WO2003069224A1 - Als flächenstrahler ausgebildeter infrarot-strahler - Google Patents

Als flächenstrahler ausgebildeter infrarot-strahler Download PDF

Info

Publication number
WO2003069224A1
WO2003069224A1 PCT/DE2003/000387 DE0300387W WO03069224A1 WO 2003069224 A1 WO2003069224 A1 WO 2003069224A1 DE 0300387 W DE0300387 W DE 0300387W WO 03069224 A1 WO03069224 A1 WO 03069224A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared radiator
radiator according
strips
infrared
constructed
Prior art date
Application number
PCT/DE2003/000387
Other languages
English (en)
French (fr)
Inventor
Richard Aust
Original Assignee
Voith Paper Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10222450A external-priority patent/DE10222450A1/de
Application filed by Voith Paper Patent Gmbh filed Critical Voith Paper Patent Gmbh
Priority to CA002475915A priority Critical patent/CA2475915A1/en
Priority to AT03709604T priority patent/ATE485481T1/de
Priority to DE50313204T priority patent/DE50313204D1/de
Priority to EP03709604A priority patent/EP1476697B1/de
Publication of WO2003069224A1 publication Critical patent/WO2003069224A1/de
Priority to US10/917,185 priority patent/US7038227B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/148Radiant burners using screens or perforated plates with grids, e.g. strips or rods, as radiation intensifying means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/145Radiant burners using screens or perforated plates combustion being stabilised at a screen or a perforated plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/147Radiant burners using screens or perforated plates with perforated plates as radiation intensifying means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/149Radiant burners using screens or perforated plates with wires, threads or gauzes as radiation intensifying means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/102Flame diffusing means using perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic

