WO2003069020A1 - Systeme et procede de traitement d'un substrat - Google Patents

Systeme et procede de traitement d'un substrat Download PDF

Info

Publication number
WO2003069020A1
WO2003069020A1 PCT/JP2002/001131 JP0201131W WO03069020A1 WO 2003069020 A1 WO2003069020 A1 WO 2003069020A1 JP 0201131 W JP0201131 W JP 0201131W WO 03069020 A1 WO03069020 A1 WO 03069020A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
susceptor
gas
cooling
pin
Prior art date
Application number
PCT/JP2002/001131
Other languages
English (en)
French (fr)
Inventor
Mitsuhiro Maruyama
Keizo Fujimori
Haruo Sasaki
Osamu Okaniwa
Original Assignee
Hitachi Zosen Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corporation filed Critical Hitachi Zosen Corporation
Priority to PCT/JP2002/001131 priority Critical patent/WO2003069020A1/ja
Priority to JP2003568125A priority patent/JPWO2003069020A1/ja
Publication of WO2003069020A1 publication Critical patent/WO2003069020A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Definitions

  • the present invention relates to a substrate processing (CVD: Chemical Vapor Deposition) apparatus and a substrate processing method for producing a crystal film or other thin films using a gas phase reaction, and particularly to a substrate to be processed in a reaction furnace.
  • the present invention relates to a substrate processing apparatus and a substrate processing method in which transfer of a substrate and taking out of a processed substrate out of a reaction furnace are performed by a transport rod.
  • a substrate processing apparatus performed by a transfer robot is conventionally known.
  • the substrate after processing by this device is cooled down because it is extremely hot.However, it is cooled in the reactor, or the substrate is unloaded from the reactor and placed in a separate cooling chamber. It had been cooled.
  • the substrate is cooled naturally or by supplying a purge gas (hydrogen or an inert gas, etc.) after the reaction. It was kept in the same position as during the reaction treatment and cooled.
  • Japanese Patent Application Laid-Open No. 8-23992 / 95 discloses that cooling gas is supplied from gas blowout ports provided on the surface of an induction heating coil arranged on the upper and lower sides of a substrate supported on a susceptor. Blowing out cooling A substrate processing apparatus having means is disclosed. According to this apparatus, after the high-frequency output is stopped after the substrate processing, the cooling gas is blown from above and below, so that a dedicated cooling furnace is not separately provided, and the substrate can be quickly processed. This has the advantage that cooling can be performed, thereby increasing the processing capacity.
  • the susceptor has a characteristic that the temperature rises up to about 400 degrees faster than the substrate.
  • the heat capacity of the susceptor is much higher than that of the substrate.
  • the reaction section is opened when the substrate is directly carried in and out of the reaction section by the transfer robot, so that the reaction section is opened from outside the reaction furnace.
  • particles such as particles may be drawn in.
  • a board loading / unloading port must be provided, and each time it needs to be opened and closed, it is not possible to take a cooling structure such as water cooling, and unnecessary growth of crystals etc. occurs at the opening / closing port I was afraid.
  • a substrate processing apparatus includes a reaction furnace, a susceptor on which a substrate is placed, a heating means for heating the substrate, a source gas supply means for supplying a source gas to the substrate surface, and a substrate in the reaction furnace. Equipped with a transport robot for loading and unloading, a gas supply means for blowing out cooling gas, and a vertical moving means for moving the susceptor up and down, with at least three steps provided at predetermined positions in the susceptor Pins with heads are fitted in the through holes so that the top surface does not protrude from the substrate mounting surface and the lower end protrudes from the susceptor so that it can move up and down.
  • Heating means lamps, coils for induction heating, etc. are used as appropriate as the heating means.
  • the source gas supply means is provided with a dedicated supply port on the side of or above the substrate surface, or, for example, through a gas flow path and a gas blowout port provided in an induction heating coil. It is composed.
  • the susceptor is made of, for example, carbon, quartz, or the like, and is supported by a susceptor support arm provided at the upper end of the column.
  • a motor (such as a stepping motor or a servo motor) for rotating the support is provided below the support, and the susceptor is rotated by the motor. The influence of the distribution of the source gas and the distribution of heat due to the source gas flow, the position of the heating means, etc. is reduced.
  • the gas supply means is composed of, for example, an upper gas supply means and a lower gas supply means, and the upper gas supply means is, for example, provided with a dedicated supply port above the surface of the substrate or supplied with a source gas. It is constructed by supplying cooling gas (hydrogen and inert gas, etc.) instead of source gas to the means.
  • the lower gas supply means may be, for example, a cooling gas supply pipe provided exclusively, or a gas flow path provided in an induction heating coil or a heat reflection plate of the lower heating means. It consists of a gas outlet.
  • the heat reflection plate faces the susceptor, and during the heat treatment, mainly reflects the heat radiation from the heated substrate or the susceptor, or the susceptor and the heat reflector. When there is a heating means located between the two, it reflects the heat rays emitted from that means, and serves as a means to heat the lower surface of the susceptor by reflection of the heat rays.
  • the cooling gas blown to the substrate is discharged from below the susceptor by the air pressure above the substrate surface and the exhaust gas discharge means located below the susceptor so as not to move above the substrate. .
  • the substrate After being processed in the reaction section, the substrate is lifted at this position or below this position from the susceptor by one or more pin receivers that have moved upward, and cooled from the gas supply means. Cooled by gas. Thereafter, while maintaining this positional relationship, the substrate, the susceptor, and the pin receiver are lowered and positioned at the loading / unloading section where the substrate can be loaded / unloaded by the transport robot. Cooling gas may be supplied during this descent. Then, when the lowered pin receiver is lowered to the standby position, the cooled substrate is unloaded in a required direction (for example, horizontally) by the transport robot.
  • the lower gas supply means descends at a certain distance as the susceptor descends so as not to interfere with it.
  • the lower gas supply means is moved separately from the vertical movement of Susep You can do it.
  • the number of pin receivers that move upward may be one, but it is desirable that three or more pin receivers arranged at positions that can stably support the substrate be moved (synchronous movement).
  • the cooling capacity of the wall around the reaction section does not need to be reduced, so that unnecessary places are not required. It is possible to suppress the generation of crystals and thin films during the process.
  • the contact area between the substrate and the susceptor is significantly reduced or the substrate is kept in a non-contact state. Cooling gas can be supplied to the processing surface of the steel sheet, and the cooling rate can be improved.
  • the gas supply means is capable of supplying a cooling gas to a lower portion of the susceptor, and a lower gas supply means configured not to interfere with the pin receiver;
  • An upper gas supply means capable of supplying a cooling gas, wherein the susceptor is provided with a plurality of ventilation holes through which the cooling gas supplied by the lower gas supply means can pass. Is preferred.
  • the upper gas supply means is a gas supply means for increasing the pressure in the space above the substrate to be higher than the pressure in the space below the substrate.
  • means for supplying gas to the space above the substrate It is configured to supply a cooling gas (a gas capable of cooling a substrate or the like with an inert gas or hydrogen) to one or both of the gas supply means.
  • the cooling gas can be supplied to the lower surface of the substrate from below the susceptor through the vent hole, and the cooling effect can be further enhanced. I will.
  • Pressure adjusting means for separately adjusting the gas supply pressures of the upper and lower gas supply means, and moving the pin receiver that lifts the susceptor and the susceptor while the substrate is lifted from the susceptor It is preferable to further provide a moving amount adjusting means.
  • the time from substrate scarring to the reactor to substrate removal after the reaction processing can be shortened, thereby improving the substrate processing capacity. It can be even higher.
  • the amount of movement of the substrate can be determined.
  • the substrate can be vertically moved to the loading / unloading section while cooling while maintaining the pressure balance.
  • a raw material gas is blown onto a substrate mounted on a susceptor while heating the substrate, thereby forming a crystal film or other thin film using a gas phase reaction on the substrate.
  • the substrate processing method for growing the substrate after the substrate is processed, the substrate is cooled while being lifted from a susceptor.
  • the cooling gas can be supplied to the processing surface of the substrate while the contact area between the substrate and the susceptor is significantly reduced, and the cooling rate can be improved.
  • cooling gas is blown from both the upper and lower sides of the substrate in a regular manner.
  • the cooling gas can be supplied to the lower surface of the substrate from below the susceptor through the ventilation holes, further enhancing the cooling effect.
  • the substrate is moved vertically from the reaction section to the unloading position while spraying the cooling gas, and the downward pressure of the upper cooling gas at the substrate position during the downward movement is kept higher than the upward pressure of the lower cooling gas.
