WO2003076324A1 - Treibscheibe für hochleistungsreibpaarungen - Google Patents

Treibscheibe für hochleistungsreibpaarungen Download PDF

Info

Publication number
WO2003076324A1
WO2003076324A1 PCT/DE2003/000808 DE0300808W WO03076324A1 WO 2003076324 A1 WO2003076324 A1 WO 2003076324A1 DE 0300808 W DE0300808 W DE 0300808W WO 03076324 A1 WO03076324 A1 WO 03076324A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction sheave
rim
segments
crown
grooves
Prior art date
Application number
PCT/DE2003/000808
Other languages
English (en)
French (fr)
Inventor
Peter Gräbner
Original Assignee
Graebner Peter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graebner Peter filed Critical Graebner Peter
Priority to JP2003574554A priority Critical patent/JP2005519010A/ja
Priority to EP03720161A priority patent/EP1483191B1/de
Priority to US10/506,317 priority patent/US8132789B2/en
Priority to DE50303576T priority patent/DE50303576D1/de
Priority to AU2003223859A priority patent/AU2003223859A1/en
Publication of WO2003076324A1 publication Critical patent/WO2003076324A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B15/00Main component parts of mining-hoist winding devices
    • B66B15/02Rope or cable carriers
    • B66B15/04Friction sheaves; "Koepe" pulleys

Definitions

  • the invention relates to the novel construction of traction sheaves for wire rope drives and the like. In particular in the elevator sector, whereby an improved power transmission is to be made possible.
  • Access devices operated with wire rope for standing rope constructions (suspension bridges, rope-tensioned hall roofs, cable cranes, cable cars), • selected cable car drives,
  • a further field of application of the invention are mechanical continuous conveyors, which operate according to the “frictional connection” drive principle and meet the requirements of magnetic materials.
  • the groove of the traction sheave which receives the load element consists of segment pieces which are designed as pole pieces of a series of electromagnets with alternating polarity, the flow of force of which is guided from one pole to the adjacent through the load element ,
  • a traction sheave in particular for use in mining, is known in which a lining which is freely movable on the rim circumference in the form of a flexible elastic ring with lining elements attached to it is introduced into the grooves of the rim.
  • DE 36 26 045 A1 also describes a traction sheave for mining, in which a freely movable coating is arranged along the circular line of the groove of the ring.
  • This covering consists of two layers, namely the upper layer made of an elastic strip of material and the layer lying directly on the rim and divided into sections, which are rigidly connected to one another.
  • the sections mentioned here consist of a (sliding) bearing material.
  • DE 39 23 192 A1 relates to a traction sheave, in particular for
  • Patent specification DE 1.202.587 B describes a reinforcement for use for rope and traction sheaves in mining, in which lining materials made of light metal, hard plastic and the like are attached to the base body of the traction sheave and at the same time the friction coefficient and the wear resistance of the lining are increased.
  • the patent specification DE 1.120.702 B describes a special lining material for traction sheaves for mine shaft mining, which consists of a special cast alloy G AI Si. These lining blocks are installed alternately with lining blocks made of thermoplastic or thermoplastic-like plastics on the circumference of the traction sheave.
  • the use of force line fields to increase the driving ability is known from mining and mooring winches for single-rope operation.
  • the solutions are structurally complex, require a large amount of space and make the system technology more expensive
  • the object of the invention is therefore to significantly increase the transmission forces from elevator traction sheaves to the rope to be driven, in particular under extreme stress conditions, such as are present in high rope force ratios and / or small traction sheave to rope diameter ratios.
  • the object of the invention includes analog improvements to increase the transmission forces in the pairings of drive drum / steel conveyor belt and drive drum / chain, each with a simplified design of the other system components.
  • inlays in the form of high-energy magnets from the group of rare earths with energy products of, for example, 385 kJ / m 3 are introduced along the circumferential line of the groove (s) present in the traction sheave ring, which are inserted into adapted recesses in the groove track are recessed to conform to the surface.
  • This arrangement can be made for several grooves lying side by side. Complementary respectively between the inlay's ring segments are arranged.
  • Classic traction sheave materials such as GG and the like can be used as material for the above traction sheave ring or the ring segments or new construction materials such as steel foam materials and fiber composite ceramics which increase the friction value and meet the requirements for pressure resistance and wear resistance for use in elevator traction sheaves or similar applications. If wreath segments are selected, steel foam materials and / or fiber composite ceramics should preferably be used. This special procedure makes it possible to increase Coulomb's frictional force, since the coefficient of friction of the rest reaches values of 0.4 when using, for example, fiber composite ceramics, and additionally the normal force from the rope forces of by the high-energy magnets inserted as inlays at regular intervals a normal force generated by the magnetic forces is superimposed. The following applies to this statement:
  • Fu M gn tangential resistance force acting on the circumference of the traction sheave in the magnetic area against the rope elongation or slip caused by the greater rope force;
  • F gn magnetic adhesive force;
  • ⁇ Mgr > coefficient of friction in the magnetic range.
  • High-energy magnets which are to be manufactured as permanent magnets based on adhesive forces, hardness, shape, wear resistance, adapted to the application. They are arranged in the respective groove track in such a way that the axis of the magnet and thus the magnetic force is aligned radially.
  • the inlay segments and possibly additional ring segments are arranged distributed over the 360 ° circumferential line of the traction sheave ring, these segments being evenly spaced by the circumferential angle ⁇ .
  • the size of the angle ⁇ depends on the desired driving ability of the drive pulley-rope or drive pulley-belt pairing.
  • This technical approach makes it possible to equip round grooves with at least coefficients of friction that of wedge grooves with a defined wedge angle and achievable wear condition, but in contrast to the V-groove or the undercut round groove, guarantee a greatly reduced groove wear (low pressure) and a long rope service life in relation to the respective design.
  • F1 rope forces
  • ⁇ (p) deceleration factor
  • e basis of natural logarithms
  • apparent coefficient of friction
  • ß geometric wrap.
  • FIG. 1 shows the design of the traction sheave ring with ring segments made of fiber composite ceramic, arranged between the inlays made of high-energy magnets
  • FIG. 2 shows a groove segment which consists of a material that differs from the other version of the groove ring.
  • the entire ring could also be made of this material, into which the holes for receiving the high-energy magnets could then be made.
  • Fig. 3 The design of a traction sheave for high-performance friction pairings, in which in the groove tracks of the traction sheave ring as inlay segments
  • FIG. 1 An exemplary arrangement of ring segments 5 and possibly inlay's 6 over the 360 ° circumferential line of the traction sheave ring 2 is shown in FIG. 1.
  • the ring segments 5 are in each groove track 3, see. Section A-A, spaced apart from each other over the circumferential angle ⁇ .
  • they can consist of one piece in the axial direction, into which all groove tracks 3 are introduced.
  • inlay segments 6 high-energy magnets
  • inlay segments 6 high-energy magnets
  • the exemplary geometry of a wreath segment 5 shows as detail B FIG.
  • the shape of the groove 3 is determined by its radius of curvature, where d is the
  • Diameter of the rope 4 corresponds.
  • the length I of a wreath segment 5 is at least 3 times the rope diameter d, i.e. I ⁇ 3d.
  • FIG. 3 illustrates the design of a traction sheave for high-performance friction pairings with high-energy magnets 6 introduced as inlay segments, analogously to the structure according to FIG. 1.
  • the high-energy magnets 6 have a cylindrical shape, see. Detail C, with the following dimensions for height h and diameter of the magnets d M : h ⁇ 25 - 35 mm d M ⁇ 20 - 32 mm.
  • the polarity is also shown here.
  • a traditional gray cast iron (GG) material is used as the material for the traction sheave base body 1 and traction sheave ring 2.
  • the wreath can be manufactured separately and connected to the base body in a suitable form.

