WO2003091334A1 - Composition de copolymere bloc modifie - Google Patents

Composition de copolymere bloc modifie Download PDF

Info

Publication number
WO2003091334A1
WO2003091334A1 PCT/JP2002/004090 JP0204090W WO03091334A1 WO 2003091334 A1 WO2003091334 A1 WO 2003091334A1 JP 0204090 W JP0204090 W JP 0204090W WO 03091334 A1 WO03091334 A1 WO 03091334A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
block copolymer
weight
polymer
parts
Prior art date
Application number
PCT/JP2002/004090
Other languages
English (en)
French (fr)
Inventor
Nobuaki Kubo
Yasuhiro Kusanose
Shigeki Takayama
Toshinori Shiraki
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to JP2003587881A priority Critical patent/JPWO2003091334A1/ja
Priority to PCT/JP2002/004090 priority patent/WO2003091334A1/ja
Priority to KR10-2003-7016767A priority patent/KR100535199B1/ko
Priority to US10/480,201 priority patent/US7122594B2/en
Priority to AU2002253580A priority patent/AU2002253580A1/en
Priority to EP02722755.2A priority patent/EP1403317B1/en
Priority to ES02722755.2T priority patent/ES2606044T3/es
Priority to CNB028127072A priority patent/CN1246383C/zh
Publication of WO2003091334A1 publication Critical patent/WO2003091334A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages

Definitions

  • the present invention provides a functional group-containing modified block copolymer comprising a vinyl aromatic hydrocarbon and a conjugated diene or a hydrogenated product thereof, and a silica-based inorganic filler, a metal oxide, and a metal hydroxide.
  • the present invention relates to a modified thermoplastic block copolymer composition containing a filler to be used.
  • thermoplastic elastomer composition or a thermoplastic resin composition with excellent moldability and recyclability are used in automobile parts, It is used in various fields such as home electric parts, electric wire coating, medical parts, footwear, sundries and so on.
  • thermoplastic elastomers and thermoplastic resins such as polyolefins, polyurethanes, polyesters, and polystyrenes, have been developed and marketed.
  • styrene-butadiene block copolymers styrene-isoprene block copolymers and other such aromatic hydrocarbon-conjugated gem block copolymers and hydrogenated products thereof
  • hydrocarbon-conjugated gem block copolymers hydrogenated products thereof
  • the styrene content is low, the composition is rich in flexibility, exhibits good rubber elasticity at room temperature, and the composition obtained therefrom has excellent moldability.
  • the styrene content is relatively high, a transparent and highly impact-resistant thermoplastic resin can be obtained, so it is used in food packaging containers, home electric parts, industrial parts, household goods, toys, etc. .
  • Japanese Unexamined Patent Publication (Kokai) No. 59-131316 discloses that a hydrogenated block copolymer contains Elastomeric yarn composition with improved compression set by partially cross-linking an elastomeric composition containing a hydrogenated oil, an olefin polymer, and an inorganic filler using an organic peroxide and a crosslinking aid Is disclosed. Further, Japanese Patent Application Laid-Open No.
  • H10-58098 discloses a resin composition having excellent conductivity, comprising a polyphenylene ether resin, a hydrogenated block copolymer, and a conductive inorganic filler.
  • Japanese Patent Application Laid-Open No. 2001-72853 discloses a thermoplastic resin composition which is excellent in moisture absorption resistance and vibration damping properties, comprising a polycarbonate resin, a styrene-butadiene block copolymer and a hollow ceramic body. I have.
  • thermoplastic block copolymer has a low affinity for each other because one is a hydrophobic organic substance and the other is a hydrophilic inorganic substance. Poor kneading properties, and no expected improvement in performance. Therefore, as a method for improving the mutual affinity between the thermoplastic block copolymer and the different material, it has been proposed to add a functional group to the thermoplastic block copolymer.
  • a functional group for example, Japanese Patent Publication No. Sho 62-541 No. 38 and Japanese Patent Publication No.
  • 62-54140 disclose a composition in which maleic anhydride is added to a block copolymer of a vinyl aromatic hydrocarbon and a conjugated gen compound to improve the affinity with an inorganic filler. Is disclosed.
  • Japanese Patent Publication No. 39495/1992, Japanese Patent Publication No. 4-28034 and Japanese Patent Publication No. 4-38777 disclose a functional group at the end of a block copolymer of a butyl aromatic hydrocarbon and a conjugated gen compound.
  • a composition in which the affinity with a thermoplastic resin, a tackifying resin, or asphalt is improved by applying the composition.
  • the present inventors have conducted various studies to solve the above problems, and as a result, (1) a modified block copolymer having a specific structure containing a specific functional group or a hydrogenated product thereof, and (2) A composition containing a specific amount of a filler selected from the group consisting of silica-based inorganic fillers, metal oxides, and metal hydroxides, has heat resistance, mechanical strength, transparency, abrasion resistance, and processing.
  • the present inventors have found that the present invention is excellent in properties, and have completed the present invention. That is, the present invention is as follows.
  • a modified block copolymer comprising a polymer block A mainly composed of butyl aromatic hydrocarbon and a polymer block B mainly composed of conjugated diene, or a hydrogenated product thereof, and
  • Fillers selected from the group consisting of silica-based inorganic fillers, metal oxides and metal hydroxides
  • a modified block copolymer yarn comprising:
  • a functional group having at least one group selected from the group consisting of a hydroxyl group, an epoxy group, an amino group, a silanol group, and an alkoxysilane group is bonded to the molecular chain terminal of the component (1).
  • Aromatic hydrocarbon content is 5-95 weight
  • the amount of the component (2) is 0.5 to 50 parts by weight relative to 100 parts by weight of the component (1), and the average dispersed particle diameter of the component (2) is 0.01 to 2 m.
  • the modified block copolymer composition is 0.5 to 50 parts by weight relative to 100 parts by weight of the component (1), and the average dispersed particle diameter of the component (2) is 0.01 to 2 m.
  • (3) contains an olefin polymer, and the amount of the component (3) is
  • 19 and 1 ⁇ 12 to 114 are hydrogen, hydrocarbons having 1 to 24 carbon atoms.
  • R 10 is a hydrocarbon chain having 1 to 30 carbon atoms or a hydrocarbon chain having 1 to 30 carbon atoms having a functional group selected from the group consisting of a hydroxyl group, an epoxy group, a silanol group and an alkoxysilane group.
  • a functional group selected from the group consisting of a hydroxyl group, an epoxy group, a silanol group and an alkoxysilane group.
  • oxygen, nitrogen, silicon, and the like are bonded in a bonding mode other than a hydroxyl group, an epoxy group, a silanol group, and an alkoxysilane group. And other elements may be bonded.
  • R 11 is hydrogen or an alkyl group having 1 to 8 carbon atoms.
  • R 9 , and scale 1 to! ⁇ 14 are hydrogen, a hydrocarbon group having from carbon number: to 24, or a hydroxyl group, an epoxy group, a silanol group, and an alkoxysilane group.
  • the hydrocarbon group of R 9, and R 1 2 ⁇ scale 1 4, and in the hydrocarbon chain of R 1 0 is Hydroxyl group, epoxy group, silanol group and alkoxysilane Elements such as oxygen, nitrogen and silicon may be bonded in a bonding mode other than the group.
  • R 11 is hydrogen or an alkyl group having 1 to 8 carbon atoms.
  • Component (2) is silica, wollastonite, montmorillonite, zeolite, alumina, titanium oxide, magnesium oxide, zinc oxide, slug wool, glass fiber, magnesium hydroxide, aluminum hydroxide, aluminum hydrated silicate
  • the present invention relates to a material having new characteristics that combines the advantages of an organic polymer (eg, light weight, flexibility, moldability, etc.) and the advantages of an inorganic substance (eg, heat resistance, high strength, etc.). Things.
  • the present invention provides a modified block copolymer comprising a butyl aromatic hydrocarbon and a co-gen or a hydrogenated product thereof, a silicic acid-based inorganic filler, a metal oxide, and a metal hydroxide.
  • the composition containing the filler the mutual function and characteristics are more effectively expressed, and a material with higher performance and higher functionality is provided.
  • the modified block copolymer used in the present invention is composed of a polymer block A mainly composed of vinyl aromatic hydrocarbon and a polymer block B mainly composed of conjugated gen. It is a compound in which a functional group having at least one group selected from the group consisting of an epoxy group, an amino group, a silanol group and an alkoxysilane group is bonded.
  • modified block copolymer obtained by this method has, for example, a structure represented by the following general formula. (A-B) n -X,
  • A represents a polymer block mainly composed of vinyl aromatic hydrocarbon
  • B represents a polymer block mainly composed of conjugated diene.
  • n is an integer of 1 or more, generally an integer of 1 to 5
  • m is an integer of 2 or more, generally, an integer of 2 to 10.
  • X is a denaturant residue to which a functional group described below is bonded.
  • the polymer block A mainly composed of a vinyl aromatic hydrocarbon is a vinyl aromatic hydrocarbon containing preferably 50% by weight or more, more preferably 70% by weight or more of a vinyl aromatic hydrocarbon.
  • a copolymer block of a conjugated gen and a vinyl aromatic hydrocarbon containing 60% by weight or more, and a Z or conjugated gen homopolymer block are shown.
  • the vinylinole aromatic hydrocarbon units in the copolymer block may be distributed uniformly or in a tapered shape.
  • a plurality of portions where vinyl aromatic hydrocarbon units are uniformly distributed and a plurality of portions where Z or taper shape are distributed may be present together.
  • modified block copolymer used in the present invention may be any mixture of the modified block copolymer represented by the above general formula.
  • Block copolymer before modification (hereinafter sometimes simply referred to as “block copolymer”)
  • block copolymer For example, Japanese Patent Publication No. Sho 43-177979, Japanese Patent Publication No. Sho 49-36957, Japanese Patent Publication No. Sho 48-41076,
  • the method described in JP-A-59-166658 / 18 may be used.
  • the aromatic aromatic hydrocarbon used in the present invention includes, for example, styrene, 0-methynolestyrene, p-methynolestyrene, ⁇ -tert-butynolestyrene, 1,3-dimethylstyrene, hemethinolestyrene, and vinylinole
  • styrene 0-methynolestyrene
  • p-methynolestyrene p-methynolestyrene
  • ⁇ -tert-butynolestyrene 1,3-dimethylstyrene
  • hemethinolestyrene hemethinolestyrene
  • vinylinole One or more of naphthalene, bininoleanthracene and the like can be used, and styrene is generally used.
  • conjugated diene examples include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethynole-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. One or more of these can be used, and in general, 1,3-butadiene and isoprene are used.
  • the solvent used for the production of the block copolymer includes, for example, aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, heptane, and isooctane, cyclopentane, methylcyclopentane, and cyclopentane.
  • Alicyclic hydrocarbons such as hexane, methylcyclohexane, and ethylcyclohexane, or aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene can be used. These may be used alone or in combination of two or more.
  • an organic lithium compound can be used as a polymerization initiator used for producing the block copolymer.
  • An organic lithium compound is a compound in which one or more lithium atoms are bonded in a molecule.
  • isoprenyl dilithium These may be used alone or in combination of two or more.
  • the organolithium compound may be added in portions during the production (polymerization) of the block copolymer.
  • the polarity A ligature or a random ligature can be used.
  • polar compounds and randomizing agents include ethers, amines, thioethers, and phosphines.
  • examples of ethers include dimethyl ether, getinoleatenole, diphenylene ether, tetrahydrofuran, diethyleneglyconoresinethylene ether, and dimethylene glycol dibutyl ether.
  • examples of the amines include tertiary amines, trimethinoleamine, triethylamine, tetramethy ⁇ ethylenediamine, and other cyclic tertiary amines.
  • examples of the phosphine and phosphoramide include triphenylphosphine, hexamethylphosphoramide, and the like.
  • the polymerization temperature when producing the block copolymer is preferably from 110 to 150 ° C, more preferably from 30 to 120 ° C.
  • the polymerization time varies depending on the conditions, but is preferably within 48 hours, particularly preferably 0.5 to 10 hours.
  • the polymerization atmosphere is preferably an inert gas atmosphere such as a nitrogen gas.
  • the polymerization pressure is not particularly limited as long as it is within a range sufficient to maintain the monomer and the solvent in the liquid phase within the above-mentioned polymerization temperature range. Further, it is preferable to take care that impurities such as water, oxygen, carbon dioxide, etc. which inactivate the catalyst and the living polymer are not mixed in the polymerization system.
  • the component (1) used in the present invention has at least one group selected from a hydroxyl group, an epoxy group, an amino group, a silanol group and an alkoxysilane group at a molecular chain terminal.
  • a method for obtaining a modified block copolymer which is a modified block copolymer having a functional group bonded thereto or a hydrogenated product thereof, and having a strong functional group bonded thereto, is as described above.
  • a method of reacting the living terminal of the union with a modifying agent containing the above functional group or a modifying agent containing the above functional group in a state protected by a known method is exemplified.
  • the hydroxyl group and the amino group may be converted to an organic metal salt at the stage of reacting the denaturing agent, in which case active hydrogen such as water or alcohol is used.
  • active hydrogen such as water or alcohol is used.
  • the compound can be converted to a hydroxyl group / amino group by treating with a compound having the formula:
  • a part of the unmodified block copolymer may be mixed.
  • the ratio of the unmodified block copolymer mixed in the modified block copolymer is preferably 60% by weight. %, More preferably 50% by weight or less.
  • Examples of the functional group having at least one group selected from a hydroxyl group, an epoxy group, an amino group, a silanol group and an alkoxysilane group include, for example, a functional group selected from the group consisting of the following general formulas (1) to (14). No.
  • R 9 and R ⁇ to R 14 are each selected from the group consisting of hydrogen, a hydrocarbon group having 1 to 24 carbon atoms, or a hydroxyl group, an epoxy group, a silanol group and an alkoxysilane group.
  • R 10 is a hydrocarbon chain having 1 to 30 carbon atoms, or a hydrocarbon chain having 1 to 30 carbon atoms having a functional group selected from the group consisting of a hydroxyl group, an epoxy group, a silanol group and an alkoxysilane group. Note that 1 9 and 1 1 2-11 14 hydrocarbon group, the hydrocarbon chains of ⁇ Pi R 1 0, a hydroxyl group, an epoxy group, in bonding mode other than silanol group and an alkoxysilane group, oxygen, nitrogen, Elements such as silicon may be bonded.
  • R 11 is hydrogen or an alkyl group having 1 to 8 carbon atoms.
  • Examples of the modifying agent used to obtain the modified block copolymer used in the present invention include tetradaricidyl metaxylene diamine, tetraglycidyl 1,3- 0
  • the polymer block ⁇ and / or the polymer block B can be treated with a residue of the modifier, namely, a group consisting of a hydroxyl group, an epoxy group, an amino group, a silanol group and an alkoxysilane group.
  • a residue of the modifier namely, a group consisting of a hydroxyl group, an epoxy group, an amino group, a silanol group and an alkoxysilane group.
  • a modified block copolymer to which a functional group having a selected group is bonded or a hydrogenated product thereof is obtained.
  • the bonding position of the denaturant residue to the modified block copolymer is not particularly limited.However, in order to obtain a composition having excellent physical properties at high temperatures, it must be bonded to the polymer block A. preferable.
  • a functional group containing a functional group that causes an addition reaction to the living terminal of the block copolymer is used.
  • the amount of the modifying agent to be used is preferably more than 0.5 equivalent, more preferably more than 0.7 equivalent, more than 0.9 equivalent based on 1 equivalent of the living terminal of the block copolymer. More preferably, The amount is preferably 10 equivalents or less, more preferably 5 equivalents or less, and most preferably 4 equivalents or less, based on 1 equivalent of the lip end of the block copolymer.
  • the amount of the living terminal of the block copolymer can be calculated from the amount of the organic lithium compound used for the polymerization and the number of lithium atoms bonded to the organic lithium compound.