  • it is preferable to adjust at least one of the upper and lower gas supply pressures.
  • the cooling proceeds when the processed substrate is moved from the reaction section to the unloading position, and the substrate is transferred into the reaction furnace as compared with a method in which the cooling operation and the moving operation are performed separately.
  • the time from the reaction treatment to the carrying out of the substrate can be shortened, so that the substrate processing ability can be improved.
  • the balance between the upward pressure and the downward pressure of the cooling gas near the substrate can be adjusted so that the downward pressure is maintained at or above the upward pressure. Therefore, it is also possible to prevent the contamination of the substrate caused by the exhaust gas blown to the substrate and moved downward and hit the substrate again.
  • FIG. 1 is a vertical sectional view showing an outline of a main part of a substrate processing apparatus according to the present invention.
  • FIG. 2 (a) is a plan view showing the upper surface of the induction heating coil
  • FIG. 2 (b) is a cross-sectional view taken along the line b—b of (a).
  • FIG. 3 is a bottom view showing the lower surface of the induction heating coil.
  • ⁇ Fig. 4 is an enlarged sectional view of the gas outlet provided in the induction heating coil.
  • (A) is a vertical sectional view of the conductor element facing the central space
  • (b) () Is a vertical cross-sectional view (radial direction) of the conductor element facing other than the central space
  • (c) is a cross-sectional view (circumferential direction) along the cC line in (b).
  • FIG. 5 is a vertical sectional view showing one embodiment of a cooling mechanism of the substrate processing apparatus.
  • FIG. 6 is a block diagram showing a control unit of the substrate processing apparatus shown in FIG.
  • FIG. 7 is an enlarged cross-sectional view showing a thread groove provided in the gas outlet.
  • FIG. 8 is an enlarged sectional view showing an example of a male screw member screwed into the screw groove shown in FIG.
  • FIG. 9 is an enlarged sectional view showing another example of the male screw member screwed into the screw groove shown in FIG.
  • FIG. 10 is an enlarged sectional view showing still another example of the male screw member screwed into the screw groove shown in FIG.
  • FIG. 11 (a) is an enlarged cross-sectional view (a vertical cross-sectional view of a conductor element facing the central space) showing another example of the gas outlet provided in the induction heating coil.
  • Fig. 11 (b) is an enlarged cross-sectional view (horizontal cross-sectional view of the conductor element facing the central space) showing still another example of the gas outlet provided in the induction heating coil.
  • BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
  • FIG. 1 schematically shows a main part of a substrate processing apparatus according to the present invention housed in a water-cooled container (not shown).
  • the substrate processing apparatus includes a cylindrical outer heat insulating wall (2), a cylindrical shape.
  • a reactor (1) having an inner heat insulating wall (3) and a substrate loading / unloading door (4); a first heating means (5) provided on top of the outer heat insulating wall (2); Substrate support means (6) located at the top of 3), upper gas supply means (7) for supplying source gas and cooling gas to the surface of the substrate (S), and A second heating means (8) provided below the substrate supporting means (6), a driving means (9) for supporting and moving the substrate supporting means (6) in a required direction, and a substrate ( The transfer robot (10) that carries the S) into the reactor (1) and unloads the processed substrate (S), and the lower side that blows cooling gas from below the substrate support means (6) Gas supply A stage (11), Ru have Bei Ete a substrate board lifting means (S) lifted et al or the substrate support means (12).
  • This substrate processing apparatus generates a crystalline film or other thin film using a gas phase reaction.
  • the part that generates the gas phase reaction is called a reaction part (la), and the reaction part (la)
  • a loading / unloading part (lb) for transferring the substrate (S) to the outside of the reactor (1) is provided.
  • Cooling water channels (2a) and (3a) are provided in the outer heat insulating wall (2) and the inner heat insulating wall (3), respectively.
  • the first heating means (5) has an induction heating coil (also called a high-frequency coil) (21).
  • the induction heating coil (21) has a flat spiral shape and a gas flow path (23) that is opened upward.
  • the coil body (22) in which the cooling water flow path (24) is formed in a spiral shape, and the cooling water flow path (24) are placed on the coil body (22) from above, and the flow path (23) (24) It consists of a lid (25) that closes the opening.
  • ⁇ (25) is omitted, and only the coil body (22) is shown.
  • (26) is an insulating gap, and this gap (26) is such that the radial width of each conductor forming a spiral shape is constant except for special parts such as ends. It is provided to be.
  • a plurality of gas outlets (29 ) (30) is provided on the side of the coil body (22) facing the substrate (S) on the coil surface (opposing surface).
  • a plurality of gas outlets (29 ) is provided on the side of the coil body (22) facing the substrate (S) on the coil surface (opposing surface).
  • the plurality of gas outlets (29) provided at the periphery of the central space of the coil body (22) are not directed right below but toward the center. It is formed to be inclined.
  • the inclination angles (Kl) and (k2) of these gas outlets (29) are changed according to the positions where they are provided.
  • the gas outlet (30) provided on the opposing surface of the coil body (22) other than around the center space is It is formed not to be directly below but to incline toward the circumferential direction.
  • the gas blowing direction on the opposite surface of the induction heating coil (21) is directed toward the center on the inner periphery of the coil (21), The part is designed to be blown out in the direction of the swirl.
  • the gas passage (23) and the gas outlet ⁇ (29) and (30) of the induction heating coil (21) are used as a source gas outlet during the gas phase reaction process. In addition, it is also used for blowing out cooling gas after gas phase reaction processing. That is, this gas flow path (23) And gas outlets (29, 30), external pipes connected to the gas flow path, multiple gas pipes connected to the pipes, and source gas and cooling gas connected to the gas pipes respectively
  • the gas supply means (partly incorporated in the induction heating coil (21)) can be obtained. 7) is configured to also serve as a source gas supply means for supplying a source gas to the surface of the substrate (S) and an upper gas supply means for blowing a cooling gas from above the substrate support means.
  • the substrate supporting means (6) is a circular plate-shaped susceptor (31) having a circular recess on the upper surface for mounting the substrate (S), and is substantially equidistant from the upper end of the column (33). And a susceptor support arm (32) extending in three directions in the horizontal direction.
  • One projection (32a) for supporting the susceptor (31) at three points is provided at the tip of the upper surface of each support arm (32).
  • the second heating means (8) is a heat reflecting plate (35) whose surface is made of metal such as gold, silver, or aluminum, and is a mirror surface.
  • the heat reflection plate (35) is formed in a disk shape having a through hole in the center.
  • a cooling gas passage (36) for blowing cooling gas vertically upward is provided above the heat reflecting plate (35).
  • 36) is the lower gas supply means (11).
  • a cooling water flow path (37) for cooling the heat reflecting plate (35) is provided below the heat reflecting plate (35).
  • the driving means (9) includes a support (33), which is inserted through a through hole at the center of the heat reflecting plate (35) and whose upper end is integrated with the center of the susceptor support arm (32); A motor (38) consisting of a stepping motor or a servo motor that rotates 33) around a vertical axis, a lifting device (39) that moves the column (33) up and down, and a lifting device (39) 39).
  • the transfer robot (10) is a single-wafer type, and moves between the horizontal direction to enter and exit the inner heat insulation wall (3) and the substrate (S) between the susceptor (31). You can move up and down to change the position.
  • the board lifting means (12) is provided with stepped through holes (41) provided at a total of three places on the board mounting surface, which are equidistant from the center of the susceptor (31) and spaced 120 ° in the circumferential direction. ), A pin (42) with a head that can be moved up and down in this through hole (41), and whose top is stored so as not to exceed the substrate mounting surface, and is provided below the susceptor (31). And a pin receiver (43) provided concentrically with the arrangement of the pin (42) of the susceptor (31) and having the same diameter at 120 ° intervals.
  • the susceptor (31) is rotated by the motor (38) during the gas phase reaction process, but at the end of the process, as shown in FIG. It is stopped so that the pin receiver (43) is located just below (42).
  • FIG. 5 and FIG. 6 show an embodiment of a cooling mechanism used in the substrate processing apparatus.
  • the three pin receivers (43) can be moved up and down by an elevating device (not shown). Pores (46) are provided through I have. Then, when the processing is completed and the rotation of the susceptor (31) is stopped so that the pin receiver (43) is located immediately below the pin (42), the three pins are in this state. The receiver (43) is moved upward. As shown in FIG. 5, the pin receiver (43) passes through the through hole provided in the heat reflection plate (35), reaches the reaction part (la), and contacts the lower end of the pin (42). . The substrate (S) is lifted from the susceptor (31) by the pin (42) being moved upward by the pin receiver (43). .
