-sensitive adhesive is not particularly limited, but is preferably transparent, has no absorption in the visible light region, and has a refractive index as close as possible to the refractive index of each layer from the viewpoint of suppressing surface reflection. Therefore, for example, adhesives or pressure-sensitive adhesives such as acrylics, epoxies, and isocyanates can be preferably used. These adhesives and pressure-sensitive adhesives may be of a solvent type, for example, an ultraviolet polymerization type, a heat polymerization type, a two-liquid mixing type, or the like.
  • the method of laminating each component is not particularly limited, and any method suitable for those properties may be used. For example, a mono domain is formed separately on an alignment film, etc. And can be sequentially laminated by a method such as transfer to a translucent substrate.
  • each of the components is a layer containing a liquid crystal compound
  • an alignment film or the like is appropriately formed, and a method of directly forming each of the components sequentially (direct continuous coating) ) Etc. are also possible. This method is advantageous from the viewpoint of reducing the thickness of the polarizing element.
  • each component does not have an optical axis in the plane and the bonding angle is arbitrary. It can be manufactured by coating or the like, and has the advantage of high productivity.
  • additives and the like may be added to each of the constituent elements and the adhesive layer (adhesive layer) as necessary.
  • particles may be further added to adjust the degree of diffusion to impart isotropic scattering, or a surfactant or the like may be appropriately added for the purpose of imparting leveling during film formation.
  • an ultraviolet absorber, an antioxidant, and the like may be appropriately added.
  • a polarized light source (polarized light source device) of the present invention includes a light source, a reflective layer, and a polarizer of the present invention, and the polarized light is laminated on the light source via the reflective layer.
  • Light source The method for producing the polarized light source is not particularly limited. For example, a method described in Japanese Patent Application Laid-Open No. H10-32025 can be employed.
  • an image display device of the present invention is an image display device including the polarizing element of the present invention.
  • the image display device using the polarizing element or the polarized light source of the present invention is not particularly limited.
  • an image display device such as an organic EL display device, a PDP, a CRT, etc.
  • it can be preferably used for a display device, it can be particularly preferably used for a liquid crystal display device.
  • liquid crystal display device of the present invention will be described.
  • a liquid crystal display device of the present invention is a liquid crystal display device including the polarized light source of the present invention, and further having a liquid crystal cell laminated on the polarizing element.
  • the configuration and manufacturing method of the liquid crystal display device of the present invention are not particularly limited, and known configurations and manufacturing methods can be appropriately used.
  • the polarized light source of the present invention is excellent in light use efficiency, provides bright light with excellent verticality of emitted light, provides light without uneven brightness, and is easy to increase in area. It can be preferably used for forming a display device, and particularly preferably can be used for a direct-view type liquid crystal display device.
  • the liquid crystal cell used in the liquid crystal display device of the present invention is not particularly limited, and an appropriate one can be used. Among them, a liquid crystal cell which performs display by making light in a polarized state incident thereon is suitable. For example, a liquid crystal cell using a twisted nematic liquid crystal and a one-part istoned nematic liquid crystal is preferable. However, the present invention is not limited thereto, and liquid crystal cells using a non-twist type liquid crystal, a guest host type liquid crystal in which a dichroic dye is dispersed in a liquid crystal, a ferroelectric liquid crystal, or the like are also suitable. There is no particular limitation on the driving method of the liquid crystal.
  • the components other than the liquid crystal cell are not particularly limited, and a known member for a liquid crystal display device or the like can be appropriately used.
  • a known member for a liquid crystal display device or the like can be appropriately used.
  • an appropriate optical layer such as a diffusion plate, an anti-glare layer, an antireflection film, a protective layer, a protective plate, and a compensating retardation plate provided between the liquid crystal cell and the polarizing plate provided on the viewing side polarizing plate is suitable. It can be arranged at will.
  • organic electroluminescence device organic EL display device
  • the polarizing element and the polarized light source of the present invention can be used for any image other than liquid crystal display devices. Although it can be used for a display device, it is suitable, for example, for an organic EL display device.
  • the organic EL display device of the present invention is not particularly limited except that the polarizing element or the polarized light source of the present invention is used, and a known configuration and a manufacturing method can be applied. Hereinafter, the organic EL display device will be described, but this description does not limit the present invention.
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene. Or a combination of such a light emitting layer and an electron injection layer composed of a perylene derivative, or a hole injection layer and a laminate of the light emitting layer and the electron injection layer.
  • the configuration is known.
  • the principle of light emission of the organic EL display device is as follows. That is, first, holes and electrons are injected into the organic light emitting layer by applying a voltage to the transparent electrode and the metal electrode. The energy generated by the recombination of these holes and electrons excites the fluorescent substance, and emits light when the excited fluorescent substance returns to the ground state.
  • the mechanism of recombination in the middle is the same as that of a general diode, and as can be expected from this, the current and emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • At least one of the electrodes must be transparent in order to extract light emitted from the organic light emitting layer, and a transparent electrode formed of a transparent conductor such as indium tin oxide (ITO) is usually used as an anode. It is used as On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material with a small work function for the cathode, which is usually M g—A g, A 1—L i And the like.
  • ITO indium tin oxide
  • the organic light emitting layer is formed of an extremely thin film having a thickness of about 10 nm. Therefore, the organic light emitting layer transmits light almost completely, similarly to the transparent electrode. As a result, the light that enters from the surface of the transparent substrate during non-light emission, passes through the transparent electrode and the organic light-emitting layer, and is reflected by the metal electrode, returns to the surface of the transparent substrate again.
  • the display surface of the OLED display looks like a mirror.
  • an organic EL display device generally includes a transparent electrode on the front side of an organic light emitting layer that emits light by application of a voltage, and a metal electrode on the back side.
  • the organic light emitting layer, the transparent electrode, and the metal electrode Together, they form an organic electroluminescent luminous body.
  • a polarizing plate can be provided on the surface side of the transparent electrode, and a retardation plate can be provided between the transparent electrode and the polarizing plate.
  • the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarizing effect.
  • the phase difference plate is composed of a 1/4 wavelength plate and the angle between the polarization directions of the polarizing plate and the phase difference plate is adjusted to ⁇ / 4, the mirror surface of the metal electrode can be completely shielded. it can.
  • linearly polarized light components of the external light incident on the organic EL display device are transmitted by the polarizing plate.
  • This linearly polarized light is generally converted into elliptical polarized light by a retardation plate.
  • the retardation plate is a quarter-wave plate and the angle between the polarization directions of the polarizing plate and the retardation plate is Tt / 4, the linearly polarized light is converted to circularly polarized light.
  • This circularly polarized light passes through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, passes through the organic thin film, the transparent electrode, and the transparent substrate again, and becomes linearly polarized again by the phase difference plate.
  • the linearly polarized light is orthogonal to the polarization direction of the polarizing plate and cannot pass through the polarizing plate. As a result, the mirror surface of the metal electrode It can be completely shielded.
  • the polarizing element of the present invention exhibits an effect that only the light in the front direction is transmitted and the light in the oblique direction is cut by reflection when the reflective polarizer and the retardation layer used satisfy the requirements of the present invention. can do. Further, by adjusting the selective reflection wavelength band of the reflective polarizer, the above-mentioned effect can be exerted with a small wavelength dependency in a wide wavelength region.
  • the equipment used in the examples and comparative examples is as follows. That is, as the cold cathode tubes, various types of cold cathode tubes C C FL of Elevam were used. As the backlight, various backlights of Stanley Electric Co., Ltd. and Tama Electric Industry Co., Ltd. were used. The light table used was that of HAKUBA. The following measuring instruments were used.
  • Murata's DOT 3 (trade name) was used to measure the characteristics of the polarizing plate.
  • KOBRA 21D (trade name), which is a birefringence measuring device of Oji Scientific Instururaents, was used for the phase difference measurement of the phase difference plate and the like.
  • BM7 (trade name), a luminance meter manufactured by Topcon, was used for luminance measurement.
  • a polarizing element including a reflective circular polarizer and a negative C plate was fabricated as follows, and the characteristics were examined.
  • a reflective polarizer (reflective circular polarizer) including a cholesteric liquid crystal layer was prepared using a commercially available polymerizable nematic liquid crystal monomer (polymerizable mesogen compound) and a chiral agent. These types and mixing ratios were selected so that the center value of the selective reflection wavelength band of the resulting cholesteric liquid crystal layer was 55 nm and the width was about 6 nm.
  • LC 242 (trade name) manufactured by BASF, Inc. as a polymerizable mesogen compound
  • LC756 trade name
  • a PET film made by Toray, Lumirror (trade name), thickness 75 m
  • the coating solution was applied by a wire pulp on the alignment-treated surface of the alignment substrate.
  • the solution application amount at this time was adjusted so that the thickness after drying was 5. This was dried at 90 for 2 minutes, and once heated to an isotropic transition temperature of the liquid crystal of 130 ° C, and then gradually cooled to maintain a uniform alignment state. Then, it was cured by UV irradiation (1 OmWZ square cm ⁇ 1 minute) at 80 to obtain a reflective polarizer layer A containing a cholesteric liquid crystal compound.
  • a glass plate was prepared, and a translucent isocyanate-based adhesive (AD249 (trade name), manufactured by Tokusekisho Kogyo Co., Ltd.) was applied to the glass plate to a thickness of 5 m, and the reflection was applied onto the coated surface.
  • the target reflective circular polarizer was obtained by transferring the polarizer layer A. When the selective reflection wavelength band of this reflective circle 'polarizer was measured, a value of 520 to 580 nm was obtained as designed.
  • a negative C-plate layer containing a polymerized liquid crystal compound was fabricated so that the central value of the cholesteric selective reflection wavelength band was 350 nm.
  • BASF LC 242 (trade name) as a polymerizable mesogen compound
  • BASF LC 756 (trade name) as a polymerizable chiral agent
  • the mixing ratio is as follows. Used as follows.
  • Mesogen compound: Chiral agent 11.0: 88.0 (weight ratio) Negative.
  • the specific operation of preparing the plate layer is as follows. That is, first, a mixture of the polymerizable chiral agent and the polymerizable mesogen compound was dissolved in cyclopentane, and the solute concentration was adjusted to 30 wt%.
  • lwt% of the initiator (Ciba Irg 907 (trade name)) and 0.013 wt% of a surfactant (BYK-361 (trade name) manufactured by Big Chem Japan).
  • a PET film manufactured by Toray, Lumirror (trade name), thickness of 75 izm was prepared, and the surface was oriented using a rubbing cloth to form an oriented substrate.
  • the coating solution was applied with a wire bar on the alignment-treated surface of the alignment substrate. The amount of the solution applied at this time was adjusted so that the thickness after drying was 6 m.
  • phase difference of this negative C-plate layer was measured, it was 2 nm (a value that can be regarded as substantially zero) in the front direction (in-plane phase difference) for light having a wavelength of 550 nm.
  • the phase difference when tilted was 160 nm (> ⁇ / 8).
  • a polarizing element was fabricated using the obtained reflective circular polarizer and negative C plate layer. That is, first, the reflective circular polarizer in which the reflective circular polarizer layer was laminated on a glass plate was prepared. Next, the negative C plate layer was transferred onto the reflective circular polarizer layer A. That is, a light-transmissive adhesive (AD249 (trade name) manufactured by Tokusekisho Kogyo Co., Ltd.) is applied to a thickness of 5 m on the reflective circular polarizer layer A, and the alignment substrate (P The negative C plate layer formed on the ET film was adhered, and the alignment substrate was peeled off to leave only the negative C plate layer.
  • AD249 trade name
  • This polarizing element is composed of a first reflective circular polarizer layer A, a negative C plate layer and a second The circularly polarizer layer A is laminated in this order, and each layer is adhered via an adhesive layer.
  • a polarized light source was produced by combining the polarizing element with a green diffused light source having a bright line at 544 nm.
  • a diffuse light source is obtained by combining a G0 type cold-cathode tube made by Elevum and a light scattering plate (90% or more of haze), and a polarizing light source is further obtained by combining the above-mentioned polarizing element, and this is a direct backlight. It was placed inside the device.
  • the light scattering plate was disposed between the polarizing element and the cold cathode tube.
  • FIG. 16 also shows the relationship between the emission angle of the emitted light beam and the relative luminance when using only the diffused light source and when combining the polarizing element of this embodiment to form a polarized light source.
  • the polarizing element of the present example was arranged on a backlight for a liquid crystal display device (manufactured by Stanley Electric Co., Ltd., sidelight / edge-type packed light) using a three-wavelength cold cathode tube, and its characteristics were evaluated. In this case as well, light rays were emitted in the normal direction, but the transmitted light decreased when the angle was 30 ° or more. Since the polarizer cannot handle the entire range of visible light, blue (435 nm) and red (610 nm) come out without narrowing the angle, but green (545 nm) has the highest visibility. Since the spectrum of) can be cut, its function as a light-collecting device was confirmed. (Example 2)
  • a polarizing element was produced in the same manner as in Example 1 except that a positive C plate layer was used instead of the negative C plate layer, and its performance was evaluated. That is, first, a positive C-plate layer containing a polymerized liquid crystal compound was prepared using a liquid crystal monomer represented by the following structural formula (hereinafter referred to as polymerizable nematic monomer A).
  • the specific operation of preparing the positive C plate layer is as follows. That is, first, the polymerizable nematic monomer A was dissolved in cyclopentane, and the solute concentration was adjusted to 30 wt%. Further, lwt% of a reaction initiator (Irg907 (trade name), manufactured by Ciba Geigy) was added to this solution to prepare a coating solution. On the other hand, a PET film (Lumirror (trade name) manufactured by Toray Co., Ltd., thickness of 75 urn) was prepared, and a cyclohexane solution (0.1 wt%) of a release agent (octadecyltrimethoxysilane) was thinly diluted on this.
  • a reaction initiator Irg907 (trade name)
  • a PET film Limirror (trade name) manufactured by Toray Co., Ltd., thickness of 75 urn
  • the coating solution was applied by a wire bar on the surface of the alignment substrate on which the vertical alignment film was formed.
  • the amount of the solution applied at this time was adjusted so that the thickness after drying was 2 m.
  • the laminate was cured by irradiation with ultraviolet light (1 OmWZ square cm ⁇ 1 minute) at 80 ° C. to obtain a laminate in which a desired positive C plate layer was formed on the alignment substrate.
  • the phase difference of this positive C plate was measured, For light of the wavelength, the phase difference was about 170 nm (> ⁇ / 8) when measured at 0 nm in the front direction and at an angle of 30 °.
  • Example 1 a polarizing element was obtained in the same manner as in Example 1 except that this positive C plate was used instead of the negative C plate layer in Example 1.
  • the performance was evaluated using the obtained polarizing element in the same manner as in Example 1, the result was almost the same as that in Example 1.
  • a polarizing element including a reflective linear polarizer, a 1Z4 wavelength plate, and a C plate was manufactured as described below, and the performance was evaluated.
  • a reflective linear polarizer was manufactured.
  • thin films were alternately stacked with the feedblock method so that polyethylene naphthalate (PEN) and naphthalenedicarboxylic acid-copolyester terephthalate (co-PEN) were alternately stacked, and 20 layers were stacked.
  • PEN polyethylene naphthalate
  • co-PEN naphthalenedicarboxylic acid-copolyester terephthalate
  • a multilayer film was obtained. Further, this multilayer film was uniaxially stretched. At this time, the stretching temperature was about 140 degrees, and the stretching ratio was about 3 times in the TD direction. The thickness of each thin layer in the stretched film thus obtained was approximately 0.1 m.
  • Five stretched products of this 20-layer laminated film were further laminated to obtain a desired reflective linear polarizer (referred to as reflective polarizer B) as a total of 100 laminated products.
  • the reflective polarizer B has a function of reflecting linearly polarized light in a wavelength band
  • a polarizing element was produced using the reflective polarizer B. That is, first, a negative C plate layer was prepared in the same manner as in Example 1, and a 1Z4 wavelength retardation plate (Nitto Denko, NRF film (trade name); Attach a retardation (in-plane retardation) of 135 nm) and a reflective polarizer B on the outside. The desired polarizing element was obtained.
  • the lamination angle of each layer is as follows: the transmitted polarization axis direction of the reflective polarizer B on the incident side is 0 °, the in-plane slow axis direction of the 1Z4 wave plate on the incident side is 45 °, and the C plate has no axis orientation.
  • the 14 side plates on the exit side were bonded so that the in-plane slow axis direction was 1450 and the exit side polarizer had a transmission polarization axis direction of 90 °.
  • the adhesion of each layer is performed by applying an acrylic adhesive (Nitto Denko No. 7) with a thickness of 25 m between each layer.
  • the alignment substrate is peeled off from the negative C-plate layer, and the liquid crystal-containing layer is removed. Only was used. When the performance was evaluated using the obtained polarizing element in the same manner as in Example 1, the result was almost the same as that in Example 1.
  • a polarizing element including a reflective linear polarizer and a 1Z two-wavelength phase difference plate was manufactured as follows, and the performance was evaluated. That is, first, two reflective polarizers B produced in the same manner as in Example 3 and a front phase difference of 270 nm (biaxially stretched) obtained by biaxially stretching a polycarbonate film (manufactured by Kaneka Corporation). A measurement film (550 nm) and a retardation film (1Z2 wavelength plate) with an Nz coefficient of 2.0 were prepared. These layers were adhered in such a manner that the half-wave plate was sandwiched between the two reflective polarizers B to obtain a desired polarizing element.
  • the laminating angle of each layer is 45 ° for the in-plane slow axis direction of the half-wave plate, with the transmission polarization axis direction of the reflective polarizer B on the entrance side being 0 °, and the transmission polarization axis direction of the exit side polarizer. Lamination was performed so that the orientation was 90 °. To bond the layers, apply an acrylic adhesive (Nitto Denko No. 7) between the layers. The test was performed using When this polarizing element was evaluated in the same manner as in Example 3, it was found that it had the same performance as that of Example 3. (Example 5)
  • a reflective circular polarizer having a selective reflection wavelength band in a wide wavelength region was fabricated as follows, and a polarizing element was fabricated using it and a C plate to evaluate the performance. did.
  • a broadband reflective circular polarizer was fabricated. That is, first, a nematic monomer A (same as described above) and a chiral monomer B represented by the following structural formulas were prepared.
  • nematic monomer A and the chiral monomer B were mixed and polymerized at a predetermined ratio, and a cholesteric liquid crystal layer was produced using the mixture. Furthermore, by changing the mixing ratio of nematic monomer A and chiral monomer B, four cholesteric liquid crystal layers with different selective reflection wavelength bands were fabricated.
  • European Patent Application Publication No. 0 8 3 4 7 5 4 was referred to. Specifically, it is as follows.
  • the mixing ratio (weight ratio) of the nematic monomer A and the chiral monomer B (weight ratio) and the calculated ⁇ selective reflection wavelength of each cholesteric liquid crystal layer The bands and their center wavelengths are as shown in Table 1 below.
  • a nematic monomer A and a chiral monomer B were polymerized to synthesize a cholesteric liquid crystal compound. That is, first, a mixture of each composition shown in Table 1 was made into a 33 wt% tetrahydrofuran solution, and 0.5 wt% of a reaction initiator (azobisisobutyronitrile) was further added. After purging with nitrogen at 60 ° C., the mixture was subjected to polymerization by a conventional method, and the product was reprecipitated and separated with getyl ether and purified to obtain a target cholesteric liquid crystal compound.
  • a reaction initiator azobisisobutyronitrile
  • an 80 m thick triacetyl cellulose (TAC) film (manufactured by Fuji Photo Film Co., Ltd., TD-TAC (trade name)) was prepared, and a polyimide layer having a thickness of about 0.1 m was coated on its surface.
  • the surface of the polyimide layer was rubbed with a rubbing cloth made of rayon to obtain an oriented substrate.
  • a 10 wt% methylene chloride solution of the cholesteric liquid crystal compound was applied on the rubbed surface so that the thickness after drying with a wire bar was 1.5 m.
  • the obtained four cholesteric liquid crystal layers were adhered in order from the short wavelength side, and a liquid crystal composite layer having a thickness of about 10 m was obtained to obtain an intended broadband reflective circular polarizer.
  • Adhesion is performed by applying a transparent isocyanate-based adhesive (special colorant): AD 244 (trade name) manufactured by Sangyo on the surface of each liquid crystal layer, and peeling off the alignment substrate (TAC film) on one side after bonding. was performed sequentially.
  • a transparent isocyanate-based adhesive special colorant
  • AD 244 trade name
  • TAC film alignment substrate
  • a C-plate layer was produced in the same manner as in Example 1, and the above-mentioned broadband reflective circular polarizer was adhered to both sides thereof to obtain a target polarizing element.
  • Adhesion was performed by applying a light-transmitting adhesive (No. 7 manufactured by Nitto Denko) to a thickness of 25 m between the layers and performing the same operation as in Example 1.
  • the rotation directions of the transmitted (reflected) circularly polarized light are the same in the upper and lower reflective circular polarizers.
  • Example 1 the performance of the polarizing element of this example was evaluated in the same manner as in Example 1. In the evaluation using the green diffused light source, it was confirmed that the polarizing element of Example 1 had the same light-collecting performance. In addition, evaluation by a backlight for a liquid crystal display device using a three-wavelength cold-cathode tube showed excellent light-collecting performance as in Example 1, but the polarizing element of this example exhibited similar light-collecting performance over the entire visible light range. It was found that the polarizing element of Example 1 was more excellent in exhibiting light-collecting performance.
  • the polarizing element of this example was arranged on another backlight (direct type backlight using a cold cathode tube, manufactured by Tama Electric Industry Co., Ltd.), and the light-collecting performance was evaluated. In this case as well, light rays are emitted in the normal direction, but are oblique 30. Above, the transmitted light decreased. Then, it was found that similar light-collecting performance was exhibited in the entire visible light region. (Example 6)
  • a polarizing element was produced in the same manner as in Example 5 except that the thickness and the phase difference value of the C plate layer were changed, and the light-collecting performance was evaluated in the same manner as in Example 5.
  • the thickness of the C plate was set as follows, and the phase difference was measured. As a result, the front phase difference was 1 nm, and the phase difference at a 30 ° inclination was 100 nm (> ⁇ / 8).
  • FIG. 16 shows the emission angle and relative luminance of the outgoing light beam when the polarizing elements of Examples 5 and 6 were combined with a diffused light source to provide a polarized light source, and when only the diffused light source was used. Is also shown. From the figure, it can be seen that all the polarizing elements show excellent light-collecting performance, but Example 5 has a sharper light-collecting angle and a larger increase in front luminance.
  • the polarizing element of Example 5 was incorporated in a liquid crystal display device, and its display performance was evaluated. Specifically, it is as follows. First, as a liquid crystal display device, a TFT liquid crystal display device (diagonal 11.3 inches) obtained from Dynabook SS3440 (trade name) manufactured by Toshiba was prepared. This device uses a side light type light guide light source and converges light to the front with a prism sheet. Next, the prism sheet was removed from the liquid crystal display device, and a quarter-wave plate (Nitto Denko NRF-140 (trade name)) at an angle of 45 ° to the polarization axis with respect to the polarizer on the back side of the device. And the polarizing element obtained in Example 5 was further adhered thereon.
  • a TFT liquid crystal display device diagonal 11.3 inches obtained from Dynabook SS3440 (trade name) manufactured by Toshiba was prepared. This device uses a side light type light guide light source and converges light to the front with a prism sheet.
  • the prism sheet was
  • the adhesion was performed by applying a light-transmitting adhesive (Nitto Denko No. 7) to a thickness of 25 m.
  • a commercially available liquid crystal display device was processed to obtain a target liquid crystal display device incorporating the polarizing element of Example 5.
  • the performance of the obtained liquid crystal display device with a polarizing element was compared with that before processing (when using a prism sheet), the light condensing characteristics on the front were the same as when using a prism sheet. Further, it was found that the front luminance was improved by 20% compared to before the processing. This result indicates the superiority of the polarizing element of the present invention over the prior art such as a prism sheet.
  • a polarizing element was produced in the same manner as in Example 1 except that two layers of reflective circular polarizers were directly bonded without using the C plate layer. When the performance of this polarizing element was evaluated, only the same optical function as that of a single reflective circular polarizer was obtained, and phenomena such as selective improvement of the reflectance in the oblique direction and reduction of the transmittance were observed. It was not.
  • a polarizing element was produced in the same manner as in Example 1 except that a quarter-wave plate was used instead of the C plate layer.
  • a ⁇ plate having a front phase difference of ⁇ / 4 and a ⁇ coefficient of 1.0 made of a stretched film of polycarbonate film (NRF-140 film (trade name) manufactured by Nitto Denko, thickness of 50 m) was used.
  • a polarizing element was obtained in the same manner as in Example 3, except that a commercially available iodine-based absorption dichroic polarizer (NPF-EG1425DU (trade name) manufactured by Nitto Denko) was used instead of the reflective polarizer B.
  • NPF-EG1425DU commercially available iodine-based absorption dichroic polarizer
  • the viewing angle limiting effect was obtained by the transmission characteristics in the front direction and the absorption characteristics in the oblique direction, but the absorption loss was remarkable, and the front brightness was not improved.
  • Examples 1 to 6 and Comparative Examples 1 to 3 were placed on a commercially available light table (manufactured by Hakupa, a three-wavelength fluorescent lamp, a direct-type diffused light source), and the brightness in the vertical direction (2 ° field of view) was measured using a luminance meter (manufactured by Topcon, BM 7 (trade name)). The measured values were normalized by setting the value measured with only a light table to 100. Table 2 shows the measurement results.
  • the polarizing element of the example exhibited an excellent brightness enhancement effect in the front direction even when used in a light table.
  • the front relative luminance was 100 (the front luminance of the original backlight).
  • the relative luminance in Table 2 was slightly below 100. This is the direct type backlight on a commercial light table. This is because the efficiency of the return light reflected by the reflective polarizer to return to the normal direction is slightly lower than in the case of (1).
  • the polarizing element of the comparative example has a remarkably superior effect of improving the luminance in the front direction.
  • obliquely transmitted light can be efficiently reflected toward the light source without impairing the transmission polarization characteristics of vertically incident light that contributes to front luminance. Further, it is possible to further improve the luminance by converting the obliquely transmitted light (reflected polarized light) reflected to the light source side into light that can contribute to the improvement of the front luminance.
  • the above-described effect can be exerted with a small wavelength dependency in a wide wavelength region.
  • the polarizing element of the present invention has less dependence on the characteristics of the light source than a collimating and condensing system using a combination of an interference filter and an emission light source of the related art, any polarizing light source and image display can be used. Can be used for equipment. For example, when it is used as a polarizer on the backlight side of a liquid crystal display element, it is possible to obtain a bright display with excellent visibility. Further, since the light use efficiency of the diffused light emitted from the light source is excellent, it is also possible to form an image display device such as a high-brightness polarized light source device, an organic EL display device, a PDP, and a CRT.
  • an image display device such as a high-brightness polarized light source device, an organic EL display device, a PDP, and a CRT.