  • the hydrogenated product of the modified block copolymer is obtained by hydrogenating the modified block copolymer obtained by the above method.
  • the hydrogenation catalyst used for hydrogenation is not particularly limited, and is conventionally known.
  • Metals such as Ni, Pt, Pd, and Ru are converted to carbon, silica, alumina, diatomaceous earth, and the like.
  • Supported, supported heterogeneous catalyst (ii) using an organic acid salt such as Ni, Co, Fe, Cr or the like, or a transition metal salt such as acetyl aceton salt and a reducing agent such as an organic aluminum, so-called,
  • a homogeneous hydrogenation catalyst such as a Ziegler-based hydrogenation catalyst, (iii) an organometallic compound such as Ti, Ru, Rh, or Zr, or a so-called organometallic complex can be used.
  • Preferred hydrogenation catalysts include a mixture of a titanocene compound and a reducing organometallic compound.
  • titanocene compound compounds described in JP-A-8-109219 can be used, and specific examples thereof include biscyclopentagenenyltitanium dichloride and monopentamethylcyclopentagenenyltitanium. Examples include compounds having at least one ligand having a (substituted) cyclopentagenyl skeleton, indenyl skeleton, or fluorenyl skeleton such as trichloride. Examples of the reducing organic metal compound include an organic alkali metal compound such as organic lithium, an organic magnesium compound, an organic aluminum compound, an organic boron compound, and an organic zinc compound.
  • the hydrogenation reaction is generally carried out in a temperature range from 0 to 200 ° C, preferably from 30 to 150 ° C.
  • the pressure of hydrogen used in the hydrogenation reaction is 0.1 to 15 MPa, preferably 0.2 to 10 MPa, more preferably 0.3 to 5 MPa.
  • the hydrogenation reaction time is 3 minutes to 10 hours, preferably 10 minutes to 5 hours.
  • the hydrogenation reaction may be performed in a batch process, a continuous process, or a combination thereof.
  • Structural units derived from the conjugated gen in the hydrogenated product of the modified block copolymer are represented by the following formulas (a) to (e).
  • ( 1 to! ⁇ 8 each represents hydrogen, halogen, an aliphatic hydrocarbon having 1 to 20 carbon atoms, or an aromatic hydrocarbon having 1 to 20 carbon atoms, which may be the same or different.
  • the formula (a) represents a cis structure
  • the formula (b) represents a trans structure.
  • the hydrogenation rate of the hydrogenated modified block copolymer is such that a composition having good thermal stability can be obtained. To 10% or more, more preferably 30 to 100%, and most preferably 50 to 100%.
  • the hydrogenation rate of the product is calculated based on the above equations ( a ) to ( e ).
  • the proportion of the structural unit having a bull bond in the range of 10 to 85% of all the structural units derived from the conjugated gen in the hydrogenated product of the modified block copolymer is set as the range of the block copolymer. It is preferable from the viewpoints of productivity, flexibility of the obtained composition, and impact resistance. A more preferred range is 30 to 75%, and the most preferred range is 35 to 70%.
  • the proportion of the structural units having a vinyl bond among all the structural units derived from the conjugated gen is based on the above formulas (a) to (e).
  • the content of the bullet aromatic hydrocarbon in the modified block copolymer or its hydrogenated product can be determined using an ultraviolet spectrophotometer or the like.
  • the ratio of the structural unit having a vinyl bond in the structural unit derived from the conjugated gen in the hydrogenated product of the modified block copolymer, and the hydrogenation rate of the hydrogenated product of the modified block copolymer are determined by nuclear magnetic resonance. It can be determined by using an apparatus (NMR).
  • the content of the vinyl aromatic hydrocarbon in the hydrogenated product may be determined from the content of the vinyl aromatic hydrocarbon in the copolymer before hydrogenation.
  • the desired modified block copolymer or hydrogenated product thereof is obtained by removing a catalyst residue from the solution of the modified block copolymer or hydrogenated product obtained by the above method, if necessary, and separating the solvent.
  • a method for separating the solvent for example, a polar solvent which is a poor solvent for a polymer such as acetone or alcohol in a polymer solution is used.
  • To recover the polymer by precipitating and recovering the polymer, pouring the polymer solution into boiling water with stirring, and removing and recovering the solvent by steam stripping, or heating the polymer solution directly to remove the solvent. Is distilled off.
  • the modified block copolymer or its hydrogenated product used in the present invention may contain various phenol-based stabilizers, phosphorus-based stabilizers, zeolite-based stabilizers, and amine-based stabilizers. Can be.
  • the content of Bulle aromatic hydrocarbons in the component (1) used in the present invention 5-9 5 weight 0/0, preferably 8-80 wt%, more preferably 1 0 to 70 wt%. If it is less than 5% by weight, the compression set and tensile strength are inferior, and if it exceeds 95% by weight, the impact resistance is lowered.
  • the content of butyl aromatic hydrocarbon is generally 60% by weight or less, particularly 55% by weight or less, the component (1) exhibits properties as a thermoplastic elastomer, and the content of vinyl aromatic hydrocarbon is In general, when the content exceeds 60% by weight, especially when the content is 65% by weight or more, the component (1) exhibits properties as a thermoplastic resin.
  • the weight average molecular weight of the component (1) is preferably 30,000 or more from the viewpoint of tensile strength of the composition and 1,000,000 or less from the viewpoint of processability, more preferably 60,000 to 800,000, and further preferably 70,000 to 600,000. is there.
  • the weight-average molecular weight was determined based on a calibration curve (prepared using the peak molecular weight of standard polystyrene) obtained from the measurement of commercially available standard polystyrene using gel permeation chromatography (GPC). It can be determined from the molecular weight of the peak.
  • the blocking ratio of the vinyl aromatic hydrocarbon should be 50% or more, more preferably 50 to 97% by weight, and still more preferably 60% or more of the total butyl aromatic hydrocarbon in the component (1). Adjusting to 95% by weight is preferable for obtaining a composition excellent in compression set.
  • the block ratio of the bullet aromatic hydrocarbon refers to the ratio of the vinyl aromatic hydrocarbon polymer block present in the component (1).
  • the block rate of vinyl aromatic hydrocarbons was measured by oxidizing the block copolymer with tertiary butyl hydroperoxide using osmium tetrachloride as a catalyst (IM KOLTHOFF, eta 1., JP P 1, 429 (1 946)).
  • IM KOLTHOFF osmium tetrachloride
  • Component (2) is a filler selected from the group consisting of silica-based inorganic fillers, metal oxides and metal hydroxides.
  • the silica-based inorganic filler refers to a formula S i 0 2, or S i 3 solid particles mainly composed of the A 1 configuration unit of, for example, silica, clay, talc, My power, Wo Last fiber, montmorillonite, zeolite, inorganic fiber materials such as glass fiber and the like can be used.
  • a siliceous inorganic filler having a hydrophobic surface, a mixture of two or more silica-based inorganic fillers, and a mixture of a silica-based inorganic filler and a non-silica-based inorganic filler can be used.
  • silica dry white carbon, wet white carbon, synthetic silicate white carbon, colloidal silica, and the like can be used.
  • a metal oxide is a solid particle having a chemical formula of M x O y (M is a metal atom, x and y are each an integer of 1 to 6) as a main component of a structural unit, for example, alumina, titanium oxide, Magnesium oxide, zinc oxide, or the like can be used.
  • a mixture of two or more metal oxides and a mixture of a metal oxide and an inorganic filler other than the metal oxide can also be used.
  • metal hydroxides are hydrated inorganic fillers such as aluminum hydroxide, magnesium hydroxide, hydridylconium hydroxide, aluminum silicate hydrate, magnesium silicate hydrate, and basic carbonate.
  • Magnesium, hydrotalcite, calcium hydroxide, barium hydroxide, hydrates of tin oxide, hydrates of inorganic metal compounds such as borax and the like can be used.
  • a mixture of two or more metal hydroxides and a mixture of a metal hydroxide and an inorganic filler other than the metal hydroxide can also be used.
  • silica and glass fiber are preferable, and silica is particularly preferable.
  • the average dispersed particle diameter of the filler is set to 0.01 to 2 ⁇ . Is more preferable, and more preferably 0.05 to 1 ⁇ , and still more preferably 0.05 to 0.5 / m.
  • the average dispersed particle size of the filler can be determined by observing the dispersion state of the filler with a transmission electron microscope (TEM) and using an image analyzer.
  • the amount of the component (2) is 0.5 to 50 parts by weight, more preferably 3 to 40 parts by weight, based on 100 parts by weight of the component (1). When the amount of the component (2) is less than 0.5 part by weight, the effect of adding the filler is not exhibited. Are not preferred because they cause evil.
  • the composition of the present invention may further contain an olefin polymer (hereinafter, sometimes referred to as component (3)) in addition to component (1) and component (2) described above.
  • component (3) olefin polymer
  • the olefin polymer is a polymer mainly composed of olefin such as ethylene and propylene, and examples thereof include polyethylene, polypropylene, ethylene-propylene copolymer, and chlorinated polyethylene.
  • the olefin polymer in addition to olefins such as ethylene and propylene, those obtained by copolymerizing a small amount of a vinyl monomer may be used.
  • ethylene monoacetate biel copolymer, ethylene mono (meth) acrylic acid copolymer, ethylene mono (meth) acrylic acid derivative copolymer and the like can be mentioned.
  • the olefin polymer also includes a hydrogenated product of a polymer of a conjugated diene monomer such as butadiene and isoprene. These resins can be used as a mixture of two or more kinds. Considering the processability and mechanical properties of the resulting composition, polypropylene or a mixture of polypropylene and an ethylene-propylene copolymer is preferred.
  • the amount of the component (3) is preferably from 100 to 500 parts by weight based on 100 parts by weight of the component (1) from the viewpoint of the balance between the compression set, the tensile strength and the elasticity of the composition. More preferably, it is 20 to 300 parts by weight.
  • component (1) which is a modified block copolymer or a hydrogenated product thereof, contains a specific functional group. It has a high affinity and allows the filler to be more finely dispersed in the copolymer, and at the same time, an interaction is effectively expressed between them by a chemical bond such as a hydrogen bond. Properties, mechanical strength, transparency, abrasion resistance, It is possible to obtain a modified block copolymer composition having excellent properties. Furthermore, a modified block copolymer composition having excellent compression set, impact resistance, and processability can be obtained.
  • the modified block copolymer composition of the present invention may further contain a silane coupling agent.
  • the silane coupling agent is used to make the interaction between the component (1) and the component (2) tighter, and the components (1) and Z or the component
  • silane coupling agent those generally used for inorganic fillers such as silicic acid can be used.
  • silane coupling agent those generally used for inorganic fillers such as silicic acid can be used.
  • silane coupling agents in the present invention are those having a silanol group or an alkoxysilane group and having a polysulfide bond in which a mercapto group and two or more Z or sulfur are linked.
  • Examples include, for example, 3-mercaptopropyl-trimethoxysilane, 3-aminopropyltriethoxysilane, bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis- [3- (triethoxysilyl) -propyl] ⁇ Disulfide, Bis [3- (triethoxysilyl) -propyl] trisulfide, bis-bis
  • Examples include sulfide, 3-triethoxysilylpropylbenzothiazoletetrasulfide, and 3-trimethoxysilylpropylbenzothiazoletetrasulfide.
  • the amount of the silane coupling agent is preferably from 0.1 to 20% by weight, more preferably from 0.1 to 20% by weight, based on the amount of the component (2), in order to sufficiently exert the capturing effect of the filler. 5 to 18% by weight, more preferably 1 to 15% by weight ° /. It is.
  • sulfur or an organic peroxide may be used in combination.
  • the modified block copolymer composition of the present invention includes a block copolymer different from the modified block copolymer used in the present invention, such as an unmodified block copolymer, or a hydrogenated product thereof, or a hydrogenated product thereof.
  • a thermoplastic resin, a rubbery polymer, or the like may be further added.
  • the thermoplastic resin include a block copolymer resin of a modified block copolymer or a conjugated aromatic compound different from a hydrogenated product thereof, and a vinyl aromatic compound resin such as polystyrene;
  • Vinyl aromatics and other vinyl monomers for example ethylene, propylene, butylene, butyl chloride, vinylidene chloride, vinyl acetate, acrylates such as atarilic acid and acrylmethyl, methacrylates such as methacrylic acid and methyl methacrylate , Copolymer resin with acrylonitrile, methacrylonitrile, etc., rubber-modified styrene resin (HIPS),
  • HIPS rubber-modified styrene resin
  • ABS Acrylonitrile-butadiene-styrene copolymer resin
  • MMS Methacrylate-butadiene-styrene copolymer resin
  • Polyvinyl acetate resin which is a copolymer of vinyl acetate with a vinyl acetate content of 50% by weight or more and another monomer copolymerizable therewith, a hydrolyzate thereof, acrylic acid and its ester or amine Polymer of
  • a polyatalylate resin which is a copolymer with another copolymerizable monomer containing 50% by weight or more of these acrylic acid monomers
  • Nitrile resin which is a copolymer with another copolymerizable monomer containing 50% by weight or more of these atalylonitrile monomers
  • Aliphatic polyamide resins such as Nylon 46, Nylon 6, Nylon 66, Nylon 610, Nylon — 11, Nylon 12 and Nylon 6—Nylon 12 copolymer,
  • Aromatic polyamide resins such as polyphenylene isophthalamide, polyphenylene terephthalamide, and polymeta-xylene diamine;
  • Polyester diols such as poly (1,4-butylene adipate), poly (1,6-hexane adipate), and polyprolatatatone
  • Polyether diols such as polyethylene glycol, polypropylene glycol, polyoxytetramethyl glycol,
  • Glycol components selected from glycols such as ethylene glycolone, 1,4-butanediole, 1,6-hexanedioleone, and tolylene diisocyanate, 4,4, diphenyl methane diisocyanate, hexamethylene diisocyanate
  • glycols such as ethylene glycolone, 1,4-butanediole, 1,6-hexanedioleone, and tolylene diisocyanate, 4,4, diphenyl methane diisocyanate, hexamethylene diisocyanate
  • a thermoplastic polyurethane-based polymer obtained by a polyaddition reaction with a diisocyanate component such as
  • Polycarbonate polymers such as poly-1,4, dioxydiphenyl 2,2,1-propane carbonate,
  • Polysulfone-based resins such as poly (ether snorephone), poly (4,4'-bisphenol ether enolesnorefone), poly (thioether sulfone) A polymer of formaldehyde or trioxane,
  • Polyoxymethylene resins such as copolymers of formaldehyde or trioxane with other aldehydes, cyclic ethers, epoxides, isocyanates, vinyl compounds, etc.
  • Polyphenylene ether resins such as poly (2,6-dimethyl-1,4-phenylene) ether,
  • Polyphenylene sulfide-based resins such as polyphenylene sulfide, poly 4, 4, and diphenylene sulfide;
  • Polyimide polyamino bismaleimide (polybismaleimide), bismaleide triazine resin,
  • Polyimide resins such as polyamide imide and polyether imide
  • the number average molecular weight of these thermoplastic resins is preferably 100,000 or more, more preferably 500,000 to 500,000, and still more preferably 10,000 to 100,000.
  • thermoplastic resins may be used in combination.