  • a cooling gas is blown from the upper and lower gas supply means (7) (11) to cool the substrate (S) and the susceptor (31). Since the susceptor (31) is provided with the ventilation hole (46), the substrate (S) is also cooled by the cooling gas passing through the ventilation hole (46) of the susceptor (31).
  • the susceptor (for example, made of carbon) (31) has a large heat capacity and is easily cooled, but the substrate (S) is not in contact with the susceptor (31), so the susceptor (31) Cooled without being affected by heat.
  • the ventilation holes (46) of the susceptor (31) may be provided randomly, for example, as shown in Fig. 5 (b), or radially as shown in Fig. 5 (C). You can.
  • all the pin receivers (43) are raised.
  • the number of pin receivers (43) to be raised may be one, and in this case, one pin receiver (43) is raised.
  • the substrate (S) lifted only by 42) comes into contact with the susceptor (31) at one point on the outer peripheral surface. In this way, the substrate (S) and the susceptor (31) are not in point contact, ie, do not actually contact, and the substrate (S) is not affected by the susceptor (31). Cools without receiving.
  • Sep. 31 (31) may also be used to perform the relative movement of lowering.
  • the susceptor (31) and the pin receiver (43) are moved vertically to the lower loading / unloading section (lb) while maintaining the positional relationship shown in Fig. 5. During this time, the spraying of the cooling gas is continued. Then, the cooled substrate (S) is carried out of the carry-in / out part (lb) by the carrying robot (10).
  • the control unit (40) of the substrate processing apparatus of this embodiment includes a gas supply pressure adjustment unit (44) and a vertical movement amount adjustment unit (45). .
  • the gas supply pressure adjusting section (44) separately adjusts the gas supply pressure of the upper gas supply means (7) and the gas supply pressure of the lower gas supply means (11).
  • a gas blowout provided in the induction heating coil (21) through a valve provided in a pipe connected to the gas flow path (23) of the heating coil (21).
  • the cooling gas is provided in a pipe connected to the gas flow path (36) of the heat reflecting plate (35).
  • the upward pressure of the cooling gas blown from the gas blow-out port of the heat reflector (35) is adjusted via a valve or the like.
  • (31) Adjust the vertical movement of the pin receiver (43) and the heat reflector (35) separately via the lifting device (39) It is.
  • the pin receiver (43) is moved upward, and the cooling operation is started in the state of FIG.
  • the susceptor (31) is moved downward while continuing the cooling operation.
  • the suspension (31), the pin receiver (43), and the heat reflecting plate (35) maintain the positional relationship shown in FIG.
  • the susceptor (31), the pin receiver (43) and the heat reflecting plate (35) are simultaneously lowered at the same speed and moved to the loading / unloading section (lb).
  • Control is performed to increase the supply pressure of the means (7) above the supply pressure of the lower gas supply means (11). Therefore, when the susceptor (31) and the heat reflection plate (35) move down, the distance from the induction heating coil (21) to the substrate (S) increases, and the vicinity of the substrate (S) increases. The balance between the upward pressure and the downward pressure of the cooling gas is maintained by the control unit (40). Accordingly, it is possible to prevent the pollution of the substrate (S) caused by the exhaust gas that has been blown down on the substrate (S) and moved downward and hit the substrate (S) again.
  • the gas outlets (29) and (30) shown in Fig. 4 may be provided with thread grooves (51) and (52) at the opening side as shown in Fig. 7.
  • the hole provided with the thread groove (51) shown in (a) of Fig. 7 is inclined toward the center axis direction of the coil, and the thread groove (52) shown in (b) of Fig. 7 is provided.
  • the holes provided with are inclined in a direction perpendicular to the radial direction of the coil surface.
  • Male thread members (54) (55) (56) are detachably screwed into these thread grooves (51) (52) as necessary.
  • the male screw members (54), (55), (56) have a gas outlet (54) that completely blocks the gas outlet, and a through hole (55a) (56a) in the screwing direction.
  • the through-holes (55a) and (56a) used as the gas blowing holes are appropriately used.
  • FIGS. 8 (a) and (b) show that the thread grooves (51) and (52) shown in FIG. 7 are completely closed by the thread member (54).
  • this thread member (54) a commercially available one can be used. For example, when the size of the substrate (s) is changed to a large one and a small one, the screw holes (51) (51) ( Used to plug 52). As a result, the supply of the source gas to an unnecessary portion is stopped, and the waste of the source gas and the deterioration of the quality of the substrate (S) due to the grown crystal can be prevented.
  • FIGS. 9 (a) and 9 (b) show a male screw member (55) having a through hole (55a) in the screwing direction.
  • the through hole (55a) is used as a gas blowing hole.
  • the center of the through hole (55a) and the center of the screw member (55) are aligned. Therefore, gas can be blown out toward the center of the screw grooves (51) and (52).
  • FIGS. 10 (a) and 10 (b) show another example of a screw member (56) having a through hole (56a) in the screwing direction.
  • the center of the through hole (56a) does not coincide with the center of the male screw member (56), and is inclined in a predetermined direction.
  • the direction of the through hole (56a) is different from the direction of the thread grooves (51), (52), whereby the induction heating core is formed.
  • the gas can be blown out in a direction different from the direction of the thread grooves (51) and (52) formed in the hill (21). Therefore, when it is desired to change the direction of the penetration, it can be changed by replacing the thread member (56) with a different through hole (56a).
  • the holes having the thread grooves (51) and (52) need not necessarily be formed obliquely, and may be at right angles to the coil surface. Then, as shown in FIG. 10 (b), the screw groove (52) formed in the hole perpendicular to the coil surface and the male screw member (56) having the inclined through hole (56a) are formed. set By being combined, a gas outlet in the inclined direction can be obtained.
  • tops of the thread members (54), (55), and (56) should not be outside the coil surface. .
  • the above thread members (54), (55), (56) can be prepared in various specifications, and the direction, thickness and shape of the through holes (55a) (56a) can be changed.
  • the induction heating coil (21) can be used as it is, and the substrate can be changed simply by changing the male screw members (54) (55) (56). It can respond to changes in processing specifications.
  • the male screw member is made of the same material as the high-frequency coil so as not to adversely affect the induction heating coil (21). For example, it is compatible with a copper induction heating coil (21). And copper or brass.
  • the through hole provided in the screw member may be helical, so that the gas blown out from the helical through hole is turned into a swirling flow, and is formed on the substrate (S).
  • the source gas can contribute to obtaining a uniform turbulent state.
  • the gas outlet (29) provided on the inner periphery of the coil body (22) is provided on the opposite surface of the coil (21) in the one shown in Fig. 4 (a). It is more preferable that the gas outlet provided in the inner peripheral portion of the main body (22) be provided in the inner peripheral surface as shown in FIG.
  • the gas outlet (57) shown in Fig. 11 (a) is provided on the inner peripheral surface of the central space of the coil body (22), and is centered on the central axis of the coil (21).
  • the gas outlet (57) is arranged at an almost equal angle, and the direction of the gas outlet (57) is The direction is toward the central axis of (21).
  • the direction of these gas outlets (57) is such that they are connected at one point on the central axis of the coil (21) and on the substrate (S). It has been.
  • the gas outlet (58) shown in FIG. 11 (b) is provided on the inner peripheral surface of the central space of the coil body (22), and is centered on the central axis of the coil (21).
  • the gas outlets (58) are inclined at an angle with respect to the direction of the central axis of the coil (21) in the horizontal plane.
  • the source gas is sufficiently supplied even under the center of the coil (21) to improve the uniformity during the gas phase reaction process. It can be done.
  • the induction heating coil (21) shown in FIGS. 2 and 3 has a power connection terminal connected to the inner peripheral end and the outer peripheral end, and is driven by a high-frequency power supply.
  • high-frequency power supply for example, an IGBT (gate insulated bipolar transistor), which is a power semiconductor switching element, is used.
  • IGBT gate insulated bipolar transistor
  • the substrate processing method according to the present invention is enabled by using, for example, the above-described substrate processing apparatus.
  • a substrate processing method for growing a crystal film or other thin film on the substrate using a vapor phase reaction is performed.
  • the pin receiver (43) is moved upward, and the substrate (S) is lifted from the susceptor (31) by the top surface of the pin (42). It is characterized by cooling in this state.
  • a plurality of ventilation holes (46) are provided in the susceptor (31), and cooling gas is supplied from both the upper and lower sides of the substrate (S) using the upper gas supply means (7) and the lower gas supply means (11).
  • the substrate (S) is moved downward from the reaction section (la) to the unloading position while spraying a cooling gas, and is further cooled at the substrate position during the downward movement. More preferably, at least one of the upper and lower gas supply pressures is adjusted so that the downward pressure of the reject gas is greater than or equal to the upward pressure of the lower cooling gas.
  • the substrate processing apparatus and the substrate processing method according to the present invention are suitable for performing a substrate processing (CVD: Chemical Vapor Deposition) for forming a crystal film or other thin films using a gas phase reaction.
  • CVD Chemical Vapor Deposition