Description

偏光素子、 偏光光源およびそれらを用いた画像表示装置 技術分野
本発明は、 偏光素子に関し、 より詳しくは、 光源から出射された拡散 光の光利用効率に優れ、 高輝度の偏光光源や、 各種画像装置、 例えば良 視認の液晶表示装置、 有機 E L明表示装置、 P D P、 C R T等への使用に 適した偏光素子に関する。 細 背景技術
画像表示装置の視認性向上等のために、 光源から出射された光を正面 方向へ集光し輝度を向上する技術が一般的に用いられている。 より具体 的には、 例えば、 レンズ、 ミラ一 (反射層) 、 プリズム等を用い、 屈折 や反射を利用して集光や平行光化を行なって輝度を向上させることが行 なわれている。
例えば液晶表示装置においては、 光源から出射された光をプリズムシ ―ト等によって正面方向へ集光し、 効率的に液晶表示素子に入射させて 輝度を向上することが行なわれている。 しかし、 プリズムシートによつ て集光する場合、 原理上、 大きな屈折率差が必要であるため、 空気層等 を介して設置する必要がある。 このため、 不必要な反射や散乱による光 損失を引き起こす場合があり、 また、 多数の部品点数を必要とするとい う問題がある。
さらに、 偏光の出射輝度を向上する技術としては、 再帰反射を利用し た輝度向上システムが提案されている。 この輝度向上システムは、 具体 的には、 導光板の下面に反射層を設け、 出射面に反射型の偏光子を設け たシステムである。 そして、 システム内に入射された光を偏光状態によ つで透過光と反射光とに分離し、 その反射光を前記導光板下面の反射層 を介し反射させて出射面より再出射させることで輝度を向上させる。 例 えば、 コレステリック液晶による円偏光反射分離については、 特開平 3 - 4 5 9 0 6号公報、 特開平 6 - 3 243 3 3号公報、 特開平 7— 3 6 0 3 2号公報等に詳しい。 しかし、 このような輝度向上システムは、 あ らかじめプリズムシ一ト等で集光性を向上した光源に対しては、 拡散性 の強い光源に適用した場合に比較して十分な効果が得られにくいという 問題がある。
上記のような問題点を解決するために、 レンズ、 ミラー、 プリズム等 を用いる代わりに特殊な光学フィルムを用いて光源からの光を平行光化 する輝度向上技術が研究されている。 代表的な方法として、 例えば、 輝 線光源とバンドパスフィルターの組み合わせで行なう手法がある。 より 具体的には、 例えばフィリップス社の特開平 6— 2 3 5 9 0 0号公報、 特開平 0 2— 1 5 8 2 8 9号公報、 特表平 1 0— 5 1 0 6 7 1号公報、 US 6 3 0 7 6 04、 DE 3 8 3 6 9 5 5, DE 42 2 0 28 9 , E P 5 7 8 3 0 2、 US 2 0 0 2— 0 0 340 0 9、 WO 0 0 2/2 5 6 8 7、 または US 2 0 0 1— 5 2 1 643、 US 2 0 0 1— 5 1 6 0 6 6 のように、 CRTやエレクトロルミネッセンス等の輝線発光する光源ま たは表示装置上にバンドパスフィルターを配置する方法がある。 また、 富士写真フィルム工業社の US 2 0 0 2— 0 0 3 6 7 3 5のように輝線 型冷陰極管に対して 3波長対応のパンドパスフィルターを配置する手法 等も挙げられる。 しかし、 これらの技術は光源が輝線スペクトルを有さ なければ機能しないという問題や、 特定波長に対して選択的に機能する フィルムの設計ど製造に関する問題がある。 さらに、 前記バンドパスフ ィルターとしては蒸着干渉膜を用いることが多いが、 加湿環境下では薄 膜の屈折率変化から波長特性が変化する等のおそれがある。
一方、 ホログラム系材料を用いた平行光化システムとして、 例えば、 ロックウェル社の US 49848 72A 1に記載のシステム等が挙げら れる。 しかし、 この種の材料は正面透過率は高いものの、 斜め入射光線 の反射除去率がさほど高くないという問題があった。 このようなシステ ムに平行光線を入射して直行透過率を求めると、 正面方向では素通りす るため透過率が高く計測され、 一方で斜め入射光線は散乱することで透 過率が低く計測されてしまうが、 拡散光源上では差が生じなくなる。 こ のため、 実際の拡散バックライト光源上に配置した場合には集光機能を 必ずしも十分に果たせない場合があった。 また、 ホログラム系材料は、 その物性上、 耐性や信頼性等の課題もあった。 発明の開示
したがって、 本発明は、 垂直入射光の透過偏光特性を害することなく 斜め透過光を効率的に光源側へ反射できる偏光素子を提供することを目 的とする。
前記課題を解決するために、 本発明の偏光素子は、 2層の反射偏光子 とそれらの間に配置された位相差層とを少なくとも含み、 前記 2層の反 射偏光子が、 右回り円偏光および左回り円偏光のうち一方を選択的に透 過させ他方を選択的に反射する反射円偏光子であり、 前記 2層の反射円 偏光子は、 偏光の選択反射における選択反射波長帯域の少なくとも一部 が互いに重なり、 前記位相差層が下記式 ( I ) および (II) の条件を満 たす偏光素子である。 R≤ (λ / 1 0 ) ( I )
R' ≥ (λ/8) (II) 式 ( I ) および (I I) において、
λは前記位相差層に入射する光の波長であり、
Rは、 Ζ軸方向 (法線方向) からの入射光に対する X軸方向と Υ軸方 向との位相差 (面内位相差) の絶対値であり、 前記 X軸方向とは、 前記 位相差層の面内で屈折率が最大となる方向 (面内遅相軸方向) であり、 前記 Υ軸方向とは、 前記位相差層の面内で前記 X軸方向に垂直な方向 ( 面内進相軸方向) であり、 前記 Ζ軸方向とは、 前記 X軸方向および前記 Υ軸方向に垂直な前記位相差層の厚み方向であり、
R ' は、 Ζ軸方向に対し 3 0 ° 以上傾いた方向からの入射光に対する X ' 軸方向と Y ' 軸方向との位相差の絶対値であり、 前記 X ' 軸方向と は、 前記 Ζ軸方向に対し 3 0 ° 以上傾いた入射光の入射方向に垂直な前 記位相差層面内の軸方向であり、 前記 Y ' 軸方向とは、 前記入射方向お よび前記 X '軸方向に垂直な方向である。 図面の簡単な説明
図 1は、 本発明の偏光素子において、 反射円偏光子と Cプレートとを 組み合わせた一実施形態の集光性と辉度向上の同時発現のメカニズムを 示す図である。
図 2は、 本発明における自然光、 円偏光および直線偏光を表す記号に ついて説明した図である。
図 3は、 直線偏光子と 1 4波長板の組み合わせによる円偏光化の模 式図である。 '
図 4は、 本発明の偏光素子において、 反射直線偏光子と。プレートと 1 / 4波長板とを組み合わせた一実施形態の集光性と輝度向上の同時発 現のメカニズムを示す図である。 図 5は、 図 4の偏光素子における各層がなす角度を示す模式図である 図 6は、 本発明の偏光素子において、 反射直線偏光子と N z≥2であ る 1 / 4波長板とを組み合わせた一実施形態の集光性と輝度向上の同時 発現のメカニズムを示す図である。
図 7は、 図 6の偏光素子における各層がなす角度を示す模式図である 図 8は、 本発明の偏光素子において、 反射直線偏光子と N z≥ 1 . 5 である 1 / 2波長板とを組み合わせた一実施形態の集光性と輝度向上の 同時発現のメカニズムを示す図である。
図 9は、 図 8の偏光素子における各層がなす角度を示す模式図である 図 1 0は、 ネガティブ Cプレートの光学特性の一例を示す模式図であ' る。
図 1 1は、 ホメオト口ピック配向した液晶分子を含む位相差層の模式 図である。
図 1 2は、 ディスコチック液晶を含む位相差層の模式図である。
図 1 3は、 無機層状化合物を含む位相差層の模式図である。
図 1 4は、 本発明の偏光素子において、 反射直線偏光子と Cプレート と 1 / 4波長板とを組み合わせた場合の各層の貼り合せ角度の一例を示 す図である。
図 1 5は、 図 1 4の偏光素子における光の変換経路をポアンカレ球で 示した説明図である。
図 1 6は、 実施例 1の偏光素子の集光および輝度向上性能を示す図で ある。
図 1 7は、 実施例 5および 6の偏光素子の集光および輝度向上性能を 示す図である。 発明を実施するための最良の形態
次に、 本発明の実施形態について説明する。
本発明者らは鋭意検討した結果、 前記の構成を有する本発明の偏光素 子により、 正面輝度に寄与する垂直入射光の透過偏光特性を害すること なく斜め透過光を効率的に光源側へ反射できることを見出した。 また、 前記光源側へ反射した斜め透過光 (反射偏光) を正面輝度の向上に寄与 しうる光に変換することでさらに輝度を向上させることも可能である。 さらに、 本発明の偏光素子は、 このような集光性と再帰反射による輝度 向上機能を兼ね備えることにより、 集光機能や平行光化機能に関する光 源種依存性が小さい。
本発明の位相差層において、 面内位相差 Rは前記の通り (λ Ζ ΐ Ο ) 以下であるが、 前記 Ζ軸方向 (法線方向) からの入射光の偏光状態をそ のまま保持する観点からなるべく小さい方が良く、 好ましくは λ Ζ 2 0 以下、 より好ましくは λ Ζ 5 0以下、 理想的には 0である。 このように 面内位相差がないかまたは極めて小さく、 厚み方向にのみ位相差を有す る位相差層は、 Cプレート (C— p 1 a t e ) と呼ばれ、 光軸がその面 内方向と垂直な厚み方向に存在する。 前記 C一 p 1 a t eは、 その光学 特性条件が下記式 (VI) を満たす場合はポジティブ (正の) C一 p 1 a t e、 下記式 (VI I) を満たす場合はネガティブ (負の) C— p 1 a t eと呼ばれる。 代表的なネガティブ Cプレートとしては、 例えば、 二軸 延伸したポリカーボネート (P C ) やポリエチレンテレフタレート (P E T ) のフィルム、 コレステリック液晶を選択反射波長帯域を可視光よ り短く設定した膜、 ディスコチック液晶を面に平行配向させた膜、 およ び負の位相差を有する無機結晶化合物を面内配向させる事で得られる物 等が挙げられる。 代表的なポジティブ Cプレートとしては、 例えば垂直 配向した液晶膜が挙げられる。 n X ^ n y n z (VI) nx^n y>n z (VII) なお、 本発明において、 n x、 n yおよび n zは、. 前記 C一 ρ 1 a t e等の各光学層における X軸、 Y軸および Z軸方向の屈折率を示し、 前 記 X軸方向とは、 前記層の面内で屈折率が最大となる方向 (面内遅相軸 方向) であり、 前記 Y軸方向とは、 前記層の面内で前記 X軸方向に垂直 な方向 (面内進相軸方向) であり、 前記 Z軸方向とは、 前記 X軸方向お よび前記 Y軸方向に垂直な前記層の厚み方向である。 本発明における前記位相差層は、 前記式 ( I ) および (II) の光学特 性条件を満たすものであれば特に限定されないが、 例えば、 ブラナー配 向状態で固定されたコレステリック液晶化合物を含み、 前記位相差層の 選択反射波長帯域が可視光領域 ( 3 80 nm〜 78 0 nm) 以外の波長 領域に存在することが好ましい。 ここで、 選択反射波長帯域を可視光領 域 ( 38 0 nm〜 7 80 nm) 以外の波長領域とするのは、 可視光領域 における色付き等を起こさないためである。 なお、 コレステリック液晶 層の選択反射波長帯域はコレステリックのカイラルピッチと液晶の屈折 率とから一義的に決定することができ、 選択反射の中心波長 λは下記式 (VIII) で表される。 λ = η D (VIII) 式 (VIII) 中、 nはコレステリック液晶分子の平均屈折率であり、 p はカイラルピッチである。 前記選択反射波長帯域の中心波長の値は、 可視光領域よりも長波長側 、 例えば近赤外領域に存在しても良いが、 3 5 0 nm以下の紫外部に存 在すれば、 旋光の影響等を受け複雑な現象が発生するおそれがなく、 よ り好ましい。
前記コレステリック液晶の種類は特に限定されず、 適宜選択すること ができるが、 例えば、 液晶モノマ一を重合させた重合液晶、 高温でコレ ステリック液晶性を示す液晶ポリマー、 およびそれらの混合物等が挙げ られる。 また、 前記コレステリック液晶の液晶性はリオトロピックでも サ一モト口ピックでもどちらでも良いが、 制御の簡便性およびモノドメ インの形成しやすさの観点からサ一モト口ピック性の液晶であることが より好ましい。 また、 前記コレステリック液晶の製造法も特に限定され ず、 公知の方法を適宜用いることができる。 コレステリック液晶性を有 する部分架橋ポリマー材料の製造に用いることのできる材料は特に限定 されず、 任意であるが、 例えば、 特表 20 0 2 - 5 33742 (WO 0 0 / 3 7 5 8 5 ) 、 EP 35 82 08 (US 52 1 1 87 7) 、 EP 6 6 1 3 7 (U S 438845 3) 等に記載の材料が挙げられる。 さらに 、 コレステリック液晶は、 例えば、 ネマチック液晶モノマーまたは重合 性メソゲン化合物等をカイラル剤と混合し、 反応させることによつても 得られる。 重合性メソゲン化合物は特に限定されないが、 例えば、 W〇 9 3/223 97、 EP 02 6 1 7 1 2, DE 1 9 5 04224、 D E 440 8 1 7 1、 および GB 22 80445等に記載の化合物が挙げら れ、 非カイラル化合物でもカイラル化合物でも良く、 また、 モノ、 ジぉ よび多反応性のいずれでも良く、 公知の方法で合成することができる。 重合性メソゲン化合物の具体例としては、 例えば、 8八3 ?社の 〇 2 42 (商品名) 、 M e r c k社の E 7 (商品名) 、 および Wa c k e r - C em社の L C— S i 1 1 i c o n— C C 37 67 (商品名) 等が 挙げられる。 カイラル剤も特に限定されないが、 例えば WO 9 8Z00 428に記載の方法で合成できる。 カイラル化合物の具体例としては、 例えば、 M e r c k社の S 1 0 1、 R 8 1 1および C B 1 5 (いずれも 商品名) 等の非重合性カイラル化合物や、 BAS F社の L C.7 56 (商 品名) 等のカイラル剤がある。
前記コレステリック液晶化合物を含む位相差層の製造方法は特に限定 されず、 従来のコレステリック液晶層形成方法を適宜用いることができ るが、 例えば、 配向膜をその表面に形成した基材、 またはそれ自体が液 晶配向能を有する基材上にコレステリック液晶化合物を塗工して配向さ せ、 その配向状態を固定する方法がある。
前記基材は、 例えば、 トリァセチルセルロースやアモルファスポリオ レフイン等の複屈折位相差がなるべく小さな基材上に、 ポリイミド、 ポ リピニルアルコール、 ポリエステル、 ポリアリレ一ト、 ポリアミドイミ ド、 ポリエーテルイミド等の膜を形成し、 レーヨン布等でラビング処理 して配向膜としたものや、 同様の基材上に S i 02の斜方蒸着層等を形 成して配向膜としたものが挙げられる。 その他、 ポリエチレンテレフタ レート (P ET) やポリエチレンナフタレー卜 (P EN) 等のフィルム を延伸して液晶配向能を付与した基材、 その延伸基材表面をさらにベン ガラ等の微細な研磨剤ゃラビング布で処理して微細な配向規制力を有す る微細凹凸を形成した基材、 および前記延伸基材上にァゾベンゼン化合 物など光照射により液晶規制力を発生する配向膜を形成した基材等も挙 げられる。
前記基材上にコレステリック液晶化合物を含む位相差層を形成する具 体的な方法は、 例えば以下の通りである。 すなわち、 まず、 前記基材の 液晶配向能を有する面上に液晶ポリマーの溶液を塗布し、 乾燥させて液 晶層を形成させる。 前記溶液の溶媒は特に限定されないが、 例えば、 塩 化メチレン、 トリクロロエチレン、 テトラクロ口ェ夕ン等の塩素系溶媒 、 アセトン、 メチルェチルケトン ( M E K ) 、 シクロへキサノン等のケ トン系溶媒、 トルエン等の芳香族溶媒、 シクロヘプタン等の環状アル力 ン、 N—メチルピロリ ドン等のアミ ド系溶媒、 およびテトラヒドロフラ ン等のエーテル系溶媒等が挙げられ、 これらは単独で用いても二種類以 上併用しても良い。 塗布方法も特に限定されず、 例えば、 スピンコート 法、 ロールコート法、 フローコート法、 プリント法、 ディップコ一ト法 、 流延成膜法、 バーコ一ト法、 グラビア印刷法等を適宜使用することが できる。 また、 前記溶液に代えて液晶ポリマーの加熱溶融物、 好ましく は等方相を呈する状態の加熱溶融物を同様の方法で塗布し、 必要に応じ その溶融温度を維持しつつさらに薄層に展開して固化させる等の方法を 使用しても良い。 このような方法は、 溶媒を使用しないため作業環境の 衛生性等が良好であるという利点がある。
そして、 前記液晶層におけるコレステリック液晶分子の配向状態を固 定化して目的の位相差層を得る。 この固定化方法は特に限定されず、 場 合に応じて適切な方法を選択すれば良いが、 例えば、 前記液晶層をガラ ス転移温度以上、 等方相転移温度未満に加熱し、 液晶ポリマー分子がプ ラナ一配向した状態でガラス転移温度未満に冷却してガラス状態とし、 固化させる方法等がある。 または、 配向状態が形成された段階で紫外線 やイオンビーム等のエネルギー照射で構造を固定しても良い。 なお、 上 記工程において、 液晶モノマーを液晶ポリマーに代えて用いるかまたは 液晶ポリマーと併用し、 配向させた後に電子線や紫外線等の電離放射線 照射または熱により重合させて重合液晶としても良い。 このとき、 必要 に応じカイラル剤や配向助剤等を加えても良い。
前記基材は、 例えば、 複屈折が小さい場合は、 前記コレステリック液 晶化合物を含む位相差層と一体で偏光素子に用いても良い。 また、 前記 基材の厚みゃ複屈折の大きさが偏光素子の機能を阻害するおそれがある 場合等は、 前記位相差層を前記基材から剥離するかまたは別の基材上に 転写等して用いても良い。
また、 前記位相差層としては、 ホメオト口ピック配向状態で固定され た棒状液晶化合物を含む位相差層も好ましい。 前記ホメォトロピック液 晶の種類は特に限定されず、 適宜選択することができるが、 例えば、 液 晶モノマーを重合させた重合液晶、 高温でネマチック液晶性を示す液晶 ポリマー、 およびそれらの混合物等が挙げられる。 前記重合液晶は、 液 晶モノマーに必要に応じて配向助剤等を加え、 電子線や紫外線等の電離 放射線照射や熱により重合させて得ることができる。 液晶性はリオト口 ピックでもサーモト口ピック性のどちらでも良いが、 制御の簡便性およ びモノドメインの形成しやすさの観点よりサ一モト口ピック性の液晶で あることが望ましい。 液晶モノマ一としては、 特に限定されないが、 例 えば重合性メソゲン化合物等がある。 重合性メソゲン化合物についても 特に限定されないが、 例えば、 前記コレステリック液晶と同様である。
このような位相差層の形成方法も特に限定されず、 公知の方法を適宜 使用することが可能であり、 例えば、 前記コレステリック液晶の場合と 同様に配向膜等を利用して形成することができる。 ホメオト口ピック配 向は、 例えば、 垂直配向膜 (長鎖アルキルシランなど) を形成した膜上 に前記ホメォト口ピック液晶を塗布し、 液晶状態を発現させ固定するこ とによって得られる。
