WO2003088395A1 - Pile a combustible a electrolyte polymerique - Google Patents

Pile a combustible a electrolyte polymerique Download PDF

Info

Publication number
WO2003088395A1
WO2003088395A1 PCT/JP2003/004723 JP0304723W WO03088395A1 WO 2003088395 A1 WO2003088395 A1 WO 2003088395A1 JP 0304723 W JP0304723 W JP 0304723W WO 03088395 A1 WO03088395 A1 WO 03088395A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
polymer electrolyte
plate
fuel cell
gas
Prior art date
Application number
PCT/JP2003/004723
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Hase
Kazuhito Hatoh
Hiroki Kusakabe
Hideo Ohara
Susumu Kobayashi
Soichi Shibata
Shinsuke Takeguchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2003585213A priority Critical patent/JPWO2003088395A1/ja
Priority to EP03746483A priority patent/EP1422776A4/en
Priority to KR1020037015116A priority patent/KR100552174B1/ko
Publication of WO2003088395A1 publication Critical patent/WO2003088395A1/ja
Priority to US10/778,602 priority patent/US7294423B2/en
Priority to US11/866,954 priority patent/US20080079186A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell used for a portable power supply, a power supply for an electric vehicle, a cogeneration system and the like, and particularly to a current collector plate of a polymer electrolyte fuel cell.
  • a solid polymer electrolyte fuel cell electrochemically transfers a fuel gas containing hydrogen and an oxidizing gas containing oxygen, such as air, through a polymer electrolyte membrane that selectively transports hydrogen ions. It reacts to generate electric power.
  • This fuel cell usually has a plurality of unit cells each consisting of an anode and a cathode sandwiching a polymer electrolyte membrane, an anode separator for supplying a fuel gas to the anode, and a cathode separator supplying an oxidant gas to a cathode. It is composed of a stacked cell stack. At both ends of the cell stack, an end plate is overlapped with a current collecting plate for taking out current and an insulating plate for electrically insulating the outside from the outside, and both end plates are fastened by fastening means. Appropriate fastening pressure is applied. The end plate is provided with means for the supply and discharge of fuel gas, oxidant gas and coolant. In this way, a unit called a fuel cell stack is formed.
  • the current collector plates In order to supply the fuel gas, the oxidizing gas, and the coolant to the cell stack, at least one of the current collector plates located at both ends is provided with a through hole for flowing the gas or coolant. In order to prevent corrosion of this through-hole, and to reduce the contact resistance between adjacent cells and separators, the current collector plate is usually used by plating a metal material such as stainless steel or copper with gold. . In the case of gold-plated current collectors, if the thickness of the gold plating is insufficient, the base point is a minute pit, and eventually corrosion will progress. For this reason, anti-corrosion structures have been proposed to prevent gas from coming into direct contact with through holes for supplying and discharging gas and coolant.
  • a gold-plated metal current collector has the following problems.
  • the water content of the polymer electrolyte membrane must be high, so the supply gas and exhaust gas contain a large amount of water vapor.
  • metal current collector plates are susceptible to corrosion in areas where supply gas and exhaust gas come into contact. If metal corrosion occurs in the gas supply path, the performance of the electrolyte membrane will be reduced because the generated metal ions will be mixed.
  • the insulation of the coolant decreases, and the generated power decreases due to leakage current.
  • the present invention provides a polymer electrolyte fuel cell including an improved current collector plate, the fuel cell comprising: a hydrogen ion conductive polymer electrolyte membrane; an anode sandwiching the polymer electrolyte membrane; A plurality of unit cells consisting of an anode separator having a gas flow path for supplying fuel gas to the anode and a cathode separator having a gas flow path for supplying oxidizing gas to the cathode were stacked. It comprises a cell stack, a pair of current collectors sandwiching the cell stack, and a pair of end plates for fastening the cell stack and the current collector in a pressurized state.
  • the current collector plate according to the present invention is composed of a conductive carbon material as a main component, and a terminal for connecting a current extraction cable is provided near a fuel gas or oxidant gas inlet side manifold.
  • the terminal portion has a coating layer of a good electric conductor.
  • the coating layer of the electric conductor is provided in a region extending from the terminal portion to a portion corresponding to the gas flow path inlet side of the cell, which is connected to the inlet side manifold.
  • FIG. 1 is a partially sectional side view showing an example of the structure of a fuel cell stack according to the present invention.
  • FIG. 2 is a front view of the current collector plate according to Embodiment 1 of the present invention.
  • Figure 3 is a rear view of the same current collector.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a perspective view of a main part showing another example of connection of a cable to a current collector plate.
  • FIG. 6 is a front view of the current collector plate according to Embodiment 2 of the present invention.
  • FIG. 7 is a rear view showing another example of the current collector plate.
  • FIG. 8 is a front view showing an example of an insulating plate used in combination with the current collecting plate.
  • FIG. 9 is a front view of the separator on the anode side according to Embodiment 3 of the present invention. It is.
  • FIG. 10 is a front view of a current collector combined with the separator plate of FIG. 9.
  • FIG. 11 is a sectional view taken along line XI-XI of FIG.
  • FIG. 12 is a front view of the cathode-side separator according to the third embodiment of the present invention.
  • Fig. 13 is a front view of the current collector combined with the separator plate of Fig. 12.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
  • FIG. 15 is a front view showing another anode side separator.
  • FIG. 16 is a front view of a current collector combined with the separator of FIG. 15, and FIG. 17 is a front view showing another cathode-side separator.
  • FIG. 18 is a front view of a current collector combined with the separator of FIG. 17, and FIG. 19 is a longitudinal sectional view showing another example of the current collector.
  • FIG. 20 is a front view of an anode-side current collector plate according to Embodiment 4 of the present invention.
  • FIG. 21 is a front view of a cathode-side current collector according to Embodiment 4 of the present invention.
  • FIG. 22 is a front view of the anode-side current collector plate according to the fifth embodiment of the present invention.
  • FIG. 23 is a rear view of the anode side current collector of FIG.
  • FIG. 24 is a front view of the anode-side current collector plate according to the sixth embodiment of the present invention.
  • FIG. 25 is a sectional view taken along line XXV-XXV of FIG.
  • FIG. 26 is an enlarged sectional view of a main part showing an example in which an electric conductor layer is formed on the surface of a core metal plate.
  • the present inventors have studied to use a plate material or a formed plate mainly composed of a carbon material having no possibility of corrosion as a current collector. As a result, it was found that an effect peculiar to a polymer electrolyte fuel cell can be obtained by providing the current extraction terminal of the current collector plate near the manifold on the inlet side of the reaction gas, especially the fuel gas. . That is, the electrode is humidified by the water generated by the reaction on the inlet side of the reaction gas supplied thereto. Further, the polymer electrolyte membrane that exhibits hydrogen ion conductivity in a state containing water can be efficiently humidified.
  • the terminal portion is provided in the vicinity of the inlet gas-side manifold of the current collector plate, and the current density in the electrode reaction portion close to the inlet-side manifold is increased. As a result, the amount of water generated by the reaction increases, and the electrode can be kept highly humidified.
  • a current collector plate made of a conductive graphite plate or a molded plate made of a composite material of a conductive carbon material and a binder is electrically anisotropic so that the electrical resistivity in the surface direction is reduced as described later.
  • its electrical resistivity is higher than that of a metal current collector. Therefore, in the plane of the current collector plate, the electric resistance between the terminal portion and the terminal portion is smaller in a portion near the terminal portion than in a portion far from the terminal portion. For this reason, there is a difference in current density between a portion near and far from the terminal portion, and the former having a higher current density increases the amount of electrode reaction.
  • the durability of the electrode can be improved by increasing the humidification of the reaction gas inlet, in particular, the vicinity of the fuel gas inlet, where humidification by the generated water at the electrode is not expected. Also, the humidification amount of the fuel gas supplied to the battery can be reduced, and the energy efficiency can be improved.
  • the current extraction terminal portion of the current collector plate has a coating layer made of a metal film or plate that is a good electrical conductor.
  • a coating layer made of a metal film or plate that is a good electrical conductor.
  • the present inventors have also studied to use a current collector plate whose electric resistivity in the surface direction is smaller than the electric resistivity in the thickness direction, that is, in the stacking direction of the hooks.
  • a current collector plate whose electric resistivity in the surface direction is smaller than the electric resistivity in the thickness direction, that is, in the stacking direction of the hooks.
  • the current collector is integrated with the separator in contact with the current collector.
  • the terminals of the current collector plate are The metal plate that connects the cable that extracts the force is fastened at two or more points. This can prevent the terminal portion of the current collector from cracking.
  • the current collector plate containing conductive carbon as a main component used in the present invention is obtained by processing a conductive carbon plate such as a commercially available glassy carbon plate or expanded graphite plate into a predetermined shape by cutting or blasting. Is suitable.
  • a conductive carbon plate such as a commercially available glassy carbon plate or expanded graphite plate into a predetermined shape by cutting or blasting.
  • the conductive carbon plate one having an electric resistivity in the plane direction of about 1 ⁇ ⁇ cm or less is preferably used.
  • a more preferable current collector plate is a thermoplastic resin such as polyphenylene sulfide or polypropylene, or a thermosetting resin such as an epoxy resin or a phenol resin, or a mixture thereof to which a molding material obtained by adding graphite powder is used.
  • the thickness of the current collector plate may be changed between the terminal portion and other portions.
