WO2003062417A1 - Produit de ligation arn-adn, et utilisation correspondante - Google Patents

Produit de ligation arn-adn, et utilisation correspondante Download PDF

Info

Publication number
WO2003062417A1
WO2003062417A1 PCT/JP2003/000544 JP0300544W WO03062417A1 WO 2003062417 A1 WO2003062417 A1 WO 2003062417A1 JP 0300544 W JP0300544 W JP 0300544W WO 03062417 A1 WO03062417 A1 WO 03062417A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
rna
dna
nucleic acid
sequence
Prior art date
Application number
PCT/JP2003/000544
Other languages
English (en)
French (fr)
Inventor
Naoto Nemoto
Toru Sasaki
Miwa Shiratori
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002012820A external-priority patent/JP2002291491A/ja
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2003062417A1 publication Critical patent/WO2003062417A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1062Isolating an individual clone by screening libraries mRNA-Display, e.g. polypeptide and encoding template are connected covalently

Definitions

  • the present invention relates to a method for ligating a nucleic acid, which comprises treating a single-stranded RNA and a single-stranded DNA having complementary sequences with each other, followed by treatment with RNA ligase, and use thereof.
  • the present invention relates to a nucleic acid construct capable of producing a conjugate between the target mRNA and the protein encoded by the translation after binding to the target mRNA, and use thereof.
  • the present invention relates to a method for selecting a nucleic acid and a protein or a protein using a conjugate of a target mRNA and a protein encoded thereby, and a method for detecting an interaction between a protein and a test substance.
  • the present invention relates to a puromycin derivative and a support that are finally deprotected by an enzymatic reaction.
  • the present invention relates to a support protein useful for functionally expressing a target peptide or a target protein having relatively short amino acid residues in a cell-free translation system, such as a peptide library comprising a random sequence.
  • the present invention also relates to a method for functionally expressing a peptide library using the above-mentioned support protein, and a method for screening a functional peptide or protein using the above-mentioned support protein.
  • the present invention provides a method for ligating two different types of single-stranded or double-stranded DNA having a mutually complementary common sequence in the absence of a primer, and a peptide using the nucleic acid ligation method described above.
  • the present invention relates to a method for expressing a peptide or protein such as a library.
  • Landscape technology (1) In genetic engineering, cleavage and ligation of nucleic acid is one of the most important basic methods. Conventionally, ligation has been the main method of linking two types of nucleic acids, and most have used DNA ligase.
  • RNA ligase to synthesize artificial rRNA (Bruce AG, Uhlenbech 0C: Biochemistry, (1982) 21 (5) 855-61) and for the production of full-length cDNA.
  • Nishigaki et al. Increased the concentration effect by linking single-stranded DNAs to each other by adding complementary sequences to some of them and hybridizing them, and efficiently using single-stranded DNA using T4RNA ligase.
  • We have devised a method of linking DNAs together also referred to as the Y-ligation method
  • Y-ligation method K. Nis igaki, (1998) Molecular Diversity, 4: 187-190.
  • Each of these methods is an effective method for obtaining a functional peptide, but also has a problem that the displayed peptide sequence is shifted because living cells are used.
  • RNA-protein complex In order to express the protein in a cell-free translation system, there is an advantage that the problematic displacement of the sequence hardly occurs and the size of the library to be screened at one time is large. However, it also has some problems as described below.
  • the in vitro virus virion produced by the in vitro virus method is a form in which a nucleic acid and a protein are bound, but the nucleic acid portion of this encodes genetic information and is greatly damaged by degradation. Receive. Therefore, in the in vitro virus method, it is an important issue to quickly isolate in vitro virus virions from the cell-free translation system.
  • in vitro virus virion be converted to DNA as soon as possible so that it is not easily degraded.
  • reverse transcription in a cell-free translation system is difficult, it is desirable to rapidly isolate in vitro virus virions from the cell-free translation system.