Description

明細書 基板処理装置および基板処理方法 技術分野
この発明は、 気相反応を用いて結晶膜あるいはその他の薄 膜の生成を行う基板処理(CVD:Chemical Vapor Deposition)装置およ び基板処理方法に関 し、 特に、 反応炉への被処理基板の受け 渡 し と処理後の基板の反応炉外への取 り 出 し と を搬送ロポ ッ ト によ り 行う基板処理装置および基板処理方法に関する。 背景技術
気相反応を用 いて結晶膜ある いはその他の薄膜の生成を行 う と と も に、 反応炉への被処理基板の受け渡し と処理後の基 板の反応炉外への取り 出 し と を搬送ロボ ッ ト によ り 行う基板 処理装置は、 従来よ り 知 られている。 この装置によ る処理後 の基板は、 非常に高温であるため一旦冷却されるが、 反応炉 内で冷却されるか、 または、 反応炉か ら基板を搬出 し、 別途 設け られた冷却室において冷却されていた。 反応炉内で冷却 する場合には、 自然冷却とするか、 反応後に、 パージガス (水 素または不活性ガス等) を供給する こ とで行われてお り 、 い ずれに し ろ、 基板は、 反応処理時と同 じ位置に保持されて冷 却されていた。
例えば、 特開平 8 — 2 3 9 2 9 5 号には、 サセプ夕 に支持 された基板の上下両側に配置された誘導加熱用 コイ ル表面に 設け られているガス吹き出 し 口か ら冷却ガス を吹き出す冷却 手段を備えた基板処理装置が開示されている。 こ の装置によ 'る と , 基板処理後に高周波出力 を停止 した後で、 上下か ら 冷 却ガス を吹き付ける こ と によ り 、 専用 の冷却炉を別途設ける こ とな く 、 素早 く 基板の冷却を行う ことができ、 これによ つ て処理能力 を高める こ とができる とい う利点を有している。
と こ ろで、 気相反応を行う ためには、 被処理対象を 9 0 0 度以上に加熱する こ とが必要となるが、 こ の加熱は、 被処理 対象である基板以外にその周囲も加熱 して しまい、 この結果、 不要な部分で結晶や薄膜の成長が起こ り 、 これがガスの流れ 等によ り 剥がれ落ちて基板の処理面上に付着 し 、 基板の品質 低下を来すとい う 問題があっ た。 そのため、 気相反応を用 い た薄膜生成装置の中には反応炉内の反応をさせる部分 (反応 部) の周囲壁面等を冷却する構造の ものも考え られている。
また、 誘導加熱の場合、 例えば、 シ リ コ ン基板とカーボ ン サセプ夕 については、 サセプタ は 4 0 0 度程度までは基板よ り 早く 温度が上昇する という特性があ る。
また、 一般的に、 サセプ夕 の熱容量は基板よ り はるかに大 きいと レ う特性もある。
上記従来の反応部の周囲壁面等を冷却する構造の基板処理 装置によ る と、 搬送ロボッ ト による反応部との直接の基板の 搬入出時に反応部が開放されるため、 反応炉外か らパーティ クル等ゴ ミ を巻き込む恐れがあ る.と と もに、 基板搬入出口 を 設け、 その都度開閉する必要上、 水冷等の冷却構造をとれず、 開閉口 に不要な結晶等の成長が生じる恐れがあ った。
また、 基板 1 枚ずつに反応処理を施す枚葉式の基板処理装 置では、 その作業効率を上げるために、 基板の搬入、 基板の 加熱、 加熱した基板の表面への結晶膜あるいはその他の薄膜 の生成、 基板の冷却、 基板の搬出、 さ ら に言えば次の被処理 基板を処理するための環境を整える等の一連の作業に要する 時間を低下させなければな らない。 と こ ろが、 冷却にはサセ プ夕が大き く 関わってお り 、 基板の早期加熱のために利用 さ れるサセプ夕が、 その熱容量の大きさ ゆえ冷却時には早 く 冷 やされるべき基板に熱を供給する熱源の役目 を果た して しま う と い う 問題があ っ た。 このサセプ夕 の影響を避けるために 反応炉外に冷却専用のチャ ンパを設けて基板をそち らへ搬送 し冷却する方法があるが、 専用 のチャ ンバに要する コ ス トや スペース上の問題および熱い基板の搬送上の問題がある。
この発明の 目的は、 前記問題の解消を図る と と もに、 冷却 専用のチヤ ンバを設けずに、 基板を冷却する時間を短縮 し作 業効率向上させる こ とができる基板処理装置および基板処理 方法を提供する こ と ある。 発明の開示
この発明による基板処理装置は、 反応炉と、 基板を載置す るサセプ夕 と、 基板を加熱する加熱手段と 、 基板表面に原料 ガス を供給する原料ガス供給手段と、 基板を反応炉内に搬入 出する搬送ロボ ッ 卜 と、 冷却用ガス を吹き出すガス供給手段 と、 サセプ夕 を上下移動させる上下移動手段と を備え、 サセ プ夕 の所定位置に設け られた少な く と も 3 つの段付きの貫通 孔に、 頭付きの ピンが頂面を基板載置面か ら突出させないよ う にかつ下端部をサセプ夕か ら突出させて上下移動可能にそ れぞれ嵌め入れ られてお り 、 搬送ロボ ッ ト によ る基板の搬入 出時にサセプ夕 が下降させ られる こ と によ っ て、 各ピンの下 方の待機位置に位置する ピン受けによっ て ピン下端が受け ら れて ピンが上昇 し、 ピンの頂面によっ て基板が持ち上げられ るよ う になされている基板処理装置において、 反応炉に、 被 処理基板に気相反応をせ しめる反応部と、 反応部の下方にあ つ て搬送ロ ボ ッ ト による基板搬入出時にサセプ夕が位置する 搬入出部とが形成されてお り 、 少な ぐと も 1 つの ピン受けが 上下移動可能と されて、 冷却時に前記待機位置以外で基板を サセプ夕か ら持ち上げ可能と されている こ と を特徴とする も のである。
加熱手段と しては、 ヒー夕、 ラ ンプ、 誘導加熱用 コイ ルな どが適宜使用さ れる。
原料ガス供給手段は、 基板表面側側方または上方に供給口 を専用 に設けるか、 ある いは、 例えば、 誘導加熱用 コイル内 に設け ら れたガス流路およびガス吹き出 し 口 によつ て構成さ れる。
サセプタ は、 例えば、 カーボン、 石英等で製作され、 支柱 の上端部に設け られたサセプタ支持腕によ っ て支持される。 この支柱の下部には、 これを回転させるモータ (ステ ツ ピ ン グモ一夕 またはサーボモータなど) が設けられてお り 、 サセ プ夕がモータ によ っ て回転させられる こ と によ り 、 原料ガス 流や加熱手段の位置等による原料ガスの分布および熱の分布 の影響が緩和される。
ガス供給手段は、 例えば、 上側ガス供給手段と下側ガス供 給手段とか ら構成され、 上側ガス供給手段は、 例えば、 基板 表面上方に供給 口 を専用に設けるか、 または、 原料ガス供給 手段に原料ガス に代えて冷却ガス (水素な らびに不活性ガス 等) を供給する こ と によって構成される。 また、 下側ガス供 給手段は、 例えば、 冷却ガス供給管を専用 に設けるか、 あ る いは、 下側加熱手段の誘導加熱用コイ ルまたは熱反射板内に 設けられたガス流路およびガス吹き出 し 口 によつ て構成され る。 こ の場合の熱反射板は、 サセプ夕 に対向 し、 加熱処理中 には、 主に、 加熱した基板やサセプ夕 の幅射熱を反射する、 も し く は、 サセプ夕 と熱反射板との間に位置する加熱手段が ある場合に、 その手段か ら放出される熱線を反射する こ とで、 熱線の反射に よ り サセ プ夕 下面を加熱する手段 とな っ て い る。
基板に吹き付け られた冷却ガスは、 基板の上方に移動 しな いよ う に、 基板面よ り 上の気圧とサセプ夕の下方に位置する 排ガス排出手段とによって、サセブ夕 の下方か ら排出される。
基板は、 反応部において処理された後、 こ の位置またはこ の位置よ り 下方で、 上昇移動してきた 1 以上の ピ ン受けによ り サセプ夕か ら持ち上げられて、 ガス供給手段からの冷却ガ ス によっ て冷却される。 その後、 この位置関係を保っ たま ま で、 基板、 サセプ夕およびピン受けが下降させ られて、 搬送 ロ ボ ッ 卜 による基板搬入出が可能な搬入出部に位置させ られ る。 冷却ガス は、 こ の下降中に供給されてもよい。 そ して、 下降 してきた ピ ン受けが待機位置まで下がる こ とで、 冷却後 の基板は、 搬送ロボ ッ ト によっ て所要の方向 (例えば水平方 向) に搬出される。 下側ガス供給手段は、 サセプ夕の下降に 伴っ て、 これに千渉しないよ う に一定の距離を保っ て下降す る。 下側ガス供給手段は、 サセプ夕の上下移動とは別に移動 する こ ともできる。
なお、 上昇移動する ピン受けの数は、 1 でもよいが、 基板 を安定に支持可能な位置に配さ れた 3 以上の ピン受けを移動 (同期移動) させる こ とが望ま しい。
こ の発明の基板処理装置によ る と、 反応炉内を反応部と搬 入出部 と に分ける こ と によ り 、 反応部周辺壁面の冷却能力 を 落 と さずに済むため、 不要な場所に結晶や薄膜の生成が生じ る こ と を抑える こ とができる。 また、 冷却時に反応部位置に あ る基板をサセプ夕か ら持ち上げる こ と によ り 、 基板とサセ プ夕の接触面積を大幅に小さ く した状態ある いは非接触に し た状態で、 基板の処理面に冷却ガス を供給する こ とができ、 冷却速度を向上する こ とができる。
