EP0499883A1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP0499883A1
EP0499883A1 EP92101884A EP92101884A EP0499883A1 EP 0499883 A1 EP0499883 A1 EP 0499883A1 EP 92101884 A EP92101884 A EP 92101884A EP 92101884 A EP92101884 A EP 92101884A EP 0499883 A1 EP0499883 A1 EP 0499883A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
sheet
space
wall
profiled sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92101884A
Other languages
English (en)
French (fr)
Other versions
EP0499883B1 (de
Inventor
Karl May
Hartmut Herm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0499883A1 publication Critical patent/EP0499883A1/de
Application granted granted Critical
Publication of EP0499883B1 publication Critical patent/EP0499883B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0008Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits

Definitions

  • the invention relates to a heat exchanger with a primary space for a primary medium and a secondary space for a secondary medium, which are separated from one another by a gas-tight, heat-conducting wall.
  • a heat exchanger is used to transfer thermal energy from a hot primary medium to a cold secondary medium.
  • the two media should not be mixed.
  • Various types of such a heat exchanger are known.
  • One of these embodiments provides a container in which a plurality of pipelines connected in parallel are arranged. Webs are arranged as spacers between adjacent tubes.
  • the parallel tubes are part of a secondary circuit that is passed gas-tight through the container wall.
  • the interior of the tubes forms the secondary space through which the heat-absorbing secondary medium flows.
  • the remaining interior of the container is part of a primary circuit. It forms the primary space through which a hot primary medium is conducted.
  • Such a heat exchanger can also be used in a smoldering furnace according to EP-PS 0 302 310. Thermal energy from hot flue gas is fed to the contents of a pyrolysis drum via a secondary medium.
  • the pipes carrying the secondary medium must consist of material that is resistant to high temperatures. Then the pipes may have to be covered with a refractory mass. To do this, the pipes must be provided with metal pins, between which a refractory ceramic mass is then held.
  • Heat exchangers in which the secondary space is formed by parallel pipes can be produced with great effort and high costs.
  • the pipes required are very expensive.
  • the connection of the pipes by means of webs requires complex and expensive welding work.
  • the invention has for its object to provide a heat exchanger that can be assembled quickly with simple, inexpensive means and which still works reliably.
  • possible different thermal expansions of different components of the heat exchanger should not result in material stresses or even destruction, e.g. of welds.
  • the secondary space is delimited by the wall and by an outer casing sheet spaced from this wall and in that the secondary space is divided into an inner and an outer sheet by a profiled sheet arranged between the wall and the outer casing sheet Subspace.
  • the arrangement of the profiled sheet forms tube-like channels which serve as a secondary space.
  • the heat exchanger according to the invention therefore only requires inexpensive profiled sheet metal for its manufacture, as well as cheaper non-profiled sheet for the outer cladding sheet.
  • parallel channels for the secondary medium are constructed according to the invention, the effect of which corresponds to the expensive parallel tubes connected by webs. This is true, although the channels are often not delimited from one another.
  • the arrangement of the profiled sheet in the space between the wall and the outer cladding sheet forms two partial spaces, each of which is divided into parallel channels by the profiled sheet.
  • the channels of the inner sub-space are directly delimited by the wall that separates the secondary space from the primary space. Therefore, the secondary medium flowing in the inner subspace is first heated. This heated secondary medium can then give off thermal energy via the profiled sheet to the secondary medium in the outer subspace.
  • the profiled sheet is arranged in the direction of the flow of the primary medium and profiled in a plane perpendicular to the direction of flow of the primary medium.
  • the secondary medium can then be rectified through the inner channels or can flow in countercurrent to the primary medium ensures good heat transfer through the heat-conducting wall between the primary space and the secondary space.
  • the profiled sheet is arranged, for example, so that it alternately touches the wall that delimits the primary space and the outer cladding sheet, thereby forming subspaces and the outer cladding sheet is held at the same distance from the wall.
  • the profiled sheet can be clamped. Welded connections are advantageously not required.
  • the advantage is achieved that the wall, the profiled plate and the outer jacket plate assume a fixed position in relation to one another in the radial direction or perpendicular to the direction of flow, while they are freely displaceable in the direction of the axis of the heat exchanger or in the direction of flow as a result of thermal expansions.
  • the profiled sheet is only attached to its upper section and hangs down freely between the wall and the outer cladding sheet. This has the advantage that different thermal expansion of the jacket sheet, the wall and the profiled sheet can have no effect on the rest of the construction. Different thermal expansions of rigidly connected components could lead to bending or even cracks.
  • the two subspaces of the secondary space are on one end, e.g. connected to each other at the foot of the heat exchanger.
  • the outer part On the other end, e.g. at the head end of the heat exchanger, the outer part is connected to a feed line and the inner part is connected to a discharge line.
  • the secondary medium allows the secondary medium to be guided through the secondary space, the secondary medium first in the outer partial space, e.g. in its channels, flows, then is deflected and then in the inner subspace, e.g. in its channels, flows back in the opposite direction.
  • the outer sub-space is connected to a supply line for the supply of the secondary medium.
  • the inner part of the room is connected to a drain to discharge the secondary medium.
  • the advantage is achieved that the same secondary medium is passed twice through the secondary space.
  • the opposite direction of the secondary medium achieved the advantage that the warmer medium flowing in the inner subspace can preheat the cooler medium flowing in the outer subspace via the profiled sheet.
  • the outer jacket plate on one end of the heat exchanger is gas-tightly connected to the wall of the primary space by a floor, and the profiled sheet ends at a distance from the floor.
  • the subspaces of the secondary space are connected to one another and a gas stream can advantageously be conducted around the end of the profiled sheet.
  • the gas passes from one subspace to the other, for example from the outer to the inner subspace. However, it is ensured that no gas escapes from the secondary space.
  • the floor mentioned is, for example, elastic. This has the advantage that stresses due to different thermal expansions of the wall and the outer jacket sheet are compensated. Thermal expansion of the profiled sheet metal cannot lead to stress, since it ends at a distance from the floor and only needs to be fastened in its upper part.
  • the head end of the heat exchanger for example the outer partial space of the secondary space is closed by a sealing plate extending between the outer jacket plate and the profiled plate.
  • a second collecting duct which is open to the inner partial space and is connected to a discharge line, is arranged on the end face of the closure plate.
  • a first collecting duct which is open to the outer part space, is arranged on the other side of the closure plate. This first collecting duct is connected to a feed line.
  • This construction ensures that the secondary medium in the area of an end face of the heat exchanger only reaches the outer part of the secondary space.
  • a distribution of the secondary medium to lower part spaces formed by the profiled sheet metal is ensured by the first collecting duct.
  • This first collecting duct connects all the outer lower part spaces with each other. The secondary medium can thus get from the supply line via the first collecting duct into each individual outer lower part space. Since no further path is possible through the sealing plate, the secondary medium flows in the same direction between the profiled plate and the outer jacket plate.
  • the direction of flow of the secondary medium is reversed on the floor, which connects the wall of the primary room to the outer casing sheet. It flows around the end of the profiled sheet and then flows between the profiled sheet and the wall of the primary space to the second collecting duct.
  • the inner lower part spaces of the secondary space are connected to one another by the second collecting duct. As a result, the secondary medium arriving from all inner lower part spaces is collected and can then be discharged via the drain.
  • the first collecting duct is placed on the outer surface of the casing plate, the outer casing plate having an opening continuously towards the first collecting duct.
  • This embodiment ensures that all outer lower part spaces are also connected to one another by the first collecting duct when the profiled sheet metal touches the jacket sheet.