さらに、 前記位相差層としては、 ネマチック相またはカラムナー相配 向状態で固定されたディスコチック液晶化合物を含む位相差層も好まし レ^ このような位相差層は、 例えば、 面内に分子の広がりを有するフタ ロシアニン類、 トリフエ二レン類化合物等の負の 1軸性を有するディス コチック液晶材料を、 ネマチック相やカラムナー相を発現させ、 その状 態を固定して形成させることができる。 具体的な形成方法は特に限定さ れず、 公知の方法を適宜用いることができる。
さらに、 前記位相差層としては、 負の 1軸性を有する無機層状化合物 を含み、 前記無機層状化合物の配向状態は、 前記位相差層の光軸方向が 面と垂直な方向 (法線方向) になるように固定されている位相差層も好 ましい。 このような位相差層の形成方法も特に限定されず、 公知の方法 を適宜用いることができる。 負の 1軸性無機層状化合物に関しては特開 平 6— 8 2 7 7 7号公報等に詳しい。
図 1 1〜図 1 3の模式図に、 ホメオト口ピック配向状態を固定した位 相差層、 ディスコチック液晶を用いた位相差層、 無機層状化合物からな る位相差層をそれぞれ示す。 図中、 1 1 0 1、 1 2 0 1および 1 3 0 1 の符号で表される図形は、 それぞれホメオト口ピック液晶分子、 デイス コチック液晶分子、 および負の一軸性無機層状化合物結晶の薄片を表す さらに、 前記位相差層としては、 二軸配向した非液晶ポリマ一を含む 位相差層も好ましい。 このような位相差層の形成方法も特に限定されず 、 公知の方法を適宜用いることができるが、 例えば、 正の屈折率異方性 を有する高分子フィルムをバランス良く二軸延伸する方法、 熱可塑樹脂 をプレスする方法、 平行配向した結晶体から切り出す方法等が挙げられ る。 また、 非液晶ポリマーの種類によっては、 その溶液を基材上に塗布 して乾燥し、 フィルム状に成形することで C一 p 1 a t eが得られる場 合もある。 前記非液晶ポリマーは特に限定されないが、 例えば、 ポリエ チレンテレフタレート、 ポリエチレンナフタレート等のポリエステル系 ポリマー、 ジァセチルセルロース、 トリァセチルセル口一ス等のセル口 ース系ポリマ一、 ポリメチルメタクリレート等のァクリル系ポリマ一、 ポリスチレン、 アクリロニトリル ·スチレン共重合体 (A S樹脂) 等の スチレン系ポリマー、 ビスフエノール A ·炭酸共重合体等のポリ力一ポ ネー卜系ポリマ一、 ポリエチレン、 ポリプロピレン、 エチレン · プロピ レン共重合体等の直鎖または分枝状ポリオレフイン、 ポリノルポルネン 等のシクロ構造を含むポリオレフイン、 塩化ビニル系ポリマー、 ナイ口 ン、 芳香族ポリアミド等のアミ ド系ポリマー、 イミ ド系ポリマー、 スル ホン系ポリマー、 ポリエーテルスルホン系ポリマー、 ポリエーテルエー テルケトン系ポリマ一、 ポリフエ二レンスルフイド系ポリマ一、 ビニル アルコール系ポリマ一、 塩化ビニリデン系ポリマー、 ビニルプチラール 系ポリマー、 ァリレート系ポリマー、 ポリオキシメチレン系ポリマー、 およびエポキシ系ポリマーが好ましく、 これらは単独で使用しても二種 類以上併用しても良い。 さらに、 これらポリマー材料には、 伸長性ゃ収 縮性付与等の任意の目的で、 適切な添加剤を適宜添加しても良い。 前記非液晶ポリマ一としては、 その他、 例えば、 側鎖に置換または非 置換のイミド基を有する熱可塑性樹脂と、 側鎖に置換または非置換のフ ェニル基およびシァノ基を有する熱可塑性榭脂を含有する樹脂組成物も 挙げられる。 このような樹脂組成物としては、 イソブテンと N—メチレ ンマレイミドからなる交互共重合体と、 アクリロニトリル ·スチレン共 重合体とを有する樹脂組成物等が挙げられる。 さらに、 ポリイミド系フ イルム材料としては、 例えば、 U S 5 5 8 0 9 5 0および U S 5 5 8 0 9 6 4等に記載の材料も、 非液晶性ポリマ一からなる位相差層として好 適に用いることができる。
次に、 本発明の偏光素子は、 前記 2層の反射偏光子が、 右回り円偏光 および左回り円偏光のうち一方を選択的に透過させ他方を選択的に反射 する偏光子 (反射円偏光子) であることにより、 広い角度から入射した 自然光に対して偏光分離機能を有し、 設計および製造が簡便である等の 利点を有する。
前記反射円偏光子としては、 特に限定されないが、 例えば、 コレステ リック液晶のブラナー配向状態を固定させたものがより好ましい。 前記 コレステリック液晶の種類は特に限定されず、 適宜選択することができ るが、 例えば、 前記位相差層と同様に、 液晶モノマーを重合させた重合 液晶、 高温でコレステリック液晶性を示す液晶ポリマー、 およびそれら の混合物等を使用することができる。 前記重合液晶は、 液晶モノマーに 必要に応じカイラル剤や配向助剤等を加え、 電子線や紫外線等の電離放 射線照射または熱により重合させて作ることができる。 また、 前記コレ ステリック液晶の液晶性はリオトロピックでもサーモト口ピックでもど ちらでも良いが、 制御の簡便性およびモノドメインの形成しやすさの観 点からサ一モトロピック性の液晶であ,ることがより好ましい。
前記反射円偏光子としては、 より具体的には、 例えば、 コレステリッ ク液晶ポリマーからなる層を含むシ一トゃ、 当該層がガラス板等の上に 積層されたシート、 コレステリック液晶ポリマ一からなるフィルム等が 挙げられるが、 これらに限定されるもめではない。 このようなコレステ リック液晶層の形成方法も特に限定されないが、 例えば、 前記コレステ リック液晶化合物を含む位相差層と同様にして形成することができる。 コレステリック液晶は、 なるべく層内で均一に配向していることがより 好ましい。
前記反射円偏光子においては、 偏光素子の性能上の観点から選択反射 波長帯域が可視光域や光源発光波長帯域を力パーすることがより好まし く、 選択反射波長帯域は前記の通りコレステリックのカイラルピッチと 液晶の屈折率とから一義的に決定することができる。 前記反射円偏光子 を形成するコレステリック液晶層は、 その目的に応じ、 例えば、 選択反 射波長帯域の異なる複数の層を積層しても良いし、 単層でピッチが厚み 方向で変化した物でも良い。 複数の層を積層する場合、 例えば、 あらか じめ、 基材上にコレステリック液晶層が積層されたものを複数準備し、 これらをさらに積層しても良い。 しかし、 例えば、 コレステリック液晶 層の上に配向膜を形成し、 この上に別のコレステリック液晶層を積層さ せる方法をとると、 薄型化等の観点からより好ましい。
また、 本発明の偏光素子は、 少なくとも正面方向において 1 Z 4波長 板機能を有するもう一つの層をさらに含み、 この層が、 前記 2層の反射 円偏光子のうち視認側に位置する反射円偏光子のさらに外側に配置され ていることがより好ましい。 この構成を有することにより、 前記反射円 偏光子を透過した円偏光を直線偏光に変更し、 効率よく利用することが できる。 このような偏光素子は、 吸収 2色性偏光板をさらに含み、 この 吸収 2色性偏光板が、 前記少なくとも正面方向において 1 / 4波長板機 能を有するもう一つの層のさらに外側に配置されていることが特に好ま しい。
前記吸収 2色性偏光板は特に限定されないが、 例えば、 ポリビニルァ ルコール系フィルム、 部分ホルマール化ポリビニルアルコール系フィル ム、 エチレン ·酢酸ビニル共重合体系部分ケン化フィルム等の親水性高 分子フィルムにヨウ素や 2色性染料等の 2色性物質を吸着させて延伸し た吸収型偏光 、 ポリビニルアルコールの脱水処理物やポリ塩化ビニル の脱塩酸処理物等のポリェン配向フィルム等が挙げられる。 また、 これ らフィルムの片面又は両面に、 耐水性等の保護目的でプラスチックの塗 布層やフィルムのラミネート層等からなる透明保護層を設けた偏光板等 も挙げられる。 さらにその透明保護層に透明微粒子を含有させて表面に 微細凹凸構造を付与したもの等も挙げられる。 前記透明微粒子としては 、 例えば平均粒径が 0 . 5〜 5 mのシリカやアルミナ、 チタニアゃジ ルコニァ、 酸化錫や酸化インジウム、 酸化カドミウムや酸化アンチモン 等の無機系微粒子が挙げられ、 これらは導電性であっても良く、 さらに 、 架橋または未架橋ポリマー等の有機系微粒子等も挙げられる。
(実施形態 1 ) .
以下、 図 1および 2に基づき、 本発明の偏光素子における集光性と輝 度向上の同時発現のメカニズムについて説明する。 ただし、 これは本発 明の一実施形態に過ぎず、 本発明はこれに限定されない。
図 1は、 本発明の偏光素子における前記一実施形態を示す図である。 図示の通り、 この偏光素子は、 コレステリック液晶円偏光子 2 0 1 (以 下 「層 1」 と呼ぶことがある) 、 C— p l a t e 2 0 2 (以下 「層 2」 と呼ぶことがある) 、 およぴコレステリック液晶円偏光子 2 0 3 (以下 「層 3」 と呼ぶことがある) の主要構成要素がこの順番に積層されてお り、 層 1の側から光を入射する。 なお、 本図に示す実施形態では、 2層 の反射円偏光子を透過する円偏光の回転方向が互いに同じである。 また 、 円偏光子と位相差層はいずれも面内方向に光軸が存在しないので、 貼 り合わせ方向は任意で良い。 このため平行光化の絞り込みの角度範囲は 等方的かつ対称的な特性を有する。
なお、 図 2は、 本発明における自然光、 円偏光および直線偏光を表す 記号について説明した図である。 円偏光 aと円偏光 bとは回転方向が互 いに逆であり、 直線偏光 cと直線偏光 dとは互いに直交する。
以下、 図 1の偏光素子に光が入射された際の理想的な動作原理につい て、 同図に基づき順を追って説明する。
( 1 ) まず、 バックライト (光源、 図示せず) から供給される光のう ち、 垂直入射する自然光 1が円偏光子 20 1 (層 1) で偏光分離され、 透過光 3および反射光 2の二つの円偏光に分かれる。 それぞれの円偏光 の回転方向は反対である。
(2) 透過光 3は位相差層 2 02 (層 2) を素通りし、 透過光 4とな る。
(3) 透過光 4は円偏光子 2 0 3 (層 3) を素通りし、 透過光 5とな る。
(4) 透過光 5は、 この上に配置される液晶表示装置に用いられる。
(5) 次に、 バックライトから供給される光のうち、 斜め入射する自 然光 6は円偏光子 2 0 1で偏光分離され、 透過光 8と反射光 7の二つの 円偏光に分かれる。 それぞれの円偏光の回転方向は反対である。
(6) 透過光 8は位相差層 202を通る際に位相差値が 1Z 2波長与 えられ、 透過光 9となる。
( 7 ) 透過光 9は位相差の影響で光 8とは円偏光の回転方向が逆とな る。
(8) 透過光 9は円偏光子 203で反射され、 光 1 0となる。
なお、 円偏光は一般的には反射する際に回転方向が逆転することが知 られている (例えば、 W.A.シヤークリフ著 「偏光とその応用」 (WA Shurcl i f f, Polarized Light: Production and Use, (Harvard
University Press, Cambridge, Mass. , 1966))を参照のこと) 。 ただし 、 例外としてコレステリック液晶層での反射の場合には回転方向が変わ らない事が知られている (培風館 「液晶辞典」 等参照) 。 本図では反射 がコレステリック液晶面で行われるために、 光 9と光 1 0の円偏光の回 転方向は変化しない。
(9) 反射光 1 0は位相差層 202を通る際に位相差の影響を受け、 透過光 1 1となる。 ( 1 0 ) 透過光 1 1は位相差の影響で回転が反転している。
( 1 1 ) 光 1 1は回転方向が光 8と同方向に戻っているため、 円偏光 子 2 0 1を素通りし、 透過光 1 2となる。
( 1 2 ) 光 7および 1 2はパックライト側に戻り、 リサイクルされる 。 これらの戻り光線はパックライトに配置された拡散板等で進行方向や 偏光の向きをランダムに変えながら偏光素子の法線方向近傍の透過でき る光線となるまで反射を繰り返し、 輝度向上に貢献する。
( 1 3 ) なお、 透過した円偏光 5を、 1 Z 4波長板 (図示せず) によ り直線偏光に変換すると、 吸収損失を生じることなく液晶表示装置等に 利用できる。 以上のようにして図 1の偏光素子による集光および輝度向 上が行なわれる。 次に、 前記反射偏光子の選択反射波長帯域について説明する。
本発明における前記 2層の反射偏光子の選択反射波長帯域は、 同一で も良いし異なっていても良い。 例えば、 一方の反射偏光子が可視光全波 長で反射を有するもので、 他方が部分的に反射するものでも良いが、 そ れらの選択反射波長帯域のうち少なくとも一部は互いに重なっている必 要がある。 前記反射偏光子の選択反射波長帯域は、 偏光素子の使用目的 、 および組み合わせて使用する部材ゃ光源の種類等に合わせて適宜設計 すれば良いが、 例えば、 波長 5 5 0 n m付近の視感度の高い光に対して その選択反射が達成されることが好ましい。 すなわち、 具体的には、 前 記 2層の反射偏光子における選択反射波長帯域の互いに重なる領域が、 5 4 0〜5 6 0 n mの波長範囲を含むことが好ましい。 コレステリック 液晶化合物を含む反射偏光子の場合、 前記の通り、 選択反射波長帯域は コレステリックのカイラルピッチと液晶の屈折率とから一義的に決定す ることができ、 選択反射の中心波長は前記式 (VI I I) で表される (λ = n p ) 。
さらに、 カラー表示を得る必要がある場合は、 白色光が要求されるた め、 可視光域で特性が均一か、 少なくとも光源の発光スペクトル領域 ( 多くは 4 3 5 n m〜 6 1 0 n m前後) を力パーできることがより好まし い。 斜め入射光線に対してはコレステリック液晶の選択反射スペクトル は短波長側にシフト (ブルーシフト) することを考慮すると、 前記重な つている波長領域は 6 1 0 n mよりも長波長の領域をカバ一しているこ とがさらに好ましい。 この長波長側に必要な選択反射波長帯域幅は、 光 源からの入射光線の角度と波長に大きく依存するので、 要求仕様に応じ て任意に長波長端を設定する。 具体的には、 例えば、 液晶表示装置に多 く用いられているゥエツジ型導光板を用いたバックライ トでは導光板か らの出射光の角度は法線方向から 6 0 ° 前後の角度である。 前記ブルー シフトの量は、 入射角度が大きいほど増大する傾向があり、 6 0 ° 前後 では一般に約 1 0 0 n m程度である。 したがって、 バックライトに 3波 長冷陰極管が用いられており、 赤の輝線スペクトルが 6 1 0 n mである 場合には、 選択反射波長帯域の前記重なっている領域が 7 1 O n mより 長波長側に達していれば良い。 さらに、 色付きや、 液晶表示装置等にお ける R G B対応の観点からは、 可視光全波長領域、 すなわち 3 8 O n m 〜7 8 0 n mにおいて前記選択反射波長帯域が重なっていることが特に 好ましい。
なお、 バックライト光源が特定の波長しか発光しない場合、 例えば色 付き冷陰極管のような場合には得られる輝線のみ遮蔽できればよい。 ま た、 バックライ卜からの出射光線が動向体表面に加工されたマイクロレ ンズゃドット、 プリズム等の設計で正面方向に最初からある程度絞られ ている場合には、 大きな入射角での透過光は無視できるので選択反射波 長を大きく長波長側に延ばさなくても良い。 次に、 前記位相差層の位相差値について説明する。
前記位相差層の斜め方向位相差値 R ' (前記式 (I I) 参照) は、 前記 位相差層を透過した光を反射偏光子によって全反射するために、 理想的 には λ Ζ 2 ( λは入射光の波長) であるが、 実際には厳密に; 1 / 2でな くても目的を達成することができる。 さらに、 前記斜め方向位相差値 R ' は光の入射角度により変化し、 一般に入射角が大きくなると増大する 傾向があるので、 効率的に偏光変換を起こすためには、 全反射させる角 度等を考慮して適宜決定する必要がある。 例えば、 法線からのなす角 6 0 ° 程度で完全に全反射させる は 6 0 ° で測定したときの位相差が λ Ζ 2程度になるように決定すればよい。 なお、 前記斜め方向位相差値 R ' の調整方法は特に限定されず、 公知の方法を適宜用いることができ、 例えば、 前記位相差層が二軸延伸フィルムの場合には、 延伸率やフィル ム厚み等により制御することができる。
さらに、 反射偏光子による透過光は、 反射偏光子自身の Cプレート的 な複屈折性等により偏光状態が変化する場合がある。 例えば、 コレステ リック液晶層を含む反射円偏光子は、 コレステリック液晶化合物のねじ れ構造により、 位相差層、 例えばネガティブ Cプレートとしての性質を ある程度持っていることがある。 したがって、 前記反射偏光子の位相差 を考慮して前記位相差層の斜め方向位相差値 R ' を Λ Ζ 2よりも小さい 値に調整することができる。 具体的には、 R ' は前記式 (I I) の通り λ / 8以上であれば良い。 R ' の上限値は特に限定されず、 前記の通り目 的に応じて適宜設定すれば良い。 なお、 面内位相差 R (前記式 ( I ) 参 照) についてはなるべく小さい方が良いのは前記の通りである。
参考のため、 図 1 0に、 Cプレートの入射角度に対する位相差の関係 と、 Cプレートの光学的異方性を端的に表した屈折率楕円体を示す。 し かし、 これは単なる一例に過ぎず、 本発明を何ら限定するものではない 。 図 1 0は、 複屈折樹脂の二軸配向性が、 正面位相差 0、 斜め位相差 = 1 Z 2波長の例であり、 同図の場合は ± 4 0度の位置で 1 / 2波長と なる。
以上、 反射円偏光子を用いる実施形態について説明したが、 この実施 形態は上記に限定されず、 様々な変更が可能である。 例えば、 本発明で は、 前記位相差層は、 Cプレートに代えて 1 / 2波長板 (1 / 2波長位 相差板とも言う) を用いても良い。 すなわち、 本発明の偏光素子は、 2 層の反射円偏光子とそれらの間に配置された 1 Z 2波長板とを少なくと も含み、 前記 2層の反射円偏光子は、 偏光の選択反射における選択反射 波長帯域の少なくとも一部が互いに重なる偏光 子であっても良い。 こ の場合、 前記 2層の反射円偏光子のそれぞれを透過する円偏光の回転方 向が互いに逆であることが好ましく、 前記 1 Z 2波長板における斜め方 向位相差値が 0または λであることが理想的である。 前記斜め方向位相 差値を設定する際、 反射円偏光子の位相差値を考慮する必要があるのは 、 Cプレ一卜を用いる場合と同じである。 1 2波長板を用いた場合、 傾斜する軸の方位角による異方性や色付きの問題が発生する可能性があ るが、 例えば、 前記 2層の反射円偏光子および位相差層の各層について 波長分散特性が互いに異なる層を用いて色付きを相殺することができる
(実施形態 2 )
次に、 本発明の別の実施形態について説明する。
本発明の偏光素子は、 前記反射偏光子が反射直線偏光子であっても良 い。 より具体的には、 本発明の偏光素子は、 2層の反射偏光子と、 それ らの間に配置された中間層とを少なくとも含み、 前記 2層の反射偏光子 が、 直交する直線偏光のうち一方を選択的に透過させ他方を選択的に反 射する反射直線偏光子であり、 前記 2層の反射直線偏光子は、 偏光の選 択反射における選択反射波長帯域の少なくとも一部が互いに重なり、 前 記中間層は、 1層の光学層からなるか、 または 2層以上の光学層の積層 構造を含み、 かつ、 前記中間層は、 入射する直線偏光を、 その入射方向 に応じて偏光方向を変化させるかまたは変化させずに透過させる機能を 有し、 前記 2層の反射直線偏光子は、 その面内遅相軸方向が、 入射する 直線偏光のうち入光面と垂直な方向 (法線方向) から入射する光を透過 させ斜め方向から入射する光を効率的に反射するような角度で配置され ている偏光素子であっても良い。