上記基板処理装置において、 ガス供給手段は、 サセプ夕の 下部に冷却ガス を供給し得る と と もに、 ピ ン受けと干渉しな いよ う になされた下側ガス供給手段と、 基板の上部に冷却ガ ス を供給 し得る上側ガス供給手段と を有 してお り 、 サセプタ に、 下側ガス供給手段によ り 供給された冷却ガスが通過可能 な複数の通気孔が設けられている こ とが好ま しい。
上側ガス供給手段については、 基板の上方空間の気圧を基 板の下方空間の気圧よ り も高め る ため の ガス供給手段 と さ れ、 例えば、 基板の上方空間にガス を供給する手段と、 原料 ガス を供給する手段の う ちのいずれか、 も し く は双方に冷却 ガス (不活性ガス も し く は水素等で、 基板等を冷却可能なガ ス) を供給する こ とで構成される。
このよ う にする と、 サセプ夕 の下方か ら通気孔を介 して基 板下面に冷却ガス を供給する こ とができ、 一層冷却効果が高 ま る。
上側および下側のガス供給手段のガス供給圧力をそれぞれ 別個に調整する圧力調整手段と、 基板をサセプ夕か ら持ち上 げた状態でサセ プ夕およびサセプタ を持ち上げている ピ ン受 けを移動させる移動量調整手段と をさ らに備えている こ とが 好ま しい。
こ のよ う にする と 、 基板をサセプ夕か ら持ち上げた状態で 反応部か ら搬入出部へ処理後の基板を移動する 傺に も冷 ¾iガ ス を吹き続ける こ と も可能とな り 、 冷却作業と移動作業とを 別々 に行う 装置に比べて、 反応炉への基板瘢入か ら反応処理 後の基板搬出までの時間を短く する こ とができ、 よっ て、 基 板処理能力 をよ り 高める こ とができる。 特に、 上側および下 側のガス供給手段のガス供給圧力 を認識する と と も に、 基板 (サセプ夕) の移動量を移動量検出手段等によ り 認識すれば、 基板の移動量に応じて、 気圧のバラ ンスを保っ て冷却 しなが ら基板を搬入出部へ垂直移動する こ と もできる。
この発明によ る基板処理方法は、 サセプ夕 に載置された基 板を加熱 しながら これに原料ガスを吹き付ける こ と によ り 、 気相反応を用いた結晶膜あるいはその他の簿膜を基板上に成 長させる基板処理方法において、 基板処理後に、 基板をサセ プ夕か ら持ち上げた状態で冷却する こ と を特徴とする もので あ る。
こ の発明の基板処理方法による と、 基板とサセプ夕 の接触 面積を大幅に小さ く した状態で、 基板の処理面に冷却ガスを 供給する こ とができ、 冷却速度を向上する ことができる。
サセプ夕 に複数の通気孔を例えばラ ンダムに も し く は放射 状等規則的に設け、 基板の上下両側か ら冷却ガスを吹き付け る こ とが好ま しい。
こ のよ う にする と、 サセプ夕 の下方か ら通気孔を介 して基 板下面に冷却ガス を供給する こ とができ、 一層冷却効果が高 まる。
冷却ガス を吹き付けながら基板を反応部か ら搬出位置に垂 直移動させ、 さ ら に、 下方移動中の基板位置における上側冷 却ガスの下向き圧力が下側冷却ガスの上向き圧力以上に保た れる よ う に、 上側および下側のガス供給圧力の少な く と も一 方を調整する こ とが好ま しい。
こ のよ う にする と、 反応部か ら搬出位置へ処理後の基板を 移動する際に も冷却が進み、 冷却作業と移動作業と を別々 に 行う方法に比べて、 反応炉への基板搬入か ら反応処理後の基 板搬出までの時間 を短く する こ とができ、 よっ て、 基板処理 能力を高める こ とができる。 さ ら に、 基板が下降した際には、 基板付近における冷却ガスの上向き圧力 と下向き圧力 とのバ ラ ンス を、 下向き圧力が上向き圧力以上に保たれるよ う に調 整する こ とができ、 したがって、 基板に吹き付け られて下方 に移動 した排ガスが再び基板に当たる こ と によ って生 じる基 板の汚染を防止する こ と もできる。 図面の簡単な説明
図 1 は、 この発明による基板処理装置の主要部の概要を示 す垂直断面図である。
図 2 ( a ) は、 誘導加熱用コイ ルの上面を示す平面図であ り 、 図 2 ( b ) は ( a ) の b — b線に沿う 断面図である。 図 3 は、 誘導加熱用コ イ ルの下面を示す底面図である。 · 図 4 は、 誘導加熱用 コ イ ルに設け られたガス吹き出 し 口の 拡大断面図であ り 、 ( a ) は中心空間部に面する導電体要素 の垂直断面図であ り 、 ( b ) は中心空間部以外に面する導電 体要素の垂直断面図 (径方向) であ り 、 ( c ) は ( b ) の c-C 線に沿う 断面図 (周方向) である。
図 5 は、 基板処理装置の冷却機構の一実施形態を示す垂直 断面図である。
図 6 は、 図 5 に示す基板処理装置の制御部を示すブロ ッ ク 図である。
図 7 は、 ガス吹き出 し 口 に設け られたね じ溝を示す拡大断 面図であ る。
図 8 は、 図 7 に示すねじ溝にねじ込まれるおねじ部材のー 例を示す拡大断面図である。
図 9 は、 図 7 に示すねじ溝にねじ込まれるおねじ部材の他 の例を示す拡大断面図である。
図 1 0 は、 図 7 に示すねじ溝にねじ込まれるおねじ部材の さ ら に他の例を示す拡大断面図である。
図 1 1 ( a ) は、 锈導加熱用 コイ ルに設け られるガス吹き 出 し 口 の他の例を示す拡大断面図 (中心空間部に面する導電 体要素の垂直断面図) であ り 、 図 1 1 ( b ) は、 誘導加熱用 コイ ルに設け られるガス吹き出 し 口のさ ら に他の例を示す拡 大断面図 (中心空間部に面する導電体要素の水平断面図) で ある。 発明を実施するための最良の形態 この発明の実施の形態を、 以下図面を参照 して説明する。 図 1 は、 図示 しな'い水冷の容器に納め られた この発明によ る基板処理装置の主要部の概略を示すもので、 基板処理装置 は、 円筒状外断熱壁(2)、 円筒状内断熱壁(3)および基板搬入 出用開閉扉 (4)を有する反応炉 (1) と、 外断熱壁 (2)の頂部に 設け られた第 1 加熱手段(5)と 、 内断熱壁(3)の頂部に位置す. る基板支持手段 (6) と 、 基板 (S)表面に原料ガスおよ び冷却 ガス を供給する上側ガス供給手段 (7)と、 内断熱壁(3)内の基 板支持手段(6)下方に設け られた第 2 加熱手段 (8)と、 基板支 持手段 (6)を支持 して これを所要の方向に移動させる駆動手 段 (9) と 、 基板 (S)を反応炉 (1)内に搬入 しかつ処理後の基板 (S)を搬出する搬送ロ ボ ッ ト (10) と 、 冷却ガス を基板支持手 段 (6)の下方か ら吹き出す下側ガス供給手段 (11) と、 基板(S) を基板支持手段か ら持ち上げる基板持ち上げ手段(12) と を備 えて い る。
こ の基板処理装置は、 気相反応を用いて結晶膜あるいはそ の他の薄膜の生成を行う もので、 気相反応を生 じさせる部分 を反応部 (la)と呼び、 反応部(la)とは別な場所である下方に、 基板 (S)を反応炉 (1)外 と受け渡しする搬入出部 (lb)を備えて レ、 る。
外断熱壁(2)お よび内断熱壁 (3)内には、 冷却水流路 (2a) (3a)がそれぞれ設けられている。
第 1 加熱手段 (5)は、 誘導加熱用 コ イ ル (高周波コ イ ルと も い う ) (21)を有 している。 誘導加熱用 コイ ル (21)は、 図 2 および図 3 に詳し く 示すよ う に、 導電体が平面状の渦巻き形 状になさ れた もので、 それぞれ上方に開 口 したガス流路 (23) お よ び冷却水流路 ( 24)が渦巻き状に形成さ れた コ ィ ル本体 (22) と 、 コ イ ル本体 (22)に上か ら被せ られて各流路 (23) (24) の開 口 を塞 ぐ蓋 (25)とか ら なる。 図 2 ( a ) では、 篕 (25)を 省略 して、 コ イ ル本体 (22)だけを示 している。 図中、 (26)は 絶縁用の間隙であ り 、 この間隙 (26)は、 渦巻き形状を形成し ている各導電体部分の径方向の幅が端部等特殊な部分を除い て一定になるよ う に設け られている。
コ イ ル本体 (22)の コ イ ル面の基板(S)に対向する側 (対向 面) には、 図 3 に示すよ う に、 ガス流路に通じ る複数のガス 吹き出 し 口 (29) (30)が設け られている。 図 4 ( a ) に詳し く 示すよ う に、 コイ ル本体 (22)の中心空間部周縁に設け られて いる複数のガス吹き出 し 口 (29)は、 真下ではな く 、 中心に向 かっ て傾斜するよ う に形成されている。 これら のガス吹き出 し 口 (29)の傾斜角 (Kl) (k2)は、 設け られる位置に応 じて変更 さ れている。 また、 図 4 ( b ) ( c ) に詳 し く 示すよ う に、 コ イ ル本体 (22)の中心空間部周緣以外の対向面に設け ら れて いる ガス吹き出 し 口 (30)は、 真下ではなく 、 周方向に向かつ て傾斜するよ う に形成さ れている。 この結果、 誘導加熱用コ ィル (21)対向面におけるガス吹き出 し方向は、 図 3 に矢印で 示すよ う に、 コ イ ル (21)の内周部では、 中心に向かい、 その 他の部分では、 渦巻きの旋回方向に向かっ て吹き出さ れるよ う になされている。
