WO2003086586A1 - Procede de separation de gaz - Google Patents

Procede de separation de gaz Download PDF

Info

Publication number
WO2003086586A1
WO2003086586A1 PCT/JP2003/004655 JP0304655W WO03086586A1 WO 2003086586 A1 WO2003086586 A1 WO 2003086586A1 JP 0304655 W JP0304655 W JP 0304655W WO 03086586 A1 WO03086586 A1 WO 03086586A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorption
adsorption column
pressure
separation method
Prior art date
Application number
PCT/JP2003/004655
Other languages
English (en)
French (fr)
Inventor
Tatsushi Urakami
Toru Nagasaka
Masato Kawai
Akihiro Nakamura
Original Assignee
Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corporation filed Critical Nippon Sanso Corporation
Priority to EP03723107A priority Critical patent/EP1495793A4/en
Priority to AU2003236218A priority patent/AU2003236218A1/en
Priority to KR1020047016342A priority patent/KR100984796B1/ko
Priority to US10/510,745 priority patent/US7300497B2/en
Publication of WO2003086586A1 publication Critical patent/WO2003086586A1/ja
Priority to IL16445604A priority patent/IL164456A0/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40037Equalization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40062Four
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40064Five
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40066Six
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0035Krypton
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0037Xenon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen

Definitions

  • the present invention relates to a method for separating gas components from a mixed gas containing at least two types of gas components, for example, a rare gas and a nitrogen gas, by using a pressure fluctuation type adsorption separation method.
  • a method is used in which a rare gas is circulated in a processing chamber in a nitrogen gas atmosphere to generate plasma by high-frequency discharge, and the inside of the chamber is purged with nitrogen gas when an object to be processed is taken out.
  • argon gas has been used as a rare gas in this treatment, but in recent years, the use of krypton gas or xenon gas has been studied in order to perform more advanced treatment.
  • krypton gas / xenon gas is an extremely expensive gas due to its low abundance in air and the complicated separation process from air. For this reason, if krypton gas or xenon gas is used as a processing atmosphere gas and then discharged (discarded) as it is, there is a problem that the cost required for this atmosphere gas rises.
  • the impurity concentration should be at least 100 ppm or less. It is necessary to separate the noble gas from the exhaust gas.
  • This pressure fluctuation type adsorption separation method is applicable to the method of recovering a rare gas from the exhaust gas.
  • the easily adsorbable components are adsorbed by the adsorbent, and the hardly adsorbable components are adsorbed, albeit slightly.
  • the poorly adsorbable components are also present in the gaps between the adsorbents in the adsorption column, a considerable amount of the hardly adsorbable components will be contained in the regenerated exhaust gas discharged in the regeneration step. For this reason, it is difficult to increase the recovery rate of the target gas component (in this example, the hardly adsorbable component).
  • Conventional pressure fluctuation type adsorption separation methods include a speed type pressure fluctuation type adsorption separation method using the difference in adsorption speed of the components to be adsorbed and an equilibrium type pressure fluctuation type adsorption separation method using the equilibrium adsorption amount difference. By combining these, the recovery rate can be increased.
  • the desorption gas (regenerated exhaust gas) discharged during the regeneration process of the equilibrium pressure fluctuation type adsorption separation method and the velocity type pressure fluctuation type adsorption separation method is stored in a storage tank. Then, this can be mixed with the raw material gas and supplied to the adsorption step again as a circulating raw material gas.
  • the equilibrium-type pressure fluctuation-type adsorption separation mechanism and the velocity-type pressure fluctuation-type separation mechanism each require two, that is, four adsorption cylinders in total.
  • the gas separation method of alternately supplying a mixed gas to the first and second adsorption cylinders filled with adsorbents (equilibrium type and velocity type) having different adsorption characteristics two adsorption The separation can be performed by the cylinder, so the compactness of the equipment can be enhanced.
  • the easily adsorbable component and the hardly adsorbable component to the equilibrium adsorbent are separated by the equilibrium pressure fluctuation type adsorption separation method, and the speed is determined by the speed type pressure fluctuation adsorption separation method in the second adsorption column.
  • a method for separating easily adsorbed components and poorly adsorbed components from the adsorbent will be described. ⁇
  • the mixed gas of the raw materials is introduced into the adsorption column under pressure to adsorb easily adsorbable components for each adsorbent, and recover the hardly adsorbable components as product gas.
  • the pressure in the adsorption column is reduced to desorb the easily adsorbed components adsorbed by the adsorbent, thereby regenerating the adsorbent.
  • the recycled exhaust gas is mixed with the mixed gas of the raw materials and supplied to the adsorption column in the adsorption process as circulating raw material gas.
  • one adsorption column can be used for each pressure fluctuation type adsorption separation method.
  • the product recovery rate is the ratio of the product gas derived flow rate to the circulating raw material gas supply flow rate defined below.
  • the present invention has been made in view of the above circumstances, and when separating these gas components from a mixed gas containing a plurality of gas components by using a pressure fluctuation type adsorption separation method, these gas components are separated.
  • An object of the present invention is to provide a gas separation method capable of efficiently recovering and reducing cost.
  • the gas separation method of the present invention comprises: a first adsorption column provided with a first adsorbent that is hardly adsorbed to the first gas component and easily adsorbable to the second gas component; A second adsorption column provided with a second adsorbent which is easily adsorbable to one gas component and hard to adsorb to the second gas component,
  • an adsorbing step of supplying the mixed gas under pressure, adsorbing the second gas component, and separating the first gas component as the first product gas is performed.
  • Step 2 a regeneration step of desorbing the first gas component by decompression is performed (Step 2)
  • a gas in the first adsorption column is introduced into the second adsorption column, and the pressure in the first adsorption column is reduced by equalizing the pressure in these adsorption columns.
  • a regeneration step of desorbing the second gas component by depressurization is performed, and in the second adsorption column, the mixed gas is supplied under pressure, the first gas component is adsorbed, and the second gas component is converted into the second gas component.
  • An equalizing pressure reducing step is performed, and in the first adsorption column, the first gas component and the second gas component are subjected to a pressure equalizing step of pressurizing the first adsorption column by introducing gas from the second adsorption column. It is characterized by being separated.
  • the first and second product gas are stored in the first and second product gas storage tanks for storing the first and second product gas in the regeneration step in the first and second adsorption columns.
  • Each product gas in the gas storage tank is introduced into the first and second adsorption columns, respectively.
  • each product gas in the first and second product gas storage tanks is introduced.
  • the first and second purge gas storage tanks storing the gas in the first and second adsorption cylinders as a purge gas are used, and the pressure equalization step in the first and second adsorption cylinders is performed. Then, the gas in the first and second adsorption cylinders is stored as a purge gas in the first and second purge gas storage tanks, respectively, in the regeneration process in the first and second adsorption cylinders. It is preferable to introduce the purge gas from the purge gas storage tank into the first and second adsorption columns, respectively.
  • one of the first and second gas components can be krypton gas or xenon gas, and the other can be nitrogen gas.
  • one of the first and second adsorbents can be an equilibrium separation type adsorbent, and the other can be a velocity separation type adsorbent.
  • one of the first and second adsorbents can be activated carbon and the other can be zeolite.
  • FIG. 1 is a schematic configuration diagram showing a gas separation device capable of performing a first embodiment of the gas separation method of the present invention.
  • FIGS 2A to 2D are process diagrams of the first embodiment of the gas separation method of the present invention.
  • FIG. 3 is a schematic configuration diagram showing a gas separation device capable of performing the second embodiment of the gas separation method of the present invention.
  • 4A to 4D are process diagrams of a second embodiment of the gas separation method of the present invention.
  • Figure 5 is a graph showing the test results.
  • FIG. 1 shows a gas separation apparatus capable of performing a first embodiment of the gas separation method of the present invention.
  • the gas separation device includes a raw material storage tank 1 into which a raw material gas that is a mixed gas containing at least two types of gas components is introduced, a compressor 2 that compresses the circulating raw material gas from the raw material storage tank 1, A first separation unit 3 for separating the first gas component in the circulating raw material gas from the compressor 2 as a first product gas, and a second separation unit for separating the second gas component in the circulating raw material gas as a second product gas It has four.
  • the first separation unit 3 includes a first adsorption column 11 for separating a first gas component in the circulating raw material gas as a first product gas, and a first product gas storage tank 12 for storing the first product gas. I have.
  • Reference symbol L3 is an introduction line for introducing the circulating raw material gas from the compressor 2 to the first adsorption column 11.
  • the introduction line L3 is connected to a lower portion of the first adsorption column 11.
  • the symbol L 4 has a function of introducing the first product gas from the first adsorption column 11 into the first product gas storage tank 12 and a function of returning the first product gas from the storage tank 12 to the adsorption column 11. It is a pipeline having The pipeline L4 is connected to an upper part of the first adsorption column 11.
  • the symbol L5 is an outlet pipe for extracting the first product gas from the storage tank 12.
  • Reference numeral L 9 denotes a return line for returning the regenerated exhaust gas from the first adsorption column 11 to the raw material storage tank 1.
  • Reference symbol L I 1 is an introduction pipe for introducing the first product gas in the first product gas storage tank 12 into the first adsorption column 11 as a purge gas.
  • the first adsorption column 11 uses a first adsorbent that is hardly adsorbable to the first gas component and easy to adsorb to the second gas component.
  • the second separation unit 4 uses the second gas component in the circulating feed gas as the second product gas.
  • a second adsorption column 21 for separation and a second product gas storage tank 22 for storing a second product gas are provided.
  • Reference numeral L 6 denotes an introduction line for introducing the circulating raw material gas from the compressor 2 into the second adsorption column 21.
  • the introduction line L6 is connected to a lower part of the second adsorption column 21.
  • the symbol L7 has a function of introducing the second product gas from the second adsorption cylinder 21 into the second product gas storage tank 22 and a function of returning the second product gas from the storage tank 22 to the adsorption cylinder 21. It is a pipeline having The pipeline L7 is connected to the upper part of the second adsorption column 21.
  • the symbol L8 is an outlet pipe for extracting the second product gas from the storage tank 22.
  • Reference symbol L 10 denotes a return pipe for returning the regenerated exhaust gas from the second adsorption column 21 to the raw material storage tank 1.
  • Reference numeral L12 denotes an introduction pipe for introducing the second product gas in the second product gas storage tank 22 into the second adsorption column 21 as a purge gas.
  • the second adsorption column 21 uses a second adsorbent that is hardly adsorbable to the second gas component and is easily adsorbed “I” to the first gas component.
  • activated carbon which is an equilibrium separation type adsorbent.
  • Activated carbon has the properties of a large amount of krypton gas adsorbed (easily adsorbable) and a small amount of nitrogen gas adsorbed (poor adsorbent) as equilibrium adsorption. .
  • zeolite 4A Na-A type zeolite which is a speed separation type adsorbent.
  • Zeolite 4A is less likely to adsorb krypton gas with a relatively large molecular diameter (poor adsorbability), has a smaller molecular diameter than krypton gas, and has the property of adsorbing nitrogen gas (easy adsorbability). .
  • This characteristic is a separation property generally called a velocity separation type. If an appropriate adsorption time is selected, nitrogen gas can be selectively adsorbed, and krypton gas can be adsorbed without adsorption. Can be derived from
  • the above-mentioned mixed gas is introduced into the raw material storage tank 1 through the pipe L1 as the raw material gas.
  • the first adsorber 11 has a cliff.
  • An adsorption step is performed to adsorb ton gas and separate nitrogen gas as the first product gas.
  • the circulating raw material gas from the raw material storage tank 1 is compressed by the compressor 2 and supplied to the first adsorption column 11 through the line L3.
  • the nitrogen gas in the first product gas storage tank 12 is led out of the system as a first product gas through the pipe L5.
  • the circulating raw material gas is supplied to the adsorption cylinder 11 and the valve V 2 is closed until the pressure of the adsorption cylinder 11 becomes higher than the storage tank 12. It is preferable to open the valve V2 when the pressure becomes higher than 12, and to introduce the gas in the adsorption column 11 into the storage tank 12 through the line L4.
  • a pipe (not shown) connecting the adsorption cylinder 11 and the storage tank 12 was provided, and a check valve was provided in this pipe so that the pressure of the adsorption cylinder 11 became higher than that of the storage tank 12. At this point, the gas in the adsorption column 11 may be introduced into the storage tank 12 through this conduit.
  • a regeneration step of desorbing nitrogen gas by decompression is performed.
  • the valve V8 is opened to desorb the nitrogen gas adsorbed in the adsorption step prior to step 1, and is returned to the raw material storage tank 1 as regeneration exhaust gas through the line L10.
  • the second adsorbent is regenerated.
  • the krypton gas in the second product gas storage tank 22 is introduced into the second adsorption column 21 through the pipe L 12, and the krypton gas is passed through the second adsorption column 21, and the second adsorbent Promotes the desorption of nitrogen gas adsorbed on the surface.
  • step 1 the gas (regenerated exhaust gas, etc.) returned from the adsorption column 21 (the adsorption column 11 in step 3) and the raw material gas introduced from line L1 Charge storage tank 1
  • the circulating raw material gas which is a mixture of the return gas from the adsorption column 21 (the adsorption column 11 in the step 3) and the source gas, is supplied to the first adsorption column 11 (the step 3 in the step 3). 2 It is supplied to the adsorption column 21).
  • the gas in the adsorption column 11 is introduced into the second adsorption column 21 to equalize the pressure in the adsorption columns 11
  • An equalizing pressure reducing step for reducing the pressure of the adsorption column 11 is performed.
  • valves VI and V4 are opened to connect the first adsorption column 11 and the second adsorption column 21 by the pipes L3 and L6.
  • the first adsorption column 11 is in a high pressure state by step 1 (adsorption process), and the second adsorption column 21 is in a low pressure state by step 1 (regeneration process).
  • the gas in the cylinder 11 is introduced into the second adsorption cylinder 21 through the pipes L3 and L6, and the first adsorption cylinder 11 is depressurized, so that the adsorption cylinders 11 and 21 are equalized.
  • step 2 the first adsorption column 11 is depressurized, and the krypton gas adsorbed on the first adsorbent is desorbed and introduced into the second adsorption column 21 to pressurize the second adsorption column 21 An equalizing pressure step is performed.
  • the gas from the first adsorption column 1.1 is introduced into the second adsorption column 21 by the pressure equalizing and depressurizing step, and krypton gas is supplied from the second product gas storage tank 22. It is introduced into the second adsorption column 21 through the path L7. Thereby, the second adsorption cylinder 21 is pressurized.
  • step 2 (equalizing pressure reducing step in the first adsorption column 11 and equalizing pressure increasing step in the second adsorption column 21), the supply of the circulating raw material gas is continued without stopping the driving of the compressor 2. .
  • This circulating raw material gas is supplied to the second adsorption cylinder 21 through the pipe L6 together with the gas introduced from the adsorption cylinder 11 to the adsorption cylinder 21.
  • step 2 When shifting from step 1 to step 2, the introduction destination of the circulating feed gas changes from the first adsorption cylinder 11 to the second adsorption cylinder 21.In step 2, the first adsorption cylinder 1 1 Since the second adsorption column 21 is pressurized by the introduction of gas from the compressor, the load applied to the compressor 2 does not significantly decrease. 3)
  • a regeneration step of desorbing krypton gas by decompression is performed.
  • the krypton gas adsorbed in step 1 is desorbed by opening the valve V7, and is returned to the raw material storage tank 1 as regeneration exhaust gas through the line L9.
  • the first adsorbent is regenerated.
  • the nitrogen gas in the first product gas storage tank 12 is introduced into the first adsorption cylinder 11 through the pipe LI 1, and this nitrogen gas is passed through the first adsorption cylinder 11, and the first adsorbent It promotes the desorption of krypton gas adsorbed on the ground.
  • an adsorption step of adsorbing nitrogen gas and separating krypton gas as a second product gas is performed.
  • the circulating raw material gas from the raw material storage tank 1 is compressed by the compressor 2 and supplied to the second adsorption column 21 through the line L6.
  • the krypton gas in the second product gas storage tank 22 is led out of the system as a second product gas through the line L8.
  • adsorption pressure the highest ultimate pressure in the adsorption step in the adsorption step in a range of 300 to 500 kPa (gauge pressure).
  • adsorption pressure is set to more than 500 kPa (gauge pressure), it is necessary to increase the flow rate of the circulating raw material gas supplied to the adsorption column 21. growing.
  • the impurity concentration in the product gas will increase, resulting in an increase in the amount of adsorbent charged or a decrease in the product recovery rate.