Abstract

Die Erfindung betrifft den neuartigen Aufbau von Treibscheiben insbesondere in Aufzugsbereichen für Draht-Seilantriebe und dgl., bestehend aus Treibscheiben-Radkörper (1), Treibscheiben-Kranz (2) und auf der Aussenseite in den Kranz (2) eingebrachten Rillen (3) zur Seilführung in spezieller Ausbildung. Durch die neue Treibscheibe soll eine Verbesserte Kraftübertragung ermöglicht werden. Die Erfindung zeichnet Sich dadurch aus, dass zur verbesserten Kraftübertragung zwischen den Rillen im Treibscheiben-Kranz (2) und Seil (4) entlang der Umfangslinie der in den Treibscheiben-Kranz (2) oder einer speziellen Konstruktion beabstandet Kranz-Segmente (5) als Segmente der Rillenspur aus gleichen oder unterschiedlichen Materialien und Inlay's aus Hochenergie-Magneten (6) eingebracht sind, wobei als Materialien für die Kranz-Segmente (5) z.B. Schaumstahl oder Faserverbundkeramik und dgl., jeweils mit erhöhten Reibwerten, eingesetzt werden. Statt der Kranz-Segmente kann der Treibscheibenkranz insgesamt aus den genannten Materialien gefertigt werden und die Inlay's aus Hochenergie­Magneten werden in diesen direkt eingebracht.