  • Examples of the rubbery polymer include butadiene rubber and its hydrogenated product, a styrene-butadiene rubber different from the modified block copolymer or its hydrogenated product specified in the present invention and its hydrogenated product, isoprene rubber, atalylonitrile and the like.
  • Butadiene rubber and its hydrogenation ability chloroprene rubber, ethylene-propylene rubber, ethylene-propylene rubber, ethylene butene rubber, butynole rubber, ethylene-butene rubber, engineering chain hexene rubber, ethylene octene rubber, atarinore rubber, fluorine Rubber, silicone rubber, chlorinated polyethylene rubber, epichloronole-hydrogen rubber, / 3-unsaturated nitrile-acrylic acid ester-conjugated gen copolymer rubber, urethane rubber, polysulfide rubber, styrene-butadiene block copolymer and Hydrogenated products, styrene one ⁇ f Sopu alkylene block copolymers, and natural rubber.
  • These rubbery polymers may be modified rubbers having a functional group.
  • thermoplastic resins and rubbery polymers particularly preferred are a polystyrene resin and a polyphenylene ether resin.
  • any desired value may be set according to various purposes within a range that does not significantly impair the effects of the present invention.
  • Additives can be included.
  • the type of additive is not particularly limited as long as it is generally used for blending a thermoplastic resin or a rubber-like polymer.
  • naphthenic and / or paraffinic or polybutene low molecular weight polybutadiene, paraffin, organopolysiloxane, mineral oils and other rubber softeners, calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, etc.
  • Fillers pigments such as carbon black iron oxide, lubricating agents such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bis stearate, release agents, plasticizers, hindered phenols Antioxidants such as antioxidants, phosphorus heat stabilizers, etc., hindered amine light stabilizers, benzotriazole ultraviolet absorbers, flame retardants, antistatic agents, organic fibers, glass fibers, carbon fibers, metal whiskers And other additives or coloring agents and other additives Mixtures "Rubber-Plastics Additives" (Rubber Daiji Est Corporation eds) include those described, for example.
  • the method for producing the modified block copolymer composition of the present invention is not particularly limited, and may be in accordance with a known method.
  • melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a heating roll, a brabender, various kneaders, and the like.
  • the order of addition of each component is not limited.For example, all components may be kneaded at once, or after kneading any components, the remaining components may be added at once or sequentially and kneaded. Good.
  • dispersing and mixing component (2) in a solution after polymerization of component (1), a solution after hydrogenation reaction, or a solution in which component (1) is dissolved in a solvent the solvent is removed by heating. It can also be manufactured by a method.
  • a melt mixing method using an extruder is preferable from the viewpoint of productivity, but a mixing method in a solvent is particularly recommended to obtain a composition having good dispersibility.
  • a chemical bond such as hydrogen bonding between a specific functional group bonded to the modified block copolymer or a hydrogenated product thereof and a filler is used.
  • a complex state in which these are integrated is expressed by a proper bond.
  • the appearance of such a complex state can be caused, for example, by mixing component (1) and component (2) in a solution, or adding component (2) to a solution of component (1) and mixing. did In this case, even if this mixed solution is allowed to stand for a certain period of time, it can be confirmed that the ratio of component (2) separating from the mixed solution and settling is small, and the ratio of finely dispersed and floating is large.
  • the component (2) when the average particle size of the component (2) is small (for example, the secondary particle size is less than 50 ⁇ ), the presence of the component (2) settled at the bottom of the container is hardly observed.
  • the component (1) does not have the functional group defined in the present invention, the component
  • the block copolymer composition of the present invention can be molded by a commonly used thermoplastic resin molding machine, and can be used as a sheet, a film, an injection molded product of various shapes, a hollow molded product, a compressed air molded product, and a vacuum. It can be used as various molded products such as molded products and extrusion molded products. These molded products can be used as materials for food packaging materials, medical equipment materials, home appliances and their parts, automobile parts, industrial supplies, household goods, toys, etc., and footwear materials.
  • Example 1 Example 1
  • the characteristics of the modified block copolymer or hydrogenated product thereof, and the physical properties of the modified block copolymer composition were measured as follows.
  • the modified block copolymer and the modified block copolymer composition are simply referred to as “block copolymer” and “block copolymer composition”, respectively.
  • the measurement was performed using a nuclear magnetic resonance apparatus (DPX-400 manufactured by Bruker).
  • GPC GPC [Equipment: LC10 manufactured by Shimadzu Corporation, Column: manufactured by Shimadzu Corporation Shimp ac GPC805 + GPC804 + GPC804 + GPC803]. Tetrahydrofuran was used as the solvent, the measurement temperature was 35 ° C, and based on the calibration curve obtained from the measurement of the commercially available standard polystyrene based on the peak molecular weight of the chromatogram (created using the peak molecular weight of the standard polystyrene) The weight average molecular weight was determined.
  • the styrene homopolymer block obtained by acid-decomposing the copolymer by the above-described method was analyzed by an ultraviolet spectrophotometer, and calculated using the following equation.
  • a compression molded sheet having a thickness of 2 mm was prepared from the block copolymer composition, and this was used as a test piece and measured in accordance with ASTM-D1003.
  • the temperature change of the dynamic storage elastic modulus ( ⁇ ') of the block copolymer composition was measured using a DMA spectrometer (DuPont 983 DMA made by Instrumentne clay) under the following conditions. Heat resistance was evaluated at the inflection temperature of the part.
  • Specimen thickness 2mm, Span length: 16mm, Measurement temperature: 0 ° C ⁇ 200 ° C Heating rate: 2 ° C / min., Measurement frequency mode: resonance frequency.
  • the block copolymer composition was melt-kneaded at a temperature of 200 ° C with a biaxial open roll, and the workability was evaluated on the following three stages based on the state of winding around the roll.
  • the tensile speed was 50 Omm / min.
  • the average dispersed particle size of the filler was measured by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the dispersion state of the filler was observed at 5,000 to 100,000 times by TEM measurement, and the number-average dispersed particle diameter was determined using an image analysis device (an image analysis system Wi-n ROOF manufactured by MI TAN CORPORATION).
  • the number average dispersed particle size (d n ) is defined as follows.
  • d n ⁇ nidj / ⁇ i (n ⁇ is the number of particles with particle diameter di)
  • the particle diameter here means a diameter of an equivalent circle having the same area as the area of the particle.
  • a reaction vessel purged with nitrogen was charged with 1 liter of dried and purified cyclohexane, 100 mmol of bis ("-cyclopentagenenyl) titanium dichloride was added, and 200 mmol of trimethylaluminum was added with sufficient stirring. The n-hexane solution was added and reacted at room temperature for about 3 days.
  • Silica A Precipitated silica (Shippernat 500 LS manufactured by Degussa Company: secondary particle diameter 3.5 ⁇ m)
  • Silica B Dry high-dispersion silicide (HDK N20 manufactured by Asahi Kasei Picker Silicon Co., Ltd.)
  • Silica C Wet silica (U1trasi1 VN3: secondary particle diameter 16 ⁇ m, manufactured by Degussa)
  • Si69 Silane coupling agent Bis (3-triethoxysilylpropyl) -tetrasulfide
  • Rubber softener Diana Process Oil PW—380 manufactured by Idemitsu Kosan Co., Ltd.
  • Polystyrene resin Polystyrene 685 polystyrene ether resin manufactured by A'and Styrene Co., Ltd. Poly (2,6-dimethyl-1,4-phenylene ether) (reduced viscosity 0.54)
  • the autoclave equipped with a stirrer and jacket was washed, dried, and purged with nitrogen, and a cyclohexane solution (concentration: 20% by weight) containing 10 parts by weight of styrene previously purified was injected. Then added n- butyl lithium and tetramethyl ethylene ⁇ Min After 1 hour of polymerization at 7 0 ° C, in hexane cycloalkyl containing butadiene 8 0 parts by weight of prepurified (concentration 2 0 weight 0/0) was added, and the mixture was polymerized at 70 ° C. for 1 hour.
  • a hexane solution containing 10 parts by weight of styrene was added, and the mixture was polymerized at 70 ° C. for 1 hour.
  • tetraglycidyl 1,3-bisaminomethylcyclohexane (hereinafter referred to as modifier Ml) as a denaturant was reacted equimolarly with n-butyllithium used in the polymerization.
  • the resulting modified block copolymer had a styrene content of 20% by weight and a ratio of vinylinole bonds in the polyptadiene portion of 50%.
  • Polymer 2 was prepared in the same manner as polymer 1, except that no modifier was used. Table 1 shows the properties of Polymer 2. 3) Polymer 3
  • the autoclave equipped with a stirrer and jacket was washed, dried, and purged with nitrogen, and a cyclohexane solution (concentration: 20% by weight) containing 10 parts by weight of styrene previously purified was injected. Then n- butyl with lithium tetramethyl ethylene ⁇ Min to the accompanying Caro, 7 0 ° after 1 hour of polymerization in C, and in hexane consequent opening containing butadiene 6 0 parts by weight of prepurified (concentration 2 0 weight 0 / 0 ) was added thereto, and the mixture was polymerized at 70 ° C. for 1 hour.
  • a hexane solution containing 10 parts by weight of styrene was added, and the mixture was polymerized at 70 ° C. for 1 hour.
  • a cyclohexane solution containing 20 parts by weight of butadiene was further added, and polymerization was carried out at 70 ° C. for 1 hour, followed by polymerization of tetraglycidyl meta-xylene diamine (hereinafter referred to as a denaturing agent M2) as a denaturing agent.
  • the reaction was carried out equimolar to the n-butyl lithium used in the above.
  • the resulting modified block copolymer having a styrene content of between 2 0 weight 0/0, the proportion of vinyl bond in the polybutadiene portion was 50%.
  • Polymer 4 was prepared in the same manner as polymer 3, except that no modifier was used. Table 1 shows the characteristics of Polymer 4.
  • the autoclave equipped with a stirrer and a jacket was washed, dried, and purged with nitrogen, and a cyclohexane solution (concentration: 20% by weight) containing 2 parts by weight of styrene purified in advance was injected.
  • a cyclohexane solution concentration: 20% by weight
  • n-butyllithium and tetramethylethylenediamine were added, polymerization was carried out at 70 ° C for 1 hour, and a cyclohexane solution (concentration: 20% by weight) containing 60 parts by weight of butadiene purified in advance was added. ⁇ 0.
  • a cyclohexane solution containing 20 parts by weight of styrene was added, and polymerization was carried out at 70 ° C.
  • the autoclave equipped with a stirrer and jacket was washed, dried, and purged with nitrogen, and a cyclohexane solution (concentration: 20% by weight) containing 35 parts by weight of styrene purified in advance was injected. Then, n-butyllithium and tetramethylethylenediamine were added and polymerized at 70 ° C. for 1 hour. Then, a pre-purified butanediene solution containing 20 parts by weight of butadiene and 10 parts by weight of styrene was dissolved in a hexahedral hexane solution.
  • Modified I I crude agent M3 N- (1,3-dimethylbutylidene) -13- (triethoxysilyl) -11-propanamine
  • modified block copolymer had a styrene content of 30% by weight and a vinyl bond ratio in the polybutadiene portion of 40%.
  • the modified block copolymer obtained above was added with 100 ppm of hydrogenation catalyst II as Ti, and a hydrogenation reaction was performed for 1 hour at a hydrogen pressure of 0.7 MPa and a temperature of 65 ° C. I got it. Thereafter, methanol is added to the mixture, and then octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate is added as a stabilizer to 100 parts by weight of the modified hydrogenated block copolymer. ⁇ Added 3 parts by weight.
  • Table 1 shows the properties of the modified hydrogenated block copolymer (Polymer 8) obtained by removing the hexagonal hexane from the modified hexane block hexane solution by a steam stripping method. .
  • the ratio of the block copolymer of unmodified mixed in the polymer 8 was 2 5% by weight.
  • Polymer 10 was produced in the same manner as in Polymer 1, except that 13-dimethyl-2-imidazolidinone (hereinafter, M 5) was used as a modifier.
  • Table 1 shows the characteristics of Polymer 10.
  • Polymer 1 20 50 • 8 M l 98 Polymer 2 20 50 8 98 polymer 3 20 50 8 M 2 98 Polymer 4 20 50 8 98 polymer 5 40 17 15 M l 0 Polymer 6 40 17 15 S i C 1 4 0 Polymer 7 80 35 20 M 3 98 Polymer 8 30 40 10 M 4 98 Polymer 9 15 30 18 M l 0 Polymer 10 20 50 8 M 5 98 1 1) Polymer 1 1
  • the autoclave equipped with a stirrer and jacket was washed, dried, and purged with nitrogen, and a cyclohexane solution (concentration: 20% by weight) containing 14.7 parts by weight of styrene previously purified was charged. Then, n-butyllithium and tetramethylethylenediamine were added to the mixture, and the mixture was polymerized at 70 ° C for 1 hour. Then, a hexahexane solution containing 72 parts by weight of previously purified butadiene (concentration: 20% by weight) was added. Was added thereto, and the mixture was polymerized at 70 ° C. for 1 hour.
  • Polymer 12 was prepared in the same manner as polymer 11, except that no modifier was used. Table 2 shows the properties of Polymer 112.
  • the cyclohexane solution containing 20.5 parts by weight of styrene previously purified by washing, drying, and nitrogen-purging the autoclave with a stirrer and jacket (concentration: 20% by weight) was introduced. Then, n-butyllithium and tetramethylethylenediamine were added, and polymerization was carried out at 70 ° C for 1 hour. Then, a hexahexane solution containing 61 parts by weight of previously purified butadiene (concentration: 20% by weight) was added. Was added thereto, and the mixture was polymerized at 70 ° C.
  • the resulting modified block copolymer had a styrene content of 39% by weight and a vinyl bond ratio of 37% in the polybutadiene portion.
  • the autoclave equipped with a stirrer and jacket was washed, dried and purged with nitrogen, and a cyclohexane solution (concentration: 20% by weight) containing 17.8 parts by weight of styrene previously purified was charged. Then, n-butyllithium and tetramethylethylenediamine were added, and polymerization was carried out at 70 ° C for 1 hour. Then, a hexahexane solution containing 66 parts by weight of previously purified butadiene (concentration: 20% by weight) was added. Was added thereto, and the mixture was polymerized at 70 ° C. for 1 hour.
  • the modified block copolymer obtained above is hydrogenated at 100 pp ⁇ with hydrogenation catalyst II as T i, and hydrogenated at a hydrogen pressure of 0.7MPa at a temperature of 65 ° C for 1 hour. I went. Then, methanol was added, and then octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate was modified as a stabilizer. 3 parts by weight were added to 100 parts by weight of the combined liquid. Thereafter, the modified hexane block hexane solution was heated and removed from the obtained modified hydrogenated block copolymer hexane solution to obtain a modified hydrogenated block copolymer (Polymer 15). Table 2 shows the analysis results of the polymer 15. The ratio of the unmodified block copolymer mixed in the polymer 15 was 25% by weight.
  • the resulting block copolymer had a styrene content of 7 0 wt 0/0, the proportion of vinyl bond of Poriputajen portion Atsuta 1 1%. Further, as a stabilizer, 0.3 parts by weight of octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate was added to 100 parts by weight of the block copolymer. Thereafter, the cycle hexane was removed by heating from the obtained block copolymer cyclohexane solution to obtain a block copolymer (polymer 18). Table 2 shows the analysis results of the polymer 18.