  • the equipment cost and operating cost can be kept low without lowering the product recovery rate. .
  • the circulating raw material gas is supplied to the adsorption cylinder 21 and the valve V 5 is closed until the pressure of the adsorption cylinder 21 becomes higher than the storage tank 22. It is preferable to open the valve V5 when the pressure becomes higher than 22 and to introduce the gas in the adsorption cylinder 21 into the shell tank 22 through the line L7.
  • a pipe (not shown) connecting the adsorption cylinder 21 and the storage tank 22 was provided, and a check valve was provided in this pipe so that the pressure of the adsorption cylinder 21 became higher than that of the storage tank 22. At this point, the gas in the adsorption column 21 may be introduced into the storage tank 22 through this conduit.
  • the gas in the second adsorption column 21 is introduced into the first adsorption column 11 to equalize the adsorption columns 11 and 21 to form the second adsorption column 21.
  • valves VI and V4 are opened to connect the first adsorption column 11 and the second adsorption column 21 by the pipes L3 and L6.
  • the pressure of the first adsorption column 11 is low due to step 3 (regeneration process), and the pressure of the second adsorption column 21 is high due to step 3 (adsorption process).
  • the gas in the cylinder 21 is introduced into the first adsorption cylinder 11 through the lines L6 and L3, and the second adsorption cylinder 21 is depressurized. I will be hit.
  • step 4 the second adsorption column 21 is depressurized, the nitrogen gas adsorbed on the second adsorbent is desorbed, and introduced into the first adsorption column 11 to pressurize the first adsorption column 11 A pressure equalizing and pressurizing step is performed.
  • the gas from the second adsorption column 21 is While being introduced into the first adsorption column 11, the nitrogen gas in the storage tank 12 is introduced into the first adsorption column 11 from the first product gas storage tank 12 through the line L 4. Thereby, the inside of the first adsorption column 11 is pressurized.
  • step 4 (equalizing pressure reducing step in the second adsorption column 21 and equalizing pressure increasing step in the first adsorption column 11), the supply of the circulating raw material gas is continued without stopping the driving of the compressor 2. .
  • the circulating raw material gas is supplied to the first adsorption column 11 through the pipe L3 together with the gas introduced from the adsorption column 21 to the adsorption column 11.
  • step 4 When shifting from step 3 to step 4, the introduction destination of the circulating feed gas changes from the second adsorption cylinder 21 to the first adsorption cylinder 11, but in step 4, the second adsorption cylinder 2 1 Since the first adsorption column 11 is pressurized by the introduction of gas from the compressor, the load applied to the compressor 2 does not significantly decrease.
  • the cycle time (time required for a series of processes, the time required for steps 1 to 4 in the above embodiment) in the pressure fluctuation type adsorption separation method is an important factor that has a large effect on product recovery and adsorbent loading. Parameter.
  • the cycle time should be set so that the amount of adsorbent and compressor capacity can be set low according to the type of adsorbent and the component concentration of the circulating feed gas without reducing the product recovery.
  • a connecting line L14 connecting the line L13 on the outlet side of the compressor 2 and the raw material storage tank 1 is provided, and the circulating raw material gas from the compressor 2 is provided. A part of the waste gas can be returned to the raw material storage tank 1 through the connecting line L14.
  • Steps 2 and 4 the adsorbing cylinder 11 and the adsorbing cylinder 21 are communicated with each other by the pipelines L3 and L6, and the adsorbing cylinder 11 and the adsorbing cylinder 21 are equalized.
  • a pipe (not shown) connecting the adsorption cylinder 11 and the adsorption cylinder 21 is provided separately from the pipes L3 and L6.
  • the cylinder 21 may be connected.
  • Step 2 the gas in the first adsorption column 11 is introduced into the second adsorption column 21 to equalize the adsorption column 11 and the adsorption column 21. Perform the depressurizing step and the equalizing pressurizing step.
  • Step 2 since the pressure of the first adsorption column 11 is reduced, the gas containing a large amount of krypton gas adsorbed by the first adsorption column 11 is introduced into the second adsorption column 21 together with the circulating raw material gas. .
  • the krypton concentration in the gas introduced into the second adsorption column 21 in step 2 becomes higher than the krypton gas concentration in the circulating feed gas.
  • step 4 the gas in the second adsorption column 21 is introduced into the first adsorption column 11 to equalize the pressure in the adsorption column 11 and the adsorption column 21. I do.
  • step 4 since the pressure in the second adsorption column 21 is reduced, the gas containing a large amount of nitrogen gas adsorbed in the second adsorption column 21 is introduced into the first adsorption column 11 together with the circulating raw material gas. Is done.
  • the nitrogen concentration in the gas introduced into the first adsorption column 11 in Step 4 becomes higher than the nitrogen concentration in the circulating feed gas.
  • the gas having a high concentration of the target gas (krypton gas or nitrogen gas) to be separated as the product gas is adsorbed to the adsorption columns 11 and 2. Can be supplied to one.
  • the target gas krypton gas or nitrogen gas
  • Steps 1 and 3 the efficiency of talipton adsorption in the adsorption column 11 and the efficiency of nitrogen adsorption in the adsorption column 21 can be improved. Recovery rate can be increased.
  • the capacity of the compressor 2 can be reduced. For example, compared to the conventional method, The capacity can be reduced by 5 to 20%.
  • the compressor 2 can be reduced in size and space can be saved, and the equipment cost can be reduced. '
  • steps 2 and 4 the adsorption cylinders 11 and 21 to which the circulating raw material gas is introduced are pressurized by the equalizing pressure reducing step and the pressure pressurizing step.
  • the load on the compressor 2 can be reduced.
  • the capacity of the compressor 2 can be set small, and the equipment cost can be kept low.
  • FIG. 3 shows a gas separation device capable of performing the second embodiment of the gas separation method of the present invention.
  • the gas separation device shown here is not provided with pipelines L 1 and 1 2 for introducing nitrogen gas or krypton gas from the product gas storage tanks 12 and 22 to the adsorption cylinders 11 and 21.
  • the gas separation apparatus shown in FIG. 1 is different from the gas separation apparatus shown in FIG. 1 in that first and second purge gas storage tanks 13 and 23 for storing gases derived from the adsorption tubes 11 and 12 as purge gas are provided. .
  • the first purge gas storage tank 13 is connected to the pipe L4 via the pipe L15, and the gas in the storage tank 13 is used as the purge gas through the pipes L15 and L4 as the first adsorption column.
  • the second purge gas storage tank 23 is connected to the pipe L7 via the pipe L16, and the gas in the storage tank 23 is used as a purge gas through the pipes L16 and L7 as the second adsorption column. 2 can be supplied to one.
  • the mixed gas is introduced as raw material gas into raw material storage tank 1 through line L1.
  • the first adsorption column 11 includes an adsorption step of adsorbing the taliptone gas in the circulating raw material gas and leading the nitrogen gas out of the system as a first product gas through the storage tank 12. Do.
  • a regeneration step of desorbing nitrogen gas by depressurization is performed in the second adsorption column 21. In this regeneration step, the nitrogen gas adsorbed in the adsorption step prior to step 1 is desorbed, and the pipe L 10 Through to the raw material storage tank 1.
  • the purge gas in the second purge gas storage tank 23 is introduced into the second adsorption column 21 through the pipes L16 and L7, and this gas is circulated through the second adsorption column 21.
  • the gas in the first adsorption column 11 is introduced into the second adsorption column 21 through lines L3 and L6 to equalize the pressure of the adsorption columns 11 and 21.
  • the pressure equalizing pressure reducing step of reducing the pressure of the first adsorption column 11 is performed.
  • a part of the gas in the adsorption column 11 (for example, the gas in the space above the adsorption column 11) is introduced into the first purge gas storage tank 13 as purge gas through the pipes L4 and L15. I do.
  • a pressure equalizing step of pressurizing the second adsorption column 21 by equalizing the pressure of the adsorption columns 11 and 21 is performed.
  • the gas from the first adsorption column 11 is introduced into the second adsorption column 21 by the pressure equalizing and depressurizing step, and the krypton gas is supplied from the storage tank 22 to the second adsorption column 2. Introduced in 1. Thereby, the second adsorption cylinder 21 is pressurized.
  • a regeneration step of desorbing krypton gas by decompression is performed in the first adsorption column 11.
  • the krypton gas adsorbed in step 1 is desorbed and returned to the raw material storage tank 1 as regeneration exhaust gas through line L9.
  • the purge gas in the first purge gas storage tank 13 is introduced into the first adsorption column 11 through the pipes L15 and L4, and this gas is passed through the first adsorption column 11 1Promote desorption of krypton gas adsorbed on the adsorbent.
  • an adsorption step of adsorbing nitrogen gas in the circulating raw material gas and leading the krypton gas out of the system as a second product gas through the storage tank 22 is performed.
  • the gas in the second adsorption column 21 is introduced into the first adsorption column 11 through the lines L6 and L3, and the pressure in the adsorption column 11 and the adsorption column 21 is equalized.
  • an equalizing pressure reducing step of reducing the pressure of the second adsorption column 21 is performed.
  • a part of the gas in the adsorption cylinder 21 (for example, the gas in the gap above the adsorption cylinder 21) is introduced into the second purge gas storage tank 23 as a purge gas through the pipes L7 and L16. I do. '
  • a pressure equalizing step of pressurizing the first adsorption column 11 by equalizing the pressure of the adsorption column 11 and the adsorption column 21 is performed.
  • the gas from the second adsorption column 21 is introduced into the first adsorption column 11 by the pressure equalizing and depressurizing step, and the nitrogen gas in the storage tank 12 is passed through the line L4. And is introduced into the first adsorption column 11. Thereby, the first adsorption column 11 is pressurized.
  • the gas in the first adsorption column 11 is introduced into the second adsorption column 21 to equalize the pressure in the adsorption column 11 and the adsorption column 21.
  • the adsorption cylinder 11 This improves krypton adsorption and nitrogen adsorption in the adsorption column 21.
  • the compressor 2 can be reduced in size and space can be saved, and the equipment cost can be kept low. .
  • the purge gas from the purge gas storage tank 23 (or the purge gas storage tank 13) is supplied to the adsorption cylinder 21 (or the adsorption cylinder 1). 1), the product gas in storage tank 22 (or storage tank 1 2) does not need to be used as purge gas.
  • purge gas storage tank 13 (or storage neon soda 23)
  • purge gas storage tank 13 It is also possible to provide a line connecting the adsorption tube 11 and the adsorption tube 21 (or the adsorption tube 21) in addition to the line L15 (or the line L16), and to use separate lines when introducing and discharging the purge gas. (Not shown).
  • the mixed gas containing nitrogen and krypton was set as the separation target, but the gas component to be separated is not limited to this.
  • xenon may be set as the separation target instead of krypton.
  • the mixed gas was separated as follows.
  • the specifications of the gas separator used are shown below.
  • the cylindrical adsorption column having an inner diameter of 70.3 mm and a length of 54 Omm was filled with 1.42 kg of zeolite 4A (second adsorbent).
  • the above gas separator was operated with steps 1 to 4 as one cycle and one cycle operation time of 400 seconds.
  • the time of each step was as shown in Table 2.
  • step 1 As shown in FIGS. 1 and 2A, valves VI, V3, V6, V8, and V10 were opened, and the other valves were closed.
  • the mixed gas is introduced into the raw material storage tank 1 at a flow rate of 0.44 L in, and the circulating raw material gas from the raw material storage tank 1 is passed through the pipeline L 3 at 4.7 LZ min using the compressor 2. And supplied to the first adsorption column 11. The concentration of the circulating feed gas was adjusted so that it was almost the same as the feed gas composition.
  • the valve V2 After supplying the circulating raw material gas until the pressure of the adsorption cylinder 11 becomes higher than the pressure of the storage tank 12, the valve V2 is opened, and the gas (nitrogen gas) in the adsorption cylinder 11 is supplied to the line L4. And collected in the first product gas storage tank 12. At this time, the pressure of the first adsorption column 11 was set to 180 to 435 kPa (gauge pressure) (adsorption step).
  • the gas in the adsorption column .21 was returned to the raw material storage tank 1 through line L10 as regenerated exhaust gas.
  • the pressure of the second adsorption column 21 was reduced, and the nitrogen gas adsorbed by the second adsorbent was desorbed.
  • the pressure in the second adsorption column 21 was set to 0 to: 10 kPa (gauge pressure).
  • the krypton gas in the second product gas storage tank 22 was introduced into the second adsorption column 21 through the line L12, and the adsorption column 21 was purged (regeneration step).
  • valves V2, V8, and VI0 were closed, and valves V1, V4, and V5 were opened.
  • the first adsorption column 11 and the second adsorption column 21 are communicated with each other via the lines L3 and L6, and the gas in the first adsorption column 11 is passed through the lines L3 and L6. It was introduced into the second adsorption column 21.
  • krypton gas was introduced into the second adsorption column 21 from the second product gas storage tank 22 through the line L7.
  • the pressure of the first adsorption column 11 was reduced to 290 kPa (gauge pressure), and the pressure of the second adsorption column 21 was raised to 260 kPa (gauge pressure). Pressure step).
  • the gas in the first adsorption column 11 was returned to the raw material storage tank 1 as regeneration exhaust gas through the line L9.
  • the pressure of the first adsorption column 11 was set to 0 to 10 kPa (gauge pressure). .
  • the nitrogen gas in the first product gas storage tank 12 was introduced into the first adsorption cylinder 11 through the pipe L11, and the adsorption cylinder 11 was purged (regeneration step).
  • the circulating raw material gas was supplied to the second adsorption column 21 through the line L 6.
  • valve V5 After supplying the circulating raw material gas until the pressure in the adsorption cylinder 21 becomes higher than the pressure in the storage tank 22, the valve V5 is opened, and the gas (krypton gas) in the adsorption cylinder 21 is passed through the line L7. Collected in the second product gas storage tank 22. At this time, the pressure of the second adsorption column 21 was set to 260 to 420 kPa (gauge pressure) (adsorption step). As shown in FIGS. 1 and 2D, valves V7, V9, and V5 were closed, and valves V1, V2, and V4 were opened.
  • the first adsorption column 11 and the second adsorption column 21 are communicated with each other through the lines L3 and L6, and the gas in the second adsorption column 21 is passed through the lines L3 and L6. 1 Introduced into adsorption column 11.
  • the pressure of the first adsorption column 11 was increased to 180 kPa (gauge pressure), and the pressure of the second adsorption column 21 was reduced to 240 kPa (gauge pressure). And equalizing pressure step).
  • the first product gas with a nitrogen concentration of 99.5% is recovered in the first product gas storage tank 12, and the krypton gas concentration in the second product gas storage tank 99. 995% of the second product gas was recovered.
  • Table 3 shows the product gas flow rates and product recovery rates.
  • First and second adsorption cylinders, and a compressor for supplying a mixed gas to these adsorption cylinders The mixed gas was separated by using a gas separation device.
  • test conditions were the same as in Example 1 except that the supply rate of the circulating raw material gas from the compressor was 5.3 L / min.
  • the adsorption process and the regeneration process are performed alternately, and when one adsorption column is in the adsorption process, the regeneration process is performed in the other adsorption column.
  • Table 3 also shows the product gas flow rates and product recovery rates under the same conditions as in Example 1 with the same product nitrogen gas concentration and product krypton gas concentration.
  • Table 3 shows that the gas separation method of Example 1 was able to increase the product recovery rate as compared with Comparative Example 1.
  • Separation of the mixed gas was performed using the same gas separation device as that used in Example 1. c This gas separation device was operated with an operation time of one cycle of 600 seconds. The adsorption step and the regeneration step were each performed for 29 seconds, and the equalizing pressure reducing step and the equalizing pressure step were each performed for 5 seconds.
  • Example 1 As the mixed gas, the same gas used in Example 1 was used.
  • the flow rates of the product nitrogen gas and the product krypton gas were both 0.15 L Zmin.
  • the supply flow rate of the circulating raw material gas was changed in the range of 2.8 to 4.0 L / min, and the fluctuations of the product nitrogen gas concentration and the product krypton gas concentration due to the flow rate change were measured.
  • the pressure in the adsorption process of the first adsorption column 11 and the second adsorption column 21 changed according to the flow rate of the circulating raw material gas.
  • Figure 1 shows the change in the adsorption pressure of the first adsorption column 1 and the concentration of krypton gas in the first product gas. See Figure 5.
  • FIG. 6 shows changes in the adsorption pressure of the second adsorption column 21 and the nitrogen gas concentration in the second product gas.
  • the adsorption pressure exceeds 500 kPa (gauge pressure)
  • the nitrogen concentration will increase, leading to an increase in the amount of adsorbent charged and a decrease in the product recovery rate.
  • the adsorption pressure is preferably in the range of 300 to 500 kPa (gauge pressure).
  • the adsorption pressure is adjusted to an optimal range by the pressure-fluctuation-type adsorption separation method, which separates talibton gas from a mixed gas consisting of nitrogen and talipton using a rate separation adsorbent such as Zeolite 4A. You need to do that.
  • INDUSTRIAL APPLICABILITY In the gas separation method of the present invention, in steps 2 and 4, an equalizing pressure reducing step and an equalizing pressure increasing step of equalizing the first and second adsorption columns are performed.
  • a gas having a high concentration of the target gas to be separated as a product gas can be supplied to the adsorption column. Therefore, in the adsorption process of the steps subsequent to Steps 2 and 4 (Steps 3 and 1), the adsorption efficiency of gas components can be increased, and the product recovery rate can be increased. Also, since the adsorption efficiency can be improved, the capacity of the compressor can be reduced.
  • the compressor can be reduced in size and space can be saved, and the equipment cost can be kept low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