  • the profiled sheet is only attached to its upper part hanging. It can be connected to the wall of the primary space via the second collecting duct. This provides a simple and effective construction and, since it is suspended like a curtain, the profiled sheet can expand downwards without tension or even cracks occurring in the material.
  • the profiled sheet has, for example, an angular profile.
  • the profile can be rectangular or trapezoidal. It can then lie flat against the outer jacket sheet and / or against the wall of the primary space.
  • the profile can also be triangular.
  • the profiled sheet can be a corrugated sheet with a round, in particular sinusoidal, profile.
  • a corrugated sheet is commercially available in the required form.
  • the advantage is achieved that the costs for the heat exchanger can be further reduced. This is due to the fact that corrugated iron can be purchased at a low price, which is significantly lower than the price of pipes.
  • the profiled sheet and / or the cladding sheet and / or other parts of the secondary space are made of steel, for example.
  • inexpensive steel is sufficient, since in the heat exchanger according to the invention the profiled sheet and the jacket sheet do not come into contact with the hot primary medium.
  • the hot primary medium only hits the wall of the primary room. While in a known embodiment with tubes and webs all parts come into contact with the hot primary medium and must therefore be made of heat-resistant material, the profiled sheet and the jacket sheet can consist of a simpler, less expensive steel in the heat exchanger according to the invention. This has the advantage that largely any commercially available corrugated sheet can be used. Only the wall of the primary room has to consist of high temperatures, eg 800 ° C resistant material.
  • the wall between the primary space and the secondary space can, for example, be pinned on its side facing the primary space and covered with a refractory ceramic material. This ensures that corrosion of the wall by hot primary medium containing pollutants is excluded.
  • the arrangement of the pins on the wall can be done by automatic welding, since a flat or only slightly curved surface must be pinned.
  • the primary medium is a hot flue gas
  • the secondary medium is a heating gas
  • the thermal energy of the hot flue gas can be used via the heating gas for heating or preheating a substance.
  • the primary medium is a hot flue gas from a combustion chamber of a smoldering furnace according to EP 0 302 310 and the secondary medium is a heating gas for heating a pyrolysis reactor of a smoldering furnace.
  • a heat exchanger according to the invention can therefore be usefully used in a smoldering-burning plant known as such. By working reliably and with simple means quickly, inexpensively and reliably The heat exchanger to be built can direct heat energy from the very hot flue gas into the pyrolysis reactor for preheating the material to be smoldered there.
  • a heat exchanger which can be operated with simple, commercially available and inexpensive means, e.g. Corrugated iron, is quick to set up and works reliably. In particular, its function cannot be impaired by thermal expansion of its material.
  • the heat exchanger 1 consists of a primary space 2 in which a hot primary medium, for example hot flue gas R, flows, and a secondary space 3 in which a heat-absorbing secondary medium, for example heating gas H for a pyrolysis reactor, flows.
  • the primary space 2 and the secondary space 3 are separated from one another by a wall 4.
  • this wall 4 forms a tube with a round cross section.
  • any other cross section is also possible.
  • the secondary space 3 is delimited by an outer cladding sheet 5 in addition to the wall 4.
  • the secondary space 3 therefore forms an annular space around the primary space 2.
  • the secondary space 3 is divided by a profiled sheet 6 into an inner partial space 3a and an outer partial space 3b.
  • the profiled sheet 6 can be a self-contained corrugated sheet, which alternately touches the wall 4 and the outer jacket sheet 5 in a sinusoidally curved manner.
  • the inner sub-space 3a and the outer sub-space 3b of the secondary space 3 are each subdivided into subspaces and the profiled one Sheet 6 serves as a spacer for the wall 4 and the outer jacket sheet 5.
  • An exchange of heating gas H may be possible between the respective lower part spaces, since the profiled sheet 6 is not gas-tightly connected to the wall 4 and the outer jacket sheet 5.
  • the two sub-rooms 3a and 3b are connected to one another on one end of the heat exchanger 1, in FIG. 1 on the lower end, and are closed off from the outside. This connection is provided by a floor 7.
  • the profiled sheet 6 ends at a distance above the floor 7. The heating gas H can therefore reach the inner partial space 3a or vice versa via this distance from the outer partial space 3b.
  • a feed line 8 is provided for feeding heating gas H into the secondary space 3. This opens into a first collecting duct 9 which surrounds the heat exchanger 1.
  • the first collecting duct 9 is open to the outer part space 3b.
  • the outer partial space 3b above the first collecting duct 9 is closed by a closure plate 10 arranged between the outer jacket plate 5 and the profiled plate 6. This ensures that the supplied heating gas H is always conducted downward in the outer subspace 3b.
  • the heating gas H is distributed through the first collecting duct 9 to the lower part spaces of the outer part space 3b. Between the bottom 7 and the lower end of the profiled sheet 6, the flow direction of the heating gas H is reversed and the heating gas H passes from the outer part space 3b into the inner part space 3a. There it flows upwards according to FIG. 1.
  • the second collecting duct 11 receives the heating gas H, which first flows from top to bottom in the outer subspace 3b and then from bottom to top in the inner subspace 3a.
  • a discharge line 12 for the heating gas H is connected to the second collecting duct 11.
  • the profiled sheet 6 is mechanically connected to the wall 4 by the second collecting duct 11.
  • the outer jacket plate 5 is connected to the profiled plate 6 by the first collecting duct 9 and the closure plate 10.
  • the closure plate 10 can also be connected directly to the second collecting duct 11 instead of the profiled plate 6 or even be part of the second collecting duct 11.
  • the hot primary medium flows in the primary space, for example flue gas R, the temperature of which can be above 800 ° C.
  • the primary space 2 like the secondary space 3, is connected to supply lines and discharge lines, not shown in FIG.
  • the wall 4 of the primary space 2 consists of a heat-resistant material. For example, it is pinned and covered with a refractory ceramic mass 14. All other parts of the heat exchanger 1 can consist of an inexpensive sheet, since they only come into contact with the cooler secondary medium, the heating gas H.
  • the heating gas H has, for example, the temperature 250 ° C. in the feed line 8 and the temperature 600 ° C. in the discharge line 12.
  • FIG. 2 shows a radial section through the secondary space 3 of the heat exchanger 1 according to FIG. 1.
  • the wall 4 of the primary space 2 is provided with pins 13 on the side of the primary space 2 and coated with a refractory ceramic mass 14.
  • the pins 13 enable the ceramic mass 14 to adhere well.
  • the secondary space 3 is delimited by the wall 4 and the outer jacket plate 5.
  • the profiled sheet 6 Through the profiled sheet 6, its profiling Is not visible in the sectional view of Figure 2, the secondary space 3 is divided into an inner part space 3a and an outer part space 3b.
  • the profiled sheet 6 is struck directly on the wall 4, directly on the outer jacket sheet 5 or at any location in between.
  • the profiled sheet 6 is profiled in a plane perpendicular to the plane of the drawing and perpendicular to the wall 4, the profile covering the entire width of the secondary space 3.
  • the profile of the profiled sheet 6 can be an angular profile or a round, for example sinusoidal profile, but also any other type of profile.
  • the outer jacket plate 5 is connected to the wall 4 by a base 7. This bottom 7 can be box-shaped. The bottom 7 can also be elastic to compensate for different thermal expansions.
  • the profiled sheet 6 ends in the secondary space 3 at a distance above the floor 7.
  • the outer partial space 3b is closed at the top by a closing plate 10. Below the closure plate 10, the outer sub-space 3b is connected to a feed line 8.
  • a first collecting duct 9 can be located between the feed line 8 and the outer partial space 3b. This connects the individual sub-spaces of the outer sub-space 3b formed by the profiling of the profiled sheet 6.
  • the inner compartment 3a is connected to a drain 12.
  • a second collecting duct 11 can be interposed, which first collects the secondary medium emerging from the sub-compartments of the inner sub-compartment 3a.
  • the profiled sheet 6 is exclusively attached to the second collecting duct 11. It hangs similarly to a curtain in the secondary space 3.
  • thermal expansions of the profiled sheet 6 can have no effects on other components of the heat exchanger 1.
  • the first collecting duct 9 and the outer jacket plate 5 are held on the profiled plate 6 via the closing plate 10.
  • the Primary medium in particular flue gas R
  • the secondary medium in particular heating gas H
  • the advantage is achieved that only inexpensive material such as corrugated sheet is required to build the secondary space 3 instead of expensive pipes and that thermal expansion of the components of the heat exchanger 1 remain without affecting its stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Power Steering Mechanism (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