  • Polymer 19 was produced in the same manner as in Polymer 11, except that the molecular weight was reduced by adjusting the amount of n-butyllithium. Table 2 shows the properties of the polymer 19.
  • Polymer 20 was produced in the same manner as for polymer 19 except that no modifier was used.
  • the properties of Polymer 20 are shown in Table 2.
  • Silica A was added to a cyclohexane solution of polymer 1 in an amount of 5 parts by weight based on 100 parts by weight of polymer 1 and mixed. A portion of this mixed solution was sampled and left at room temperature for 24 hours. Silica A was finely dispersed uniformly, and almost no silica precipitated and separated from the mixed solution. Thus, it was confirmed that the polymer 1 and the silica A formed a complex state in which they were intimately integrated.
  • Example 2 To the solution of the polymer 2, as in Example 1, the sily power A was added and mixed. When a part of this solution was sampled and allowed to stand for 24 hours, silica A was precipitated, and the composite state as in Example 1 was not exhibited.
  • a block copolymer composition containing silica A in an amount less than the range specified in the present invention (Comparative Example 2), and a block copolymer composition containing silica A in an amount larger than the range. (Comparative Example 3) was produced in the same manner as in Example 1. Table 3 shows the physical properties of the obtained composition.
  • silica A was added in an amount of 5 parts by weight based on 100 parts by weight of polymer 3, and mixed. A part of this solution was sampled and left at room temperature for 24 hours. Silica A was finely dispersed uniformly, and almost no silica A separated and precipitated from the solution. In this way, it was confirmed that the polymer 3 and the silica A were intimately integrated to form a composite state.
  • Example 6 Using Polymer 6, a block copolymer composition was obtained in the same manner as in Example 3. The composition thus obtained had a Haze of 80%, which was inferior to the composition of Example 3 in transparency.
  • Silica B was added to a solution of polymer 7 in cyclohexane in an amount of 5 parts by weight based on 100 parts by weight of polymer 7 and mixed. A part of this solution was sampled and left at room temperature for 24 hours. Silica B was finely dispersed uniformly, and almost no silica B separated and settled out of the solution. Thus, it was confirmed that the polymer 7 and the silica B formed a composite state in which the polymer 7 and the silica B were intimately integrated.
  • Silica C was added to a cyclohexane solution of polymer 8 in an amount of 10 parts by weight per 100 parts by weight of polymer, followed by mixing. A portion of this solution was sampled and allowed to stand at room temperature for 24 hours. Silica C was finely dispersed uniformly, and almost no silica C separated and settled out of the solution. In this way, it was confirmed that the polymer 8 and the silica C had formed a complex state in which they were intimately integrated.
  • Silica A was added to 100 parts by weight of polymer 9 in a solution of polymer 9 in cyclohexane. Then, 20 parts by weight were added and mixed. A portion of this solution was sampled and left at room temperature for 24 hours. Silica A was finely dispersed uniformly, and almost no silica A separated and precipitated from the solution. In this way, it was confirmed that the polymer 9 and the silica A formed a complex state in which they were intimately integrated.
  • Silica A was added to a cyclohexane solution of polymer 1 ° in an amount of 5 parts by weight based on 100 parts by weight of polymer 10 and mixed. A part of this solution was sampled and left at room temperature for 24 hours. Silica A was finely dispersed uniformly, and almost no silica A separated and precipitated from the solution. Thus, it was confirmed that the polymer 10 and the silica A were intimately integrated to form a composite state.
  • a block copolymer and a composition were obtained in the same manner as in Examples 8 and 9 except that silica was not blended.
  • Table 4 shows the physical properties of the obtained composition.
  • a block copolymer composition was obtained in the same manner as in Examples 8 and 9, except that 80 parts by weight of silica B was blended.
  • Table 4 shows the physical properties of the obtained composition.
  • Example 11 100 parts by weight of polymer 15 and 100 parts by weight of a softening agent for rubber (PW-380) were melt-kneaded at 230 ° C by a 30 mm ⁇ twin screw extruder, and silica was used as the component (2). 15 parts by weight of A, 34 parts by weight of polypropylene resin as the component (3), and 0.88 parts by weight of octadecyl-3- (3,5-di!: 1-butyl-4-hydroxyphenyl) propionate as a stabilizer The mixture was melt-kneaded at 230 ° C. with a 25 mm twin screw extruder to obtain a block copolymer composition. Table 4 shows the physical properties of the obtained composition.
  • a block copolymer and a composition were obtained in the same manner as in Example 12 except that Polymer 12 was used.
  • Table 5 shows the physical properties of the obtained composition.
  • a block copolymer composition was obtained in the same manner as in Example 12 using Polymer 18.
  • Table 5 shows the physical properties of the obtained composition.
  • Example 14 Using polymer 17 in the same manner as in Example 14, a block copolymer and a composition were obtained. Table 6 shows the physical properties of the composition obtained.
  • Example 1 2 A block copolymer composition was obtained in the same manner as in Example 15 except that silica was not used. Table 6 shows the physical properties of the composition obtained.
  • a block copolymer composition was obtained in the same manner as in Example 15 except that Polymer 18 was used and silica was not used.
  • Table 6 shows the physical properties of the obtained composition. Table 6
  • a block copolymer composition was obtained in the same manner as in Example 16, except that 10% by weight of silica C was added to Si69. Table 7 shows the physical properties of the composition obtained. [Comparative Example 14]
  • a block copolymer composition was obtained using Polymer 20 in the same manner as in Example 16.
  • Table 7 shows the physical properties of the obtained composition.
  • a block copolymer composition was obtained using Polymer 20 in the same manner as in Example 17.
  • Table 7 shows the physical properties of the composition obtained.
  • the block copolymer composition of the present invention was excellent in heat resistance, mechanical strength, transparency, abrasion resistance, and workability.
  • the block copolymer composition further blended with the olefin polymer is excellent in mechanical strength, compression set, meta-impact and workability.
  • the present invention is selected from the group consisting of (1) a modified block copolymer having a specific structure containing a specific functional group or a hydrogenated product thereof, and (2) a silica-based inorganic filler, a metal oxide and a metal hydroxide.
  • the modified block copolymer composition containing a specific amount of filler to be used is excellent in heat resistance, mechanical strength, transparency, abrasion resistance, and workability. Further, by further blending an olefin polymer to the above composition, the mechanical strength of the composition, compression set, Impact resistance and workability can be further improved.
  • the modified block copolymer composition of the present invention can be processed into molded articles of various shapes by injection molding, extrusion molding, etc., and is used for automobile parts, home electric parts, electric wire coatings, medical parts. , Footwear, sundries, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 変性ブロック共重合体組成物 技術分野
本発明は、 ビニル芳香族炭化水素と共役ジェンからなる官能基含有変性プロッ ク共重合体又はその水添物、 及ぴシリカ系無機充填剤、 金属酸化物及び金属水酸 化物からなる群から選ばれる充填剤を含む、 熱可塑†生の変性プロック共重合体組 成物に関するものである。 背景技術
従来、 異なる種類の有機高分子を組み合わせるポリマーァ口ィ技術によって、 高性能 ·高機能性高分子材料を得る研究がなされてきた。 例えば、 ゴム的な性質 を有する軟質材料であつて加硫工程を必要としな!/、熱可塑性ェラストマ一組成物 や、 成形加工性、 リサイクル性に優れた熱可塑性樹脂組成物が、 自動車部品、 家 電部品、 電線被覆、 医療用部品、 履物、 雑貨等、 様々な分野で用いられている。 熱可塑性エラストマ一及び熱可塑性樹脂としては、 現在、 ポリオレフイン系、 ポ リウレタン系、 ポリエステル系、 ポリスチレン系等といった種々の種類のものが 開発、 市販されている。
その中でもスチレン一ブタジエンブロック共重合体や、 スチレン一イソプレン プロック共重合体等のビュル芳香族炭化水素一共役ジェンプロック共重合体及ぴ その水添物 (以下、 「水添ブロック共重合体」 という場合もある) は、 スチレン 含有量が少ない場合は、 柔軟性に富み、 常温で良好なゴム弾性を示し、 これらよ り得られる組成物は成形加工性に優れている。 また、 スチレン含有量が比較的多 い場合は、 透明で耐衝撃性に優れた熱可塑性樹脂が得られることから、 食品包装 容器、 家電部品、 工業部品、 家庭用品、 玩具等に利用されている。
しかし、 有機高分子材料のみで達成し得る機能'特性には限界があり、 用途に よっては有機高分子材料と無機材料とを組み合わせることが試みられている。 例えば、 特開昭 5 9 - 1 3 1 6 1 3号公報には、 水添プロック共重合体に、 炭 化水素油、 ォレフィン系重合体、 及び無機充填剤を配合したエラストマ一状組成 物を、 有機パーオキサイドと架橋助剤を用いて部分架橋し、 圧縮永久歪みを改良 したエラストマ一状糸且成物が開示されている。 また、 特開平 10— 58098号 公報には、 ポリフエ二レンエーテル樹脂、 水添ブロック共重合体、 及ぴ導電性無 機充填剤からなる、 導電性に優れた樹脂組成物が開示されている。 さらに、 特開 2001 -72853号公報には、 ポリカーボネート樹脂、 スチレン一ブタジェ ンブロック共重合体及びセラミック中空体を配合した、 耐吸湿性、 制振性に優れ た熱可塑性樹脂組成物が開示されている。
しかしながら、 熱可塑性ブロック共重合体と無機充填材と力 らなる組成物は、 一方が疎水性の有機物であるのに対して、 他方は親水性の無機物であるため、 相 互に親和性が低く、 混練性に劣り、 期待通りの性能の改善効果が得られない。 そこで、 熱可塑性ブロック共重合体と異種材料との相互の親和性を改善する方 法として、 熱可塑性プロック共重合体に官能基を付与することが提案されており、 例えば、 特公昭 62— 541 38号公報及ぴ特公昭 62— 54140号公報には、 ビニル芳香族炭化水素と共役ジェン化合物とのプロック共重合体に無水マレイン 酸を付加して無機充填材との親和性を改善した組成物が開示されている。 また、 特公平 4一 39495号公報、 特公平 4 -28034号公報、 特公平 4 -387 77号公報には、 ビュル芳香族炭化水素と共役ジェン化合物とのブロック共重合 体の末端に官能基を付与して、 熱可塑性樹脂や粘着付与樹脂、 アスファルトとの 親和性を改善した組成物が開示されている。
かかる状況下において、 ビュル芳香族炭化水素一共役ジェンプロック共重合体 又はその水添物と無機充填剤との組成物に関し、 相互の機能、 特性をより効果的 に発揮し得る、 高性能 ·高機能材料の提供が強く望まれている。 発明の開示
本発明者らは、 上記課題を解决するために種々の研究を重ねた結果、 (1) 特 定の官能基を含有する特定構造の変性プロック共重合体又はその水添物、 及び (2) シリカ系無機充填剤、 金属酸化物及び金属水酸化物からなる群から選ばれ る充填剤を特定量含む組成物が、 耐熱性、 機械的強度、 透明性、 耐摩耗性、 加工 性において優れていることを見出し、 本発明を完成するに至った。 即ち、 本発明 は下記の通りである。
[1] (1) ビュル芳香族炭化水素を主体とする重合体ブロック Aと、 共役ジ ェンを主体とする重合体ブロック Bとからなる変性ブロック共重合体又はその水 添物、 及ぴ
(2) シリカ系無機充填剤、 金属酸化物及び金属水酸化物からなる群から選ばれ る充填剤
を含む変性プロック共重合体糸且成物であって、
成分 (1) の分子鎖末端に水酸基、 エポキシ基、 アミノ基、 シラノール基及びァ ルコキシシラン基からなる群から選ばれる基を少なくとも 1個有する官能基が結 合しており、 成分 ( 1 ) におけるビュル芳香族炭化水素の含有量が 5〜 95重量
%であり、 成分 (2) の量が成分 (1) 100重量部に対して 0. 5〜50重量 部であり、 成分 ( 2 ) の平均分散粒子径が 0. 01〜2 mである、 前記変性プ ロック共重合体組成物。
[2] 更に (3) ォレフィン系重合体を含み、 成分 (3) の量が成分 (1) 1
00重量部に対して 10〜500重量部である、 前記 [1] 記載の変性ブロック 共重合体組成物。
[3] ビニル芳香族炭化水素のブロック率が、 成分 (1) 中の全ビニル芳香族 炭化水素の 50%以上である、 前記 [1] 又は [2] 記載の変性ブロック共重合 体組成物。
[4] 成分 (1) が変性ブロック共重合体の水添物であり、 該水添物の水添率 が 10%以上であり、 該水添物中の共役ジェンに由来する全構成単位のうち、 ビ ニル結合を有する構成単位の割合が 10〜 85 %の範囲であり、 また 1, 2 C = C単位の割合が 1 5%以下である、 前記 [1] 又は [2] 記載の変性ブロック共 重合体組成物。
[5] 成分 (1) の分子鎖末端に、 下記式 (1) 〜 (14) 力 らなる群から選 ばれる官能基が結合している、 前記 [1] 又は [2] に記載の変性ブロック共重 合体組成物。 -NR9— R10— OH ■— (1)
,10
N[R,U—— OH] 2 "(2)
Figure imgf000005_0001
Figure imgf000005_0002
-CR9— R10— NR11R12 -—(5) OH
-C— NR R10— NR11R12
"(6)
O
-C— R10— NR"R12 ■—(7) II
O
-CR9— NR11— R10— NR13R14
-(8) OH
-CR9— R10— NR11R12
■—(9) OH
-NR9— R10— Si(OR11)3 "(10) -N [R10― Si (OR11 )3 ----(11)
-CR9— R10— OR11
"(12)
OH
-CR9— R10— Si(OR11)3
— -(13)
OH
10
-O— R Si (OR11) 3 "(14) (式 (1) 〜 (: 14) において、 1 9及ぴ1^1 2〜1 14は、 水素、 炭素数 1〜2 4の炭化水素基、 又は水酸基、 エポキシ基、 シラノール基及びアルコキシシラン 基からなる群から選ばれる官能基を有する炭素数 1〜 24の炭化水素基であり、
R 10は炭素数 1〜 30の炭化水素鎖、 又は水酸基、 エポキシ基、 シラノール基 及ぴアルコキシシラン基からなる群から選ばれる官能基を有する炭素数 1〜 30 の炭化水素鎖である。 なお、 R 9及び R1 214の炭化水素基、 及び R 1 0の 炭化水素鎖中には、 水酸基、 エポキシ基、 シラノール基及ぴアルコキシシラン基 以外の結合様式で、 酸素、 窒素、 シリコン等の元素が結合していても良い。 また、 R 1 1は水素又は炭素数 1〜 8のアルキル基である。 )
[6] 成分 (1) の分子鎖末端に、 下記式 (1) 〜 (9) 力 らなる群から選ば れる官能基が結合している、 前記 [1] 又は [2] に記載の変性ブロック共重合 体組成物。
-NR、 R10— OH ■--(1)
10
-N [R -OH] "(2) JP02/04090
Figure imgf000007_0001
-N [R10一 CH— CHR11
"(4)
O
-CR9— R1°— NR11R12
--(5)
OH
-C— NR9— R10— NR11R12
II —(6)
o
-C-R10— NR11R12
II ■—(7)
O
CR9— NR 11 R10_NR13R14
"(8)
OH
-CR9— R1。一 NR"R12
■—(9)
OH
(式 (1) 〜 (9) において、 R9、 及び尺1 〜!^ 1 4は、 水素、 炭素数:!〜 2 4の炭化水素基、 又は水酸基、 エポキシ基、 シラノール基及びアルコキシシラン 基からなる群から選ばれる官能基を有する炭素数 1〜 24の炭化水素基であり、 R 1 0は炭素数 1〜 30の炭化水素鎖、 又は水酸基、 エポキシ基、 シラノール基 及びアルコキシシラン基からなる群から選ばれる官能基を有する炭素数 1〜 30 の炭化水素鎖である。 なお、 R9、 及び R1 2〜尺1 4の炭化水素基、 及び R1 0 の炭化水素鎖中には、 水酸基、 エポキシ基、 シラノール基及ぴアルコキシシラン 基以外の結合様式で、 酸素、 窒素、 シリコン等の元素が結合していても良い。 ま た、 R 1 1は水素又は炭素数 1〜 8のアルキル基である。 )
[ 7 ] 成分 ( 2 ) が、 シリカ、 ウォラストナイト、 モンモリロナイト、 ゼオラ イト、 アルミナ、 酸ィヒチタン、 酸化マグネシウム、 酸化亜鉛、 スラッグウール、 ガラス繊維、 水酸化マグネシウム、 水酸ィ匕アルミニウム、 水和珪酸マグネシウム、 水和珪酸アルミニウム、 塩基性炭酸マグネシウム及ぴノヽィドロタルサイ トからな る群から選ばれる充填剤である、 前記 [ 1 ] 又は [ 2 ] に記載の変性プロック共 重合体組成物。
[ 8 ] シランカップリング剤を、 成分 (2 ) の量に対して 0 . 1〜2 0重量0 /。 含む、 前記 [ 1 ] 又は [ 2 ] に記載の変性ブロック共重合体組成物。 発明を実施するための最良の形態
上述の通り、 本発明は、 有機高分子の長所 (例えば、 軽量、 柔軟性、 成形性 等) と無機物の長所 (例えば、 耐熱性、 高強度等) を複合した、 新しい特性を有 する材料に関するものである。 とりわけ、 本発明は、 ビュル芳香族炭化水素と共 役ジェンからなる変性プロック共重合体又はその水添物、 及ぴシリ力系無機充填 材、 金属酸化物及び金属水酸化物からなる群から選ばれる充填剤を含む組成物に おいて、 相互の機能、 特性をより効果的に発現させ、 より高性能 ·高機能の材料 を提供するものである。
本発明で使用される変性ブロック共重合体とは、 ビニル芳香族炭化水素を主体 とする重合体プロック Aと、 共役ジェンを主体とする重合体プロック Bからなり、 その分子鎖末端に、 水酸基、 エポキシ基、 アミノ基、 シラノール基及ぴアルコキ シシラン基からなる'群から選ばれる基を少なくとも 1個有する官能基が結合した ものである。
例えば、 ビニル芳香族炭化水素を主体とする重合体ブロック Aと、 共役ジェン を主体とする重合体ブロック Bからなるブロック共重合体のリビング末端に、 後 述する変性剤を付加反応して得られた変性プロック共重合体、 又はその水添物を 挙げることができ、 この方法で得られる変性プロック共重合体は、 例えば下記一 般式で表されるような構造を有する。 (A - B ) n - X、
(B - A) n - X、
A— (B— A) n— X、
B - (A - B ) n— X、
X - (A— B ) n— X、
X— A— (B— A) n— X、
X— B— (A— B ) n— X、
[ (B - A) n ] m_ X、
[ (A - B) n ] m - X、
[ (B— A) n— B] m— X、
[ (A— B ) n— A] m- X
上式において、 Aはビニル芳香族炭化水素を主体とする重合体ブロックを、 B は共役ジェンを主体とする重合体ブロックを示す。 また nは 1以上の整数、 一般 には 1〜 5の整数であり、 mは 2以上の整数、 一般には 2〜 1 0の整数である。 Xは、 後述の官能基が結合している変性剤残基である。
本発明において、 ビュル芳香族炭化水素を主体とする重合体プロック Aとは、 ビニル芳香族炭化水素を好ましくは 5 0重量%以上、 より好ましくは 7 0重量% 以上含有するビニル芳香族炭化水素と共役ジェンの共重合体プロック、 及び/又 はビュル芳香族炭化水素単独重合体プロックを示し、 共役ジェンを主体とする重 合体プロック Bとは、 共役ジェンを好ましくは 5 0重量%より多く、 より好まし くは 6 0重量%以上含有する共役ジェンとビニル芳香族炭化水素との共重合体ブ ロック、 及び Z又は共役ジェン単独重合体ブロックを示す。 ここで、 共重合体ブ ロック中のビニノレ芳香族炭化水素単位は均一に分布していても、 またはテーパー 状に分布していてもよい。 また該共重合体ブロックには、 ビニル芳香族炭化水素 単位が均一に分布している部分及び Z又はテーパー状に分布している部分がそれ ぞれ複数個共存していてもよい。
また、 本発明で使用する変性ブロック共重合体は、 上記一般式で表される変性 ブロック共重合体の任意の混合物でもよい。
変性前のブロック共重合体 (以後、 単に 「ブロック共重合体」 という場合もあ る) の製造方法としては、 例えば、 特公昭 4 3 - 1 7 9 7 9号公報、 特公昭 4 9 - 3 6 9 5 7号公報、 特公昭 4 8— 4 1 0 6号公報、 特開昭 5 9— 1 6 6 5 1 8 号公報等に記載された方法が挙げられる。
本発明で用いるビュル芳香族炭化水素としては、 例えばスチレン、 0—メチノレ スチレン、 p—メチノレスチレン、 ρ— t e r t —プチノレスチレン、 1, 3—ジメ チ スチレン、 ひーメチノレスチレン、 ビニノレナフタレン、 ビニノレアントラセン等 の 1種又は 2種以上を使用することができ、 一般的にはスチレンが用いられる。 また、 共役ジェンとしては、 例えば 1, 3一ブタジエン、 2ーメチルー 1, 3一 ブタジエン (ィソプレン) 、 2 , 3—ジメチノレ一 1, 3一ブタジエン、 1, 3一 ペンタジェン、 1 , 3 —へキサジェン等の 1種又は 2種以上を使用することがで き、 一般的には 1, 3—ブタジエン、 イソプレンが用いられる。
本発明において、 ブロック共重合体の製造に用いられる溶媒としては、 例えば ブタン、 ペンタン、 へキサン、 イソペンタン、 ヘプタン、 才クタン、 イソォクタ ン等の脂肪族炭化水素、 シク口ペンタン、 メチルシク口ペンタン、 シクロへキサ ン、 メチルシク口へキサン、 ェチルシク口へキサン等の脂環式炭化水素、 又はべ ンゼン、 トルエン、 ェチルベンゼン、 キシレン等の芳香族炭化水素等が使用でき る。 これらは 1種のみならず 2種以上を混合して使用してもよい。
また、 プロック共重合体の製造に用いられる重合開始剤としては、 有機リチウ ム化合物を用いることができる。 有機リチウム化合物とは、 分子中に 1個以上の リチウム原子を結合した化合物であり、 例えばェチルリチウム、 η—プロピルリ チウム、 イソプロピノレリチウム、 η—ブチノレリチウム、 s e c —:
t e r t 一ブチルリチウム、 へキサメチレンジリチウム、 ブタジェニノ
ム、 イソプレニルジリチウム等が挙げられる。 これらは 1種のみならず 2種以上 を混合して使用してもよい。 また有機リチウム化合物は、 ブロック共重合体の製 造 (重合) 途中で分割添加してもよい。
本発明においては、 ブロック共重合体製造時の重合速度の制御、 重合した共役 ジェン部分のミク口構造の制御、 ビュル芳香族炭化水素と共役ジェンの反応性比 の制御等の目的で、 極性ィ匕合物やランダムィ匕剤を使用することができる。 極性化 合物やランダム化剤としては、 エーテル類、 アミン類、 チォエーテル類、 ホスフ ィン、 ホスホルアミ ド、 アルキルベンゼンスルホン酸の力リゥム塩又はナトリウ ム塩、 力リゥム又はナトリゥムのアルコキシド等が挙げられる。 具体的な例とし て、 エーテノレ類としてはジメチルエーテル、 ジェチノレエーテノレ、 ジフヱニノレエ一 テル、 テトラヒ ドロフラン、 ジエチレングリコーノレジメチノレエ一テル、 ジェチレ ングリコールジブチルエーテルが挙げられる。 ァミン類としては第 3級ァミン、 トリメチノレアミン、 トリェチルァミン、 テトラメチ^^エチレンジァミン、 その他 環状第 3級ァミン等が挙げられる。 ホスフィン及びホスホルアミドとしては、 ト リフエニルホスフィン、 へキサメチルホスホルアミ ド等が挙げられる。
本発明において、 ブロック共重合体を製造する際の重合温度は、 好ましくは一 1 0〜 1 5 0 °C、 より好ましくは 3 0〜 1 2 0 °Cである。 重合時間は条件によつ て異なるが、 好ましくは 4 8時間以内であり、 特に 0 . 5〜1 0時間が好ましい。 また、 重合系の雰囲気は窒素ガス等の不活性ガス雰囲気にすることが好ましい。 重合圧力は、 上記重合温度範囲内でモノマー及び溶媒を液相に維持するに十分な 範囲の圧力であればよく、 特に限定されるものではない。 さらに重合系内は、 触 媒及びリビングポリマーを不活性化させるような不純物、 例えば水、 酸素、 炭酸 ガス等が混入しないように留意することが好ましい。
本発明で用いられる成分 (1 ) 、 すなわち変性プロック共重合体又はその水添 物は、 分子鎖末端に、 水酸基、 エポキシ基、 アミノ基、 シラノール基及びアルコ キシシラン基から選ばれる基を少なくとも 1個有する官能基が結合している変性 プロック共重合体又はその水添物であり、 力かる官能基が結合している変性プロ ック共重合体を得る方法は、 上記したように、 ブロック共重合体のリビング末端 に、 上記官能基を含有する変性剤、 又は上記官能基を公知の方法で保護した状態 で含有している変性剤を反応させる方法が挙げられる。 また変性剤の種類によつ ては、 変' ι·生剤を反応させた段階で水酸基ゃァミノ基が有機金属塩になっているこ ともあるが、 その場合には水やアルコール等活性水素を有する化合物で処理する ことにより、 水酸基ゃァミノ基に変換することができる。
なお、 本発明においては、 ブロック共重合体のリビング末端に変性剤を反応さ せた後、 変性されていないプロック共重合体が一部混在してもよい。 変性プロッ ク共重合体に混在する未変性のブロック共重合体の割合は、 好ましくは 6 0重量 %以下、 より好ましくは 50重量%以下である。
水酸基、 エポキシ基、 アミノ基、 シラノール基及ぴアルコキシシラン基から選 ばれる基を少なくとも 1個有する官能基としては、 例えば、 下記一般式 (1) 〜 (14) からなる群から選ばれる官能基が挙げられる。
-NR9— R10— OH -(1)
N[R 10
-OH1 -(2)
Figure imgf000012_0001
Figure imgf000012_0002
-CR9— R10— NR11R12
--(5)
OH
-C一 NR9— R10一 NR11R12
II — -(6)
o
-C一 R10— NR11R12
II -—(7)
O TJP02/04090
12
10
CR9— NR11 R NR13R14
■—(8)
OH