Definitions

  • Infrared heater designed as a surface heater
  • the invention relates to an infrared radiator designed as a surface radiator with a radiating body which is heated on the rear side by a burning fluid-air mixture and the front surface of which emits the infrared radiation.
  • Infrared emitters designed as surface emitters are known to be used in dryer systems which are used to dry sheet-like materials, for example paper or cardboard sheets. Depending on the width of the web to be dried and the desired heating output, the required number of emitters with aligned radiation surfaces is put together to form a drying unit.
  • FIG. 16 The basic structure of an individual generic infrared radiator is shown in FIG. 16 and described, for example, in DE 199 01 145-A1.
  • the fuel / air mixture required for the operation of the heater is fed to the heater through an opening (a) in the housing (b) and first reaches a distribution chamber (c) in which the mixture is evenly distributed over the heater surface - perpendicular to the view shown here - is distributed.
  • the gases then pass through a permeable barrier (d).
  • the main task of the barrier (d) is to separate the combustion chamber (e) in which the gas is burned from the distribution chamber (c), in which the unburned gas mixture is located, so that no flashback occurs from the combustion chamber (e) after the distribution chamber (c).
  • the barrier (d) is sensibly designed so that the best possible heat transfer of the hot combustion exhaust gases to the radiation-emitting solid body, i.e. the surface of the barrier (d) itself, possibly the walls of the combustion chamber (e) and the actual one Radiant body (f) is prepared.
  • the geometric / constructive design of the combustion chamber (e) and radiant element (f) is also carried out from the point of view
  • the object of the invention is to maximize the service life of such a construction by using a particularly suitable material for the radiant body, since this generally represents the wearing part of the construction.
  • the radiant body is made of a highly heat-resistant material which contains more than 50 percent by weight of a metal silicide, preferably molybdenum disilicide (MoSi 2 ) or tungsten disilicide (WSi 2 ).
  • a metal silicide preferably molybdenum disilicide (MoSi 2 ) or tungsten disilicide (WSi 2 ).
  • An infrared radiator according to the invention can be operated for a very high specific heating power with flame temperatures of more than 1200 ° C, if necessary even more than 1700 ° C.
  • the radiator has a high emission factor and a long service life.
  • Another advantage is that the material can be shaped in various ways to optimize the radiation behavior and the convective heat transfer.
  • FIG. 1 shows a cross section of the structure of an infrared radiator according to the invention
  • FIG. 2 shows a plan view of the radiating front of the radiator body according to FIG. 1
  • FIG. 3 shows a plan view of a radiator body which is made up of individual tubes, FIG the radiator with the radiator according to Figure 3,
  • FIG. 5 shows a section through the housing of an emitter, the emitter body of which is made up of individual strips, 6 to 12 each show the top view and / or cross sections through differently designed and arranged strips,
  • FIG. 13 shows a further embodiment from the rear of the radiator housing, the hood of the radiator being shown partially open,
  • FIG. 14 shows a section through the Spotlight housing of the embodiment according to FIG. 8,
  • FIG. 15 shows a single radiating element of the radiating body
  • FIG. 16 shows in cross section the basic structure of a radiator housing.
  • the infrared radiators according to the invention are preferably heated with gas, alternatively heating with a liquid fuel as the heating fluid is possible.
  • each radiator contains a mixing tube 1, into which a mixing nozzle 2 is screwed at one end.
  • a gas supply line 3 is connected to the mixing nozzle 2 and is connected to a manifold 4 from which a plurality of radiators arranged next to one another are supplied with gas 5.
  • the supply of air 6 takes place via a hollow cross member 7, to which the mixing tube 1 is attached.
  • the connecting line 8 for the air supply opens into the upper part of the mixing tube 1 in a downwardly open air chamber 9 comprising the outlet end of the mixing nozzle 2, so that a gas-air mixture is introduced into the mixing space 10 of the mixing tube 1 from above.
  • a housing 11 is fastened, in which a burner plate 12 made of ceramic is arranged as a barrier.
  • the burner plate 12 contains a series of through bores 13 which open into a combustion chamber 14 which is formed between the burner plate 12 and a radiant body 15 which is arranged essentially parallel to it and at a distance. Flames form in the combustion chamber 14, which heat the radiant body 15 from the rear, so that it emits infrared radiation.
  • the mixing tube 1 opens into a distribution chamber 17 sealed by a hood 16, which is closed at the other end by the burner plate 12. So that the gas-air mixture is evenly distributed on the back of the burner plate 12, a baffle plate 18 is arranged in the distribution chamber 17, against which the supplied mixture flows.
  • the burner plate 12 is fitted in the housing 11 in circumferential, fire-proof seals 19.
  • the radiator 15 hangs in one circumferential refractory frame 20 which is attached to the housing 11 and together with the seals 19 seals the combustion chamber 14 laterally gas-tight.
  • the radiant body 15 is made of a highly heat-resistant material which contains more than 50% by weight of a metal silicide as the main component.
  • Molybdenum disilicide (MoSi 2 ) or tungsten disilicide (WSi 2 ) are preferably used as metal silicides.
  • Silicon oxide (SiO 2 ), zirconium oxide (ZrO 2 ) or silicon carbide (SiC) or mixtures of these compounds are preferably contained as a further constituent. These materials are extremely temperature-resistant and stable, so that the heater - if necessary - can be operated with flame temperatures of more than 1700 ° C up to 1850 ° C.
  • the material has the further advantage that scaling does not occur.
  • a flame temperature slightly below the maximum possible temperature of the radiator body 15 for example between 1100 ° C and 1400 ° C, whereby the formation of thermal NO x is kept within an acceptable range.
  • the jet body 15 consists of a block which contains a multiplicity of continuous channels 21.
  • the channels 21 are heated on the rear side of the jet body 15 which delimits the combustion chamber 14.
  • the channels 21 are either tubular or slit-shaped.
  • the cross section of the tubular channels is preferably either circular or in the form of a regular polygon.
  • the channels 21 are arranged next to one another in a honeycomb shape.
  • the channels 21 can also be slit-shaped.
  • the jet body 15 is preferably constructed from a row of plates arranged at a distance from one another, the spaces between which form the slot-shaped channels.