Die Erfindung betrifft einen Wärmetauscher (1) mit einem Primärraum (2) für ein Primärmedium und einem Sekundärraum (3) für ein Sekundärmedium. Die beiden Räume sind durch eine gasdichte, wärmeleitende Wand (4) voneinander getrennt. Es ist vorgesehen, daß der Sekundärraum (3) durch die Wand (4) und durch ein zu dieser Wand (4) beabstandetes äußeres Mantelblech (5) begrenzt ist. Der Sekundärraum (3) ist in einen inneren (3a) und einen äußeren Teilraum (3b) unterteilt durch ein zwischen der Wand (4) und dem äußeren Mantelblech (5) angeordnetes profiliertes Blech (6). Das profilierte Blech (6) ist z.B. nur mit seinem oberen Ende am oberen Teil des Wärmetauschers (1) befestigt und hängt frei zwischen der Wand (4) und dem äußeren Mantelblech (5). Dadurch ist es in seinen Wärmedehnungen nicht behindert. Die Profilierung des profilierten Bleches (6) kann die Wand (4) und das Mantelblech (5) in gleichem Abstand zueinander halten. Durch das profilierte Blech (6) wird der Sekundärraum (3) in rohrähnliche Kanäle unterteilt. Teuere Heizrohre sind nicht erforderlich. <IMAGE>