  • the thickness of the current collector plate must be a value that does not destroy it, at least about 3 to 6 mm.
  • Embodiment 1 Embodiment 1
  • FIG. 1 shows an example of a polymer electrolyte fuel cell stack according to the present embodiment.
  • the electrolyte membrane electrode assembly (MEA) denoted by 1 comprises a polymer electrolyte membrane, an anode sandwiching the polymer electrolyte membrane, and a force sword.
  • the polymer electrolyte membrane has a size one size larger than the electrode.
  • the periphery of the polymer electrolyte membrane is sandwiched between gaskets.
  • This MEA 1 is alternately stacked with separations.
  • the separator has a flow path for oxidant gas on one side and a flow path for fuel gas on the other side.
  • a single separator that serves as both a source side separator and an anode side separator.
  • the laminate of t the cell forces cathode side separator Isseki and the anode side separator Isseki two kinds of composite separator evening 2 a in which a flow path of the click one plant between both is used
  • the upper end of the stack has an end plate 5a via a current collector plate 3a on the power source side and an insulating plate 4a, and the lower end of the laminate has a current collector plate 3b and an insulating plate 4b on the anode side.
  • the end plates 5a and 5b, on which the end plates 5b are overlapped, are fastened by bolts 6 and nuts 8, and a predetermined load is applied to the cell laminate. 7 represents a spring.
  • the end plate 5a is provided with entrances and exits for the reaction gas and the coolant.
  • an oxidizing gas outlet 11, a fuel gas inlet 12 and a coolant outlet 13 are shown.
  • the polymer electrolyte fuel cell battery pack 10 is assembled.
  • the current collectors 3a and 3b have their terminals 15a and 15b projecting from the side of the cell stack, and the terminals 16a and 16b They are connected by brackets 15a and 15b, respectively.
  • the current collectors 3 a and 3 b are shown as also serving as the power source separator and the anode separator, respectively. It is not limited to.
  • FIG. 3 is a front view of the current collector plate on the force sword side
  • FIG. 3 is a rear view thereof
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG.
  • the power extraction cable and the metal plate to connect it are omitted.
  • the current collector 30 has a pair of oxidant gas manifold holes 31, a fuel gas manifold hole 32, and a coolant manifold hole 33.
  • the current collector plate 30 has a flow path 34 for an oxidizing gas communicating with the pair of manifold holes 31 on a surface facing the force sword.
  • the current collector plate 30 has grooves 37, 38, and 39 for mounting O-rings surrounding the manifold holes 31, 32, and 33 on the surface facing the insulating plate. O-rings fitted in these grooves are compressed between the current collector plate and the insulating plate to prevent gas and coolant from leaking from each manifold hole.
  • the current collecting plate 30 further has a terminal portion 35 having two holes 36, and two metal plates 45 sandwiching the terminal portion 35 are provided on the terminal portion with screws 46 and nuts 47. Is attached.
  • Reference numeral 48 denotes a spring washer, and reference numeral 49 denotes a flat washer.
  • a core wire 41 of a power extraction cable 40 is connected to the metal plate 45 by soldering 42.
  • the pair of oxidizing gas manifold holes 31 and the fuel gas manifold holes 32 the one closer to the terminal portion 35 is the inlet side.
  • connection point between the terminal portion 35 of the current collector 30 and the metal plate 45 for connecting the power extraction cable is not particularly limited, but as shown in FIG. 2 and FIG. Or more. This is because the loss due to resistance is reduced by making the contact pressure uniform, and the stress generated by fastening is easily leveled.
  • a metal plate can be connected to only one side in addition to connecting a metal plate to both sides of the terminal portion.
  • connecting metal plates on both sides has the effect of increasing the contact surface and reducing the contact resistance.
  • the response The force is equalized, and the effect of preventing breakage due to excessive tightening force can be obtained.
  • FIG. 5 shows another example in which a power extraction cable 40 is connected to the terminal portion 35 of the current collector 30.
  • the terminal portion 35 of the current collector plate 30 is fitted to a U-shaped connection bracket 43 to which the cable 40 is soldered, and both are fixed by screws 44 passing through the hole 36.
  • the fastening means including the port, the spring, and the nut is used for fastening the fuel cell stack, but may be changed to another fastening means.
  • a hole was made in the terminal to connect the power extraction cable to the terminal of the current collector, and a metal plate was connected with screws and nuts.
  • other connection methods can be used.
  • a screw hole may be formed in the terminal portion 35, and a crimp terminal to which a power cable is connected may be connected to the hole by screwing.
  • Another connection method that can stably maintain the electrical connection may be adopted.
  • the power extraction cable and the metal plate connecting the cable were connected by soldering, but any method that can maintain good electrical connection such as crimping by crimping may be used.
  • a metal material having low contact resistance may be used.
  • metals such as bronze and copper having low electric resistance and good workability can be used.
  • FIG. 6 is a front view of the current collector plate on the cathode side in the present embodiment.
  • the current collector plate 3OA has a metal film 50 with a thickness of about 1 m on both sides of the terminal portion 35.
  • Other configurations are the same as those of the current collector 30 shown in FIG. With this metal film 50, the contact resistance between the terminal portion 35 of the current collector plate and the metal plate or the like connecting the power extraction cable can be reduced.
  • FIG. 7 shows still another example of the current collector plate.
  • a metal film 51 having a thickness of several meters to several tens // m is formed on substantially the entire surface facing the insulating plate.
  • the in-plane conductivity of the current collector plate can be improved, and the resistance loss can be further reduced.
  • no metal film is formed up to a position slightly away from the grooves 37, 38, and 39 for mounting the O-rings surrounding each manifold hole.
  • a metal forming the metal film a material that can impart conductivity may be used other than copper or aluminum.
  • vapor deposition or thermal spraying can be used, but thermal spraying is preferable because a predetermined thick film can be formed in a short time.
  • Other structures are the same as in the first embodiment.
  • FIG. 8 shows an insulating plate installed on the back of the current collector plate of FIG. 2 or FIG.
  • the insulating plate 60 has a pair of manifold holes 61 for oxidizing gas, a manifold hole 62 for fuel gas, and a manifold hole 63 for coolant, respectively.
  • FIG. 9 is a front view of the anode-side separator
  • FIG. 10 is a front view of the current collector plate in contact with the anode-side separator
  • Fig. 12 is a front view of the separator on the cathode side
  • Fig. 13 is a front view of the current collector in contact with the separator on the cathode side.
  • the separator 110 on the anode side has a pair of manifold holes 1 1 1 for oxidizing gas, a manifold hole 1 1 2 for fuel gas, and a manifold hole 1 1 3 for coolant.
  • a pair of manifolds on opposing surfaces It has a fuel gas flow path 1 16 communicating with the hole 1 1 2.
  • the current collectors 120 arranged on the back of the separator 110 have a pair of oxidant gas manifold holes 121, a fuel gas manifold hole 122, and a coolant manifold. Hold holes 1 2 3 are provided.
  • the current collector plate 120 is connected to the terminal part 125 by the inlet side manifold hole of the fuel gas manifold hole of the separator 110 (as clearly shown by the arrow indicating the gas flow direction). In the figure, it is provided near the upper left manifold hole) so as to protrude outward.
  • An electric conductor covering layer 127 is provided in this terminal part 125 and the part connected to it, that is, the area corresponding to the inlet side of the inlet side manifold hole and the gas flow path connected to it in front of the separator 120.
  • An electric conductor covering layer 127 is provided in this terminal part 125 and the part connected to it, that is, the area corresponding to the inlet side of the inlet side manifold hole and the gas flow path connected to it in front of the separator 120.
  • An electric conductor covering layer 127 is provided in this terminal part 125 and the part connected to it, that is, the area corresponding to the inlet side of the inlet side manifold hole and the gas flow path connected to it
  • the cathode side separator 130 has a pair of manifold holes 13 1 for oxidant gas, a manifold hole 13 2 for fuel gas, and a manifold hole 13 3 for coolant.
  • the oxidizing gas flow path 134 that communicates the pair of manifold holes 131 is provided on the surface opposite to.
  • the current collectors 140 arranged on the back of the separator 130 have a pair of oxidant gas manifold holes 141, a fuel gas manifold hole 144 and a coolant manifold. It has two hold holes 1 4 3.
  • the current collector plate 140 connects the terminal section 144 to the inlet-side manifold hole of the oxidizing gas manifold hole 130 of the separator 130 (the upper right manifold hole in the figure).
  • the terminal portion 1 45 and a portion connected thereto that is, a region 1 4 6 corresponding to the inlet side manifold hole of the separator 130 and the inlet side of the gas flow path connected thereto are provided with an electric conductor.
  • Coating layer 1 4 7 is provided.
  • the region 146 has a thickness smaller than that of the other portions, and is provided with a coating layer 147 on both sides thereof so as to have the same thickness as the other portions.
  • the terminal portion 145 has a hole 148 for attaching a metal plate for connection to a current extraction cable.
  • the coating layer 1 27 of the terminal 1 2 5 of the current collector 1 20 corresponds to the inlet side of the gas flow path 1 16 in the separation plate 1 10 It extends to the part where it does. Since the coating layer 127 made of a metal film or a metal plate has lower electric resistance than the other parts mainly composed of the carbon material, when the current is taken out from the terminal part 125 during power generation, the current density is as described above. Higher in some areas. As a result, the cell electrode reaction proceeds preferentially on the inlet side of the gas flow path 116. Similarly, also on the force sword side, it proceeds preferentially on the inlet side of the gas flow channel 134.
  • the amount of water generated by the reaction increases near the gas inlet side manifold hole, and the reaction gas supplied downstream is humidified.
  • the terminals 1 25 of the anode-side current collector and the terminals 1 45 of the cathode-side current collector face each other, that is, the fuel gas inlet side. It is preferable to provide the manifold hole and the manifold hole on the inlet side of the oxidizing gas in close proximity.
  • Figs. 15 to 18 show modified examples of the above combination of separator and current collector.
  • the anode side separator 110A shown in Fig. 15 is the same as the separator 110 in Fig. 9 except that the position of the oxidant manifold hole 111A is changed.