Description

Treibscheibe für Hochleistungsreibpaarungen
Die Erfindung betrifft den neuartigen Aufbau von Treibscheiben für Draht- Seilantriebe und dgl. insbesondere im Aufzugsbereich, wodurch eine verbesserte Kraftübertragung ermöglicht werden soll.
Hauptanwendungsgebiete der Erfindung sind
- Aufzugstreibscheiben für Mehrseilbetrieb,
- Treibscheiben für wahlweisen Einseilbetrieb unter Aufzugsbeanspruchungen, wie beispielsweise • mit Drahtseilen betriebene Hubplattformen (z.B. Fassadenpflege- anlagen, Montagegerüste),
• mit Drahtseil betriebene Befahreinrichtungen für stehende Seilkonstruktionen (Hängebrücken, seilverspannte Hallendächer, Kabelkrane, Seilbahnen), • ausgewählte Seilbahnantriebe,
• ausgewählte Sesselliftantriebe,
• Durchlaufhubwinden für beliebige Einsatzfälle.
Ein weiteres Anwendungsfeld der Erfindung sind mechanische Stetigförderer, die nach dem Antriebsprinzip „Kraftschluss" arbeiten und die Voraussetzungen magnetischer Werkstoffe erfüllen.
Der Stand der Technik für Aufzugstreibscheiben ist durch Lösungen charakterisiert, die das Coulomb'sche Reibungsgesetz unter Nutzung einer homogen Rille der technischen Auslegung zugrunde legen.
Im Beanspruchungsbereich der Schachtförderung des Bergbaus sind Lösungen bekannt, die die Treibfähigkeit des Systems Seil -Treibscheibe durch Rilleneinlagen unterschiedlicher - aber weicher Werkstoffe - erhöhen, die aber für den Aufzugsbetrieb ungeeignet sind. Vor etwa 8 Jahrzehnten wurden im Bergbau Überlegungen angestellt, die Kraftübertragung unter Einsatz von Elektromagneten zu verbessern.
In der zugehörigen Patentschrift DE 34 67 27 C wird dazu ausgeführt, dass die das Lastorgan aufnehmende Rille der Treibscheibe aus Segmentstücken besteht, die als Polschuhe einer Reihe von Elektromagneten mit wechselnder Polarität ausgebildet sind, deren Kraftlinienfluss von einem zum benachbarten Pol durch das Lastorgan geführt wird.
Für Kabelverholanlagen auf Kabelverlegeschiffen ist aus US 3 512 757 eine Lösung bekannt, die Magnete in den Ableitscheiben von Winden zum Einsatz bringen will. In diesen Fällen kommen traditionelle Magnete zum Einsatz, die erheblichen Platzbedarf und technischen Zusatzaufwand erfordern und demzufolge nur bei Einseilbetrieb mit großen Abmessungen eingesetzt werden können.
Aus DE 33 12 522 A1 ist eine Treibscheibe, insbesondere für Einsatz im Bergbau, bekannt, bei der in den Rillen der Scheibenfelge ein frei am Felgenumfang bewegliches Futter in Gestalt eines biegsamen elastischen Ringes mit daran befestigten Futterelementen eingebracht ist. Auch in DE 36 26 045 A1 wird eine Treibscheibe für den Bergbau beschrieben, bei der längs der Kreislinie der Rille des Kranzes ein frei beweglicher Belag angeordnet ist. Dieser Belag besteht aus zwei Schichten, nämlich der oberen Schicht aus einem elastischem Materialstreifen und der unmittelbar auf dem Kranz aufliegenden, in Sektionen unterteilten Schicht, die starr miteinander verbunden sind.
Die genannten Sektionen bestehen hier aus einem (Gleit-)Lagerwerkstoff.
Gegenstand von DE 39 23 192 A1 ist eine Treibscheibe insbesondere für
Einseilförderung im Bergbau mit einem Treibscheibenkranz, in dessen Rille mit einem Spalt zueinander Belageinlagen frei angeordnet sind. Diese V-förmigen Belageinlagen sind an ihren beiden Schenkelenden mit in Bewegungsrichtung der Treibscheibe durchgehenden Bohrungen versehen, durch welche ein diese Rille umschlingendes Zugmittel hindurchgeleitet ist.
In der Patentschrift DE 1.202.587 B wird eine Bewehrung zur Anwendung für Seil- und Treibscheiben im Bergbau beschrieben, bei der Futterstoffe aus Leichtmetall, harten Kunststoff und dgl. am Grundkörper der Treibscheibe befestigt und zugleich der Reibwert und die Verschleißfestigkeit des Futters erhöht werden.
In der Patentschrift DE 1.120.702 B wird ein spezieller Futterwerkstoff für Treibscheiben der Schachtförderung des Bergbaus beschrieben, der aus einer speziellen Gusslegierung G AI Si besteht. Diese Futterklötze werden abwechselnd mit Futterklötzen aus thermoplastischen oder thermoplastähnlichen Kunststoffen auf dem Treibscheibenumfang installiert.
Mit den aus dem Stand der Technik bekannten Einlagen in die Rillen des Treibscheibenkranzes konnten Verbesserungen im Verschleiß- und Reibverhalten für Treibscheiben des Bergbaus erreicht werden. Die dafür erforderlichen konstruktiven Lösungen sind aufwendig. Für große Verhältnisse von Treibscheibendurchmesser zu Seildurchmesser - etwa größer 40 - sind entsprechende Anwendungen auch im Aufzugsbau denkbar. Der Trend zum Leichtbau wird diese Durchmesser-Verhältnisse für Aufzüge in den Bereich von 20 bis 30 führen. Hier versagen infolge der erhöhten Druckbeanspruchungen und Scherspannungen - ausgelöst durch die ungleichen Seilkräfte - die bisher bekannten Einlagenmaterialien.