  • Conventional in vitro virus virion purification techniques can be broadly divided into two types. One method is to purify with oligo dT using a puromycin spacer containing poly A (RW Roberts & JW Szostack (1997) Proc. Natl. Acad. Sci. USA, 94, 12297-12302).
  • the other method is to link the FLAG and His X6 tags to both ends of the gene, translate it, and purify it with a FLAG antibody and a Ni-NTA column (AD) (see Fig. 1 (1)).
  • AD Ni-NTA column
  • T-type puromycin spacer capable of reverse transcription has been proposed (I Tabuchi, et al. (2001) FEBS lett. 508 (3); 309-312) (see (3) in FIG. 1).
  • a T-type puromycin spacer capable of reverse transcription becomes possible, and the in vitro virus virion can be converted to DNA and stabilized.
  • the purification cannot be performed using a spacer as in the case of (1) in FIG.
  • DNA DNA
  • a probe for purification and detection and the like, which are generally prepared by an oligonucleotide synthesis technique, that is, a phosphoramidite method.
  • An example of the application of puromycin outside the field of molecular evolution engineering is the C-terminal labeling method, which specifically modifies the C-terminal of a protein with a fluorescent probe or the like. (Nemoto, N., et al (1999) FEBS Lett. 462, 43-46). In this case, the phosphoamidite method is often used to prepare the pyreuromycin derivative.
  • the 5'-hydroxyl group is protected with a dimethoxytrityl (DMT) group, and the 2'-hydroxyl group is a normal 3'-like, like a normal nucleoside.
  • DMT dimethoxytrityl
  • the hydroxyl group it is bound to the carrier via succinic acid, and the ⁇ -amino group of the amino acid moiety is protected with a trifluoroacetyl (Tfac) group that can be removed by deprotection with concentrated aqueous ammonia after the extension reaction. Is considered to be common.
  • a support in which puromycin is immobilized on CPG (Controlled Pore Glass) has been marketed by Darren Research in this form. It is generally possible to synthesize oligonucleotides having the same on a solid phase synthesizer. If a probe derivatized to a practical phosphoramidite is available, a fluorescent probe or the like can be introduced on a synthesizer, and it is possible to prepare a puromycin derivative having a certain degree of function.
  • the Tfac group of the puromycin CPG is resistant to the reaction in the elongation cycle, and is removed by the ordinary phosphoramidite method in that it is removed by the concentrated ammonia water treatment together with the cyanoethyl group which is a protecting group of the phosphodiester and the protecting group of the base moiety.
  • Suitable for DNA synthesis when a puromycin derivative is synthesized on a synthesizer and further subjected to a reaction such as modification, it is often difficult to proceed to the next reaction with the a-amino group being deprotected.
  • amino-modified dT amino-modified dT
  • a special phosphoramidite such as (Glen Research) is force-coupled to a specific location, and after completion of the synthesis, the amino group is modified with a probe that has been subjected to an active esterification.
  • the ⁇ -amino group is a functional group indispensable for the activity of pure mouth mycin, so that not only the derivative modified with it cannot be expected to have any activity, but also the target compound modified only with another amino group. Separation and purification is almost impossible if the derivative becomes an oligomer with a certain size.
  • Obtaining a means to easily prepare puromycin derivatives with new functions is considered to be important for efficient application development.
  • One method is to synthesize a special phosphoramidite according to the application.However, not only is the synthesis costly, but there are many substances that cannot withstand the reaction of the phosphoramidite method, and derivatization is limited. Will receive it. alpha - Ryo in a state of leaving a protective group of amino group to complete the synthesis by phosphoamidite method, an a- amino group under mild conditions that do not cause side reactions after performing the modification reaction can be deprotected If possible, it is certain that various derivatizations can be easily performed using commercially available reagents.
  • the protein serving as a support itself is folding and itself, and does not easily interact with the presented peptide. Further, it is desirable that it does not easily interact with nucleic acids such as mRNA and other proteins.
  • nucleic acids such as mRNA and other proteins.