  • the current collector plate 120 A placed on the back of the separator 110 A has a different position of the oxidizer manifold hole 121 A and the shape of the coating layer 127 A Except for the difference, it is the same as the current collector 120 of FIG.
  • the cathode side separator 130 A shown in Fig. 17 is Except that the position of the hold hole 13 1 A was changed, it is the same as the separator 130 in FIG.
  • the current collector plate 140 A placed on the back of the separator 130 A has a different position of the oxidizing agent manifold hole 141 A and the shape of the coating layer 144 A Except for the difference, it is the same as the current collector plate 140 of FIG.
  • the coating layers 127, 127 A, 147 and 147 A shown here can be formed by the metal film described in the second embodiment. However, in a more preferred embodiment, the coating layer is formed of a metal plate.
  • the above-mentioned coating layer is formed of a metal plate, and a part of the coating layer enters the inside of the projected area of the separator laminated on the current collector plate as shown in FIG.
  • the metal plate is loaded with the fastening load of the stack between the separator and the current collector plate. Then, the metal plate is firmly fixed according to the fastening load of the stack. Since the metal plate also covers the terminals of the current collector plate, it works to effectively reduce the stress applied to the base of the terminals by the cable connected to the terminals.
  • the metal plate be fixed to the current collector plate with an elastic adhesive such as a conductive adhesive or a silicone adhesive.
  • An insulating adhesive such as a silicone adhesive is interposed in a specific region between the current collector and the metal plate, and is useful for limiting the current density in a specific portion of the current collector.
  • FIG. 19 shows an example in which a metal plate 127 is bonded to a current collector plate 120 part 126 with a conductive adhesive 122.
  • the metal plate is fixed to the current collector plate with the adhesive as described above, the step between the current collector plate and the metal plate is eliminated, and it is more effective in reducing the stress at the terminal portion.
  • a metal plate and a current collecting plate are bonded with a conductive adhesive, when collecting 3 OA of current at the terminal of the current collecting plate, the current collecting at both ends of the stack is compared with the case where no adhesive is used. It was confirmed that a voltage of about 5 mV was high between the plates.
  • FIGS. 20 and 21 show the current collector plate in the present embodiment.
  • FIG. 20 is a front view of the current collector plate on the node side.
  • This current collector plate 120B has the same structure as the current collector plate of Fig. 10 except that the terminal portion 125B and the portion connected to it do not have the coating layer 127. It is located on the back of the 110-side separator shown.
  • FIG. 21 is a front view of the current collector plate on the force sword side.
  • the current collector plate 140B has the same structure as the current collector plate of FIG. 13 except that the terminal portion 144B and the portion connected to the current collector plate 144B do not have the coating layer 144. It is located on the back of the cathedral side separator shown below.
  • Each of the current collector plates shown here is composed of a molded body of a carbon material and a composite material of a binder. Therefore, at the time of power generation, the current density becomes high near the terminal portion, that is, near the gas inlet side manifold hole, and the effect of humidifying the gas is exhibited as in the fourth embodiment.
  • Embodiment 5
  • Fig. 22 is a front view of the current collector plate which also serves as the separator on the anode side
  • Fig. 23 is its rear view.
  • the current collector 150 has a pair of oxidant gas manifold holes 151, a fuel gas manifold hole 152, and a coolant manifold hole 153.
  • the fuel gas flow path 156 which communicates with the pair of manifold holes 152 is provided on the surface opposed to the fuel cell.
  • the current collector plate 150 is the inlet-side manifold hole of the anode side manifold hole 152.
  • the upper left manifold hole in Fig. 22 has a terminal part 155, and the backside has a coating layer extending to the vicinity of the manifold hole 155.
  • FIG. 24 is a front view of the current collector plate of the present embodiment
  • FIG. 25 is a cross-sectional view taken along line XXV-XXV of FIG.
  • the current collector plate 160 is formed of a molding material composed of a conductive carbon material and a binder so as to surround the core metal plate.
  • the current collector plate 160 has a pair of manifold holes 16 1 for oxidizing gas, a manifold hole 16 2 for fuel gas, and a manifold hole 16 3 for coolant. It has a terminal portion 1 65.
  • the metal plate 166 embedded in this current collector has a smaller size than that of the current collector so that there is no part exposed to the outside, and the part corresponding to each manifold hole is Has holes larger in diameter than manifold holes.
  • FIG. 26 shows an example in which an electric conductor layer 169 is formed on the surface of a core metal plate.
  • this layer the contact resistance between the layer made of the molding material and the core metal plate can be reduced, and the electrical characteristics of the current collector plate can be improved.
  • the oxide on the surface of the core metal plate is removed in advance, and a layer of a noble metal, a conductive inorganic oxide, a conductive inorganic nitride, or a conductive inorganic carbide is formed thereon. It can be formed as an electric good conductor layer.
  • a current collector plate is formed by using a conductive material for forming a mixture of 80 wt% of graphite and 20 wt% of a phenol resin and surrounding a core metal plate.
  • a mold was uniformly filled with 50 g of the molding compound, and pre-compressed at a mold clamping pressure of 100 kgf Z cm 2 . At this time, the mold temperature was 70.
  • the mold is opened, a metal plate is inserted, 50 g of a molding compound is filled from above, the mold is tightened with a mold clamping pressure of 500 kgf cm 2 , and the temperature is reduced to 160 ° C. Up.
  • the current-collecting plate manufactured in this way is stronger in strength and has lower electric resistance than the current-collecting plate (thickness: 7 mmm) made of only the conductive molding material. It has become possible to make it thinner.
  • a 2 mm thick brass plate was used as the core material.
  • the current collector plate was provided with a pair of manifold holes for oxidizing gas, fuel gas and coolant. The inner surfaces of the manifold holes are covered with a conductive molding material so that the core metal plate does not come into contact with the fluid flowing through each manifold hole.
  • a stack using this current collector was prepared, and a power generation test was performed for 100 hours using pure water as a coolant. The number of stacked cells was 50 cells.
  • the sputtering power was set to 400 W, and the deposition rate was set to 1.5 m / hour.
  • a TiN layer was formed to a thickness of 1 Aim on the surface of a l-mm-thick Ti plate by a sputtering method using an RF-plana magnetron.
  • TiN (99%) was used, and the substrate temperature was 500.
  • Sputtering evening atmosphere and 4 X 1 0- 2 Torr of A r (9 9. 9 9 9 9%) was set to 4 0 0 W, the deposition speed becomes 1. 5 / xmZ Time .
  • the obtained sputter layer was identified as TiN by structural analysis using X-ray diffraction.
  • the specific resistance of T i N layer obtained by this method was filed with 2 X 1 0- 4 ⁇ cm.
  • a Ti-Al-N layer having a thickness of 1.2 m was formed on the surface of an A1 plate having a thickness of 1 mm by a sputtering method using an RF-diode.
  • T i — A 1 — N (99%) was used, and the substrate temperature was set at 300.
  • Sputtering atmosphere is 4 X 1 0- 2 Torr of A r (9 9. 9 9 9 %), spatter power 3 0 0 W, the deposition rate was set to be 1. 0 m / time, this method
  • the specific resistance of the Ti-A 1 -N layer obtained at 1 was 1 ⁇ 10 3 ⁇ cm.
  • the deposition method used was a high-frequency glow discharge decomposition method at 14.56 MHz, and the gases to be decomposed were silane, methane (CH 4 ), diborane (PH 3 ) diluted with hydrogen, and P (S
  • the film thickness of the ⁇ -doped SiC layer was adjusted to 100 A by controlling the film formation time.
  • SiC layer A gold electrode was deposited thereon, and the specific resistance of the SiC layer was measured to be 50 ⁇ ⁇ cm.
  • a Pb layer having a thickness of 1 / zm was formed on the surface of a stainless steel SUS316 plate having a thickness of l mm by vacuum heating evaporation. Deposition conditions at this time, 1 X 1 0- 7 Torr of A r (9 9. 9 9 9 9%) at ambient substrate temperature was 2 0 0. Next, a Pb layer was formed on the Pb-deposited surface of the Pb-deposited stainless steel plate by a sputtering method. The formation conditions are: oxygen partial pressure
  • the sputtering power was controlled so that the atmosphere was 2 X 10 — 4 Torr in an Ar atmosphere (99.99.99%), the substrate temperature was 200 ° C, and the deposition rate was 3 ⁇ mZ. Resulting et a sputtering evening layers, the resistivity of the P B_ ⁇ layer obtained in P b O and identified t this way the structural analysis by X-ray diffraction was 5 X 1 0- 5 ⁇ cm .
  • a layer of tin oxide doped with In was formed on the surface of stainless steel SUS316 with a thickness of l mm to a thickness of 0.5 m by vacuum electron beam evaporation. did.
  • the degree of vacuum during deposition is A r gas atmosphere of 5 X 1 0- 6 Torr, the substrate temperature was set to 3 0 0.
  • a current collector made of a carbon molding material in which a core metal plate that has been surface-treated as described above is embedded has improved electrical characteristics and less voltage loss than a current collector that uses an untreated metal plate. It was confirmed that.
  • a current collector plate and an end plate for stack fastening are integrally formed.
  • the thickness of this current collector plate was increased in the stacking direction to keep the electrical resistance extremely low.
  • the current collector was made of a graphite plate, and its thickness was 70 mm.
  • the electrical resistivity of this graphite plate was 1 mQ′cm in the plane direction and 1 ⁇ ⁇ ⁇ cm in the thickness direction. Since the plate thickness is 70 mm, the cell stack including the current collector plate is fastened by fastening members such as bolts, nuts, and springs. Fastened with a predetermined load.
  • the current collector plate had a terminal at its end, to which a power extraction cable was connected.
  • the detailed structure of the terminal is the same as that of the first embodiment.
  • the present invention provides a low-cost, lightweight, and current-collecting plate that does not fear metal corrosion in the manifold hole.
  • the electrode is humidified by the water generated by the reaction on the inlet side of the reaction gas supplied thereto.
  • the durability of the electrode can be improved.
  • it can be integrated with the separator located at the end, so that the number of parts can be reduced and the power generation loss due to the resistance component can be reduced. As a result, cost reduction and volume and weight efficiency of polymer electrolyte fuel cells can be achieved. Can be improved