Description

  • Die Erfindung betrifft einen Wärmetauscher mit einem Primärraum für ein Primärmedium und einen Sekundärraum für ein Sekundärmedium, die durch eine gasdichte, wärmeleitende Wand voneinander getrennt sind.
  • Ein Wärmetauscher dient dazu, Wärmeenergie von einem heißen Primärmedium auf ein kaltes Sekundärmedium zu übertragen. Dabei sollen jedoch die beiden Medien nicht vermischt werden. Es sind verschiedenartige Ausführungsformen eines solchen Wärmetauschers bekannt. Eine dieser Ausführungsformen sieht einen Behälter vor, in dem mehrere parallel geschaltete Rohrleitungen angeordnet sind. Zwischen benachbarten Rohren sind dabei als Abstandshalter Stege angeordnet. Die parallelen Rohre sind Bestandteil eines Sekundärkreislaufes, der gasdicht durch die Behälterwand hindurchgeführt ist. Das Innere der Rohre bildet den Sekundärraum, durch den das wärmeaufnehmende Sekundärmedium fließt. Der verbleibende Innenraum des Behälters ist Teil eines Primärkreislaufes. Er bildet den Primärraum, durch den ein heißes Primärmedium geleitet wird.
  • Ein derartiger Wärmetauscher kann auch in einer Schwel-Brenn-Anlage gemäß der EP-PS 0 302 310 eingesetzt werden. Dabei wird Wärmeenergie von heißem Rauchgas über ein Sekundärmedium dem Inhalt einer Pyrolysetrommel zugeführt. Bei einem derartigen Einsatz eines bekannten Wärmetauschers müssen die das Sekundärmedium führenden Rohre aus bei hohen Temperaturen widerstandsfähigem Material bestehen. Dann kann es erforderlich sein, daß die Rohre mit einer feuerfesten Masse überzogen sind. Dazu müssen die Rohre mit Metallstiften versehen werden, zwischen denen dann eine feuerfeste Keramikmasse gehalten wird.
  • Wärmetauscher, bei denen der Sekundärraum durch parallele Rohre gebildet wird, sind mit großem Aufwand und hohen Kosten herzustellen. Schon die benötigten Rohre sind sehr teuer. Das Verbinden der Rohre durch Stege macht aufwendige und teuere Schweißarbeiten erforderlich.
  • Bei einem Einsatz eines solchen parallele Rohrleitungen aufweisenden Wärmetauschers in einer Schwel-Brenn-Anlage, bei der das Primärmedium ein heißes Rauchgas ist, müssen die Rohroberflächen mit einer feuerfesten Masse überzogen werden. Das ist wegen der gebogenen Oberflächen der Rohre aufwendig. Schon das Anschweißen der erforderlichen Stifte kann wegen der gebogenen Oberfläche nicht maschinell erfolgen und erfordert teuere Handarbeit.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Wärmetauscher anzugeben, der mit einfachen, kostengünstigen Mitteln schnell aufzubauen ist und der trotzdem zuverlässig arbeitet. Insbesondere sollen durch mögliche unterschiedliche Wärmedehnungen verschiedener Komponenten des Wärmetauschers keine Materialspannungen oder sogar Zerstörungen, z.B. von Verschweißungen, vorkommen.
  • Die Aufgabe wird gemäß der Erfindung dadurch gelöst, daß der Sekundärraum durch die Wand und durch ein zu dieser Wand beabstandetes äußeres Mantelblech begrenzt ist und daß der Sekundärraum durch ein zwischen der Wand und dem äußeren Mantelblech angeordnetes profiliertes Blech unterteilt ist in einen inneren und einen äußeren Teilraum.
  • Durch die Anordnung des profilierten Blechs sind rohrähnliche Kanäle gebildet, die als Sekundärraum dienen. Der Wärmetauscher nach der Erfindung benötigt daher für seine Herstellung statt teuerer Rohre nur kostengünstiges profiliertes Blech sowie noch billigeres unprofiliertes Blech für das äußere Mantelblech. Mit diesem kostengünstig zu beziehenden Material sind gemäß der Erfindung parallel verlaufende Kanäle für das Sekundärmedium aufgebaut, die in ihrer Wirkung den teueren, durch Stege verbundenen parallelen Rohren entsprechen. Das trifft zu, obwohl die Kanäle häufig nicht voneinander abgegrenzt sind.
  • Durch die Anordnung des profilierten Blechs im Raum zwischen der Wand und dem äußeren Mantelblech sind zwei Teilräume gebildet, von denen jeder durch das profilierte Blech in parallel verlaufende Kanäle unterteilt ist. Die Kanäle des inneren Teilraums sind dabei unmittelbar durch die Wand begrenzt, die den Sekundärraum vom Primärraum trennt. Daher wird zunächst das im inneren Teilraum strömende Sekundärmedium erwärmt. Dieses erwärmte Sekundärmedium kann dann Wärmeenergie über das profilierte Blech an das Sekundärmedium im äußeren Teilraum abgeben.
  • Beispielsweise ist das profilierte Blech in Richtung der Strömung des Primärmediums angeordnet und in einer Ebene senkrecht zur Strömungsrichtung des Primärmediums profiliert.
  • Dadurch, daß dann das Sekundärmedium durch die inneren Kanäle gleichgerichtet oder im Gegenstrom zum Primärmedium strömen kann, ist ein guter Wärmeübergang durch die wärmeleitende Wand zwischen Primärraum und Sekundärraum hindurch gewährleistet.
  • Das profilierte Blech ist beispielsweise so angeordnet, daß es abwechselnd die Wand, die den Primärraum begrenzt, und das äußere Mantelblech berührt, wodurch Unterteilräume gebildet sind und das äußere Mantelblech in gleichem Abstand zur Wand gehalten ist.
  • Dabei kann das profilierte Blech eingeklemmt sein. Schweißverbindungen sind vorteilhafterweise nicht erforderlich.
  • Es wird der Vorteil erzielt, daß die Wand, das profilierte Blech und das äußere Mantelblech in radialer Richtung bzw. senkrecht zur Strömungsrichtung eine feste Position zueinander einnehmen, während sie in Richtung der Achse des Wärmetauschers bzw. in Strömungsrichtung infolge Wärmedehnungen frei gegeneinander verschiebbar sind.
  • Beispielsweise ist das profilierte Blech nur an seinem oberen Abschnitt befestigt und hängt zwischen der Wand und dem äußeren Mantelblech frei nach unten. Damit wird der Vorteil erzielt, daß unterschiedliche Wärmedehnung des Mantelbleches, der Wand und des profilierten Blechs keine Auswirkung auf die übrige Konstruktion haben kann. Unterschiedliche Wärmedehnungen starr miteinander verbundener Bauteile könnten zu Verbiegungen oder sogar zu Rissen führen.
  • Beispielsweise sind die beiden Teilräume des Sekundärraums an einer Stirnseite, z.B. am Fußende des Wärmetauschers miteinander verbunden. An der anderen Stirnseite, z.B. am Kopfende des Wärmetauschers ist der äußere Teilraum mit einer Zuleitung und der innere Teilraum mit einer Ableitung verbunden.
  • Hiermit ist eine Führung des Sekundärmediums durch den Sekundärraum möglich, wobei das Sekundärmedium zuerst im äußeren Teilraum, z.B. in dessen Kanälen, strömt, dann umgelenkt wird und anschließend im inneren Teilraum, z.B. in dessen Kanälen, in entgegengesetzter Richtung zurückströmt. Für die Zufuhr des Sekundärmediums ist der äußere Teilraum mit einer Zuleitung verbunden. Für die Abfuhr des Sekundärmediums ist der innere Teilraum mit einer Ableitung verbunden.
  • Mit dieser Anordnung wird der Vorteil erzielt, daß das gleiche Sekundärmedium zweimal durch den Sekundärraum geführt wird. Durch die entgegengerichtete Führung des Sekundärmediums wird der Vorteil erzielt, daß das im inneren Teilraum strömende wärmere Medium das im äußeren Teilraum strömende kühlere Medium über das profilierte Blech vorwärmen kann.
  • Beispielsweise ist das äußere Mantelblech an einer Stirnseite des Wärmetauschers gasdicht durch einen Boden mit der Wand des Primärraums verbunden und das profilierte Blech endet in einem Abstand vom Boden. Mit dieser Konstruktion sind die Teilräume des Sekundärraumes miteinander verbunden und es kann vorteilhaft ein Gasstrom um das Ende des profilierten Blechs herumgeleitet werden. Das Gas gelangt dabei von einem Teilraum in den anderen, beispielsweise vom äußeren in den inneren Teilraum. Es ist dabei jedoch gewährleistet, daß kein Gas aus dem Sekundärraum entweicht.
