WO2012176488A1 - 可撓性回路基板およびその製造方法、ならびに該可撓性回路基板を用いた燃料電池 - Google Patents

可撓性回路基板およびその製造方法、ならびに該可撓性回路基板を用いた燃料電池 Download PDF

Info

Publication number
WO2012176488A1
WO2012176488A1 PCT/JP2012/052508 JP2012052508W WO2012176488A1 WO 2012176488 A1 WO2012176488 A1 WO 2012176488A1 JP 2012052508 W JP2012052508 W JP 2012052508W WO 2012176488 A1 WO2012176488 A1 WO 2012176488A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
flexible circuit
circuit board
plating
flexible
Prior art date
Application number
PCT/JP2012/052508
Other languages
English (en)
French (fr)
Inventor
昌功 平田
Original Assignee
日本メクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メクトロン株式会社 filed Critical 日本メクトロン株式会社
Priority to JP2012523135A priority Critical patent/JP5833003B2/ja
Priority to CN201280001304.9A priority patent/CN102959781B/zh
Priority to US13/697,151 priority patent/US9076997B2/en
Priority to EP12756062.1A priority patent/EP2725645B1/en
Publication of WO2012176488A1 publication Critical patent/WO2012176488A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0269Separators, collectors or interconnectors including a printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • H01M8/0278O-rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flexible circuit board, in particular, a flexible circuit board used as a current collector plate of a fuel cell, a manufacturing method thereof, and a fuel cell using the flexible circuit board.
  • lithium-ion batteries that are lightweight and have a high capacity are mainly used as power sources for electronic devices such as mobile phones and personal computers.
  • DMFC direct methanol fuel cell
  • Methanol membrane electrode assembly
  • Methanol supplied to the fuel electrode is decomposed by the catalyst to generate hydrogen ions.
  • the hydrogen ions pass through the electrolyte membrane and react with oxygen present in the air at the air electrode.
  • electric power is generated by this series of reactions.
  • Direct methanol fuel cells can cope with an increase in power consumption of electronic devices because they have higher energy density than lithium ion batteries.
  • the electronic device can be continuously used without charging for a long time as in a lithium ion battery.
  • a direct methanol fuel cell does not require a reformer or the like for producing hydrogen, one of the advantages is that it can be made smaller and lighter than other fuel cells.
  • a current collector plate as one of the members constituting the direct methanol fuel cell.
  • a flexible circuit board is used as a current collector plate (see, for example, Patent Document 1).
  • a conductor layer constituting a current collector is formed on one side of a flexible substrate made of polyimide or the like.
  • the current collector is provided with an opening for supplying methanol or air to the membrane electrode assembly.
  • Patent Document 2 discloses a flexible circuit board in which a conductor layer of a current collector is covered with a carbon-containing layer.
  • the carbon-containing layer is made of a resin composition containing carbon such as carbon black in a resin material such as polyimide.
  • the carbon-containing layer has a higher resistance than the conductor layer made of a metal such as copper, there is a problem that the conduction resistance value of the current collector covered with the carbon-containing layer is increased. Further, the binder resin material may be dissolved under high temperature use conditions.
  • the conductor layer is covered with a coating layer such as a carbon-containing layer, particularly when a plurality of cells are connected in series and a high voltage is output, it is passed through the interface between the flexible substrate and the coating layer.
  • a coating layer such as a carbon-containing layer
  • metal constituting the conductor layer is eluted due to corrosion. This will be described with reference to FIGS. 6 (1) and (2).
  • FIG. 6 (1) shows a cross-sectional view of a conventional flexible circuit board 100 provided with a fuel cell current collector.
  • a conductor layer 102 constituting a current collector is formed on one surface of a flexible substrate 101 made of polyimide or the like.
  • the conductor layer 102 is made of copper or the like.
  • a coating layer (for example, the above-described carbon-containing layer) 103 is formed so as to cover the conductor layer 102.
  • the flexible circuit board 100 is formed with an opening 104 for supplying methanol and an opening 105 for supplying air.
  • the covering layer 103 covers the conductor layer 102, the conductor layer 102 is not exposed to the outside.
  • the coating layer 103 and the flexible base material 101 are only in contact with each other and are not in strong contact with each other. Therefore, while the flexible circuit board 100 is used as a current collector of a fuel cell, the acid of methanol and its intermediate product permeates through the interface S, and the corrosion and elution of the conductor layer 102 proceeds. To do.
  • the side surface of the conductor layer 102 is scraped from the side surface, and the side surface portion of the coating layer 103 floats in the air.
  • the conductor layer 102 cannot be prevented from being corroded or eluted even if the coating layer 103 is provided.
  • the conductor layer 102 is plated with a metal (such as gold) that has a smaller ionization tendency than copper constituting the conductor layer 102 as the covering layer 103.
  • a metal such as gold
  • the present invention is capable of preventing corrosion and elution of the conductor layer constituting the current collector and obtaining sufficient electrical connection with the membrane electrode assembly even under high temperature and high voltage use conditions. It is an object of the present invention to provide a flexible circuit board, a manufacturing method thereof, and a fuel cell using the flexible circuit board.
  • a flexible circuit board includes: A flexible circuit board provided with a current collector of a fuel cell, An insulating flexible substrate; A plurality of openings for supplying fuel or air, which are provided in a predetermined region and penetrate the flexible base material in the thickness direction; A conductor layer that is formed on the front and back surfaces of the flexible substrate in the predetermined region, and the inner walls of the plurality of openings, and constitutes the current collector; A conductive surface treatment film formed on the conductor layer and having more corrosion resistance than the conductor layer; It is characterized by providing.
  • a fuel cell according to an aspect of the present invention includes: A membrane electrode assembly composed of an electrolyte membrane, a fuel electrode joined to one surface of the electrolyte membrane, and an air electrode joined to the other surface of the electrolyte membrane; A flexible circuit board according to the present invention, wherein a current collector is disposed in contact with the fuel electrode or the air electrode; It is characterized by providing.
  • a method of manufacturing a flexible circuit board includes: Preparing a double-sided metal-clad laminate having an insulating flexible substrate and first and second metal foils respectively provided on both sides of the flexible substrate; Forming a plurality of openings penetrating the double-sided metal-clad laminate in the thickness direction in a current collector formation scheduled region of the double-sided metal-clad laminate; and A plating film forming step of performing a plating process on the double-sided metal-clad laminate having the opening formed thereon, and forming a plating film on the first and second metal foils and on an inner wall of the opening; , A current collector forming step of patterning the first and second metal foils and the plating film by etching to form a current collector; and A surface treatment film forming step of performing a plating process on the double-sided metal-clad laminate on which the current collector is formed, and forming a surface treatment film having more corrosion resistance than the plating film on the plating film When, It is characterized by providing