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Description

明 細 書
高分子電解質型燃料電池 技術分野
本発明は、 ポータブル電源、 電気自動車用電源、 コージエネレーショ ンシステム等に使用される燃料電池、 特に高分子電解質型燃料電池の集 電板に関する。 背景技術
固体高分子電解質型燃料電池は、 水素を含有する燃料ガスと、 空気な ど酸素を含有する酸化剤ガスとを、 水素イオンを選択的に輸送する高分 子電解質膜を介して電気化学的に反応させることで、 電力を発生させる ものである。
この燃料電池は通常、 高分子電解質膜を挟むァノードおよびカソード, ァノードに燃料ガスを供給するァノード側セパレ一夕、 およびカソ一ド に酸化剤ガスを供給するカソード側セパレー夕からなる単位セルを複数 個積層したセル積層体から構成される。 セル積層体の両端には、 電流を 取り出す集電板、 および外部との電気的絶縁を図る絶縁板を介して端板 が重ねられ、 両端板が締結手段により締結されて、 セル積層体には適切 な荷重の締結圧がかけられる。 端板には、 燃料ガス、 酸化剤ガスおよび クーラントの供給 '排出のための手段が備えられる。 このようにして燃 料電池スタックと呼ばれるユニッ トが構成される。
セル積層体に燃料ガス、 酸化剤ガス、 およびクーラントを供給するた め、 両端に位置する集電板の少なく とも一方には、 ガスまたはクーラン トを流すための貫通孔が設けられる。 この貫通孔部分の腐食を防止する ため、 および、 隣接するセルのセパレー夕との接触抵抗を低減し、 さら に集電板自体の面内方向の導電率を向上させて、 電気抵抗によるロスを 抑えるため、 集電板はステンレス鋼や銅などの金属材料に、 金メッキを 施して使用するのが通例である。 金メッキを施された集電板は、 金メッ キの膜厚が足りない場合、 微小なピッ トが基点となり、 いずれは腐食が 進行してしまう。 このため、 ガス、 クーラントを供給 ·排出するための 貫通孔には、 直接ガスが触れないように、 防食のための構造が提案され ている。
しかしながら、 金メッキを施した金属製の集電板を用いるには、 次の ような問題があった。 高分子電解質型燃料電池が正常に機能するために は、 高分子電解質膜の含水率を高くしなければならないため、 供給ガス や排出ガスは多くの水蒸気を含んでいる。 そのため、 金属製集電板は、 供給ガスや排出ガスが触れる部分では、 腐食が発生しやすい。 ガスの供 給路で金属の腐食が発生すると、 生成する金属イオンが混入するため電 解質膜の性能が低下する。 また、 クーラントの供給路に金属の腐食が発 生すると、 クーラントの絶縁性が低下し、 リーク電流によって発電電力 が低下する。
このような金属の腐食によるイオンの混入を防ぐためには、 金メッキ の膜厚を厚くするか、 防食のための構造をとらなければならない。 しか し、 金メッキの厚みを厚くするとコストが格段に高くなつてしまう。 ま た、 防食のための構造をとると、 新たに部品点数の増加や、 工数の増加 など、 電池の構造や組立作業が煩雑になってしまう。 腐食に伴うイオン 流出の心配のない炭素材料で集電させる試みもある。 しかし、 炭素材料 は、 脆く、 金属に比べて電気比抵抗が高いため、 集電板の厚みを確保す る必要があつた。 発明の開示 本発明は、 改良された集電板を備える高分子電解質型燃料電池を提供 するもので、 この燃料電池は、 水素イオン伝導性高分子電解質膜、 前記 高分子電解質膜を挟むァノードおよび力ソード、 ァノ一ドに燃料ガスを 供給するガス流路を有するァノード側セパレー夕、 およびカソードに酸 化剤ガスを供給するガス流路を有するカソード側セパレー夕からなる単 位セルの複数個を積層したセル積層体、 前記セル積層体を挟む一対の集 電板、 並びに前記セル積層体および集電板を加圧状態で締結する一対の 端板を具備する。 本発明による前記集電板は、 導電性炭素材料を主成分 として構成され、 かつ電流取り出し用ケーブルを接続する端子部が、 燃 料ガスまたは酸化剤ガスの入口側マ二ホールドの近傍に設けられている, 前記端子部は、 電気良導体の被覆層を有することが好ましい。
前記電気良導体の被覆層は、 前記端子部から、 前記入口側マ二ホール ドに連なる、 セルのガス流路入口側に対応する部分にわたる領域に有す ることがより好ましい。 図面の簡単な説明
図 1は本発明による燃料電池スタックの構造の一例を示す一部を断面 にした側面図である。
図 2は本発明の実施の形態 1における集電板の正面図である。
図 3は同じ集電板の背面図である。
図 4は図 2の I V— I V線断面図である。
図 5は集電板へのケーブルの別の接続例を示す要部の斜視図である。 図 6は本発明の実施の形態 2における集電板の正面図である。
図 7は集電板の別の例を示す背面図である。
図 8は集電板と合わせて用いる絶縁板の一例を示す正面図である。 図 9は本発明の実施の形態 3におけるァノ一ド側セパレ一夕の正面図 である。
図 1 0は図 9のセパレー夕板に組み合わされる集電板の正面図である t 図 1 1は図 1 0の X I— X I線断面図である。
図 1 2は本発明の実施の形態 3におけるカソード側セパレ一夕の正面 図である。
図 1 3は図 1 2のセパレー夕板に組み合わされる集電板の正面図であ る。
図 1 4は図 1 3の X I V— X IV線断面図である。
図 1 5は別のァノ一ド側セパレー夕を示す正面図である。
図 1 6は図 1 5のセパレー夕に組み合わされる集電板の正面図である, 図 1 7は別のカソード側セパレー夕を示す正面図である。
図 1 8は図 1 7のセパレー夕に組み合わされる集電板の正面図である, 図 1 9は別の集電板の例を示す縦断面図である。
図 2 0は本発明の実施の形態 4におけるァノード側集電板の正面図で ある。
図 2 1は本発明の実施の形態 4におけるカソ一ド側集電板の正面図で ある。
図 2 2は本発明の実施の形態 5におけるァノ一ド側集電板の正面図で ある。
図 2 3は図 2 2のァノード側集電板の背面図である。
図 2 4は本発明の実施の形態 6におけるァノード側集電板の正面図で ある。
図 2 5は図 2 4の XXV-XXV線断面図である。
図 2 6は芯材金属板の表面に電気良導体層を形成した例を示す要部の 拡大断面図である。 発明を実施するための最良の形態
本発明者らは、 腐食のおそれのない炭素材料を主とする板材または成 形板を集電体に用いるべく検討した。 その結果、 集電板の電流取り出し 端子部を、 反応ガス、 特に燃料ガスの入口側マ二ホールドの近傍に設け ることにより、 高分子電解質型燃料電池に特有の効果が得られることを 見いだした。 すなわち、 電極は、 これに供給される反応ガスの入口側に おいて、 反応により生成する水により加湿される。 さらに、 水分を含ん だ状態において水素イオン伝導性を発現する高分子電解質膜を効率的に 加湿することができる。
電極の耐久性を向上させるには、 電極を高加湿にして運転することが 有効であると提唱されている。 電極を高加湿にするには、 高加湿にした 反応ガスを電池に供給する取り組みがなされている。 しかし、 燃料ガス の加湿量を上げると、 エネルギー効率が下がってしまう。 本発明によれ ば、 集電板の反応ガスの入口側マ二ホールドの近傍に端子部が設けられ ており、 当該入口側マ二ホールドに近接した電極反応部における電流密 度が上がり、 これによつて反応により生成する水量が増し、 電極を高加 湿に保つことができる。
導電性の黒鉛板や、 導電性炭素材料とバインダ一とのコンポジッ ト材 料からなる成形板よりなる集電板は、 後述のように面方向の電気比抵抗 が小さくなるよう電気的に異方性化されていても、 金属製集電板に比べ れば電気比抵抗が大きい。 従って、 集電板の面内において、 端子部に近 い方は遠い方に比べて端子部との間の電気抵抗は小さい。 このため、 端 子部に近いところと遠いところとでは、 電流密度に差が生じ、 電流密度 の高い前者では電極反応量が増す。 電極における反応ガスの入口側での 電流密度をより上げるには、 集電板の端子部から、 電極の反応ガス入口 側に相当する部分にまたがって、 電気良導体の被覆層を設けるのが好ま しい。
このようにして、 アノードの燃料ガス入口側における電流密度を上げ ると、 これに対応する力ソード部分での反応による生成水が増し、 これ が逆拡散によってァノード側に移動する。 このようにして電極部での生 成水による加湿が期待できない反応ガス入口部、 特に燃料ガス入口部付 近を高加湿にすることにより、 電極の耐久性を向上することができる。 また、 電池に供給する燃料ガスの加湿量を減らし、 エネルギー効率を向 上することができる。
本発明の他の好ましい実施の形態においては、 集電板の電流取り出し 端子部分が、 電気良導体である金属の膜または板からなる被覆層を有す る。 これによつて、 金属よりも導電性の劣る炭素を用いることに起因す る、 端子部での電気抵抗によるロスが低減でき、 しかも端子部の強度を 向上することができる。 さらに好ましい実施の形態においては、 その被 覆層を構成する金属板をセパレ一夕と重なるよう延長されている、 すな わちセルスタックの締結圧がかかるようにされていることによって、 よ り補強効果などを向上することができる。
本発明者らは、 また、 面方向の電気比抵抗が厚み方向、 すなわちス夕 ックの積層方向の電気比抵抗より小さい集電板を使用すべく検討を行つ た。 その結果、 黒鉛化度の高い炭素材料とバインダーとのコンポジッ ト 材料を圧縮成形することにより、 面方向の電気比抵抗の小さい、 電気的 に異方性化された集電板を得ることに成功した。 この集電板は、 薄型で 金属イオンに起因する性能劣化を防止することができる。
本発明のさらに他の好ましい実施の形態においては、 集電板がこれに 接するセパレ一夕と一体化されている。 これにより、 部品点数の削減の 他、 接触抵抗に起因する電気抵抗によるロスを低減することができる。 本発明の他の好ましい実施の形態においては、 集電板の端子部に、 電 力を取り出すケーブルを接続する金属板が 2点以上で締結されている。 これにより、 集電板の端子部の割れを防止できる。
本発明に用いる導電性炭素を主成分とする集電板は、 市販のグラッシ- カーボン板や膨張黒鉛板などの導電性炭素板に、 切削加工やブラスト加 ェ等によって所定の形状に加工したものが適する。 前記の導電性炭素板 は、 面方向の電気比抵抗が 1 πι Ω · c m程度以下のものが好ましく用い られる。 さらに好ましい集電板は、 ポリフエ二レンサルファイ ド、 ポリ プロピレン等の熱可塑性樹脂、 もしくはエポキシ樹脂、 フエノール樹脂 等の熱硬化性樹脂、 またはそれらの混合物に、 黒鉛粉末を加えた成形材 料を、 圧縮成形、 射出成形等によって所定の形状に加工したものである, これらの成形材料を板状に加工した後、 切削加工やブラスト加工によつ て所定の形状に加工したものを用いることもできる。 これらの成形板は 面方向の電気比抵抗が 5 πι Ω · c m程度以下のものが好ましく用いられ る。
燃料電池のセパレー夕が成形によって作られる場合、 集電板をそれと 同じ成形材料で作製することは、 材料コストの上昇を抑える意味で望ま しい。 集電板の厚みについては、 端子部とそれ以外の部分とで厚みを変 えてもよい。 厚みを変える場合には、 端子部の根元の部分で応力集中に よる素材の破壊が発生しないよう、 曲面によって段差を緩和する構造に することが望ましい。 また、 集電板の厚みは、 破壊しない程度の値、 少 なくとも 3〜 6 m m程度とすることが必要である。
以下、 本発明を実施の形態によりさらに詳しく説明する。 実施の形態 1
図 1は本実施の形態における高分子電解質型燃料電池スタックの一例 を示す。 1で表す電解質膜電極接合体 (M E A ) は、 高分子電解質膜およびこ れを挟むアノードおよび力ソードからなる。 高分子電解質膜は、 電極よ り一回り大きなサイズを有する。 高分子電解質膜の周縁部はガスケッ ト により挟まれている。 そのような M E Aの構造はよく知られたものであ る。 この M E A 1はセパレー夕と交互に積層されている。 セパレー夕は, 片面に酸化剤ガスの流路を有し、 他方の面に燃料ガスの流路を有する力 ソ一ド側セパレー夕とァノ一ド側セパレー夕を兼ねる単一のセパレ一タ 2と、 力ソード側セパレ一夕とアノード側セパレ一夕との両者間にク一 ラントの流路を設けた複合セパレー夕 2 Aとの 2種類が用いられている t 前記のセルの積層体の上端には、 力ソード側の集電板 3 aおよび絶縁 板 4 aを介して端板 5 aが、 また積層体の下端にはァノード側の集電板 3 bおよび絶縁板 4 bを介して端板 5 bがそれぞれ重ね合わされている, 端板 5 aおよび 5 bは、 ボルト 6およびナット 8により締結されて、 セ ルの積層体には所定の荷重が印加される。 7はばねを表す。 端板 5 aに は、 反応ガスおよびクーラントの出入口が設けられている。 図では、 酸 化剤ガスの出口 1 1、 燃料ガスの入口 1 2およびクーラントの出口 1 3 が示されている。 こうして高分子電解質型燃料電池ス夕ック 1 0が組み 立てられる。