  • a partial B domain B of protein A of Staphylococcus areus (Moks, T., et al., (1986) Eur. J. Biochem. 156, 637-643.) It has been known.
  • the B domain binds strongly to the Fc fragment of IgG and cannot be used, for example, as a support when screening for epitopes of antibodies.
  • Ligation of DNA has been the most basic and important technology by genetic recombination.
  • the most commonly used method is to ligate double-stranded DNA using T4 DNA Ligase (Sgaramella V, & Ehrlich SD (1978) Eur J Biochem 86, 531-537).
  • T4 DNA Ligase Sgaramella V, & Ehrlich SD (1978) Eur J Biochem 86, 531-537.
  • the DNA to be ligated does not contain a recognition site of the restriction enzyme to be used, and therefore the primary sequence of the DNA to be ligated must be known in advance.
  • the polymerase chain reaction (PCR) method (Saiki RK, et al., (1985) Science, 230, 1350-1354) was reported in 1985.
  • a PCR method was developed by Horton et al.
  • the phage display method (Scott JK & Smith GP, an evolutionary molecular engineering technique for rapidly displaying proteins that specifically bind to specific target molecules by displaying various proteins on the surface of E. coli phage) (1990) Science, 249; 386-390), and various applications have begun.
  • the length of the phage genome itself is too long for PCR, so use the same restriction enzyme after cutting at the insertion site without using the overlap extension PCR method. DNA with sites at both ends was inserted. If the inserted DNA contains a random sequence, it will be cleaved if there is a restriction enzyme site in it, which will limit the sequence of the library.
  • the in vitro virus method developed in 997 links mRNA and its encoded protein to the 3rd and terminal end of mRNA via a spacer with puromycin in a cell-free translation system ( Nemoto, N. et al. (1997) FEBS Lett. 414, 405-408, Roberts, RW et al (1997) Proc. Natl. Acad. Sci. USA 94, 12297-12302).
  • a cell-free translation system unlike a phage display.
  • the primer replicates 10,000 times or more DNA from the original one type I MA.
  • a first object of the present invention is to provide a novel method for linking single-stranded RNA and single-stranded DNA, for example, a type I structure for producing in vitro virus virion (hereinafter referred to as “ Is sometimes referred to as an in vitro virus genome).
  • another object of the present invention is to provide a method for efficiently producing an RNA-DNA conjugate in a short time.
  • Another object of the present invention is to provide a method for efficiently producing a protein-RNA conjugate by subjecting the RNA-DNA conjugate obtained by the above method to a cell-free translation system.
  • a second object of the present invention is to attach an affinity substance to the in vitro virus genome without complicated operations, and to be useful for in vitro virion purification, and also to immobilize on a support to prepare a protein chip. It is to provide useful technology.
  • a third object of the present invention is to attach an affinity substance to an in vitro virus genome without performing complicated operations, and it is useful for purification of in vitro virus virion, and is also useful for immobilizing on a support to produce a protein chip.
  • An object of the present invention is to provide a method for efficiently selecting a protein having a desired function using a combination (nucleic acid-protein complex).
  • a fourth object of the present invention is to provide a novel puromycin derivative which is protected with an amino acid derivative or a peptide derivative such that the amino group of puromycin is deprotected enzymatically.
  • a fifth object of the present invention is to provide a support protein capable of expressing a relatively short peptide in a cell-free translation system, more specifically, an interaction with a peptide that is easy to fold and presents.
  • An object of the present invention is to provide a support protein that is not easily generated, and a support protein that does not easily interact with nucleic acids such as mRNA and other proteins.
  • a sixth object of the present invention is to link a DNA fragment obtained by encoding a target sequence, such as a random sequence, to another DNA fragment without increasing the copy number, and to use the single-stranded R for use in an in vitro virus genome. It is to provide a method for producing NA.
  • the present inventors have conducted intensive studies in order to solve the first object of the present invention, and as a result, after annealing a single-stranded RNA having a sequence complementary to each other and a single-stranded DNA or a derivative thereof, It has been found that an RNA-DNA conjugate can be efficiently produced in a short time by treating with RNA ligase.