  • a method of manufacturing a flexible circuit board includes: Preparing an insulating flexible substrate; and a preparation step; Forming a plurality of openings penetrating the flexible base material in a thickness direction in a current collector formation region of the flexible base material; and A plating resist forming step of forming a plating resist having an opening in the current collector formation scheduled region on the front surface and the back surface of the flexible substrate; Plating is performed on the flexible base material on which the plating resist is formed, and a plating film is formed on the flexible base material not covered with the plating resist and on the inner walls of the plurality of openings.
  • a plating film forming step After the plating resist is peeled off, a plating treatment is performed on the flexible substrate on which the plating film is formed, and a surface treatment film having corrosion resistance than the plating film is formed on the plating film.
  • a surface treatment film forming step It is characterized by providing.
  • the conductor layer constituting the current collector is formed on both surfaces of the flexible substrate and the inner wall of the opening, and the conductive layer is formed on the conductor layer from a conductive material.
  • a surface treatment film having corrosion resistance more than that of the conductor layer is formed. That is, all the portions of the current collector that are in contact with the fuel methanol and the intermediate product acid are covered with the surface treatment film, and the conventional coating layer for protecting the conductor layer and the flexible substrate There is no interface. For this reason, when the flexible circuit board according to the present invention is used as a current collector plate of a fuel cell, corrosion / elution of the conductor layer can be prevented even under high temperature and high voltage use conditions. As a result, a fuel cell having stable characteristics such as output voltage can be provided.
  • FIG. 1 is a partial cross-sectional view illustrating a configuration example of a fuel cell according to an embodiment of the present invention. It is a top view for demonstrating the flexible circuit board which pinches
  • (1) is a cross-sectional view of a conventional flexible circuit board used for a current collector plate of a fuel cell, and (2) is a cross-section showing a state in which a conductor layer of the flexible circuit board is corroded and eluted.
  • the first and second embodiments relate to a flexible circuit board used as a current collector for a fuel cell and a method for manufacturing the same, and the third embodiment relates to direct methanol using the flexible circuit board of the present invention.
  • Type fuel cell used as a current collector for a fuel cell and a method for manufacturing the same
  • a laminated plate 4 is prepared.
  • the flexible substrate 1 is an insulating substrate having flexibility, and for example, a resin film such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the double-sided copper-clad laminate 4 a 25 ⁇ m-thick polyimide film provided with a 12 ⁇ m-thick copper foil on each side was used.
  • the double-sided metal-clad laminated board in which the metal foil which consists of metals (nickel, aluminum, etc.) other than copper was provided in both surfaces of the flexible base material 1.
  • the flexible circuit board which printed conductive paste, such as a silver paste, on both surfaces of the flexible base material 1, and formed the wiring.
  • the double-sided copper-clad laminate 4 is penetrated in the thickness direction in the current collector formation region C of the double-sided copper-clad laminate 4 A plurality of openings 5 are formed.
  • a plurality of openings 5 (for example, a hole diameter of 500 ⁇ m and a hole pitch of 600 ⁇ m) were formed in a mesh shape.
  • the opening 5 is formed by laser processing with high processing accuracy using a carbonic acid laser or an ultraviolet laser.
  • an ultraviolet laser is used in consideration of the influence of heat history and workability of the opening.
  • the opening 5 may be formed by drilling or punching.
  • electroless copper plating or conductive treatment or the like
  • subsequent electrolytic copper plating treatment were performed to form a copper plating film having a thickness of 5 ⁇ m as the plating film 6.
  • the type of plating is not limited to copper plating, but may be nickel plating or silver plating, for example.
  • the copper foils 2, 3 and the plating film 6 are patterned by etching to form current collectors 7, 8.
  • the current collector 7 is an anode-side current collector
  • the current collector 8 is a cathode-side current collector.
  • an extraction electrode 7 a and an extraction electrode 8 a extending from the current collector 7 and the current collector 8, respectively, are formed along the flexible substrate 1.
  • the plating film 6 (copper plating film) and the copper foils 2 and 3 were patterned using a normal photofabrication technique.
  • a nickel plating as a base and a high corrosion resistance gold plating are performed on a copper plating film, and a nickel plating film having a thickness of 5 ⁇ m and a gold plating film having a thickness of 1 ⁇ m.
  • a / gold (Ni / Au) plating film was formed.
  • the method of nickel plating and gold plating is not particularly limited, and may be electrolytic plating treatment or electroless plating treatment. Further, direct gold plating may be performed without performing nickel plating.
  • the surface treatment film 9 includes a metal compound having at least one white metal element selected from iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium (Pd), and platinum (Pt), and an organic solvent. It may be formed by applying a coating solution containing the above to the plating film 6 and then drying and baking.
  • the insulating layer 10 covers the peripheral portions of the current collectors 7 and 8 across the boundary line of the current collectors 7 and 8. (For example, 20 ⁇ m thick) is formed.
  • the insulating layer 10 is provided with openings 10a and 10b so that a region where the plurality of openings 5 are formed in a mesh shape is exposed on the bottom surface, and the extraction electrodes 7a and 8a are exposed so as to be exposed on the bottom surface. 10c and 10d are provided.
  • the insulating layer 10 may be formed by laminating a coverlay provided with an adhesive layer on one side of a resin film such as polyimide, or by printing a resin ink such as polyimide. May be. Alternatively, a photo solder resist may be used.
  • the insulating layer 10 is formed so as to straddle the boundary line between the current collectors 7 and 8, the interface between the surface treatment film 9 and the flexible substrate 1 can be protected.
  • the outer shape is processed to obtain the flexible circuit board 20 applied to the current collector plate of the fuel cell.
  • the flexible circuit board 20 is provided in an insulating flexible base material 1 and a predetermined region (current collector forming region), and penetrates the flexible base material 1 in the thickness direction.
  • a plurality of openings 5 for supplying air, the front and back surfaces of the flexible substrate 1 in the predetermined region, and the inner walls of the plurality of openings 5, constitute current collectors 7 and 8.
  • a plating film (conductor layer) 6 and a conductive surface treatment film 9 formed on the plating film 6 and having a corrosion resistance higher than that of the plating film 6 are provided.
  • the portions of the current collectors 7 and 8 that are in contact with methanol or the acid of the intermediate product are all covered with the surface treatment film 9.
  • the coating layer that protects the conductor layer and the flexible substrate at the portion where methanol or the acid of the intermediate product contacts unlike the conventional case. For this reason, corrosion and elution of the plating film 6 can be prevented even under high temperature and high voltage use conditions.