集電板 3 aおよび 3 bは、 それらの端子部 1 5 aおよび 1 5 bがセル 積層体の側面に突出しており、 それらの端子部に、 電力取り出しケープ ル 1 6 aおよび 1 6 bが金具 1 5 aおよび 1 5 bによりそれぞれ接続さ れている。 図 1では、 集電板 3 aおよび 3 bは、 それぞれ力ソード側セ パレ一夕およびアノード側セパレ一夕を兼ねるものとして示されている が、 後に詳しく説明するように、 集電板はそれらに限られるものではな い。
図 2〜 4はカソ一ド側セパレー夕を兼ねる集電板を示す。 図 2はその 集電板の力ソード側の正面図、 図 3はその背面図、 図 4は図 2の I V— I V 線断面図である。 図 3では電力取り出し用ケーブル、 およびそれを接続 するための金属板などは省いている。
この集電板 3 0は、 各一対の酸化剤ガス用マ二ホールド孔 3 1、 燃料 ガス用マ二ホールド孔 3 2およびクーラント用マ二ホールド孔 3 3を有 する。 集電板 3 0は、 力ソードと対向する面に、 一対のマ二ホールド孔 3 1を連絡する酸化剤ガスの流路 3 4を有する。 集電板 3 0は、 絶縁板 と対向する面には、 各マニホ一ルド孔 3 1 、 3 2および 3 3を囲む Oリ ングをはめる溝 3 7 、 3 8および 3 9を有する。 これらの溝に填め込ま れた 0リングが、 集電板と絶縁板との間で圧縮されて、 各マ二ホールド 孔からガスおよびクーラントが漏れるのを防止する。
集電板 3 0は、 さらに 2つの穴 3 6を持つ端子部 3 5を有し、 その端 子部にはこれを挟む 2枚の金属板 4 5がビス 4 6とナッ ト 4 7により取 り付けられている。 4 8はばねヮッシャ、 4 9は平ヮッシャである。 金 属板 4 5には、 電力取り出し用ケーブル 4 0の芯線 4 1がはんだ 4 2に より接続されている。 図 2において、 各一対の酸化剤ガス用マ二ホール ド孔 3 1および燃料ガス用マ二ホールド孔 3 2のうち、 端子部 3 5に近 い方のマ二ホールド孔が入口側である。
集電板 3 0の端子部 3 5と電力取り出しケーブル接続用の金属板 4 5 との間の接続箇所は、 特に限定されるものではないが、 図 2および図 3 に示すように、 2点またはそれ以上で接続するのが好ましい。 それは、 接触面圧の均一化により抵抗分によるロスが緩和されるとともに、 締結 によって発生する応力が平準化されやすいためである。 また、 ここに示 したように、 端子部の両面に金属板を接続する他、 片面だけに金属板を 接合することもできる。 しかし、 両面に金属板を接続する方が、 接触面 を増やし接触抵抗を低減する効果がある。 さらに、 端子部に発生する応 力が均一化され、 締め付け力の過多による破壊を防ぐ効果も得られる。 図 5は、 集電板 3 0の端子部 3 5に、 電力取り出しケーブル 4 0を接 続する他の例を示す。 ケーブル 4 0をはんだ付けした U字状の接続金具 4 3に、 集電板 3 0の端子部 3 5を嵌合し、 穴 3 6を貫通するビス 4 4 により両者を固定している。
ここでは、 燃料電池スタックの締結にポルト、 ばね、 ナッ トからなる 締結手段を用いたが、 他の締結手段に変更してもよい。 集電板の端子部 に電力取り出しケーブルを接続するために、 端子部に穴を開け、 ビスと ナッ トで金属板を接続したが、 他の接続法をとることもできる。 例えば. 端子部 3 5にねじ穴を形成し、 電力ケーブルを接続した圧着端子を前記 穴にねじ止めによって接続してもよい。 電気的接続を安定して保持でき る別の接続方法を採ってもよい。
また、 電力取り出しケーブルとケーブルを接続する金属板とは、 はん だで接続したが、 かしめによって圧着する等、 電気的に良好な接続を保 持できる方法であれば、 どのような方法でもよい。 ケーブルを接続する 金属板の材質は、 接触抵抗が低い金属材料を用いればよい。 例えば、 電 気抵抗が低く、 加工性の良好なりん青銅、 銅などの金属を用いることが できる。 実施の形態 2
集電板の端子部における抵抗ロスを低減させる方法について説明する, 図 6は本実施の形態における集電板のカソード側の正面図である。 集 電板 3 O Aは、 その端子部 3 5の両面に、 厚み 1 m程度の金属膜 5 0 を形成している。 この他の構成は、 図 2に示した集電板 3 0と同様であ る。 この金属膜 5 0により、 集電板の端子部 3 5と電力取り出しケープ ルを接続する金属板などとの間の接触抵抗を低減することができる。 図 7は集電板のさらに他の例を示す。 集電板 3 0 Bは、 絶縁板と対向 する面の実質全面に、 厚み数 m〜数十// m程度の金属膜 5 1を形成し ている。 この金属膜により、 集電板の面内方向の導電性を向上でき、 抵 抗ロスがさらに低減できる。 この場合、 金属イオンの溶出による性能低 下を防ぐため、 酸化剤ガス、 燃料ガスおよびクーラントと接触する箇所 には金属膜を形成しないことが望ましい。 この例では、 各マ二ホールド 孔を囲む Oリングを装着するための溝 3 7、 3 8および 3 9から若干外 側に離れた位置までは金属膜を形成していない。 金属膜を形成する金属 としては、 銅やアルミの他、 導電性が付与できる素材を用いればよい。 膜の形成法としては、 例えば蒸着や溶射が利用できるが、 所定の厚膜を 短時間で形成できる点で溶射が好ましい。 その他の構造は、 実施の形態 1と同様である。
図 8は図 2または図 6の集電板の背面に設置される絶縁板を表す。 こ の絶縁板 6 0は、 各一対の酸化剤ガス用マ二ホールド孔 6 1、 燃料ガス 用マ二ホールド孔 6 2およびクーラント用マ二ホールド孔 6 3を有する, 実施の形態 3
本実施の形態では、 セパレ一夕とは別個の独立した集電板について説 明する。
図 9はアノード側セパレー夕の正面図、 図 1 0はそのアノード側セパ レー夕に接する集電板の正面図である。 図 1 2はカソ一ド側セパレー夕 の正面図、 図 1 3はそのカソ一ド側セパレー夕に接する集電板の正面図 である。
ァノード側セパレー夕 1 1 0は、 各一対の酸化剤ガス用マ二ホールド 孔 1 1 1、 燃料ガス用マ二ホールド孔 1 1 2およびクーラント用マニホ 一ルド孔 1 1 3を有し、 アノードと対向する面に、 一対のマ二ホールド 孔 1 1 2を連絡する燃料ガスの流路 1 1 6を有する。 このセパレー夕 1 1 0の背面に配置される集電板 1 2 0は、 各一対の酸化剤ガス用マ二 ホールド孔 1 2 1、 燃料ガス用マ二ホールド孔 1 2 2およびクーラント 用マ二ホールド孔 1 2 3を有する。 集電板 1 2 0は、 端子部 1 2 5を、 セパレー夕 1 1 0の燃料ガスのマ二ホールド孔のうち入口側マ二ホール ド孔 (ガスの流れ方向を示す矢印から明らかなように、 図では左上の方 のマ二ホールド孔) 近傍に、 外側へ突出するように設けている。 この端 子部 1 2 5、 およびこれに連なる部分、 すなわちセパレー夕 1 2 0の前 記入口側マ二ホールド孔およびこれに連なるガス流路の入口側に対応す る領域 1 2 6には、 電気良導体の被覆層 1 2 7が設けられている。 前記 の領域 1 2 6は、 厚みが他の部分より薄く してあり、 ここの両面に被覆 層 1 2 7を設けることにより他の部分と同じ厚みとなるようにしている < 端子部 1 2 5には、 電流取り出し用ケーブルに接続するための金属板を 取りつける孔 1 2 8を有する。
カソード側セパレー夕 1 3 0は、 各一対の酸化剤ガス用マ二ホールド 孔 1 3 1、 燃料ガス用マ二ホールド孔 1 3 2およびクーラント用マニホ 一ルド孔 1 3 3を有し、 力ソードと対向する面に、 一対のマ二ホールド 孔 1 3 1を連絡する酸化剤ガスの流路 1 3 4を有する。 このセパレ一夕 1 3 0の背面に配置される集電板 1 4 0は、 各一対の酸化剤ガス用マ二 ホールド孔 1 4 1、 燃料ガス用マ二ホールド孔 1 4 2およびクーラント 用マ二ホールド孔 1 4 3を有する。 集電板 1 4 0は、 端子部 1 4 5を、 セパレ一夕 1 3 0の酸化剤ガスのマ二ホールド孔 1 3 1のうち入口側マ 二ホールド孔 (図では右上の方のマ二ホールド孔) 近傍に、 外側へ突出 するように設けている。 この端子部 1 4 5、 およびこれに連なる部分、 すなわちセパレー夕 1 3 0の前記入口側マ二ホールド孔およびこれに連 なるガス流路の入口側に対応する領域 1 4 6には、 電気良導体の被覆層 1 4 7が設けられている。 前記の領域 1 4 6は、 厚みが他の部分より薄 く してあり、 ここの両面に被覆層 1 4 7を設けることにより他の部分と 同じ厚みとなるようにしている。 端子部 1 4 5には、 電流取り出し用ケ 一ブルに接続するための金属板を取りつける孔 1 4 8を有する。
図 9および図 1 0から明らかなように、 集電板 1 2 0の端子部 1 2 5 の被覆層 1 2 7は、 セパレー夕板 1 1 0におけるガス流路 1 1 6の入口 側に対応する部分まで伸びている。 金属膜または金属板からなる被覆層 1 2 7は、 炭素材料を主とする他の部分より電気抵抗が小さいから、 発 電時に端子部 1 2 5から電流が取り出される際、 電流密度は前記の部分 で高くなる。 これによつて、 セルの電極反応は、 ガス流路 1 1 6の入口 側において優先的に進行する。 同様に、 力ソード側においても、 ガス流 路 1 3 4の入口側において優先的に進行する。 このようにして各セルで は、 ガスの入口側マ二ホールド孔に近い方で反応により生成する水の量 が多くなり、 その下流へ供給される反応ガスを加湿することとなる。 図 1 0および図 1 3に示されるように、 ァノード側集電板の端子部 1 2 5とカソード側集電板の端子部 1 4 5が互いに向き合うように、 す なわち燃料ガスの入口側マ二ホールド孔および酸化剤ガスの入口側マ二 ホールド孔を近接して設けるのが好ましい。
上記のセパレー夕と集電板の組み合わせの変形例を図 1 5〜 1 8に示 す。
図 1 5に示すァノ一ド側セパレー夕 1 1 0 Aは、 酸化剤用マ二ホール ド孔 1 1 1 Aの位置を変えた他は図 9のセパレー夕 1 1 0と同様である, このセパレー夕 1 1 0 Aの背面に配置される集電板 1 2 0 Aは、 酸化剤 用マ二ホールド孔 1 2 1 Aの位置が異なることおよび被覆層 1 2 7 Aの 形状が若千異なる他は図 1 0の集電板 1 2 0と同様である。
また、 図 1 7に示すカソ一ド側セパレー夕 1 3 0 Aは、 酸化剤用マ二 ホールド孔 1 3 1 Aの位置を変えた他は図 1 2のセパレー夕 1 3 0と同 様である。 このセパレー夕 1 3 0 Aの背面に配置される集電板 1 4 0 A は、 酸化剤用マ二ホールド孔 1 4 1 Aの位置が異なることおよび被覆層 1 4 7 Aの形状が若千異なる他は図 1 3の集電板 1 4 0と同様である。 ここに示した被覆層 1 2 7 、 1 2 7 A、 1 4 7および 1 4 7 Aは、 実 施の形態 2で説明した金属膜により形成することができる。 しかし、 よ り好ましい実施の形態においては、 被覆層は金属板により形成される。 前記の被覆層が金属板で形成され、 図 9に示されるように、 その一部 が集電板に積層されるセパレー夕の投影面積の内側に入り込むようにさ れるのが好ましい。 そのように構成されると、 金属板には、 スタックの 締結荷重がセパレー夕と集電板との間で荷重される。 そうすると金属板 はスタックの締結荷重に応じて強固に固定される。 金属板は、 集電板の 端子部をも被覆しているから、 端子部に接続されたケーブルにより端子 部の根本部にかかる応力を有効に緩和する働きをする。
前記の金属板は、 集電板に導電性接着剤ゃシリコーン接着剤等の弾力 性を有する接着剤で固着させるのが好ましい。 シリコーン接着剤等の絶 縁性接着剤は、 集電板と金属板との間の特定領域に介在させ、 集電板の 特定部分の電流密度を制限するのに便利である。