このような偏光素子としては、 例えば、 反射直線偏光子と 1 /4波長 板 (1Z4波長位相差板とも言う) との組み合わせで Cプレートを挟み 込んだものが好ましい。 より具体的には、 2層の反射直線偏光子と、 そ れらの間に配置された位相差層と 2層の 1 Z 4波長板とを少なくとも含 み、 その 1 Z4波長板のうち 1層は、 前記反射直線偏光子のうちの一方 と前記位相差層との間に配置され、 もう 1層の 1 /4波長板は他方の反 射直線偏光子と前記位相差層との間に配置され、 前記 2層の反射直線偏 光子は、 偏光の選択反射における選択反射波長帯域の少なくとも一部が 互いに重なり、 前記位相差層の一方の面側に位置する 1 /4波長板は、 その面内遅相軸が、 同じ側に位置する反射直線偏光子の偏光軸と 40 ° 〜 5 0 ° の角度をなし、 前記位相差層の他方の面側に位置する 1Z4波 長板は、 その面内遅相軸が、 同じ側に位置する反射直線偏光子の偏光軸 と一 40 ° 〜一 5 0 ° の角度をなし、 前記 2層の 1/4波長板の面内遅 相軸同士がなす角度は任意である偏光素子が好ましい。 この場合、 前記 位相差層は下記式 (I ) および (III) の条件を満たす必要がある。
R≤ (λ/ 1 0) ( I ) R, ≥ UZ4) (III) 式 (I ) および (III) 中、 λ、 Rおよび R' の定義は前記の通りで ある。 直線偏光子と 1 /4波長板を組み合わせると自然光を円偏光に変換で きることが分かっている。 図 3に示す通り、 自然光 301を直線偏光子 302に入射すると直線偏光 303に変換され、 さらに、 直線偏光 30 3を 1Z4波長板 304に通すと円偏光 305に変換される。 反射円偏 光子および反射直線偏光子は、 ブリュスター角等の原理に基づくプリズ ム型の反射偏光子と比較し、 入射角依存性がないという利点がある。 反射直線偏光子を用いて Cプレートを単に挟んだのみでは、 Cプレー 卜に斜め方向から入射する光線に対する光軸は常に光線方向と直交する ため位相差が発現せず偏光変換されない。 そこで、 直線偏光を、 前記反 射直線偏光子の偏光軸と 45° または一 45° に遅相軸方向を有した 1 /4波長板で円偏光に変換した後、 Cプレートの位相差で逆円偏光に変 換し、 その円偏光を再び 1 Z4波長板で直線偏光に変換すれば良い。 なお、 本発明における 1/4波長板および 1/2波長板は特に限定さ れず、 公知のものを適宜使用することができる。 具体的には、 例えば、 一軸延伸または二軸延伸した高分子フィルム、 および液晶化合物をハイ ブリツド配向 (平面方向では一軸配向させ、 厚み方向にさらに配向させ た配向状態) させた層等が挙げられる。 前記 1/4波長板および 1Z2 波長板における面内位相差および厚み方向位相差の制御方法も特に限定 されず、 例えば、 延伸高分子フィルムであれば延伸率やフィルム厚み等 を調整することにより制御できる。
前記高分子フィルムに用いることのできるポリマ一も特に限定されな いが、 例えば、 ポリエチレンテレフタレー卜、 ポリエチレンナフ夕レー ト等のポリエステル系ポリマー、 ジァセチルセルロース、 トリァセチル セルロース等のセルロース系ポリマ一、 ポリメチルメタクリレート等の アクリル系ポリマー、 ポリスチレン、 アクリロニトリル ·スチレン共重 合体 (A S樹脂) 等のスチレン系ポリマー、 ビスフエノール A ·炭酸共 重合体等のポリ力一ポネート系ポリマー、 ポリエチレン、 ポリプロピレ ン、 エチレン ' プロピレン共重合体等の直鎖または分枝状ポリオレフィ ン、 ポリノルポルネン等のシクロ構造を含むポリオレフイン、 塩化ビニ ル系ポリマー、 ナイロン、 芳香族ポリアミ ド等のアミ ド系ポリマー、 ィ ミ ド系ボリマ一、 スルホン系ポリマー、 ポリエーテルスルホン系ポリマ ―、 ポリエーテルエ一テルケトン系ポリマ一、 ポリフエ二レンスルフィ ド系ポリマー、 ビニルアルコール系ポリマー、 塩化ビニリデン系ポリマ ―、 ビニルブチラ一ル系ボリマ一、 ァリレ一卜系ポリマー、 ポリオキシ メチレン系ポリマー、 およびエポキシ系ポリマ一が好ましく、 これらは 単独で使用しても二種類以上併用しても良い。 さらに、 これらポリマー 材料には、 伸長性や収縮性付与等の任意の目的で、 適切な添加剤を適宜 添加しても良い。
前記高分子フィルムの製造方法も特に限定されず、 例えば、 キャスト 法 (押出成形法) により製造したものや、 前記ポリマー材料を溶融し成 膜した後延伸して製造したもの等が挙げられるが、 機械的強度等の観点 から後者が好ましい。
前記高分子フィルムとしては、 その他、 特開 2 0 0 1— 3 4 3 5 2 9 号公報 (W〇 0 1 / 3 7 0 0 7 ) に記載の高分子フィルムも挙げられる 。 この高分子フィルムの材料としては、 例えば、 側鎖に置換または非置 換のイミ ド基を有する熱可塑性樹脂と、 側鎖に置換または非置換のフエ ニル基およびシァノ基を有する熱可塑性樹脂を含有する樹脂組成物が使 用でき、 例えば、 イソブテンと N—メチレンマレイミドからなる交互共 重合体と、 ァクリロニトリル,スチレン共重合体とを有する樹脂組成物 が挙げられる。
また、 本発明の反射直線偏光子も特に限定されず、 公知のものを適宜 使用することができるが、 例えば光学的異方性を有する延伸フィルムや それらの積層体等を用いることができ、 前記延伸フィルムの材質は、 例 えば前記 1 Z4波長板および 1 /2波長板と同様のものを用いることが できる。
図 4は、 本実施形態の偏光素子を示す模式図である。 ただし、 本実施 形態はこれに限定されない。 図示の通り、 この偏光素子は、 反射直線偏 光子 404 (以下 「層 4」 と呼ぶことがある) 、 1/4波長板 405 ( 以下 「層 5」 と呼ぶことがある) 、 C一 p l a t e 406 (以下 「層 6 」 と呼ぶことがある) 、 1/4波長板 407 (以下 「層 7」 と呼ぶこと がある) 、 および反射直線偏光子 408 (以下 「層 8」 と呼ぶことがあ る) の主要構成要素がこの順番に積層されており、 層 4の側から光を入 射する。
また、 図 5は、 図 4の偏光素子における各主要構成要素の貼り合せ角 度を示す模式図である。 直線偏光子 404の偏光軸と 1Z4波長板 40 5の面内遅相軸とのなす角は 40 ° 〜 50 ° であり、 直線偏光子 408 の偏光軸と 1 Z4波長板 407の面内遅相軸とのなす角は一 40 ° 〜一 50° である。 これ以外には、 各構成要素がなす角度は特に限定されず 、 前記の角度を維持したままセット 1 (直線偏光子 404と 1 Z4波長 板 405との組み合わせ) およびセット 2 (直線偏光子 408と 1 /4 波長板 407との組み合わせ) を任意に回転させても同様の性能を発揮 することができる。 例えば、 図 14は、 図 4および 5に示す例でのセッ ト 2を 90 ° 回転させた場合を示す一例であるが、 このようにしても図 4および 5と同様の性能を発揮することができる。 また、 Cプレートは 面内に光軸を持たないので、 その貼り合せ角度は任意である。
以下、 図 4に基づき、 本実施形態の偏光素子に光線が入射された場合 の理想的な動作原理を説明する。
( 1) まず、 自然光 14が、 パックライト (光源) から反射直線偏光 子 404 (層 4) に向かって垂直に入射される。
(2) 光 1 4は、 直線偏光 1 5およびそれと直交する直線偏光 1 6に 分離され、 光 1 5は層 4を透過し、 光 1 6は反射される。
(3) 直線偏光 5は 1/4波長板 40 5 (層 5 ) を透過し、 円偏光 1 7に変換される。
(4) 円偏光 1 7はその偏光状態を変えず、 円偏光 1 8として C一 p 1 a t e 40 6 (層 6 ) を透過する。
(5) 円偏光 1 8は、 174波長板40 7 (層 7) を透過し、 直線偏 光 19に変換される。
(6) 直線偏光 1 9はその偏光状態を変えず、 直線偏光 20として反 射直線偏光子 408 (層 8) を透過する。
(7) 直線偏光 2 0は装置 (液晶表示装置等) に入射し、 損失無く伝 送される。
(8) 一方、 バックライトからは、 垂直方向からの自然光 14に加え 、 斜め方向からの自然光 2 1が層 4に向かって入射される。
(9) 光 2 1は、 直線偏光 22およびそれと直交する直線偏光 23に 分離され、 光 22は層 4 (反射直線偏光子) を透過し、 光 23は反射さ れる。
( 10) 直線偏光 22は層 5 (1/4波長板) を透過し、 円偏光 24 に変換される。 (11) 円偏光 24は、 層 6 (Cプレート) を通過する際、 1/2波 長の位相差を受け、 回転方向が逆転して円偏光 25となる。
(12) 円偏光 25は、 層 7 (1/4波長板) を透過し、 直線偏光 2 6に変換される。
(13) 直線偏光 26は層 8 (反射直線偏光子) で反射され、 直線偏 光 27となる。
(14) 直線偏光 28は層 7 (1/4波長板) を透過し、 円偏光 28 に変換される。
(15) 円偏光 28は、 層 6 (Cプレート) を透過する際に 1Z2波 長の位相差を受け、 回転方向が逆転して円偏光 29となる。
(16) 円偏光 29は層 5 (1/4波長板) を透過し、 直線偏光 30 に変換される。
(17) 直線偏光 30はその偏光状態を変えず、 直線偏光 31として 層 4 (反射直線偏光子) を透過する。
(18) 反射された光 16、 23および 31は、 バックライト側に戻 されリサイクルされる。 リサイクルの機構は実施形態 1と同様である。 なお、 本実施形態において、 前記セット 1およびセット 2 (図 5) に おける反射直線偏光子の偏光軸と 1/4波長板の面内遅相軸とのなす角 は、 理想的な系での理論上では 45 ° および一 45 ° である。 しかし、 現実の反射偏光子や波長板の特性は可視光域で完全ではなく、 波長ごと に微妙な変化があるため、 着色等の問題が生じることがある。 そこで、 若干角度を振って色調を補償し、 合理的に系全体を最適化すると、 前記 着色等の問題を解消できる。 ここで前記角度が 45° または— 45° か ら大きく外れると透過率の低下等の他の問題が生じるため、 ± 5 ° 以内 の範囲での調整に止める。 なお、 前記反射直線偏光子の選択反射波長帯域の好ましい範囲は、 反 射円偏光子の場合と同様である。 斜め方向の入射光線に対して透過光線 の波長特性が短波長側にシフトする点は反射円偏光子と同じであるため 、 深い角度で入射する光線に対して十分機能させるためには可視光域外 長波長側に十分な偏光特性および位相差特性を有することが好ましい。 さらに、 本実施形態の位相差層 (Cプレート) における斜め方向位相 差値 R' (式 (Ilf) ) の好ましい範囲についても、 反射円偏光子を用 いる場合と同様の考え方に基づいて調整すれば良い。 ただし、 反射直線 偏光子は反射円偏光子と比べて、 一般にそれ自体が有する位相差特性が 小さいため、 前記 R' は 1/8波長以上でなく 1/4波長以上必要とな る。
なお、 図 1 5に、 図 14の偏光素子に斜め入射光が入射した場合の、 2枚の反射偏光子間の 1Z 4波長板、 Cプレートおよび 1/4波長板に よる偏光状態の変化をポアンカレ球上で示す。 同図は、 1枚目の反射偏 光子から入射した直線偏光が円偏光を介して逆の直線偏光へと変換され る様子を表している。 ただし、 同図は本発明の一例を示す参考資料であ り、 本発明を何ら限定するものではない。
(実施形態 3)
次に、 本発明のさらに別の実施形態について説明する。
実施形態における 2枚の 1Z 4波長板で Cプレートを挟み込んだ構造 の物を用いる代わりに、 正面位相差 (面内位相差) が λ/4であり、 厚 み方向位相差が λ/ 2以上であるような二軸性フィルムを直交または平 行で 2枚積層することでも同様な効果を得ることが出来る。 この場合の Νζ係数 (厚み方向位相差/面内位相差) は 2以上であれば要件を満た す。 すなわち、 本発明の偏光素子は、 2層の反射直線偏光子とそれらの間 に配置された 2層の 1/4波長板とを少なくとも含み、 前記 2層の反射 直線偏光子は、 偏光の選択反射における選択反射波長帯域の少なくとも 一部が互いに重なり、 前記 1/4波長板のうち一方の面内遅相軸が、 同 じ側に位置する反射直線偏光子の偏光軸と 40° 〜50° の角度をなし 、 他方の 1/4波長板の面内遅相軸が、 同じ側に位置する反射直線偏光 子の偏光軸と— 40 ° 〜一 50 ° の角度をなし、 前記 2層の 1 / 4波長 板の面内遅相軸同士がなす角度は任意であり、 前記各 1Z4波長板がそ れぞれ下記式 (IV) の条件を満たす偏光素子であっても良い。
N z≥ 2. 0 (IV) たたし Nz = ( n X — n z ) / 、nx— ny) 式 (IV) において、
nx、 11 ぉょび11 2は、 それぞれ前記 1 /4波長板における X軸方 向、 Y軸方向および Z軸方向の屈折率であり、 前記 X軸方向とは、 前記 1Z4波長板の面内で屈折率が最大となる方向 (面内遅相軸方向) であ り、 前記 Y軸方向とは、 前記 1Z4波長板の面内で前記 X軸方向に垂直 な方向 (面内進相軸方向) であり、 前記 Z軸方向とは、 前記 X軸方向お よび前記 Y軸方向に垂直な前記 1 /4波長板の厚み方向である。
1/4波長板および反射直線偏光子の材質や、 面内位相差および厚み 方向位相差の制御方法については特に限定されず、 例えば実施形態 2で 述べた通りである。
図 6は、 本実施形態の偏光素子を示す模式図である。 ただし、 本実施 形態はこれに限定されない。 図示の通り、 この偏光素子は、 反射直線偏 光子 6 09 (以下 「層 9」 と呼ぶことがある) 、 1/4波長板 6 1 0 ( 以下 「層 1 0」 と呼ぶことがある) 、 1Z4波長板 6 1 1 (以下 「層 1 1」 と呼ぶことがある) 、 および反射直線偏光子 6 1 2 (以下 「層 1 2 」 と呼ぶことがある) の主要構成要素がこの順番に積層されており、 層 9の側から光を入射する。
また、 図 7は、 図 6の偏光素子における各主要構成要素の貼り合せ角 度を示す模式図である。 直線偏光子 609の偏光軸と 1Z4波長板 6 1 0の面内遅相軸とのなす角は 40 ° 〜5 0 ° であり、 直線偏光子 6 1 2 の偏光軸と 1/4波長板 6 1 1の面内遅相軸とのなす角は一 40 °.〜一 50 ° である。 これ以外には、 各構成要素がなす角度は特に限定されず 、 前記の角度を維持したままセット 1 (直線偏光子 60 9と 1/4波長 板 6 1 0との組み合わせ) およびセット 2 (直線偏光子 6 1 2と 1 / 4 波長板 6 1 1との組み合わせ) を任意に回転させても同様の性能を発揮 することができる。 図 6および 7では、 説明の便宜のため、 上下の直線 偏光子の軸は平行であり、 1Z4波長板の軸は直交させた例を示したが 、 これに限定されるものではない。
以下、 図 6に基づき、 本実施形態の偏光素子に自然光が入射された際 の理想的な動作原理を説明する。 (1) まず、 自然光 32がバックライト (光源) から垂直入射される
(2) 自然光 32は、 層 9 (反射直線偏光子) によって直線偏光 3 3 およびそれと直交する直線偏光 34に分離され、 直線偏光 33は層 9を 透過し、 直線偏光 34は反射される。
(3) 直線偏光 3 3は、 層 1 0および層 1 1, (1ノ 4波長板) を透過 する。 本図に示す例では、 層 1 0と層 1 1との面内遅相軸は直交してい るため、 層 1 0と層 1 1との組み合わせとして考えた場合、 正面位相差 (面内位相差) は 0となる。 したがって、 直線偏光 33は、 層 1 0およ び層 1 1を透過する際、 その偏光状態を変えずに直線偏光 3 5となる。
(4) 直線偏光 3 5はその偏光状態を変えずに層 1 2 (反射直線偏光 子) を透過し、 直線偏光 3 6となる。
(5) 直線偏光 3 6は装置 (液晶表示装置等) に損失無く伝送される
(6) 一方、 パックライトからは、 垂直入射する自然光 32の他に、 斜め入射する自然光 3 7が入射される。
(7) 自然光 3 7は、 層 9 (反射直線偏光子) によって直線偏光 3 8 およびそれと直交する直線偏光 3 9に分離され、 直線偏光 38は層 9を 透過し、 直線偏光 3 9は反射される。
(8) 直線偏光 38は、 層 1 0および層 1 1に斜め入射し、 これらの 層を透過する際、 厚み方向位相差の影響により偏光軸方向が 90 ° 変化 して直線偏光 40となる。
(9) 直線偏光 40は層 1 2 (反射直線偏光子) に入射する。
(1 0) 層 12は層 9と軸方向が同じであるため、 直線偏光 40は層 1 2により反射され直線偏光 4 1となる。
(1 1) 直線偏光 41は、 層 1 1および層 1 0を透過する際に (9) と同様に位相差の影響を受け、 偏光軸方向が 90° 変化して直線偏光 4
2となる。
(12) 直線偏光 42はその偏光状態を変えずに層 9 (反射直線偏光 子) を透過し、 直線偏光 43となる。
(1 3) 反射された光 34、 39および 43はバックライト側に戻さ れリサイクルされる。 リサイクルの機構は実施形態 1および 2と同様で ある。 本実施形態の偏光素子は、 実施形態 2の偏光素子と同様の性能を発揮 することが可能であり、 また、 Cプレートを省略できるため実施形態 2 の偏光素子よりもさらに生産効率に優れるという利点がある。 本実施形 態における 1ノ4波長板については特に限定されず、 前記の通りである が、 例えば、 二軸延伸したポリ力一ポネート (P C ) やポリエチレンテ レフ夕レート (P E T ) フィルム、 またはハイブリッド配向させた液晶 化合物の層がより好ましい。
反射直線偏光子と 1 / 4波長板とのなす角度の範囲については前記の 通りであり、 その微調整については実施形態 2と同様の考え方に基づき 行なえば良い。
また、 前記反射直線偏光子の選択反射波長帯域に関しても実施形態 1 および 2と同様である。
さらに、 本実施形態においては、 N z (式 (IV) ) の値を変化させる ことにより斜め入射光の利用効率が変化するが、 その好ましい範囲は特 に限定されず、 実施形態 1および 2と同様の考え方に基づいて最適な光 利用効率が得られるように調整すれば良い。 反射偏光子が有する位相差 を考慮する必要がある点も前記各実施形態と同様である。 (実施形態 4 )
次に、 本発明のさらに別の実施形態について説明する。
実施形態 2における 2層の 1 / 4波長板で Cプレートを挟み込んだ構 造の物を用いる代わりに、 正面位相差 (面内位相差) が λ / 2であり、 厚み方向位相差がえ / 2以上であるような二軸性フィルムを用いること でも同様な効果を得ることが出来る。 この場合の N z係数は 1 . 5以上 必要である。 すなわち、 本発明の'偏光素子は、 2層の反射直線偏光子とそれらの間 に配置された 1 / 2波長板とを少なくとも含み、 前記 2層の反射直線偏 光子は、 偏光の選択反射における選択反射波長帯域の少なくとも一部が 互いに重なり、 前記 1/2波長板の面内遅相軸が、 一方の反射直線偏光 子の偏光軸と 40° 〜50° の角度をなし、 かつ、 他方の反射直線偏光 子の偏光軸と一 40° 〜一 50° の角度をなし、 前記 1Z2波長板が下 記式 (V) の条件を満たす偏光素子であっても良い。