Die Nutzung von Kraftlinienfeldern zur Erhöhung der Treibfähigkeit ist aus dem Bergbau und für Verholwinden für Einseilbetrieb bekannt. Die Lösungen sind aber konstruktiv aufwendig, erfordern einen hohen Platzbedarf und verteuern die Anlagentechnik Aufgabe der Erfindung ist deshalb die wesentliche Erhöhung der Übertragungskräfte von Aufzugstreibscheiben auf das anzutreibende Seil insbesondere unter extremen Beanspruchungsverhältnissen, wie sie bei hohen Seilkraftverhältnissen und/oder kleinen Durchmesserverhältnissen Treibscheibe zu Seil vorliegen. Die Aufgabe der Erfindung schließt ein analoge Verbesserungen zur Erhöhung der Übertragungskräfte bei den Paarungen Antriebstrommel/Stahlförderband und Antriebstrommel/Kette, jeweils bei vereinfachter Ausführung der weiteren Systemkomponenten.
Eine erfindungsgemäße Lösung dieser Aufgabe ist im Patentanspruch 1 angegeben. Weiterbildungen der Erfindung sind in den Unteransprüche gekennzeichnet.
Nach der Konzeption der Erfindung werden entlang der Umfangslinie der in den Treibscheibenkranz vorhandenen Rille(n) beabstandet Inlay's in der Gestalt von Hochenergie-Magnete aus der Gruppe der Seltenen Erden mit Energieprodukten von z.B. 385 kJ/m3 eingebracht, die in angepasste Aussparungen der Rillenspur oberflächenkonform versenkt sind. Diese Anordnung kann für mehrere nebeneinanderliegende Rillen vorgenommen werden. Ergänzend können jeweils zwischen den Inlay's Kranz-Segmente angeordnet werden.
Als Material für den o.g. Treibscheibenkranz oder die Kranz-Segmente können klassische Treibscheiben-Materialien wie GG und dgl. oder aber neue reibwerterhöhende Konstruktionswerkstoffe wie Stahlschaumwerkstoffe und Faserverbundkeramik eingesetzt werden, die den Ansprüchen an Druckfestigkeit und Verschleißfestigkeit für den Einsatz in Aufzugstreibscheiben oder ähnlichen Anwendungen genügen. Wählt man Kranz-Segmente, sollen dafür vorzugsweise Stahlschaumwerkstoffe und/oder Faserverbundkeramik eingesetzt werden. Durch diese spezielle Vorgehensweise gelingt es, die Coulomb'sche Reibkraft zu erhöhen, da die Reibwerte der Ruhe bei Einsatz von z.B. Faserverbundkeramik Werte von 0,4 erreichen und zusätzlich durch die in regelmäßigen Abständen als Inlays eingebrachten Hochenergie-Magnete die Normalkraft aus den Seilkräften von einer durch die Magnetkräfte erzeugten Normalkraft überlagert wird. Für diese Aussage gilt:
FuMgn = -Mgn * Fft/ign
In dieser Gleichung bedeuten
FuMgn: am Umfang der Treibscheibe wirkende tangentiale Widerstands- kraft im Magnetbereich gegen die durch die größere Seilkraft hervorgerufene Seildehnung oder Rutsch; F gn: magnetische Haftkraft; μMgr>: Reibwert im Magnetbereich.
Zur Anwendung kommen die o.g. Hochenergie-Magnete, die als Permanentmagnete bezogen auf Haftkräfte, Härte, Form, Verschleißfestigkeit dem Einsatzfall angepasst zu fertigen sind. Ihre Anordnung in der jeweiligen Rillenspur erfolgt in der Weise, dass die Achse des Magneten und damit die Magnetkraft radial ausgerichtet ist.
Über die 360°-Umfangslinie des Treibscheiben-Kranzes verteilt angeordnet sind die Inlaysegmente und gegebenenfalls zusätzliche Kranz-Segmente, wobei diese Segmente gleichmäßig durch den Umfangswinkel α beabstandet sind. Die Größe des Winkels α hängt von der gewünschten Treibfähigkeit der Paarung Treibscheibe-Seil bzw. Treibscheibe-Band ab.
Dieser technische Ansatz ermöglicht es, Rundrillen mindestens mit Reibwerten auszustatten, die denen von Keilrillen bei definiertem Keilwinkel und erreichbarem Verschleißzustand entsprechen, aber im Gegensatz zur Keilrille oder der unterschnittenen Rundrille einen stark reduzierten Rillenverschleiß (geringe Pressung) und hohe Seillebensdauer bezogen auf die jeweilige Auslegung gewährleisten.
Für die Lösung von extremen Anforderungen - z.B. der Kraftübertragung - sind auch andere Rillenformen - insbesondere Rundrillen mit Unterschnitt - mit diesem technischen Ansatz ausrüstbar.
Die Optimierung der Treibscheibenauslegung bezogen auf
• Magnethaftkraft, geometrische Form der Hochenergie-Permanent- magnete, Festlegung weiterer physikalischer Kennwerte, Anordnung der
Magnete einerseits und/oder
• Gestaltung des Treibscheibenkranzes aus GG, Kunststoffen und dgl., Schaumstahl oder Verbundkeramik andererseits erfolgt wahlweise entsprechend der jeweils vorliegenden technischen Zielstellung.
Die Lösung erfordert einen modifizierten Ansatz der Eytelwein'schen Gleichung F1/F2 * φ (p) ≤ eμp mit