  • a method for producing an RNA-DNA conjugate comprising:
  • a single-stranded RNA containing a coding sequence encoding a protein and having an annealing sequence and a branch sequence in a direction from 3 ′ to 3 ′ at a terminal end; Annealing a single-stranded DNA or a derivative thereof having a sequence complementary to the annealing sequence and a branch sequence in the directions from 1 to 5; and (2) A step of treating the annealing product with RNA ligase to ligate the 3 'end of single-stranded RNA to the 5' end of single-stranded DNA or its derivative:
  • a method for producing an RNA-DNA conjugate comprising:
  • the single-stranded RNA is an mRNA or an mRNA library.
  • the single-stranded RNA has (1) a promoter sequence, (2) a base sequence recognized by a ribosome during translation, and (3) a sequence encoding a target protein. .
  • the target protein comprises a target peptide or a target protein and a globular protein consisting of 30 to 200 amino acid residues, and a support for expressing and displaying the target peptide or the target protein as a fusion protein. It is a fusion protein consisting of a body protein.
  • a single-stranded DNA derivative having a nucleic acid derivative bound to the 3 ′ end is used as the single-stranded DNA or a derivative thereof.
  • a single-stranded DNA derivative having a nucleic acid derivative bound to the 3 ′ end via a spacer is used.
  • a single-stranded DNA derivative having a sequence that acts as a primer at the 3 'end at the time of reverse transcription of single-stranded RNA is used.
  • a primer having a primer sequence for reverse transcription of the single-stranded RNA at the 3, terminus and a nucleic acid derivative at the terminus is branched.
  • conductor is a compound containing the chemical structural skeleton of puromycin, 3, -N-aminoacylpuromycin amino nucleoside, 3'-N-aminoacyl adenosine amino nucleoside, or an analog thereof. It is.
  • the spacer is a polymer such as polyethylene or polyethylene glycol.
  • RNA ligase is preferably T4 RNA ligase. According to still another aspect of the present invention, there is provided an RNA-DNA conjugate obtained by the method of the present invention.
  • RNA-DNA conjugate obtained by the method of the present invention there is provided a method for producing a DNA conjugate by subjecting an RNA-DNA conjugate obtained by the method of the present invention to a reverse transcription reaction.
  • an RNA and an RNA characterized by introducing an RNA-DNA conjugate obtained by the method of the present invention into a protein translation system to translate RNA into a protein,
  • the present invention provides a method for producing an RNA-protein complex comprising a protein encoded by
  • RNA-protein complex produced by the above method.
  • a nucleic acid-protein complex comprising DNA and a protein encoded by the DNA, characterized by subjecting the above-described RNA-protein complex of the present invention to a reverse transcription reaction.
  • a nucleic acid homogeneity complex produced by the above-described production method. Furthermore, the present inventors have conducted intensive studies in order to solve the above-mentioned second object of the present invention. As a result, the present inventors have found that a single-stranded DNA 3 A nucleic acid construct having a T-shaped structure in which a primer sequence for reverse transcription of the single-stranded RNA and a spacer having a nucleic acid derivative at the end are linked in a branched state (hereinafter referred to as T- Spacer), a complex of single-stranded RNA and the protein encoded by it can be easily prepared by using T-Spacer with an affinity substance and a restriction enzyme recognition site introduced at the 5 'end. And that it can be refined.
  • T-Spacer A nucleic acid construct having a T-shaped structure in which a primer sequence for reverse transcription of the single-stranded RNA and a spacer having a nucleic acid derivative at the end are linked in a branched
  • a single-stranded DNA sequence that can be annealed to the sequence at the 3 'end of single-stranded RNA is included at the 3' end, and the single-stranded DNA sequence is added at the 3 'end.
  • a primer sequence for reverse transcription of the single-stranded RNA, and a nucleic acid A spacer having a derivative at the terminal is linked in a branched state, and
  • a nucleic acid construct for producing a complex of single-stranded RNA and a protein encoding the same wherein an affinity substance is bound to the terminal end of the DNA sequence.