明 細 書 ガス分離方法 本発明は、 少なく とも 2種のガス成分、 例えば希ガスと窒素ガスを含有す る混合ガスから、 これらガス成分を圧力変動式吸着分離法を用いて分離する 方法に関する。
本出願は日本国特許出願第 2 0 0 2 - 1 1 2 1 4 5号を基礎としており、 その 内容を本明細書に組み込む。 背景技術 半導体集積回路、 液晶パネル、 太陽電池パネル、 磁気ディスク等の半導体製品 を製造する工程では、 希ガス雰囲気中でプラズマを発生させ、 該プラズマによつ て半導体製品の各種処理を行う方法が広く用いられている。
このプラズマ処理では、 窒素ガス雰囲気中の処理チャンバ内に希ガスを流通さ せて高周波放電によりプラズマを発生させ、 被処理物を取り出す際にチャンバ内 を窒素ガスでパージする方法がとられている。
この処理において使用される希ガスとして、 従来はアルゴンガスが用いられて いたが、 近年では、 より高度な処理を行うために、 クリプトンガスやキセノンガ スの使用が検討されている。
しかし、 クリプトンガスゃキセノンガスは、 空気中での存在比が少ないこと、 および空気からの分離工程が複雑であることから、 極めて高価なガスである。 こ のため、 クリプトンガスやキセノンガスを処理雰囲気ガスとして使用した後、 そ のまま排出 (廃棄) すると、 この雰囲気ガスに要するコストが高騰するという問 題があった。
この希ガスを使用するプロセスを経済的に成り立たせるためには、 排ガスから 希ガスを高回収率で回収し、 再利用することが重要となる。
希ガスを再利用するためには、 不純物濃度を少なくとも 1 0 0 p p m以下とし た希ガスを排ガスから分離する必要がある。
複数の成分を含む混合ガスから目的のガス成分を分離する方法としては、 圧力 変動式吸着分離法がある。
この圧力変動式吸着分離法は、 上記排ガスから希ガスを回収する方法に適用可 能である。
従来の圧力変動式吸着分離法によるガス分離方法では、 吸着工程において、 吸 着剤に易吸着成分が吸着されると同時に、 難吸着成分もわずかであるが吸着され る。
さらに、 吸着筒内の吸着剤間の空隙にも難吸着成分が存在するので、 再生工程 で排出される再生排ガス中にはかなりの量の難吸着成分が含まれることとなる。 このため、 目的のガス成分 (この例では難吸着成分) の回収率を高めるのは難し レ、。
混合ガスから目的のガス成分を高い回収率で回収するためには、 系外に排出さ れるガスに含まれる目的のガス成分量を最小限にすることが好ましい。
従来の圧力変動式吸着分離法には、 被吸着成分の吸着速度差を利用した速度型 圧力変動式吸着分離法と、 平衡吸着量差を利用した平衡型圧力変動式吸着分離法 がある。 これらを組み合わせることによって、 回収率を高めることができる。 これら 2つの分離法を組み合わせる場合には、 例えば、 平衡型圧力変動式吸着 分離法と、 速度型圧力変動式吸着分離法のそれぞれの再生工程時に排出される脱 着ガス (再生排ガス) を貯留槽に回収し、 これを原料ガスと混合して、 循環原料 ガスとして再び吸着工程に供給する方法をとることができる。
この方法では、 再生排ガスを吸着工程に供給するため、 系外に排出される目的 ガス成分量を抑えることができる。
2つの分離法を単純に組み合わせると、 平衡型圧力変動式吸着分離機構と速度 型圧力変動式分離機構に、 それぞれ 2つずつ、 すなわち合訐 4つの吸着筒が必要 となる。
これに対し、 吸着特性の異なる吸着剤 (平衡型と速度型) を充填した第 1およ び第 2吸着筒に対して、 交互に混合ガスを供給するガス分離方法を用いると、 2 つの吸着筒で分離が可能になるので、 装置のコンパク トイヒカは力れる。 以下、 第 1吸着筒において、 平衡型圧力変動式吸着分離法により平衡型吸着剤 に対する易吸着成分と難吸着成分を分離し、 第 2吸着筒において、 速度型圧力変 動式吸着分離法により速度型吸着剤に対する易吸着成分と難吸着成分を分離する 方法について説明する。 ―
第 1および第 2吸着筒における吸着工程では、 原料の混合ガスを加圧下で吸着 筒に導入してそれぞれの吸着剤に対する易吸着成分を吸着し、 難吸着成分を製品 ガスとして回収する。
再生工程では、 吸着筒を減圧することによって、 吸着剤に吸着された易吸着成 分を脱着させ、 吸着剤を再生させる。 再生排ガスは原料の混合ガスと混合して、 循環原料ガスとして、 吸着工程で吸着筒に供給する。
この方法では、 表 1に示すように、 第 1吸着筒で吸着工程を行う際に、 第 2吸 着筒で再生工程を行い、 逆に、 第 1吸着筒で再生工程を行う際には、 第 2吸着筒 で吸着工程を行う。
この方法では、 各圧力変動式吸着分離法に用いられる吸着筒をそれぞれ 1つに できる。
表 1
Figure imgf000005_0001
しかしながら、 上記方法では、 製品回収率が十分でないため、 この回収率を向 上させることが要望されていた。 ここで、 製品回収率とは、 以下で定義する循環 原料ガス供給流量に対する製品ガスの導出流量の割合である。
製品回収率[%]
= (製品ガス導出流量 X製品ガス濃度 [%] ) / (循環原料ガス供給流量■÷ 2 X 循環原料ガス中の製品ガス濃度 [%] ) X I 0 0
従来方法では、 製品回収率が低いため、 大きな容量の圧縮機が必要となり、 設 備コストと運転コストが増大する問題があった。 発明の開示 本発明は、 上記事情に鑑みてなされたもので、 複数のガス成分を含む混合ガス から、 これらガス成分を圧力変動式吸着分離法を用いて分離するにあたって、 こ れらガス成分を効率よく回収でき、 し力も低コスト化が可能となるガス分離方法 を提供することを目的とする。
本発明のガス分離方法は、 第 1ガス成分に対して難吸着 'I生であって第 2ガス成 分に対して易吸着性である第 1吸着剤を備えた第 1吸着筒と、 第 1ガス成分に対 して易吸着性であって第 2ガス成分に対して難吸着性である第 2吸着剤を備えた 第 2吸着筒とを用い、
(ステップ 1 ) '
第 1吸着筒において、 混合ガスを加圧下で供給し、 第 2ガス成分を吸着させ、 第 1ガス成分を第 1製品ガスとして分離する吸着工程を行い、
第 2·吸着筒において、 減圧により第 1ガス成分を脱着させる再生工程を行い、 (ステップ 2 )
第 1吸着筒において、 第 1吸着筒内のガスを第 2吸着筒に導入してこれら吸着 筒を均圧化することによって第 1吸着筒を減圧する均圧減圧工程を行い、 第 2吸着筒において、 前記第 1吸着筒からのガス導入によって第 2吸着筒を加 圧する均圧加圧工程を行い、
(ステップ 3 )
第 1吸着筒において、 減圧により第 2ガス成分を脱着させる再生工程を行い、 第 2吸着筒において、 混合ガスを加圧下で供給し、 第 1ガス成分を吸着させ、 第 2ガス成分を第 2製品ガスとして分離する吸着工程を行い、 第 2吸着筒において、 第 2吸着筒内部のガスを第 1吸着筒に導入してこれら吸 着筒を均圧化することによって第 2吸着筒を減圧する均圧減圧工程を行い、 第 1吸着筒において、 前記第 2吸着筒からのガス導入によって第 1吸着筒を加 圧する均圧加圧工程を行うことにより、 第 1ガス成分と第 2ガス成分を分離する ことを特徴とする。 本発明のガス分離方法では、 第 1および第 2製品ガスを貯留する第 1および第 2製品ガス貯留槽を用い、 第 1および第 2吸着筒における再生工程で、 第 1およ び第 2製品ガス貯留槽の各製品ガスを、 それぞれ第 1および第 2吸着筒に導入し . 第 1および第 2吸着筒における均圧加圧工程で、 第 1および第 2製品ガス貯留槽 の各製品ガスを、 それぞれ第 1および第 2吸着筒に導入する方法をとることがで さる。
本発明のガス分離方法では、 第 1およぴ第 2吸着筒内のガスをパージガスとし て貯留する第 1および第 2パージガス貯留槽を用い、 第 1および第 2吸着筒での 均圧減圧工程で、 第 1および第 2吸着筒内のガスを、 パージガスとして、 それぞ れ第 1および第 2パージガス貯留槽に貯留し、 第 1および第 2吸着筒における再 生工程で、 第 1および第 2パージガス貯留槽のパージガスを、 それぞれ第 1およ び第 2吸着筒に導入するのが好ましい。
本発明のガス分離方法では、 第 1および第 2ガス成分のうち一方をクリプトン ガスまたはキセノンガスとし、 他方を窒素ガスとすることができる。
本発明のガス分離方法では、 第 1および第 2吸着剤のうち一方を平衡分離型吸 着剤とし、 他方を速度分離型吸着剤とすることができる。
本発明のガス分離方法では、 第 1および第 2吸着剤のうち一方を活性炭とし、 他方をゼォライ トとすることができる。
本発明のガス分離方法では、 速度分離型吸着剤を備えた吸着筒において、 吸着 II;程における最高到達圧力を、 3 0 0〜5 0 0 k P a (ゲージ圧) とするのが好 ましい。 図面の簡単な説明 図 1は本発明のガス分離方法の第 1実施形態を実施可能なガス分離装置を示す 概略構成図である。
図 2 A〜Dは本発明のガス分離方法の第 1実施形態の工程図である。
図 3は本発明のガス分離方法の第 2実施形態を実施可能なガス分離装置を示す 概略構成図である。 図 4 A〜 Dは本発明のガス分離方法の第 2実施形態の工程図である。
図 5は試験結果を示すグラフである。
図 6は試験結果を示すグラフである。 発明を実施するための最良の形態 図 1は、 本発明のガス分離方法の第 1の実施形態を実施可能なガス分離装置を 示すものである。 , このガス分離装置は、 少なくとも 2種のガス成分を含む混合ガスである原料ガ スが導入される原料 留槽 1と、 原料貯留槽 1からの循環原料ガスを圧縮する圧 縮機 2と、 圧縮機 2からの循環原料ガス中の第 1ガス成分を第 1製品ガスとして 分離する第 1分離ュニット 3と、 循環原料ガス中の第 2ガス成分を第 2製品ガス として分離する第 2分離ュニット 4を備えている。
第 1分離ュニット 3は、 循環原料ガス中の第 1ガス成分を第 1製品ガスとして 分離する第 1吸着筒 1 1と、 第 1製品ガスを貯留する第 1製品ガス貯留槽 1 2を 備えている。
符号 L 3は、 圧縮機 2からの循環原料ガスを第 1吸着筒 1 1に導入する導入管 路である。 導入管路 L 3は第 1吸着筒 1 1の下部に接続されている。
符号 L 4は、 第 1吸着筒 1 1からの第 1製品ガスを第 1製品ガス貯留槽 1 2に 導入する機能と、 第 1製品ガスを貯留槽 1 2から吸着筒 1 1に戻す機能とを有す る管路である。 管路 L 4は、 第 1吸着筒 1 1の上部に接続されている。
符号 L 5は、 貯留槽 1 2から第 1製品ガスを導出する導出管路である。
符号 L 9は、 第 1吸着筒 1 1から再生排ガスを原料 留槽 1に返送する返送管 路である。
符号 L I 1は、 第 1製品ガス貯留槽 1 2内の第 1製品ガスをパージガスとして 第 1吸着筒 1 1に導入する導入管路である。