F1. F2 : Seilkräfte; φ (p) : Verzögerungsfaktor; e : Basis der natürlichen Logarithmen; μ : scheinbarer Reibwert; ß : geometrischer Umschlingungsbogen.
Durch Verbreiterung der in ihrem Aufbau erläuterten Treibscheibe in axialer Richtung entsteht eine Antriebstrommel für mechanische Stetigförderer, die in ihrem Grundaufbau wie eine Treibscheibe aufgebaut ist, wobei eine Ausweitung der Anordnung von Kranz-Segmenten (5) und Inlay's (6) in axialer Richtung - also über die Breite der Antriebstrommel - erfolgt ist. Die mit dem Patent verbundenen Vorteile sind vielfältig, nämlich u.a.:
• Erhöhung der Coulomb'schen Reibkraft durch Erhöhung von μsystem infolge Einsatz von Faserverbundkeramik oder Stahlschaumwerkstoffen u.a.
• Überlagerung der Coulomb'schen Reibkraft mit einer magnetischen Reibkraft - erzeugt durch Hochenergie-Magnete aus der Gruppe der
Seltenen Erden.
• Wahlweise Auslegung der Treibscheibe für verschleißarme Übertragung großer Umfangskräfte oder Übertragung sehr großer Umfangskräfte für Spezialeinsätze. Erreicht wurde eine wesentliche Erhöhung der Treibfähigkeit insbesondere von Rundrillen.
Die Kraftübertragung wird durch die genannten Maßnahmen wesentlich verbessert, die damit verbundenen Sekundärfolgen sind: • Masseeinsparungen im Seiltrieb durch vergrößertes und technisch übertragbares F1/F2-Verhältnis, Ermöglichung des extremen Leichtbaus in der Aufzugstechnik;
• Mögliche Reduzierung des erforderlichen Treibscheibendurchmessers;
• Reduzierung der Seildurchmesser infolge verringerter Bean- spruchungen, da Verschleiß durch Dehnung und Rutsch im Bereich der
Treibscheibe weitgehend reduziert wird.
• bedingt durch einen kleineren Treibscheibendurchmesser kleinere Antriebe durch erhöhte Drehzahl der Treibscheibe;
• Reduzierung des Energieaufwandes; jeweils verbunden mit den zugehörigen wirtschaftlichen Vorteilen.
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die zugehörige Zeichnung. Es zeigen Fig. 1 die Ausführung des Treibscheiben-Kranzes mit Kranz-Segmenten aus Faserverbundkeramik, angeordnet zwischen den Inlays aus Hochenergie-Magneten, Fig. 2 die Darstellung eines Rillensegments, das aus einem von der sonstigen Ausführung des Rillenkranzes abweichendem Werkstoff besteht. Aus diesem Werkstoff könnte bei anderer konstruktiver Lösung auch der gesamte Kranz bestehen, in den dann die Bohrungen für die Aufnahme der Hochenergie-Magnete eingebracht werden.
Fig. 3 Die Ausführung einer Treibscheibe für Hochleistungsreibpaarungen, bei der in den Rillenspuren des Treibscheibenkranzes als Inlay-Segmente
Hochenergie-Magneten eingebracht sind.
Eine beispielhafte Anordnung von Kranz-Segmenten 5 und ggf. Inlay's 6 über die 360°-Umfangslinie des Treibscheiben-Kranzes 2 ist in Fig. 1 dargestellt. Die Kranz-Segmente 5 sind in jeder Rillenspur 3, s. Schnitt A-A, voneinander beabstandet über den Umfangwinkel α angeordnet. Sie können alternativ in axialer Richtung aus einem Stück bestehen, in das alle Rillenspuren 3 eingebracht sind.
Zusätzlich oder ausschließlich können zur Erreichung einer bestimmten Treibfähigkeit der Treibscheibe andere Anordnungen, Konstruktionen und Verteilungsdichten von Inlay-Segmente 6 (Hochenergie-Magnete) über den Umfang des Treibscheiben-Kranzes 2 gewählt werden.
Die beispielhafte Geometrie eines Kranz-Segments 5 zeigt als Einzelheit B Fig.
2.
Die Form der Rille 3 wird von ihrem Krümmungsradius bestimmt, wobei d dem
Durchmesser des Seiles 4 entspricht. Die Abmessungen für Breite b und Höhe h eines Kranz-Segments 5 entsprechen etwa dem doppelten Rillendurchmesser d, also b = h ~ 2d.
Die Länge I eines Kranz-Segments 5 beträgt mindestens das 3-fache des Seildurchmessers d, also I ~ 3d.
Fig. 3 veranschaulicht die Ausführung einer Treibscheibe für Hochleistungsreibpaarungen mit analog zum Aufbau nach Fig. 1 eingebrachten Hochenergie-Magneten 6 als Inlay-Segmente. Die Hochenergie-Magneten 6 haben eine zylindrische Form, s. Einzelheit C, mit folgenden Abmessungen für Höhe h und Durchmesser der Magneten dM: h ~ 25 - 35 mm dM ~ 20 - 32 mm.
Hier ist auch die Polarität eingezeichnet.
Derartige Magnete erreichen z.Z. Haftkräfte von 42 - 700 N
Als Material für den Treibscheiben-Grundkörper 1 und Treibscheibenkranz 2 wird in beiden Ausführungsbeispielen ein traditioneller Grauguss (GG)- Werkstoff eingesetzt.
Der Kranz kann, wenn dafür hochwertige Materialien wie Schaumstahl, Faserverbundkeramik o. ä. zum Einsatz kommen, gesondert gefertigt und mit dem Grundkörper in geeigneter Form verbunden werden.
LISTE DER BEZUGSZEICHEN
1 Treibscheiben-Radkörper
2 Treibscheiben-Kranz
3 Rillen, Rillenspur
4 Drahtseil
5 Kranz-Segmente
6 Inlay's (Hochenergie-Magnete)