N z≥ 1. 5 (V) たたし Nz= ( n X— n z ) / ( n x— n y ) 式 (V) において、
nx、 nyおよび n zは、 それぞれ前記 1 / 2波長板における X軸方 向、 Y軸方向および Z軸方向の屈折率であり、 前記 X軸方向とは、 前記 1/2波長板の面内で屈折率が最大となる方向 (面内遅相軸方向) であ り、 前記 Y軸方向とは、 前記 1/2波長板の面内で前記 X軸方向に垂直 な方向 (面内進相軸方向) であり、 前記 Z軸方向とは、 前記 X軸方向お よび前記 Y軸方向に垂直な前記 1 Z 2波長板の厚み方向である。 反射直線偏光子および波長板の材質および製造方法等については特に 限定されず、 前記他の実施形態と同様である。
図 8は、 本実施形態の偏光素子を示す模式図である。 ただし、 本実施 形態はこれに限定されない。 図示の通り、 この偏光素子は、 反射直線偏 光子 813 (以下 「層 13」 と呼ぶことがある) 、 1Z2波長板 8 14 (以下 「層 14」 と呼ぶことがある) 、 および反射直線偏光子 81 5 ( 以下 「層 15」 と呼ぶことがある) の主要構成要素がこの順番に積層さ れており、 層 1 3の側から光を入射する。
また、 図 9は、 図 8の偏光素子における各主要構成要素の貼り合せ角 度を示す模式図である。 直線偏光子 813の偏光軸と 1Z2波長板 81 4の面内遅相軸とのなす角は 40 ° 〜50° であり、 直線偏光子 815 の偏光軸と 1 Z2波長板 814の面内遅相軸とのなす角は— 40° 〜一 50° である。 したがって、 前記 2層の直線偏光子の面内遅相軸同士は 、 必然的にほぼ直交することになる。
本実施形態の偏光素子は、 実施形態 2および 3の偏光素子と同様の性 能を発揮することが可能であり、 積層数が少ないためさらに生産効率に 優れるという利点がある。
以下、 図 8に基づき、 本実施形態の偏光素子に自然光が入射された際 の理想的な動作原理を説明する。
(1) まず、 自然光 47がバックライト (光源) から垂直入射される 。
(2) 自然光 47は、 層 13により直線偏光 48およびそれと直交す る直線偏光 49に分離され、 直線偏光 48は層 13を透過し、 直線偏光
49は反射される。
(3) 直線偏光は、 層 14 (1Z2波長板) を透過する際、 正面位相 差 (面内位相差) の影響を受け、 偏光軸方向が 90° 回転して直線偏光
50となる。
(4) 直線偏光 50はその偏光状態を変えずに層 15 (反射直線偏光 子) を透過し、 直線偏光 51となる。
(5) 透過した直線偏光 5 1は装置 (液晶表示装置等) に損失無く伝 送される。
(6) 一方、 ノ ックライトからは、 垂直入射する自然光 47の他に、 斜め入射する自然光 52が入射される。
(7) 自然光 52は、 層 1 3 (反射直線偏光子) によって直線偏光 5 3およびそれと直交する直線偏光 54に分離され、 直線偏光 53は層 1 3を透過し、 直線偏光 54は反射される。
(8) 直線偏光 53は層 14 ( 1/2波長板) に斜め入射し、 その偏 光軸方向を変えずに直線偏光 5 5として透過する。
(9) 直線偏光 5 5は、 層 1 5 (反射直線偏光子) で反射され直線偏 光 56となる。
(1 0) 直線偏光 56は層 1 4に入射し、 偏光軸方向が変化せずに透 過して直線偏光 5 7となる。
( 1 1) 透過した直線偏光 5 7は、 その偏光状態を変えずに層 1 3を 透過して直線偏光 58となる。
(1 2) 反射された光 49、 54および 58はバックライト側に戻さ れリサイクルされる。 リサイクルの機構は前記他の実施形態と同様であ る。 反射直線偏光子と 1Z2波長板とのなす角度の範囲については前記の 通りであり、 その微調整については実施形態 2および 3と同様の考え方 に基づき行なえば良い。
また、 前記反射直線偏光子の選択反射波長帯域に関しても実施形態 1 〜 3と同様である。
さらに、 本実施形態においては、 N z (式 (V) ) の値を変化させる ことにより斜め入射光の利用効率が変化するが、 、その好ましい範囲は特 に限定されず、 実施形態 1〜3と同様の考え方に基づいて最適な光利用 効率が得られるように調整すれば良い。 反射偏光子が有する位相差を考 慮する必要がある点も前記各実施形態と同様である。 以上、 実施形態 1〜4に基づき本発明を説明してきたが、 本発明は上 記の説明には限定されず、 その主旨を逸脱しない範囲においてあらゆる 変更が可能である。 例えば、 本発明の偏光素子は、 前記各構成要素に加 え、 その目的を達成できる範囲内で他の光学層やその他の構成要素を適 宜含んでいても良い。
(製造方法等)
次に、 本発明の偏光素子の製造方法等について説明する。 まず、 前記 Cプレート、 反射偏光子、 波長板等の各構成要素の材質や製造方法等に ついては前記の通りである。
本発明の偏光素子の製造方法は特に限定されないが、 前記各構成要素 および必要に応じその他の構成要素を積層して製造可能である。 積層の 形態は特に限定されず、 前記各構成要素を単に重ね置いただけでも良い が、 作業性や光の利用効率等の観点から、 前記各構成要素が、 透光性の 接着剤または粘着剤の層を介して積層されていることが好ましい。 なお 、 本発明では、 「接着剤」 と 「粘着剤」 とに明確な区別はないが、 接着 剤のうち剥離や再接着等が比較的容易であるものを便宜上 「粘着剤」 と 呼ぶ。
前記接着剤または粘着剤は、 特に限定されないが、 表面反射の抑制等 の観点から、 透明で、 可視光域に吸収を有さず、 屈折率は、 各層の屈折 率となるべく近いことが好ましい。 したがって、 例えば、 アクリル系、 エポキシ系、 イソシァネ一ト系等の接着剤や粘着剤を好ましく用いるこ とができる。 また、 これら接着剤および粘着剤は、 溶剤型の他、 例えば 紫外線重合型、 熱重合型、 2液混合型等を適宜用いることが出来る。 各 構成要素の積層方法は特に限定されず、 それらの性質に適した任意の方 法を用いて良い。 例えば、 それぞれ別途配向膜上等でモノドメインを形 成し、 透光性基材へ転写する等の方法によって順次積層していくことが できる。
前記各構成要素が液晶化合物を含む層である場合等は、 接着剤または 粘着剤の層を用いる代わりに配向膜等を適宜形成し、 前記各構成要素を 順次直接形成する方法 (直接連続塗工) 等も可能である。 この方法は偏 光素子の薄型化等の観点から有利である。 また、 反射円偏光子と Cプレ 一トとを用いる場合、 各構成要素が面内に光軸を持たず、 貼り合せ角度 が任意であるため、 ロール t oロール法等による貼り合わせや前記直接 連続塗工等により製造可能であり生産性が高いという利点がある。
また、 前記各構成要素および接着剤層 (粘着剤層) には、 必要に応じ て各種添加剤等を加えても良い。 例えば、 拡散度合い調整用にさらに粒 子を添加して等方的な散乱性を付与したり、 製膜時のレべリング性付与 の目的で界面活性剤等を適宜添加したりしても良いし、 その他、 紫外線 吸収剤や酸化防止剤等を適宜添加しても良い。
(偏光光源および画像表示装置)
次に、 本発明の偏光素子を用いた偏光光源および画像表示装置につい て説明する。
まず、 本発明の偏光光源 (偏光光源装置) は、 光源と、 反射層と、 本 発明の偏光素子とを含み、 この偏光素子が前記反射層を介して前記光源 の上に積層されている偏光光源である。 偏光光源の製造方法は特に限定 されないが、 例えば、 特開平 1 0— 3 2 1 0 2 5号公報等に記載の方法 等を採用することができる。
また、 本発明の画像表示装置は、 本発明の偏光素子を含む画像表示装 置である。 本発明の偏光素子または偏光光源を用いた画像表示装置は特 に限定されず、 例えば、 有機 E L表示装置、 P D P、 C R T等の画像表 示装置に好ましく用いることが出来るが、 液晶表示装置に特に好ましく 用いることができる。
以下、 本発明の液晶表示装置について説明する。
本発明の液晶表示装置は、 前記本発明の偏光光源を含み、 その偏光素 子の上にさらに液晶セルが積層されている液晶表示装置である。 これ以 外には、 本発明の液晶表示装置の構成や製造方法は特に限定されず、 公 知の構成や製造方法を適宜用いることができる。 本発明の偏光光源は、 光の利用効率に優れて明るく、 出射光の垂直性に優れて明暗ムラのない 光を提供し、 大面積化も容易なため、 パックライトシステム等として種 々の液晶表示装置の形成に好ましく用いることができ、 中でも直視型の 液晶表示装置に特に好ましく用いることができる。
本発明の液晶表示装置に用いる液晶セルについては特に限定はなく、 適宜なものを用いることができる。 中でも偏光状態の光を入射させて表 示を行なう液晶セルが適しており、 例えばッイストネマチック液晶ゃス 一パーツイストネマチック液晶を用いた液晶セル等が好ましい。 しかし 、 それらには限定されず、 非ツイスト系の液晶、 2色性染料を液晶中に 分散させたゲストホス卜系の液晶、 強誘電性液晶等を用いた液晶セルも 適している。 液晶の駆動方式についても特に限定はない。
さらに、 液晶セル以外の構成要素も特に限定されず、 公知の液晶表示 装置用部材等を適宜用いることができる。 例えば、 視認側の偏光板の上 に設ける拡散板、 アンチグレア層、 反射防止膜、 保護層、 保護板、 およ び液晶セルと偏光板の間に設ける補償用位相差板等の適宜な光学層を適 宜に配置することができる。
次に、 本発明の有機エレクトロルミネセンス装置 (有機 E L表示装置 ) について説明する。
本発明の偏光素子や偏光光源は、 液晶表示装置以外にもあらゆる画像 表示装置に用いることができるが、 例えば有機 E L表示装置に適してい る。 本発明の有機 E L表示装置については、 本発明の偏光素子または偏 光光源を用いる以外は特に限定されず、 公知の構成や製造方法を適用す ることができる。 以下、 有機 E L表示装置について説明するが、 この説 明は本発明を限定するものではない。
一般に、 有機 E L表示装置は、 透明基板上に透明電極と有機発光層と 金属電極とを順に積層して発光体 (有機エレク卜ロルミネセンス発光体 ) を形成している。 ここで、 有機発光層は、 種々の有機薄膜の積層体で あり、 例えば、 トリフエニルァミン誘導体等からなる正孔注入層とアン トラセン等の蛍光性の有機固体からなる発光層との積層体、 もしくはこ のような発光層とペリレン誘導体等とからなる電子注入層の積層体、 ま たはこれらの正孔注入層および発光層と電子注入層との積層体等、 種々 の組み合わせをもった構成が知られている。
有機 E L表示装置の発光原理は以下の通りである。 すなわち、 まず、 透明電極と金属電極とに電圧を印加することによって、 有機発光層に正 孔と電子とが注入される。 そして、 これら正孔と電子との再結合によつ て生じるエネルギーが,蛍光物質を励起し、 励起された蛍光物質が基底状 態に戻るときに光を放射する、 という原理で発光する。 途中の再結合と いうメカニズムは、 一般のダイオードと同様であり、 このことからも予 想できるように、 電流と発光強度は印加電圧に対して整流性を伴う強い 非線形性を示す。
有機 E L表示装置においては、 有機発光層での発光を取り出すために 、 少なくとも一方の電極が透明でなくてはならず、 通常酸化インジウム スズ ( I T O ) 等の透明導電体で形成した透明電極を陽極として用いて いる。 一方、 電子注入を容易にして発光効率を上げるには、 陰極に仕事 関数の小さな物質を用いることが重要で、 通常 M g— A g、 A 1— L i 等の金属電極を用いている。
このような構成の有機 E L表示装置において、 有機発光層は、 厚さ 1 0 n m程度と極めて薄い膜で形成されている。 このため、 有機発光層も 透明電極と同様、 光をほぼ完全に透過する。 その結果、 非発光時に透明 基板の表面から入射し、 透明電極と有機発光層とを透過して金属電極で 反射した光が、 再び透明基板の表面側へと出るため、 外部から視認した とき、 有機 E L表示装置の表示面が鏡面のように見える。
有機 E L表示装置は、 前記の通り、 一般に、 電圧の印加によって発光 する有機発光層の表面側に透明電極を、 裏面側に金属電極を備えており 、 これら有機発光層、 透明電極および金属電極が一体となって有機エレ クトロルミネセンス発光体を形成している。 このような有機 E L表示装 置において、 前記透明電極の表面側に偏光板を設けるとともに、 前記透 明電極と偏光板との間に位相差板を設けることができる。
位相差板および偏光板は、 外部から入射して金属電極で反射してきた 光を偏光する作用を有するため、 その偏光作用によって金属電極の鏡面 を外部から視認させないという効果がある。 特に、 位相差板を 1 / 4波 長板で構成し、 かつ偏光板と位相差板との偏光方向のなす角を π / 4に 調整すれば、 金属電極の鏡面を完全に遮蔽することができる。
すなわち、 この有機 E L表示装置に入射する外部光は、 偏光板により 直線偏光成分のみが透過する。 この直線偏光は位相差板により一般に楕 円偏光となるが、 特に位相差板が 1 / 4波長板でしかも偏光板と位相差 板との偏光方向のなす角が Tt / 4のときには円偏光となる。
この円偏光は、 透明基板、 透明電極、 有機薄膜を透過し、 金属電極で 反射して、 再び有機薄膜、 透明電極、 透明基板を透過して、 位相差板に 再び直線偏光となる。 そして、 この直線偏光は、 偏光板の偏光方向と直 交しているので、 偏光板を透過できない。 その結果、 金属電極の鏡面を 完全に遮蔽することができる。
以上、 本発明の偏光素子を用いた偏光光源および画像表示装置につい て説明したが、 本発明は上記の説明には限定されない。 本発明の偏光素 子は、 用いる反射偏光子と位相差層とが本発明の要件を満たすことによ り、 正面方向の光のみ透過させ、 斜め方向の光は反射によりカットする という効果を発揮することができる。 また、 反射偏光子の選択反射波長 帯域を調整することにより、 前記の効果を広い波長領域で波長依存性が 少なく発揮することもできる。 さらに、 従来技術の干渉フィルターと輝 線発光光源の組み合わせによる平行光化および集光システムと比べて光 源の特性に対する依存性が少ないため、 あらゆる偏光光源および画像表 示装置に使用することができる。
(実施例)
以下、 実施例及び比較例を用いて本発明をさらに具体的に説明するが 、 本発明は以下の実施例のみに限定されるものではない。
(測定機器等)
実施例および比較例で用いた機器は、 以下の通りである。 すなわち、 冷陰極管は、 エレバム (E l evam) 社の冷陰極管 C C F L各種を用いた。 バックライトは、 スタンレ一電気社および多摩電気工業社の各種バック ライトを用いた。 ライトテーブルは、 H A K U B A社のものを用いた。 測定機器は、 下記のものを用いた。
( 1 ) 選択反射波長帯域測定には、 大塚電子製の瞬間マルチ測光シス テムである M C P D 2 0 0 0 (商品名) を用いた。
( 2 ) ヘイズ測定には、 村上色彩製のヘイズメーターである H M 1 5 0 (商品名) を用いた。
( 3 ) 透過反射の分光特性測定には、 日立製作所製の分光光度計であ る U41 0 0 (商品名) を用いた。
(4) 偏光板の特性測定には、 村上色彩製の DOT 3 (商品名) を用 いた。
(5) 位相差板等の位相差測定には、 Oji Scientific Instururaents の複屈折測定装置である KOB RA 2 1 D (商品名) を用いた。
(6) 輝度計測には、 トプコン製の輝度計である BM7 (商品名) を 用いた。
(実施例 1 )
以下のようにして、 反射円偏光子とネガティブ Cプレートとを含む偏 光素子を作製し、 その特性を調べた。
すなわち、 まず、 コレステリック液晶層を含む反射偏光子 (反射円偏 光子) を、 市販の重合性ネマチック液晶モノマー (重合性メソゲン化合 物) とカイラル剤とを用いて作製した。 これらの種類および混合比は、 出来上がったコレステリック液晶層の選択反射波長帯域の中心値が 5 5 O nm、 幅が約 6ひ nmとなるように選択した。 具体的には、 重合性メ ソゲン化合物として B AS F社製 L C 242 (商品名) 、 重合性カイラ ル剤として B AS F社製 L C 7 5 6 (商品名) を用い、 混合比が下記の 通りになるように用いた。 メソゲン化合物:カイラル剤 == 4. 9 : 9 5. 1 (重量比) 反射円偏光子作製の具体的な操作は以下の通りである。 すなわち、 ま ず、 前記重合性カイラル剤と前記重合性メソゲン化合物との混合物をシ クロペンタンに溶解し、 溶質濃度が 2 Ow t %となるように調整した。 さらに、 この溶液に対し、 1 w t %の反応開始剤 (チパガィギ製、 I r g 907 (商品名) ) を添加し、 塗工用溶液を調製した。
一方、 PETフィルム (東レ製、 ルミラー (商品名) 、 厚み 75 m ) を準備し、 その表面をラビング布で配向処理して配向基板とした。 次 に、 この配向基板の前記配向処理面上に、 前記塗工用溶液をワイヤーパ 一で塗布した。 この時の溶液塗布量は、 乾燥後の厚みが 5 となるよ うに調整した。 これを 90 で 2分間乾燥させ、 さらに液晶の等方性転 移温度 130°Cまで一旦加熱後、 徐冷して均一な配向状態を保持した。 そして、 80でで紫外線照射 ( 1 OmWZ平方 cmx 1分) により硬化 してコレステリック液晶化合物を含む反射偏光子層 Aを得た。 さらに、 ガラス板を準備し、 これに透光性のイソシァネート系接着剤 (特殊色料 工業株式会社製、 AD 249 (商品名) ) を 5 m厚に塗布し、 その塗 布面上に前記反射偏光子層 Aを転写して目的の反射円偏光子を得た。 こ の反射円'偏光子の選択反射波長帯域を測定したところ、 520〜580 n mと設計通りの値が得られた。
次に、 重合液晶化合物を含むネガティブ Cプレート層を、 コレステリ ック選択反射波長帯域の中心値が 350 nmとなるように作製した。 具 体的には、 重合性メソゲン化合物として B AS F社製 L C 242 (商品 名) 、 重合性カイラル剤として B AS F社製 L C 756 (商品名) を用 レ 混合比が下記の通りになるように用いた。 メソゲン化合物:カイラル剤 =1 1. 0 : 88. 0 (重量比) ネガティブ。プレート層作製の具体的な操作は以下の通りである。 す なわち、 まず、 前記重合性カイラル剤と前記重合性メソゲン化合物との 混合物をシクロペンタンに溶解させ、 溶質濃度が 30 w t %となるよう に調整した。 さらに、 この溶液に、 lw t %の反応開始剤 (チバガイギ 製、 I r g 907 (商品名) ) 、 および 0. 013wt %の界面活性剤 (ビッグケミジャパン製、 BYK—361 (商品名) ) を添加した。 一方、 PETフィルム (東レ製、 ルミラー (商品名) 、 厚み 75 izm ) を準備し、 その表面をラビング布で配向処理して配向基板とした。 次 に、 この配向基板の前記配向処理面上に、 前記塗工用溶液をワイヤーバ 一で塗布した。 この時の溶液塗布量は、 乾燥後の厚みが 6 ^mとなるよ うに調整した。 これを 90°Cで 2分間乾燥させ、 さらに液晶の等方性転 移温度 130°Cまで一旦加熱後、 徐冷して均一な配向状態を保持した。 そして、 80°Cで紫外線照射 (1 OmW/平方 cmx 1分) により硬化 して、 コレステリック液晶化合物を含む目的のネガティブ Cプレート層 が前記配向基板上に形成された積層体を得た。