  • Der genannte Boden ist beispielsweise elastisch ausgebildet. Damit wird der Vorteil erzielt, daß Spannungen infolge von unterschiedlichen Wärmedehnungen der Wand und des äußeren Mantelblechs kompensiert werden. Wärmedehnungen des profilierten Blechs können nicht zu Spannungen führen, da es in einem Abstand vom Boden endet und nur in seinem oberen Teil befestigt zu sein braucht.
  • An der dem Boden gegenüberliegenden Stirnseite, dem Kopfende des Wärmetauschers ist beispielsweise der äußere Teilraum des Sekundärraums durch ein sich zwischen dem äußerem Mantelblech und dem profilierten Blech erstreckendes Verschlußblech verschlossen. Stirnseitig vom Verschlußblech ist ein zum inneren Teilraum offener zweiter Sammelkanal angeordnet, der mit einer Ableitung verbunden ist. Ein zum äußeren Teilraum offener erster Sammelkanal ist auf der anderen Seite des Verschlußblechs angeordnet. Dieser erster Sammelkanal ist mit einer Zuleitung verbunden.
  • Mit dieser Konstruktion ist gewährleistet, daß das Sekundärmedium im Bereich einer Stirnseite des Wärmetauschers ausschließlich in den äußeren Teilraum des Sekundärraums gelangt. Eine Verteilung des Sekundärmediums auf durch das profilierte Blech gebildete Unterteilräume ist dabei durch den ersten Sammelkanal gewährleistet. Dieser erste Sammelkanal verbindet alle äußeren Unterteilräume miteinander. Das Sekundärmedium kann also von der Zuleitung über den ersten Sammelkanal in jeden einzelnen äußeren Unterteilraum gelangen. Da durch das Verschlußblech kein weiterer Weg möglich ist, strömt das Sekundärmedium gleichgerichtet zwischen dem profilierten Blech und dem äußeren Mantelblech. Am Boden, der die Wand des Primärraums mit dem äusseren Mantelblech verbindet, wird die Strömungsrichtung des Sekundärmediums umgekehrt. Es fließt dabei um das Ende des profilierten Blechs herum und strömt dann zwischen dem profilierten Blech und der Wand des Primärraums zum zweiten Sammelkanal. Durch den zweiten Sammelkanal sind die inneren Unterteilräume des Sekundärraums miteinander verbunden. Dadurch wird das aus allen inneren Unterteilräumen ankommende Sekundärmedium gesammelt und kann dann über die Ableitung abgeführt werden.
  • Mit dieser Konstruktion wird der Vorteil erzielt, daß nach einer kurzen Anlaufzeit das Sekundärmedium im äußeren Teilraum durch das schon erwärmte Medium im inneren Teilraum infolge Wärmeaustausch durch das profilierte Blech hindurch vorgewärmt wird.
  • Beispielsweise ist der erste Sammelkanal auf der äußeren Oberfläche des Mantelblechs aufgesetzt angeordnet, wobei das äußere Mantelblech durchgehend zum ersten Sammelkanal hin eine Öffnung aufweist. Mit dieser Ausführungsform ist gewährleistet, daß durch den ersten Sammelkanal alle äußeren Unterteilräume auch dann miteinander verbunden sind, wenn das profilierte Blech das Mantelblech berührt.
  • Beispielsweise ist das profilierte Blech ausschließlich nur an seinem oberen Teil hängend befestigt. Es kann über den zweiten Sammelkanal mit der Wand des Primärraumes verbunden sein. Damit ist eine einfache und wirksame Konstruktion gegeben und das profilierte Blech kann, da es wie ein Vorhang aufgehängt ist, sich nach unten ausdehnen, ohne daß Spannungen oder sogar Risse im Material auftreten können.
  • Das profilierte Blech hat beispielsweise ein eckiges Profil. Das Profil kann rechteckig oder trapezförmig sein. Es kann dann flächig am äußeren Mantelblech anliegen und/oder an der Wand des Primärraumes anliegen. Das Profil kann auch dreieckig sein.
  • Das profilierte Blech kann nach einem anderen Beispiel ein Wellblech mit rundem, insbesondere sinusförmigem Profil sein. Ein solches Wellblech ist in der benötigten Form im Handel erhältlich. Mit dem Einsatz eines bekannten Wellbleches wird der Vorteil erzielt, daß die Kosten für den Wärmetauscher weiter erniedrigt werden können. Das ist darauf zurückzuführen, daß Wellblech zu einem niedrigen Preis, der deutlich unter dem Preis von Rohren liegt, bezogen werden kann.
  • Das profilierte Blech und/oder das Mantelblech und/oder andere Teile des Sekundärraumes bestehen beispielsweise aus Stahl. Dabei ist ein kostengünstiger Stahl ausreichend, da im Wärmetauscher gemäß der Erfindung das profilierte Blech und das Mantelblech nicht mit dem heißen Primärmedium in Kontakt kommen. Das heiße Primärmedium trifft nur auf die Wand des Primärraums. Während bei einer bekannten Ausführungsform mit Rohren und Stegen alle Teile mit dem heißen Primärmedium in Kontakt kommen und daher aus hitzebeständigem Material gefertigt sein müssen, können beim Wärmetauscher nach der Erfindung das profilierte Blech und das Mantelblech aus einem einfacheren, kostengünstigeren Stahl bestehen. Damit wird der Vorteil erzielt, daß weitgehend jedes handelsübliche Wellblech verwendet werden kann. Nur die Wand des Primärraumes muß aus hohen Temperaturen, z.B. 800°C standhaltendem Material bestehen.
  • Die Wand zwischen Primärraum und Sekundärraum kann auf ihrer dem Primärraum zugewandten Seite beispielsweise bestiftet und mit einer feuerfesten Keramikmasse bestampft sein. Dadurch wird gewährleistet, daß eine Korrosion der Wand durch heißes schadstoffhaltiges Primärmedium ausgeschlossen ist.
  • Die Anordnung der Stifte auf der Wand kann durch Automatenschweißen erfolgen, da eine ebene oder nur wenig gekrümmte Oberfläche bestiftet werden muß. Darin ist ein zusätzlicher Vorteil des Wärmetauschers gemäß der Erfindung gegenüber einem bekannten Wärmetauscher zu sehen, bei dem die Oberflächen von Rohren bestiftet werden müssen, was wegen der hohen Krümmung der Rohroberflächen nur mit aufwendiger Handarbeit möglich ist. Gleiches gilt für die Beschichtung der bestifteten Wand mit Keramikmasse.
  • Beispielsweise ist das Primärmedium ein heißes Rauchgas, während das Sekundärmedium ein Heizgas ist. Mit dem Wärmetauscher nach der Erfindung kann also die Wärmeenergie des heißen Rauchgases über das Heizgas zum Erwärmen oder Vorwärmen eines Stoffes verwendet werden.
  • Beispielsweise ist das Primärmedium ein heißes Rauchgas aus einer Brennkammer einer Schwel-Brenn-Anlage nach EP 0 302 310 und das Sekundärmedium ist ein Heizgas zum Heizen eines Pyrolysereaktors einer Schwel-Brenn-Anlage. Ein Wärmetauscher gemäß der Erfindung ist also in einer als solchen bekannten Schwel-Brenn Anlage sinnvoll einsetzbar. Durch den zuverlässig arbeitenden und mit einfachen Mitteln schnell, kostengünstig und zuverlässig zu bauenden Wärmetauscher kann Wärmeenergie vom sehr heißen Rauchgas in den Pyrolysereaktor zum Vorwärmen des dort zu verschwelenden Gutes geleitet werden.
  • Mit dem Wärmetauscher gemäß der Erfindung wird ein Wärmetauscher zur Verfügung gestellt, der mit einfachen, käuflichen und kostengünstigen Mitteln, wie z.B. Wellblech, schnell aufzubauen ist und zuverlässig arbeitet. Er ist insbesondere durch Wärmedehnungen seines Materials nicht in seiner Funktion zu beeinträchtigen.
  • Ein Wärmetauscher gemäß der Erfindung wird anhand der Zeichnung näher erläutert.
  • FIG 1
    zeigt perspektivisch einen Wärmetauscher;
    FIG 2
    zeigt einen Teilschnitt durch den Wärmetauscher.