  • FIGS. 3 and 4 show an embodiment in which the radiant body 15 is constructed from a plurality of tubes 22 or rods arranged at a distance from one another.
  • the tubes 22 or rods extend parallel to the burner plate 14 and are each fastened with their ends in the frame 20.
  • the outside of the tubes 22 form the radiating front surface, a gap-shaped is formed between each tube 22 Opening 23 through which hot combustion gases and infrared radiation can escape.
  • FIG. 5 A particularly advantageous embodiment of a radiator is shown in FIG. 5.
  • the jet body 15 is constructed from a plurality of strips 24 which are arranged at a distance from one another and, like the tubes 22 in FIG. 4, are arranged parallel to the barrier and are mounted at their ends in the frame of the housing 11.
  • the strips are constructed and arranged in such a way that parts of them form baffles for the flames.
  • the strips 24 have a U-shaped or H-shaped cross section, the open sides between the two legs 25 being directed outwards (downwards in FIG. 5).
  • the crossbars 26 between the legs 25 delimit the combustion chamber 14 and form the baffles for the flames.
  • the impact surface when used with the structure of the barrier described below, results in maximum convective heat transfer from the flames to the radiant body 15.
  • the transverse webs 26 of the strips 24 preferably have indentations 27 which face the flames, as shown in FIG.
  • the indentations 27 act as enlarged baffles that catch the flames.
  • Slot-shaped openings 23 are arranged between each two strips 24, which enable the combustion exhaust gases to be removed.
  • Each strip 24 is made of the high-temperature material described above, which contains more than 50% by weight MoSi 2 or WSi 2 as the main component.
  • FIGS. 8 to 12 preferred embodiments are shown in cross section, in which the radiant body is constructed from at least two layers of strips 24 lying one above the other. In operation, the strips 24 of the two layers assume different radiation temperatures, as a result of which the efficiency is significantly increased. In FIGS. 8 to 12, the flames are directed from top to bottom, as in FIGS. 1 to 5.
  • the strips 24 are each designed as an angle profile with two legs.
  • the two legs form an angle between 30 ° and 150 ° to each other, preferably about 90 °.
  • the strips 24 of the two layers are offset from one another so that the combustion exhaust gases pass through the two Layers can also be redirected. The redirection results in a significantly improved heat transfer to the two layers.
  • the angle profile strips of the two layers are aligned in the flame direction and offset from one another, in the embodiment according to FIG. In both embodiments, the flames strike the angle of the ledges 24 of the upper layer.
  • the strips are also opposite and offset from one another, the flames hitting the angled side of the strips of the lower layer.
  • FIG. 11 shows an embodiment in which the radiant body 15 is constructed from strips 24, which are each designed in the form of a half-shell.
  • the half-shell-shaped strips 24 are aligned in opposite directions in the two layers and offset from one another, so that the combustion exhaust gases are also largely deflected in this embodiment.
  • the strips 24 have a U-shaped cross section, as in the embodiment according to FIG. They are also arranged in two layers, the strips 24 of the lower layer being arranged opposite each other and offset from the strips 24 of the upper layer.
  • the strips 24 of the lower layer thus cover the space between two strips 24 of the upper layer and thus force the combustion exhaust gases emerging through the spaces to change direction by 180 °.
  • FIG. 5 shows a particularly advantageous embodiment of the barrier, which can also be used instead of the burner plate 12 made of ceramic in conjunction with the jet bodies 15 shown in other figures.
  • the barrier consists of a nozzle plate 28 made of a heat-resistant metal, into which a number of tubular nozzles 29 are inserted, which are also made of metal.
  • the gas-air mixture passes through the nozzles 29 from the distribution chamber 17 into the combustion chamber 14.
  • the nozzles 29 are arranged such that the outlet opening of each nozzle 29 is directed against baffles formed by parts of the jet body 15.
  • the outlet openings of the nozzles 29 are each directed approximately centrally against the transverse web 26 of a strip 24 of the jet body 15.
  • FIG. 5 shows a particularly advantageous embodiment of the barrier, which can also be used instead of the burner plate 12 made of ceramic in conjunction with the jet bodies 15 shown in other figures.
  • the barrier consists of a nozzle plate 28 made of a heat-resistant metal, into which a number of tubular nozzles 29 are inserted
  • each nozzle 29 is directed against an indentation 27 in the crosspiece 26.
  • the nozzles 29 are in a gas-permeable non-woven fabric 30 made of a heat-resistant material embedded.
  • the nonwoven fabric 30 formed by high-temperature-resistant ceramic fibers acts as an insulating layer for the nozzle plate 28 and thus prevents it from being damaged by the high temperatures in the combustion chamber 14.
  • the diameter of a nozzle 29 is 1.5 mm - 4 mm.
  • the nozzle plate 28 contains comparatively few passage openings for the gas-air mixture. There are approximately 1500 - 2500 openings (nozzles 29) per m 2 of the area of the nozzle plate 28.
  • FIGS. 13 to 16 show a further embodiment of an infrared radiator according to the invention, in which the radiating body is constructed from a multiplicity of radiating elements 31 arranged next to one another.
  • FIG. 13 shows a view of the rear of the radiator housing 11, the hood 16 and the burner plate 12 being partially not shown in order to allow a view of the radiant body from the inside.
  • the radiator housing 11 is closed off on its front side emitting the infrared radiation by a metal grid 32 made of a heat-resistant metal, into which a multiplicity of radiating elements 31 are suspended.
  • Each blasting element 31 is made of the highly heat-resistant material described above, which contains more than 50% by weight MoSi 2 as the main component. It consists of an approximately square disc 33 with side hooks 34 with which it can be hung in the grid 32.
  • the beam elements 21 are suspended in the grid 32 in such a way that the disks 33 form an incidence surface for the flames parallel to the burner plate 12, which is only interrupted by passage openings between the individual disks 33.
  • the inner region of each disk 33 is preferably curved slightly outwards so that the incidence area of the flames is enlarged.
  • the infrared emitters according to the invention are particularly suitable for drying sheet-like materials at high web speeds.
  • a preferred area of application is the drying of running cardboard or paper webs in paper factories, for example behind coating devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