CR9—— R 10 NR11R12
•—(9)
OH
-NR9― R10― Si (OR11 ■—(10)
11
-N[R10— Si(OR")3]2 —(11)
-CR9— R10— OR11
■—(12)
OH
-CR9一 R10― Si (OR11
-(13)
OH
-O— R10― Si (OR11) 3 "(14)
(式 (1) 〜 (14) において、 R9及び R丄 〜 R14は、 水素、 炭素数 1〜2 4の炭化水素基、 又は水酸基、 エポキシ基、 シラノール基及びアルコキシシラン 基からなる群から選ばれる官能基を有する炭素数 1〜24の炭化水素基であり、
R 1 0は炭素数 1〜 30の炭化水素鎖、 又は水酸基、 エポキシ基、 シラノール基 及びアルコキシシラン基からなる群から選ばれる官能基を有する炭素数 1〜 30 の炭化水素鎖である。 なお、 1 9及び1 1 2〜1114の炭化水素基、 及ぴ R 1 0の 炭化水素鎖中には、 水酸基、 エポキシ基、 シラノール基及びアルコキシシラン基 以外の結合様式で、 酸素、 窒素、 シリコン等の元素が結合していても良い。 また、 R1 1は水素又は炭素数 1〜 8のアルキル基である。 )
本発明で用いる変性プロック共重合体を得るために使用される変性剤としては、 例えば、 テトラダリシジルメタキシレンジァミン、 テトラグリシジルー 1, 3— 0
13 ビスアミノメチルシク口へキサン、 テトラダリシジル一 p—フエ二レンジァミン、 テトラダリシジルジァミノジフエニルメタン、 ジグリシジルァニリン、 ジグリシ ジルオルソトルイジン、 γ _グリシドキシェチルトリメ トキシシラン、 γ—グリ シドキシプロピルトリメ トキシシラン、 γ—グリシドキシプチルトリメ トキシシ ラン、 Τ —グリシドキシプロピルトリエトキシシラン、 γ—グリシドキシプロピ ルトリプロポキシシラン、 γ—グリシドキシプロピルトリブトキシシラン、 γ— グリシドキシプロピルトリフエノキシシラン、 γ—グリシドキシプロピルメチル ジメ トキシシラン、 y—グリシドキシプロピルェチルジメ トキシシラン、 Ύーグ リシドキシプロピルェチルジェトキシシラン、 γ—グリシドキシプロピルメチル ジェトキシシラン、 γ—グリシドキシプロピルメチルジプロポキシシラン、 γ一 グリシドキシプロピルメチルジブトキシシラン、 y—グリシドキシプロピルメチ ルジフエノキシシラン、 γ—グリシドキシプロピルジメチルメ トキシシラン、 Τ ーグリシドキシプロピルジェチルェトキシシラン、 γ—グリシドキシプロピルジ メチルェトキシシラン、 γ—グリシドキシプロピルジメチルフェノキシシラン、 1 ーグリシドキシプロピルジェチルメ トキシシラン、 γ _グリシドキシプロピル メチルジイソプロペンォキシシラン、 ビス (γ—グリシドキシプロピル) ジメ ト キシシラン、 ビス (γ—グリシドキシプロピノレ) ジェトキシシラン、 ビス ( γ— グリシドキシプロピル) ジプロボキシシラン、 ビス (y—グリシドキシプロピ ル) ジブトキシシラン、 ビス ( γ—グリシドキシプロピル) ジフェノキシシラン、 ビス ( 一グリシドキシプロピル) メチルメ トキシシラン、 ビス ( γ—グリシド キシプロピル) メチルェトキシシラン、 ビス ( γ—グリシドキシプロピル) メチ ルプロボキシシラン、 ビス (γ—グリシドキシプロピル) メチルブトキシシラン、 ビス (Τ/—グリシドキシプロピル) メチルフエノキシシラン、 トリス ( ーグリ シドキシプロピル) メ トキシシラン、 γ—メタタリロキシプロピルトリメ トキシ シラン、 γ—メタクリロキシプロピルトリエトキシシラン、 y—メタクリロキシ メチルトリメ トキシシラン、 γ—メタクリロキシェチルトリエトキシシラン、 ビ ス ( ーメタクリロキシプロピル) ジメ トキシシラン、 トリス (γ—メタクリロ キシプロピノレ) メ トキシシラン、 β— ( 3, 4—エポキシシクロへキシル) ェチ ルートリメ トキシシラン、 β— ( 3, 4一エポキシシクロへキシ Λ^) ェチノレート 4090
14
リェトキシシラン、 β— (3, 4一エポキシシク口へキシル) ェチルートリプロ ポキシシラン、 β— (3, 4—エポキシシク口へキシル) ェチルートリブトキシ シラン、 β— (3, 4—エポキシシクロへキシル) ェチル一トリフエノキシシラ ン、 β— (3, 4一エポキシシク口へキシノレ) プロピル一トリメ トキシシラン、 β— (3, 4—エポキシシクロへキシル) ェチルーメチルジメ トキシシラン、 β 一 (3, 4一エポキシシクロへキシノレ) ェチノレーエチノレジメ トキシシラン、 β— (3, 4—エポキシシクロへキシノレ) ェチノレーエチノレジェトキシシラン、 β— (3, 4—エポキシシクロへキシル) ェチノレーメチルジェトキシシラン、 e— (3, 4一エポキシシクロへキシ■レ) ェチノレーメチルジプロポキシシラン、 β— (3, 4一エポキシシク口へキシル) ェチノレーメチルジブトキシシラン、 β— (3, 4—エポキシシクロへキシノレ) ェチノレーメチノレジフエノキシシラン、 β― (3, 4一エポキシシクロへキシル) ェチノレージメチルメ トキシシラン、 β一 (3, 4一エポキシシクロへキシノレ) ェチノレ一ジェチノレエトキシシラン、 β— (3, 4一エポキシシク口へキシノレ) ェチノレージメチノレエトキシシラン、 β— (3, 4一エポキシシクロへキシル) ェチルージメチルプロポキシシラン、 β— (3, 4一エポキシシクロへキシル) ェチノレージメチルブトキシシラン、 β― (3, 4一エポキシシクロへキシル) ェチルージメチルフエノキシシラン、 β一 (3, 4 --エポキシシクロへキシル) ェチノレージェチルメ トキシシラン、 β一 (3, 4—エポキシシク口へキシル) ェチノレーメチルジィソプロペンォキシシラ ン、 1, 3—ジメチルー 2—イミダゾリジノン、 1 , 3ージェチル一 2—イミダ ゾリジノン、 Ν, Ν 'ージメチルプロピレンゥレア、 Ν—メチルピロリ ドン等が 挙げられる。
上記の変性剤を反応させることにより、 重合体プロック Α及び/又は重合体ブ ロック Bに、 変性剤の残基、 すなわち水酸基、 エポキシ基、 アミノ基、 シラノー ル基及びアルコキシシラン基からなる群から選ばれる基を有する官能基が結合し ている変性ブロック共重合体又はその水添物が得られる。 変性剤残基の変性ブ口 ック共重合体への結合位置は特に制限されなレ、が、 高温時における物性に優れた 組成物を得るには重合体プロック Aに結合していることが好ましい。
本発明において、 プロック共重合体のリビング末端に付加反応させる官能基含 有変性剤の使用量は、 ブロック共重合体のリビング末端 1当量に対して、 0 . 5 当量より多くすることが好ましく、 0 . 7当量より多くすることがより好ましく、 0 . 9当量より多くすることが更に好ましい。 また、 ブロック共重合体のリピン グ末端 1当量に対して、 1 0当量以下とすることが好ましく、 より好ましくは 5 当量以下、 最も好ましくは 4当量以下である。
なお、 本発明において、 ブロック共重合体のリビング末端の量は、 重合に使用 した有機リチウム化合物の量と該有機リチウム化合物に結合しているリチウム原 子の数から算出することができる。
本発明において、 変性プロック共重合体の水添物は、 上記方法により得られた 変性ブロック共重合体を水添することにより得られる。 水添する場合に用いる水 添触媒としては、 特に制限されず、 従来から公知である (i ) N i、 P t、 P d、 R u等の金属をカーボン、 シリカ、 アルミナ、 ケイソゥ土等に担持させた担持型 不均一系触媒、 (i i ) N i、 C o、 F e、 C r等の有機酸塩又はァセチルァセ トン塩等の遷移金属塩と有機アルミニゥム等の還元剤とを用いる、 いわゆるチー グラ一系水添触媒、 (i i i ) T i、 R u、 R h、 Z r等の有機金属化合物等、 いわゆる有機金属錯体等の均一系水添触媒を用いることができる。
具体的には、 例えば特公昭 4 2 - 8 7 0 4号公報、 特公昭 4 3— 6 6 3 6号公 報、 特公昭 6 3— 4 8 4 1号公報、 特公平 1一 3 7 9 7 0号公報、 特公平 1一 5 3 8 5 1号公報、 特公平 2— 9 0 4 1号公報に記載された水添触媒が使用可能で ある。 好ましい水添触媒としては、 チタノセン化合物と還元性有機金属化合物の 混合物が挙げられる。
チタノセン化合物としては、 特開平 8— 1 0 9 2 1 9号公報に記載された化合 物が使用できるが、 具体例としてはビスシクロペンタジェニルチタンジクロライ ド、 モノペンタメチルシクロペンタジェニルチタントリクロライ ド等の (置換) シクロペンタジェニル骨格、 インデニル骨格、 あるいはフルォレニル骨格を有す る配位子を少なくとも 1個以上有する化合物が挙げられる。 また、 還元性有機金 属化合物としては、 有機リチウム等の有機アルカリ金属化合物、 有機マグネシゥ ム化合物、 有機アルミニウム化合物、 有機ホウ素化合物、 あるいは有機亜鉛化合 物等が挙げられる。 水添反応は一般的に 0〜 200 °C、 好ましくは 30〜 150 °Cの温度範囲で実 施される。 水添反応に使用される水素の圧力は 0. l〜15MP a、 好ましくは 0. 2〜10MP a、 より好ましくは 0. 3〜5MP aである。 また、 水添反応 時間は 3分〜 10時間、 好ましくは 10分〜 5時間である。 水添反応は、 バッチ プロセス、 連続プロセス、 あるいはそれらの組み合わせのいずれで行ってもよい。 変性ブロック共重合体の水添物中における共役ジェンに由来する構成単位は、 下記式 (a) 〜 (e) によって表される。
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0003
( 1〜!^8は、 それぞれ水素、 ハロゲン、 炭素原子数 1〜 20の脂肪族炭化水 素、 又は炭素原子数 1〜20の芳香族炭化水素を表し、 互いに同一でも異なって いても良い。 また式 (a) はシス構造を、 式 (b) はトランス構造を示す。 ) ここで、 変性ブロック共重合体水添物の水添率は、 熱安定性の良好な組成物を 得るという点から 10%以上とすることが好ましく、 より好ましくは 30〜10 0%、 最も好ましくは 50〜100%である。 なお、 変性ブロック共重合体水添 JP02/04090
17
物の水添率は、 上記式 (a) 〜 (e) に基づき
水添率 = (c + e) / (a +b + c + d + e) X 1 00
によって表すことができる。
また、 変性プロック共重合体水添物中の共役ジェンに由来する全構成単位のう ち、 ビュル結合を有する構成単位の割合を 10〜 85%の範囲とすることが、 ブ ロック共重合体の生産性及ぴ得られる組成物の柔軟性、 耐衝撃性の点から好まし く、 より好ましい範囲は 30〜 75 %、 最も好ましい範囲は 35〜70%である。 なお、 共役ジェンに由来する全構成単位のうちビニル結合を有する構成単位の割 合は、 上記式 (a) 〜 (e) に基づき
ビュル結合の割合 = (d + e) Z (a + b + c + d + e) X 100
によって表すことができる。
更に、 変性プロック共重合体水添物中の共役ジェンに由来する全構成単位のう ち、 1 , 2 C = C単位の割合を 15 %以下とすること力 熱安定性の良好な組成 物を得るという点から好ましく、 より好ましくは 0〜7%、 最も好ましくは 0〜 3 %である。 なお、 共役ジェンに由来する全構成単位のうち 1, 2 C = C単位の 割合は、 上記式 (a) 〜 (e) に基づき
1, 2C = C単位の割合 =d/ (a +b + c + d + e) X 100
によって表すことができる。
上述した、 変性プロック共重合体中又はその水添物におけるビュル芳香族炭化 水素の含有量は、 紫外分光光度計等を用いて求めることができる。 また、 変性ブ 口ック共重合体水添物中の共役ジェンに由来する構成単位におけるビニル結合を 有する構成単位の割合、 及び変性ブロック共重合体水添物における水添率は、 核 磁器共鳴装置 (NMR) を用いることにより求めることができる。 なお、 水添物 におけるビニル芳香族炭化水素の含有量は、 水素添加前の共重合体中のビニル芳 香族炭化水素含有量で把握しても良い。
目的とする変性ブロック共重合体又はその水添物は、 上記方法で得られた変性 ブロック共重合体又はその水添物の溶液から、 必要に応じて触媒残查を除去し、 溶媒を分離することで得ることができる。 溶媒を分離する方法としては、 例えば 重合体溶液にァセトン又はアルコール等の重合体に対する貧溶媒となる極性溶媒 を添加し、 重合体を沈殿させて回収する方法、 重合体溶液を撹拌下熱湯中に投入 し、 スチームストリツビングにより溶媒を除去して回収する方法、 又は直接重合 体溶液を加熱して溶媒を留去する方法等が挙げられる。
なお、 本発明で用いる変性プロック共重合体又はその水添物には、 各種フヱノ ール系安定剤、 リン系安定剤、 ィォゥ系安定剤、 アミン系安定剤等の安定剤を添 加することができる。
本発明で用いる成分 (1) におけるビュル芳香族炭化水素の含有量は、 5〜9 5重量0 /0、 好ましくは 8〜 80重量%、 より好ましくは 1 0〜 70重量%である。 5重量%未満では圧縮永久歪及ぴ引張強度が劣り、 95重量%を超えると耐衝撃 性が低下するため好ましくない。 なお、 ビュル芳香族炭化水素の含有量が一般に 60重量%以下、 特に 55重量%以下の場合、 成分 (1) は熱可塑性弾性体とし ての特性を示し、 ビニル芳香族炭化水素の含有量が一般に 60重量%を超える場 合、 特に 65重量%以上の場合、 成分 (1) は熱可塑性樹脂としての特性を示す。 成分 (1) の重量平均分子量は、 組成物の引張強度の点から 3万以上、 加工性 の点から 100万以下が好ましく、 より好ましくは 6万〜 80万、 更に好ましく は 7〜60万である。 なお、 重量平均分子量は、 ゲルパーミュエーシヨンクロマ トグラフィー (GPC) を用い、 市販の標準ポリスチレンの測定から求めた検量 線 (標準ポリスチレンのピーク分子量を使用して作成) に基づき、 クロマトダラ ムのピークの分子量から求めることができる。
また、 成分 (1) においては、 ビニル芳香族炭化水素のブロック率を、 成分 ( 1 ) 中の全ビュル芳香族炭化水素の 50 %以上、 より好ましくは 50〜 97重 量%、 さらに好ましくは 60〜 95重量%に調製すること力 圧縮永久歪に優れ た組成物を得るうえで好ましい。 ここで、 ビュル芳香族炭化水素のプロック率と は、 成分 (1) に存在するビニル芳香族炭化水素重合体プロックの割合を指す。 ビニル芳香族炭化水素のプロック率の測定は、 四塩化ォスミゥムを触媒とし、 ターシャリ一ブチルハイドロパーォキサイドによりプロック共重合体を酸化分解 する (I . M. KOLTHOFF, e t a 1. , J. P o 1 y m. S c i . 1 , 429 (1 946) に記載の方法) ことで得られたビニル芳香族炭化水素重合体 ブロック成分 (ただし重合度が約 30以下のビニル芳香族炭化水素重合体ブ口ッ ク成分は除かれている) を用いて、 次式から求められる。
ビニル芳香族炭化水素のブロック率 (%)
= [ (ブロック共重合体中のビニル芳香族炭化水素重合体プロックの質量) / (ブロック共重合体中の全ビニル芳香族炭化水素の質量) ] X 1 0 0
続いて、 本発明において成分 (2 ) として用いられる充填剤について説明する。 成分 (2 ) は、 シリカ系無機充填剤、 金属酸化物及ぴ金属水酸化物からなる群か ら選ばれた充填剤である。
ここで、 シリカ系無機充填剤とは、 化学式 S i 0 2、 又は S i 3 A 1を構成単 位の主成分とする固体粒子のことをいい、 例えばシリカ、 クレイ、 タルク、 マイ 力、 ウォラストナイト、 モンモリロナイト、 ゼォライト、 ガラス繊維等の無機繊 維状物質などを用いることができる。 また表面を疎水化したシリ力系無機充填剤 や、 2種以上のシリカ系無機充填剤の混合物、 シリカ系無機充填剤とシリカ系以 外の無機充填剤の混合物も使用できる。 シリカとしては乾式法ホワイ トカーボン、 湿式法ホワイトカーボン、 合成ケィ酸塩系ホワイトカーボン、 コロイダルシリカ と呼ばれているもの等が使用できる。
また、 金属酸化物とは、 化学式 M x O y (Mは金属原子、 x、 yは各々 1〜6 の整数) を構成単位の主成分とする固体粒子を指し、 例えばアルミナ、 酸化チタ ン、 酸化マグネシウム、 酸化亜鉛等を用いることができる。 2種以上の金属酸ィ匕 物の混合物、 金属酸化物と金属酸化物以外の無機充填剤の混合物も使用できる。 更に、 金属水酸化物とは、 水和系無機充填剤であり、 例えば水酸ィ匕アルミニゥ ム、 水酸化マグネシウム、 水酸ィヒジルコニウム、 水和珪酸アルミニウム、 水和珪 酸マグネシウム、 塩基性炭酸マグネシウム、 ハイドロタルサイト、 水酸化カルシ ゥム、 水酸化バリウム、 酸化錫の水和物、 硼砂等の無機金属化合物の水和物等を 用いることができる。 2種以上の金属水酸化物の混合物、 金属水酸化物と金属水 酸化物以外の無機充填剤の混合物も使用できる。
本発明で用いられる充填剤としては、 シリカ及ぴガラス繊維が好ましく、 特に シリカが好ましい。
本発明においては、 充填剤を組成物中に分散させ、 充填剤の添加効果を十分に 発揮させるという点から、 充填剤の平均分散粒子径を 0 . 0 1〜2 ιηとするこ とが好ましく、 より好ましくは 0 . 0 3〜1 μ πι、 さらに好ましくは 0 . 0 5〜 0 . 5 / mである。 なお、 充填剤の平均分散粒径は、 透過型電子顕微鏡 (T E M) により充填剤の分散状態を観察し、 画像解析装置を用いて決定することがで きる。
また、 成分 (2 ) の量は、 成分 (1 ) 1 0 0重量部に対して 0 . 5〜5 0重量 部、 より好ましくは 3〜 4 0重量部である。 成分 ( 2 ) の配合量が 0 . 5重量部 未満の場合は充填剤の添加効果が発現されず、 一方 5 0重量部を超えると成分 ( 2 ) の分散性が劣り、 加工性及び機械強度が悪ィ匕するため好ましくない。 本発明の組成物は、 上記した成分 (1 ) 及ぴ成分 (2 ) に加えて、 ォレフィン 系重合体 (以下、 成分 (3 ) ということがある) を更に含んでいてもよい。 ォレ フィン系重合体とは、 エチレン、 プロピレン等の ーォレフインを主体とした重 合体であり、 例えばポリエチレン、 ポリプロピレン、 エチレン一プロピレン共重 合体、 塩素化ポリエチレン等が挙げられる。 ォレフィン系重合体として、 ェチレ ン、 プロピレン等のォレフィン以外に、 少量のビニル系単量体が共重合されたも のも用いてもよい。 例えば、 エチレン一酢酸ビエル共重合体、 エチレン一 (メ タ) アクリル酸共重合体、 エチレン一 (メタ) アクリル酸誘導体共重合体等を挙 げることができる。 さらに、 ォレフィン系重合体には、 ブタジエン、 イソプレン 等の共役ジェン単量体の重合物の水添物も含まれる。 これらの樹脂は 2種以上混 合して使用することもできる。 得られる組成物の加工性、 機械的性質を考慮すれ ば、 ポリプロピレン又はポリプロピレンとエチレン一プロピレン共重合体の混合 物が好ましい。
成分 (3 ) の量は、 組成物の圧縮永久歪、 引張強度及び弾性のバランスの点か ら、 成分 (1 ) 1 0 0重量部に対し 1 0〜5 0 0重量部であることが好ましく、 より好ましくは 2 0〜3 0 0重量部である。
本発明の変性プロック共重合体組成物においては、 変性プロック共重合体又は その水添物である成分 (1 ) が特定の官能基を含有しているため、 充填剤である 成分 (2 ) に対する親和性が高く、 共重合体中において充填材をより微細に分散 させると同時に、 これらの間で水素結合等の化学的な結合により相互作用が効果 的に発現され、 本発明の目的である耐熱性、 機械的強度、 透明性、 耐摩耗性、 加 性に優れた変性プロック共重合体組成物を得ることが可能となる。 更にまた、 圧 縮永久歪、 耐衝撃性、 加工性に優れた変性ブロック共重合体組成物を得ることも 出来る。
なお、 本発明の変性ブロック共重合体組成物には、 さらにシランカップリング 剤を配合することができる。 シランカップリング剤は、 成分 (1 ) と成分 (2 ) との相互作用をより緊密にするためのものであり、 成分 (1 ) 及び Z又は成分
( 2 ) に対して親和性又は結合性を有する基が存在している。 このシランカップ リング剤としては、 シリ力等の無機充填材に一般的に使用されているものが使用 でき、 例えば 3—メルカプトプロピル一トリメ トキシシラン、 3—メルカプトプ 口ピルメチルジメ トキシシラン、 ビニノレトリメ トキシシラン、 ビュルトリエトキ シシラン、 2—( 3、 4エポキシシク口へキシル)ェチルトリメ トキシシラン、 3 一グリシドキシプロピルメチルジェトキシシラン、 3—グリシドキシプロピルト リエトキシシラン、 p—スチリルトリメ トキシシラン、 3—メタタリロキシプロ ピル、 メチルジメ トキシシラン、 3—メタクリロキシプロビルトリメ トキシシラ ン、 3—メタクリロキシプロピルメチルジェトキシシラン、 3—メタクリロキシ プロピルトリエトキシシラン、 3—ァクリロキシプロピルトリメ トキシシラン、 N— 2 (アミノエチル) 3—ァミノプロピルメチルジメ トキシシラン、 N— 2 (ァミノェチル) 3—ァミノプロピルトリメ トキシシラン、 N— 2 (アミノエチ ル) 3—ァミノプロビルトリエトキシシラン、 3—ァミノプロビルトリメ トキシ シラン、 3—ァミノプロビルトリエトキシシラン、 3—トリエトキシシリル一 N — ( 1、 3—ジメチループチリデン) プロピルァミン、 N—フエ二ルー 3—アミ ノプロビルトリメ トキシシラン、 3一イソシァネートプロピルトリエトキシシラ ン等が挙げられる。
本発明おいて特に好ましいシランカツプリング剤は、 シラノール基又はアルコ キシシラン基を有すると共に、 メルカプト基及び Z又は硫黄が 2個以上連結した ポリスルフィ ド結合を有するものであり、 力 かるシランカップリング剤としては、 例えば、 3—メルカプトプロピル一トリメ トキシシラン、 3—ァミノプロピルト リエトキシシラン、 ビス一 [ 3— (トリエトキシシリル) 一プロピル] ーテトラ スルフイ ド、 ビス一 [ 3— (トリエトキシシリル) 一プロピル] ―ジスルフィ ド、 ビス一 [ 3— (トリエトキシシリル) —プロピル] 一トリスルフイ ド、 ビス一
[ 2 - (トリエトキシシリル) ーェチル] ーテトラスルフィ ド、 3—トリエトキ シシリルプロピル一 N, N—ジメチルチオ力ルバモイルテトラスルフイ ド、 3一 トリメ トキシシリルプロピル一 N, N—ジメチルチオ力ルバモイルテトラスルフ イ ド、 3—トリエトキシシリルプロピルべンゾチアゾールテトラスルフイド、 3 ートリメ トキシシリルプロピルべンゾチアゾールテトラスルフィ ド等が挙げられ る。
シランカツプリング剤の配合量は、 充填剤による捕強効果を十分に発揮させる ため、 成分 (2 ) の量に対して 0 . 1〜2 0重量%とすることが好ましく、 より 好ましくは 0 . 5〜1 8重量%、 さらに好ましくは 1〜1 5重量 °/。である。
なお、 シランカップリング剤の使用に際して、 硫黄や有機過酸化物を併用して も良い。
本発明の変性プロック共重合体組成物には、 未変性プロック共重合体等のよう な本発明で使用する変性ブロック共重合体又はその水添物とは異なるブロック共 重合体又はその水添物、 熱可塑性樹脂、 ゴム状重合体等を更に配合しても良い。 熱可塑性樹脂としては、 本発明で規定する変性プロック共重合体又はその水添 物とは異なる共役ジェン化合物とビュル芳香族化合物とのプロック共重合体樹脂、 ポリスチレン等のビュル芳香族化合物系樹脂、
ビニル芳香族化合物と他のビニルモノマー、 例えばエチレン、 プロピレン、 ブチ レン、 塩化ビュル、 塩化ビニリデン、 酢酸ビニル、 アタリル酸及びァクリルメチ ル等のァクリル酸エステル、 メタクリル酸及びメタクリル酸メチル等のメタクリ ル酸エステル、 アクリロニトリル、 メタクリロニトリル等との共重合体樹脂、 ゴム変性スチレン系樹脂 (H I P S ) 、
アクリロニトリル一ブタジエン一スチレン共重合体樹脂 (A B S ) 、
メタクリル酸エステル一ブタジエン一スチレン共重合体樹脂 (MB S ) 、
酢酸ビニルの含有量が 5 0重量%以上である酢酸ビュルとこれと共重合可能な他 のモノマーとの共重合体であるポリ酢酸ビニル系樹脂及びその加水分解物、 アクリル酸及びそのエステルやアミ ドの重合体、
メタクリル酸及ぴそのエステルゃァミ ドの重合体、 これらのァクリル酸系モノマーを 5 0重量%以上含有する他の共重合可能なモノ マーとの共重合体であるポリアタリレート系樹脂、
アタリロニトリル及び/又はメタクリロ二トリルの重合体、
これらのアタリロニトリル系モノマーを 5 0重量%以上含有する他の共重合可能 なモノマーとの共重合体である二トリル樹脂、
ナイロン一 4 6、 ナイロン一 6、 ナイロン一 6 6、 ナイロン一 6 1 0、 ナイロン — 1 1、 ナイロン一 1 2、 ナイロン一 6—ナイロン一 1 2共重合体などの脂肪族 ポリアミ ド系樹脂、
ポリフエ二レンイソフタルアミ ド、 ポリフエ二レンテレフタルアミ ド、 ポリメタ キシレンジァミン等の芳香族ポリアミ ド系樹脂、
アジピン酸、 セバシン酸、 テレフタル酸、 イソフタル酸、 P、 P, ージカルボキ シジフエニル、 2, 6—ナフタリンジカルボン酸などの二塩基酸又はこれらの誘 導体成分と、 エチレングリコール、 ポロピレンダリコール、 1 , 4一ブタンジォ 一ノレ、 1 , 6—へキサンジォーノレ、 1 , 4—シク口へキサンジ才ーノレ、 P—キシ レングリコール、 ビスフエノール Aなどのグリコール (またはジオール) 成分の 縮重合体等のポリエステル系樹脂、
ポリ (1 , 4—ブチレンアジペート) 、 ポリ (1 , 6—へキサンアジペート) 、 ポリ力プロラタトンなどのポリエステルジオール、
ポリエチレングリコール、 ポリプロピレングリコール、 ポリオキシテトラメチレ ングリコールなどのポリエーテルジオール、
エチレングリコーノレ、 1 , 4一ブタンジォーノレ、 1 , 6—へキサンジォーノレなど のグリコールから選ばれるグリコール成分と、 トリレンジイソシァネート、 4, 4, ージフエ二ノレメタンジイソシァネート、 へキサメチレンジィソシァネートな どのジイソシァネート成分との重付加反応によって得られる熱可塑性ポリゥレタ ン系重合体、
ポリ一 4、 4, ージォキシジフエ二ルー 2, 2, 一プロパンカーボネートなどの ポリカーボネート系重合体、
ポリ (エーテルスノレホン) 、 ポリ (4, 4 ' 一ビスフエノールエーテノレスノレホ ン) 、 ポリ (チォエーテルスルホン) などのポリスルホン系樹脂、 ホルムアルデヒド又はトリォキサンの重合体、
ホルムアルデヒド又はトリォキサンに他のアルデヒド、 環状エーテル、 エポキシ ド、 イソシァネート、 ビニル化合物等との共重合体などのポリォキシメチレン系 樹脂、
ポリ (2, 6 _ジメチルー 1, 4一フエ二レン) エーテルなどのポリフエ二レン エーテル系樹脂、
ポリフエ二レンスルフイ ド、 ポリ 4, 4, ージフエ二レンス フィ ドなどのボリ フエ二レンスルフィド系樹脂、
ポリイミ ド、 ポリアミノビスマレイミ ド (ポリビスマレイミ ド) 、 ビスマレイミ ド · トリアジン樹脂、
ポリアミ ドイミ ド、 ポリエーテルィミ ドなどのポリイミ ド系樹脂
等が挙げられる。
これらの熱可塑性樹脂の数平均分子量は、 好ましくは 1 0 0 0以上、 より好ま しくは 5 0 0 0〜 5 0 0万、 更に好ましくは 1万〜 1 0 0万である。
また、 これらの熱可塑性樹脂は 2種以上を併用しても良い。
ゴム状重合体としては、 ブタジエンゴム及びその水素添加物、 本発明で規定す る変性ブロック共重合体又はその水添物とは異なるスチレン一ブタジエンゴム及 びその水素添加物、 ィソプレンゴム、 アタリロニトリル一ブタジエンゴム及びそ の水素添力 Ρ物、 クロロプレンゴム、 エチレン一プロピレンゴム、 エチレン一プロ ピレン一ジェンゴム、 エチレンーブテン一ジェンゴム、 ブチノレゴム、 エチレン一 ブテンゴム、 工チェン一へキセンゴム、 エチレン一才クテンゴム、 アタリノレゴム、 フッ素ゴム、 シリコーンゴム、 塩素化ポリエチレンゴム、 ェピクロノレヒ ドリンゴ ム、 、 /3—不飽和二トリル一アクリル酸エステル一共役ジェン共重合ゴム、 ゥ レタンゴム、 多硫化ゴム、 スチレン一ブタジエンブロック共重合体及ぴその水素 添加物、 スチレン一^ f ソプレンブロック共重合体、 天然ゴムなどが挙げられる。 これらのゴム状重合体は、 官能基を付与した変性ゴムであっても良い。
上記した熱可塑性樹脂及びゴム状重合体の中でも、 特に好ましいものとして、 ポリスチレン樹脂及びポリフエ二レンエーテル樹脂が挙げられる。
さらに、 本発明の効果を著しく損なわない範囲内で、 各種目的に応じて任意の 添加剤を配合することができる。 添加剤の種類は、 熱可塑性樹脂やゴム状重合体 の配合に一般的に用いられるものであれば特に制限はなレ、。
例えば、 ナフテン系及び/又はパラフィン系、 又はポリブテン、 低分子量ポリ ブタジエン、 パラフィン、 有機ポリシロキサン、 ミネラルオイル等のゴム用軟ィ匕 剤、 炭酸カルシウム、 炭酸マグネシウム、 硫酸カルシウム、 硫酸バリウム等の無 機充填剤、 カーボンブラック酸化鉄等の顔料、 ステアリン酸、 ベへニン酸、 ステ アリン酸亜鉛、 ステアリン酸カルシウム、 ステアリン酸マグネシウム、 エチレン ビスステア口アミ ド等の滑剤、 離型剤、 可塑剤、 ヒンダードフエノール系酸化防 止剤、 リン系熱安定剤等の酸ィヒ防止剤、 ヒンダードアミン系光安定剤、 ベンゾト リアゾール系紫外線吸収剤、 難燃剤、 帯電防止剤、 有機繊維、 ガラス繊維、 炭素 繊維、 金属ウイスカ等の捕強剤、 着色剤、 その他添加剤或いはこれらの混合物等 「ゴム ·プラスチック配合薬品」 (ラバーダイジエスト社編) などに記載された ものが挙げられる。
本発明の変性プロック共重合体組成物の製造方法は、 特に制限されるものでは なく、 公知の方法に従えばよい。
例えば、 単軸押出機、 二軸押出機、 バンバリ一ミキサー、 加熱ロール、 ブラべ ンダ一、 各種ニーダ一等の溶融混練機を用いて製造することができる。 この場合、 各成分の添加順序には制限がなく、 例えば全成分を一括して混練しても、 また任 意の成分を混練した後、 残りの成分を一括又は逐次添加して混練してもよい。 また、 成分 (1 ) の重合後の溶液若しくは水添反応後の溶液、 又は成分 (1 ) を溶媒に溶解させた溶液に成分 (2 ) を分散させて混合後、 溶媒を加熱除去す.る 方法により製造することもできる。
本発明においては、 押出機による溶融混合法が生産性の点から好ましいが、 特 に分散性の良好な組成物を得るためには溶媒中での混合方法が推奨される。
本発明の変性ブロック共重合体組成物においては、 前述したように変性プロッ ク共重合体又はその水添物に結合している特定の官能基と充填剤との間の水素結 合等の化学的な結合により、 これらが一体化された複合状態が発現される。 この ような複合状態が発現されていることは、 例えば、 成分 (1 ) と成分 (2 ) とを 溶液中で混合した場合、 又は成分 (1 ) の溶液に成分 (2 ) を添加して混合した 場合、 この混合溶液をある一定期間静置しても成分 (2) が混合溶液から分離し て沈降する割合が少なく、 微分散して浮遊している割合が多いことにより確認で きる。 特に、 成分 (2) の平均粒径が小さい (例えば、 二次粒子径が 50 μια未 満) 場合には、 容器の底部に沈降した成分 (2) の存在は実質的にほとんど見ら れない。 一方、 成分 (1) が本発明で規定する官能基を有しない場合、 成分
(2) との混合溶液をある一定期間静置すると実質的にほとんどの成分 (2) が 容器の底部に沈降する。
本発明のプロック共重合体組成物は、 一般に使用される熱可塑性樹脂成形機で 成形することが可能であり、 シート、 フィルム、 各種形状の射出成形品、 中空成 形品、 圧空成形品、 真空成形品、 押出成形品等の多様な成形品として活用できる。 これらの成形品は、 食品包装材料、 医療用器具材料、 家電製品及びその部品、 自 動車部品 ·工業用品 · 日用雑貨 ·玩具等の素材、 履物用素材等に利用できる。 実施例
以下実施例により本発明を具体的に説明するが、 本発明はこれらの例によって 何ら限定されるものではない。
以下の実施例において、 変性ブロック共重合体又はその水添物の特 ¾fe、 及び変 性プロック共重合体組成物の物性の測定は次のようにして行った。 なお、 以下の 実施例においては、 変性ブロック共重合体、 及ぴ変性ブロック共重合体組成物を、 それぞれ単に 「ブロック共重合体」 及び 「ブロック共重合体組成物」 と呼ぶ。 1. プロック共重合体又はその水添物の特性
(1) スチレン含有量
紫外線分光光度計 (日立 UV200) を用いて、 262 nmの吸収強度より算 出した。
(2) ポリブタジエン部における水添率、 ビニル結合の割合、 及ぴ 1, 2C C 単位の割合
核磁器共鳴装置 (BRUCKER社製 DPX— 400) を用いて測定した。
(3) 重量平均分子量
GPC 〔装置:島津製作所社製 L C 10、 カラム:島津製作所社製 S h i mp a c GPC805+GPC804+GPC804+GPC803] で 測定した。 溶媒にはテトラヒドロフランを用レ、、 測定温度は 35°Cとし、 クロマ トグラムのピークの分子量から、 市販の標準ポリスチレンの測定から求めた検量 線 (標準ポリスチレンのピーク分子量を使用して作成) に基づき、 重量平均分子 量を求めた。
( 4 ) 未変性ブロック共重合体の割合
シリカ系ゲルを充填剤とした G PCカラムに変性した成分が吸着する特性を応 用し、 変性ブロック共重合体と低分子量内部標準ポリスチレンを含む試料溶液に ついて、 上記 (3) で測定したクロマトグラム中の標準ポリスチレンに対する変 性プロック共重合体の割合と、 シリカ系カラム GPC [カラム:デュポン社製 Z o r b a x] で測定したクロマトグラム中の標準ポリスチレンに対する変性ブ ロック共重合体の割合を比較し、 それらの差分によりシリカカラムへの吸着量を 測定した。 未変性プロック共重合体の割合はシリカカラムへ吸着しなかつたもの の割合である。
(5) スチレン単独重合体ブロックの含有率 (ブロック率)
共重合体を上述の方法で酸ィヒ分解して得られたスチレン単独重合体ブロックの 紫外線分光光度計による分析を行い、 下記式を用いて算出した。
ブロック率 (<½)
= [ (水添前のブロック共重合体中のスチレン単独重合体ブロック重量%) / (水添前のブロック共重合体中の全スチレン重量%) ] X 100
2. ブロック共重合体組成物の物性測定
(1) 透明性 (Ha z e)
プロック共重合体組成物から厚さ 2 mmの圧縮成形シートを作製し、 これを試 験片として ASTM— D 1 003に準拠して測定した。
(2) 耐熱性
ブロック共重合体組成物の動的貯蔵弾性率 (Ε' ) の温度変化を DMAスぺク トロメーター (デュポン 'インスツルメントネ土製 983 DMA) を用い、 以下に 示す条件にて測定し、 高温部の変極温度で耐熱性を評価した。
試験片厚み: 2mm、 スパン長さ : 16mm、 測定温度: 0°C〜200°C 昇温速度: 2 °C/m i n. 、 測定周波数モード:共鳴周波数。
(3) 耐摩耗性
上記試験片を学振型摩耗試験器 (テスター産業社製 AB—301) を用い、 1 000回摩耗した前後の重量変化を見た。
(4) 加工性
プロック共重合体組成物を二軸のオープンロールで 200°Cの温度で溶融混練 し、 ロールへの巻き付き状況から加工性を以下の 3段階で評価した。
〇:ロールへの卷き付き状況良好。
△:ロールへの巻き付きはないが、 シート状にはなる。
X : シート状にならず、 混練が実質的に困難。 .
(5) J I S— A硬度
J I S-K6301に準拠して測定した。
(6) 圧縮永久歪 (%)
J I S-K- 6301に示される方法 (70°CX 22時間) で測定した。
(7) 引張強さ (MP a) 及び引張伸び (%)
J I S-K- 6251に準拠した。 引張速度は 50 Omm/m i n. とした。
(8) 曲げ虽さ (MP a)
ASTM-D 790に準拠して測定した。
(9) ノツチ付き I z o d衝撃強度 ( j/m)
J I S— K— 71 10に準拠して測定した。
(10) 充填剤の平均分散粒子径 rn)
充填剤の平均分散粒径は、 透過型電子顕微鏡 (TEM) にて測定した。 TEM 測定により 5000〜1 0万倍で充填剤の分散状態を観察し、 数平均分散粒子径 を画像解析装置 (MI TAN I CORPORAT I ON製画像解析システム Wi n ROOF) を用いて決定した。
ここで数平均分散粒子径 (dn) とは以下のように定義される。
dn=∑n i d j/Ση i (n {は粒子径が d iである粒子の数)
また、 ここでいう粒子径とは、 粒子の面積と同じ面積の等価円の径をいう。
3. 水添触媒の調製 下記のプロック共重合体の調製において、 水添反応に用いた水添触媒は下記の 方法で調製した。
(1) 水添触媒 I