誘導加熱用 コ イ ル (21)のガス流路 (23)およびガス吹き出 し □ (29) (30)は、 気相反応処理時の原料ガス の吹き出 し用 と し て使用 さ れる と と も に、 気相反応処理後の冷却ガスの吹き出 し用 と しても使用 されている。 すなわち、 このガス流路 (23) およびガス吹き出 し 口 (29 ) ( 30) と、 ガス流路に接続される外 部の配管、 その配管に接続された複数のガス配管およびそれ ら ガス配管に接続された原料ガス と冷却ガスそれぞれのガス 供給源と、 それぞれのガス供給圧力調整部と、 ガス切 り 替え 手段とが組み合わされる こ と によ り 、 誘導加熱用コ イ ル (21〉 に一部内蔵さ れたガス供給手段 (7)は、 基板 (S )表面に原料 ガス を供給する原料ガス供給手段と、 冷却ガス を基板支持手 段の上方から吹き出す上側ガス供給手段と を兼ねる構成と さ れている。
基板支持手段 (6)は、 基板 (S )を載せる 円形の凹所を上面 に有 している 円形板状のサセプ夕 (31 )と、 支柱 (33 )の上端部 か らそれぞれ等間隔で略水平方向の 3 方にのびるサセプタ支 持腕 (32 ) と を備えてい る。 各支持腕 (32 )の上面の先端部に、 サセ プ夕 (31 ) を 3 点支持する突起 (32a)がそれぞれ 1 つ設 け られている。
第 2 加熱手段 (8)は、 表面が金、 銀、 アルミ ニウ ムな どの 金厲製メ ツキが施されかつ鏡面である熱反射板 (35 )と されて いる。 熱反射板 (35 )は、 中央に貫通孔を有する 円盤状に形成 されている。 図 1 に示すよ う に、 熱反射板 (35 )の上部には、 冷却ガス を垂直上方に向けて吹き出す冷却ガス流路 (36)が設 け られてお り 、 こ の冷却ガス流路 (36)が下側のガス供給手段 ( 11 ) と されている。 ま た、 熱反射板(35 )の下部には、 熱反射 板(35 )を冷却するための冷却水流路 (37)が設け られている。
なお、 図示省略したが、 第 2 加熱手段と して、 ピン受け (43 ) と千渉 しないよ う に配置された第 1 加熱手段と同様の誘導加 熱用コイ ルを用いてもよい。 駆動手段 (9)は、 熱反射板 (35)の中央の貫通孔に揷通さ れ てその上端部がサセプタ支持腕(32)の中央部に一体化されて いる支柱 (33)と、 支柱 (33)を垂直軸回 り に回転させるステ ツ ビ ングモータある いはサーボモー夕か らなるモー夕 (38) と、 支柱(33)を上下方向に.移動させる昇降装置(39)と、 昇降装置 (39)を駆動するための制御部とを備えている。
搬送 ロ ボ ッ ト (10)は、 枚葉式の ものであ り 、 内断熱壁 (3) 内に出入 り するための水平方向移動と、 サセプ夕 (31)との間 で基板 (S)を移 し替える ための上下方向移動を行う こ とがで きる。
基板持ち上げ手段 (12)は、 サセプタ (31)の中心か ら等距離 で周方向に 1 2 0 ° 間隔をおいた基板載置面の計 3 個所に設 け られた段付きの貫通孔 (41) と、 こ の貫通孔 (41)に上下移動 可能にかつ頂部が基板載置面を越えないよ う に収め られた頭 付きの ピ ン (42)と、 サセプタ (31)の下方に設け られかつサセ プ夕 (31)の ピン (42)の配置と同心でかつ同径の 1 2 0 ° 間隔 で設け られた ピ ン受け (43)と を備えている。
サセプタ (31)は、 上述のよ う に、 気相反応処理を行っ てい る 間、 モータ (38)によ っ て回転させ られるが、 処理終了時に は、 図 1 に示すよ う に、 ピ ン (42)のち よ う ど真下に ピ ン受け (43)が位置するよ う に停止させられる。
図 5 および図 6 は、 こ の基板処理装置で使用 されている冷 却機構の一実施形態を示している。
同図に示す冷却機構においては、 3 つの ピ ン受け (43)は、 昇降装置 (図示略) によっ て、 上下移動可能と されてお り 、 サセ プ夕 (31)には、 複数の通気孔 (46)が貫通状に設け られて いる。 そして、 処理が終了 して、 ピン (42)のち よ う ど真下に ピ ン受け (43)が位置するよ う にサセプタ (31)の回転が停止さ せ られる と 、 こ の状態で 3 つの ピ ン受け (43)が上方に移動さ せ られる。 図 5 に示すよ う に、 ピ ン受け (43)は熱反射板 (35) に設け られた貫通孔を通過 して反応部 (la)に至 り 、 ピ ン (42) の下端に当接する。 そ して、 こ の ピ ン (42)がピ ン受け (43)に よ っ て上方に移動さ せ られる こ と によ っ て、 基板 (S)がサセ プ夕 (31)か ら持ち上げられる。 この段階で、 上側および下側 のガス供給手段 (7) (11)か ら冷却ガスが吹き付け られ、 基板 (S)およびサセプタ (31)が冷却さ れる 。 サセプタ (31)には、 通気孔 (46)が設け られいる ので、 基板 (S)は、 サセプ夕 (31) の通気孔(46)を通過 した冷却ガス によ っ て も冷却さ れる。 サ セプ夕 (例えばカーボン製) (31)は熱容量が大き いため、 冷 却さ れに ぐ いが、 基板 (S)は、 サセプ夕 (31) とは接触 して い ないため、 サセプタ (31)の影響を受ける こ とな く 冷却される。
サセ プ夕 (31)の通気孔(46)は、 例えば、 図 5 ( b ) に示す よ う に ラ ンダム に設けてもよ く 、 また、 同図 ( C ) に示すよ う に放射状に設けてもよ い。
なお、 こ の実施形態では、 全てのピ ン受け (43)を上昇さ せ ている が, 上昇させる ピン受け (43)は、 1 つでもよ く 、 こ の 場合には、 1 つの ピ ン (42)だけによつ て持ち上げられた基板 (S)は、 外周面の 1 点でサセプ夕 (31)に接触する こ とになる。 こ う して、 基板 (S) とサセプ夕 (31) と は、 点接触すなわち実 質的には接触していないよ う にな り 、 基板 (S)は、 サセプ夕 (31)の影響を受ける こ とな く 冷却される。
また、 ピ ン受け (43)のみを上方移動させるのではな く 、 サ セプ夕 (31)も下降させる相対移動を行ってもよい。
サセプ夕 (31)と ピン受け (43)と は、 図 5 の位置関係を保つ たま ま下方の搬入出部 (lb)に垂直に移動させ られる。 この間 にも冷却ガスの吹き付けは継続される。 そ して、 冷却された 基板 (S)は、 搬入出部 (lb)か ら搬送 ロ ボ ッ ト (10)によ っ て搬 出される。
こ の実施形態の基板処理装置の制御部 (40)には、 図 6 に示 すよ う に、 ガス供給圧力調整部(44)と、 上下移動量調整部 (45) とが設け られている。 ガス供給圧力調整部 (44)は、 上側のガ ス 供給手段 ( 7〉 の ガス 供給圧力 お よ び下側 のガ ス 供給手段 (11)のガス供給圧力 をそれぞれ別個に調整する も ので、 誘導 加熱用 コ イ ル (21)のガス流路 (23)に接続さ れた配管に設け ら れているバルブな ど介 して、 誘導加熱用 コイ ル (21)に設け ら れたガス吹き出 し 口 (29) (30)か ら吹き出される冷却ガス の下 向き の圧力 を調整する と と も に、 熱反射板 (35)の ガス流路 ( 36) に接続さ れた配管 に設け ら れてい るバルブな ど を介 し て、 熱反射板 (35)のガス吹き出 し 口か ら吹き出される冷却ガ スの上向きの圧力 を調整している。 上下移動量調整部(44)は、 サセプタ (31)、 ピ ン受け(43)および熱反射板(35)の上下移動 量を昇降装置 (39)を介 してそれぞれ別個に調整する ものであ る。
こ の制御部(40)によ る と、 反応処理後、 まず、 ピン受け (43) が上方に移動させ られ、 図 5 の状態で、 冷却作業が開始され る。 そ して、 冷却作業を継続しながら 、 サセプタ (31)が下方 に移動さ せられる。 こ の際、 サセブ夕 (31)、 ピン受け(43)お よび熱反射板 (35)は、 図 5 の位置関係を保っ たまま、 つま り 、 サセプ夕 (31) と ピ ン受け (43)と熱反射板 (35)とが同時に同 じ 速さで下降させ られ、 搬入出部(lb)に移動させ られる。 サセ プタ (31)を反応部(la)か ら搬入出部(lb)へ移動させる際には、 サセプタ (31)の下降量および熱反射板 (35)の下降量に応 じて 上側ガス供給手段 (7)の供給圧を下側ガス 供給手段 (11)の供 給圧よ り 高める制御が行なわれる。 したがって、 サセプタ (31) および熱反射板(35)が下降する こ と によ り 、 誘導加熱用 コ ィ ル (21)か ら基板(S)までの距離が長く な り 、 基板 (S)付近にお ける冷却ガス の上向き圧力 と下向き圧力 と のバラ ンスが、 制 御部 (40)によ っ て保たれる。 これによ り 、 基板 (S)に吹き付 け られて下方に移動 した排ガスが再び基板(S)に当たる こ と によっ て生 じる基板(S)の汚染を防止する こ とができる。