Es sind als Flächenstrahler ausgebildete Infrarot-Strahler mit einem Strahlkörper (15) bekannt, der an seiner Rückseite von einem brennenden Fluid-Luftgemisch beheizt wird und dessen Vorderfläche die Infrarotstrahlung abgibt. Nach der Erfindung ist der Strahlkörper (15) aus einem hochhitzebeständigen Material hergestellt, das mehr als 50 Gewichtsprozent eines Metallsilicids, vozugsweise Molybdändisilicid (MoSi2) oder Wolframdisilicid (WSi2), enthält.

Description

Beschreibung
Als Flächenstrahler ausgebildeter Infrarot-Strahler
Die Erfindung betrifft einen als Flächenstrahler ausgebildeten Infrarot-Strahler mit einem Strahlkörper, der an seiner Rückseite von einem brennenden Fluid-Luftgemisch beheizt wird und dessen Vorderfläche die Infrarotstrahlung abgibt.
Als Flächenstrahler ausgebildete Infrarot-Strahler werden bekannterweise in Trocknersystemen eingesetzt, die zum Trocknen bahnförmiger Materialien, beispielsweise Papier- oder Kartonbahnen, dienen. In Abhängigkeit der Breite der zu trocknenden Bahn und der gewünschten Heizleistung wird die erforderliche Anzahl von Strahlern mit fluchtenden Abstrahlflächen zu einer Trocknungseinheit zusammengestellt.
Der prinzipielle Aufbau eines einzelnen, gattungsgemäßen Infrarot-Strahlers ist in Figur 16 dargestellt und beispielsweise in der DE 199 01 145-A1 beschrieben.
Das für den Betrieb des Strahlers notwendige Brennstoff/Luft-Gemisch wird dem Strahler durch eine Öffnung (a) im Gehäuse (b) zugeführt und gelangt zunächst in eine Verteilkammer (c) in der das Gemisch gleichmäßig über die Strahlerfiäche - senkrecht zur hier gezeigten Ansicht - verteilt wird. Anschließend treten die Gase durch eine durchlässig gestaltete Barriere (d). Hauptaufgabe der Barriere (d) ist es, den Feuerraum (e), in dem das Gas verbrannt wird, von der Verteilkammer (c), in der sich das unverbrannte Gasgemisch befindet, so zu trennen, daß kein Flammenrückschlag von dem Feuerraum (e) nach der Verteilkammer (c) erfolgen kann. Daneben ist die Barriere (d) sinnvoller Weise so auszuführen, daß eine möglichst gute Wärmeübertragung der heißen Verbrennungsabgase an die die Strahlung abgebenden festen Körper, also die Oberfläche der Barriere (d) selbst, ggf. die Wände des Feuerraumes (e) und den eigentlichen Strahlkörper (f) vorbereitet wird. Die geometrische / konstruktive Ausgestaltung von Feuerraum (e) und Strahlkörper (f) erfolgt ebenfalls unter den Gesichtspunkten
optimierter Wärmeübertragung, maximierter Wärmeabstrahlung minimaler Wärmeverluste zur Seite und in Richtung Verteilkammer unter Berücksichtigung von auftretenden Wärmedehnungen und anwendungsspezifischen Besonderheiten, wie z.B. mögliche Verschmutzungen, auftretende Thermoschocks u.a..
Der Erfindung liegt die Aufgabe zugrunde, die Lebensdauer einer solchen Konstruktion durch Einsatz eines besonders geeigneten Werkstoffes für den Strahlkörper zu maximieren, da dieser in der Regel das Verschleißteil der Konstruktion darstellt.
Diese Aufgabe wird nach der Erfindung dadurch gelöst, daß der Strahlkörper aus einem hochhitzebeständigen Material hergestellt ist, das mehr als 50 Gewichts-Prozent eines Metallsilicids, vorzugsweise Molybdändisilicid (MoSi2) oder Wolframdisilicid (WSi2), enthält.
Ein Infrarot-Strahler nach der Erfindung läßt sich für eine sehr hohe spezifische Heizleistung mit Flammentemperaturen von mehr als 1200 °C, nötigenfalls sogar mehr als 1700 °C betreiben. Der Strahlkörper weist dabei einen hohen Emissionsfaktor und eine lange Standzeit auf. Als weiterer Vorteil tritt hinzu, daß sich das Material zur Optimierung des Abstrahlverhaltens und des konvektiven Wärmeübergangs in verschiedene Formen bringen läßt.
Die Unteransprüche enthalten bevorzugte, da besonders vorteilhafte Ausgestaltungen eines erfindungsgemäßen Infrarot-Strahlers.
Die Zeichnung dient zur Erläuterung der Erfindung anhand vereinfacht dargestellter Ausführungsbeispiele. Es zeigen
Figur 1 in einem Querschnitt den Aufbau eines Infrarot-Strahlers nach der Erfindung, Figur 2 eine Draufsicht auf die strahlende Vorderseite des Strahlkörpers nach Figur 1 , Figur 3 eine Draufsicht auf einen Strahlkörper, der aus einzelnen Röhren aufgebaut ist, Figur 4 ausschnittsweise einen Schnitt durch den Strahler mit dem Strahlkörper nach Figur 3,
Figur 5 zeigt einen Schnitt durch das Gehäuse eines Strahlers, dessen Strahlkörper aus einzelnen Leisten aufgebaut ist, Figur 6 bis Figur 12 zeigen jeweils die Draufsicht und/oder Querschnitte durch verschieden gestaltete und angeordnete Leisten, Figur 13 zeigt eine weitere Ausführungsform von der Rückseite des Strahlergehäuses her, wobei die Haube des Strahlers teilweise geöffnet gezeichnet ist, Figur 14 zeigt einen Schnitt durch das Strahlergehäuse der Ausführungsform nach Figur 8,
Figur 15 zeigt ein einzelnes Strahlelement des Strahlkörpers, Figur 16 zeigt im Querschnitt den prinzipiellen Aufbau eines Strahlergehäuses.
Die Infrarot-Strahler nach der Erfindung werden bevorzugt mit Gas beheizt, alternativ ist die Beheizung mit einem flüssigen Brennstoff als Heizfluid möglich.
Wie in Figur 1 dargestellt, enthält jeder Strahler ein Mischrohr 1 , in das an einem Ende eine Mischdüse 2 eingeschraubt ist. An die Mischdüse 2 ist eine Gaszuführleitung 3 angeschlossen, die mit einer Sammelleitung 4 verbunden ist, aus der mehrere nebeneinander angeordnete Strahler mit Gas 5 versorgt werden. Die Versorgung mit Luft 6 erfolgt über eine Hohltraverse 7, an der das Mischrohr 1 befestigt ist. Die Verbindungsleitung 8 für die Luftzufuhr mündet im oberen Teil des Mischrohrs 1 in eine das Auslaßende der Mischdüse 2 umfassende, nach unten offene Luftkammer 9, so daß in den Mischraum 10 des Mischrohrs 1 von oben ein Gas-Luftgemisch eingeleitet wird.