第 1吸着筒 1 1には、 第 1ガス成分に対して難吸着性であって、 第 2ガス成分 に対して易吸着性である第 1吸着剤が用いられている。
第 2分離ュニット 4は、 循環原料ガス中の第 2ガス成分を第 2製品ガスとして 分離する第 2吸着筒 2 1と、 第 2製品ガスを貯留する第 2製品ガス貯留槽 2 2を 備えている。
符号 L 6は、 圧縮機 2からの循環原料ガスを第 2吸着筒 2 1に導入する導入管 路である。 導入管路 L 6は第 2吸着筒 2 1の下部に接続されている。
符号 L 7は、 第 2吸着筒 2 1からの第 2製品ガスを第 2製品ガス貯留槽 2 2に 導入する機能と、 第 2製品ガスを貯留槽 2 2から吸着筒 2 1に戻す機能とを有す る管路である。 管路 L 7は、 第 2吸着筒 2 1の上部に接続されている。
符号 L 8は、 貯留槽 2 2から第 2製品ガスを導出する導出管路である。
符号 L 1 0は、 第 2吸着筒 2 1から再生排ガスを原料貯留槽 1に返送する返送 管路である。
符号 L 1 2は、 第 2製品ガス貯留槽 2 2内の第 2製品ガスをパージガスとして 第 2吸着筒 2 1に導入する導入管路である。
第 2吸着筒 2 1には、 第 2ガス成分に対して難吸着性であって、 第 1ガス成分 に対して易吸着' I'生である第 2吸着剤が用いられてい ¾。
以下、 上記ガス分離装置を用いた場合を例として、 本発明のガス分離方法の第 1の実施形態を説明する。
本実施形態のガス分離方法では、 第 1ガス成分である窒素と、 第 2ガス成分で あるクリプトンとを含む混合ガスを分離対象とする場合を例示する。
第 1吸着筒 1 1に充填される第 1吸着剤としては; 平衡分離型吸着剤である活 性炭を使用するのが好ましレ、。 活性炭は、 平衡吸着量としてクリプトンガスの吸 着量が多く (易吸着性) 、 窒素ガスの吸着量が少ない (難吸着性) という性質を もつ。 .
第 2吸着筒 2 1に充填される第 2吸着剤としては、 速度分離型吸着剤であるゼ オライ ト 4 A (N a— A型ゼオライ ト) を使用するのが好ましい。
ゼォライ ト 4 Aは、 比較的分子径の大きいクリプトンガスを吸着しにくく (難 吸着性) 、 クリプトンガスより分子径の小さレ、窒素ガスを吸着しゃすレヽ性質 (易 吸着性) をもつ。 .
この特性は、 一般に速度分離型と呼ばれる分離 性で、 適当な吸着時間を選定 すれば窒素ガスを選択的に吸着させ、 かつクリプトンガスを吸着させずに吸着筒 から導出することが可能である。
(ステップ 1 )
上記混合ガスを原料ガスとして管路 L 1を通して原料貯留槽 1に導入する。
図 2 Aに示すように、 第 1吸着筒 1 1においては、 クリフ。トンガスを吸着させ、 窒素ガスを第 1製品ガスとして分離する吸着工程を行う。
この吸着工程では、 原料貯留槽 1からの循環原料ガスを圧縮機 2で圧縮し、 管 路 L 3を通して第 1吸着筒 1 1に供給する。
循環原料ガスの供給により第 1吸着筒 1 1を加圧することによって、 第 1吸着 剤に対して易吸着性のクリプトンガスを吸着させ、 難吸着性の窒素ガスを管路 L 4を通して第 1製品ガス貯留槽 1 2に導入する。
第 1製品ガス貯留槽 1 2内の窒素ガスは、 第 1製品ガスとして管路 L 5を通し て系外に導出する。
この吸着工程では、 循環原料ガスを吸着筒 1 1に供給し、 吸着筒 1 1の圧力が 貯留槽 1 2よりも高くなるまで弁 V 2を閉じておき、 吸着筒 1 1の圧力が貯留槽 1 2よりも高くなつた時点で弁 V 2を開き、 吸着筒 1 1内のガスを管路 L 4を通 して貯留槽 1 2に導入するのが好ましい。
なお、 吸着筒 1 1と貯留槽 1 2とを接続する管路 (図示略) を設け、 この管路 に逆止弁を設け、 吸着筒 1 1の圧力が貯留槽 1 2よりも高くなつた時点で、 吸着 筒 1 1内のガスが、 この管路を通して貯留槽 1 2に導入されるようにすることも できる。
第 2吸着筒 2 1においては、 減圧により窒素ガスを脱着させる再生工程を行う。 この再生工程では、 弁 V 8を開とすることによって、 ステップ 1に先だつ吸着 工程で吸着された窒素ガスを脱着させ、 再生排ガスとして管路 L 1 0を通して原 料貯留槽 1に返送する。 これによつて、 第 2吸着剤が再生される。
同時に、 第 2製品ガス貯留槽 2 2内のクリプトンガスを、 管路 L 1 2を通して 第 2吸着筒 2 1に導入し、 このクリプトンガスを第 2吸着筒 2 1に流通させ、 第 2吸着剤に吸着されている窒素ガスの脱着を促進する。
ステップ 1においては、 吸着筒 2 1 (ステップ 3においては吸着筒 1 1 ) から 返送されるガス (再生排ガスなど) と、 管路 L 1から導入された原料ガスとが原 料貯留槽 1に導入される。
このため、 上記吸着筒 2 1 (ステップ 3においては吸着筒 1 1 ) からの返送ガ スと原料ガスとの混合物である循環原料ガスが、 第 1吸着筒 1 1 (ステップ 3に おいては第 2吸着筒 2 1 ) に供給される。
(ステップ 2 )
図 2 Bに示すように、 第 1吸着筒 1 1では、 吸着筒 1 1内のガスを第 2吸着筒 2 1に導入して吸着筒 1 1、 2 1を均圧化することによって第 1吸着筒 1 1を減 圧する均圧減圧工程を行う。
この均圧減圧工程では、 弁 V I、 V 4を開放することによって、 管路 L 3、 L 6により第 1吸着筒 1 1と第 2吸着筒 2 1とを連通させる。
第 1吸着筒 1 1はステップ 1 (吸着工程) により圧力が高い状態となっており 第 2吸着筒 2 1はステップ 1 (再生工程) により圧力が低い状態となっているた め、 第 1吸着筒 1 1内のガスが管路 L 3、 L 6を通して第 2吸着筒 2 1に導入さ れ、 第 1吸着筒 1 1が減圧されるので、 吸着筒 1 1、 2 1が均圧化される。
ステップ 2では、 第 1吸着筒 1 1が減圧され、 第 1吸着剤に吸着していたクリ プトンガスが脱着し、 第 2吸着筒 2 1に導入されることによって第 2吸着筒 2 1 を加圧する均圧加圧工程を行う。
この均圧加圧工程では、 前記均圧減圧工程により第 1吸着筒 1. 1からのガスが 第 2吸着筒 2 1に導入されるとともに、 第 2製品ガス貯留槽 2 2からクリプトン ガスが管路 L 7を通して第 2吸着筒 2 1に導入される。 これによつて第 2吸着筒 2 1は加圧される。
ステップ 2 (第 1吸着筒 1 1での均圧減圧工程および第 2吸着筒 2 1での均圧 加圧工程) では、 圧縮機 2の駆動を停止せず、 循環原料ガスの供給を継続する。 この循環原料ガスは、 上記吸着筒 1 1から吸着筒 2 1への導入ガスとともに、 管 路 L 6を通して第 2吸着筒 2 1に供給される。
ステップ 1からステップ 2に移行する際には、 循環原料ガスの導入先が第 1吸 着筒 1 1から第 2吸着筒 2 1に変わることになるが、 ステップ 2では、 第 1吸着 筒 1 1からのガス導入によって第 2吸着筒 2 1が加圧されるため、 圧縮機 2に加 えられる負荷の大幅な低下は起こらない。 3 )
図 2 Cに示すように、 第 1吸着筒 1 1において、 減圧によりクリプトンガスを 脱着させる再生工程を行う。
この再生工程では、 弁 V 7を開とすることによって、 ステップ 1で吸着された クリプトンガスを脱着させ、 再生排ガスとして管路 L 9を通して原料貯留槽 1に 返送する。 これによつて、 第 1吸着剤が再生される。
同時に、 第 1製品ガス貯留槽 1 2内の窒素ガスを、 管路 L I 1を通して第 1吸 着筒 1 1に導入し、 この窒素ガスを第 1吸着筒 1 1に流通させ、 第 1吸着剤に吸 着されているクリプトンガスの脱着を促進する。
第 2吸着筒 2 1においては、 窒素ガスを吸着させ、 クリプトンガスを第 2製品 ガスとして分離する吸着工程を行う。
この吸着工程では、 原料貯留槽 1からの循環原料ガスを圧縮機 2で圧縮し、 管 路 L 6を通して第 2吸着筒 2 1に供給する。
循環原料ガスの供給により第 2吸着筒 2 1を加圧することによって、 第 2吸着 剤に対して易吸着性の窒素ガスを吸着させ、 難吸着性のクリプトンガスを管路 L 7を通して第 2製品ガス貯留槽 2 2に導入する。
第 2製品ガス貯留槽 2 2内のクリプトンガスは、 第 2製品ガスとして管路 L 8 を通して系外に導出する。
第 2吸着筒 2 1では、 吸着工程時の最高到達圧力 (以下、 吸着圧力という) を 3 0 0〜5 0 0 k P a (ゲージ圧) の範囲に設定するのが好ましい。
圧力変動式吸着分離法では、 吸着圧力を高めると、 単位吸着剤あたりの吸着量 が増加するため、 この圧力を 3 0 0 k P a (ゲージ圧) 以上とすることによって, 製品ガス中の不純物濃度を低下させることができる。 このため、 吸着剤充填量を 最小限に抑え、 低コスト化を図ることができる。
また吸着圧力を 5 0 0 k P a (ゲージ圧) を越えて設定する場合には、 吸着筒 2 1に供給する循環原料ガスの流量を高める必要があるため、 圧縮機 2における 電力消費量が大きくなる。
特に、 高純度 (9 9 . 9 9 %程度) のクリプトンガスを分離する場合には、 一 般的な圧力変動式吸着分離法とは異なり、 吸着圧力を上昇させる操作は必ずしも 製品ガス濃度の上昇に繋がらない。
吸着圧力を 5 0 0 k P a (ゲージ圧) を越える値に設定すると、 逆に製品ガス 中の不純物濃度を上昇させる結果となり、 吸着剤充填量の増加、 または製品回収 率の低下を招く。
従って、 吸着圧力を 3 0 0〜5 0 0 k P a (ゲージ圧) の範囲に設定すること によって、 製品回収率を低下させずに、 設備コストおょぴ運転コストを低く抑え ることができる。
この吸着工程では、 循環原料ガスを吸着筒 2 1に供給し、 吸着筒 2 1の圧力が 貯留槽 2 2よりも高くなるまで弁 V 5を閉じておき、 吸着筒 2 1の圧力が貯留槽 2 2よりも高くなった時点で弁 V 5を開き、 吸着筒 2 1内のガスを管路 L 7を通 して貝宁留槽 2 2に導入するのが好ましい。
なお、 吸着筒 2 1と貯留槽 2 2とを接続する管路 (図示略) を設け、 この管路 に逆止弁を設け、 吸着筒 2 1の圧力が貯留槽 2 2よりも高くなつた時点で、 吸着 筒 2 1内のガスが、 この管路を通して貯留槽 2 2に導入されるようにすることも できる。
(ステップ 4 )
図 2 Dに示すように、 第 2吸着筒 2 1内のガスを第 1吸着筒 1 1に導入して吸 着筒 1 1、 2 1を均圧化することによって第 2吸着筒 2 1を減圧する均圧減圧ェ 程を行う。
この均圧減圧工程では、 弁 V I、 V 4を開放することによって、 管路 L 3、 L 6により第 1吸着筒 1 1と第 2吸着筒 2 1とを連通させる。