窒素置換した反応容器に乾燥、 精製したシクロへキサン 1リットルを仕込み、 ビス ( "ーシクロペンタジェニル) チタニウムジクロリ ド 1 00ミリモルを添 加し、 十分に撹拌しながらトリメチルアルミニウム200ミリモルを含む n—へ キサン溶液を添加して、 室温にて約 3日間反応させた。
(2) 水添触媒 I I
窒素置換した反応容器に乾燥、 精製したシクロへキサン2リットルを仕込み、 ビス (7? °—シクロペンタジェ二ノレ) チタニウムジー (p—トリル) 40ミ リモ ルと分子量が約 1000の 1, 2—ポリブタジエン (ビニル結合の割合:約 85 %) 1 50グラムを添加した後、 n—ブチルリチウム 60ミリモルを含むシクロ へキサン溶液を添加して室温で 5分反応させ、 直ちに n—ブタノール 40ミリモ ルを撹拌添カ卩して室温で保存した。
4. 配合成分
また、 以下の実施例には、 各成分として次のようなものを用いた。
(1) ブロック共重合体
下記の方法で調製した。 表 1及び表 2に得られたプロック共重合体の特性を示 した。
(2) 充填剤
シリカ A:沈降シリカ (De g u s s a社製 S i p e r n a t 500 LS :ニ 次粒子径 3. 5 μ m)
シリカ B :乾式高分散性シリ力 (旭化成ヮッカーシリコン社製 H DK N2 0)
シリカ C :湿式シリカ (D e g u s s a社製 U 1 t r a s i 1 VN3 :二次 粒子径 1 6 μ m)
(3) ォレフィン系重合体
ポリプロピレン (モンテル SDK製 PM801 A)
(4) シラン力ップリング剤 ビス一 ( 3—トリエトキシシリルプロピル) ーテトラスルフイ ド (デグサ社製、 以下 「S i 6 9」 )
( 5 ) その他成分
ゴム用軟化剤:出光興産社製ダイアナプロセスオイル PW— 3 8 0
ポリスチレン樹脂:エー 'アンド 'ェム ·スチレン社製ポリスチレン 6 8 5 ポリフエ二レンエーテル樹脂:ポリ (2 , 6—ジメチルー 1, 4一フエ二レンェ 一テル) (還元粘度 0 . 5 4 )
5 . ブロック共重合体の調製
1 ) ポリマー 1
攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 1 0重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投 入した。 次いで n—ブチルリチウムとテトラメチルエチレンジァミンを添加し、 7 0 °Cで 1時間重合した後、 予め精製したブタジエン 8 0重量部を含むシクロへ キサン溶液 (濃度 2 0重量0 /0) を加えて 7 0 で 1時間重合し、 さらにスチレン 1 0重量部を含むシク口へキサン溶液を加えて 7 0 °Cで 1時間重合した。 その後、 変十生剤としてテトラグリシジルー 1, 3—ビスアミノメチルシク口へキサン (以 後、 変性剤 M lと呼ぶ) を重合に使用した n—プチルリチウムに対して当モル反 応させた。 得られた変性プロック共重合体は、 スチレン含量が 2 0重量%, ポリ プタジェン部のビニノレ結合の割合が 5 0 %であった。
上記で得られた変性プロック共重合体に、 水添触媒 I Iを T iとして 1 0 0 p p m添加し、 水素圧 0 . 7 M P a、 温度 6 5 °Cで水添反応を 1時間行つた。 そ の後メタノールを添加し、 次に安定剤としてォクタデシル一 3— (3, 5—ジ一 t—ブチルー 4ーヒドロキシフエニル) プロピオネートを変性水添プロック共重 合体 1 0 0重量部に対して 0 . 3重量部添加した。 得られた変性水添プロック共 重合体 (ポリマー 1 ) の特性を表 1に示した。 尚、 ポリマー 1中に混在する未変 性のブロック共重合体の割合は 2 0重量%であった。
2 ) ポリマー 2
変性剤を使用しなかった以外はポリマー 1と同様の方法でポリマー 2を作製し た。 ポリマー 2の特性を表 1に示した。 3 ) ポリマー 3
攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 1 0重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投 入した。 次いで n—ブチルリチウムとテトラメチルエチレンジァミンを添カロし、 7 0 °Cで 1時間重合した後、 予め精製したブタジエン 6 0重量部を含むシク口へ キサン溶液 (濃度 2 0重量0 /0) を加えて 7 0 °Cで 1時間重合し、 さらにスチレン 1 0重量部を含むシク口へキサン溶液を加えて 7 0 °Cで 1時間重合した。 その後、 さらにブタジエン 2 0重量部を含むシクロへキサン溶液を加えて 7 0 °Cで 1時間 重合した後、 変性剤としてテトラグリシジルメタキシレンジァミン (以後、 変性 剤 M 2と呼ぶ) を重合に使用した n—ブチルリチウムに対して当モル反応させた。 得られた変性ブロック共重合体は、 スチレン含量が 2 0重量0 /0, ポリブタジエン 部のビニル結合の割合が 5 0 %であった。
上記で得られた変性プロック共重合体に、 水添触媒 I Iを T iとして 1 0 0 p p m添加し、 水素圧 0 . 7 M P a、 温度 6 5 °Cで水添反応を 1時間行つた。 そ の後メタノールを添加し、 次に安定剤としてォクタデシルー 3— (3 , 5—ジー t一プチルー 4ーヒドロキシフエニル) プロピオネートを変性水添ブロック共重 合体 1 0 0重量部に対して 0 . 3重量部添加した。 得られた変性水添プロック共 重合体 (ポリマー 3 ) の特性を表 1に示した。 尚、 ポリマー 3中に混在する未変 性のブロック共重合体の割合は 2 0重量%であつた。
4 ) ポリマー 4
変性剤を使用しなかつた以外はポリマー 3と同様の方法でポリマー 4を作製し た。 ポリマー 4の特十生を表 1に示した。
5 ) ポリマー 5
攪拌機及ぴジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 2◦重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投 入した。 次いで n—ブチルリチウムとテトラメチルエチレンジァミンを添加し、 7 0 °Cで 1時間重合した後、 予め精製したブタジエン 6 0重量部を含むシクロへ キサン溶液 (濃度 2 0重量%) を加えて Ί 0。じで 1時間、 さらにスチレン 2 0重 量部を含むシクロへキサン溶液を加えて 7 0 °Cで 1時間重合した。 その後、 変性 剤 M 1を重合に使用した n—ブチルリチウムに対して 1 Z 4倍モル反応させた。 得られた変性プロック共重合体は、 スチレン含量が 4 0重量0 /0, ポリブタジェン 部のビニル結合の割合が 1 7 %であった。
上記で得られた変性プロック共重合体にメタノールを添加して失活させた後、 安定剤として 2— tーブチルー 6— (3— t一ブチル一2—ヒドロキシー 5—メ チルベンジル) 一 4ーメチルフェニルァクリレートを変性ブロック共重合体 1 0 0重量部に対して 0 . 3重量部添加した。 変性ブロック共重合体のシクロへキサ ン溶液から、 スチームストリッビング方式によりシク口へキサンを除去して得ら れた変性プロック共重合体 (ポリマー 5 ) の特性を表 1に示した。 尚、 ポリマー 5中に混在する未変性のブロック共重合体の割合は 3 0重量%であつた。
6 ) ポリマー 6
変性剤 M 1の代わりに S i C 1 4を重合時に使用した n—ブチルリチウムに対 して 1 Z 4モル使用した以外はポリマー 5と同様の方法でポリマー 6を作製した。 ポリマー 6の特十生を表 1に示した。
7 ) ポリマー 7
攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 3 5重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投 入した。 次いで n—ブチルリチウムとテトラメチルエチレンジァミンを添カ卩し、 7 0 °Cで 1時間重合した後、 予め精製したブタジエン 2 0重量部とスチレン 1 0 重量部を含むシク口へキサン溶液 (濃度 2 0重量%) を加えて 7 0 で 1時間重 合し、 さらにスチレン 3 5重量部を含むシクロへキサン溶液を加えて 7 0 °Cで 1 時間重合した。 その後、 変性剤として N— ( 1, 3—ジメチルプチリデン) 一 3 ― (トリエトキシシリル) 一 1—プロパンアミン (以後、 変' I"生剤 M 3と呼ぶ) を 重合に使用した n—ブチルリチウムに対して当モル反応させた。 得られた変性ブ ロック共重合体は、 スチレン含量が 8 0重量0 /。, ポリブタジエン部のビニル結合 の割合が 3 5 %であった。
上記で得られた変性プロック共重合体に、 水添触媒 I Iを T i として 1 0 0 p p m添加し、 水素圧 0 . 7 M P a、 温度 6 5 °Cで水添反応を 1時間行つた。 そ の後メタノールを添加し、 次に安定剤としてォクタデシルー 3— (3 , 5—ジー 02 04090
33 tーブチルー 4ーヒドロキシフエニル) プロピオネートを変性水添プロック共重 合体 1 0 0重量部に対して 0 . 3重量部添加した。 得られた変性水添プロック共 重合体 (ポリマー 7 ) の特性を表 1に示した。 尚、 ポリマー 7中に混在する未変 性のブロック共重合体の割合は 4 0重量%であった。
8 ) ポリマー 8
攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 1 5重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投 入した。 次いで n—ブチルリチウムとテトラメチルエチレンジァミンを添加し、 7 0 °Cで 1時間重合した後, 予め精製したブタジエン 7 0重量部を含むシクロへ キサン溶液 (濃度 2 0重量0 /。) を加えて 7 0 °Cで 1時間重合し、 さらにスチレン 1 5重量部を含むシクロへキサン溶液を加えて 7 0 °Cで 1時間重合した。 その後、 変性剤として γ—グリシドキシプロピルトリメ トキシシラン (以後、 変性剤 Μ 4 と呼ぶ) を重合に使用した η—ブチルリチウムに対して当モル反応させた。 得ら れた変性ブロック共重合体は、 スチレン含量が 3 0重量%, ポリブタジェン部の ビニル結合の割合が 4 0 %であつた。
上記で得られた変性プロック共重合体に、 水添触媒 I Iを T i として 1 0 0 p p m添カ卩し、 水素圧 0 . 7 M P a、 温度 6 5 °Cで水添反応を 1時間行つた。 そ の後メタノールを添カロし、 次に安定剤としてォクタデシル一 3— ( 3 , 5—ジー tーブチルー 4ーヒドロキシフエニル) プロピオネートを変性水添プロック共重 合体 1 0 0重量部に対して 0 · 3重量部添加した。 変性水添ブロック共重合体の シク口へキサン溶液から、 スチームストリッビング方式によりシク口へキサンを 除去して得られた変性水添ブロック共重合体 (ポリマー 8 ) の特性を表 1に示し た。 尚、 ポリマー 8中に混在する未変性のブロック共重合体の割合は 2 5重量% であった。
9 ) ポリマー 9
攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 8重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投入 した。 次いで n—プチルリチウムとテトラメチルエチレンジァミンを添加し、 7 0 °Cで 1時間重合した後、 予め精製したイソプレン 8 5重量部を含むシクロへキ JP02/04090
34 サン溶液 (濃度 2 0重量%) を加えて 7 0 °Cで 1時間, さら
を含むシクロへキサン溶液を加えて 7 0 DCで 1時間重合した。 その後、 変性剤 M 1を重合に使用した n _ブチルリチウムに対して 1 Z 4倍モル反応させた。 得ら れた変性ブロック共重合体は、 スチレン含量が 1 5重量0 /0, ポリイソプレン部の ビニル結合の割合が 3 0 %であつた。
上記で得られた変性プロック共重合体にメタノールを添加して失活させた後、 安定剤として 2— t一プチルー 6 - ( 3— tーブチルー 2—ヒドロキシ一 5—メ チルベンジル) 一 4一メチルフエ二ルァクリレートを変性プロック共重合体 1 0 0重量部に対して 0 . 3重量部添加した。 変性プロック共重合体のシク口へキサ ン溶液から、 スチームストリッビング方式によりシク口へキサンを除去して得ら れた変性ブロック共重合体 (ポリマー 9 ) の特性を表 1に示した。 尚、 ポリマー 9中に混在する未変性のプロック共重合体の割合は 3 0重量%であった。
1 0 ) ポリマー 1 0
変性剤として 1 3—ジメチルー 2—イミダゾリジノン (以下 M 5 ) を使用し た以外はポリマー 1と同様の方法でポリマー 1 0を作製した。 ポリマー 1 0の特 性を表 1に示した。 表 1 ビニル結合
スチレン含量 重量平均分子量 変性剤 水添率 サンプル番号 の割合
(重量%) (万) (%)
(%)
ポリマー 1 20 50 • 8 M l 98 ポリマー 2 20 50 8 98 ポリマー 3 20 50 8 M 2 98 ポリマー 4 20 50 8 98 ポリマー 5 40 17 15 M l 0 ポリマー 6 40 17 15 S i C 1 4 0 ポリマー 7 80 35 20 M 3 98 ポリマー 8 30 40 10 M 4 98 ポリマー 9 15 30 18 M l 0 ポリマー 10 20 50 8 M 5 98 1 1 ) ポリマー 1 1
攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 1 4 . 7重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投入した。 次いで n—プチルリチウムとテトラメチルエチレンジァミンを添カロ し、 7 0 °Cで 1時間重合した後、 予め精製したブタジエン 7 2重量部を含むシク 口へキサン溶液 (濃度 2 0重量%) を加えて 7 0 °Cで 1時間重合し、 さらにスチ レン 1 3 . 3重量部を含むシクロへキサン溶液を加えて 7 0 °Cで 1時間重合した。 その後、 変性剤 M 5を重合に使用した n—ブチルリチウムに対して当モル反応さ せた。 得られた変性ブロック共重合体は、 スチレン含量が 2 8重量0 /0, ポリプタ ジェン部のビニル結合の割合が 3 8 %であつた。
上記で得られた変性プロック共重合体に、 水添触媒 I Iを T i として 1 0 0 p p m添加し、 水素圧 0 . 7 M P a、 温度 6 5 °Cで水添反応を 1時間行つた。 そ の後メタノールを添加し、 次に安定剤としてォクタデシルー 3— (3, 5—ジ一 t—プチルー 4ーヒ ドロキシフエニル) プロピオネートをブロック共重合体 1 0 0重量部に対して 0 . 3重量部添加した。 その後、 得られた変性水添ブロック共 重合体シクロへキサン溶液からシク口へキサンを加熱除去し、 変性水添ブロック 共重合体 (ポリマー 1 1 ) を得た。 ポリマー 1 1の分析結果を表 2に示した。 な ぉポリマー 1 1中に混在する未変性のプロック共重合体の割合は 2 0重量%であ つた。
1 2 ) ポリマー 1 2
変性剤を使用しなかつた以外はポリマー 1 1と同様の方法でポリマー 1 2を作 製した。 ポリマ一 1 2の特性を表 2に示した。
1 -3 ) ポリマー 1 3
変性剤 M 5の代わりに S i C 1 4を重合時に使用した n—ブチルリチウムに対 して 1ダ4モル使用した以外はポリマー 1 1と同様の方法でポリマー 1 3を作製 した。 ポリマー 1 3の特性を表 2に示した。
1 4 ) ポリマー 1 4
攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 2 0 . 5重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投入した。 次いで n—ブチルリチウムとテトラメチルエチレンジァミンを添カロ し、 7 0 °Cで 1時間重合した後、 予め精製したブタジエン 6 1重量部を含むシク 口へキサン溶液 (濃度 2 0重量%) を加えて 7 0 °Cで 1時間重合し、 さらにスチ レン 1 8 . 5重量部を含むシク口へキサン溶液を加えて Ί 0 °Cで 1時間重合した。 その後、 変性剤 M 1を重合に使用した n—プチルリチウムに対して当モル反応さ せた。 得られた変性ブロック共重合体は、 スチレン含量が 3 9重量%, ポリプタ ジェン部のビニル結合の割合が 3 7 %であった。
上記で得られたプロック共重合体に、 水添触媒 I Iを T i として l O O p p m 添加し、 水素圧 0 . 7 M P a、 温度 6 5 °Cで水添反応を 1時間行った。 その後メ タノールを添加し、 次に安定剤としてォクタデシルー 3— (3, 5—ジー t—ブ チルー 4ーヒドロキシフエニル) プロピオネートをブロック共重合体 1 0 0重量 部に対して 0 . 3重量部添加した。 その後、 得られた変性水添ブロック共重合体 シク口へキサン溶液からシク口へキサンを加熱除去し、 変性水添ブロック共重合 体 (ポリマー 1 4 ) を得た。 ポリマー 1 4の分析結果を表 2に示した。 なおポリ マー 1 4中に混在する未変性のブロック共重合体の割合は 2 5重量%であった。 1 5 ) ポリマー 1 5
攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 1 7 . 8重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投入した。 次いで n—ブチルリチウムとテトラメチルエチレンジァミンを添カロ し、 7 0 °Cで 1時間重合した後、 予め精製したブタジエン 6 6重量部を含むシク 口へキサン溶液 (濃度 2 0重量%) を加えて 7 0 °Cで 1時間重合し、 さらにスチ レン 1 6 . 2重量部を含むシク口へキサン溶液を加えて 7 0 °Cで 1時間重合した。 その後、 変性剤 M 4を重合に使用した n—ブチルリチウムに対して当モル反応さ せた。 得られた変性ブロック共重合体は、 スチレン含量が 3 4重量0 /0、 ポリプタ ジェン部のビニル結合の割合が 4 2 %であった。
上記で得られた変性プロック共重合体に、 水添触媒 I Iを T i として 1 0 0 p p πι添カ卩し、 水素圧 0 · 7 M P a、 温度 6 5 °Cで水添反応を 1時間行つた。 そ の後メタノールを添加し、 次に安定剤としてォクタデシルー 3— ( 3, 5—ジ— t -ブチルー 4ーヒドロキシフエニル) プロピオネートを変' 1"生水添ブロック共重 合体 1 0 0重量部に対して 3重量部添加した。 その後、 得られた変性水添ブ 口ック共重合体シク口へキサン溶液からシク口へキサンを加熱除去し、 変性水添 ブロック共重合体 (ポリマー 1 5 ) を得た。 ポリマー 1 5の分析結果を表 2に示 した。 なおポリマー 1 5中に混在する未変性のブロック共重合体の割合は 2 5重 量%であった。
1 6 ) ポリマー 1 6
攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 3 5 . 1重量部を含むシクロへキサン溶液 (濃度 2 0重量0 /0) を投入した。 次いで n—プチルリチウムとテトラメチルエチレンジァミンを添加 し、 7 0 °Cで 1時間重合した後、 予め精製したブタジエン 3 3重量部を含むシク 口へキサン溶液 (濃度 2 0重量%) を加えて 7 0 °Cで 1時間重合し、 さらにスチ レン 3 1 . 9重量部を含むシク口へキサン溶液を加えて 7 0 °Cで 1時間重合した。 その後、 変性剤 M 5を重合に使用した n—プチルリチウムに対して当モル反応さ せた。 得られた変性ブロック共重合体は、 スチレン含量が 6 7重量0 /0、 ポリプタ ジェン部のビニル結合の割合が 1 8 %であった。
上記で得られた変性プロック共重合体に、 水添触媒 I Iを T iとして 1◦ 0 p p m添加し、 水素圧 0 . 7 M P a、 温度 6 5 °Cで水添反応を 1時間行つた。 そ の後メタノールを添加し、 次に安定剤としてォクタデシルー 3— ( 3, 5—ジ一 t一プチルー 4ーヒ ドロキシフエニル) プロピオネートを変性水添ブロック共重 合体 1 0 0重量部に対して 0 . 3重量部添加した。 その後、 得られた変性水添ブ 口ック共重合体シクロへキサン溶液からシク口へキサンを加熱除去し、 変性水添 ブロック共重合体 (ポリマー 1 6 ) を得た。 ポリマー 1 6の分析結果を表 2に示 した。 なおポリマー 1 6中に混在する未変性のプロック共重合体の割合は 3 0重 量的であった
1 7 ) ポリマー 1 7
水添触媒 Iを T iとして l O O p p m添加し、 水素圧 0 . 7 M P a、 温度 6 5 °Cで水添反応を行い、 水添率を 6 0 %とした以外はポリマー 1 6と同様の方法で ポリマー 1 7を作製した。 ポリマー 1 7の特性を表 2に示した。
1 8 ) ポリマー 1 8 攪拌機及びジャケット付きのオートクレープを洗浄、 乾燥、 窒素置換し、 予め 精製したスチレン 2 0重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を投 入した。 次いで n—プチルリチウムを添加し、 7 0 °Cで 1時間重合した後、 予め 精製したブタジエン 3 0重量部を含むシクロへキサン溶液 (濃度 2 0重量%) を 加えて 7 0 °Cで 1時間重合し、 さらにスチレン 5 0重量部を含むシクロへキサン 溶液を加えて 7 0 °Cで 1時間重合した。 得られたブロック共重合体は、 スチレン 含量が 7 0重量0 /0, ポリプタジェン部のビニル結合の割合が 1 1 %であつた。 さ らに安定剤としてォクタデシルー 3— (3, 5—ジー t一プチル— 4ーヒドロキ シフエニル) プロピオネートをブロック共重合体 1 0 0重量部に対して 0 . 3重 量部添加した。 その後、 得られたブロック共重合体シクロへキサン溶液からシク 口へキサンを加熱除去し、 ブロック共重合体 (ポリマー 1 8 ) を得た。 ポリマー 1 8の分析結果を表 2に示した。
1 9 ) ポリマー 1 9
n—プチルリチウム量を調整して分子量を低くした以外はポリマー 1 1と同様 の方法でポリマー 1 9を作製した。 ポリマー 1 9の特性を表 2に示した。
2 0 ) ポリマー 2 0
変性剤を使用しない以外はポリマー 1 9と同様の方法でポリマー 2 0を作製し た。 ポリマー 2 0の特性を表 2に示した。
表 2 スチレン ビニル結合 スチレン単独重合体 1, 2 C = C単位 重 均分子量 ス(添率
サンプル番号 含量 の割合 変性剤の種類 のプロック率 の割合
(万) (%)
(重量0 /0) (%) (%) (%) ポリ 11 28 38 18 M5 99 98 0 ポリマー 12 28 38 18 なし 99 98 0 ポリ 13 28 38 38 S i C 14 99 98 0 ポリ 14 39 37 40 Ml 93 98 0 ポリマー 15 34 42 25 M4 91 98 0 ポリマー 1 6 67 18 8 M5 91 98 0 ポリマー 17 67 18 8 M5 91 60 0.5 ポリ 18 70 11 11 なし 90 0 12 ポリマー 19 28 38 8 M5 99 98 0 ポリマー 20 28 38 8 なし 99 98 0
[実施例 1 ]
ポリマー 1のシクロへキサン溶液に、 シリカ Aを 1 0 0重量部のポリマー 1に 対して 5重量部添加して混合した。 この混合溶液の一部をサンプリングして一昼 夜室温放置したが、 シリカ Aは均一に微分散しており、 混合溶液から分離して沈 降しているシリカはほとんどなかった。 このようにして、 ポリマー 1とシリカ A が親密に一体化された複合状態を形成していることが確認できた。
次に、 ポリマー 1とシリカ Aとの混合溶液からシクロへキサンを加熱除去して ブロック共重合体系組成物を得た。 得られた組成物の物性を表 3に示した。
[比較例 1 ]
ポリマー 2の溶液に実施例 1と同様にシリ力 Aを添加して混合した。 この溶液 の一部をサンプリングして一昼夜放置したところ、 シリカ Aは沈降しており、 実 施例 1のような複合状態は発現されていなかった。
次に、 ポリマー 2とシリカ Aを混合した上記の溶液からシクロへキサンを加熱 除去してプロック共重合体組成物を得た。 得られた組成物の物性を表 3に示した。
[比較例 2、 3 ]
本発明で規定する配合量の範囲より少ない量のシリカ Aを配合したプロック共 重合体系組成物 (比較例 2 ) 、 及び該範囲より多い量のシリカ Aを配合したプロ ック共重合体系組成物 (比較例 3 ) を実施例 1と同様にして作製した。 得られた 組成物の物性を表 3に示した。
[実施例 2 ]
ポリマー 3のシクロへキサン溶液に、 シリカ Aを 1 0 0重量部のポリマー 3に 対して 5重量部添加して混合した。 この溶液の一部をサンプリングして一昼夜室 温放置したが、 シリカ Aは均一に微分散しており、 溶液から分離して沈降してい るシリカ Aはほとんどなかった。 このようにして、 ポリマー 3とシリカ Aが親密 に一体化された複合状態を形成していることが確認できた。
次に、 上記のポリマー 3とシリカ Aとの混合溶液からシクロへキサンを加熱除 去してプロック共重合体組成物を得た。 得られた組成物の物性を表 3に示した。 また、 この組成物の耐摩耗性を調べたところ、 摩耗量は 1 4 m gであつた。
[比較例 4 ] ポリマー 4のシク口へキサン溶液に実施例 2と同様にシリ力 Aを添加して混合 した。 この溶液の一部をサンプリングして一昼夜放置したところ、 シリカ Aは沈 降しており、 実施例 2のような複合状態は発現されていなかつた。
次に、 ポリマー 4とシリカ Aを混合した上記の溶液からシクロへキサンを加熱 除去してブロック共重合体組成物を得た。 得られた組成物の物性を表 3に示した。 またこの糸且成物の耐摩耗性を調べたところ、 摩耗量は 2 5 m gであつた。
[実施例 3 ]
ポリマー 5を 1 0 0重量部と、 シリカ Bを 3 0重量部を L ZD 3 4の 3 O mm Φ同方向回転 2軸押出機で混合してプロック共重合体組成物を得た。 押出機での 押出温度は 2 1 0 °C、 回転数は 2 0 0 r p mであった。 得られた組成物の H a z eは 5 5 %であった。
[比較例 5 ]
ポリマー 6を用い、 実施例 3と同様の方法でプロック共重合体組成物を得た。 得られた組成物の H a z eは 8 0 %であり、 実施例 3の組成物より透明性に劣る ものであった。
[実施例 4 ]
ポリマー 7のシクロへキサン溶液に、 シリカ Bを 1 0 0重量部のポリマー 7に 対して 5重量部添カ卩して混合した。 この溶液の一部をサンプリングして一昼夜室 温放置したが、 シリカ Bは均一に微分散しており、 溶液から分離して沈降してい るシリカ Bはほとんどなかった。 このようにして、 ポリマー 7とシリカ Bが親密 に一体化された複合状態を形成していることが確認できた。
[実施例 5 ]
ポリマー 8のシクロへキサン溶液に、 シリカ Cをポリマー 8 1 0 0重量部あ たり 1 0重量部添カ卩して混合した。 この溶液の一部をサンプリングして一昼夜室 温放置したが、 シリカ Cは均一に微分散しており、 溶液から分離して沈降してい るシリカ Cはほとんどなかった。 このようにして、 ポリマー 8とシリカ Cが親密 に一体化された複合状態を形成していることが確認できた。
[実施例 6 ]
ポリマー 9のシクロへキサン溶液に、 シリカ Aを 1 0 0重量部のポリマー 9に 対して 2 0重量部添加して混合した。 この溶液の一部をサンプリングして一昼夜 室温放置したが、 シリカ Aは均一に微'分散しており、 溶液から分離して沈降して いるシリカ Aはほとんどなかった。 このようにして、 ポリマー 9とシリカ Aが親 密に一体化された複合状態を形成していることが確認できた。
[実施例 7 ]
ポリマー 1◦のシクロへキサン溶液に、 シリカ Aを 1 0 0重量部のポリマー 1 0に対して 5重量部添加して混合した。 この溶液の一部をサンプリングして一昼 夜室温放置したが、 シリカ Aは均一に微分散しており、 溶液から分離して沈降し ているシリカ Aはほとんどなかった。 このようにして、 ポリマー 1 0とシリカ A が親密に一体ィヒされた複合状態を形成していることが確認できた。
表 3
Figure imgf000044_0001
[実施例 8、 9 ]
ポリマー 1 1を 1 0 0重量部と、 ゴム用軟化剤 (P W—3 8 0 ) とを表 4に示 した組成で予め 3 O mm φ二軸押出機で 2 3 0 °Cで溶融混練した後、 成分 (2 ) として表 4に示した量のシリカ A又は Cを、 成分 (3 ) として表 4に示した量の ポリプロピレン樹脂を、 さらに安定剤としてォクタデシルー 3 _ ( 3, 5—ジ一 tーブチルー 4—ヒドロキシフエニル) プロピオネートを 0 . 8 8重量部添加し、 2 5 mm φ二軸押出機で 2 3 0 °Cで溶融混練し、 ブロック共重合体組成物を得た。 得られた組成物の物性を表 4に示した。
[比較例 6 ]
シリカを配合しない以外は実施例 8、 9と同様の方法でブロック共重合体,組成 物を得た。 得られた組成物の物性を表 4に示した。
[比較例 7 ]
シリカ Bを 8 0重量部配合した以外は実施例 8、 9と同様の方法でプロック共 重合体組成物を得た。 得られた組成物の物性を表 4に示した。
[比較例 8 ]
ポリマー 1 2を用い、 実施例 8と同様の方法でプロック共重合体組成物を得た。 得られた組成物の物性を表 4に示した。
[比較例 9 ]
ポリマー 1 3を用レ、、 実施例 8と同様の方法でプロック共重合体組成物を得た。 得られた組成物の物性を表 4に示した。
[実施例 1 0 ]
ポリマー 1 4を 1 0 0重量部と、 1 0 0重量部のゴム用軟化剤 ( P W— 3 8 0 ) とを 3 0 mm φ二軸押出機で 2 3 0 °Cで溶融混練した後、 成分 ( 2 ) として シリカ Aを 1 5重量部、 成分 (3 ) としてポリプロピレン樹脂を 3 4重量部、 さ らに安定剤としてォクタデシルー 3— (3, 5—ジー t一プチルー 4ーヒドロキ シフエニル) プロピオネートを 0 . 8 8重量部添加し、 2 5 mm φ二軸押出機で 2 3 0 °Cで溶融混練し、 ブロック共重合体組成物を得た。 得られた組成物の物性 を表 4に示した。
[実施例 1 1 ] ポリマー 1 5を 1 00重量部と、 1 00重量部のゴム用軟化剤 (PW— 38 0 ) とを 30 mm φ二軸押出機で 230 °Cで溶融混練した後、 成分 ( 2 ) として シリカ Aを 15重量部、 成分 (3) としてポリプロピレン樹脂を 34重量部、 さ らに安定剤としてォクタデシルー 3— (3, 5—ジ一!:一プチルー 4—ヒドロキ シフエニル) プロピオネートを 0. 88重量部添加し、 25 mm 0二軸押出機で 230°Cで溶融混練し、 ブロック共重合体組成物を得た。 得られた組成物の物性 を表 4に示した。
表 4 実施例 8 実施例 9 実施例 1 0 実施例 1 1 比較例 6 比較例 7 比較例 8 比較例 9
' ポリマー 1 1
100 100 一 ― 100 100 一 一
(重量部)
ポリマー 1 2
一 ― ― 一 一 一 100 ― (重量部)
ポリマー 1 3 ― ― ― ― ― ― ― 100 (重量部)
ポリマー 1 4
一 一 100 一 ― 一 一 一 (重量部)
ポリマー 1 5
一 一 ― 100 ― ― 一 (重量部)
シリカ A
15 一 15 15 ― 一 15 15 ム (重量部)
シリカ B ― ― 一 一 一 80 ― ― (重量部)
シリカ C
一 50 一 一 一 一 一 一 (重量部)
ポリプロピレン
34 30 34 34 34 26 34 34 (重量部)
ゴム用軟化剤
100 136 100 100 88 165 100 100 (重量部)
硬度 ( J I S A) 62 59 63 63 63 59 62 63 圧縮永久歪 (%) 29 26 28 29 37 27 35 35 引張破断強度 (M P a ) 13 8 14 14 13 6 15 15 加工性 〇 〇 〇 〇 〇 X 〇 X 充填剤の
0. 2 0. 2 0. 1 0. 2 0. 3 0. 4 0. 4 0. 4 平均分散粒子径( m)
[実施例 1 2、 1 3 ]
ポリマー 1 1を 1 0 0重量部と 1 0 0重量部のゴム用軟化剤 ( P W— 3 8 Q ) とを 3 0 mm φ二軸押出機で 2 3 0 °Cで溶融混練した後、 成分 ( 2 ) として表 5 に示した量のシリカ 2と、 成分 (3 ) として表 5に示した量のポリプロピレン樹 脂と、 ポリスチレン樹脂を 3重量部、 ポリフエ二レンエーテル樹脂を 7重量部、 さらに安定剤としてォクタデシルー 3— (3, 5—ジー t—プチルー 4—ヒ ドロ キシフェニル) プロピオネートを 0 . 8 8重量部添カ卩し、 2 5 mm φ二軸押出機 で 2 7 0 °Cで溶融混練し、 ブロック共重合体組成物を得た。 得られた組成物の物 十生を表 5に示した。
[比較例 1 0 ]
ポリマー 1 2を用いた以外は実施例 1 2と同様の方法でブロック共重合体,袓成 物を得た。 得られた組成物の物性を表 5に示した。
[比較例 1 1 ]
ポリマー 1 8を用いて実施例 1 2と同様の方法でブロック共重合体組成物を得た。 得られた組成物の物性を表 5に示した。
表 5
Figure imgf000049_0001
[実施例 14]
ポリマー 1 6を 1 00重量部と、 成分 (2) としてシリカ Αを 1 0重量部、 成 分 (3) としてポリプロピレン樹脂を 2 7 1重量部、 ポリスチレン樹脂を 8 34 重量部、 さらに安定剤としてォクタデシルー 3— (3, 5—ジー t一プチルー 4 一ヒドロキシフエニル) プロピオネートを 0. 88重量部添加し、 2 5 mm φ二 軸押出機で 2 30°Cで溶融混練し、 ブロック共重合体組成物を得た。 得られた組 成物の物性を表 6に示した。
[実施例 1 5]
ポリマー 1 7を用いて、 実施例 1 4と同様の方法でプロック共重合体,袓成物を 得た。 得られた組成物の物性を表 6に示した。
[比較例 1 2 ] シリカを用いない以外は実施例 1 5と同様の方法でブロック共重合体組成物を 得た。 得られた組成物の物性を表 6に示した。
[比較例 1 3 ]
ポリマー 1 8を用い、 かつシリカを用いなかった以外は実施例 1 5と同様の方 法でプロック共重合体組成物を得た。 得られた組成物の物性を表 6に示した。 表 6
Figure imgf000050_0001
[実施例 1 6 ]
ポリマー 1 9を 1 0 0重量部と、 成分 (2 ) としてシリカ Cを 1 0重量部、 安 定剤としてォクタデシル一 3— (3 , 5—ジ一 t—ブチル一4ーヒドロキシフエ ニル) プロピオネートを 0 . 8 8重量部添加し、 2 5 mm φ二軸押出機で 2 2 0 °Cで溶融混練し、 ブロック共重合体組成物を得た。 得られた組成物の物性を表 7 に示した。
[実施例 1 7 ]
S i 6 9をシリカ Cの 1 0重量%配合した以外は、 実施例 1 6と同様の方法で プロック共重合体組成物を得た。 得られた組成物の物性を表 7に示した。 [比較例 1 4 ]
ポリマー 2 0を用いて、 実施例 1 6と同様の方法でブロック共重合体組成物を 得た。 得られた組成物の物性を表 7に示した。
[比較例 1 5 ]
ポリマー 2 0を用いて、 実施例 1 7と同様の方法でプロック共重合体組成物を 得た。 得られた組成物の物性を表 7に示した。 表 7
Figure imgf000051_0001
上記実施例 1 1 7及ぴ比較例 1 1 5の結果から、 本発明のプロック共重合 体組成物は、 耐熱性、 機械的強度、 透明性、 耐摩耗性、 加工性において優れてお り、 また、 ォレフィン系重合体が更に配合されたブロック共重合体組成物は、 機 械的強度、 圧縮永久歪、 而 f衝撃性、 加工性において優れていることが分かる。 産業上の利用可能性
本発明の (1 ) 特定の官能基を含有する特定構造の変性ブロック共重合体又は その水添物、 及び (2 ) シリカ系無機充填剤、 金属酸化物及び金属水酸化物から なる群から選ばれる充填剤を特定量含む変性プロック共重合体組成物は、 耐熱性、 機械的強度、 透明性、 耐摩耗性、 加工性に優れている。 また、 上記組成物に更に ォレフィン系重合体を配合することにより、 組成物の機械的強度、 圧縮永久歪、 耐衝撃性、 加工性を更に改良することが可能となる。
本発明の変性ブロック共重合体組成物は、 上記特性を生かすことにより、 射出 成形、 押出成形等によって各種形状の成形品に加工することができ、 自動車部品、 家電部品、 電線被覆、 医療用部品、 履物、 雑貨等に用いることが可能となる。