  • a restriction enzyme recognition site is present at the 5, terminal side of the single-stranded DNA sequence.
  • a single-stranded RNA comprising a single-stranded RNA capable of communicating with a sequence at the 3, terminal side of the single-stranded RNA at the terminal side, and a single-stranded RNA comprising the same.
  • a nucleic acid construct as described above is provided.
  • a single-stranded RNA comprising a single-stranded RNA sequence capable of annealing to a sequence at the 3, terminal side of a single-stranded RNA at the 3′-terminal side.
  • the 5 ′ end that does not anneal to the single-stranded RNA is chemically bonded to a complementary DNA chain to form a mutually complementary double-stranded sequence
  • a nucleic acid construct as described above is provided.
  • the nucleic acid derivative is a compound containing the chemical structural skeleton of puromycin, 3, -N-aminoacylpuromycin amino nucleoside, 3, -N-aminoacyl adenosine aminonucleoside, or an analog thereof. .
  • the spacer is a high molecule such as polyethylene or polyethylene glycol.
  • the affinity substance is a biotin or poly A sequence.
  • the nucleic acid construct described above is annealed with a single-stranded RNA, and the 5 'end of the double-stranded region of the nucleic acid construct and the 3' end of the single-stranded RNA are ligated. And a method for producing an RNA-DNA conjugate.
  • ligation is performed using T4 RNA ligase.
  • the single-stranded RNA is an mRNA or an mRNA library.
  • the single-stranded RNA has (1) a promoter sequence, (2) a nucleotide sequence recognized by ribosomes during translation, and (3) a sequence encoding a target protein.
  • the target protein comprises a target peptide or a target protein and a globular protein consisting of 30 to 200 amino acid residues, and a support for expressing and displaying the target peptide or the target protein as a fusion protein.
  • a fusion protein consisting of a body protein,
  • an RNA-DNA conjugate obtained by the above method and a chip having the RNA-DNA conjugate immobilized on a support.
  • a method for producing a DNA conjugate by subjecting an RNA-DNA conjugate obtained by the above method to a reverse transcription reaction, a DNA conjugate obtained by the above method, and the DNA A chip having the conjugate immobilized on a support is provided.
  • the RNA-DNA conjugate is a protein
  • a method for producing an RNA-protein complex comprising RNA and a protein encoded by the RNA, the method comprising translating the RNA into a protein by introducing it into a translation system.
  • the translation is performed in a cell-free translation system.
  • an RNA comprising an RNA and a protein encoded by the RNA, which is obtained by introducing the RNA-DNA conjugate into a protein translation system and translating the RNA into a protein, A protein complex, and a chip having the RNA-protein complex immobilized on a support are provided.
  • a method for producing a nucleic acid-protein complex comprising DNA and a protein encoded by the DNA, comprising subjecting the RNA-protein complex to a reverse transcription reaction.
  • the present invention provides a method, a nucleic acid-protein complex obtained by the production method, and a chip having the nucleic acid-protein complex immobilized on a support.
  • the present inventors have conducted intensive studies in order to solve the above third object of the present invention. As a result, the present inventors have found that a single-stranded RNA and a single-stranded DNA sequence which can anneal to the terminal sequence can be obtained.
  • a preparation step for preparing the above-described RNA-DNA conjugate according to the present invention and (2) the RNA-DNA conjugate obtained in the preparation step is introduced into a protein translation system.
  • a method for selecting Z or protein is a method for selecting Z or protein.
  • the nucleic acid obtained in the amplification step is subjected to a preparation step of preparing an RNA-DNA conjugate as single-stranded RNA, (1) a preparation step, (2) a construction step, (3)
  • the above method is characterized by repeatedly performing the selection step and (5) the amplification step.