第 1吸着筒 1 1はステップ 3 (再生工程) により圧力が低い状態となっており 第 2吸着筒 2 1はステップ 3 (吸着工程) により圧力が高い状態となっているた め、 第 2吸着筒 2 1内のガスが管路 L 6、 L 3を通して第 1吸着筒 1 1に導入さ れ、 第 2吸着筒 2 1が減圧されるので、 吸着筒 1 1、 2 1力 S均圧ィヒされる。
ステップ 4では、 第 2吸着筒 2 1が減圧され、 第 2吸着剤に吸着していた窒素 ガスが脱着し、 第 1吸着筒 1 1に導入されることによって第 1吸着筒 1 1を加圧 する均圧加圧工程を行う。
この均圧加圧工程では、 前記均圧減圧工程により第 2吸着筒 2 1からのガスが 第 1吸着筒 1 1に導入されるとともに、 第 1製品ガス貯留槽 1 2から管路 L 4を 通して貯留槽 1 2の窒素ガスが第 1吸着筒 1 1に導入される。 これによつて、 第 1吸着筒 1 1内が加圧される。
ステップ 4 (第 2吸着筒 2 1での均圧減圧工程および第 1吸着筒 1 1での均圧 加圧工程) では、 圧縮機 2の駆動を停止せず、 循環原料ガスの供給を継続する。 この循環原料ガスは、 上記吸着筒 2 1から吸着筒 1 1への導入ガスとともに、 管 路 L 3を通して第 1吸着筒 1 1に供給される。
ステップ 3からステップ 4に移行する際には、 循環原料ガスの導入先が第 2吸 着筒 2 1から第 1吸着筒 1 1に変わることになるが、 ステップ 4では、 第 2吸着 筒 2 1からのガス導入によって第 1吸着筒 1 1が加圧されるため、 圧縮機 2に加 えられる負荷の大幅な低下は起こらない。
このガス分離方法では、 上記ステップ 1〜4を繰り返すことによって、 原料ガ スからのガス成分の分離を連続的に行うことができる。
一般に、 圧力変動式吸着分離法におけるサイクルタイム (一連の工程に要する 時間、 上記実施形態ではステップ 1からステップ 4までに要する時間) は、 製品 回収率および吸着剤充填量に大きな影響を与える重要なパラメータである。
圧力変動式吸着分離法の操作圧力 (吸着圧力および再生圧力) と吸着剤量 一 定とした条件で比較した場合、 圧縮機の容量を高め、 吸着筒に供給する循環原料 ガス流量を増加させれば、 サイクルタイムを短くすることができる。 この場合に は、 製品ガスの流量も増加するため、 製品回収率は大きく変化しない。
これは、 サイクルタイムを短縮することによって、 圧縮機の容量を増加させる ことなく、 吸着剤充填量が削減可能であることを意味する。
ただし、 サイクルタイムの短縮には限界がある。 すなわちサイクルタイムを限 界値以下に短くすると、 製品流量の増加割合よりも循環原料ガスの増加割合の方 が大きくなり、 製品回収率が低下する。
サイクルタイムは、 吸着剤の種類や循環原料ガスの成分濃度に応じて、 製品回 収率を低下させずに吸着剤量や圧縮機容量を低く設定できるように定めればょレ、 なお、 本発明では、 図 1に破線で示すように、 圧縮機 2の出口側の管路 L 1 3 と原料貯留槽 1とを接続する連絡管路 L 1 4を設け、 圧縮機 2からの循環原料ガ スの一部を、 この連絡管路 L 1 4を通して原料貯留槽 1に戻すこともできる。 ' また、 上記実施形態では、 ステップ 2、 4において、 管路 L 3、 L 6により吸 着筒 1 1と吸着筒 2 1とを連通させ、 吸着筒 1 1と吸着筒 2 1を均圧化する方法 を例示したが、 管路 L 3、 L 6とは別に、 吸着筒 1 1と吸着筒 2 1とを接続する 管路 (図示略) を設け、 この管路によって吸着筒 1 1と吸着筒 2 1を連通させて もよい。
本実施形態のガス分離方法では、 ステップ 2において、 第 1吸着筒 1 1内のガ スを第 2吸着筒 2 1に導入して吸着筒 1 1と吸着筒 2 1を均圧化する均圧減圧ェ 程および均圧加圧工程を行う。
ステップ 2では、 第 1吸着筒 1 1が減圧されるため、 第 1吸着筒 1 1に吸着さ れていたクリプトンガスを多く含むガスが、 循環原料ガスとともに第 2吸着筒 2 1に導入される。
このため、 ステップ 2で第 2吸着筒 2 1に導入されるガス中のクリプトン濃度 は、 循環原料ガス中のクリプトンガス濃度よりも高くなる。
また、 ステップ 4では、 第 2吸着筒 2 1内のガスを第 1吸着筒 1 1に導入して 吸着筒 1 1と吸着筒 2 1を均圧化する均圧減圧工程および均圧加圧工程を行う。 ステップ 4では、' 第 2吸着筒 2 1が減圧されるため、 第 2吸着筒 2 1に吸着さ れていた窒素ガスを多く含むガスが、 循環原料ガスとともに第 1吸着筒 1 1に導 入される。
このため、 ステップ 4で第 1吸着筒 1 1に導入されるガス中の窒素濃度は、 循 環原料ガス中の窒素濃度よりも高くなる。
このように、 ステップ 2、 4では、 均圧減圧工程および均圧加圧工程において、 製品ガスとして分離するべき対象ガス (クリプトンガスまたは窒素ガス) の濃度 が高いガスを、 吸着筒 1 1、 2 1に供給することができる。
よって、 これらステップ 2、 4に続くステップ (ステップ 1、 3 ) の吸着工程 において、 吸着筒 1 1でのタリプトン吸着、 および吸着筒 2 1での窒素吸着の効 率化を図ることができ、 製品回収率を高めることができる。
また、 クリプトンおよび窒素の吸着効率を高めることができるため、 圧縮機 2 の容量を小さくすることが可能となる。 例えば、 従来の方法に比べ、 圧縮機 2の 容量を 5〜 2 0 %小さく設定することができる。
従って、 圧縮機 2を小型化し、 省スペース化を図るとともに、 設備コス トを低 く抑えることができる。 '
'さらに、 このガス分離方法では、 ステップ 2、 4において、 均圧減圧工程およ び 圧加圧工程により、 循環原料ガス導入先となる吸着筒 1 1、 2 1を加圧する ため、 圧縮機 2における急激な負荷変動を防ぐことができ、 圧縮機 2の負担を軽 減することができる。
従って、 圧縮機 2の容量を小さく設定することができ、 設備コストを低く抑え ることができる。
図 3は、 本発明のガス分離方法の第 2の実施形態を実施可能なガス分離装置を 示すものである。
ここに示すガス分離装置は、 製品ガス貯留槽 1 2、 2 2から窒素ガスまたはク リプトンガスを吸着筒 1 1、 2 1に導入する管路 L 1 1、 1 2が設けられていな い点、 および吸着筒 1 1、 1 2から導出したガスをパージガスとして貯留する第 1および第 2パージガス貯留槽 1 3、 2 3が設けられている点で、 図 1に示すガ ス分離装置と異なる。 .
第 1パージガス貯留槽 1 3は、 管路 L 1 5を介して管路 L 4に接続されており 貯留槽 1 3内のガスを、 パージガスとして管路 L 1 5、 L 4を通して第 1吸着筒 1 1に供給することができるようになつている。
第 2パージガス貯留槽 2 3は、 管路 L 1 6を介して管路 L 7に接続されており 貯留槽 2 3内のガスを、 パージガスとして管路 L 1 6、 L 7を通して第 2吸着筒 2 1に供給することができるようになつている。
以下、 上記ガス分離装置を用いた場合を例として、 本発明のガス分離方法の第 2の実施形態を説明する。
(ステップ 1 )
混合ガスを原料ガスとして管路 L 1を通して原料貯留槽 1に導入する。
図 4 Aに示すように、 第 1吸着筒 1 1においては、 循環原料ガス中のタリプト ンガスを吸着させ、 窒素ガスを貯留槽 1 2を経て第 1製品ガスとして系外に導出 する吸着工程を行う。 第 2吸着筒 2 1においては、 減圧により窒素ガスを脱着させる再生工程を行う この再生工程では、 ステップ 1に先だつ吸着工程で吸着された窒素ガスを脱着さ せ、 再生排ガスとして管路 L 1 0を通して原料貯留槽 1に返送する。
同時に、 第 2パージガス貯留槽 2 3内のパージガスを、 管路 L 1 6、 L 7を通 して第 2吸着筒 2 1に導入し、 このガスを第 2吸着筒 2 1に流通させ、 第 2吸着 剤に吸着されている窒素ガスの脱着を促進する。
(ステップ 2 )
図 4 Bに示すように、 第 1吸着筒 1 1内のガスを、 管路 L 3、 L 6を通して第 2吸着筒 2 1に導入し、 吸着筒 1 1、 2 1を均圧化することによって第 1吸着筒 1 1を減圧する均圧減圧工程を行う。
この際、 吸着筒 1 1内のガスの一部 (例えば吸着筒 1 1上部の空隙部のガス) を、 管路 L 4、 L 1 5を通して、 パージガスとして、 第 1パージガス貯留槽 1 3 に導入する。
第 2吸着筒 2 1においては、 吸着筒 1 1、 2 1の均圧化によって第 2吸着筒 2 1を加圧する均圧加圧工程を行う。
この均圧加圧工程では、 前記均圧減圧工程により第 1吸着筒 1 1からのガスが 第 2吸着筒 2 1に導入されるとともに、 貯留槽 2 2からクリプトンガスが第 2吸 着筒 2 1に導入される。 これによつて第 2吸着筒 2 1は加圧される。
(ステップ 3 )
図 4 Cに示すように、 第 1吸着筒 1 1において、 減圧によりクリプトンガスを 脱着させる再生工程を行う。 この再生工程では、 ステップ 1で吸着されたクリプ トンガスを脱着させ、 再生排ガスとして管路 L 9を通して原料貯留槽 1に返送す る。
同時に、 第 1パージガス貯留槽 1 3内のパージガスを、 管路 L 1 5、 L 4を通 して第 1吸着筒 1 1に導入し、 このガスを第 1吸着筒 1 1に流通させ、 第 1吸着 剤に吸着されているクリプトンガスの脱着を促進する。
第 2吸着筒 2 1においては、 循環原料ガス中の窒素ガスを吸着させ、 クリブト ンガスを貯留槽 2 2を経て第 2製品ガスとして系外に導出する吸着工程を行う。 図 4 Dに示すように、 第 2吸着筒 2 1内のガスを、 管路 L 6、 L 3を通して第 1吸着筒 1 1に導入し、 吸着筒 1 1と吸着筒 2 1とを均圧化することによって、 第 2吸着筒 2 1を減圧する均圧減圧工程を行う。
この際、 吸着筒 2 1内のガスの一部 (例えば吸着筒 2 1上部の空隙部のガス) を、 管路 L 7、 L 1 6を通して、 パージガスとして、 第 2パージガス貯留槽 2 3 に導入する。 '
第 1吸着筒 1 1においては、 吸着筒 1 1と吸着筒 2 1の均圧化によって第 1吸 着筒 1 1を加圧する均圧加圧工程を行う。
この均圧加圧工程では、 前記均圧減圧工程により第 2吸着筒 2 1からのガスが 第 1吸着筒 1 1に導入されるとともに、 貯留槽 1 2の窒素ガスが管路 L 4を通し て第 1吸着筒 1 1に導入される。 これによつて第 1吸着筒 1 1は加圧される。 本実施形態のガス分離方法では、 ステップ 2、 4において、 第 1吸着筒 1 1内 のガスを第 2吸着筒 2 1に導入して吸着筒 1 1と吸着筒 2 1とを均圧化する均圧 減圧工程および均圧加圧工程を行うので、 第 1の実施形態の方法と同様に、 これ らステップ 2、 4に続くステップ (ステップ 3、 1 ) の吸着工程において、 吸着 筒 1 1でのクリプトン吸着、 および吸着筒 2 1での窒素吸着の効率化を図ること ができる。