図 1 9は集電板 1 2 0の部分 1 2 6に導電性接着剤 1 2 9により金属 板 1 2 7を接着した例を示している。 このように金属板が接着剤により 集電板に固着されると、 集電板と金属板の段差がなくなり、 端子部の応 力緩和にはより有効である。 金属板と集電板とを導電性接着剤により接 着した場合は、 接着剤を用いないものに比較して、 集電板の端子部で 3 O Aの電流を取り出すとき、 スタック両端の集電板間で約 5 m V電圧 が高いことが確認された。 実施の形態 4
本実施の形態における集電板を図 2 0及び図 2 1に示す。
図 2 0はァノード側の集電板の正面図である。 この集電板 1 2 0 Bは, 端子部 1 2 5 Bおよびこれに連なる部分に被覆層 1 2 7を有しない他は 図 1 0の集電板と同様の構造を有し、 図 9に示すァノ一ド側セパレー夕 1 1 0の背面に配置される。
図 2 1は力ソード側の集電板の正面図である。 この集電板 1 4 0 Bは, 端子部 1 4 5 Bおよびこれに連なる部分に被覆層 1 4 7を有しない他は 図 1 3の集電板と同様の構造を有し、 図 1 2に示すカソ一ド側セパレー 夕 1 3 0の背面に配置される。
ここに示した集電板は、 いずれも炭素材料とバインダ一のコンポジッ ト材料の成形体から構成されている。 そのため、 発電時には、 端子部に 近いところ、 すなわちガスの入口側マ二ホールド孔の近傍で電流密度が 高くなり、 実施の形態 4と同様に、 ガスを加湿する効果が発揮される。 実施の形態 5
本実施の形態では、 セパレー夕を兼ねる集電板の例を説明する。
図 2 2はァノード側セパレー夕を兼ねる集電板の正面図、 図 2 3はそ の背面図である。 この集電板 1 5 0は、 各一対の酸化剤ガス用マ二ホー ルド孔 1 5 1、 燃料ガス用マ二ホールド孔 1 5 2およびクーラント用マ 二ホールド孔 1 5 3を有し、 アノードと対向する面に、 一対のマニホ一 ルド孔 1 5 2を連絡する燃料ガスの流路 1 5 6を有する。 集電板 1 5 0 は、 ァノード側マ二ホールド孔 1 5 2のうち入口側のマ二ホールド孔
(図 2 2において左上の方のマ二ホールド孔) の近傍に端子部 1 5 5を 有し、 その背面にはマ二ホールド孔 1 5 1の近傍まで伸びた被覆層
1 5 7を有する。 この被覆層の構成は、 集電板の背面にのみ形成されて いる他は、 実施の形態 3で説明した集電板 1 2 0などと同様である。 こ こでは、 アノード側の集電板について説明したが、 同様に、 力ソード側 セパレー夕を兼ねた集電板を構成することができることは当業者には容 易に理解されるであろう。 実施の形態 6
本実施の形態では、 芯材となる金属板を埋め込んだ集電板について説 明する。
図 2 4は本実施の形態の集電板の正面図、 図 2 5は図 2 4の XXV-XXV線 断面図である。 集電板 1 6 0は導電性炭素材料とバインダ一からなる成 形材料により芯材金属板を包囲するように成形したものである。 集電板 1 6 0は、 各一対の酸化剤ガス用マ二ホールド孔 1 6 1、 燃料ガス用マ 二ホールド孔 1 6 2およびクーラント用マ二ホールド孔 1 6 3を有し、 側面に突出させて端子部 1 6 5を有する。 この集電板に埋め込まれた金 属板 1 6 7は、 外部へ露出する部分がないように、 外形は集電板のそれ より小さいサイズであり、 かつ各マ二ホールド孔に対応する部分ではマ 二ホールド孔より径の大きい孔を有する。
図 2 6は、 芯材金属板の表面に電気良導体層 1 6 9を形成した例を示 す。 この層により、 成形材料からなる層と芯材金属板との接触抵抗を低 減し、 集電板の電気特性を向上することができる。 そのような層を形成 するには、 芯材金属板の表面の酸化物をあらかじめ除去し、 その上に貴 金属、 導電性無機酸化物、 導電性無機窒化物、 または導電性無機炭化物 の層を形成して電気良導体層とすることができる。
黒鉛 8 0 w t %およびフエノール樹脂 2 0 w t %の混合物からなる成 形用導電性材料を用い、 芯材金属板を包み込むようにして集電板を成形 した実施例を以下に説明する。 まず、 金型に成形用コンパウンドを 5 0 g均一に充填し、 型締め圧 1 0 0 k g f Z c m2にて予備圧縮を行った。 この時金型温度は 7 0でで あった。 次に、 金型を開き、 金属板を挿入し、 その上から成形用コンパ ゥンドを 5 0 g充填し、 金型を型締め圧 5 0 0 k g f ノ c m 2で締め、 温 度を 1 6 0でまで上昇させた。 こうして作製した集電板は、 導電性成形 材料のみで作製した集電板 (厚み 7 m mm m) に比較し、 強度的に強く、 かつ電気抵抗も低いため、 集電板厚みを 4 mmと薄くすることが可能と なった。 芯材には、 厚み 2 m mの黄銅板を用いた。 集電板には、 図 2 4 に示すように、 酸化剤ガス、 燃料ガスおよびクーラント用の各一対のマ 二ホールド孔を設けた。 マ二ホールド孔の内面は導電性成形材料で覆わ れており、 芯材金属板と各マ二ホールド孔を流れる流体が接しないよう な構造とした。 この集電板を用いたスタックを作製し、 クーラントに純 水を用いて発電テストを 1 0 0時間行った。 積層セル数は 5 0セルであ つた。 比較例として黄銅のみの集電板を用いた 5 0セルのスタックも同 様にテストした。 その結果、 比較例の黄銅製集電板に設けられたクーラ ント用マ二ホールド孔の内面には腐食が確認されたが、 本実施例の集電 板のマ二ホールド孔の内面には腐食は確認されなかった。 クーラントに 用いた純水をテスト終了後に分析した。 その結果、 黄銅製集電板を用い たス夕ックの冷却水からは 1 0 0 p p mの銅イオンと 8 0 p p mの亜鉛 イオンが検出された。 一方、 本実施例のスタックのクーラントからは金 属イオンは検出されなかった。 導電性成形材料で金属芯材を覆うことに より、 強度および電気導電性を確保し、 低コストと不純物の溶出削減を 行わせることが可能となる。
以下に、 芯材の金属板の表面に、 電気良導体層を形成する例を具体的 に説明する。
( 1 ) 厚さ 1 m mの黄銅板の表面に、 R F —プレナマグネトロンを用 いたスパッ夕法により、 白金または金の層を 1 2 0 Aの厚さに形成した < ターゲッ トには、 白金 ( 9 9 %) または金 ( 9 9 %) を用い、 基板温度 は 5 0 0でとした。 スパッ夕雰囲気は、 4 X 1 0— 2Torrの A r
( 9 9. 9 9 9 9 %) とし、 スパッ夕電力は 4 0 0 W、 成膜速度は 1. 5 m/時間となるようにした。
( 2 ) 厚さ l mmの T i板の表面に、 R F—プレナマグネトロンを用 いたスパッ夕法により、 T i N層を 1 Ai mの厚さに形成した。 夕ーゲッ トには、 T i N ( 9 9 %) を用い、 基板温度は 5 0 0でとした。 スパッ 夕雰囲気は 4 X 1 0— 2Torrの A r ( 9 9. 9 9 9 9 %) とし、 スパッ夕 電力は 4 0 0 W、 成膜速度が 1. 5 /xmZ時間となるようにした。 得ら れたスパッ夕層は、 X線回折による構造解析により、 T i Nと同定され た。 この方法で得られた T i N層の比抵抗は、 2 X 1 0— 4Ω c mであつ た。
( 3 ) 厚さ 1 mmの A 1板の表面に、 R F—ダイオードを用いたスパ ッ夕法により、 T i — A l — N層を 1. 2 mの厚さに形成した。 夕一 ゲッ トには、 T i — A 1 —N (9 9 %) を用い、 基板温度は 3 0 0でと した。 スパッタ雰囲気は 4 X 1 0— 2Torrの A r ( 9 9. 9 9 9 %) 、 ス パッタ電力は 3 0 0 W、 成膜速度は 1. 0 m/時間となるようにした, この方法で得られた T i - A 1 — N層の比抵抗は、 1 X 1 0— 3 Ω c mで あった。
(4) 金属基板上に n型ドープした S i C層の形成方法を示す。 成膜 方法は、 1 4. 5 6 MH zの高周波グロ一放電分解法を用い、 被分解ガ スは、 水素で希釈したシラン、 メタン (CH4) 、 ジボラン (P H3) を, P ( S i + C) = 1 0原子%となる比率で混合し、 全体を 1 0 Torrと し、 基板温度 3 0 0でで行った。 このとき、 成膜時間を制御することで, η型ドープした S i C層の膜厚を 1 0 0 0 Aとした。 成膜後、 S i C層 の上に、 金電極を蒸着し、 S i C層の比抵抗を測定したところ、 5 0 Ω · c mであった。
( 5) 厚さ l mmのステンレス鋼 S U S 3 1 6板の表面に、 真空加熱 蒸着法により P b層を 1 /zmの厚さに形成した。 このときの蒸着条件は, 1 X 1 0— 7Torrの A r ( 9 9. 9 9 9 9 %) 雰囲気で、 基板温度は 2 0 0 とした。 次に、 この P b蒸着ステンレス鋼板の P b蒸着面に、 P b〇層をスパッタ法により形成した。 形成条件は、 酸素分圧が
2 X 1 0 — 4Torrの A r ( 9 9. 9 9 9 9 %) 雰囲気、 基板温度を 2 0 0 °C、 成膜速度 3 ^mZ時間となるようにスパッ夕電力を制御した。 得ら れたスパッ夕層は、 X線回折による構造解析により P b Oと同定された t この方法で得られた P b〇層の比抵抗は、 5 X 1 0— 5Ω c mであった。 また、 酸化スズを用いた例では、 板厚 l mmのステンレス鋼 S U S 3 1 6表面に I nをドープした酸化スズの層を真空電子ビーム蒸着法によ り 0. 5 mの厚さに形成した。 蒸着時の真空度は 5 X 1 0— 6Torrの A rガス雰囲気で、 基板温度は 3 0 0 とした。
以上のようにして表面処理した芯材金属板を埋め込んだ炭素成形材料 からなる集電板は、 未処理の金属板を用いた集電板に比べて電気特性は 向上し、 電圧ロスが少なくなることが確認された。 実施の形態 7
本実施の形態では、 集電板とスタック締結用端板とを一体に成形した 例を説明する。 この集電板は、 電気抵抗を極めて低く保っためにスタツ ク積層方向に板厚を大きく した。 集電板は黒鉛板で作製し、 その板厚は 7 0 mmであった。 この黒鉛板の電気比抵抗は、 面方向が l mQ ' c m. 厚み方向が 1 Ο Ο πιΩ · c mであった。 板厚が 7 0 mmもあるので、 集 電板を含めたセル積層体をボルト、 ナッ ト、 ばね等の締結部材によって 所定の荷重で締結した。 事前に感圧紙で電極への締結面圧を確認したと ころ、 1 0 k g f Z c m 2の面圧が電極にかかっており、 集電板にクラッ ク、 顕著なひずみ等は確認されなかった。 その際、 ボルトの周囲には厚 み 0 . 5 mmのポリテトラフルォロエチレン製テープを巻き、 ばねが集 電板と接する部位には、 ポリフエ二レンサルフアイ ド製の厚さ 5 mmの スぺーサを介して締結した。 こうして高分子電解質型燃料電池ス夕ック を完成させた。
集電板は、 その端部に端子部を備え、 そこに電力取り出しケーブルを 接続した。 端子部の詳細な構造は実施の形態 1 と同様である。
締結用ボルトの一部を用いてスタツクを評価台に固定し、 酸化剤ガス、 燃料ガスおよびクーラントを供給して発電させたところ、 電流密度 0 . S A Z c m 2まで電流をとることに問題のないことが確認された。 ここでは、 端板を一体にした集電板の例を説明したが、 この集電板に は、 アノードまたは力ソードに対向する面にガス流路を設けて、 セパレ —夕を兼ねるようにすることもできる。 産業上の利用の可能性
本発明によれば、 導電性炭素材料を主とするため、 低コストで、 軽量 であり、 マ二ホールド孔における金属の腐食を危惧することのない集電 板を提供する。 特に、 端子部を反応ガスの入口側マ二ホールド孔の近傍 に設けることにより、 電極は、 これに供給される反応ガスの入口側にお いて、 反応により生成する水により加湿される。 その結果、 電極の耐久 性を向上することができる。 また、 集電板の一方の面にガス流路を形成 することにより、 端部に位置するセパレー夕と一体化できるから、 部品 点数の削減や抵抗成分による発電ロスの低減を図ることができる。 これ らによって高分子電解質型燃料電池のコスト低減や体積および重量効率 を向上することができる