Am unteren, offenen Ende des Mischrohrs 1 ist ein Gehäuse 11 befestigt, in dem als Barriere eine Brennerplatte 12 aus Keramik angeordnet ist. Die Brennerplatte 12 enthält eine Reihe von durchgehenden Bohrungen 13, die in einen Feuerraum 14 münden, der zwischen der Brennerplatte 12 und einem im wesentlichen parallel zu dieser mit Abstand angeordneten Strahlkörper 15 gebildet wird. In dem Feuerraum 14 bilden sich Flammen, die den Strahlkörper 15 von der Rückseite her beheizen, so daß dieser Infrarot-Strahlung abgibt.
Für die Zufuhr des Gas-Luftgemisches mündet das Mischrohr 1 in eine von einer Haube 16 abgedichteten Verteilkammer 17, die an dem anderen Ende von der Brennerplatte 12 abgeschlossen wird. Damit das Gas-Luftgemisch gleichmäßig an der Rückseite der Brennerplatte 12 verteilt wird, ist in der Verteilkammer 17 eine Prallplatte 18 angeordnet, gegen die das zugeführte Gemisch strömt. Die Brennerplatte 12 ist in dem Gehäuse 11 in umlaufende, feuerfeste Dichtungen 19 eingepaßt. Der Strahlkörper 15 hängt in einem umlaufenden feuerfesten Rahmen 20, der an dem Gehäuse 11 befestigt ist und gemeinsam mit den Dichtungen 19 den Feuerraum 14 seitlich gasdicht abschließt.
Der Strahlkörper 15 ist aus einem hochhitzebeständigen Material gefertigt, das als Hauptbestandteil mehr als 50 Gewichts-Prozent eines Metallsilicids enthält. Als Metallsilicide werden bevorzugt Molybdändisilicid (MoSi2) oder Wolframdisilicid (WSi2) verwendet. Als weiterer Bestandteil sind bevorzugt Siliciumoxid (SiO2), Zirkoniumoxid (ZrO2) oder Siliciumcarbid (SiC) oder Mischungen aus diesen Verbindungen enthalten. Diese Materialien sind extrem temperaturbeständig und standfest, so daß der Strahler - falls erforderlich - mit Flammentemperaturen von mehr als 1700°C bis zu 1850°C betrieben werden kann. Gegenüber einer ebenfalls hochtemperaturbeständigen Legierung, die ausschließlich aus Metallen besteht (beispielsweise einer metallischen Heizleiterlegierung), hat das Material den weiteren Vorteil, daß keine Verzunderung auftritt. Um eine extrem lange Standzeit des Strahlers zu erhalten, kann dieser mit einer Flammentemperatur etwas unterhalb der maximal möglichen Temperatur des Strahlkörpers 15 betrieben werden; beispielsweise zwischen 1100°C und 1400°C, wodurch die Bildung von thermischem NOx in einem verträglichen Rahmen gehalten wird.
Bei der Ausführungsform nach den Figuren 1 und 2 besteht der Strahlkörper 15 aus einem Block, der eine Vielzahl von durchgehenden Kanälen 21 enthält. Die Kanäle 21 werden an der den Feuerraum 14 begrenzenden Rückseite des Strahlkörpers 15 beheizt. Die Kanäle 21 sind entweder röhrenförmig oder schlitzförmig gestaltet. Der Querschnitt der röhrenförmig gestalteten Kanäle ist bevorzugt entweder kreisförmig oder in Form eines regelmäßigen Polygons ausgebildet. Bei der Ausführungsform nach Figur 2 sind die Kanäle 21 wabenförmig nebeneinander angeordnet. Alternativ können die Kanäle 21 auch schlitzförmig ausgebildet sein. Bevorzugt wird dazu der Strahlkörper 15 aus einer Reihe mit Abstand voneinander angeordneten Platten aufgebaut, deren Zwischenräume die schlitzförmigen Kanäle bilden.
In den Figuren 3 und 4 ist eine Ausführungsform dargestellt, bei der der Strahlkörper 15 aus mehreren, mit Abstand voneinander angeordneten Röhren 22 oder Stäben aufgebaut ist. Die Röhren 22 oder Stäbe erstrecken sich parallel zu der Brennerplatte 14 und sind mit ihren Enden jeweils in dem Rahmen 20 befestigt. Die Außenseite der Röhren 22 bilden die strahlende Vorderfläche, jeweils zwischen zwei Röhren 22 bildet sich eine spaltförmige Öffnung 23, durch die heiße Verbrennungsabgase und auch Infrarotstrahlung austreten können.
Eine besonders vorteilhafte Ausführungsform eines Strahlers ist in Figur 5 dargestellt. Bei dieser Ausführungsform ist der Strahlkörper 15 aus mehreren, mit Abstand voneinander angeordneten Leisten 24 aufgebaut, die wie die Röhren 22 in Figur 4 parallel zur Barriere angeordnet und an ihren Enden in dem Rahmen des Gehäuses 11 gelagert sind. Bei allen nachfolgend beschriebenen Ausführungsformen sind die Leisten so aufgebaut und angeordnet, daß Teile von ihnen Prallflächen für die Flammen bilden.
Bei dem in den Figuren 6 und 7 dargestellten Ausführungsbeispiel weisen die Leisten 24 einen U-oder H-förmigen Querschnitt auf, wobei die offene Seiten zwischen den beiden Schenkeln 25 nach außen (in Figur 5 nach unten) gerichtet ist. Die Querstege 26 zwischen den Schenkeln 25 begrenzen den Feuerraum 14 und bilden die Prallflächen für die Flammen. Die Prallfläche bewirkt in Verwendung mit dem nachfolgend beschriebenen Aufbau der Barriere einen maximalen konvektiven Wärmeübergang von den Flammen auf den Strahlkörper 15. Dazu weisen die Querstege 26 der Leisten 24 bevorzugt den Flammen entgegengerichtete Einbuchtungen 27 auf, wie in Figur 7 dargestellt ist. Die Einbuchtungen 27 wirken als vergrößerte, die Flammen auffangende Prallflächen. Zwischen jeweils zwei Leisten 24 sind schlitzförmige Öffnungen 23 angeordnet, die eine Abfuhr der Verbrennungsabgase ermöglichen. Jede Leiste 24 ist aus dem vorstehend beschriebenen hochhitzebeständigen Material gefertigt, das als Hauptbestandteil mehr als 50 Gewichtsprozent MoSi2oder WSi2 enthält.