従って、 製品回収率を高めることができる。
また、 圧縮機 2を小型化し、 省スペース化を図るとともに、 設備コス トを低く 抑えることができる。 .
さらに、 本実施形態のガス分離方法では、 ステップ 1 (もしくはステップ 3 ) での再生工程において、 パージガス貯留槽 2 3 (もしくはパージガス貯留槽 1 3 ) からのパージガスを吸着筒 2 1 (もしくは吸着筒 1 1 ) に供給するので、 貯 留槽 2 2 (もしくは貯留槽 1 2 ) の製品ガスをパージガスとして使用する必要が なレ、。
従って、 製品回収率をさらに高めることができる。
また、 均圧減圧工程時にパージガス貯留槽 1 3 (もしくは貯留ネ曹 2 3 ) に導入 するガス流量と、 再生工程時に吸着筒 1 1 (もしくは吸着筒 2 1 ) へ導出するガ ス流量が大きく異なる場合には、 パージガス貯留槽 1 3 (もしくは貯留槽 2 3 ) と吸着筒 1 1 (もしくは吸着筒 21) を繋ぐ管路を、 管路 L 15 (もしくは管路 L 16) の他に設け、 パージガス導入時と導出時で、 別々の管路を用いることも できる (図示せず) 。
上記実施形態では、 窒素とクリプトンとを含む混合ガスを分離対象としたが、 分離対象となるガス成分は、 これに限定されず、 例えばクリプトンに代えてキセ ノンを分離対象とすることもできる。
実施例
(実施例 1 )
図 1に示すガス分離装置を使用して、 次のようにして混合ガスの分離を行った。 使用したガス分離装置の仕様を以下に示す。
( 1 ) 第 1吸着筒 1 1
内径 43 mm、 長さ 70 Ommの円筒状の該吸着筒内に、 0. 45 k g の活性炭 (第 1吸着剤) を充填した。
(2) 第 2吸着筒 21
内径 70. 3mm、 長さ 54 Ommの円筒状の該吸着筒内に、 1. 42 k gのゼォライ ト 4 A (第 2吸着剤) を充填した。
(3) 圧縮機 2
容量: 4. 7 L/m i n (流量 [L/m i n] は 0°C、 1気圧換算値、 以下同じ) 。
混合ガスとしては、 窒素ガス (第 1ガス成分) 50容量0 /0と、 クリプトンガス (第 2ガス成分) 50容量%とを含むものを使用した。
上記ガス分離装置を、 ステップ 1〜4を 1サイクルとし、 1サイクルの運転時 間を 400秒として運転した。 各ステップの時間は表 2に示す通りとした。
表 2
Figure imgf000019_0001
(ステップ 1) 図 1および図 2 Aに示すように、 弁 VI、 V3、 V6、 V8、 V 10を開状態 とし、 その他の弁は閉状態とした。
混合ガスを、 流量 0. 44 L i nで原料貯留槽 1に導入し、 この原料貯留 槽 1からの循環原料ガスを、 圧縮機 2を用いて 4. 7 LZm i nで、 管路 L 3を 通して第 1吸着筒 1 1に供給した。 なお、 循環原料ガスの濃度は原料ガス組成と 略同じになるように調整した。
循環原料ガスの供給を、 吸着筒 1 1の圧力が、 貯留槽 1 2の圧力より高くなる まで行った後、 弁 V2を開放し、 吸着筒 1 1内のガス (窒素ガス) を管路 L4を 通して第 1製品ガス貯留槽 12に回収した。 このときの第 1吸着筒 1 1の圧力は 1 80〜435 k P a (ゲージ圧) とした (吸着工程) 。
第 2吸着筒 21においては、 吸着筒.21内のガスを、 再生排ガスとして管路 L 1 0を通して原料貯留槽 1に返送した。 これによつて、 第 2吸着筒 21を減圧し、 第 2吸着剤に吸着された窒素ガスを脱着させた。 第 2吸着筒 21内の圧力は、 0 〜: 10 k P a (ゲージ圧) とした。
同時に、 第 2製品ガス貯留槽 22内のクリプトンガスを、 管路 L 12を通して' 第 2吸着筒 21に導入し、 吸着筒 21のパージを行った (再生工程) 。
(ステップ 2)
図 1および図 2 Bに示すように、 弁 V 2、 V8、 VI 0を閉状態とし、 弁 V 1、 V4、 V 5を開状態とした。
これによつて、 管路 L 3、 L 6により第 1吸着筒 1 1と第 2吸着筒 21とを連 通させ、 第 1吸着筒 1 1内のガスを、 管路 L 3、 L 6を通して第 2吸着筒 21に 導入した。
同時に、 第 2製品ガス貯留槽 22からクリプトンガスを管路 L 7を通して第 2 吸着筒 2 1に導入した。
これによつて、 第 1吸着筒 1 1は、 290 k P a (ゲージ圧) に減圧され、 第 2吸着筒 21は 260 k P a (ゲージ圧) に昇圧された (均圧減圧工程および均 圧加圧工程) 。
(ステップ 3)
図 1および図 2 Cに示すように、 弁 VI、 V 5を閉状態とし、 弁 V7、 V9を 開状態とした。
これによつて、 第 1吸着筒 1 1内のガスを、 再生排ガスとして管路 L 9を通し て原料貯留槽 1に返送した。 第 1吸着筒 1 1の圧力は、 0〜 10 k P a (ゲージ 圧) とした。 .
同時に、 第 1製品ガス貯留槽 1 2内の窒素ガスを、 管路 L 1 1を通して第 1吸 着筒 1 1に導入し、 吸着筒 1 1のパージを行った (再生工程) 。
第 2吸着筒 2 1においては、 循環原料ガスを管路 L 6を通して第 2吸着筒 21 に供給した。
循環原料ガスの供給を、 吸着筒 21の圧力が貯留槽 22の圧力より高くなるま で行った後、 弁 V 5を開放し、 吸着筒 21内のガス (クリプトンガス) を管路 L 7を通して第 2製品ガス貯留槽 22に回収した。 このときの第 2吸着筒 21の圧 力は 260〜420 k P a (ゲージ圧) とした (吸着工程) 。 図 1および図 2Dに示すように、 弁 V7、 V9、 V 5を閉状態とし、 弁 V 1、 V2、 V 4を開状態とした。
これによつて、 管路 L 3、 L 6により第 1吸着筒 1 1と第 2吸着筒 21とを連 通させ、 第 2吸着筒 21内のガスを、 管路 L 3、 L 6を通して第 1吸着筒 1 1に 導入した。
同時に、 第 1製品ガス貯留槽 1 2から窒素ガスを管路 L4を通して第 1吸着筒 1 1に導入した。
これによつて、 第 1吸着筒 1 1の圧力は 1 80 k P a (ゲージ圧) に昇圧され、 第 2吸着筒 21は 240 k P a (ゲージ圧) に減圧された (均圧減圧工程および 均圧加圧工程) 。
上記ステップ 1〜 4を繰り返すことで、 第 1製品ガス貯槽 12に、 窒素ガス濃 度 9· 9. 5%の第 1製品ガスが回収され、 第 2製品ガス貯槽 22に、 クリプトン ガス濃度 99. 995%の.第 2製品ガスが回収された。
製品ガス流量と製品回収率を、 表 3に示す。
(比較例 1 )
第 1および第 2吸着筒と、 これら吸着筒に混合ガスを供給する圧縮機とを備え たガス分離装置を使用して、 混合ガスの分離を行った。
試験条件は、 圧縮機からの循環原料ガス供給流量を 5 . 3 L /m i nとするこ と以外は、 .実施例 1に準じた。
表 1に示すように、 第 1および第 2吸着筒では、 吸着工程と再生工程を交互に 行い、 一方の吸着筒が吸着工程にあるときに他方の吸着筒で再生工程を行うよう にした。
実施例 1と製品窒素ガス濃度、 製品クリプトンガス濃度が同じ条件における製 品ガス流量と製品回収率を、 表 3に併せて示す。
表 3
Figure imgf000022_0001
表 3より、 実施例 1のガス分離方法では、 比較例 1に比べ、 製品回収率を高め ることができたことがわかる。
(実施例 2 )
実施例 1で用いたものと同じガス分離装置を使用して混合ガスの分離を行った c このガス分離装置を、 1サイクルの運転時間を 6 0 0秒として運転した。 吸着 工程および再生工程はそれぞれ 2 9 5秒とし、 均圧減圧工程および均圧加圧工程 はそれぞれ 5秒とした。
混合ガスとしては、 実施例 1で用いたものと同じものを用いた。
製品窒素ガスと製品クリプトンガスの流量を、 いずれも 0 . 1 5 L Zm i nと した。
循環原料ガスの供給流量を、 2 . 8〜4 . 0 L /m i nの範囲で変化させて、 その流量変化に伴う製品窒素ガス濃度と製品クリプトンガス濃度の変動を測定し た。 なお、 第 1吸着筒 1 1と第 2吸着筒 2 1の吸着工程での圧力は、 循環原料ガ スの流量に応じて変化した。
第 1吸着筒 1 1の吸着圧力と第 1製品ガス中のクリプトンガス濃度の変化を図 5に示す。
第 2吸着筒 2 1の吸着圧力と第 2製品ガス中の窒素ガス濃度の変化を図 6に示 す。
図 5より、 第 1吸着筒 1 1での吸着圧力を上昇させることによって、 第 1製品 ガス中のクリプトン濃度を低下させることができることがわかる。 この傾向は、 一般的な圧力変動式吸着分離法と同じ傾向である。
この結果より、 活性炭を吸着剤として使用して、 窒素とクリプトンからなる混 合ガスから窒素ガスを濃縮する圧力変動式吸着分離において、 吸着剤の充填量を 削減するには、 吸着圧力を高くすることが有効であることが確認された。
これに対して、 図 6に示すように、 第 2吸着筒 2 1での吸着分離では、 吸着圧 力が比較的低い範囲において、 この圧力を上昇させると窒素濃度が低下するが、 吸着圧力が比較的高い範囲において、 この圧力を上昇させると窒素濃度が逆に高 くなってしまう。
例えば、 吸着圧力が 5 0 0 k P a (ゲージ圧) を越える場合には、 窒素濃度が 高くなるため、 吸着剤充填量の増加や、 製品回収率の低下を招くことになる。 図 6より、 吸着圧力は、 3 0 0〜5 0 0 k P a (ゲージ圧) とすることが好ま しいことがわかる。
吸着圧力が比較的高い範囲において、 圧力を上昇させると不純物濃度が高くな る傾向は、 従来の圧力変動式吸着分離法と異なるものである。
このことから、 ゼォライ ト 4 A等の速度分離型吸着剤を使用して、 窒素とタリ プトンからなる混合ガスからタリブトンガスを分離する圧力変動式吸着分離法で は、 吸着圧力を最適な範囲に調整する必要があることがわかる。 産業上の利用可能性 本発明のガス分離方法では、 ステップ 2、 4において、 第 1および第 2吸着筒 を均圧化する均圧減圧工程および均圧加圧工程を行う。
このため、 これらの工程において、 製品ガスとして分離するべき対象ガスの濃 度が高いガスを、 吸着筒に供給することができる。 よって、 これらステップ 2、 4に続くステップ (ステップ 3、 1 ) の吸着工程 において、 ガス成分の吸着効率を高め、 製品回収率を高めることができる。 また、 吸着効率を高めることができるため、 圧縮機の容量を小さくすることが 可能となる。
従って、 圧縮機を小型化し、 省スペース化を図るとともに、 設備コス トを低く 抑えることができる。