Claims

請 求 の 範 囲
1 . 水素イオン伝導性高分子電解質膜、 前記高分子電解質膜を挟むァノ ードおよび力ソード、 ァノードに燃料ガスを供給するガス流路を有する ァノード側セパレー夕、 およびカソードに酸化剤ガスを供給するガス流 路を有するカソード側セパレー夕からなる単位セルの複数個を積層した セル積層体、 前記セル積層体を挟む一対の集電板、 並びに前記セル積層 体および集電板を加圧状態で締結する一対の端板を具備し、 前記集電板 は、 導電性炭素材料を主成分として構成され、 かつ電流取り出し用ケー ブルを接続する端子部が、 燃料ガスまたは酸化剤ガスの入口側マ二ホー ルドの近傍に有することを特徴とする高分子電解質型燃料電池。
2 . 前記端子部が電気良導体の被覆層を有する請求の範囲第 1項記載の 高分子電解質型燃料電池。
3 . 前記端子部から、 前記入口側マ二ホールドに連なる、 セルのガス流 路入口側に対応する部分にわたる領域に、 電気良導体の被覆層を有する 請求の範囲第 2項記載の高分子電解質型燃料電池。
4 . 前記被覆層が金属板からなる請求の範囲第 3項記載の高分子電解質 型燃料電池。
5 . 前記金属板が導電性接着剤により集電板に接着されている請求の範 囲第 4項記載の高分子電解質型燃料電池。
6 . 前記集電板は、 その面方向の電気比抵抗が厚み方向の電気比抵抗よ り小さい請求の範囲第 1項記載の高分子電解質型燃料電池。
7 . 前記集電板の面方向の電気比抵抗と厚み方向の電気比抵抗値との比 が 0 . 0 1〜 0 . 1である請求の範囲第 6項記載の高分子電解質型燃料 電池。
8 . 前記集電板が導電性炭素材料とバインダ一とのコンポジッ トからな る成形体を含む請求の範囲第 1項記載の高分子電解質型燃料電池。
9 . 前記成形体は、 芯材の金属板を内包し、 かつ前記金属板は前記成形 体のマ二ホールド孔を含めて前記成形体より露出する部分を有しない請 求の範囲第 8項記載の高分子電解質型燃料電池。
1 0 . 前記金属板が、 貴金属、 導電性無機酸化物、 導電性無機窒化物、 または導電性無機炭化物からなる導電層により被覆されている請求の範 囲第 9項記載の高分子電解質型燃料電池。
1 1 . 前記集電板の少なく とも一方は、 アノードまたは力ソードと対向 する面にガス流路を有し、 ァノ一ド側セパレ一夕またはカソード側セパ レー夕として機能する請求の範囲第 1項記載の高分子電解質型燃料電池,
1 2 . 前記集電板が、 端板と一体に形成されている請求の範囲第 1項記 載の高分子電解質型燃料電池。
PCT/JP2003/004723 2002-04-17 2003-04-14 Pile a combustible a electrolyte polymerique WO2003088395A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003585213A JPWO2003088395A1 (ja) 2002-04-17 2003-04-14 高分子電解質型燃料電池
EP03746483A EP1422776A4 (en) 2002-04-17 2003-04-14 POLYMERIC ELECTROLYTE FUEL CELL
KR1020037015116A KR100552174B1 (ko) 2002-04-17 2003-04-14 고분자 전해질형 연료전지
US10/778,602 US7294423B2 (en) 2002-04-17 2004-02-17 Polymer electrolyte fuel cell having improved current collector plates and method of forming the same
US11/866,954 US20080079186A1 (en) 2002-04-17 2007-10-03 Polymer electrolyte fuel cell having improved current collector plates and method of forming the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-114552 2002-04-17
JP2002114552 2002-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/778,602 Continuation-In-Part US7294423B2 (en) 2002-04-17 2004-02-17 Polymer electrolyte fuel cell having improved current collector plates and method of forming the same

Publications (1)

Publication Number Publication Date
WO2003088395A1 true WO2003088395A1 (fr) 2003-10-23

Family

ID=29243388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004723 WO2003088395A1 (fr) 2002-04-17 2003-04-14 Pile a combustible a electrolyte polymerique

Country Status (6)

Country Link
US (2) US7294423B2 (ja)
EP (1) EP1422776A4 (ja)
JP (1) JPWO2003088395A1 (ja)
KR (1) KR100552174B1 (ja)
CN (1) CN1312796C (ja)
WO (1) WO2003088395A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469542A1 (en) * 2003-04-09 2004-10-20 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2004362943A (ja) * 2003-06-05 2004-12-24 Fuji Electric Holdings Co Ltd 燃料電池
JP2005285399A (ja) * 2004-03-29 2005-10-13 Toyota Motor Corp 燃料電池
JP2005327558A (ja) * 2004-05-13 2005-11-24 Fuji Electric Holdings Co Ltd 固体高分子形燃料電池
WO2006009277A1 (ja) * 2004-07-22 2006-01-26 Toyota Jidosha Kabushiki Kaisha 集電板、燃料電池、及びそれらの製造方法
JP2006059679A (ja) * 2004-08-20 2006-03-02 Honda Motor Co Ltd 燃料電池スタック
JP2006080081A (ja) * 2004-09-08 2006-03-23 Samsung Sdi Co Ltd 燃料電池システム及びスタック
JP2006179300A (ja) * 2004-12-22 2006-07-06 Denso Corp 燃料電池の電流測定装置に用いられる電流量推定システム
JP2006185671A (ja) * 2004-12-27 2006-07-13 Denso Corp 燃料電池の電流測定装置
JP2007059127A (ja) * 2005-08-23 2007-03-08 Honda Motor Co Ltd 燃料電池及び燃料電池を搭載した自動二輪車
JP2007250189A (ja) 2006-02-20 2007-09-27 Nissan Motor Co Ltd 燃料電池スタック
JP2008177047A (ja) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp 燃料電池
JP2009117208A (ja) * 2007-11-07 2009-05-28 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
JP2009140794A (ja) * 2007-12-07 2009-06-25 Toyota Motor Corp 燃料電池用のターミナルプレートと燃料電池
US7722977B2 (en) 2004-08-20 2010-05-25 Honda Motor Co., Ltd. Fuel cell stack comprising current collector provided at least at one fluid passage
JP2010282944A (ja) * 2009-06-04 2010-12-16 Chung-Hsin Electric & Machinery Manufacturing Corp 透明な流路を具えた燃料電池スタック及びそのバイポーラ板構造
WO2013073330A1 (ja) 2011-11-14 2013-05-23 日本軽金属株式会社 燃料電池用集電板及びその製造方法
JP2013125611A (ja) * 2011-12-13 2013-06-24 Panasonic Corp 燃料電池用セパレータ、及び燃料電池
JP2018147716A (ja) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 燃料電池用のターミナルプレート
JP2021022476A (ja) * 2019-07-26 2021-02-18 京セラ株式会社 セルスタック装置、燃料電池モジュールおよび燃料電池装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049031B4 (de) * 2006-10-13 2009-10-22 Futuree Fuel Cell Solutions Gmbh Tragbehälter einer Energieversorgungseinheit mit Brennstoffzellen, dessen Verwendung und Verfahren zur Gefährdungsreduzierung
US20080206605A1 (en) * 2007-02-28 2008-08-28 Bloom Energy Corporation Current collector for fuel cell systems
FR2971092B1 (fr) * 2011-02-02 2013-03-08 Peugeot Citroen Automobiles Sa Pile a combustible comportant une plaque monopolaire collectrice
WO2012176488A1 (ja) 2011-06-23 2012-12-27 日本メクトロン株式会社 可撓性回路基板およびその製造方法、ならびに該可撓性回路基板を用いた燃料電池
EP2811564B1 (en) * 2012-01-30 2017-06-07 NGK Spark Plug Co., Ltd. Fuel battery
CA2944366C (en) * 2014-03-28 2018-12-04 Nissan Motor Co., Ltd. Laminated battery, separator and connection method of internal resistance measuring device
EP3035430B1 (de) * 2014-12-19 2019-09-25 Hexis AG Brennstoffzellenmodul
JP6392688B2 (ja) * 2015-03-09 2018-09-19 日本特殊陶業株式会社 燃料電池スタック
JP7152202B2 (ja) * 2018-06-28 2022-10-12 トヨタ自動車株式会社 燃料電池用セパレータ及び燃料電池
JP7347197B2 (ja) * 2019-12-19 2023-09-20 トヨタ自動車株式会社 回転電機コアの製造方法および製造装置
DE102022212229A1 (de) 2022-11-17 2024-05-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen eines Brennstoffzellenstapels, Brennstoffzellenstapel sowie Vorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166677A (ja) * 1982-03-26 1983-10-01 Mitsubishi Electric Corp 燃料電池用端子装置
JPH08203553A (ja) * 1995-01-23 1996-08-09 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2001043872A (ja) * 1999-07-29 2001-02-16 Aisin Seiki Co Ltd 固体高分子電解質型燃料電池
JP2001176530A (ja) * 1999-12-17 2001-06-29 Toyota Motor Corp 固体高分子膜型燃料電池システム
JP2003045456A (ja) * 2001-08-02 2003-02-14 Hitachi Ltd 固体高分子型燃料電池スタック
JP2003100320A (ja) * 2001-09-20 2003-04-04 Toyota Motor Corp 燃料電池