  • Der Wärmetauscher 1 nach Figur 1 besteht aus einem Primärraum 2, in dem ein heißes Primärmedium, z.B. heißes Rauchgas R, strömt, und aus einem Sekundärraum 3, in dem ein Wärme aufnehmendes Sekundärmedium, z.B. Heizgas H für einen Pyrolysereaktor, strömt. Der Primärraum 2 und der Sekundärraum 3 sind durch eine Wand 4 voneinander getrennt. Diese Wand 4 bildet nach Figur 1 ein Rohr mit rundem Querschnitt. Es ist jedoch auch jeder andere Querschnitt möglich. Der Sekundärraum 3 ist außer durch die Wand 4 durch ein äußeres Mantelblech 5 begrenzt. Der Sekundärraum 3 bildet daher einen Ringraum um den Primärraum 2. Der Sekundärraum 3 ist durch ein profiliertes Blech 6 in einen inneren Teilraum 3a und einen äußeren Teilraum 3b unterteilt. Das profilierte Blech 6 kann ein in sich geschlossen angeordnetes Wellblech sein, das sinusförmig gebogen abwechselnd die Wand 4 und das äußere Mantelblech 5 berührt. Dadurch sind der innere Teilraum 3a und der äußere Teilraum 3b des Sekundärraums 3 jeweils in Unterteilräume unterteilt und das profilierte Blech 6 dient als Abstandshalter für die Wand 4 und das äußere Mantelblech 5. Zwischen den jeweiligen Unterteilräumen kann ein Austausch von Heizgas H möglich sein, da das profilierte Blech 6 nicht gasdicht mit der Wand 4 und dem äußeren Mantelblech 5 verbunden ist.
  • Die beiden Teilräume 3a und 3b sind an einer Stirnseite des Wärmetauschers 1, in Figur 1 an der unteren Stirnseite, miteinander verbunden und nach außen verschlossen. Diese Verbindung ist durch einen Boden 7 gegeben. Das profilierte Blech 6 endet in einem Abstand oberhalb des Bodens 7. Das Heizgas H kann daher über diesen Abstand vom äußeren Teilraum 3b in den inneren Teilraum 3a oder umgekehrt gelangen.
  • Zum Einspeisen von Heizgas H in den Sekundärraum 3 ist eine Zuleitung 8 vorgesehen. Diese mündet in einen ersten Sammelkanal 9, der den Wärmetauscher 1 umgibt. Der erste Sammelkanal 9 ist zum äußeren Teilraum 3b hin offen. In Figur 1 ist der äußere Teilraum 3b oberhalb des ersten Sammelkanals 9 durch ein zwischen dem äußeren Mantelblech 5 und dem profilierten Blech 6 angeordnetes Verschlußblech 10 verschlossen. Dadurch ist gewährleistet, daß das zugeleitete Heizgas H im äußeren Teilraum 3b stets nach unten geleitet wird. Durch den ersten Sammelkanal 9 wird das Heizgas H auf die Unterteilräume des äußeren Teilraumes 3b verteilt. Zwischen dem Boden 7 und dem unteren Ende des profilierten Bleches 6 wird die Strömungsrichtung des Heizgases H umgekehrt und das Heizgas H gelangt dabei vom äußeren Teilraum 3b in den inneren Teilraum 3a. Dort strömt es nach Figur 1 nach oben. Am oberen Ende des Wärmetauschers 1 ist ein zum inneren Teilraum 3a, nicht aber zum äußeren Teilraum 3b offener zweiter Sammelkanal 11 angeordnet. Der zweite Sammelkanal 11 kann durch das Verschlußblech 10 vom äußeren Teilraum 3b getrennt sein. Es kann aber auch ein eigenes Blech vorhanden sein, so daß zwischen den Sammelkanälen 9 und 11 von außen eine Öffnung bis zum profilierten Blech 6 reicht. Der zweite Sammelkanal 11 nimmt das Heizgas H auf, das zuerst im äußeren Teilraum 3b von oben nach unten und dann im inneren Teilraum 3a von unten nach oben geströmt ist. Mit dem zweiten Sammelkanal 11 ist eine Ableitung 12 für das Heizgas H verbunden. Durch den zweiten Sammelkanal 11 ist das profilierte Blech 6 mit der Wand 4 mechanisch verbunden. Es kann statt dessen eine andere starre Verbindung am oberen Abschnitt des Wärmetauschers 1 vorhanden sein. Das äußere Mantelblech 5 ist durch den ersten Sammelkanal 9 und das Verschlußblech 10 mit dem profilierten Blech 6 verbunden. Es kann das Verschlußblech 10 auch statt mit dem profilierten Blech 6 direkt mit dem zweiten Sammelkanal 11 verbunden sein oder sogar ein Teil des zweiten Sammelkanals 11 sein.
  • Im Primärraum strömt das heiße Primärmedium, beispielsweise Rauchgas R, dessen Temperatur über 800°C sein kann. Der Primärraum 2 ist wie der Sekundärraum 3 mit in Figur 1 nicht dargestellten Zuleitungen und Ableitungen verbunden.
  • Die Wand 4 des Primärraumes 2 besteht aus einem hitzebeständigen Material. Sie ist beispielsweise bestiftet und mit einer feuerfesten Keramikmasse 14 bestampft. Alle anderen Teile des Wärmetauschers 1 können aus einem kostengünstigen Blech bestehen, da sie nur mit dem kühleren Sekundärmedium, dem Heizgas H, in Kontakt kommen. Das Heizgas H hat in der Zuleitung 8 beispielsweise die Temperatur 250°C und in der Ableitung 12 die Temperatur 600 °C.
  • Figur 2 zeigt einen radialen Schnitt durch den Sekundärraum 3 des Wärmetauschers 1 nach Figur 1. Die Wand 4 des Primärraumes 2 ist auf der Seite des Primärraumes 2 mit Stiften 13 versehen und mit einer feuerfesten Keramikmasse 14 bestampft. Die Stifte 13 ermöglichen dabei eine gute Haftung der Keramikmasse 14. Der Sekundärraum 3 ist durch die Wand 4 und das äußere Mantelblech 5 begrenzt. Durch das profilierte Blech 6, dessen Profilierung in der Schnittdarstellung der Figur 2 nicht sichtbar ist, ist der Sekundärraum 3 in einen inneren Teilraum 3a und einen äußerten Teilraum 3b unterteilt. Je nach Ort des radialen Schnittes ist das profilierte Blech 6 unmittelbar an der Wand 4, unmittelbar am äußeren Mantelblech 5 oder an einem beliebigen Ort dazwischen getroffen. Das ist darauf zurückzuführen, daß das profilierte Blech 6 in einer Ebene senkrecht zur Zeichenebene und senkrecht zur Wand 4 profiliert ist, wobei das Profil die gesamte Breite des Sekundärraumes 3 überdeckt. Das Profil des profilierten Bleches 6 kann ein eckiges Profil oder ein rundes, z.B. sinusförmiges Profil, aber auch jedes anders geartete Profil sein. Das äußere Mantelblech 5 ist durch einen Boden 7 mit der Wand 4 verbunden. Dieser Boden 7 kann kastenförmig geformt sein. Auch kann der Boden 7 elastisch ausgebildet sein, um unterschiedliche Wärmedehnungen auszugleichen. Das profilierte Blech 6 endet im Sekundärraum 3 in einem Abstand oberhalb des Bodens 7. Der äußere Teilraum 3b ist nach oben durch ein Verschlußblech 10 verschlossen. Unterhalb des Verschlußbleches 10 ist der äußere Teilraum 3b mit einer Zuleitung 8 verbunden. Zwischen der Zuleitung 8 und dem äußeren Teilraum 3b kann sich ein erster Sammelkanal 9 befinden. Dieser verbindet die einzelnen durch die Profilierung des profilierten Bleches 6 gebildeten Unterteilräume des äußeren Teilraumes 3b miteinander. Der innere Teilraum 3a ist mit einer Ableitung 12 verbunden. Hier kann ein zweiter Sammelkanal 11 dazwischen geschaltet sein, der zunächst das aus Unterteilräumen des inneren Teilraumes 3a austretende Sekundärmedium sammelt. Das profilierte Blech 6 ist nach Figur 2 ausschließlich am zweiten Sammelkanal 11 befestigt. Es hängt also ähnlich wie ein Vorhang im Sekundärraum 3. Dadurch könnnen Wärmedehnungen des profilierten Bleches 6 keine Auswirkungen auf andere Bauteile des Wärmetauschers 1 haben. Am profilierten Blech 6 ist über das Verschlußblech 10 der erste Sammelkanal 9 und an diesem das äußere Mantelblech 5 gehalten. Das Primärmedium, insbesondere Rauchgas R, strömt mit beispielsweise 800°C durch den Primärraum. Das Sekundärmedium, insbesondere Heizgas H, strömt mit beispielsweise 250°C durch die Zuleitung 8 und den ersten Sammelkanal 9 in den äußeren Teilraum 3b des Sekundärraumes. Dort strömt es nach unten, ändert vor dem Boden 7 seine Strömungsrichtung und strömt dann im inneren Teilraum 3a nach oben. Von dort gelangt es, beispielsweise auf 600°C erwärmt, über den zweiten Sammelkanal 11 in die Ableitung 12.
  • Mit dem Wärmetauscher 1 nach der Erfindung wird der Vorteil erzielt, daß zum Aufbau des Sekundärraumes 3 statt teuerer Rohre nur kostengünstiges Material wie Wellblech benötigt wird und daß Wärmedehnungen der Bauteile des Wärmetauschers 1 ohne Einfluß auf dessen Stabilität bleiben.