  • the surface treatment film 9 is made of a conductive metal or a conductive metal oxide, a sufficient electrical connection with the membrane electrode assembly can be ensured.
  • an insulating flexible substrate 11 is prepared.
  • a polyimide film having a thickness of 25 ⁇ m was used as the flexible substrate 11.
  • the flexible base material 11 is an insulating base material which has flexibility,
  • resin films such as a polyethylene terephthalate (PET) and a polyethylene naphthalate (PEN), can be used.
  • the means for forming the opening 12 is selected from laser processing, drilling, punching, or the like using a carbonic acid laser or an ultraviolet laser according to the hole diameter, hole pitch, and the like. To do.
  • the opening 12 may be formed in the flexible substrate 11 by a resin etching method using a polyimide etching solution or the like.
  • a plating resist 13 having openings 13 a in the current collector formation region is formed on the front and back surfaces of the flexible substrate 11.
  • electroless copper plating or conductive treatment or the like
  • subsequent electrolytic copper plating treatment were performed, and a copper plating film having a thickness of 5 ⁇ m was formed as the plating film 14.
  • electroless nickel plating may be performed to form a nickel plating layer (seed layer) on the flexible substrate 11. Thereby, a copper plating film having high adhesion strength can be formed.
  • nickel plating and gold plating are performed on the plating film 14 to form a 5 ⁇ m thick nickel plating film and a 1 ⁇ m thick gold.
  • a nickel / gold (Ni / Au) plating film made of a plating film was formed.
  • the method of nickel plating and gold plating is not particularly limited, and may be electrolytic plating treatment or electroless plating treatment.
  • the surface treatment film 17 can be made of the same material as the surface treatment film 9.
  • an insulating layer 18 having the same configuration as the insulating layer 10 of the first embodiment is formed.
  • the flexible circuit board 20A is similar to the flexible circuit board 20 according to the first embodiment.
  • the contact portion is entirely covered with the surface treatment film 17 including the side surface of the opening serving as the fuel supply port. Therefore, according to the second embodiment, it is possible to obtain the same effect as that of the first embodiment. Furthermore, a thinner flexible circuit board can be obtained.
  • FIG. 4 is a cross-sectional view of a part of the fuel cell 30 according to the present embodiment.
  • the fuel cell 30 is a direct methanol fuel cell (DMFC), and is folded at a folding line B with a membrane electrode assembly 34 including an electrolyte membrane 31, a fuel electrode 32, and an air electrode 33. And a flexible circuit board 20 that sandwiches the membrane electrode assembly 34, a housing 35, and a sealing material 36.
  • DMFC direct methanol fuel cell
  • the membrane electrode assembly 34 includes an electrolyte membrane 31, a fuel electrode 32 joined to one surface of the electrolyte membrane 31, and an air electrode 33 joined to the other surface of the electrolyte membrane 31.
  • the flexible circuit board 20 is bent along the fold line B so that the flexible circuit board 20 is in contact with the fuel electrode 32 and the current collector 8 is in contact with the air electrode 33 so that the flexible circuit board 20 is in contact with the membrane electrode assembly. 34 is inserted.
  • the membrane electrode assembly 34 and the flexible circuit board 20 are fixed in the housing 35. More specifically, as shown in FIG. 4, the casing 35 is composed of half casings 35 a and 35 b, and the half casings 35 a and 35 b move the flexible circuit board 20 sandwiching the membrane electrode assembly 34 up and down. A single casing 35 is configured by being combined so as to be sandwiched between the two.
  • a plurality of grooves 35a1 for supplying methanol are formed in the half casing 35a.
  • a plurality of slits 35b1 for supplying air are formed in the half housing 35b.
  • a sealing material 36 is provided on the outer periphery of the flexible circuit board 20 folded so as to sandwich the membrane electrode assembly 34.
  • the sealing material 36 is a frame-like member (for example, an O-ring or the like), and is provided in each of the outer peripheral regions of the current collectors 7 and 8 of the flexible circuit board 20 so that methanol, intermediate products, etc. leak out. To prevent.
  • the fuel electrode 32 When the fuel cell 30 generates power, the fuel electrode 32 is supplied with a methanol aqueous solution as fuel through the opening 5 of the current collector 7, while the air electrode 33 is supplied with air through the opening 5 of the current collector 8. Is supplied.
  • the generated electrons are guided to the outside from the extraction electrode 7a via the current collector 7 of the flexible circuit board 20 and supplied to the electronic device. And the electrons which operated the electronic device are guide
  • the hydrogen ions generated by the reaction formula (1) pass through the electrolyte membrane 31 and reach the air electrode 33, oxygen in the air supplied through the opening 5 of the current collector 8, and the current collector. It reacts with the electrons led to 8 as shown in the reaction formula (2) to generate water. 3 / 2O 2 + 6H + + 6e - ⁇ 3H 2 O ⁇ (2)
  • the metals (copper foils 2 and 3 and the plating film 6) constituting the current collectors 7 and 8 are covered with the surface treatment film 7 having excellent corrosion resistance without any gaps. Even when exposed to methanol or an acid generated by oxidizing methanol, the current collectors 7 and 8 are protected by the surface treatment film 7 and are not corroded or eluted. As a result, methanol as a fuel can be stably decomposed, and characteristics such as output voltage can be stably maintained.
  • FIG. 5 shows a plan view of a flexible circuit board 20B according to a modification.
  • the flexible circuit board 20B four current collectors 7A, 7B, 8A, and 8B are provided on the flexible base material 1, and the current collector 7B and the current collector 8A are electrically connected to each other at the connection portion 40. It is connected to the.
  • These current collectors 7A, 7B, 8A and 8B are all composed of the copper foils 2 and 3 and the plating film 6 as in the case of the current collectors 7 and 8, and the surface is covered with the surface treatment film 9. ing.
  • the flexible circuit board 20B includes a first membrane electrode assembly (not shown) sandwiched between the current collector 7A and the current collector 8A, and a second membrane electrode assembly (not shown). It is bent along the fold line B1 so as to be sandwiched between the body 7B and the current collector 8B.
  • the current collector 7A is in contact with the fuel electrode of the first membrane electrode assembly, and the current collector 7B is in contact with the fuel electrode of the second membrane electrode assembly.
  • Current collector 8A is in contact with the air electrode of the first membrane electrode assembly, and current collector 8B is in contact with the air electrode of the second membrane electrode assembly.
  • the fuel cell can also be configured by bending the flexible circuit board 20B along the folding line B2 in FIG.
  • the current collectors 7A and 8A are in contact with the fuel electrodes of the first and second membrane electrode assemblies, respectively, and the current collectors 7B and 8B are in contact with the air electrodes of the first and second membrane electrode assemblies.
  • the number of fuel cells can be easily increased, and a high voltage fuel cell can be obtained.
  • a double-sided copper-clad laminate or a flexible substrate is used as a starting material, but a single-sided copper-clad laminate can also be used as a starting material.
  • both the current collectors 7 and 8 are formed on a flexible substrate and bent along a fold line B.
  • the anode-side current collector plate and the cathode-side current collector plate are separated, only one of the current collectors should be formed on the flexible substrate. Also good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