  • a nucleic acid construct comprising, on the terminal side, a single-stranded DNA sequence capable of annealing to a sequence on the terminal side of (3) -terminal RNA; (B) annealing the nucleic acid construct with single-stranded RNA, and (c) linking the 3 'end of the single-stranded RNA of the annealing product with the 5' end of the nucleic acid construct to form an RNA-DNA conjugate.
  • nucleic acid consisting of RNA and a protein encoded by the RNA by introducing the RNA-DNA conjugate obtained in the preparation step into a protein translation system to translate RNA into a protein;
  • a construction step of constructing a protein-protein complex (3) a selection step of selecting the nucleic acid-protein complex obtained in the construction step based on the interaction with a test substance, and (4) a nucleic acid selected in the selection step.
  • Mutagenesis to introduce mutations into the nucleic acid portion of a single protein complex Degree, Oyopi, (5) amplifying step and nucleic Contact Yopi Z or selection method of a protein characterized in that it comprises a for amplifying a nucleic acid portion obtained in mutagenesis step is provided.
  • the nucleic acid obtained in the amplification step is subjected to a preparation step of preparing an RNA-DNA conjugate as single-stranded RNA, (1) a preparation step, (2) a construction step, The above method is provided in which (3) a selection step, (4) a mutation introduction step, and (5) an amplification step are repeatedly performed.
  • nucleic acid construct comprising, at the 3 ′ end, a single-stranded DNA sequence capable of annealing to a sequence at the 3 ′ end of the single-stranded RNA.
  • RNA-DNA conjugate In a protein translation system to translate the RNA into a protein to construct a nucleic acid-protein complex consisting of the RNA and the protein encoded by the RNA; and A method for detecting an interaction between a protein and a test substance, which comprises an assay step for examining the interaction between the obtained nucleic acid-protein complex and the test substance.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned fourth object of the present invention, and have found that a protecting group that can withstand all reactions in the phosphoramidite method and is removed under mild conditions that does not cause side reactions.
  • a protecting group that can withstand all reactions in the phosphoramidite method and is removed under mild conditions that does not cause side reactions.
  • Considering an amino acid derivative that is hydrolyzed by a peptidase a combination of several protecting groups and a peptidase was examined.
  • Z-Phe group fenylalanine protected with Z (benzyloxycarbonyl) group and chymotrypsin was practical.
  • a puromycin derivative represented by the following formula (1) or a salt thereof is provided.
  • R 1 represents a hydrogen atom or a protecting group for a hydroxyl group
  • R 2 represents a hydrogen atom or a reactive group
  • X represents an amino acid residue or peptide.
  • the carboxyl group is bonded to the amino group in puromycin by an amide bond, and the ⁇ -amino group of the amino acid residue or peptide and the functional group of the side chain are It may be protected if desired.
  • the amino acid residue or peptide is an aromatic amino acid residue.
  • the aromatic amino acid residue is a phenylalanine residue.
  • X is a ⁇ - (N o; -benzyloxycarbuylfeniralanyl group).
  • the reactive group represented by R 2 is a reactive group having a terminal carboxyl group.
  • the reactive group represented by R 2 is a succinyl group.
  • a puromycin derivative-immobilized support obtained by binding the above puromycin derivative to the support.
  • the puromycin derivative-immobilized support of the present invention can be obtained by reacting a reactive group represented by R 2 with a reactive group in the support.
  • the support is CPG (Controlled Pore Glass).
  • the puromycin derivative is treated with a peptidase or a protease to produce a compound represented by the following formula (2).
  • a deprotection method is provided.
  • R 1 represents a hydrogen atom or a hydroxyl-protecting group
  • R 2 represents a hydrogen atom or a reactive group.
  • the peptidase or protease is chymotrypsin.
  • a method for producing a nucleic acid compound using the above-described immobilized support of puromycin derivative or puromycin derivative there is provided a nucleic acid compound having the above puromycin derivative.
  • a deprotection method for deprotecting a puromycin derivative by treating the above-described nucleic acid compound with a peptidase or a protease.
  • the peptidase or protease is chymotrypsin.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned fifth object of the present invention.