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US38116A (en) * 1863-04-07 Improvement in manufacturing nuts, bolts
JPS55151771A (en) 1979-05-15 1980-11-26 Seiko Instr & Electronics Ltd Thin-type solid electrolyte cell
JP2575836B2 (ja) * 1988-09-05 1997-01-29 株式会社日立製作所 溶融炭酸塩型燃料電池
US4988583A (en) 1989-08-30 1991-01-29 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Novel fuel cell fluid flow field plate
US5399184A (en) 1992-05-01 1995-03-21 Chlorine Engineers Corp., Ltd. Method for fabricating gas diffusion electrode assembly for fuel cells
US5798187A (en) 1996-09-27 1998-08-25 The Regents Of The University Of California Fuel cell with metal screen flow-field
US5858569A (en) 1997-03-21 1999-01-12 Plug Power L.L.C. Low cost fuel cell stack design
CN1151573C (zh) * 1998-06-30 2004-05-26 松下电器产业株式会社 固体高分子电解质燃料电池
DE19840517A1 (de) 1998-09-04 2000-03-16 Manhattan Scientifics Inc Gasdiffusionsstruktur senkrecht zur Membran von Polymerelektrolyt-Membran Brennstoffzellen
US6180275B1 (en) * 1998-11-18 2001-01-30 Energy Partners, L.C. Fuel cell collector plate and method of fabrication
CN1177385C (zh) 1999-10-14 2004-11-24 松下电器产业株式会社 高分子电解质型燃料电池
US6372372B1 (en) 2000-02-11 2002-04-16 Plug Power Inc. Clamping system for a fuel cell stack
US6589681B1 (en) 2000-03-06 2003-07-08 Hybrid Power Generation Systems Llc Series/parallel connection of planar fuel cell stacks
JP3606514B2 (ja) * 2000-04-13 2005-01-05 松下電器産業株式会社 積層型燃料電池システム
JP2002025575A (ja) 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd 燃料電池
FR2812120B1 (fr) * 2000-07-24 2006-11-03 Commissariat Energie Atomique Materiau composite conducteur et electrode pour pile a combustible utilisant ce materiau
FR2812119B1 (fr) 2000-07-24 2002-12-13 Commissariat Energie Atomique Materiau composite conducteur et electrode pour pile a combustible utilisant ce materiau mis en forme par thermo- compression
US20030091891A1 (en) 2001-01-16 2003-05-15 Tomoaki Yoshida Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
US7179554B2 (en) 2001-06-29 2007-02-20 Plug Power Inc. Fuel cell systems
US6811918B2 (en) * 2001-11-20 2004-11-02 General Motors Corporation Low contact resistance PEM fuel cell
JP3616065B2 (ja) 2002-03-22 2005-02-02 大同メタル工業株式会社 空気吸い込み式燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166677A (ja) * 1982-03-26 1983-10-01 Mitsubishi Electric Corp 燃料電池用端子装置
JPH08203553A (ja) * 1995-01-23 1996-08-09 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2001043872A (ja) * 1999-07-29 2001-02-16 Aisin Seiki Co Ltd 固体高分子電解質型燃料電池
JP2001176530A (ja) * 1999-12-17 2001-06-29 Toyota Motor Corp 固体高分子膜型燃料電池システム
JP2003045456A (ja) * 2001-08-02 2003-02-14 Hitachi Ltd 固体高分子型燃料電池スタック
JP2003100320A (ja) * 2001-09-20 2003-04-04 Toyota Motor Corp 燃料電池

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678490B2 (en) 2003-04-09 2010-03-16 Panasonic Corporation Polymer electrolyte fuel cell
EP1469542A1 (en) * 2003-04-09 2004-10-20 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2004362943A (ja) * 2003-06-05 2004-12-24 Fuji Electric Holdings Co Ltd 燃料電池
JP2005285399A (ja) * 2004-03-29 2005-10-13 Toyota Motor Corp 燃料電池
JP2005327558A (ja) * 2004-05-13 2005-11-24 Fuji Electric Holdings Co Ltd 固体高分子形燃料電池
JP4609732B2 (ja) * 2004-07-22 2011-01-12 トヨタ自動車株式会社 集電板、燃料電池、及びそれらの製造方法
US7947408B2 (en) 2004-07-22 2011-05-24 Toyota Jidosha Kabushiki Kaisha Collecting plate, fuel cell, and method for manufacturing same
JPWO2006009277A1 (ja) * 2004-07-22 2008-07-31 トヨタ自動車株式会社 集電板、燃料電池、及びそれらの製造方法
WO2006009277A1 (ja) * 2004-07-22 2006-01-26 Toyota Jidosha Kabushiki Kaisha 集電板、燃料電池、及びそれらの製造方法
US7722977B2 (en) 2004-08-20 2010-05-25 Honda Motor Co., Ltd. Fuel cell stack comprising current collector provided at least at one fluid passage
JP2006059679A (ja) * 2004-08-20 2006-03-02 Honda Motor Co Ltd 燃料電池スタック
JP2006080081A (ja) * 2004-09-08 2006-03-23 Samsung Sdi Co Ltd 燃料電池システム及びスタック
JP4672492B2 (ja) * 2004-09-08 2011-04-20 三星エスディアイ株式会社 燃料電池システム及びスタック
JP2006179300A (ja) * 2004-12-22 2006-07-06 Denso Corp 燃料電池の電流測定装置に用いられる電流量推定システム
JP2006185671A (ja) * 2004-12-27 2006-07-13 Denso Corp 燃料電池の電流測定装置
JP2007059127A (ja) * 2005-08-23 2007-03-08 Honda Motor Co Ltd 燃料電池及び燃料電池を搭載した自動二輪車
JP2007250189A (ja) 2006-02-20 2007-09-27 Nissan Motor Co Ltd 燃料電池スタック
JP2008177047A (ja) * 2007-01-18 2008-07-31 Mitsubishi Materials Corp 燃料電池
JP2009117208A (ja) * 2007-11-07 2009-05-28 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
JP2009140794A (ja) * 2007-12-07 2009-06-25 Toyota Motor Corp 燃料電池用のターミナルプレートと燃料電池
JP2010282944A (ja) * 2009-06-04 2010-12-16 Chung-Hsin Electric & Machinery Manufacturing Corp 透明な流路を具えた燃料電池スタック及びそのバイポーラ板構造
WO2013073330A1 (ja) 2011-11-14 2013-05-23 日本軽金属株式会社 燃料電池用集電板及びその製造方法
JP2013125611A (ja) * 2011-12-13 2013-06-24 Panasonic Corp 燃料電池用セパレータ、及び燃料電池
JP2018147716A (ja) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 燃料電池用のターミナルプレート
JP2021022476A (ja) * 2019-07-26 2021-02-18 京セラ株式会社 セルスタック装置、燃料電池モジュールおよび燃料電池装置

Also Published As

Publication number Publication date
KR100552174B1 (ko) 2006-02-13
EP1422776A1 (en) 2004-05-26
EP1422776A4 (en) 2008-02-20
CN1312796C (zh) 2007-04-25
JPWO2003088395A1 (ja) 2005-08-25
KR20030097887A (ko) 2003-12-31
CN1516904A (zh) 2004-07-28
US20080079186A1 (en) 2008-04-03
US20040209151A1 (en) 2004-10-21
US7294423B2 (en) 2007-11-13

Similar Documents

Publication Publication Date Title
WO2003088395A1 (fr) Pile a combustible a electrolyte polymerique
US6972162B2 (en) Solid polymer electrolyte fuel cell unit
EP1094535B1 (en) Solid polymer electrolyte fuel cell
US6866958B2 (en) Ultra-low loadings of Au for stainless steel bipolar plates
US7390586B2 (en) Fuel cell stacks of alternating polarity membrane electrode assemblies
JP4901169B2 (ja) 燃料電池スタック
WO2005018032A1 (en) Adhesive bonds for metallic bipolar plates
JP2006156386A (ja) 燃料電池用金属セパレータ及びその製造方法とこれを含む燃料電池スタック
WO2001022513A1 (fr) Pile a combustible a electrolyte polymerique
JP2006516796A (ja) 耐食性の燃料電池用端子板
JP4920137B2 (ja) 高分子電解質型燃料電池の運転方法
US7169496B2 (en) Fuel Cell
US20040081879A1 (en) Fuel cell bipolarplate
CA2430666C (en) Separator of a fuel cell and a manufacturing method thereof
CN101828293B (zh) 燃料电池
JP4047265B2 (ja) 燃料電池及びそれに用いられる冷却用セパレータ
US8323851B2 (en) Non-permeable low contact resistance shim for composite fuel cell stacks
JP2001357862A (ja) バイポーラプレートおよび固体高分子型燃料電池
JP2004103296A (ja) 固体高分子型燃料電池
JP4366726B2 (ja) 固体高分子型燃料電池
JP2001236967A (ja) 固体高分子電解質型燃料電池用セパレータ
JP5151270B2 (ja) 燃料電池構成部材
JP2007128908A (ja) 固体高分子電解質型燃料電池のセルユニット
JP2003045456A (ja) 固体高分子型燃料電池スタック
JP2010186685A (ja) 燃料電池および燃料電池システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 1020037015116

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 038004453

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003746483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10778602

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003585213

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003746483

Country of ref document: EP