Claims

請求の範囲
1 . 少なくとも 2種のガス成分を含む混合ガスから、 第 1ガス成分に対して難 吸着性であって第 2ガス成分に対して易吸着性である第 1吸着剤を備えた第 1吸 着筒と、 該第 1ガス成分に対して易吸着性であって該第 2ガス成分に対して難吸 着性である第 2吸着剤を備えた第 2吸着筒とを用いて、 該第 1ガス成分と該第 2 ガス成分とを圧力変動式吸着分離法を用いて分離するガス分離方法であって、 該第 1吸着筒において、 該混合ガスを加圧下で供給し、 該第 2ガス成分を吸着 させ、 該第 1ガス成分を第 1製品ガスとして分離する吸着工程と、 該第 2吸着筒 において、 減圧により該第 1ガス成分を脱着させる再生工程とを含む第 1ステツ プと、
該第 1吸着筒と該第 2吸着筒とを連通して該第 1吸着筒内のガスを該第 2吸着 筒に導入することにより、 該第 1吸着筒については減圧して該第 1及び第 2吸着 筒を均圧化する均圧減圧工程と、 該第 2吸着筒については加圧して該第 1及び第 2吸着筒を均圧化する均圧加圧工程とを含む第 2ステップと、
該第 1吸着筒において、 減圧により該第 2ガス成分を脱着させる再生工程と、 該第 2吸着筒において、 該混合ガスを加圧下で供給し、 該第 1ガス成分を吸着さ せて該第 2ガス成分を第 2製品ガスとして分離する吸着工程とを含む第 3ステツ プと、
該第 2吸着筒と該第 1吸着筒とを連通して該第 2吸着筒内のガスを該第 1吸着 筒に導入することにより、 該第 2吸着筒については減圧して該第 1及び第 2吸着 筒を均圧化する均圧減圧工程と、 該第 1吸着筒については加圧して該第 1及び第 2吸着筒を均圧化する均圧加圧工程とを行うことによって、 該第 1ガス成分と該 第 2ガス成分を分離する工程とを含む第 4ステップと、
を有するガス分離方法。
2 . 請求項 1記載のガス分離方法であって、
上記第 1製品ガスを貯留する第 1製品ガス貯留槽及び上記第 2製品ガスを貯留 する第 2製品ガス貯留槽を用いて、 上記第 1及び第 2吸着筒での上記再生工程に おいて、 該第 1及び第 2製品ガス貯留槽内の各製品ガスをそれぞれ該第 1及び第 2吸着筒に導入し、
該第 1及び第 2吸着筒での上記均圧加圧工程において、 該第 1及び第 2製品ガ ス貯留槽の各製品ガスをそれぞれ該第 1及び第 2吸着筒に導入するガス分離方法。
3 . 請求項 1記載のガス分離方法であって、
上記第 1及び第 2吸着筒での均圧減圧工程において、 該第 1及び第 2吸着筒内 のガスをパージガスとしてそれぞれ第 1及び第 2パージガス貯留槽に貯留し、 該第 1及び第 2吸着筒での上記再生工程において、 該第 1及び第 2パージガス 貯留槽のパージガスをそれぞれ第 1および第 2吸着筒に導入するガス分離方法。
4 . 請求項 1記載のガス分離方法であって、
上記第 1及び第 2ガス成分のうち一方がクリプトンガスまたはキセノンガスで あり、 他方が窒素ガスであるガス分離方法。
5 . 請求項 1記載のガス分離方法であって、
上記第 1及び第 2吸着剤のうち一方が平衡分離型吸着剤であり、 他方が速度分 離型吸着剤であるガス分離方法。
6 . 請求項 1記載のガス分離方法であって、
上記第 1及び第 2吸着剤のうち一方が活性炭であり、 他方がゼォライ トである ガス分離方法。
7 . 請求項 5項記載のガス分離方法であって、
上記速度分離型吸着剤を備えた吸着筒において、 上記吸着工程における最高到 達圧力が、 3 0 0〜5 0 0 k P a (ゲージ圧) であるガス分離方法。
PCT/JP2003/004655 2002-04-15 2003-04-11 Procede de separation de gaz WO2003086586A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03723107A EP1495793A4 (en) 2002-04-15 2003-04-11 GUEST RACE PROCEDURE
AU2003236218A AU2003236218A1 (en) 2002-04-15 2003-04-11 Gas separating method
KR1020047016342A KR100984796B1 (ko) 2002-04-15 2003-04-11 가스 분리 방법
US10/510,745 US7300497B2 (en) 2002-04-15 2003-04-11 Gas separating method
IL16445604A IL164456A0 (en) 2002-04-15 2004-10-10 Gas separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-112145 2002-04-15
JP2002112145A JP3899282B2 (ja) 2002-04-15 2002-04-15 ガス分離方法