[課題]高温かつ高電圧の使用条件下においても、集電体を構成する導体層の腐食・溶出を防ぐとともに、膜電極接合体と十分な電気的接続を得ることが可能な、燃料電池の集電板として用いられる可撓性回路基板を提供する。 [解決手段]本発明の一実施形態による可撓性回路基板は、燃料電池の集電体が設けられた可撓性回路基板であって、絶縁性の可撓性基材1と、集電体7,8が形成された領域における可撓性基材1を厚さ方向に貫通する、燃料あるいは空気を供給するための複数の開口部5と、前記領域における可撓性基材1の表面および裏面、並びに複数の開口部5の内壁に形成され、かつ集電体7,8を構成する、銅箔2,3及びめっき膜6からなる導体層と、めっき膜6の上に形成され、かつ導電性の材料からなり、めっき膜6よりも耐腐食性を有する表面処理膜9とを備える。

Description

可撓性回路基板およびその製造方法、ならびに該可撓性回路基板を用いた燃料電池
 本発明は、可撓性回路基板、特に燃料電池の集電板として用いられる可撓性回路基板、およびその製造方法、並びに該可撓性回路基板を用いた燃料電池に関する。
 近年、携帯電話やパソコン等に代表される電子機器の電源として、主に、軽量かつ高容量であるリチウムイオン電池が使用されている。
 しかし、電子機器の高機能化に伴う消費電力の増加によって、(1)十分な消費電力を確保できない、(2)消費電力を確保できたとしても連続使用時間が短くなる、(3)長時間の充電が必要であるという問題が生じている。
 このような背景の中、リチウムイオン電池に代わる電源として、燃料電池が注目されている。特に、メタノールを燃料として使用する直接メタノール型燃料電池(DMFC:Direct Methanol Fuel Cell)が期待されている。この直接メタノール型燃料電池は、燃料極、空気極および電解質膜から構成される膜電極接合体(MEA:Membrane Electrode Assembly)を有し、燃料極にメタノール水溶液を供給し、空気極に空気を供給する。燃料極に供給されたメタノールは触媒により分解され、水素イオンを生成する。そして、この水素イオンは、電解質膜を通過して空気極で空気中に存在する酸素と反応する。直接メタノール型燃料電池では、この一連の反応により、電力を発生させる。
 直接メタノール型燃料電池は、リチウムイオン電池と比べて、高密度のエネルギーが得られることから、電子機器の消費電力の増加に対応することができる。また、予備燃料を用意しておくことで、リチウムイオン電池のように長時間の充電を行うことなく、電子機器を継続して使用することができる。さらに、直接メタノール型燃料電池は水素を製造する改質器などを必要としないので、他の燃料電池と比べて、小型化および軽量化が可能であることも利点の一つとして挙げられる。
 ところで、直接メタノール型燃料電池を構成する部材の一つとして、集電板がある。燃料電池の小型・軽量化を図るため、可撓性回路基板が集電板として用いられる(例えば特許文献1参照)。この可撓性回路基板では、ポリイミドなどからなる可撓性基材の片面に集電体を構成する導体層が形成されている。集電体には、メタノールまたは空気を膜電極接合体に供給するための開口部が設けられる。
 燃料電池の出力電圧等の特性を維持するため、集電体には、メタノールおよびその分解過程で生成されるギ酸などの中間生成物に対して、耐食性を有することが要求される。そこで、特許文献2では、集電体の導体層を炭素含有層で覆った可撓性回路基板が開示されている。この炭素含有層は、ポリイミド等の樹脂材料に、カーボンブラック等の炭素を含有した樹脂組成物からなる。
特開2004-200064号公報 特開2010-050378号公報
 しかしながら、炭素含有層は銅などの金属からなる導体層よりも抵抗が高いため、炭素含有層で被覆された集電体の導通抵抗値が高くなってしまうという問題がある。また、高温の使用条件下では、バインダーの樹脂材料が溶解するおそれもある。
 さらに、炭素含有層等の被覆層で導体層を被覆したとしても、特に複数のセルを直列に接続して高電圧を出力する場合には、可撓性基材と被覆層との界面を通じた腐食により、導体層を構成する金属が溶出するという問題がある。これについて、図6(1),(2)を用いて説明する。
 図6(1)は、燃料電池の集電体が設けられた、従来の可撓性回路基板100の断面図を示している。可撓性回路基板100は、ポリイミド等からなる可撓性基材101の片面に、集電体を構成する導体層102が形成されている。この導体層102は銅などからなる。そして、導体層102を覆うように被覆層(例えば前述の炭素含有層)103が形成されている。また、可撓性回路基板100には、メタノールを供給するための開口部104、および空気を供給するための開口部105が形成されている。
 図6(1)に示すように、被覆層103は導体層102を被覆しているため、導体層102は外部に露出していない。しかしながら、被覆層103と可撓性基材101との界面Sにおいて、被覆層103と可撓性基材101は接しているのみであり、強く密着しているわけではない。そのため、可撓性回路基板100が燃料電池の集電板として使用される間に、メタノール及びその中間生成物の酸が界面Sをつたって内部に浸透し、導体層102の腐食・溶出が進行する。その結果、図6(2)に示すように、導体層102の側面から削られ、被覆層103の側面部が宙に浮いた状態となる。なお、この腐食のメカニズムは現在のところ明らかになっていないが、界面S付近で発生する局部的な電位差に起因するガルバニック腐食(電解腐食)によるものと推測される。
 このように、特に高電圧の条件下では、界面Sからの局部的な腐食が進行するため、被覆層103を設けても導体層102の腐食・溶出を防ぐことができない。
 なお、被覆層103として、炭素含有層に代えて、導体層102を構成する銅よりもイオン化傾向の小さい金属(金など)を導体層102にめっきすることも考えられる。しかしながら、特許文献2の場合と同様、めっき層と可撓性基材との界面において密着力が弱いため、界面から腐食が進行することは避けられない。
 そこで、本発明は、高温かつ高電圧の使用条件下においても、集電体を構成する導体層の腐食・溶出を防ぐとともに、膜電極接合体と十分な電気的接続を得ることが可能な可撓性回路基板、及びその製造方法、並びに該可撓性回路基板を用いた燃料電池を提供することを目的とする。
 本発明の一態様による可撓性回路基板は、
 燃料電池の集電体が設けられた可撓性回路基板であって、
 絶縁性の可撓性基材と、
 所定の領域に設けられ、前記可撓性基材を厚さ方向に貫通する、燃料あるいは空気を供給するための複数の開口部と、
 前記所定の領域における前記可撓性基材の表面および裏面、並びに前記複数の開口部の内壁に形成され、前記集電体を構成する、導体層と、
 前記導体層の上に形成され、かつ、前記導体層よりも耐腐食性を有する、導電性の表面処理膜と、
 を備えることを特徴とする。
 本発明の一態様による燃料電池は、
 電解質膜と、前記電解質膜の一方の面に接合された燃料極と、前記電解質膜の他方の面に接合された空気極とから構成される膜電極接合体と、
 集電体が前記燃料極または前記空気極に接するように配設された、本発明による可撓性回路基板と、
 を備えることを特徴とする。
 本発明の一態様による可撓性回路基板の製造方法は、
 絶縁性の可撓性基材と、前記可撓性基材の両面にそれぞれ設けられた第1および第2の金属箔とを有する両面金属張積層板を用意する、準備工程と、
 前記両面金属張積層板の集電体形成予定領域に、前記両面金属張積層板を厚さ方向に貫通する複数の開口部を形成する、開口部形成工程と、
 前記開口部が形成された両面金属張積層板に対してめっき処理を施し、前記第1および前記第2の金属箔の上ならびに前記開口部の内壁にめっき膜を形成する、めっき膜形成工程と、
 エッチングにより前記第1および第2の金属箔ならびに前記めっき膜をパターニングし、集電体を形成する、集電体形成工程と、
 前記集電体が形成された両面金属張積層板に対してめっき処理を施し、前記めっき膜よりも耐腐食性を有する表面処理膜を、前記めっき膜の上に形成する、表面処理膜形成工程と、
 を備えることを特徴とする。
 本発明の一態様による可撓性回路基板の製造方法は、
 絶縁性の可撓性基材を用意する、準備工程と、
 前記可撓性基材の集電体形成予定領域に、前記可撓性基材を厚さ方向に貫通する複数の開口部を形成する、開口部形成工程と、
 前記集電体形成予定領域に開口を有するめっきレジストを、前記可撓性基材の表面および裏面に形成する、めっきレジスト形成工程と、
 前記めっきレジストが形成された可撓性基材に対してめっき処理を施し、前記めっきレジストで被覆されていない前記可撓性基材の上および前記複数の開口部の内壁に、めっき膜を形成する、めっき膜形成工程と、
 前記めっきレジストを剥離した後、前記めっき膜が形成された可撓性基材に対してめっき処理を施し、前記めっき膜よりも耐腐食性を有する表面処理膜を、前記めっき膜の上に形成する、表面処理膜形成工程と、
 を備えることを特徴とする。