図 4 に示 し たガス 吹き 出 し 口 (29) (30)の開 口側の部分に は、 図 7 に示すよ う に、 ね じ溝 (51) (52)が施さ れる こ とがあ る。 図 7 の ( a ) に示すね じ溝 (51)が施さ れた孔は、 コイ ル の中心軸方向に向かっ て傾斜させられてお り 、 図 7 の ( b ) に示すねじ溝 (52)が施された孔は、 コ イ ル面の半径方向に直 角の方向に傾斜させ られている。 これ ら のね じ溝 (51) (52)に は、 必要に応 じて、 おねじ部材 (54) (55) (56)が着脱自在にね じ込まれる。 おねじ部材(54) (55) (56) と しては、 ガス吹き出 し 口 を完全に塞 ぐも の (54) と、 .ね じ込み方向に貫通孔 (55a) (56a)を有 し こ の貫通孔 (55a) (56a)がガス吹き出 し孔と して使 用 される もの とが適宜使用 される。
図 8 ( a ) ( b ) は、 図 7 で示されたね じ溝 (51) (52)がお ね じ部材 (54) に よ っ て完全に塞がれてい る も の を示 し て い る。 こ のおね じ部材 (54)は、 市販の ものが使用可能であ り 、 例えば、 基板 (s)のサイ ズを大き い も のカゝ ら小 さ い ものに変 えた場合に、 コ イ ル (21)の外周緣部にある ガス吹き出 し用ね じ溝(51) (52)を塞 ぐために使用 される。 これによ り 、 不要な 部分への原料ガスの供給は停止し、 原料ガスの無駄および成 長 した結晶によ る基板(S)の品質低下を防止する こ とができ る。
図 9 ( a ) ( b ) は、 ね じ込み方向に貫通孔 (55a)を有する おねじ部材(55)を示している。 このおねじ部材(55)による と、 その貫通孔 (55a)がガス吹き出 し孔と して使用 される。 貫通 孔 ( 55a)の中心 とおね じ部材 ( 55)の中心と は一致さ せ ら れて いる。 したがって、 ねじ溝(51) (52)の中心方向にガス を吹き 出すこ とができる。
図 1 0 ( a ) ( b ) は、 ねじ込み方向に貫通孔(56a)を有す る おね じ部材 (56)の他の例 を示 して い る。 こ のおね じ部材 (56)では、 貫通孔 (56a)の中心は、 おねじ部材(56)の中心には 一致してお らず、 所定方向に傾斜させ られてい る。 こ のおね じ部材 (56)に よ る と、 その貫通孔 (56a)の方向がね じ溝 (51) (52)の方向とは異なっ てお り 、 これによ り 、 誘導加熱用 コ ィ ル (21)にあけ られたね じ溝(51) (52)の方向 とは異なっ た方向 にガス を吹き出させる こ とができる。 したがっ て、 貫通の方 向 を変えたい と き には異なる貫通孔 (56a)のおね じ部材 (56) に代え る こ と によ っ て変更する こ と がで きる 。 ね じ溝 ( 51 ) (52)を有する孔は、 必ずし も斜めに形成さ れている必要はな く 、 コイ ル面に対 して直角であっ てもよい。 そ して、 図 1 0 ( b ) に示すよ う に、 コイル面に対して直角の孔に施された ねじ溝 (52)と傾斜貫通孔(56a)を有するおねじ部材(56)とが組 み合わされる こ とによ り 、 傾斜方向のガス吹き出 し 口 を得る こ とができる。
なお、 おね じ部材 (54) (55) (56)の頭頂部はコ イ ル面よ り外 に出ないよ う にする こ とが望ま しい。 .
上記おね じ部材 (54) (55) (56)は、 種々 の仕様のものを用意 する こ とが可能であ り 、 その貫通孔 (55a) (56a)の方向や太さ 、 形状の変更を基板 (S)や原料ガスに応 じて変更する こ と によ り 、 誘導加熱用コイル(21)はそのまま使用 し、 おねじ部材 (54) (55) (56)を変更するだけで基板処理の仕様の変更に対応する こ とができる。
おねじ部材は、 誘導加熱用 コ イ ル (21)に悪影響を与えない よ う 、 高周波コイ ルと同 じ材質が用 い られ、 例えば、 銅製の 誘導加熱用 コ イ ル (21)に対応 して銅製または黄銅製など と さ. れる。
なお、 図示省略したが、 おね じ部材に設ける貫通.孔は、 ら せん状でもよ く 、 これによ り 、 らせん状貫通孔か ら吹き出す ガス を旋回流 と し 、 基板 (S)上の原料ガスが均一な乱流状態 を得る こ とに寄与させる こ とができる。
コ イ ル本体 (22)の内周部に設け られているガス吹き出 し 口 (29)は、 図 4 ( a ) に示すものでは、 コイル (21)の対向面に 設け られてい るが、 コイ ル本体 (22)の内周部に設け られるガ ス吹き出 し 口 は、 図 1 1 に示すよ う に、 内周面に設け られる こ とがよ り 好ま しい。 図 1 1 ( a ) に示すガス吹き出 し 口 (57) は、 コイ ル本体 (22)の中心空間部内周面に設け られてお り 、 コ イ ル(21)の中心軸を中心と してほぼ均等角度に配され、 ガ ス吹き出 し 口 (57)の方向は、 対向面外側に向かいかつコイ ル ( 21 )の中心軸方向に向か う 方向と されている。 そ して、 これ ら のガス吹き出 し 口 (57)の方向は、 それ らがコ イ ル (21 )の中 心軸上の 1 点でかつ基板(S)の上で結ばれる よ う にな されて いる。 また、 図 1 1 ( b ) に示すガス吹き出 し 口 (58)は、 コ ィ ル本体(22)の中心空間部内周面に設け られてお り 、 コ イ ル (21 )の中心軸を中心と してほぼ均等角度に配さ れ、 ガス吹き 出 し 口 (58 )の方向は、 水平面内でかつコイ ル (21 )の中心軸方 向に対して傾斜する方向とされている。
上記の誘導加熱用 コイ ル(21 )の中心部にはコ イ ルをなす導 電体が存在 しないため、 この部分に均一に原料ガスを供給す る こ と は難しい ものであるが、 ガス吹き出 し 口 (57) (58)を上 記のよ う に設ける こ と によ り コイル(21 )中心部の下であつ ても原料ガス を十分に供給し気相反応処理時の均一性を向上 させる こ とができる。
なお、 コ イ ル本体 (22)の中心李間部に設け られるガス吹き 出 し 口 につ いては、 図 4 ( a ) に示 した も の (29) と 図 1 1 ( a ) ( b ) に示した も の (57) ( 58)と を両方設けてもよ く 、 いずれか一方だけを設けてもよい。
図 2 および図 3 に示 した誘導加熱用コ イ ル (21 )は、 その内 周端と外周端と に電源接続端子が接続され、 高周波電源によ つ て駆動される。
高周波電源 (高周波発振機) には、 例えば、 電力用半導体 スイ ッチング素子である I G B T (ゲー ト絶緣型バイ ポー ラ ト ラ ンジスタ) が使用 される。
なお、 この発明による基板処理方法は、 例えば上記の基板 処理装置を使用する こ とによ り 可能と され、 サセプタ (31 )に 載置された基板(S)を加熱しながら これに原料ガス を吹き付 ける こ と によ り 、 気相反応を用 いた結晶膜ある いはその他の 薄膜を基板上に成長させる基板処理方法において、 基板処理 (気相反応処理) 後に、 例えば、 ピン受け (43 )を上方に移動 させて ピ ン (42)の頂面によ って基板(S )をサセプ夕 (31 )か ら 持ち上げ、 この状態で冷却する こ とを特徴とする ものである。 この際、 サセ プ夕 (31 )に複数の通気孔 (46)を設け、 上側ガス 供給手段 (7)および下側ガス供給手段(11 )を用いて基板(S)の 上下両側か ら冷却ガス を吹き付ける こ とが好ま し く 、 冷却ガ ス を吹き付けなが ら基板 (S )を反応部 (la)か ら 搬出位置に下 方移動させ、 さ ら に、 下方移動中の基板位置における上側冷 却ガスの下向き圧力が下側冷却ガスの上向き圧力以上となる よ う に、 上側および下側のガス供給圧力の少な く と も一方を 調整する こ とがよ り好ま しい。 産業上の利用可能性
こ の発明による基板処理装置および基板処理方法は、 気相 反応を用 いて結晶膜あるいはその他の薄膜の生成を行う基板 処理(CVD:Chemical Vapor Deposition)を行う のに適している。