Publications (1)

Publication Number Publication Date
WO2003086586A1 true WO2003086586A1 (fr) 2003-10-23

Family

ID=29243305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004655 WO2003086586A1 (fr) 2002-04-15 2003-04-11 Procede de separation de gaz

Country Status (9)

Country Link
US (1) US7300497B2 (ja)
EP (1) EP1495793A4 (ja)
JP (1) JP3899282B2 (ja)
KR (1) KR100984796B1 (ja)
CN (1) CN1299800C (ja)
AU (1) AU2003236218A1 (ja)
IL (1) IL164456A0 (ja)
TW (1) TW589222B (ja)
WO (1) WO2003086586A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136913A1 (fr) 2011-04-08 2012-10-11 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mélange d'un adsorbant et d'un matériau à changement de phase à densité adaptée
US8574346B2 (en) 2006-09-25 2013-11-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PSA method using a composite adsorption bed comprising an adsorbent and PCM agglomerates
JP7429563B2 (ja) 2020-02-28 2024-02-08 株式会社アドバン理研 ガス発生装置およびガス製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652860B2 (ja) * 2004-04-27 2011-03-16 大陽日酸株式会社 クリプトン又はキセノンの回収方法
JP4898194B2 (ja) * 2005-11-14 2012-03-14 大陽日酸株式会社 圧力変動吸着式ガス分離方法及び分離装置
US7862645B2 (en) 2008-02-01 2011-01-04 Air Products And Chemicals, Inc. Removal of gaseous contaminants from argon
US7722698B2 (en) 2008-02-21 2010-05-25 Delphi Technologies, Inc. Method of determining the purity of oxygen present in an oxygen-enriched gas produced from an oxygen delivery system
US8075676B2 (en) 2008-02-22 2011-12-13 Oxus America, Inc. Damping apparatus for scroll compressors for oxygen-generating systems
EP3057178A1 (en) 2009-09-25 2016-08-17 Murata Manufacturing Co., Ltd. Antenna device and mobile terminal
JP5537208B2 (ja) * 2010-03-24 2014-07-02 大阪瓦斯株式会社 可燃性ガス濃縮方法
US8535414B2 (en) 2010-09-30 2013-09-17 Air Products And Chemicals, Inc. Recovering of xenon by adsorption process
US8496733B2 (en) 2011-01-11 2013-07-30 Praxair Technology, Inc. Large scale pressure swing adsorption systems having process cycles operating in normal and turndown modes
US8551217B2 (en) 2011-01-11 2013-10-08 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
US8491704B2 (en) 2011-01-11 2013-07-23 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
US8435328B2 (en) 2011-01-11 2013-05-07 Praxair Technology, Inc. Ten bed pressure swing adsorption process operating in normal and turndown modes
US8795411B2 (en) 2011-02-07 2014-08-05 Air Products And Chemicals, Inc. Method for recovering high-value components from waste gas streams
JP5917169B2 (ja) * 2012-01-30 2016-05-11 大陽日酸株式会社 窒素富化ガス製造方法、ガス分離方法および窒素富化ガス製造装置
US9072921B2 (en) * 2012-10-24 2015-07-07 Hamilton Sundstrand Corporation Thermodynamically-optimized advanced fire suppression system
JP6235794B2 (ja) * 2013-05-28 2017-11-22 住友精化株式会社 アルゴン精製方法およびアルゴン精製装置
US11557462B2 (en) 2019-03-13 2023-01-17 Kla Corporation Collecting and recycling rare gases in semiconductor processing equipment
JP7289909B1 (ja) 2021-12-28 2023-06-12 大陽日酸株式会社 圧力変動吸着式ガス分離装置
IL313880A (en) * 2021-12-28 2024-08-01 Taiyo Nippon Sanso Corp System for gas separation in pressure swing adsorption
JP7381554B2 (ja) * 2021-12-28 2023-11-15 大陽日酸株式会社 圧力変動吸着式ガス分離装置
JP7289908B1 (ja) 2021-12-28 2023-06-12 大陽日酸株式会社 圧力変動吸着式ガス分離装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788036A (en) * 1972-07-26 1974-01-29 D Stahl Pressure equalization and purging system for heatless adsorption systems
US4661125A (en) * 1984-05-22 1987-04-28 Seitetsu Kagaku Co., Ltd. Process for producing high concentration oxygen by a pressure-swing-adsorption method
JPH01184016A (ja) 1988-01-20 1989-07-21 Tokico Ltd 気体分離装置
EP0334495A2 (en) * 1988-03-17 1989-09-27 Sumitomo Seika Chemicals Co., Ltd. Process for recovering oxygen enriched gas
JP2000241590A (ja) * 1999-02-23 2000-09-08 Japan Atom Power Co Ltd:The 希ガス濃縮方法及び希ガス濃縮装置
JP2002306918A (ja) * 2001-04-16 2002-10-22 Nippon Sanso Corp ガス分離方法とその装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190424A (en) * 1975-07-17 1980-02-26 Boc Limited Gas separation
JP3076912B2 (ja) * 1989-11-08 2000-08-14 株式会社日立製作所 混合ガスの分離方法及び装置
JP3628439B2 (ja) * 1996-05-20 2005-03-09 財団法人産業創造研究所 酸素−窒素混合ガス中のクリプトンの濃縮法
JP2001116836A (ja) 1999-10-22 2001-04-27 Osaka Gas Co Ltd 隠蔽物探査方法及び探査装置
JP3891773B2 (ja) * 2000-10-20 2007-03-14 大陽日酸株式会社 ガスの分離精製方法及びその装置
US6896330B1 (en) * 2003-11-19 2005-05-24 Ming-Ming Yu 360-degree swivel cushion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788036A (en) * 1972-07-26 1974-01-29 D Stahl Pressure equalization and purging system for heatless adsorption systems
US4661125A (en) * 1984-05-22 1987-04-28 Seitetsu Kagaku Co., Ltd. Process for producing high concentration oxygen by a pressure-swing-adsorption method
JPH01184016A (ja) 1988-01-20 1989-07-21 Tokico Ltd 気体分離装置
EP0334495A2 (en) * 1988-03-17 1989-09-27 Sumitomo Seika Chemicals Co., Ltd. Process for recovering oxygen enriched gas
JP2000241590A (ja) * 1999-02-23 2000-09-08 Japan Atom Power Co Ltd:The 希ガス濃縮方法及び希ガス濃縮装置
JP2002306918A (ja) * 2001-04-16 2002-10-22 Nippon Sanso Corp ガス分離方法とその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1495793A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574346B2 (en) 2006-09-25 2013-11-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PSA method using a composite adsorption bed comprising an adsorbent and PCM agglomerates
WO2012136913A1 (fr) 2011-04-08 2012-10-11 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mélange d'un adsorbant et d'un matériau à changement de phase à densité adaptée
US9314768B2 (en) 2011-04-08 2016-04-19 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Mixture of an adsorbent and a phase change material with an adapted density
JP7429563B2 (ja) 2020-02-28 2024-02-08 株式会社アドバン理研 ガス発生装置およびガス製造方法

Also Published As

Publication number Publication date
TW200404598A (en) 2004-04-01
JP2004000819A (ja) 2004-01-08
AU2003236218A1 (en) 2003-10-27
EP1495793A4 (en) 2006-10-04
CN1646207A (zh) 2005-07-27
EP1495793A1 (en) 2005-01-12
US7300497B2 (en) 2007-11-27
IL164456A0 (en) 2005-12-18
JP3899282B2 (ja) 2007-03-28
KR100984796B1 (ko) 2010-10-04
CN1299800C (zh) 2007-02-14
KR20040111508A (ko) 2004-12-31
TW589222B (en) 2004-06-01
US20050199122A1 (en) 2005-09-15

Similar Documents

Publication Publication Date Title
WO2003086586A1 (fr) Procede de separation de gaz
JP3232003B2 (ja) 圧力スイング式吸着法における還流
TW398989B (en) Pressure swing adsorption process and system with a single adsorbent bed
KR100288568B1 (ko) 공기로부터 산소를 회수하기 위한 단일층 압력 순환 흡착 방법
US4775394A (en) Process for separation of high purity gas from mixed gas
EP0667178A1 (en) VSA adsorption process with continuous operation
EP1334758A1 (en) Gas separating and purifying method and its apparatus
JPS63166702A (ja) 酸素ガス濃縮法
EP1175934A2 (en) Improved oxygen production
WO2013069768A1 (ja) 窒素ガス製造方法、ガス分離方法および窒素ガス製造装置
EP0129444A2 (en) Methods for obtaining high-purity carbon monoxide
JP4481112B2 (ja) 圧力変動吸着式ガス分離方法及び装置
JPH0372566B2 (ja)
GB2154465A (en) Gas separation method and apparatus
KR100856912B1 (ko) 정제질소 공급장치
JP4895467B2 (ja) 酸素濃縮方法および酸素濃縮装置
JP6515045B2 (ja) 窒素ガスの製造方法および装置
JP3219612B2 (ja) 混合ガスより一酸化炭素及び水素を併産する方法
JPH07267612A (ja) 圧力変動吸着式酸素製造方法及び装置
JPH10272332A (ja) ガス分離装置及びその運転方法
WO2020105242A1 (ja) ガス分離装置及びガス分離方法
JPH01262919A (ja) 空気中の窒素および酸素の分離回収方法
JP7502962B2 (ja) ガス精製装置及びガス精製方法
JP7381554B2 (ja) 圧力変動吸着式ガス分離装置
WO1995033681A1 (fr) Procede de production d'oxygene par separation apres adsorption par variation de pression

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003723107

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 164456

Country of ref document: IL

Ref document number: 20038080729

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10510745

Country of ref document: US

Ref document number: 1020047016342

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047016342

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003723107

Country of ref document: EP