 本発明に係る可撓性回路基板では、集電体を構成する導体層が可撓性基材の両面および開口部の内壁に形成されており、この導体層の上に、導電性の材料からなり、導体層よりも耐腐食性を有する表面処理膜が形成されている。即ち、集電体のうち、燃料であるメタノールや中間生成物の酸が接する部分は全て表面処理膜で被覆されており、従来のように導体層を保護する被覆層と可撓性基材との界面が存在しない。このため、本発明に係る可撓性回路基板を燃料電池の集電板として用いた場合、高温かつ高電圧の使用条件下においても、導体層の腐食・溶出を防止することができる。その結果、出力電圧等の特性が安定した燃料電池を提供することができる。
本発明の第1の実施形態に係る可撓性回路基板の製造方法を説明するための工程断面図である。 図1Aに続く、本発明の第1の実施形態に係る可撓性回路基板の製造方法を説明するための工程断面図である。 本発明の第1の実施形態に係る可撓性回路基板の製造方法を説明するための主要な工程平面図である。 図2Aに続く、本発明の第1の実施形態に係る可撓性回路基板の製造方法を説明するための主要な工程平面図である。 本発明の第2の実施形態に係る可撓性回路基板の製造方法を説明するための工程断面図である。 図3Aに続く、本発明の第2の実施形態に係る可撓性回路基板の製造方法を説明するための工程断面図である。 本発明の実施形態に係る燃料電池の構成例を示す一部断面図である。 2つの膜電極接合体を挟み込む可撓性回路基板を説明するための平面図である。 (1)は、燃料電池の集電板に用いられる従来の可撓性回路基板の断面図であり、(2)は、該可撓性回路基板の導体層が腐食・溶出した状態を示す断面図である。
 以下、図面を参照しながら、本発明の3つの実施形態について説明する。第1および第2の実施形態は、燃料電池の集電板として用いられる可撓性回路基板およびその製造方法に関し、第3の実施形態は、本発明の可撓性回路基板を用いた直接メタノール型の燃料電池に関する。
 なお、各図において同等の機能を有する構成要素には同一の符号を付し、同一符号の構成要素の詳しい説明は繰り返さない。また、図面は模式的なものであり、各構成要素の厚みや平面寸法は適宜に変えている。
(第1の実施形態)
 本発明の第1の実施形態に係る可撓性回路基板の製造方法について、図1Aおよび図1Bに示す工程断面図と、図2Aおよび図2Bに示す主要な工程平面図とを用いて説明する。
(1)まず、図1A(1)に示すように、可撓性基材1と、この可撓性基材1の両面にそれぞれ設けられた銅箔2および銅箔3とを有する両面銅張積層板4を用意する。可撓性基材1は、可撓性を有する絶縁性の基材であり、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などの樹脂フィルムを使用することができる。
 ここでは、両面銅張積層板4として、25μm厚のポリイミドフィルムの両面に12μm厚の銅箔がそれぞれ設けられたものを用いた。なお、銅以外の金属(ニッケル、アルミニウム等)からなる金属箔が可撓性基材1の両面に設けられた両面金属張積層板を用いてもよい。また、可撓性基材1の両面に銀ペースト等の導電性ペーストを印刷して配線を形成した可撓性回路基板を用いてもよい。
(2)次に、図1A(2)及び図2A(1)に示すように、両面銅張積層板4の集電体形成予定領域Cに、両面銅張積層板4を厚さ方向に貫通する複数の開口部5を形成する。
 ここでは、図2A(1)に示すように、メッシュ状に複数の開口部5(例えば穴径500μm,穴ピッチ600μm)を形成した。
 なお、開口部5の形成は、炭酸レーザー又は紫外線レーザーなどを使用して、加工精度の高いレーザー加工により行う。好ましくは、熱履歴の影響や開口部の加工性を考慮して、紫外線レーザーを使用する。その他、開口部5の穴径や穴ピッチが大きく、高い加工精度が要求されない場合は、ドリル加工またはパンチにより開口部5を形成してもよい。
 レーザー加工を行う場合には、レーザー加工時に可撓性基材1が熱ダレを起こすため、レーザー加工後にデスミア処理を行う。これにより、銅箔2,3に対するめっきつきまわりが悪化することを防止する。なお、図1A(2)において銅箔2,3が後退しているのは、デスミア処理のウエットエッチングによるものである。
(3)次に、図1A(3)に示すように、開口部5が形成された両面銅張積層板4の全面に対してめっき処理を施し、銅箔2および銅箔3の上、ならびに開口部5の内壁に、めっき膜6を形成する。
 ここでは、無電解銅めっき(あるいは導電化処理等)及びそれに続く電気銅めっき処理を施し、めっき膜6として、5μm厚の銅めっき膜を形成した。なお、めっきの種類は銅めっきに限らず、例えばニッケルめっきや銀めっきでもよい。
(4)次に、図1B(4)及び図2A(2)に示すように、エッチングにより銅箔2,3およびめっき膜6をパターニングし、集電体7,8を形成する。集電体7はアノード側の集電体であり、集電体8はカソード側の集電体である。また、可撓性基材1に沿って集電体7および集電体8からそれぞれ延びる引き出し電極7aおよび引き出し電極8aが形成される。
 ここでは、通常のフォトファブリケーション手法を用いて、めっき膜6(銅めっき膜)および銅箔2,3をパターニングした。
(5)次に、図1B(5)に示すように、集電体7,8が形成された両面銅張積層板4の全面に対してめっき処理を施し、めっき膜6よりも耐腐食性を有する表面処理膜9を、めっき膜6の上に形成する。
 ここでは、表面処理膜9として、銅めっき膜の上に、下地となるニッケルめっき、及び耐腐食性の高い金めっきを行い、5μm厚のニッケルめっき膜、及び1μm厚の金めっき膜からなるニッケル/金(Ni/Au)めっき膜を形成した。このニッケルめっき及び金めっきの方法は、特に限定されるものではなく、電解めっき処理や無電解めっき処理などでよい。また、ニッケルめっきを行うことなく、直接金めっきを行ってもよい。
 なお、表面処理膜9としては、例えば、金(Au)、白金(Pt)またはチタン(Ti)を挙げることができる。
 また、表面処理膜9は、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)および白金(Pt)から選択された少なくとも一つの白金属元素を有する金属化合物と、有機溶剤とを含んだ塗布液をめっき膜6に塗布し、その後、乾燥および焼成することにより形成してもよい。
(6)次に、図1B(6)及び図2B(3)に示すように、集電体7,8の境界線を跨いで集電体7,8の周縁部を覆うように絶縁層10(例えば20μm厚)を形成する。
 この絶縁層10には、複数の開口部5がメッシュ状に形成された領域が底面に露出するように開口10a,10bが設けられ、また、引き出し電極7a,8aが底面に露出するように開口10c,10dが設けられている。
 絶縁層10の形成方法については、ポリイミド等の樹脂フィルムの片面に接着層が設けられたカバーレイをラミネートすることにより形成してもよく、あるいは、ポリイミド等の樹脂インクを印刷することにより形成してもよい。また、フォトソルダーレジストを用いて形成してもよい。
 絶縁層10は、集電体7,8の境界線を跨ぐように形成されるため、表面処理膜9と可撓性基材1との界面を保護することができる。
 絶縁層10を形成した後、外形加工を行い、燃料電池の集電板に適用される可撓性回路基板20を得る。この可撓性回路基板20は、絶縁性の可撓性基材1と、所定の領域(集電体形成領域)に設けられ、可撓性基材1を厚さ方向に貫通する、燃料あるいは空気を供給するための複数の開口部5と、前記所定の領域における可撓性基材1の表面および裏面、並びに複数の開口部5の内壁に形成され、集電体7,8を構成するめっき膜(導体層)6と、めっき膜6の上に形成され、かつ、めっき膜6よりも耐腐食性を有する導電性の表面処理膜9と、を備えている。
 なお、図1B(6)及び図2B(3)に示す折り曲げ線Bについては第3の実施形態で詳しく述べるが、燃料電池を作製する際に、折り曲げBに沿って可撓性回路基板20を折り曲げて膜電極接合体を挟み込む。
 以上説明したように、本実施形態に係る可撓性回路基板20は、集電体7,8のうちメタノールや中間生成物の酸が接する部分が全て表面処理膜9で被覆されている。即ち、メタノールや中間生成物の酸が接する部分において、従来のように導体層を保護する被覆層と可撓性基材との界面が存在しない。このため、高温かつ高電圧の使用条件下においても、めっき膜6の腐食・溶出を防止することができる。
 さらに、表面処理膜9は導電性の金属または導電性の金属酸化物からなるため、膜電極接合体との電気的接続を十分に確保することができる。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る可撓性回路基板の製造方法について、図3Aおよび図3Bに示す工程断面図を用いて説明する。第2の実施形態と第1の実施形態との相違点の一つは、出発材料が両面銅張積層板ではなく可撓性基材であることである。以下、第1の実施形態と異なる部分を中心に説明する。
(1)まず、図3A(1)に示すように、絶縁性の可撓性基材11を用意する。ここでは、可撓性基材11として、25μm厚のポリイミドフィルムを用いた。なお、可撓性基材11は、可撓性を有する絶縁性の基材であり、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などの樹脂フィルムが使用できる。