なお、 このネガティブ Cプレート層の位相差を測定したところ、 55 0 nmの波長の光に対して正面方向 (面内位相差) では 2 nm (実質上 0とみなせる値) であり、 また、 30° 傾斜させた時の位相差は 160 nm (>λ / 8 ) であった。
さらに、 得られた反射円偏光子およびネガティブ Cプレート層を用い て偏光素子を作製した。 すなわち、 まず、 ガラス板の上に反射円偏光子 層 Αが積層された前記反射円偏光子を準備した。 次に、 その反射円偏光 子層 Aの上に前記ネガティブ Cプレート層を転写した。 すなわち、 前記 反射円偏光子層 Aの上に透光性接着剤 (特殊色料工業株式会社製、 AD 249 (商品名) ) を 5 m厚に塗布し、 その上に、 前記配向基板 (P ETフィルム) 上に形成されたネガティブ Cプレート層を接着し、 配向 基板を剥離してネガティブ Cプレート層のみを残した。 さらに、 そのネ ガティブ Cプレート層上に、 もう 1層の反射円偏光子層 Aを同様にして 転写し、 目的とする偏光素子を得た。 この偏光素子は、 ガラス板上に、 1層目の反射円偏光子層 Aと、 ネガティブ Cプレート層と、 2層目の反 射円偏光子層 Aとがこの順番で積層されており、 各層は接着剤層を介し て接着されている。
次に、 得られた偏光素子の性能を評価した。 すなわち、 まず、 前記偏 光素子に、 5 4 4 n mに輝線を有する緑色拡散光源を組み合わせて偏光 光源を作製した。 具体的には、 エレバム製 G 0型冷陰極管と光散乱板 ( ヘイズ 9 0 %以上) とを組み合わせて拡散光源とし、 それにさらに前記 偏光素子を組み合わせて偏光光源とし、 これを直下型バックライト装置 内に配置した。 なお、 前記光散乱板は、 前記偏光素子と冷陰極管との間 に配置した。
前記偏光光源の特性を調べたところ、 法線方向には光線が出射される が、 斜め 3 0 ° 以上では透過光線が減少し、 斜め 4 5 ° 前後では出射光 線がほとんどなかった。 図 1 6に、 前記拡散光源のみを用いたときと、 本実施例の偏光素子を組み合わせて偏光光源としたときのそれぞれにお ける出射光線の出射角度と相対輝度との関係を併せて示す。
図 1 6から、 本実施例の偏光素子によれば、 光を正面方向に効率的に 集光できる事が分かる。 サイドライト型バックライ卜と異なり直下型パ ックライトでは正面方向へレンズやプリズムで集光することは一般的に 困難であるから、 これは当該偏光素子の特徴と言える。
次に、 3波長冷陰極管を用いた液晶表示装置用バックライト (スタン レー電機製、 サイドライト · ゥエッジ型パックライト) 上に本実施例の 偏光素子を配置してその特性を評価した。 この場合も法線方向には光線 が出射されるが斜め 3 0 ° 以上では透過光線が減少した。 偏光素子が可 視光全域に対応できていないため青 (4 3 5 n m) と赤 (6 1 0 n m) は角度を絞り込めず抜け出てくるものの、 視感度が最も高い緑 (5 4 5 n m) のスペクトルはカットできるので、 集光装置としての機能は確認 できた。 (実施例 2)
ネガティブ Cプレート層に代えてポジティブ Cプレート層を用いる以 外は実施例 1と同様にして偏光素子を作製し、 その性能を評価した。 す なわち、 まず、 下記構造式で表される液晶モノマー (重合性ネマチック モノマー Aとする) を用いて重合液晶化合物を含むポジティブ Cプレー 卜層を作製した。
Figure imgf000048_0001
ポジティブ Cプレート層作製の具体的な操作は以下の通りである。 す なわち、 まず、 重合性ネマチックモノマー Aをシクロペンタンに溶解さ せ、 溶質濃度が 3 0w t %となるように調整した。 さらに、 この溶液に lw t %の反応開始剤 (チバガイギ製、 I r g 9 07 (商品名) ) を添 加して塗工用溶液とした。 一方、 PETフィルム (東レ製、 ルミラー ( 商品名) 、 厚み 7 5 urn) を準備し、 この上に離型処理剤 (ォクタデシ ルトリメトキシシラン) のシクロへキサン溶液 (0. 1 w t %) を薄く 塗布し、 乾燥させて垂直配向膜を形成して配向基板とした。 そして、 こ の配向基板の垂直配向膜形成面上に前記塗工用溶液をワイヤーバーで塗 布した。 この時の溶液塗布量は、 乾燥後の厚みが 2 mとなるように調 整した。 これを 9 0°Cで 2分間乾燥させ、 さらに液晶の等方性転移温度 1 3 O :まで一旦加熱後、 徐冷して均一な配向状態を保持した。 そして 、 80°Cで紫外線照射 ( 1 OmWZ平方 cmX 1分) により硬化して、 目的のポジティブ Cプレート層が前記配向基板上に形成された積層体を 得た。 このポジティブ Cプレートの位相差を測定した所、 5 5 0 nmの 波長の光に対しては正面方向では 0 nm、 3 0 ° 傾斜させて測定したと きの位相差は約 1 7 0 nm (>λ/8) であった。
さらに、 このポジティブ Cプレートを実施例 1のネガティブ Cプレー ト層に代えて用いる以外は実施例 1と同様にして偏光素子を得た。 得ら れた偏光素子を実施例 1と同様に用いて性能を評価したところ、 実施例 1とおおよそ同等であった。
(実施例 3)
以下のようにして、 反射直線偏光子と 1Z4波長板と Cプレートとを 含む偏光素子を作製し、 その性能を評価した。
まず、 反射直線偏光子を作製した。 すなわち、 まず、 ポリエチレンナ フタレート (PEN) と、 ナフタレンジカルボン酸ーテレフタル酸コポ リエステル (c o— PEN) とが交互に積層するよう、 薄膜をフィード ブロック法で厚み制御しながら交互に積み重ね、 20層積層した多層膜 を得た。 さらにこの多層膜を一軸延伸した。 この時の延伸温度は約 14 0度、 延伸倍率は TD方向に約 3倍であった。 こうして得られた延伸フ イルム中の各薄層の厚みは概略 0. 1 m程度であった。 この 20層積 層フィルム延伸品をさらに 5枚積層し、 計 1 00枚積層品として目的の 反射直線偏光子 (反射偏光子 Bとする) を得た。 反射偏光子 Bは、 全体 の反射率により、 5 0 0 nm以上 60 0 nm以下の波長帯域における直 線偏光に対して反射機能を有する。
さらに、 反射偏光子 Bを用いて偏光素子を作製した。 すなわち、 まず 、 ネガティブ Cプレート層を実施例 1と同様にして作製し、 その両側に ポリカーボネート製一軸延伸フィルムから成る 1Z4波長位相差板 (日 東電工製、 NRFフィルム (商品名) 、 5 5 0 nmで位相差 (面内位相 差) 1 3 5 nm) を接着し、 さらにその外側に反射偏光子 Bを接着して 目的の偏光素子を得た。 各層の貼り合せ角度は、 入射側の反射偏光子 B の透過偏光軸方向を 0 ° として、 入射側の 1 Z4波長板の面内遅相軸方 向が 4 5 ° 、 Cプレートは軸方位無し、 出射側の 1 4板の面内遅相軸 方向が一 45 ° 、 出射側の偏光子の透過偏光軸方向が 9 0 ° となるよう に貼り合せた。 また、 各層の接着は、 各層間にアクリル系粘着剤 (日東 電工製 N o. 7 ) を 2 5 m厚に塗布して行ない、 ネガティブ Cプレー ト層からは配向基板は剥離して液晶含有層のみを用いた。 得られた偏光 素子を実施例 1と同様に用いて性能を評価したところ、 実施例 1とおお よそ同等であった。
(実施例 4)
以下のようにして、 反射直線偏光子と 1Z 2波長位相差板とを含む偏 光素子を作製し、 その性能を評価した。 すなわち、 まず、 実施例 3と同 様にして作製した反射偏光子 Bを 2つと、 ポリカーボネ一ト製フィルム (鐘淵化学製) を二軸延伸して得られた正面位相差 2 7 0 nm (計測波 長 5 50 nm) 、 N z係数 2. 0の位相差フィルム (1Z2波長板) と を準備した。 そして、 前記 1/2波長板を前記 2つの反射偏光子 Bによ り挟む配置でこれら各層を接着して目的の偏光素子を得た。 各層の貼り 合せ角度は、 入射側の反射偏光子 Bの透過偏光軸方向を 0 ° として、 1 /2波長板の面内遅相軸方向が 45 ° 、 出射側の偏光子の透過偏光軸方 向が 9 0 ° となるように貼り合せた。 各層の接着は、 各層間にアクリル 系粘着剤 (日東電工製 No. 7) を 2 5
Figure imgf000050_0001
に塗布して用いて行なつ た。 この偏光素子を実施例 3と同様に評価したところ、 実施例 3と同等 の性能を有する事が分かった。 (実施例 5 )
以下のようにして、 広波長領域に選択反射波長帯域を有する反射円偏 光子 (広帯域反射円偏光子) を作製し、'さらに、 それと Cプレートとを 用いて偏光素子を作製して性能を評価した。
まず、 広帯域反射円偏光子を作製した。 すなわち、 まず、 下記構造式 で表されるネマチックモノマー A (前記と同様の物) およびカイラルモ ノマー Bを準備した。
Figure imgf000051_0001
ネマチックモノマー A
Figure imgf000051_0002
マ B 次に、 前記ネマチックモノマー Aとカイラルモノマ一 Bとを所定の比 で混合して重合させ、 さらにそれを用いてコレステリック液晶層を作製 した。 さらに、 ネマチックモノマー Aとカイラルモノマー Bとの混合比 を変えて、 選択反射波長帯域が異なるコレステリック液晶層を 4層作製 した。 作製にあたっては、 欧州特許出願公開 0 8 3 4 7 5 4号明細書を 参照した。 具体的には以下の通りである。
まず、 ネマチックモノマー Aとカイラルモノマー Bとの混合比 (重量 比) およびそれから計算され ¾各コレステリック液晶層の選択反射波長 帯域とその中心波長とは下記表 1の通りである。
(表 1)
Aノ B 潠枳反射波■¾畨域 中心波長
9. 2 43 0〜49 0 nm 46 0 nm
1 0. 7 48 0〜 55 0 nm 5 1 0 n m
1 2. 8 540〜62 0 nm 58 0 n m
14. 9 62 0〜71 0 nm 66 0 nm 次に、 ネマチックモノマー Aとカイラルモノマー Bとを重合させてコ レステリック液晶化合物を合成した。 すなわち、 まず、 表 1に示すそれ ぞれの組成による混合物を、 それぞれ 3 3 w t %テトラヒドロフラン溶 液とし、 さらに 0. 5w t %の反応開始剤 (ァゾビスイソプチロニトリ ル) を添加した。 これを 6 0°Cで窒素パージした後、 定法により重合処 理し、 生成物をジェチルエーテルで再沈分離し精製して目的のコレステ リック液晶化合物を得た。
一方、 8 0 m厚トリアセチルセルロース (TAC) フィルム (富士 写真フィルム工業製、 TD— TAC (商品名) ) を準備し、 その表面に 約 0. 1 m厚さのポリイミド層を塗工し、 そのポリイミド層表面をレ —ヨン製ラビング布でラビング処理して配向基板とした。 次に、 そのラ ビング処理面上に、 前記コレステリック液晶化合物の 1 0 w t %塩化メ チレン溶液を、 ワイヤーバーで乾燥後の厚みが 1. 5 mとなるように 塗布した。 これを 140 Cで 1 5分間加熱処理し、 その後室温で放冷し てコレステリック液晶化合物の配向状態を固定させ、 コレステリック液 晶層を得た。 合成した各コレステリック液晶化合物についてそれぞれ上 記の操作を行ない、 表 1に示す各選択反射波長帯域を有するコレステリ ック液晶層をそれぞれ得た。
そして、 得られた 4層のコレステリック液晶層を短波長側から順番に 接着し、 約 1 0 m厚の液晶複合層を得て目的の広帯域反射円偏光子と した。 接着は、 透明イソシァネート系接着剤 (特殊色料 ]:業製、 A D 2 4 4 (商品名) ) を各液晶層表面に塗布し、 接着後に片側の配向基板 ( T A Cフィルム) を剥離するという方法で順次行なった。 得られた広帯 域反射円偏光子の選択反射機能を測定したところ、 4 3 0 n m〜 7 1 0 n mで選択反射機能を有していることが分かった。
そして、 Cプレート層を実施例 1と同様にして作製し、 その両側に前 記広帯域反射円偏光子を接着して目的の偏光素子を得た。 接着は、 透光 性粘着剤 (日東電工製 N o . 7 ) を各層間に 2 5 m厚に塗布し、 実施 例 1と同様の操作により行なった。 なお、 上下の反射円偏光子で、 透過 する (反射する) 円偏光の回転方向が同じになるようにした。
次に、 本実施例の偏光素子の性能を実施例 1と同じ方法で評価した。 緑色拡散光源を用いた評価では、 実施例 1の偏光素子と同様の集光性能 を有していることが確認された。 また、 3波長冷陰極管を用いた液晶表 示装置用バックライトによる評価でも実施例 1と同様に優れた集光性能 を示したが、 本実施例の偏光素子は、 可視光全域で同様の集光性能を発 揮する点で実施例 1の偏光素子よりもさらに優れていることが分かった 。
さらに、 別のバックライ ト (冷陰極管を用いた直下型バックライト、 多摩電気工業製) 上に本実施例の偏光素子を配置し、 集光性能を評価し た。 この場合も法線方向には光線が出射されるが斜め 3 0。 以上では透 過光線が減少した。 そして、 可視光全域で同様の集光性能を発揮するこ とが分かった。 (実施例 6 )
Cプレート層の厚みおよび位相差値を変える以外は実施例 5と同様に して偏光素子を作製し、 さらに実施例 5と同様に集光性能を評価した。 本実施例では、 Cプレートの厚みは、 とし、 その位相差を測定し たところ、 正面位相差 1 n m、 3 0 ° 傾斜時の位相差 1 0 0 n m (> λ / 8 ) であった。
図 1 6に、 実施例 5および 6の偏光素子をそれぞれ拡散光源と組み合 せて偏光光源とした場合、 および前記拡散光源のみを用いた場合のそれ ぞれにおける出射光線の出射角度と相対輝度との関係を併せて示す。 同 図から、 いずれの偏光素子も優れた集光性能を示しはするが、 実施例 5 の方がより集光角度がシャープで正面の輝度上昇も大きいと分かる。
(実施例 7 )
実施例 5の偏光素子を液晶表示装置に組み込み、 その表示性能を評価 した。 具体的には以下の通りである。 まず、 液晶表示装置としては、 東 芝製 Dynabook S S 3 4 3 0 (商品名) から得た T F T液晶表示装置 (対 角 1 1 . 3インチ) を準備した。 この装置は、 サイドライト型導光体の 光源を用い、 プリズムシートにより正面に集光するタイプである。 次に 、 この液晶表示装置からプリズムシートを除去し、 装置裏面側偏光子に 対し、 偏光軸に 4 5 ° の角度で 1 / 4波長板 (日東電工製 N R F— 1 4 0 (商品名) ) を接着し、 さらにその上に実施例 5で得られた偏光素子 を接着した。 接着は、 透光性粘着剤 (日東電工製 N o . 7 ) を厚み 2 5 mに塗布して行なった。 このようにして市販の液晶表示装置を加工し 、 実施例 5の偏光素子が組み込まれた目的の液晶表示装置を得た。 得ら れた偏光素子付き液晶表示装置の性能を加工前 (プリズムシート使用時 ) と比較したところ、 正面への集光特性はプリズムシ一卜使用時と同等 であり、 さらに、 加工前よりも正面輝度が 2 0 %向上していることが分 かった。 この結果は、 プリズムシート等の従来技術に対する本発明の偏 光素子の優位性を示す。 (比較例 1)
Cプレート層を用いず、 2層の反射円偏光子を直接貼り合せる以外は 実施例 1と同様にして偏光素子を作製した。 この偏光素子の性能を評価 したところ、 単一の反射円偏光子と同様の光学機能しか得られず、 斜め 方向での選択的な反射率の向上や透過率の低下のような現象は見られな かった。
(比較例 2)
Cプレート層の代わりに 1/4波長板を用いる以外は実施例 1と同様 にして偏光素子を作製した。 前記 1 Z4波長板としては、 ポリカーポネ ト製フィルムの延伸フィルムからなる正面位相差 λ/4、 Νζ係数 = 1. 0の Αプレート (日東電工製 NRF— 140フィルム (商品名) 、 厚み 50 m) を用いた。 得られた偏光素子の性能を評価したところ、 正面透過率が実施例 1と比べて約 1/2に低下する他、 斜め入射方向の 透過率が下がらず、 集光や平行光化の機能は有さなかった。
(比較例 3)
市販のヨウ素系吸収 2色性偏光子 (日東電工製、 NP F— EG 142 5 DU (商品名) ) を反射偏光子 Bに代えて用いる以外は実施例 3と同 様にして偏光素子を得た。 この偏光素子の性能を評価したところ、 正面 方向の透過特性と斜め方向の吸収特性による視野角制限効果は得られる が、 吸収損失が著しく、 正面の明るさは向上しなかった。 (ライトテーブルを用いた輝度評価)
実施例 1〜 6および比較例 1〜 3の各偏光素子を、 市販のライトテー ブル (ハクパ製、 3波長蛍光灯、 直下型拡散光源) 上に配置し、 鉛直上 方における輝度 (2 ° 視野) を輝度計 (トプコン製、 B M 7 (商品名) ) を用いて測定した。 測定値はライトテーブルのみで測定した時の値を 1 0 0として規格化した。 測定結果を表 2に示す。
(表 2 ) 実施例 1 8 0
実施例 2 7 8
実施例 3 7 2
実施例 4 7 0
実施例 5 8 2
実施例 6 9 0
比較例 1 6 7
比較例 2 2 1
&MM 3 3 9 表 2から分かる通り、 実施例の偏光素子は、 ライトテーブルに用いた 場合も正面方向に対する優れた輝度向上効果を示した。 なお、 実施例の 偏光素子は、 図 1 6および 1 7に示した通り、 液晶表示装置用の直下型 パックライ 卜に用いた場合は正面の相対輝度が 1 0 0 (元のバックライ 卜の正面輝度) を上回っていたが、 表 2での相対輝度は 1 0 0をやや下 回っていた。 これは、 市販ライトテーブルでは前記直下型バックライト の場合と比較して反射偏光子で反射された戻り光が再び法線方向へ戻る 効率がやや悪いためである。 しかし、 比較例の偏光素子と比べれば著し く優れた正面方向の輝度向上効果を有していることが分かる。 産業上の利用の可能性
以上説明した通り、 本発明の偏光素子によれば、 正面輝度に寄与する 垂直入射光の透過偏光特性を害することなく斜め透過光を効率的に光源 側へ反射できることができる。 また、 前記光源側へ反射した斜め透過光 (反射偏光) を正面輝度の向上に寄与しうる光に変換することでさらに 輝度を向上させることも可能である。 そして、 反射偏光子の選択反射波 長帯域を調整することにより、 前記の効果を広い波長領域で波長依存性 が少なく発揮することもできる。 さらに、 本発明の偏光素子は、 従来技 術の干渉フィルターと輝線発光光源の組み合わせによる平行光化および 集光システム等と比べて光源の特性に対する依存性が少ないため、 あら ゆる偏光光源および画像表示装置に使用することができる。 例えば、 液 晶表示素子のバックライト側の偏光子として利用した場合には、 明るい 視認性に優れた表示を得ることが可能である。 また、 光源から出射され た拡散光の光利用効率に優れるため、 高輝度の偏光光源装置、 有機 E L 表示装置、 P D P、 C R T等の画像表示装置を形成することもできる。