Claims

請求の範囲
1 . 反応炉と 、 基板を載置するサセプ夕 と、 基板を加熱する 加熱手段と、 基板表面に原料ガスを供給する原料ガス供給手 段と、 基板を反応炉内に搬入出する搬送ロボ ッ ト と、 冷却用 ガス を吹き出すガス供給手段と、 サセプタ を上下移動させる 上下移動手段と を備え、 サセプ夕の所定位置に設け られた少 な く と も 3 つの段付きの貫通孔に、 頭付きの ピ ンが頂面を基 板載置面か ら突出させないよ う にかつ下端部をサセプ夕か ら 突出させて上下移動可能にそれぞれ嵌め入れられてお り 、 搬 送ロボッ 卜 による基板の搬入出時にサセプ夕が下降さ せ られ る こ と によっ て、 各 ピンの下方の待機位置に位置する ピン受 けによつ て ピ ン下端が受け られて ピンが上昇し 、 ピ ンの頂面 によ って基板が持ち上げられる よ う になされている基板処理 装置において、
反応炉に、 被処理基板に気相反応をせしめる反応部と、 反 応部の下方にあっ て搬送ロボ ッ 卜 によ る基板搬入出時にサセ プ夕が位置する搬入出部とが形成されてお り 、 少な く と も 1 つの ピン受けが上下移動可能と されて、 冷却時に前記待機位 置以外で基板をサセプ夕か ら持ち上げ可能 とさ れている こ と を特徴とする基板処理装置。
2 . ガス供給手段は、 サセブ夕の下部に冷却ガスを供給し得 る と と も に、 ピ ン受けと干渉しないよ う になされた下側ガス 供給手段と、 基板の上部に冷却ガス を供給 し得る上側ガス供 給手段と を有してお り , サセプ夕 に、 下側ガス供給手段によ り 供給された冷却ガスが通過可能な複数の通気孔 設け られ ている請求項 1 に記載の基板処理装置。
3 . 上側および下側のガス供給手段のガス供給圧力をそれぞ れ別個に調整する圧力調整手段と、 基板をサセプ夕か ら持ち 上げた状態でサセプ夕およびサセプ夕 を持ち上げて い る ピ ン 受けを移動させる移動毚調整手段とをさ ら に備えている こ と を特徴とする請求項 2 に記載の基板処理装置。
4 . サセプ夕 に載置された基板を加熱しなが ら これに原料ガ ス を吹き付ける こ と によ り 、 気相反応を用 いた結晶膜ある い はその他の 薄膜を基板上に成長さ せる 基板処理方法にお い て、 基板処堙後に、 基板をサセプ夕か ら持ち上げた状態で冷 却する こ と を特徴とする基板処理方法。
5 . サセプ夕 に複数の通気孔を設け、 基板の上下両側から 冷 却ガス を吹き付ける こ と を特徴とする請求項 4 に記載の基板 処理方法。
6 . 冷却ガス を吹き付けながら基板を反応部か ら搬出位置に 下方移動させ、 さ ら に、 下方移動中の基板位置における上側 冷却ガスの下向き圧力が下側冷却ガスの上向き圧力以上とな る よ う に、 上側および下側のガス供給圧力の少なく と も一方 を調整する こ と を特徴とする請求項 5 に記載の基板処理方 法。
PCT/JP2002/001131 2002-02-12 2002-02-12 Systeme et procede de traitement d'un substrat WO2003069020A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/001131 WO2003069020A1 (fr) 2002-02-12 2002-02-12 Systeme et procede de traitement d'un substrat
JP2003568125A JPWO2003069020A1 (ja) 2002-02-12 2002-02-12 基板処理装置および基板処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/001131 WO2003069020A1 (fr) 2002-02-12 2002-02-12 Systeme et procede de traitement d'un substrat

Publications (1)

Publication Number Publication Date
WO2003069020A1 true WO2003069020A1 (fr) 2003-08-21

Family

ID=27677663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001131 WO2003069020A1 (fr) 2002-02-12 2002-02-12 Systeme et procede de traitement d'un substrat

Country Status (2)

Country Link
JP (1) JPWO2003069020A1 (ja)
WO (1) WO2003069020A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186465A (ja) * 2011-02-18 2012-09-27 Hitachi Kokusai Electric Inc 基板処理装置
JP2020115536A (ja) * 2019-01-18 2020-07-30 京セラ株式会社 試料保持具
CN112151414A (zh) * 2019-06-27 2020-12-29 细美事有限公司 支承单元和包括该支承单元的基板处理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167224A (ja) * 1984-09-07 1986-04-07 Fujitsu Ltd 半導体装置の製造方法
JPH023910A (ja) * 1988-06-21 1990-01-09 Tokyo Electron Ltd 加熱装置及び加熱処理装置及び加熱処理方法
WO1999050475A1 (en) * 1998-03-27 1999-10-07 Applied Materials, Inc. A high temperature ceramic heater assembly with rf capability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167224A (ja) * 1984-09-07 1986-04-07 Fujitsu Ltd 半導体装置の製造方法
JPH023910A (ja) * 1988-06-21 1990-01-09 Tokyo Electron Ltd 加熱装置及び加熱処理装置及び加熱処理方法
WO1999050475A1 (en) * 1998-03-27 1999-10-07 Applied Materials, Inc. A high temperature ceramic heater assembly with rf capability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186465A (ja) * 2011-02-18 2012-09-27 Hitachi Kokusai Electric Inc 基板処理装置
JP2020115536A (ja) * 2019-01-18 2020-07-30 京セラ株式会社 試料保持具
JP7170546B2 (ja) 2019-01-18 2022-11-14 京セラ株式会社 試料保持具
CN112151414A (zh) * 2019-06-27 2020-12-29 细美事有限公司 支承单元和包括该支承单元的基板处理装置
CN112151414B (zh) * 2019-06-27 2024-04-26 细美事有限公司 支承单元和包括该支承单元的基板处理装置

Also Published As

Publication number Publication date
JPWO2003069020A1 (ja) 2005-06-02

Similar Documents

Publication Publication Date Title
US8148271B2 (en) Substrate processing apparatus, coolant gas supply nozzle and semiconductor device manufacturing method
JP4147608B2 (ja) 熱処理装置
US5505779A (en) Integrated module multi-chamber CVD processing system and its method for processing substrates
JP6339057B2 (ja) 基板処理装置、半導体装置の製造方法、プログラム
US5164012A (en) Heat treatment apparatus and method of forming a thin film using the apparatus
JP6944990B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
TW201349377A (zh) 獨立晶圓處理的方法及設備
WO2005064254A1 (ja) 縦型熱処理装置及びその制御方法
JP3910151B2 (ja) 熱処理方法及び熱処理装置
JP7480247B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP4583618B2 (ja) プラズマ処理装置
JP4498210B2 (ja) 基板処理装置およびicの製造方法
JP2002155366A (ja) 枚葉式熱処理方法および枚葉式熱処理装置
JP4516318B2 (ja) 基板処理装置および半導体装置の製造方法
WO2003069020A1 (fr) Systeme et procede de traitement d'un substrat
JP6823709B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2003234169A (ja) 誘導加熱装置および誘導加熱方法
JP2003231970A (ja) 基板処理装置および基板処理方法
JP4282539B2 (ja) 基板処理装置および半導体装置の製造方法
JP4218360B2 (ja) 熱処理装置及び熱処理方法
JP2009064864A (ja) 半導体処理装置
JPH09237763A (ja) 枚葉式の熱処理装置
JP2003234170A (ja) 誘導加熱用コイル
JP4157718B2 (ja) 窒化シリコン膜作製方法及び窒化シリコン膜作製装置
JP2010086985A (ja) 基板処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IL JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003568125

Country of ref document: JP

122 Ep: pct application non-entry in european phase