(2)次に、図3A(2)に示すように、可撓性基材11の集電体形成予定領域に、可撓性基材11を厚さ方向に貫通する複数の開口部12を形成する。
 この開口部12の形成手段は、第1の実施形態の開口部5と同様、穴径や穴ピッチ等に応じて、炭酸レーザーや紫外線レーザーなどを用いたレーザー加工、ドリル加工およびパンチなどから選択する。その他、開口部12が比較的大きい場合には、ポリイミドエッチング液などを用いた樹脂エッチング手法により、可撓性基材11に開口部12を形成してもよい。
 レーザー加工を行う場合には、レーザー加工時に可撓性基材11が熱ダレを起こすことから、レーザー加工後にデスミア処理を行う。
(3)次に、図3A(3)に示すように、集電体形成予定領域に開口13aを有するめっきレジスト13を、可撓性基材11の表面および裏面に形成する。
(4)次に、図3B(4)に示すように、めっきレジスト13が形成された可撓性基材11の全面に対してめっき処理を施し、めっきレジスト13で被覆されていない可撓性基材11の上および複数の開口部12の内壁に、めっき膜14を形成する。
 ここでは、無電解銅めっき(あるいは導電化処理等)及びそれに続く電気銅めっき処理を施し、めっき膜14として、5μm厚の銅めっき膜を形成した。なお、無電解銅めっきを行う前に、無電解ニッケルめっきを行ってニッケルめっき層(シード層)を可撓性基材11上に形成してもよい。これにより、密着強度の高い銅めっき膜を形成することができる。
(5)次に、めっきレジスト13を剥離する。これにより、図3B(4)に示すように、アノード側の集電体15およびカソード側の集電体16が形成される。
(6)めっきレジスト13を剥離した後、図3B(5)に示すように、可撓性基材11の全面に対してめっき処理を施し、めっき膜14の上に、めっき膜14よりも耐腐食性を有する表面処理膜17を形成する。
 ここでは、表面処理膜17として、第1の実施形態の表面処理膜9と同様に、めっき膜14の上に、ニッケルめっき及び金めっきを行い、5μm厚のニッケルめっき膜、及び1μm厚の金めっき膜からなるニッケル/金(Ni/Au)めっき膜を形成した。このニッケルめっき及び金めっきの方法は、特に限定されるものではなく、電解めっき処理や無電解めっき処理などでよい。また、表面処理膜17は、表面処理膜9と同様の材料により構成することができる。
(7)次に、図3B(6)に示すように、第1の実施形態の絶縁層10と同様の構成を有する絶縁層18を形成する。
 その後、外形加工を行い、第2の実施形態に係る可撓性回路基板20Aを得る。図3B(6)に示すように、可撓性回路基板20Aは、第1の実施形態に係る可撓性回路基板20と同様、集電体15,16のうちメタノールや中間生成物の酸が接する部分が、燃料供給口となる開口部の側面を含めて全て表面処理膜17により被覆されている。よって、第2の実施形態によれば、第1の実施形態と同様の作用効果を得ることができる。さらに、より薄い可撓性回路基板を得ることができる。
(第3の実施形態)
 次に、第1の実施形態による可撓性回路基板を用いた燃料電池について説明する。図4は、本実施形態に係る燃料電池30の一部についての断面図である。
 図4に示すように、燃料電池30は、直接メタノール型燃料電池(DMFC)であり、電解質膜31、燃料極32および空気極33から構成される膜電極接合体34と、折り曲げ線Bで折り曲げられて膜電極接合体34を挟み込む可撓性回路基板20と、筐体35と、シール材36とを備える。
 膜電極接合体34は、電解質膜31と、電解質膜31の一方の面に接合された燃料極32と、電解質膜31の他方の面に接合された空気極33とから構成される。
 可撓性回路基板20は折り曲げ線Bに沿って折り曲げられ、集電体7が燃料極32接し且つ集電体8が空気極33に接するように、可撓性回路基板20は膜電極接合体34を挟み込む。
 図4に示すように、膜電極接合体34および可撓性回路基板20は、筐体35内に固定される。より詳しくは、図4に示すように、筐体35は半筐体35a,35bから構成され、この半筐体35a,35bは、膜電極接合体34を挟み込んだ可撓性回路基板20を上下から挟むように組み合わさって、一つの筐体35を構成する。
 また、図4に示すように、半筐体35aには、メタノールを供給するための溝35a1が複数形成されている。半筐体35bには、空気を供給するためのスリット35b1が複数形成されている。
 膜電極接合体34を挟み込むように折り畳まれた可撓性回路基板20の外周部に、シール材36が設けられている。このシール材36は、枠状の部材(例えばOリングなど)であり、可撓性回路基板20の集電体7および8の外周領域にそれぞれ設けられ、メタノールや中間生成物などが漏れ出すことを防止する。
 燃料電池30に発電させる際、燃料極32には、集電体7の開口部5を通して燃料であるメタノール水溶液が供給され、一方、空気極33には、集電体8の開口部5を通して空気が供給される。
 そして、燃料極32に供給されたメタノール水溶液は、燃料極32の触媒に接し、次の反応式(1)で示されるように、水素イオンと二酸化炭素に変換されるとともに、電子を生成する。
   CHOH+HO → CO+6H+6e ・・・(1)
 生成された電子は、可撓性回路基板20の集電体7を経由して引き出し電極7aから外部に導かれ、電子機器に供給される。そして、電子機器を動作させた電子は、引き出し電極8aを介して集電体8に導かれる。
 一方、反応式(1)により生成した水素イオンは、電解質膜31を透過して空気極33に達し、集電体8の開口部5を介して供給された空気中の酸素、および集電体8に導かれた電子と、反応式(2)に示すように反応し、水が生成される。
   3/2O+6H+6e → 3HO   ・・・(2)
 本実施形態に係る燃料電池30では、集電体7,8を構成する金属(銅箔2,3およびめっき膜6)が耐腐食性に優れた表面処理膜7で隙間なく被覆されているため、メタノールもしくはメタノールが酸化されて発生する酸に曝されても、集電体7,8は表面処理膜7により保護され、腐食・溶出しない。その結果、燃料であるメタノールを安定して分解することができ、出力電圧等の特性を安定して維持することができる。
 なお、複数の燃料電池セルを直列接続したスタックセルを構成することも可能である。図5は、変形例に係る可撓性回路基板20Bの平面図を示している。
 可撓性回路基板20Bは、可撓性基材1に、4つの集電体7A,7B,8A,8Bが設けられており、集電体7Bと集電体8Aは接続部40で電気的に接続されている。これらの集電体7A,7B,8A及び8Bはいずれも、前述の集電体7,8と同様に、銅箔2,3およびめっき膜6から構成され、表面が表面処理膜9で被覆されている。
 可撓性回路基板20Bは、第1の膜電極接合体(図示せず)が集電体7Aと集電体8Aに挟まれ、且つ第2の膜電極接合体(図示せず)が集電体7Bと集電体8Bに挟まれるように、折り曲げ線B1に沿って折り曲げられる。集電体7Aは第1の膜電極接合体の燃料極と接触し、集電体7Bは第2の膜電極接合体の燃料極と接触する。集電体8Aは第1の膜電極接合体の空気極と接触し、集電体8Bは第2の膜電極接合体の空気極と接触する。これにより、2つの燃料電池セルが直列に接続された燃料電池が得られる。
 なお、図5中の折り曲げ線B2に沿って可撓性回路基板20Bを折り曲げて燃料電池を構成することもできる。この場合、集電体7A及び8Aが第1および第2の膜電極接合体の燃料極とそれぞれ接し、集電体7B及び8Bが第1および第2の膜電極接合体の空気極と接する。
 また、集電体7B、8Aおよび接続部40からなる構造を増やすことで、燃料電池セルの数を容易に増加させて、高電圧の燃料電池を得ることができる。
 以上、本発明に係る3つの実施形態について説明した。
 上記の実施形態では両面銅張積層板や可撓性基材を出発材料としたが、片面銅張積層板を出発材料として用いることも可能である。
 また、第1の実施形態(第2の実施形態)では、可撓性基材に集電体7及び8(集電体15及び16)の両方を形成し、折り曲げ線Bに沿って折り曲げて燃料電池に使用したが、アノード側の集電板と、カソード側の集電板とを別体とする場合は、可撓性基材にいずれか一方の集電体のみを形成するようにしてもよい。
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。
1,11 可撓性基材
2,3 銅箔
4 両面銅張積層板
5,12 開口部
6 めっき膜
7,8,15,16 集電体
7a,8a 引き出し電極
9,17 表面処理膜
10,18 絶縁層
10a,10b,10c、10d 開口
13 めっきレジスト
13a 開口
14 めっき膜
20,20A,20B 可撓性回路基板
30 燃料電池
31 電解質膜
32 燃料極
33 空気極
34 膜電極接合体(MEA)
35 筺体
35a,35b 半筐体
35a1 溝
35b1 スリット
36 シール材
40 接続部
100 可撓性回路基板
101 可撓性基材
102 導体層
103 被覆層
104,105 開口部
S 界面
C 集電体形成予定領域
B 折り曲げ線