In den Figuren 8 bis 12 sind im Querschnitt bevorzugte Ausführungsformen dargestellt, bei denen der Strahlkörper aus zumindest zwei übereinander liegenden Schichten von Leisten 24 aufgebaut ist. Im Betrieb nehmen die Leisten 24 der beiden Schichten unterschiedliche Abstrahltemperaturen an, wodurch der Wirkungsgrad deutlich erhöht wird. In den Figuren 8 bis 12 sind die Flammen - ebenso wie in den Figuren 1 bis 5 - von oben nach unten gerichtet.
Bei den Strahlkörpern nach den Figuren 8 bis 10 sind die Leisten 24 jeweils als Winkelprofile mit zwei Schenkeln gestaltet. Die beiden Schenkel bilden einen Winkel zwischen 30° und 150° zueinander, bevorzugt etwa 90°. Die Leisten 24 der beiden Schichten sind versetzt zueinander angeordnet, so daß die Verbrennungsabgase beim Durchgang durch die beiden Schichten zusätzlich umgelenkt werden. Die Um-Ienkung bewirkt einen erheblich verbesserten Wärmeübergang an die beiden Schichten. Bei der Ausführungsform nach Figur 8 sind die Winkelprofilleisten der beiden Schichten in Flammenrichtung gleichgerichtet und versetzt zueinander angeordnet, bei der Ausführungsform nach Figur 9 entgegengesetzt zueinander ausgerichtet. Bei beiden Ausführungsformen prallen die Flammen in den Winkel der Leisten 24 der oberen Schicht. Bei der Anordnung nach Figur 10 sind die Leisten ebenfalls entgegengesetzt und versetzt zueinander angeordnet, wobei die Flammen auf die abgewinkelte Seite der Leisten der unteren Schicht prallen.
In Figur 11 ist eine Ausführungsform dargestellt, bei der der Strahlkörper 15 aus Leisten 24 aufgebaut ist, die jeweils in Form einer Halbschale gestaltet sind. Die halbschalenförmigen Leisten 24 sind in den beiden Schichten jeweils entgegengesetzt ausgerichtet und versetzt zueinander angeordnet, so daß auch bei dieser Ausführungsform die Verbrennungsabgase sehr weitgehend umgelenkt werden.
In Figur 12 weisen die Leisten 24 wie bei der Ausführungsform nach Figur 5 einen U-förmigen Querschnitt auf. Sie sind ebenfalls in zwei Schichten angeordnet, wobei die Leisten 24 der unteren Schicht jeweils entgegengesetzt und versetzt zu den Leisten 24 der oberen Schicht angeordnet sind. Die Leisten 24 der unteren Schicht decken so den Zwischenraum zwischen zwei Leisten 24 der oberen Schicht ab und zwingen so die durch die Zwischenräume austretenden Verbrennungsabgase zu einer Richtungsänderung um 180°.
In Figur 5 ist eine besonders vorteilhafte Ausführungsform der Barriere dargestellt, die auch in Verbindung mit den in anderen Figuren dargestellten Strahlkörpern 15 anstelle der Brennerplatte 12 aus Keramik eingesetzt werden kann. Die Barriere besteht aus einer Düsenplatte 28 aus einem hitzebeständigen Metall, in die eine Reihe von rohrförmigen Düsen 29 eingesetzt sind, die ebenfalls aus Metall gefertigt sind. Durch die Düsen 29 tritt das Gas- Luft-Gemisch aus der Verteilkammer 17 in den Feuerraum 14. Die Düsen 29 sind dabei so angeordnet, daß die Austrittsöffnung jeder Düse 29 gegen von Teilen des Strahlkörpers 15 gebildete Prallflächen gerichtet ist. Im Ausführungsbeispiel nach Figur 5 sind die Austrittsöffnungen der Düsen 29 jeweils in etwa mittig gegen den Quersteg 26 einer Leiste 24 des Strahlkörpers 15 gerichtet. Bei der Ausführungsform nach Figur 7 ist jede Düse 29 gegen eine Einbuchtung 27 im Quersteg 26 gerichtet. Auf der Seite des Feuerraums 14 sind die Düsen 29 in einem gasdurchlässigen Faservlies 30 aus einem hitzbeständigen Material eingebettet. Das von hochtemperaturbeständigen Keramikfasern gebildete Faservlies 30 wirkt als Isolierschicht für die Düsenplatte 28 und verhindet so, daß diese durch die hohen Temperaturen im Feuerraum 14 beschädigt wird. Der Durchmesser einer Düse 29 beträgt 1 ,5 mm - 4 mm. Gegenüber der in Figur 1 dargestellten Brennerplatte 12 aus Keramik enthält die Düsenplatte 28 vergleichsweise wenige Durchtrittsöffnungen für das Gas-Luft-Gemisch. Es sind etwa 1500 - 2500 Öffnungen (Düsen 29) pro m2 der Fläche der Düsenplatte 28 vorhanden.
In den Figuren 13 bis 16 ist eine weitere Ausführungsform eines erfindungsgemäßen Infrarot- Strahlers dargestellt, bei dem der Strahlkörper aus einer Vielzahl von nebeneinander angeordneten Strahlelementen 31 aufgebaut ist. In Figur 13 ist eine Ansicht auf die Rückseite des Strahlergehäuses 11 dargestellt, wobei die Haube 16 und die Brennerplatte 12 teilweise nicht eingezeichnet sind, um einen Blick von innen auf den Strahlkörper zu ermöglichen.
Bei dieser Ausführungsform ist das Strahlergehäuse 11 an seiner die Infrarotstrahlung abgebenden Vorderseite von einem Metallgitter 32 aus einem hitzebeständigen Metall abgeschlossen, in das eine Vielzahl von Strahlelementen 31 eingehängt sind.
Jedes Strahlelement 31 ist aus dem vorstehend beschriebenen hochhitzebeständigen Material gefertigt, das als Hauptbestandteil mehr als 50 Gewichtsprozent MoSi2 enthält. Es besteht aus einer in etwa quadratischen Scheibe 33 mit seitlichen Haken 34, mit denen es in dem Gitter 32 eingehängt werden kann. Die Strahlelemente 21 sind so in das Gitter 32 eingehängt, daß die Scheiben 33 eine zur Brennerplatte 12 parallele Auftrefffläche für die Flammen bilden, die nur von Durchtrittsöffnungen zwischen den einzelnen Scheiben 33 unterbrochen ist. Bevorzugt ist der innere Bereich jeder Scheibe 33 etwas nach außen gewölbt, damit die Auftrefffläche der Flammen vergrößert wird.
Aufgrund ihrer Einsatzmöglichkeit bei sehr hohen Temperaturen von mehr als 1100°C, ihrer hohen spezifischen Leistungdichte und ihrer langen Standzeit sind die erfindungsgemäßen Infrarot-Strahler besonders zum Trocknen von bahnförmigen Materialien bei hohen Bahngeschwindigkeiten geeignet. Ein bevorzugtes Anwendungsgebiet ist die Trocknung von laufenden Karton- oder Papierbahnen in Papierfabriken, beispielsweise hinter Beschichtungsvorrichtungen.