Claims (17)

  1. Wärmetauscher (1) mit einem Primärraum (2) für ein Primärmedium und einem Sekundärraum (3) für ein Sekundärmedium, die durch eine gasdichte, wärmeleitende Wand (4) voneinander getrennt sind,
    dadurch gekennzeichnet, daß der Sekundärraum (3) durch die Wand (4) und durch ein zu dieser Wand (4) beabstandetes äußeres Mantelblech (5) begrenzt ist und daß der Sekundärraum (3) durch ein zwischen der Wand (4) und dem äußeren Mantelblech (5) angeordnetes profiliertes Blech (6) unterteilt ist in einen inneren (3a) und einen äußeren Teilraum (3b).
  2. Wärmetauscher (1) nach Anspruch 1,
    dadurch gekennzeichnet, daß das profilierte Blech (6) in Richtung der Strömung des Primärmediums erstreckt und in einer Ebene senkrecht zur Strömungsrichtung des Primärmediums profiliert ist.
  3. Wärmetauscher (1) nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, daß das profilierte Blech (6) abwechselnd die Wand (4) und das äußere Mantelblech (5) berührt, wodurch Unterteilräume gebildet sind und das äußere Mantelblech (5) in gleichem Abstand zur Wand (4) gehalten ist.
  4. Wärmetauscher (1) nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß das profilierte Blech (6) an seinem oberen Abschnitt befestigt ist und zwischen der Wand (4) und dem äußeren Mantelblech (5) frei nach unten hängt.
  5. Wärmetauscher (1) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß die beiden Teilräume (3a und 3b) an einer Stirnseite des profilierten Bleches (6) miteinander verbunden und nach außen verschlossen sind und daß an der anderen Stirnseite der äußere Teilraum (3b) mit einer Zuleitung (8) und der innere Teilraum (3a) mit einer Ableitung (12) verbunden sind.
  6. Wärmetauscher (1) nach Anspruch 5,
    dadurch gekennzeichnet, daß die Wand (4) und das äußere Mantelblech (5) an der einen Stirnseite des profilierten Bleches (6) gasdicht durch einen Boden (7) verbunden sind und daß dort das profilierte Blech (6) in einem Abstand vom Boden (7) endet.
  7. Wärmetauscher (1) nach Anspruch 6,
    dadurch gekennzeichnet, daß der Boden (7) elastisch ist.
  8. Wärmetauscher (1) nach einem der Ansprüche 6 oder 7,
    dadurch gekennzeichnet, daß an der anderen Stirnseite der äußere Teilraum (3b) durch ein Verschlußblech (10), das sich zwischen dem profilierten Blech (6) und dem äußeren Mantelblech (5) erstreckt, verschlossen ist, daß ein zum inneren Teilraum (3a) offener zweiter Sammelkanal (11) stirnseitig vom Verschlußblech (10) angeordnet ist, wobei der zweite Sammelkanal (11) mit der Ableitung (12) verbunden ist, und daß ein zum äußeren Teilraum (3b) offener erster Sammelkanal (9) auf der anderen Seite des Verschlußbleches (10) angeordnet ist, wobei der erste Sammelkanal (9) mit der Zuleitung (8) verbunden ist.
  9. Wärmetauscher (1) nach Anspruch 8,
    dadurch gekennzeichnet, daß der erste Sammelkanal (9) auf der äußeren Oberfläche des äußeren Mantelbleches (5) aufgesetzt angeordnet ist, wobei das äußere Mantelblech (5) durchgehend zum ersten Sammelkanal (9) hin eine Öffnung aufweist.
  10. Wärmetauscher (1) nach einem der Ansprüche 8 oder 9,
    dadurch gekennzeichnet, daß das profilierte Blech (6) nur an seinem oberen Teil hängend befestigt ist.
  11. Wärmetauscher (1) nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, daß das profilierte Blech (6) ein eckiges Profil hat.
  12. Wärmetauscher (1) nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, daß das profilierte Blech (6) ein Wellblech mit sinusförmigem Profil ist.
  13. Wärmetauscher (1) nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, daß das profilierte Blech (6) und/oder das Mantelblech (5) und/oder andere Teile des Sekundärraumes (3) aus Stahl bestehen.
  14. Wärmetauscher (1) nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, daß die Wand des Primärraumes (2) aus hohen Temperaturen standhaltendem Material und das profilierte Blech (6) aus kostengünstigerem Material besteht.
  15. Wärmetauscher (1) nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, daß die Wand (4) auf seiner dem Primärraum (2) zugewandten Seite mit Stiften (13) versehen und mit einer feuerfesten Keramikmasse (14) bestampft ist.
  16. Wärmetauscher (1) nach einem der Ansprüche 1 bis 15,
    dadurch gekennzeichnet, daß das Primärmedium ein heißes Rauchgas und das Sekundärmedium ein Heizgas ist.
  17. Wärmetauscher (1) nach Anspruch 16,
    dadurch gekennzeichnet, daß das Primärmedium ein heißes Rauchgas aus einer Brennkammmer einer Schwel-Brenn-Anlage ist und daß das Sekundärmedium ein Heizgas zum Heizen eines Pyrolysereaktors einer Schwel-Brenn-Anlage ist.
EP92101884A 1991-02-18 1992-02-05 Wärmetauscher Expired - Lifetime EP0499883B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4104959A DE4104959A1 (de) 1991-02-18 1991-02-18 Waermetauscher
DE4104959 1991-02-18

Publications (2)

Publication Number Publication Date
EP0499883A1 true EP0499883A1 (de) 1992-08-26
EP0499883B1 EP0499883B1 (de) 1994-04-20

Family

ID=6425279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92101884A Expired - Lifetime EP0499883B1 (de) 1991-02-18 1992-02-05 Wärmetauscher

Country Status (11)

Country Link
US (1) US5215144A (de)
EP (1) EP0499883B1 (de)
JP (1) JPH0579777A (de)
AT (1) ATE104762T1 (de)
CZ (1) CZ283100B6 (de)
DE (2) DE4104959A1 (de)
DK (1) DK0499883T3 (de)
ES (1) ES2051603T3 (de)
HU (1) HU215992B (de)
PL (1) PL293465A1 (de)
RU (1) RU2070700C1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466603A (en) * 1994-02-15 1995-11-14 Meehan; Brian W. Temperature regulated hybridization chamber
US5684346A (en) * 1995-11-17 1997-11-04 Itt Flygt Ab Cooling device
SE507479C2 (sv) * 1995-11-17 1998-06-08 Flygt Ab Itt Kylanordning för en omrörare
DE19617916B4 (de) 1996-05-03 2007-02-01 Airbus Deutschland Gmbh Verdampfer zum Verdampfen eines tiefkalten flüssigen Mediums
US6438936B1 (en) 2000-05-16 2002-08-27 Elliott Energy Systems, Inc. Recuperator for use with turbine/turbo-alternator
DE10129099A1 (de) * 2001-06-16 2002-12-19 Ballard Power Systems Katalytische Beschichtung von strukturierten Wärmetauscherblechen
FR2872264B1 (fr) * 2004-06-29 2007-03-09 Solvay Sa Sa Belge Recipient a double paroi et procede pour le fabriquer
EP1657156A1 (de) * 2004-11-16 2006-05-17 Saab Ab Ein Lufteinlassgerät für ein Flugzeugtriebwerk
US20080128345A1 (en) * 2006-11-30 2008-06-05 Sotiriades Aleko D Unified Oil Filter and Cooler
EP2684004B1 (de) * 2011-03-11 2016-09-14 Blentech Corporation Mehrflächiger wärmeaustausch mit vakuumkapazität und magnetischen abstreifern
KR101475398B1 (ko) * 2013-04-25 2014-12-22 주식회사 두발 보일러 열교환용 혼합관
US9897398B2 (en) * 2013-05-07 2018-02-20 United Technologies Corporation Extreme environment heat exchanger
GB201513415D0 (en) * 2015-07-30 2015-09-16 Senior Uk Ltd Finned coaxial cooler
US10995998B2 (en) * 2015-07-30 2021-05-04 Senior Uk Limited Finned coaxial cooler
US11988147B2 (en) * 2022-07-07 2024-05-21 General Electric Company Heat exchanger for a hydrogen fuel delivery system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE814159C (de) * 1949-07-08 1951-09-20 Otto H Dr-Ing E H Hartmann Waermeaustauscher
FR1210108A (fr) * 1957-08-30 1960-03-07 Air Exchangers Ltd Foyer et échangeur pour le chauffage des gaz
DE1401851A1 (de) * 1960-02-08 1968-10-24 Brown Fintube Company In einen Rauchgaszug einhaengbarer Rekuperativ-Waermeaustauscher
GB2065861A (en) * 1979-12-14 1981-07-01 Aerco Int Inc Countercurrent heat exchanger with a dimpled membrane