Claims (15)

  1.  燃料電池の集電体が設けられた可撓性回路基板であって、
     絶縁性の可撓性基材と、
     所定の領域に設けられ、前記可撓性基材を厚さ方向に貫通する、燃料あるいは空気を供給するための複数の開口部と、
     前記所定の領域における前記可撓性基材の表面および裏面、並びに前記複数の開口部の内壁に形成され、前記集電体を構成する、導体層と、
     前記導体層の上に形成され、かつ、前記導体層よりも耐腐食性を有する、導電性の表面処理膜と、
     を備えることを特徴とする可撓性回路基板。
  2.  前記導体層は銅(Cu)からなり、
     前記表面処理膜は、金(Au)、白金(Pt)またはチタン(Ti)からなるめっき膜であることを特徴とする請求項1に記載の可撓性回路基板。
  3.  前記表面処理膜は、下地としてニッケル(Ni)めっき膜を有することを特徴とする請求項2に記載の可撓性回路基板。
  4.  前記集電体の境界線を跨いで前記集電体の周縁部を覆うように設けられた絶縁層をさらに備えることを特徴とする請求項2に記載の可撓性回路基板。
  5.  前記可撓性基材に沿って前記集電体から延びる引き出し電極をさらに備えることを特徴とする請求項2に記載の可撓性回路基板。
  6.  前記集電体の境界線を跨いで前記集電体の周縁部を覆うように設けられた絶縁層をさらに備えることを特徴とする請求項5に記載の可撓性回路基板。
  7.  電解質膜と、前記電解質膜の一方の面に接合された燃料極と、前記電解質膜の他方の面に接合された空気極とから構成される膜電極接合体と、
     前記集電体が前記燃料極または前記空気極に接するように配設された、請求項6に記載の可撓性回路基板と、
     を備えることを特徴とする燃料電池。
  8.  電解質膜と、前記電解質膜の一方の面に接合された燃料極と、前記電解質膜の他方の面に接合された空気極とから構成される膜電極接合体と、
     前記集電体が前記燃料極または前記空気極に接するように配設された、請求項2に記載の可撓性回路基板と、
     を備えることを特徴とする燃料電池。
  9.  前記集電体の境界線を跨いで前記集電体の周縁部を覆うように設けられた絶縁層をさらに備えることを特徴とする請求項1に記載の可撓性回路基板。
  10.  前記可撓性基材に沿って前記集電体から延びる引き出し電極をさらに備えることを特徴とする請求項1に記載の可撓性回路基板。
  11.  電解質膜と、前記電解質膜の一方の面に接合された燃料極と、前記電解質膜の他方の面に接合された空気極とから構成される膜電極接合体と、
     前記集電体が前記燃料極または前記空気極に接するように配設された、請求項1に記載の可撓性回路基板と、
     を備えることを特徴とする燃料電池。
  12.  絶縁性の可撓性基材と、前記可撓性基材の両面にそれぞれ設けられた第1および第2の金属箔とを有する両面金属張積層板を用意する、準備工程と、
     前記両面金属張積層板の集電体形成予定領域に、前記両面金属張積層板を厚さ方向に貫通する複数の開口部を形成する、開口部形成工程と、
     前記開口部が形成された両面金属張積層板に対してめっき処理を施し、前記第1および前記第2の金属箔の上ならびに前記開口部の内壁にめっき膜を形成する、めっき膜形成工程と、
     エッチングにより前記第1および第2の金属箔ならびに前記めっき膜をパターニングし、集電体を形成する、集電体形成工程と、
     前記集電体が形成された両面金属張積層板に対してめっき処理を施し、前記めっき膜よりも耐腐食性を有する表面処理膜を、前記めっき膜の上に形成する、表面処理膜形成工程と、
     を備えることを特徴とする可撓性回路基板の製造方法。
  13.  前記表面処理膜形成工程の後に、
     前記集電体の境界線を跨いで前記集電体の周縁部を覆うように絶縁層を形成する工程をさらに備えることを特徴とする請求項12に記載の可撓性回路基板の製造方法。
  14.  絶縁性の可撓性基材を用意する、準備工程と、
     前記可撓性基材の集電体形成予定領域に、前記可撓性基材を厚さ方向に貫通する複数の開口部を形成する、開口部形成工程と、
     前記集電体形成予定領域に開口を有するめっきレジストを、前記可撓性基材の表面および裏面に形成する、めっきレジスト形成工程と、
     前記めっきレジストが形成された可撓性基材に対してめっき処理を施し、前記めっきレジストで被覆されていない前記可撓性基材の上および前記複数の開口部の内壁に、めっき膜を形成する、めっき膜形成工程と、
     前記めっきレジストを剥離した後、前記めっき膜が形成された可撓性基材に対してめっき処理を施し、前記めっき膜よりも耐腐食性を有する表面処理膜を、前記めっき膜の上に形成する、表面処理膜形成工程と、
     を備えることを特徴とする可撓性回路基板の製造方法。
  15.  前記表面処理膜形成工程の後に、
     前記集電体の境界線を跨いで前記集電体の周縁部を覆うように絶縁層を形成する工程をさらに備えることを特徴とする請求項14に記載の可撓性回路基板の製造方法。
PCT/JP2012/052508 2011-06-23 2012-02-03 可撓性回路基板およびその製造方法、ならびに該可撓性回路基板を用いた燃料電池 WO2012176488A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012523135A JP5833003B2 (ja) 2011-06-23 2012-02-03 可撓性回路基板およびその製造方法、ならびに該可撓性回路基板を用いた燃料電池
CN201280001304.9A CN102959781B (zh) 2011-06-23 2012-02-03 柔性电路板及其制造方法和使用柔性电路板的燃料电池
US13/697,151 US9076997B2 (en) 2011-06-23 2012-02-03 Flexible circuit board and method for manufacturing the same, and fuel cell using the flexible circuit board
EP12756062.1A EP2725645B1 (en) 2011-06-23 2012-02-03 Flexible circuit substrate, manufacturing method thereof, and fuel cell employing said flexible circuit substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-139589 2011-06-23
JP2011139589 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012176488A1 true WO2012176488A1 (ja) 2012-12-27