Claims

P A T E N T A N S P R Ü C H E
1.
Als Flächenstrahler ausgebildeter Infrarot-Strahler mit einem Strahlkörper (15), der an seiner Rückseite von einem brennenden Fluid-Luftgemisch beheizt wird und dessen Vorderfläche die Infrarotstrahlung abgibt, dadurch gekennzeichnet, daß der Strahlkörper (15) aus einem hochhitzebeständigen Material hergestellt ist, das mehr als 50 Gewichtsprozent eines Metallsilicids enthält.
2.
Infrarot-Strahler nach Anspruch 1 , dadurch gekennzeichnet, daß das Material mehr als 50
Gewichts-Prozent Molybdändisilicid (MoSi2) enthält.
3.
Infrarot-Strahler nach Anspruch 1 , dadurch gekennzeichnet, daß das Material mehr als 50
Gewichts-Prozent Wolframdisilicid (WSi2) enthält.
4.
Infrarot-Strahler nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das
Material des Strahlkörpers (15) als weiterer Bestandteil Siliziumoxid (SiO2) enthält.
5.
Infrarot-Strahler nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das
Material des Strahlkörpers (15) als weiteren Bestandteil Zirkoniumoxid (ZrO2) enthält.
6.
Infrarot-Strahler nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das
Material des Strahlkörpers (15) als weiteren Bestandteil Siliciumcarbid (SiC) enthält.
7.
Infrarot-Strahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Strahlkörper (15) aus einem Block besteht, der eine Vielzahl von durchgehenden Kanälen (21) enthält.
8.
Infrarot-Strahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der
Strahlkörper (15) aus einer Reihe mit Abstand voneinander angeordneten Platten aufgebaut ist.
9.
Infrarot-Strahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Strahlkörper (15) aus mehreren mit Abstand voneinander angeordneten Röhren (22) oder Stäben aufgebaut ist, die mit ihren Enden jeweils in einem Rahmen (20) am Strahlergehäuse (11) befestigt sind.
10.
Infrarot-Strahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Strahlkörper (15) aus mehreren mit Abstand voneinander angeordneten Leisten (24) aufgebaut ist, die Prallflächen für die Flammen aufweisen.
11.
Infrarot-Strahler nach Anspruch 10, dadurch gekennzeichnet, daß die Leisten (24) jeweils einen U- oder H-förmigen Querschnitt mit einem die Prallfläche bildenden Quersteg (26) und nach außen gerichteten Schenkeln (25) aufweisen.
12.
Infrarot-Strahler nach einem der Ansprüche 10 oder 11 , dadurch gekennzeichnet, daß die
Querstege (26) der Leisten (24) den Flammen entgegengerichtete Einbuchtungen (27) aufweisen.
13.
Infrarot-Strahler nach Anspruch 10, dadurch gekennzeichnet, daß der Strahlkörper (15) aus Winkelprofilleisten (24) mit jeweils zwei Schenkeln aufgebaut ist.
14.
Infrarot-Strahler nach Anspruch 13, dadurch gekennzeichnet, daß die beiden Schenkel einer Leiste (24) einen Winkel zwischen 30° und 150° aufweisen.
15.
Infrarot-Strahler nach Anspruch 10, dadurch gekennzeichnet, daß die Leisten (24) in Form einer Halbschale gestaltet sind.
16.
Infrarot-Strahler nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß der Strahlkörper (15) aus zumindest zwei übereinander liegenden Schichten von Leisten (24) aufgebaut ist, wobei die Leisten einer Schicht versetzt zu den Leisten der anderen Schicht angeordnet sind.
17.
Infrarot-Strahler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sich der Strahlkörper (15) aus einzelnen Strahlelementen (31 ) aufbaut, die in einem am Gehäuse (11) befestigten Gitter (32) aufgehängt sind.
18.
Infrarot-Strahler nach Anspruch 17, dadurch gekennzeichnet, daß die Strahlelemente teilweise die Form einer Scheibe (33) aufweisen und so in dem Gitter (25) aufgehängt sind, daß sie eine bis auf Durchtrittsöffnungen geschlossene Auftrefffläche für die Flammen bilden.
19.
Infrarot-Strahler nach einem der Ansprüche 1 bis 18 mit einer gasdurchlässigen, den Feuerraum (14) begrenzenden Barriere, dadurch gekennzeichnet, daß die Barriere aus einer Düsenplatte (28) besteht, in die eine Reihe von rohrförmigen Düsen (29) eingesetzt sind, die auf der Feuerraumseite in einem gasdurchlässigen, von Keramikfasern gebildeten Faservlies (30) eingebettet ist.
20.
Infrarot-Strahler nach Anspruch 19, dadurch gekennzeichnet, daß die Düsenplatte (28) und die Düsen (29) aus einem hitzebeständigen Metall gefertigt sind.
21.
Infrarot-Strahler nach Anspruch 19 oder 20, dadurch gekennzeichnet, daß die Austrittsöffnungen jeder Düse (29) gegen von Teilen des Strahlkörpers (15) gebildete Prallflächen gerichtet ist.
PCT/DE2003/000387 2002-02-12 2003-02-11 Als flächenstrahler ausgebildeter infrarot-strahler WO2003069224A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002475915A CA2475915A1 (en) 2002-02-12 2003-02-11 Infra-red emitter embodied as a planar emitter
AT03709604T ATE485481T1 (de) 2002-02-12 2003-02-11 Als flächenstrahler ausgebildeter infrarot- strahler
DE50313204T DE50313204D1 (de) 2002-02-12 2003-02-11 Als flächenstrahler ausgebildeter infrarot-strahler
EP03709604A EP1476697B1 (de) 2002-02-12 2003-02-11 Als flächenstrahler ausgebildeter infrarot-strahler
US10/917,185 US7038227B2 (en) 2002-02-12 2004-08-11 Infrared emitter embodied as a planar emitter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10205922.5 2002-02-12
DE10205922 2002-02-12
DE10222450A DE10222450A1 (de) 2002-02-12 2002-05-22 Als Flächenstrahler ausgebildeter Infrarot-Strahler
DE10222450.1 2002-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/917,185 Continuation US7038227B2 (en) 2002-02-12 2004-08-11 Infrared emitter embodied as a planar emitter

Publications (1)

Publication Number Publication Date
WO2003069224A1 true WO2003069224A1 (de) 2003-08-21

Family

ID=27735669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000387 WO2003069224A1 (de) 2002-02-12 2003-02-11 Als flächenstrahler ausgebildeter infrarot-strahler

Country Status (4)

Country Link
US (1) US7038227B2 (de)
EP (1) EP1476697B1 (de)
CA (1) CA2475915A1 (de)
WO (1) WO2003069224A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117434A1 (fr) * 2020-12-03 2022-06-09 Solaronics Emetteur de rayonnement infra-rouge