Claims

PATENTANSPRÜCHE
1. Treibscheibe für Hochleistungsreibpaarungen vorwiegend zur Nutzung in Aufzügen also für Draht-Seilantriebe und dgl., bestehend aus Treibscheiben-Radkörper (1), Treibscheiben-Kranz (2) und auf der Außenseite in den Kranz (2) eingebrachten Rillen (3) zur Seilführung, dadurch gekennzeichnet, dass zur verbesserten Kraftübertragung zwischen den Rillen im Treibscheiben-Kranz (2) und Seil (4) entlang der Umfangslinie in den Treibscheiben-Kranz (2) oder einer speziellen Kranz-Konstruktion (3) beabstandet Kranz-Segmente (5) als Segmente der Rillenspur aus unterschiedlichen Materialien und alternierend zu den
Kranz-Segmenten (5) Hochenergie-Magnete als Inlays (6) eingebracht sind, wobei als Materialien für die Kranz-Segmente (5), z.B. Stahlschaumwerkstoffe und/oder Faserverbundkeramik und dgl., jeweils mit erhöhten Reibwerten, vorgesehen sind.
Treibscheibe nach Anspruch 1 , dadurch gekennzeichnet, dass die Rillen (3) im Treibscheiben-Kranz oder in den Kranz-Segmenten
(2) als Rundrillen oder unterschnittene Rundrillen ausgeführt sind.
3. Treibscheibe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die in die Rillenspur (3) eingesetzten Kranz-Segmente (5) vorzugsweise eine Kreissegmentform aufweisen und oberflächenkonform mit der Rillenspur (3) in passfähige formschlüssige Ausnehmungen des Treibscheiben-Kranzes (2) eingebracht sind.
4. Treibscheibe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Anordnung der Hochenergie- Magnete als Inlays (6) in der Rillenspur (3) so erfolgt, dass die Achse des Magnetfeldes und damit die Magnetkraft radial gerichtet ist.
5. Treibscheibe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kranz-Segmente (5) und die Inlays (6) entlang der 360° - Umfangslinie der Rillenspur(en) (3) alternierend und jeweils um den Umfangswinkel α versetzt angeordnet sind.
6. Treibscheibe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mehrere Rillenspuren (3) mit Kranz — Segmenten (5) und/oder Inlay's (6) in axialer Richtung der entsprechend breiten Treibscheibe (1 ) angeordnet sind.
7. Treibscheibe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Grundkörper der Treibscheibe (1 ) aus Grauguss oder Stahlguss oder Stahl oder geeigneten
Verbundwerkstoffen oder Kunststoff gefertigt ist, und auf dem Treibscheiben-Radkörper ein Treibscheibenkranz (2) - entsprechender Stärke aus geeignetem Grauguss oder legiertem Grauguss oder Stahlguss oder legiertem Stahlguss oder Schaumstahl oder einer Spezialkeramik oder Spezialkunststoffen - versehen mit voneinander beabstandeten Aussparungen zur Aufnahme der Hochenergie-Magnete (6) dehnungssicher aufgebracht ist.
8. Treibscheibe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass durch Verbreiterung der Treibscheibe
(1 ) in axialer Richtung eine Antriebstrommel für mechanische Stetigförderer entsteht, die einen Grundaufbau wie eine Treibscheibe aufweist und die Kranz-Segmenten (5) und Inlay's (6) in axialer Richtung über die Breite der Antriebstrommel angeordnet sein können.
PCT/DE2003/000808 2002-03-08 2003-03-07 Treibscheibe für hochleistungsreibpaarungen WO2003076324A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003574554A JP2005519010A (ja) 2002-03-08 2003-03-07 高性能相互摩擦のためのドライブディスク
EP03720161A EP1483191B1 (de) 2002-03-08 2003-03-07 Treibscheibe für hochleistungsreibpaarungen
US10/506,317 US8132789B2 (en) 2002-03-08 2003-03-07 Drive disk for high performance friction pairings
DE50303576T DE50303576D1 (de) 2002-03-08 2003-03-07 Treibscheibe für hochleistungsreibpaarungen
AU2003223859A AU2003223859A1 (en) 2002-03-08 2003-03-07 Drive disk for high performance friction pairings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10211196 2002-03-08
DE10211196.0 2002-03-08