Family

ID=47422340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052508 WO2012176488A1 (ja) 2011-06-23 2012-02-03 可撓性回路基板およびその製造方法、ならびに該可撓性回路基板を用いた燃料電池

Country Status (5)

Country Link
US (1) US9076997B2 (ja)
EP (1) EP2725645B1 (ja)
JP (1) JP5833003B2 (ja)
CN (1) CN102959781B (ja)
WO (1) WO2012176488A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821655B2 (en) 2014-08-12 2023-11-21 Novaerus Patents Limited Air treatment system, method and apparatus
GB2529173B (en) * 2014-08-12 2016-08-24 Novaerus Patents Ltd Flexible electrode assembly for plasma generation and air ducting system including the electrode assembly
CN105789658B (zh) * 2016-03-21 2018-10-26 武汉众宇动力系统科技有限公司 一种燃料电池集流板
FR3069107B1 (fr) * 2017-07-13 2022-01-14 Commissariat Energie Atomique Plaque de maintien de cellule electrochimique a etancheite amelioree
JP7229648B2 (ja) * 2020-07-29 2023-02-28 矢崎総業株式会社 バッテリ接続モジュール
CN115332734A (zh) * 2022-09-13 2022-11-11 四川启睿克科技有限公司 一种芯片与电池一体化集成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200064A (ja) 2002-12-19 2004-07-15 Fujitsu Component Ltd 燃料電池および燃料電池スタック
JP2008270420A (ja) * 2007-04-18 2008-11-06 Nitto Denko Corp 配線回路基板および燃料電池
JP2010050378A (ja) 2008-08-25 2010-03-04 Nitto Denko Corp 配線回路基板および燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2422212A1 (en) 2000-09-14 2003-03-13 Ulf Zum Felde Electrochemically activatable layer or film
KR100552174B1 (ko) * 2002-04-17 2006-02-13 마쯔시다덴기산교 가부시키가이샤 고분자 전해질형 연료전지
JP4031740B2 (ja) * 2003-07-15 2008-01-09 日東電工株式会社 燃料電池用セパレータ及びそれを用いた燃料電池
TWI257189B (en) * 2004-12-08 2006-06-21 Nan Ya Printed Circuit Board C Electrode plate of a flat panel direct methanol fuel cell and manufacturing method thereof
JP5251062B2 (ja) * 2007-10-04 2013-07-31 日立電線株式会社 燃料電池用複合集電板及び燃料電池
US8383280B2 (en) * 2008-08-12 2013-02-26 Amir Niroumand Fuel cell separator plate with integrated heat exchanger
JP5395625B2 (ja) * 2009-11-11 2014-01-22 日東電工株式会社 配線回路基板および燃料電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200064A (ja) 2002-12-19 2004-07-15 Fujitsu Component Ltd 燃料電池および燃料電池スタック
JP2008270420A (ja) * 2007-04-18 2008-11-06 Nitto Denko Corp 配線回路基板および燃料電池
JP2010050378A (ja) 2008-08-25 2010-03-04 Nitto Denko Corp 配線回路基板および燃料電池

Also Published As

Publication number Publication date
JP5833003B2 (ja) 2015-12-16
US9076997B2 (en) 2015-07-07
EP2725645A1 (en) 2014-04-30
CN102959781A (zh) 2013-03-06
US20130202985A1 (en) 2013-08-08
CN102959781B (zh) 2015-06-17
JPWO2012176488A1 (ja) 2015-02-23
EP2725645B1 (en) 2017-04-12
EP2725645A4 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5833003B2 (ja) 可撓性回路基板およびその製造方法、ならびに該可撓性回路基板を用いた燃料電池
US7569290B2 (en) Flat panel direct methanol fuel cell and method for making the same
US7229564B2 (en) Method for manufacturing bipolar plate and direct methanol fuel cell
KR100990465B1 (ko) 연료 전지 모듈
US7531263B2 (en) Method of fabricating a flat panel direct methanol fuel cell
US7632599B2 (en) Separator for fuel cell and fuel cell using the same
US7572533B2 (en) Flat panel direct methanol fuel cell and method of making the same
JP2008300238A (ja) 配線回路基板および燃料電池
JP4568044B2 (ja) 膜電極複合体モジュール、燃料電池および電子機器並びに膜電極複合体モジュールの製造方法
EP2388850A2 (en) Printed circuit board, fuel cell and method of manufacturing printed circuit board
JP5395625B2 (ja) 配線回路基板および燃料電池
EP2389051B1 (en) Method of manufacturing printed circuit board
US7592093B2 (en) Method for manufacturing a flat panel direct methanol fuel cell
JP4872287B2 (ja) 平面型の高分子電解質型燃料電池用のセパレータ組みおよび平面型の高分子電解質型燃料電池
JP4445280B2 (ja) 平面型の高分子電解質型燃料電池用のセパレータおよびその製造方法
JP4862258B2 (ja) 平面型の高分子電解質型燃料電池用のセパレータ
JP2005347745A (ja) 燃料電池を内蔵した電子回路基板
JP2008282672A (ja) 燃料電池及びその製造方法
JP2012104668A (ja) 配線回路基板およびその製造方法ならびに燃料電池
JP2011070934A (ja) 配線回路基板および燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001304.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012523135

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012756062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012756062

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13697151

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12756062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005349

Country of ref document: TH