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448428B2 (en) * 2005-10-14 2008-11-11 Pcc Airfoils, Inc. Method of casting
KR100778716B1 (ko) * 2006-07-07 2007-11-22 주식회사 경동나비엔 가스버너의 염공부 구조
WO2009076306A2 (en) * 2007-12-07 2009-06-18 The General Hospital Corporation System and apparatus for dermatological treatment
WO2011057897A1 (en) * 2009-11-13 2011-05-19 Nv Bekaert Sa Multiscreen radiant burner
IT1400045B1 (it) * 2010-05-25 2013-05-17 Rude Srl Dispositivo per un riscaldamento ambientale a raggi infrarossi.
EP2870409B1 (de) * 2012-07-03 2020-03-25 Dreizler, Ulrich Brenner mit einer oberflächenverbrennung
US9676246B2 (en) * 2014-01-13 2017-06-13 GM Global Technology Operations LLC Systems for improving climate comfort for rear vehicle passengers
US20170074509A1 (en) * 2015-09-11 2017-03-16 Green Air Burner Systems, LLC Hydrocarbon Burner
EP3598000B1 (de) * 2018-07-20 2021-04-28 Solaronics Gasbefeuerter strahlungsemitter mit einem strahlungsschirm
GB2599898A (en) * 2020-10-07 2022-04-20 Edwards Ltd Burner Liner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3734274A1 (de) * 1986-10-09 1988-04-21 Nippon Denso Co Elektrisch isolierender, keramischer, gesinterter koerper
EP0874534A2 (de) * 1997-04-23 1998-10-28 NGK Spark Plug Co. Ltd. Keramisches Heizelement und Verfahren zur Herstellung dafür, und Glühkerze mit diesem keramisches Heizelement
US5989013A (en) * 1997-01-28 1999-11-23 Alliedsignal Composites Inc. Reverberatory screen for a radiant burner
DE19901145A1 (de) * 1999-01-14 2000-07-20 Krieger Gmbh & Co Kg Als Flächenstrahler ausgebildeter Infrarot-Strahler
WO2003006880A1 (fr) * 2001-07-10 2003-01-23 Sun Frontier Technology Co., Ltd Procede et element bruleur permettant de bruler du gaz par un systeme de combustion gazeuse

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE464692C (de) 1928-08-23 Wilhelm Ruppmann Fa Brenner mit hintereinanderliegenden Lochplatten
DE1218375B (de) 1959-02-04 1966-06-08 Stettner & Co Fabrik Elektroke Brenner fuer gasfoermige oder fluessige Brennstoffe
DE1233764B (de) 1961-10-11 1967-02-02 Samuel Ruben Verfahren zur Herstellung von hochschmelzenden, elektrisch leitenden Sinterkoerpern
DE1629952C3 (de) 1967-07-03 1974-02-28 Kurt 4000 Duesseldorf Krieger Strahlungsbrenner
FR1595547A (de) 1968-03-11 1970-06-15
DE1905148C3 (de) 1969-02-03 1976-01-02 Kurt 4000 Duesseldorf Krieger Strahlungsbrenner
GB8526068D0 (en) 1985-10-22 1985-11-27 Thorn Emi Appliances Cooking apparatus
US4876586A (en) * 1987-12-21 1989-10-24 Sangamo-Weston, Incorporated Grooved Schottky barrier photodiode for infrared sensing
FR2683022B1 (fr) 1991-10-25 1997-07-18 Gaz De France Bruleur radiant a ecran ceramique.
JPH10104067A (ja) 1996-09-27 1998-04-24 Fuji Electric Co Ltd 二珪化モリブデン複合セラミックス赤外線光源もしくは発熱源
JP3657800B2 (ja) 1998-02-20 2005-06-08 株式会社リケン 二珪化モリブデン系複合セラミックス発熱体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3734274A1 (de) * 1986-10-09 1988-04-21 Nippon Denso Co Elektrisch isolierender, keramischer, gesinterter koerper
US5989013A (en) * 1997-01-28 1999-11-23 Alliedsignal Composites Inc. Reverberatory screen for a radiant burner
EP0874534A2 (de) * 1997-04-23 1998-10-28 NGK Spark Plug Co. Ltd. Keramisches Heizelement und Verfahren zur Herstellung dafür, und Glühkerze mit diesem keramisches Heizelement
DE19901145A1 (de) * 1999-01-14 2000-07-20 Krieger Gmbh & Co Kg Als Flächenstrahler ausgebildeter Infrarot-Strahler
WO2003006880A1 (fr) * 2001-07-10 2003-01-23 Sun Frontier Technology Co., Ltd Procede et element bruleur permettant de bruler du gaz par un systeme de combustion gazeuse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117434A1 (fr) * 2020-12-03 2022-06-09 Solaronics Emetteur de rayonnement infra-rouge
FR3117191A1 (fr) * 2020-12-03 2022-06-10 Solaronics Emetteur de rayonnement infra-rouge

Also Published As

Publication number Publication date
EP1476697A1 (de) 2004-11-17
EP1476697B1 (de) 2010-10-20
US20050017203A1 (en) 2005-01-27
US7038227B2 (en) 2006-05-02
CA2475915A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
EP2467642B1 (de) Strahlungsbrenner
DE69426022T2 (de) Brenner mit mehreren brenngeschwindigkeitszonen und verfahren dazu
DE19901145A1 (de) Als Flächenstrahler ausgebildeter Infrarot-Strahler
EP1476697B1 (de) Als flächenstrahler ausgebildeter infrarot-strahler
DE3780656T2 (de) Heizkessel.
WO2003069225A1 (de) Als flächenstrahler ausgebildeter infrarot-strahler
DE3147993C2 (de) Metall-Glühofen
EP0499883A1 (de) Wärmetauscher
DE1905148B2 (de) Strahlungsbrenner
DE10222450A1 (de) Als Flächenstrahler ausgebildeter Infrarot-Strahler
AT402847B (de) Wärmeerzeuger mit einem teilweise katalytisch beschichteten metallischen wabenkörperreaktor
WO1996019698A1 (de) Gasbrenner für heizgeräte, insbesondere wassererhitzer
DE1218375B (de) Brenner fuer gasfoermige oder fluessige Brennstoffe
DE19718885C2 (de) Gasbrenner
DE10222452A1 (de) Als Flächenstrahler ausgebildeter Infrarot-Strahler
DE2832442C2 (de) Wärmeofen
CH690282A5 (de) Heizgerät mit einem katalytischen Brenner.
EP2253914A2 (de) Infrarot-Strahler
EP0794384B1 (de) Kleinfeuerung für den häuslichen Nutzungsbereich
DE2125365C3 (de) Strahlungsbrenner für gasförmige Brennstoffe
AT389752B (de) Feuerungsanlage
AT397564B (de) Heizschacht zur führung der brenngase eines brenners
AT396016B (de) Brenner
DE1301416B (de) Als Infrarotstrahler ausgebildeter Brenner
DE1529197C (de) Strahlungsbrenner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003709604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10917185

Country of ref document: US

Ref document number: 2475915

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2003709604

Country of ref document: EP