Publications (1)

Publication Number Publication Date
WO2003076324A1 true WO2003076324A1 (de) 2003-09-18

Family

ID=27797763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000808 WO2003076324A1 (de) 2002-03-08 2003-03-07 Treibscheibe für hochleistungsreibpaarungen

Country Status (9)

Country Link
US (1) US8132789B2 (de)
EP (1) EP1483191B1 (de)
JP (1) JP2005519010A (de)
CN (1) CN100545071C (de)
AT (1) ATE327961T1 (de)
AU (1) AU2003223859A1 (de)
DE (1) DE50303576D1 (de)
RU (1) RU2327628C2 (de)
WO (1) WO2003076324A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010878A1 (de) * 2011-07-19 2013-01-24 Inventio Ag Treibscheibe für aufzüge

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308265A (ja) * 2007-06-13 2008-12-25 Okamura Corp 荷の昇降装置
JP2012180154A (ja) * 2011-02-28 2012-09-20 Toshiba Elevator Co Ltd エレベータ
CN103104677A (zh) * 2013-01-30 2013-05-15 江苏武东机械有限公司 一种滑轮套件
US10773929B2 (en) 2014-07-31 2020-09-15 Otis Elevator Company Sheave for elevator system
CN105605189B (zh) * 2015-08-31 2017-12-22 屈景华 一种机械滑轮传动装置
CN205241011U (zh) 2015-11-05 2016-05-18 奥的斯电梯公司 曳引轮、具有其的滑轮组件及电梯
JP6668064B2 (ja) * 2015-12-15 2020-03-18 株式会社シマノ ラインローラ
RU2647106C1 (ru) * 2016-07-14 2018-03-13 Общество с ограниченной ответственностью "Лаборатория будущего" Устройство для перемещения по канату (варианты)
CN106946130A (zh) * 2017-05-05 2017-07-14 苏州蒙特纳利驱动设备有限公司 耐磨损电梯曳引轮
US10766746B2 (en) 2018-08-17 2020-09-08 Otis Elevator Company Friction liner and traction sheave
CN113844995A (zh) * 2021-09-30 2021-12-28 中国石油大学(华东) 一种钢丝绳啮合传动轮及其制造方法
CN115231420B (zh) * 2022-08-08 2023-12-01 中国恩菲工程技术有限公司 一种摩擦式提升机用永磁摩擦衬垫
CN115258890B (zh) * 2022-08-08 2023-12-01 中国恩菲工程技术有限公司 一种摩擦式提升机用电磁摩擦衬垫