Claims

請 求 の 範 囲
1. (1) ビニル芳香族炭化水素を主体とする重合体ブロック Aと、 共役ジ ェンを主体とする重合体プロック Bとからなる変性プロック共重合体又はその水 添物、 及ぴ
(2) シリカ系無機充填剤、 金属酸化物及び金属水酸化物からなる群から選ばれ る充填剤
を含む変性ブロック共重合体組成物であって、
成分 (1) の分子鎖末端に水酸基、 エポキシ基、 アミノ基、 シラノール基及ぴァ ルコキシシラン基からなる群から選ばれる基を少なくとも 1個有する官能基が結 合しており、 成分 (1) におけるビュル芳香族炭化水素の含有量が 5〜 95重量
%であり、 成分 (2) の量が成分 (1) 100重量部に対して 0. 5〜50重量 部であり、 成分 ( 2 ) の平均分散粒子径が 0. 01〜 2 mである、 前記変性ブ 口ック共重合体組成物。
2. 更に (3) ォレフィン系重合体を含み、 成分 (3) の量が成分 (1) 1
00重量部に対して 10〜500重量部である、 請求項 1記載の変性ブロック共 重合体組成物。
3. ビニル芳香族炭化水素のブロック率が、 成分 (1) 中の全ビュル芳香族 炭化水素の 50 %以上である、 請求項 1又は 2記載の変性ブロック共重合体組成 物。
4. 成分 (1) が変性プロック共重合体の水添物であり、 該水添物の水添率 が 10%以上であり、 該水添物中の共役ジェンに由来する全構成単位のうち、 ビ ニル結合を有する構成単位の割合が 10〜 85 %の範囲であり、 また 1, 2 C = C単位の割合が 1 5 %以下である、 請求項 1又は 2記載の変性ブロック共重合体 組成物。
5. 成分 (1) の分子鎖末端に、 下記式 (1) 〜 (14) 力^なる群から選 ばれる官能基が結合している、 請求項 1又は 2に記載の変性ブロック共重合体糸且 成物。 -NR9—— R10— OH -(1)
N [R 10
-OH] •—(2)
Figure imgf000054_0001
Figure imgf000054_0002
-CR9_R10_NR11R12
— --(5)
OH
-C— NR9— R10— NR 1R12
II -(6) o
-C-R10— NR1 R12
— -(7)
O
-CR9— NR11— R10 NR13R14
-(8)
OH
-CR9— R10— NR"R12
— -(9) OH
-NR9— R10— Si (OR11 )3 --(10) -N[R10— Si(OR11)3] '(11)
-CR9— R10— OR11
"(12)
OH
-CR9― R10— Si (OR11 ) 3
-(13)
OH - -R10— Si (OR11 — -(14)
(式 (1) 〜 (14) において、 R9及び R1 2〜R丄 4は、 水素、 炭素数:!〜 2
4の炭化水素基、 又は水酸基、 エポキシ基、 シラノール基及びアルコ
基からなる群から選ばれる官能基を有する炭素数 1〜 24の炭化水素基であり、 R 1 0は炭素数 1〜 30の炭化水素鎖、 又は水酸基、 エポキシ基、 シラノール基 及ぴアルコキシシラン基からなる群から選ばれる官能基を有する炭素数 1〜 30 の炭化水素鎖である。 なお、 R9及び R1 2〜R14の炭化水素基、 及び R10の 炭化水素鎖中には、 水酸基、 エポキシ基、 シラノール基及びアルコキシシラン基 以外の結合様式で、 酸素、 窒素、 シリコン等の元素が結合していても良い。 また、 R 1 1は水素又は炭素数 1〜 8のアルキル基である。 )
6. 成分 (1) の分子鎖末端に、 下記式 (1) 〜 (9) からなる群から選ば れる官能基が結合している、 請求項 1又は 2に記載の変性プロック共重合体組成 物。
-NR、 R10— OH — -(1)
N [ R10—— OH ] 2 -—(2)
Figure imgf000056_0001
Figure imgf000056_0002
-CR9— R10— NR11R12
"(5)
OH
-C一 N R9一 R10一 NR11 R12
II -—(6)
O
-C_R10_NR11R12
II "(7)
O
-CR9— NR11— R10— NR13R14
•(8)
OH
-CR9— R10— NR11R12
-—(9)
OH
(式 (1) 〜 (9) において、 R9、 及ぴ Ri 2〜R14は、 水素、 炭素数 1〜2 4の炭化水素基、 又は水酸基、 エポキシ基、 シラノール基及ぴアルコキシシラン 基からなる群から選ばれる官能基を有する炭素数 1〜 24の炭化水素基であり、 R10は炭素数 1〜30の炭化水素鎖、 又は水酸基、 エポキシ基、 シラノール基 及びアルコキシシラン基からなる群から選ばれる官能基を有する炭素数 i〜 30 の炭化水素鎖である。 なお、 R9、 及び R1 2〜尺1 4の炭化水素基、 及び R1 0 の炭化水素鎖中には、 水酸基、 エポキシ基、 シラノール基及びアルコキシシラン 基以外の結合様式で、 酸素、 窒素、 シリコン等の元素が結合していても良い。 ま た、 R 1 1は水素又は炭素数 1〜 8のアルキル基である。 )
7 . 成分 (2 ) 力 シリカ、 ウォラストナイ ト、 モンモリロナイト、 ゼオラ イト、 アルミナ、 酸化チタン、 酸化マグネシウム、 酸化亜鉛、 スラッグウール、 ガラス繊維、 水酸化マグネシウム、 水酸化アルミニウム、 水和珪酸マグネシウム、 水和珪酸アルミニウム、 塩基性炭酸マグネシウム及びノヽィドロタルサイトからな る群から選ばれる充填剤である、 請求項 1又は 2に記載の変性プロック共重合体 組成物。
8 . シランカップリング剤を、 成分 (2 ) の量に対して 0 . 1〜2 0重量% 含む、 請求項 1又は 2に記載の変性プロック共重合体組成物。
PCT/JP2002/004090 2002-04-24 2002-04-24 Composition de copolymere bloc modifie WO2003091334A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003587881A JPWO2003091334A1 (ja) 2002-04-24 2002-04-24 変性ブロック共重合体組成物
PCT/JP2002/004090 WO2003091334A1 (fr) 2002-04-24 2002-04-24 Composition de copolymere bloc modifie
KR10-2003-7016767A KR100535199B1 (ko) 2002-04-24 2002-04-24 개질 블록 공중합체 조성물
US10/480,201 US7122594B2 (en) 2002-04-24 2002-04-24 Modified block copolymer composition
AU2002253580A AU2002253580A1 (en) 2002-04-24 2002-04-24 Modified block copolymer composition
EP02722755.2A EP1403317B1 (en) 2002-04-24 2002-04-24 Modified block copolymer composition
ES02722755.2T ES2606044T3 (es) 2002-04-24 2002-04-24 Composición de copolímero de bloques modificado
CNB028127072A CN1246383C (zh) 2002-04-24 2002-04-24 改性嵌段共聚物组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/004090 WO2003091334A1 (fr) 2002-04-24 2002-04-24 Composition de copolymere bloc modifie

Publications (1)

Publication Number Publication Date
WO2003091334A1 true WO2003091334A1 (fr) 2003-11-06

Family

ID=29267251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004090 WO2003091334A1 (fr) 2002-04-24 2002-04-24 Composition de copolymere bloc modifie

Country Status (8)

Country Link
US (1) US7122594B2 (ja)
EP (1) EP1403317B1 (ja)
JP (1) JPWO2003091334A1 (ja)
KR (1) KR100535199B1 (ja)
CN (1) CN1246383C (ja)
AU (1) AU2002253580A1 (ja)
ES (1) ES2606044T3 (ja)
WO (1) WO2003091334A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257283A (ja) * 2005-03-17 2006-09-28 Asahi Kasei Chemicals Corp エラストマー組成物
JP2006257112A (ja) * 2005-03-15 2006-09-28 Kraton Jsr Elastomers Kk 熱可塑性エラストマー組成物
WO2006109743A1 (ja) * 2005-04-07 2006-10-19 Asahi Kasei Chemicals Corporation ブロック共重合体水添物、又はそのシート、フィルム
JP2012251040A (ja) * 2011-06-01 2012-12-20 Asahi Kasei Chemicals Corp アスファルト組成物
JPWO2015098264A1 (ja) * 2013-12-27 2017-03-23 日本ゼオン株式会社 共役ジエン系重合体および共役ジエン系重合体の製造方法
JP2021138967A (ja) * 2016-12-21 2021-09-16 株式会社ブリヂストン 高強度水素化ポリマー、及びこれを組み込んだゴム組成物

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005390B2 (en) * 2002-10-09 2006-02-28 Intel Corporation Replenishment of surface carbon and surface passivation of low-k porous silicon-based dielectric materials
KR101410931B1 (ko) * 2008-01-30 2014-06-23 충남대학교 산학협력단 소수성막 형성용 고분자, 이를 포함한 소수성막 및 상기소수성막을 포함한 물품
KR100967653B1 (ko) * 2009-07-16 2010-07-07 김광수 착탈식 인라인 스케이트
FR2955321B1 (fr) * 2010-01-21 2012-02-10 Rhodia Operations Procede d'oxydation d'hydrocarbures
JP5659721B2 (ja) * 2010-03-31 2015-01-28 住友化学株式会社 共役ジエン系重合体組成物の製造方法
US20130244367A1 (en) * 2010-09-29 2013-09-19 Zeon Corporation Hydrogenated block copolymer having alkoxysilyl group and use therefor
US8944789B2 (en) * 2010-12-10 2015-02-03 National Oilwell Varco, L.P. Enhanced elastomeric stator insert via reinforcing agent distribution and orientation
KR101522447B1 (ko) * 2012-01-11 2015-05-21 주식회사 엘지화학 반응성 비닐 방향족 탄화수소-공액디엔 블록 공중합체, 및 이를 포함하는 아스팔트 조성물
TWI630185B (zh) * 2012-05-25 2018-07-21 日本傑恩股份有限公司 使用嵌段共聚物氫化物作為夾層玻璃之接著劑之方法
CN104995248B (zh) * 2012-11-02 2017-12-08 株式会社普利司通 包含金属羧酸盐的橡胶组合物和其制备方法
CA2938763C (en) 2014-02-18 2020-12-15 Reme Technologies, Llc Graphene enhanced elastomeric stator
JPWO2016006610A1 (ja) * 2014-07-09 2017-04-27 日本ゼオン株式会社 合わせガラス
US10532636B2 (en) * 2016-04-01 2020-01-14 AGC Inc. Laminated glass for vehicle
US10703892B2 (en) * 2016-04-25 2020-07-07 Asahi Kasei Kabushiki Kaisha Resin composition and molded body
KR102122469B1 (ko) 2016-11-01 2020-06-12 주식회사 엘지화학 변성 공액디엔계 중합체 및 이의 제조방법
WO2018084512A1 (ko) * 2016-11-01 2018-05-11 주식회사 엘지화학 변성 공액디엔계 중합체 및 이의 제조방법
EP3623398A4 (en) 2017-05-12 2020-06-24 Asahi Kasei Kabushiki Kaisha MODIFIED BLOCK COPOLYMER, METHOD FOR PRODUCING A MODIFIED BLOCK COPOLYMER AND RESIN COMPOSITION
US20210340306A1 (en) * 2018-06-20 2021-11-04 Bridgestone Corporation High Strength Hydrogenated Polymers, And Rubber Compositions Incorporating Same
KR102216525B1 (ko) * 2020-02-26 2021-02-17 주식회사 리스아이피 노면 표지용 열융착 도료 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109545A (en) * 1977-03-08 1978-09-25 Asahi Chem Ind Co Ltd New composite and thermoplastic resin
WO1987002369A1 (en) * 1985-10-11 1987-04-23 Asahi Kasei Kogyo Kabushiki Kaisha Terminal-modified block copolymer and composition containing said copolymer
JPH07188542A (ja) * 1993-12-27 1995-07-25 Sumitomo Bakelite Co Ltd 制振性ポリカーボネート樹脂組成物
JPH10139963A (ja) * 1996-11-12 1998-05-26 Kuraray Co Ltd 樹脂組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310945A (en) 1976-07-19 1978-01-31 Hitachi Ltd Digital filter
JPS56112959A (en) 1980-02-13 1981-09-05 Asahi Chem Ind Co Ltd Filler-containing polymer composition
JPS56112960A (en) 1980-02-13 1981-09-05 Asahi Chem Ind Co Ltd Filler-containing polymer composition
US4409357A (en) 1981-09-10 1983-10-11 Atlantic Richfield Company Footwear-compounds from derivatized star-block copolymers
JPS59131613A (ja) 1983-01-18 1984-07-28 Mitsubishi Petrochem Co Ltd エラストマー状成形体の製造方法
US4882384A (en) 1988-02-01 1989-11-21 Shell Oil Company Modified block copolymers
JPH11256025A (ja) 1998-03-10 1999-09-21 Asahi Chem Ind Co Ltd 導電性樹脂組成物
JP2001072853A (ja) 1999-09-08 2001-03-21 Teijin Chem Ltd 制振性熱可塑性樹脂組成物
ES2307678T3 (es) 2001-03-26 2008-12-01 Jsr Corporation Polimero modificado hidrogenado, procedimiento para producir el mismo y composicion que contiene el mismo.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109545A (en) * 1977-03-08 1978-09-25 Asahi Chem Ind Co Ltd New composite and thermoplastic resin
WO1987002369A1 (en) * 1985-10-11 1987-04-23 Asahi Kasei Kogyo Kabushiki Kaisha Terminal-modified block copolymer and composition containing said copolymer
JPH07188542A (ja) * 1993-12-27 1995-07-25 Sumitomo Bakelite Co Ltd 制振性ポリカーボネート樹脂組成物
JPH10139963A (ja) * 1996-11-12 1998-05-26 Kuraray Co Ltd 樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1403317A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639870B2 (ja) * 2005-03-15 2011-02-23 ジェイエスアール クレイトン エラストマー株式会社 熱可塑性エラストマー組成物
JP2006257112A (ja) * 2005-03-15 2006-09-28 Kraton Jsr Elastomers Kk 熱可塑性エラストマー組成物
JP2006257283A (ja) * 2005-03-17 2006-09-28 Asahi Kasei Chemicals Corp エラストマー組成物
US7985484B2 (en) 2005-04-07 2011-07-26 Asahi Kasei Chemicals Corporation Hydrogenation product of block copolymer or sheet or film of the same
GB2439674B (en) * 2005-04-07 2010-12-08 Asahi Kasei Chemicals Corp Hydrogenation product of block copolymer or sheet or film of the same
GB2439674A (en) * 2005-04-07 2008-01-02 Asahi Kasei Chemicals Corp Hydrogenation product of block copolymer or sheet or film of the same
WO2006109743A1 (ja) * 2005-04-07 2006-10-19 Asahi Kasei Chemicals Corporation ブロック共重合体水添物、又はそのシート、フィルム
JP5534642B2 (ja) * 2005-04-07 2014-07-02 旭化成ケミカルズ株式会社 ブロック共重合体水添物、又はそのシート、フィルム
JP2012251040A (ja) * 2011-06-01 2012-12-20 Asahi Kasei Chemicals Corp アスファルト組成物
JPWO2015098264A1 (ja) * 2013-12-27 2017-03-23 日本ゼオン株式会社 共役ジエン系重合体および共役ジエン系重合体の製造方法
US10266613B2 (en) 2013-12-27 2019-04-23 Zeon Corporation Conjugated diene polymer and method of production of conjugated diene polymer
JP2021138967A (ja) * 2016-12-21 2021-09-16 株式会社ブリヂストン 高強度水素化ポリマー、及びこれを組み込んだゴム組成物
JP7337879B2 (ja) 2016-12-21 2023-09-04 株式会社ブリヂストン 高強度水素化ポリマー、及びこれを組み込んだゴム組成物
JP7353176B2 (ja) 2016-12-21 2023-09-29 株式会社ブリヂストン 高強度水素化ポリマー、及びこれを組み込んだゴム組成物

Also Published As

Publication number Publication date
JPWO2003091334A1 (ja) 2005-09-02
KR20040014574A (ko) 2004-02-14
KR100535199B1 (ko) 2005-12-08
CN1520442A (zh) 2004-08-11
EP1403317A4 (en) 2005-07-13
AU2002253580A1 (en) 2003-11-10
ES2606044T3 (es) 2017-03-17
US7122594B2 (en) 2006-10-17
EP1403317B1 (en) 2016-11-02
US20040176514A1 (en) 2004-09-09
CN1246383C (zh) 2006-03-22
EP1403317A1 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
WO2003091334A1 (fr) Composition de copolymere bloc modifie
JP4428555B2 (ja) 変性重合体及びその組成物
KR100746054B1 (ko) 신발용 고무 조성물
JP4208176B2 (ja) 官能基含有ブロック共重合体及びその組成物
JP2002201333A (ja) ブロック共重合体組成物
JP2007056145A (ja) 熱可塑性樹脂組成物
JP2004059741A (ja) 共重合体及びその組成物
JP4097939B2 (ja) 難燃性重合体組成物
JP5637765B2 (ja) 変性水添ブロック共重合体組成物及びこれを用いた成形体
JP4748965B2 (ja) オレフィン系樹脂組成物
JP2012036300A (ja) 変性水添ブロック共重合体組成物及び成形品
JP4698135B2 (ja) オレフィン系樹脂組成物
JP4947652B2 (ja) 官能基含有ブロック共重合体及びその組成物
JP4007546B2 (ja) 変性重合体及びその組成物
JP2011094074A (ja) 発泡体用変性ブロック共重合体及びその組成物
JP3872375B2 (ja) 動架橋変性ブロック共重合体組成物
JP4007547B2 (ja) 官能基変性重合体及びその組成物
JP4756733B2 (ja) ブロック共重合体複合物
JP3895213B2 (ja) 動架橋ブロック共重合体組成物
JP4462399B2 (ja) 変性されたブロック共重合体及びその組成物
JP4439159B2 (ja) 動架橋変性重合体組成物
JP2006257283A (ja) エラストマー組成物
JP2003327702A (ja) 変性ブロック共重合体及びその組成物
JP2023062297A (ja) 樹脂組成物、及び成形体
JP2003313255A (ja) スチレン系樹脂組成物及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003587881

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

REEP Request for entry into the european phase

Ref document number: 2002722755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002722755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10480201

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037016767

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028127072

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002722755

Country of ref document: EP