Claims

請 求 の 範 囲
1. 2層の反射偏光子とそれらの間に配置された位相差層とを少な くとも含み、 前記 2層の反射偏光子が、 右回り円偏光および左回り円偏 光のうち一方を選択的に透過させ他方を選択的に反射する反射円偏光子 であり、 前記 2層の反射円偏光子は、 偏光の選択反射における選択反射 波長帯域の少なくとも一部が互いに重なり、 前記位相差層が下記式 ( I ) および (II) の条件を満たす偏光素子。
R≤ 0) ( I ) R, 8) (ID 式 ( I ) および (II) において、
λは前記位相差層に入射する光の波長であり、
Rは、 Ζ軸方向 (法線方向) からの入射光に対する X軸方向と Υ軸方 向との位相差 (面内位相差) の絶対値であり、 前記 X軸方向とは、 前記 位相差層の面内で屈折率が最大となる方向 (面内遅相軸方向) であり、 前記 Υ軸方向とは、 前記位相差層の面内で前記 X軸方向に垂直な方向 ( 面内進相軸方向) であり、 前記 Ζ軸方向とは、 前記 X軸方向および前記 Υ軸方向に垂直な前記位相差層の厚み方向であり、
R' は、 Ζ軸方向に対し 3 0 ° 以上傾いた方向からの入射光に対する X' 軸方向と Y' 軸方向との位相差の絶対値であり、 前記 X' 軸方向と は、 前記 Ζ軸方向に対し 3 0 ° 以上傾いた入射光の入射方向に垂直な前 記位相差層面内の軸方向であり、 前記 Y' 軸方向とは、 前記入射方向お よび前記 X'軸方向に垂直な方向である。
2. 前記 2層の反射円偏光子を透過する円偏光の回転方向が互いに 同じである請求の範囲 1に記載の偏光素子。
3 . 2層の反射円偏光子とそれらの間に配置された 1 / 2波長板と を少なくとも含み、 前記 2層の反射円偏光子は、 偏光の選択反射におけ る選択反射波長帯域の少なくとも一部が互いに重なる偏光素子。
4 . 前記 2層の反射円偏光子を透過する円偏光の回転方向が互いに 逆である請求の範囲 3に記載の偏光素子。
5 . 前記 2層の反射円偏光子における選択反射波長帯域の互いに重 なる領域が、 5 4 0〜 5 6 0 n mの波長範囲を含む請求の範囲 1または 3に記載の偏光素子。
6 . 2層の反射偏光子と、 それらの間に配置された中間層とを少な くとも含み、 前記 2層の反射偏光子が、 直交する直線偏光のうち一方を 選択的に透過させ他方を選択的に反射する反射直線偏光子であり、 前記 2層の反射直線偏光子は、 偏光の選択反射における選択反射波長帯域の 少なくとも一部が互いに重なり、 前記中間層は、 1層の光学層からなる か、 または 2層以上の光学層の積層構造を含み、 かつ、 前記中間層は、 入射する直線偏光を、 その入射方向に応じて偏光方向を変化させるかま たは変化させずに透過させる機能を有し、 前記 2層の反射直線偏光子は 、 その面内遅相軸方向が、 入射する直線偏光のうち入光面と垂直な方向 (法線方向) から入射する光を透過させ斜め方向から入射する光を効率 的に反射するような角度で配置されている偏光素子。
7 . 2層の反射直線偏光子と、 それらの間に配置された位相差層と 2層の 1 / 4波長板とを少なくとも含み、 その 1 / 4波長板のうち 1層 は、 前記反射直線偏光子のうちの一方と前記位相差層との間に配置され 、 もう 1層の 1 / 4波長板は他方の反射直線偏光子と前記位相差層との 間に配置され、 前記 2層の反射直線偏光子は、 偏光の選択反射における 選択反射波長帯域の少なくとも一部が互いに重なり、 前記位相差層の一 方の面側に位置する 1Z4波長板は、 その面内遅相軸が、 同じ側に位置 する反射直線偏光子の偏光軸と 4 0 ° 〜 5 0 ° の角度をなし、 前記位相 差層の他方の面側に位置する 1/4波長板は、 その面内遅相軸が、 同じ 側に位置する反射直線偏光子の偏光軸と一 4 0 ° 〜一 5 0 ° の角度をな し、 前記 2層の 1 /4波長板の面内遅相軸同士がなす角度は任意であり 、 前記位相差層が下記式 ( I ) および (III) の条件を満たす偏光素子
R≤ (λΖ ΐ 0) ( I ) R' ≥ (λ /4) (III) 式 ( I ) および (III) において、
λは前記位相差層に入射する光の波長であり、
Rは、 Ζ軸方向 (法線方向) からの入射光に対する X軸方向と Υ軸方 向との位相差 (面内位相差) の絶対値であり、 前記 X軸方向とは、 前記 位相差層の面内で屈折率が最大となる方向 (面内遅相軸方向) であり、 前記 Υ軸方向とは、 前記位相差層の面内で前記 X軸方向に垂直な方向 ( 面内進相軸方向) であり、 前記 Ζ軸方向とは、 前記 X軸方向および前記 Υ軸方向に垂直な前記位相差層の厚み方向であり、
R' は、 Ζ軸方向に対し 3 0 ° 以上傾いた方向からの入射光に対する X' 軸方向と Y' 軸方向との位相差の絶対値であり、 前記 X' 軸方向と は、 前記 Ζ軸方向に対し 3 0 ° 以上傾いた入射光の入射方向に垂直な前 記位相差層面内の軸方向であり、 前記 Y' 軸方向とは、 前記入射方向お よび前記 X'軸方向に垂直な方向である。
8. 2層の反射直線偏光子とそれらの間に配置された 2層の 1/4 波長板とを少なくとも含み、 前記 2層の反射直線偏光子は、 偏光の選択 反射における選択反射波長帯域の少なくとも一部が互いに重なり、 前記
1 /4波長板のうち一方の面内遅相軸が、 同じ側に位置する反射直線偏 光子の偏光軸と 40 ° 〜5 0 ° の角度をなし、 他方の 1Z 4波長板の面 内遅相軸が、 同じ側に位置する反射直線偏光子の偏光軸と一 40° 〜一 5 0 ° の角度をなし、 前記 2層の 1/4波長板の面内遅相軸同士がなす 角度は任意であり、 前記各 1/4波長板がそれぞれ下記式 (IV) の条件 を満たす偏光素子。
N z≥ 2. 0 (IV) に 7こし N z = ( n X— n z ) / ( n x— n y ) 式 (IV) において、
I X、 !! ぉょび!! は、 それぞれ前記 1 / 4波長板における X軸方 向、 Y軸方向および Z軸方向の屈折率であり、 前記 X軸方向とは、 前記 1 /4波長板の面内で屈折率が最大となる方向 (面内遅相軸方向) であ り、 前記 Y軸方向とは、 前記 1 /4波長板の面内で前記 X軸方向に垂直 な方向 (面内進相軸方向) であり、 前記 Z軸方向とは、 前記 X軸方向お よび前記 Y軸方向に垂直な前記 1 /4波長板の厚み方向である。
9. 2層の反射直線偏光子とそれらの間に配置された 1 / 2波長板 とを少なくとも含み、 前記 2層の反射直線偏光子は、 偏光の選択反射に おける選択反射波長帯域の少なくとも一部が互いに重なり、 前記 1 Z2 波長板の面内遅相軸が、 一方の反射直線偏光子の偏光軸と 40 ° 〜5 0 ° の角度をなし、 かつ、 他方の反射直線偏光子の偏光軸と一 40 ° 〜一 5 0° の角度をなし、 前記 1/2波長板が下記式 (V) の条件を満たす 偏光素子。 N z≥ l . 5 (V) ただし N z = ( n x— n z ) / ( n x— n y ) 式 (V) において、
n x、 n yおよび n zは、 それぞれ前記 1 Z2波長板における X軸方 向、 Y軸方向および Z軸方向の屈折率であり、 前記 X軸方向とは、 前記 1 /2波長板の面内で屈折率が最大となる方向 (面内遅相軸方向) であ り、 前記 Y軸方向とは、 前記 1 /2波長板の面内で前記 X軸方向に垂直 な方向 (面内進相軸方向) であり、 前記 Z軸方向とは、 前記 X軸方向お よび前記 Y軸方向に垂直な前記 1 Z2波長板の厚み方向である。
1 0. 前記 2層の反射直線偏光子における選択反射波長帯域の互い に重なる領域が、 5 40〜 56 0 nmの波長範囲を含む請求の範囲 6〜 9のいずれかに記載の偏光素子。
1 1. 前記位相差層が、 ブラナー配向状態で固定されたコレステリ ック液晶化合物を含み、 前記位相差層の選択反射波長帯域が可視光領域
( 3 8 0 nm〜 7 8 0 nm) 以外の波長領域に存在する請求の範囲 1ま たは 7に記載の偏光素子。
1 2. 前記位相差層が、 ホメオト口ピック配向状態で固定された棒 状液晶化合物を含む請求の範囲 1または 7に記載の偏光素子。
1 3. 前記位相差層が、 ネマチック相またはカラムナー相配向状態 で固定されたディスコチック液晶化合物を含む請求の範囲 1または 7に 記載の偏光素子。
1 4. 前記位相差層が、 二軸配向した非液晶ポリマーを含む請求の 範囲 1または 7に記載の偏光素子。
1 5. 前記位相差層が、 負の 1軸性を有する無機層状化合物を含み 、 前記無機層状化合物の配向状態は、 前記位相差層の光軸方向が面と垂 直な方向 (法線方向) になるように固定されている請求の範囲 1または 7に記載の偏光素子。
1 6 . 少なくとも正面方向において 1 / 4波長板機能を有するもう 一つの層をさらに含み、 この層が、 前記 2層の反射円偏光子のうち視認 側に位置する反射円偏光子のさらに外側に配置されている請求の範囲 1 または 3に記載の偏光素子。
1 7 . 吸収 2色性偏光板をさらに含み、 この吸収 2色性偏光板が、 前記少なくとも正面方向において 1 / 4波長板機能を有するもう一つの 層のさらに外側に配置されている請求の範囲 1 6に記載の偏光素子。
1 8 . 前記各構成要素が、 透光性の接着剤または粘着剤の層を介し て積層されている請求の範囲 1、 3、 および 6〜 9のいずれかに記載の 偏光素子。
1 9 . 光源と、 反射層と、 請求の範囲 1、 3、 および 6〜 9のいず れかに記載の偏光素子'とを含み、 この偏光素子が前記反射層を介して前 記光源の上に積層されている偏光光源。
2 0 . 請求の範囲 1 9に記載の偏光光源を含み、 その偏光素子の上 にさらに液晶セルが積層されている液晶表示装置。
2 1 . 請求の範囲 1、 3、 および 6〜 9のいずれかに記載の偏光素 子を含む画像表示装置。
PCT/JP2003/004872 2002-04-23 2003-04-17 Polarizer, polarization light source and image displayunit using them WO2003091766A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/509,700 US7443585B2 (en) 2002-04-23 2003-04-17 Polarizer, polarization light source and image display unit using them
KR1020047016797A KR100955445B1 (ko) 2002-04-23 2003-04-17 편광 소자, 편광 광원 및 이들을 사용한 화상 표시 장치
EP03717612A EP1498751A4 (en) 2002-04-23 2003-04-17 POLARIZER, POLARIZATION LIGHT SOURCE AND IMAGE DISPLAY UNIT THEREWITH
US12/236,976 US7746555B2 (en) 2002-04-23 2008-09-24 Polarizer, polarization light source and image display unit using them
US12/781,398 US7982952B2 (en) 2002-04-23 2010-05-17 Polarization component, polarization light source and image display apparatus using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002121129 2002-04-23
JP2002-121129 2002-04-23
JP2002-128904 2002-04-30
JP2002128904 2002-04-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10509700 A-371-Of-International 2003-04-17
US12/236,976 Division US7746555B2 (en) 2002-04-23 2008-09-24 Polarizer, polarization light source and image display unit using them

Publications (1)

Publication Number Publication Date
WO2003091766A1 true WO2003091766A1 (en) 2003-11-06

Family

ID=29272328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004872 WO2003091766A1 (en) 2002-04-23 2003-04-17 Polarizer, polarization light source and image displayunit using them

Country Status (6)

Country Link
US (3) US7443585B2 (ja)
EP (1) EP1498751A4 (ja)
KR (1) KR100955445B1 (ja)
CN (1) CN1296732C (ja)
TW (1) TWI258603B (ja)
WO (1) WO2003091766A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025533A1 (ja) 2004-09-03 2006-03-09 Tokyo Institute Of Technology 光ダイオード
US11703622B2 (en) 2018-10-12 2023-07-18 Meta Platforms Technologies, Llc Polarization-based filters with angle-sensitive transmission having circular polarizers
TWI828762B (zh) * 2018-09-28 2024-01-11 日商住友化學股份有限公司 偏光板複合體及圖像顯示裝置