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067438A (en) * 1973-09-04 1978-01-10 Emhart Industries, Inc. Magnetic drive for conveyor
JPH06117520A (ja) * 1992-09-30 1994-04-26 Kato Hatsujo Kaisha Ltd 高摩擦円筒体及びその製造法
JPH0859148A (ja) * 1994-08-26 1996-03-05 Toshiba Corp ワイヤロープ伝動装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE346727C (de) 1922-01-06 Willy Horn Dipl Ing Treibscheibe fuer Foerdermaschinen mit elektromagnetischer Festhaltung des Foerderseils
DE1120702B (de) 1956-02-25 1961-12-28 Walter Oxe Verwendung einer Aluminiumgusslegierung zur Herstellung des Rillenfutters von Drahtseil-Treibscheiben
DE1202587B (de) 1960-01-16 1965-10-07 Walter Oxe Futterklotz oder Belag fuer Seil- und Treibscheiben sowie Seiltrommeln, insbesonderevon Schacht-foerdermaschinen und Foerderhaespel
DE1176440B (de) * 1962-04-26 1964-08-20 Max Baermann Riementrieb mit magnetischer Verstaerkung des Kraftschlusses
GB1054160A (de) * 1964-12-21
US3512757A (en) * 1968-02-23 1970-05-19 Cons Electric Corp Magnetic traction line haul
US3610583A (en) * 1970-04-20 1971-10-05 Cons Electric Corp Permanent horseshoe magnet traction line haul
US3643921A (en) * 1970-06-09 1972-02-22 Mario J Puretic Power block
FR2525718B1 (fr) 1982-04-23 1985-12-06 Ivano Frankovsk I Nefti Gaza Poulie pour appareil de manutention
SU1696368A1 (ru) 1985-07-01 1991-12-07 Ивано-Франковский Институт Нефти И Газа Футеровка шкива
FR2602296B1 (fr) 1986-08-01 1990-08-31 Ivano Frankovsk I Nefti Gaza Poulie
CN2173771Y (zh) * 1993-07-15 1994-08-10 中国矿业大学 摩擦提升机增摩衬垫
US6027103A (en) * 1997-03-03 2000-02-22 Painter; Byron Wayne Powerhead assembly and hoisting system
US6401871B2 (en) * 1998-02-26 2002-06-11 Otis Elevator Company Tension member for an elevator
FI109897B (fi) * 2001-03-19 2002-10-31 Kone Corp Hissi ja hissin vetopyörä
DE10127238C1 (de) * 2001-05-28 2003-01-16 Demag Cranes & Components Gmbh Einrichtung zur Erfassung einer Seilbewegung für ein Hebezeug, insbesondere für einen pneumatisch betriebenen Seilbalancer
US6857187B2 (en) * 2003-07-03 2005-02-22 Jeffrey S Epstein Method of manufacturing a measuring wheel for wireline operations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067438A (en) * 1973-09-04 1978-01-10 Emhart Industries, Inc. Magnetic drive for conveyor
JPH06117520A (ja) * 1992-09-30 1994-04-26 Kato Hatsujo Kaisha Ltd 高摩擦円筒体及びその製造法
JPH0859148A (ja) * 1994-08-26 1996-03-05 Toshiba Corp ワイヤロープ伝動装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 408 (M - 1647) 29 July 1994 (1994-07-29) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 07 31 July 1996 (1996-07-31) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010878A1 (de) * 2011-07-19 2013-01-24 Inventio Ag Treibscheibe für aufzüge

Also Published As

Publication number Publication date
CN1639048A (zh) 2005-07-13
RU2004130321A (ru) 2005-05-10
JP2005519010A (ja) 2005-06-30
EP1483191B1 (de) 2006-05-31
EP1483191A1 (de) 2004-12-08
US20110108785A1 (en) 2011-05-12
US8132789B2 (en) 2012-03-13
ATE327961T1 (de) 2006-06-15
RU2327628C2 (ru) 2008-06-27
CN100545071C (zh) 2009-09-30
DE50303576D1 (de) 2006-07-06
AU2003223859A1 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
EP1483191B1 (de) Treibscheibe für hochleistungsreibpaarungen
EP1547960B1 (de) Aufzug mit riemenartigem Übertragungsmittel, insbesondere mit Keilrippen-Riemen, als Tragmittel und/oder Treibmittel
DE69929587T3 (de) Aufzugsystem
EP1802548B1 (de) Aufzug mit flachriemen als tragmittel
EP2346770B1 (de) Traktionssystem für eine aufzugsanlage
EP1096176A1 (de) Seilantriebselement zum Antreiben von Kunstfaserseilen
EP1555234A1 (de) Aufzugsanlage
EP2558398A2 (de) Tragmittel für eine aufzugsanlage
EP1728915A1 (de) Tragmittel mit formschlüssiger Verbindung zum Verbinden mehrerer Seile
DE202004013767U1 (de) Hochleistungstreibscheibe
EP2089305B1 (de) Antrieb für aufzüge
WO2013010878A1 (de) Treibscheibe für aufzüge
DE202005015985U1 (de) Permanentmagnetgestützte Treibtrommel für magnetisch leitende Zugorgane
EP1884687B1 (de) Seilscheibe
EP3652101B1 (de) Umlenkrolle in einem zugmitteltrieb
WO2017137027A1 (de) Seilscheibenlageranordnung
EP1867597A1 (de) Aufzug
DE202010014918U1 (de) Magnettreibscheibenwinde
DE102017212078A1 (de) Umlenkrolle in einem Zugmitteltrieb
DE2233659A1 (de) Seilscheibe
DE1906292U (de) Seillauffutterklotz.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN EC JP KR MX NO PL RU UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10506317

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038049937

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003720161

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003574554

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2004130321

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2003720161

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003720161

Country of ref document: EP