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2445471A (en) * 1944-05-09 1948-07-20 Salem Engineering Company Heat exchanger
DE839806C (de) * 1949-08-02 1952-05-26 Otto H Dr-Ing E H Hartmann Sternfoermiges Faltenrohr als Einsatzrohr fuer Waermeaustauscher
US2641451A (en) * 1950-11-04 1953-06-09 Edward W Kaiser Heat exchanger
US2900168A (en) * 1955-03-24 1959-08-18 Meredith M Nyborg Reaction motor with liquid cooling means
US2823026A (en) * 1956-09-21 1958-02-11 Amico Salvatore J D Heater assembly for salvaging heat lost with products of combustion
GB920337A (en) * 1959-08-14 1963-03-06 John Montague Laughton Improvements in and relating to heat exchange tubes with extended surface
US3143404A (en) * 1960-09-30 1964-08-04 Exxon Research Engineering Co Gas chromatography columns
US3475922A (en) * 1967-07-31 1969-11-04 Westinghouse Electric Corp Liquid cooling chamber
US3859040A (en) * 1973-10-11 1975-01-07 Holcroft & Co Recuperator for gas-fired radiant tube furnace
DE2606005C3 (de) * 1976-02-14 1981-10-22 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Gekühlte Drosselanordnung für Heißgase, insbesonderezur Nachschaltung hinter der Brennkammer eines Strahltriebwerkes
US4096616A (en) * 1976-10-28 1978-06-27 General Electric Company Method of manufacturing a concentric tube heat exchanger
US4113009A (en) * 1977-02-24 1978-09-12 Holcroft & Company Heat exchanger core for recuperator
EP0083379A1 (de) * 1981-12-31 1983-07-13 Emil Kress Wärmetauscher
DE3811820A1 (de) * 1987-08-03 1989-02-16 Siemens Ag Verfahren und anlage zur thermischen abfallentsorgung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE814159C (de) * 1949-07-08 1951-09-20 Otto H Dr-Ing E H Hartmann Waermeaustauscher
FR1210108A (fr) * 1957-08-30 1960-03-07 Air Exchangers Ltd Foyer et échangeur pour le chauffage des gaz
DE1401851A1 (de) * 1960-02-08 1968-10-24 Brown Fintube Company In einen Rauchgaszug einhaengbarer Rekuperativ-Waermeaustauscher
GB2065861A (en) * 1979-12-14 1981-07-01 Aerco Int Inc Countercurrent heat exchanger with a dimpled membrane

Also Published As

Publication number Publication date
CZ283100B6 (cs) 1998-01-14
HUT61096A (en) 1992-11-30
CS46092A3 (en) 1992-11-18
HU9200468D0 (en) 1992-04-28
RU2070700C1 (ru) 1996-12-20
US5215144A (en) 1993-06-01
PL293465A1 (en) 1992-08-24
JPH0579777A (ja) 1993-03-30
DK0499883T3 (da) 1994-09-12
ATE104762T1 (de) 1994-05-15
DE4104959A1 (de) 1992-08-20
ES2051603T3 (es) 1994-06-16
DE59200120D1 (de) 1994-05-26
HU215992B (hu) 1999-03-29
EP0499883B1 (de) 1994-04-20

Similar Documents

Publication Publication Date Title
EP0499883B1 (de) Wärmetauscher
DE60308696T2 (de) Wärmetauscher für ein brennwertgerät mit doppelrohrbündel
DE69825408T2 (de) Wärmeaustauscher und dessen gebrauchsverfahren
DE3100074A1 (de) Rekuperativer waermetauscher mit zyklusumschaltung und verwendung desselben zur waermerueckgewinnung aus den rauchgasen von flammoefen
EP0599103B1 (de) Wärmetauscher mit Flammbeheizung und Verfahren zu dessen Herstellung
EP1108963A2 (de) Rauchgas-Wärmetauscher
EP0065944A1 (de) Kachelofen
DE2107108A1 (de) Gliederkessel mit einer im unteren Teil untergebrachten Brennkammer
DE2106775B2 (de) Back- und Bratrohr
DE3438320C2 (de)
EP0190616A2 (de) Gerät zum Erwärmen von Wasser, insb. Warmwasserheizkessel
DE3730137C2 (de)
DE4104960A1 (de) Waermetauscher
EP0473946B1 (de) Gliederheizkessel
DE3700443A1 (de) Waermetauscher fuer heizkessel, insbesondere fuer brennwertkessel
DE2911116C2 (de) Wärmetauscher
DE2309696C3 (de) Heizungskessel mit Umlenkkammer
EP0512220A1 (de) Zentralheizungskessel für Öl- oder Gasgebläsebrenner und Niedertemperaturbetrieb
DE2908825A1 (de) Waermestrahlendes rekuperatorglied mit einer hilfswaermeaustauschoberflaeche
DE2807612A1 (de) Waermetauscher
DE2245261C3 (de) Lenkwandanordnung in einem Ausbrenn- oder Feuerraum eines Wärmetauschers
DE835611C (de) Vorrichtung bei Waermeaustauschern
WO2000009959A1 (de) Heizkessel
DE2934097A1 (de) Emissionswaermetauscher
CH217416A (de) Gasheizofen.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19920915

17Q First examination report despatched

Effective date: 19930119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940420

REF Corresponds to:

Ref document number: 104762

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59200120

Country of ref document: DE

Date of ref document: 19940526

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2051603

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940715

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

SC4A Pt: translation is available

Free format text: 940513 AVAILABILITY OF NATIONAL TRANSLATION

EAL Se: european patent in force in sweden

Ref document number: 92101884.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19950217

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950227

Year of fee payment: 4

Ref country code: FR

Payment date: 19950227

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950228

Year of fee payment: 4

Ref country code: BE

Payment date: 19950228

Year of fee payment: 4

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950419

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950517

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19960205

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960229

Ref country code: CH

Effective date: 19960229

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19990121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990203

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990211

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990222

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000205

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000205

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000205

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20000831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050205