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498751A4 (en) * 2002-04-23 2007-08-01 Nitto Denko Corp POLARIZER, POLARIZATION LIGHT SOURCE AND IMAGE DISPLAY UNIT THEREWITH
US7324180B2 (en) 2002-09-06 2008-01-29 Dai Nippon Printing Co., Ltd. Laminated retardation optical element, process of producing the same, and liquid crystal display
JP4251483B2 (ja) * 2003-06-24 2009-04-08 日東電工株式会社 光学素子、集光バックライトシステムおよび液晶表示装置
DE102004021247A1 (de) * 2004-04-30 2005-11-24 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
EP1701395B1 (de) 2005-03-11 2012-09-12 Novaled AG Transparentes lichtemittierendes Bauelement
KR20080039889A (ko) * 2005-08-10 2008-05-07 니폰 제온 가부시키가이샤 광학 소자, 편광판, 위상차판, 조명 장치 및 액정 표시장치
JP2007065575A (ja) * 2005-09-02 2007-03-15 Jsr Corp 光学フィルム、偏光板および液晶表示装置
JP2007173084A (ja) * 2005-12-22 2007-07-05 Canon Inc 発光素子
JPWO2008016056A1 (ja) * 2006-07-31 2009-12-24 日本ゼオン株式会社 輝度向上フィルム及び液晶表示装置
JP2008047028A (ja) * 2006-08-21 2008-02-28 Fujitsu Component Ltd 透明導電ポリマ膜を用いたタッチパネルとその製造方法
TWI345659B (en) 2006-09-15 2011-07-21 Chimei Innolux Corp Backlight and liquid crystal display device using the same
TWI359988B (en) * 2007-04-13 2012-03-11 Chimei Innolux Corp Liquid crystal display and backlight module thereo
KR100926372B1 (ko) * 2008-03-17 2009-11-10 주식회사 엘엠에스 콜레스테릭 액정층을 포함하는 유기박막표시장치
JP5027734B2 (ja) * 2008-05-15 2012-09-19 日東電工株式会社 映像鑑賞設備
KR100965258B1 (ko) * 2008-08-27 2010-06-22 삼성모바일디스플레이주식회사 유기 발광 표시 장치
JP5529600B2 (ja) * 2009-03-23 2014-06-25 日東電工株式会社 複合偏光板および液晶表示装置
JP2010243744A (ja) * 2009-04-06 2010-10-28 Nitto Denko Corp 映像鑑賞設備
JP5657228B2 (ja) * 2009-09-30 2015-01-21 富士フイルム株式会社 位相差フィルム、その製造方法、並びにそれを有する偏光板及び液晶表示装置
KR101665598B1 (ko) * 2009-10-05 2016-10-13 삼성디스플레이 주식회사 편광판 및 이를 구비하는 표시 장치
US9250473B2 (en) 2009-10-05 2016-02-02 Samsung Display Co., Ltd. Polarizing plate and display apparatus having the same
CN102667580A (zh) * 2009-11-27 2012-09-12 日本发条株式会社 识别介质及其识别方法
KR101107175B1 (ko) 2009-12-07 2012-01-25 삼성모바일디스플레이주식회사 유기 발광 표시 장치
KR101531439B1 (ko) * 2010-01-28 2015-06-24 니혼 하츠쵸 가부시키가이샤 식별 매체 및 그 식별 방법
US8711481B2 (en) * 2011-05-03 2014-04-29 Inicia Ip Holdings, Llc Polarized film apparatus with bands of alternating orientation
KR101943378B1 (ko) * 2011-06-29 2019-01-30 삼성디스플레이 주식회사 유기 발광 표시 장치
JP5897989B2 (ja) * 2012-05-28 2016-04-06 富士フイルム株式会社 対象物に特定の円偏光を選択的に照射するためのシステム
KR101595615B1 (ko) * 2012-05-30 2016-02-18 주식회사 엘지화학 고휘도 편광판, 그 제조 방법 및 이를 이용한 화상표시장치
KR102046152B1 (ko) 2012-11-20 2019-11-19 삼성디스플레이 주식회사 편광판 및 이를 포함하는 액정 표시 장치
KR102028053B1 (ko) * 2012-12-12 2019-10-02 엘지디스플레이 주식회사 플렉서블 유기발광 디스플레이 장치
KR102081104B1 (ko) * 2012-12-28 2020-02-25 엘지디스플레이 주식회사 편광판 및 이를 구비한 유기전계발광 표시소자
JP2015079230A (ja) 2013-09-10 2015-04-23 住友化学株式会社 積層体の製造方法
EP2963506B1 (fr) * 2014-07-04 2019-03-20 The Swatch Group Research and Development Ltd. Ensemble d'affichage comprenant deux dispositifs d'affichage superposés
KR20160017365A (ko) 2014-08-05 2016-02-16 삼성디스플레이 주식회사 액정표시장치
TWI526505B (zh) 2014-09-11 2016-03-21 財團法人工業技術研究院 硬塗層組成物及應用其之偏光膜和顯示器
CN107077026B (zh) * 2014-10-28 2021-01-01 夏普株式会社 镜面显示器
FR3028260B1 (fr) 2014-11-12 2016-11-04 Nexter Systems Cellule a cristal liquide cholesterique a reflectivite augmentee
CN105629580A (zh) * 2016-03-11 2016-06-01 武汉华星光电技术有限公司 一种液晶显示面板及装置
CN109074763B (zh) * 2016-04-27 2021-06-15 日本瑞翁株式会社 膜传感器构件及其制造方法、圆偏振片及其制造方法、以及图像显示装置
KR102528299B1 (ko) * 2016-05-25 2023-05-04 삼성디스플레이 주식회사 위상차필름 및 이를 구비한 플렉서블 디스플레이 장치
JP6938548B2 (ja) 2016-06-09 2021-09-22 スリーエム イノベイティブ プロパティズ カンパニー 光学フィルタ
WO2017221993A1 (ja) * 2016-06-22 2017-12-28 富士フイルム株式会社 導光部材および液晶表示装置
US10386648B2 (en) * 2016-08-08 2019-08-20 Innolux Corporation Image display system
KR101933765B1 (ko) * 2016-08-23 2018-12-28 동우 화인켐 주식회사 편광판 및 이를 포함하는 화상표시장치
JP6732614B2 (ja) * 2016-09-16 2020-07-29 ホシデン株式会社 光学積層体及びこれを備えたタッチ入力装置
JP6687745B2 (ja) * 2016-09-30 2020-04-28 富士フイルム株式会社 光学素子の製造方法
CN109891301B (zh) * 2016-10-13 2022-06-10 株式会社Lg化学 偏振转换元件和光学隔离装置
CN106501986B (zh) * 2016-10-25 2020-06-16 南京大学 光学功能化薄膜、其制备方法及光路系统和光束整形方法
JP7027035B2 (ja) 2016-11-15 2022-03-01 日東電工株式会社 光通信装置及び偏光板のセット
US10379419B1 (en) 2016-11-23 2019-08-13 Facebook Technologies, Llc Focus adjusting pancharatnam berry phase liquid crystal lenses in a head-mounted display
CN106773299A (zh) * 2016-12-26 2017-05-31 深圳市华星光电技术有限公司 液晶显示器
US10151961B2 (en) * 2016-12-29 2018-12-11 Facebook Technologies, Llc Switchable bragg gratings for chromatic error correction of pancharatnam berry phase (PBP) components
CN106646919B (zh) * 2017-02-17 2020-12-11 深圳市万明精工科技有限公司 一种圆偏振光装置及其制作应用方法
IL268630B2 (en) * 2017-02-23 2023-09-01 Magic Leap Inc Display system with variable power reflector
JP2019066531A (ja) * 2017-09-28 2019-04-25 シャープ株式会社 液晶モジュール
DE102018204506A1 (de) * 2018-03-23 2019-09-26 BSH Hausgeräte GmbH Optische Anordnung zur Verbesserung der Darstellungsqualität eines Displays
KR102143271B1 (ko) 2018-06-05 2020-08-10 주식회사 엘지화학 적층체 및 이를 포함하는 액정 표시 장치
KR102176854B1 (ko) * 2018-06-05 2020-11-10 주식회사 엘지화학 적층체 및 이를 포함하는 액정 표시 장치
TWI690414B (zh) 2018-06-05 2020-04-11 南韓商Lg化學股份有限公司 層壓板及含彼之液晶顯示器
CN109065600B (zh) * 2018-08-24 2020-07-28 京东方科技集团股份有限公司 一种偏光模组和显示面板
CN110286502B (zh) * 2019-06-26 2020-10-16 深圳市麓邦技术有限公司 老花眼视力矫正装置
US11391874B1 (en) 2019-09-16 2022-07-19 Apple Inc. Display having a compensation film with light absorbing dye
US11079646B2 (en) * 2019-11-13 2021-08-03 Reald Spark, Llc Display device off-axis luminance reduction uniformity
CN114981693A (zh) * 2020-01-31 2022-08-30 日本瑞翁株式会社 识别介质、物品以及识别介质的使用方法
KR20210135888A (ko) * 2020-05-06 2021-11-16 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
CN113820779B (zh) * 2021-08-30 2023-03-10 华为技术有限公司 偏光片及其制备方法、显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054909A (ja) * 1996-08-09 1998-02-24 Nitto Denko Corp 円偏光分離層、光学素子、偏光光源装置及び液晶表示装置
WO2000039631A1 (en) * 1998-12-24 2000-07-06 Rolic Ag Liquid crystal display with improved viewing angle
JP2002341343A (ja) * 2001-05-14 2002-11-27 Nitto Denko Corp 照明装置及び液晶表示装置

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940203A (en) * 1975-04-01 1976-02-24 Farrand Optical Co., Inc. Image-forming apparatus
DE3119459A1 (de) * 1981-05-15 1982-12-09 Consortium für elektrochemische Industrie GmbH, 8000 München Fluessig-kristalline eigenschaften aufweisende, vernetzte organopolysiloxane
EP0261712A1 (en) 1986-09-04 1988-03-30 Koninklijke Philips Electronics N.V. Picture display cell, method of forming an orientation layer on a substrate of the picture display cell and monomeric compounds for use in the orientation layer
DE3830592A1 (de) * 1988-09-08 1990-04-12 Consortium Elektrochem Ind (meth)acryloxygruppen enthaltende fluessigkristalline polyorganosiloxane
DE3836955A1 (de) * 1988-10-29 1990-05-03 Philips Patentverwaltung Farbfernsehprojektionsanordnung
US4984872A (en) * 1989-06-16 1991-01-15 Rockwell International Corporation Wide viewing angle avionics liquid crystal display
US5235443A (en) * 1989-07-10 1993-08-10 Hoffmann-La Roche Inc. Polarizer device
SG50550A1 (en) 1989-07-10 2002-04-16 Rolic Ag Polarisator
US5082354A (en) * 1989-08-29 1992-01-21 Kaiser Aerospace And Electronics Corporation Optical switch and color selection assembly
JP3174367B2 (ja) * 1991-10-07 2001-06-11 日東電工株式会社 積層波長板及び円偏光板
US6630974B2 (en) * 1991-11-27 2003-10-07 Reveo, Inc. Super-wide-angle cholesteric liquid crystal based reflective broadband polarizing films
DE4220289A1 (de) 1992-06-20 1993-12-23 Sensys Ag Handapparat für Telephon
DE69325555D1 (de) 1992-04-27 1999-08-12 Merck Patent Gmbh Elektrooptisches fluessigkristallsystem
DE4222028A1 (de) * 1992-07-04 1994-01-05 Philips Patentverwaltung Lichtquelle mit einer lumineszierenden Schicht
JP3206133B2 (ja) 1992-09-07 2001-09-04 住友化学工業株式会社 液晶表示装置
DE69409977T2 (de) 1993-01-11 1998-10-22 Koninkl Philips Electronics Nv Beleuchtungssystem und ein solches System umfassendes Anzeigegerät
US5580950A (en) * 1993-04-21 1996-12-03 The University Of Akron Negative birefringent rigid rod polymer films
US5548422A (en) * 1993-06-28 1996-08-20 In Focus Systems, Inc. Notch filters with cholesteric polarizers with birefringent film and linear polarizer
GB2280445B (en) 1993-07-05 1998-02-11 Merck Patent Gmbh Liquid crystalline copolymer
JPH0736032A (ja) 1993-07-23 1995-02-07 Fuji Xerox Co Ltd バックライト光源
US5541745A (en) * 1994-01-25 1996-07-30 Fergason; James L. Illumination system for a display using cholesteric liquid crystal reflectors
DE19504224A1 (de) * 1994-02-23 1995-08-24 Merck Patent Gmbh Flüssigkristallines Material
DE4408171A1 (de) 1994-03-11 1995-09-14 Basf Ag Neue polymerisierbare flüssigkristalline Verbindungen
DE4411065A1 (de) * 1994-03-30 1995-10-05 Bayer Ag Kationische Thiadiazol-Farbstoffe
US5627666A (en) * 1994-07-27 1997-05-06 Board Of Regents Of The University Of Colorado Liquid crystal phase modulator using cholesteric circular polarizers
DE69634849T2 (de) * 1995-09-25 2006-05-18 Koninklijke Philips Electronics N.V. Elektrolumineszentes beleuchtungssystem und flachtafelbildanzeigevorrichtung mit einem solchen system
EP0888565B1 (en) * 1996-03-19 2009-01-21 MERCK PATENT GmbH Reflective polariser, liquid crystal display device comprising it and material composition therefor
CN1109902C (zh) 1996-04-22 2003-05-28 日东电工株式会社 圆偏振光二色性光学元件及其装置和液晶聚合物
CN1103776C (zh) 1996-07-01 2003-03-26 默克专利股份有限公司 手性掺杂剂和包含它的液晶材料和聚合物膜
TW472081B (en) * 1996-09-17 2002-01-11 Merck Patent Gmbh Optical retardation film
GB9708468D0 (en) 1997-04-25 1997-06-18 Screen Tech Ltd Collimator
JP4015228B2 (ja) 1997-05-19 2007-11-28 日東電工株式会社 円偏光分離層、光学素子、偏光光源装置及び液晶表示装置
JP3331150B2 (ja) * 1997-06-09 2002-10-07 日東電工株式会社 表示素子の照明方法及び液晶表示装置
GB9717394D0 (en) 1997-08-15 1997-10-22 Screen Tech Ltd Light filtering for emissive displays
JPH11133231A (ja) * 1997-10-27 1999-05-21 Nitto Denko Corp 偏光素子、光学素子、照明装置及び液晶表示装置
US5940149A (en) * 1997-12-11 1999-08-17 Minnesota Mining And Manufacturing Company Planar polarizer for LCD projectors
KR100358223B1 (ko) * 1998-03-20 2002-12-18 주식회사 엘지화학 콜레스테릭 필터
US6271969B1 (en) * 1998-12-11 2001-08-07 Agilent Technolgoies, Inc. Folded optical system having improved image isolation
US6773766B2 (en) * 1998-12-22 2004-08-10 Basf Aktiengesellschaft Utilization of polymerizable liquid crystal substances for the production of optical components
DE19859584A1 (de) 1998-12-22 2000-06-29 Basf Ag Verwendung polymerisierbarer flüssigkristalliner Substanzen zur Herstellung optischer Bauelemente
KR100615441B1 (ko) * 1999-09-08 2006-08-25 엘지.필립스 엘시디 주식회사 면광원장치
US6344887B1 (en) * 1999-09-10 2002-02-05 Yao-Dong Ma Full spectrum reflective choleterics display employing circular polarizers with the same polarity but different disposition
JP3747751B2 (ja) 1999-09-30 2006-02-22 カシオ計算機株式会社 液晶表示装置
US6822711B1 (en) * 1999-09-30 2004-11-23 Casio Computer Co., Ltd. Liquid crystal display apparatus using polarizing element transmitting one of two polarizing components crossing at right angles and reflecting the other component
KR100420201B1 (ko) 1999-11-12 2004-02-26 가네가후치 가가쿠 고교 가부시키가이샤 투명필름
KR100349314B1 (ko) * 1999-12-30 2002-08-21 엘지전선 주식회사 적층방법을 이용한 광대역 편광막의 제조방법 및 이를이용한 액정표시장치
JP4363749B2 (ja) 2000-03-16 2009-11-11 日東電工株式会社 光学フィルム
JP2001264535A (ja) 2000-03-16 2001-09-26 Nitto Denko Corp 光学部材及び液晶表示装置
JP2001343529A (ja) 2000-03-30 2001-12-14 Kanegafuchi Chem Ind Co Ltd 偏光子保護フィルムおよびその製造方法
US6975455B1 (en) * 2000-04-18 2005-12-13 3M Innovative Properties Company Transflective layer for displays
US6549335B1 (en) * 2000-07-28 2003-04-15 3M Innovative Properties Company High durability circular polarizer for use with emissive displays
JP2002055232A (ja) 2000-08-11 2002-02-20 Nitto Denko Corp 薄型偏光板及びそれを用いた液晶表示装置
JP4814419B2 (ja) 2000-09-18 2011-11-16 日東電工株式会社 光学素子、面光源装置及び液晶表示装置
TW535011B (en) * 2000-09-21 2003-06-01 Koninkl Philips Electronics Nv Improvement of the luminance-contrast performance of a display by an in-tube reflective polarizer
JP2002169026A (ja) * 2000-09-25 2002-06-14 Fuji Photo Film Co Ltd コリメータ及びバックライトシステム
US6985291B2 (en) * 2001-10-01 2006-01-10 3M Innovative Properties Company Non-inverting transflective assembly
EP1498751A4 (en) * 2002-04-23 2007-08-01 Nitto Denko Corp POLARIZER, POLARIZATION LIGHT SOURCE AND IMAGE DISPLAY UNIT THEREWITH
WO2003091792A1 (fr) * 2002-04-24 2003-11-06 Nitto Denko Corporation Unite d'affichage a cristaux liquides a agrandissement de l'angle de vue
US20050180017A1 (en) * 2002-04-24 2005-08-18 Kazutaka Hara Light converging system and transmission liquid crystal display
US6757039B2 (en) * 2002-06-17 2004-06-29 Yao-Dong Ma Paper white cholesteric displays employing reflective elliptical polarizer
JP4233431B2 (ja) * 2003-04-01 2009-03-04 日東電工株式会社 光学素子、偏光素子、照明装置および液晶表示装置
JP4251483B2 (ja) * 2003-06-24 2009-04-08 日東電工株式会社 光学素子、集光バックライトシステムおよび液晶表示装置
JP2005128216A (ja) * 2003-10-23 2005-05-19 Nitto Denko Corp 旋光板、光学素子、集光バックライトシステムおよび液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054909A (ja) * 1996-08-09 1998-02-24 Nitto Denko Corp 円偏光分離層、光学素子、偏光光源装置及び液晶表示装置
WO2000039631A1 (en) * 1998-12-24 2000-07-06 Rolic Ag Liquid crystal display with improved viewing angle
JP2002341343A (ja) * 2001-05-14 2002-11-27 Nitto Denko Corp 照明装置及び液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025533A1 (ja) 2004-09-03 2006-03-09 Tokyo Institute Of Technology 光ダイオード
EP1791004A1 (en) * 2004-09-03 2007-05-30 Tokyo Institute of Technology Photodiode
EP1791004A4 (en) * 2004-09-03 2010-06-09 Tokyo Inst Tech Photodiode
TWI828762B (zh) * 2018-09-28 2024-01-11 日商住友化學股份有限公司 偏光板複合體及圖像顯示裝置
US11703622B2 (en) 2018-10-12 2023-07-18 Meta Platforms Technologies, Llc Polarization-based filters with angle-sensitive transmission having circular polarizers

Also Published As

Publication number Publication date
CN1296732C (zh) 2007-01-24
EP1498751A4 (en) 2007-08-01
US7982952B2 (en) 2011-07-19
CN1650197A (zh) 2005-08-03
US20090034070A1 (en) 2009-02-05
KR20040097373A (ko) 2004-11-17
US7746555B2 (en) 2010-06-29
US20050151896A1 (en) 2005-07-14
KR100955445B1 (ko) 2010-05-04
TW200306437A (en) 2003-11-16
US7443585B2 (en) 2008-10-28
TWI258603B (en) 2006-07-21
EP1498751A1 (en) 2005-01-19
US20100226007A1 (en) 2010-09-09

Similar Documents

Publication Publication Date Title
WO2003091766A1 (en) Polarizer, polarization light source and image displayunit using them
KR100763291B1 (ko) 시야각 확대 액정표시장치
KR101858878B1 (ko) 액정 표시 장치
JPH11194217A (ja) 偏光素子、光学素子、照明装置及び液晶表示装置
EP1582893A1 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JP2004309618A (ja) 光学素子、液晶セル、照明装置および液晶表示装置
WO2008050784A1 (fr) Filtre optique, plaque de polarisation, dispositif d'éclairage et dispositif d'affichage à cristaux liquides
JP2000321431A (ja) 偏光素子、光学素子、偏光光源装置及び液晶表示装置
JP3811465B2 (ja) 偏光素子、偏光光源およびそれらを用いた画像表示装置
JP2004287417A (ja) ねじれ傾斜配向フィルムの製造方法、ねじれ傾斜配向フィルムおよびそれを用いた画像表示装置
JP2002139624A (ja) 光学素子、照明装置及び液晶表示装置
JP2004004763A (ja) 視野角拡大液晶表示装置
KR20040102166A (ko) 집광 시스템 및 투과형 액정표시장치
WO2003077018A1 (fr) Retroeclairage et unite d'affichage a cristaux liquides l'utilisant
JP2009288312A (ja) 光学素子及び液晶表示装置
JP2003315548A (ja) 光学素子、面光源装置、液晶表示装置
JPWO2005026830A1 (ja) 照明装置及び液晶表示装置
JP2023155243A (ja) 偏光子を備えた面光源及びそれを用いた液晶表示装置
JPH11231130A (ja) 偏光素子、光学素子、照明装置及び液晶表示装置
JP2006133385A (ja) 平行光化システム、集光バックライトシステム及び液晶表示装置
CN100399075C (zh) 偏振部件,偏振光源及使用其的图像显示装置
JP2004004149A (ja) ニュートラル偏光板および画像表示装置
JPH11311710A (ja) 偏光素子、光学素子、照明装置及び液晶表示装置
JP3808048B2 (ja) 光学素子及びこれを用いた面光源装置並びに液晶表示装置
JP2004279438A (ja) 光学フィルムおよび画像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003717612

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10509700

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047016797

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038093502

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047016797

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003717612

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003717612

Country of ref document: EP