  • the support protein (1) a globular protein, which is folding, and (2) They found that the condition of stability was necessary.
  • the Pou-specific domain of Oct-1 (Dekker, N. et al. (1993) Nature 362, 852-854) was selected as a candidate for the support protein. Then, place the Cys residue in this protein at the Ala residue.
  • a functional peptide can be efficiently expressed.
  • a support protein for expressing and displaying a target peptide or a target protein as a fusion protein comprising a globular protein consisting of 30 to 200 amino acid residues.
  • a support protein containing no cysteine residue a support protein having an ⁇ -helix structure without a sheet structure as a secondary structure of the protein.
  • a support protein having any one of the following amino acid sequences for displaying a target peptide or a target protein as a fusion protein.
  • a base sequence encoding a target peptide or a target protein and a base sequence encoding any of the above-described support proteins are linked directly or via a linker. Also provided is a nucleic acid encoding a fusion protein consisting of a target peptide or a target protein and a support protein, or a modified form thereof.
  • a fusion protein comprising a target peptide or a target protein and any of the above-mentioned support proteins.
  • a fusion protein comprising a step of expressing the above-described nucleic acid or a modified product thereof in a cell-free translation system or a living cell is produced.
  • a method is provided.
  • a nucleotide sequence encoding a target peptide or a target protein, or a nucleotide sequence encoding any of the above-described support proteins is directly or via a linker.
  • An mRNA encoding a target peptide or a fusion protein consisting of a target protein and a support protein, the mRNA having a nucleic acid derivative bound to its 3 ′ end can be transferred to a cell-free translation system or a living cell.
  • a method for producing a complex comprising a fusion protein and a nucleic acid encoding the fusion protein, the method including a step of expressing the fusion protein.
  • the nucleic acid derivative is a compound containing a chemical structural skeleton of puromycin, 3, -N-aminoacylpuromycin amino nucleoside, 3'-N-aminoamino adenosine amino nucleoside, or an analog thereof. It is.
  • mR NA encoding a fusion protein 3 using the m R NA of the terminal acid derivative conductor is attached via a spacer.
  • the spacer is a high molecule such as polyethylene or polyethylene dalicol.
  • a library containing a peptide of interest or a protein of interest in a cell-free translation system or a living cell, and a support protein of the present invention Expressing in the form of a fusion protein of
  • Step (2) Step of selecting the target peptide or target protein having a desired function by screening the fusion protein obtained in step (1):
  • the present inventors conducted intensive studies in order to solve the above-mentioned sixth object of the present invention.
  • PCR was performed without using primers.
  • the complementary strand of NA will remain.
  • extra DNA should be purified, but since it has more than 100 bases, a simple column for removing primers cannot be used, and it must be cut out from the gel after electrophoresis. It has been found that this is inefficient in operation and yield is reduced.
  • RNA polymerases such as T7 RNA polymerase have high promoter specificity and have the property of specifically recognizing double-stranded DNA.
  • T7 RNA polymerase has high promoter specificity and have the property of specifically recognizing double-stranded DNA.
  • a step of reacting two or more different single- or double-stranded DNAs having a common sequence complementary to each other using a DNA synthase in the absence of a primer A transcription reaction is performed using the obtained mixture in the presence of an RNA polymerase, an RNA is synthesized, and the DNA is digested with a DNase.
  • a method for producing a single-stranded RNA is provided.
  • the reaction using the DNA synthase is a polymerase chain reaction (PCR) using Taq polymerase.
  • PCR polymerase chain reaction
  • one of the two or more different single- or double-stranded DNAs is a DNA containing the target sequence. More preferably, one of two or more different single-stranded or double-stranded DNAs is a DNA containing a target sequence, and the other DNA is a sequence or a tag for transcription and translation. Or a constant sequence such as a sequence encoding a support protein (constant sequence).
  • the support protein is a protein consisting of a globular protein consisting of 30 to 200 amino acid residues.
  • an RNA obtained by the above method Is done.
  • a method for producing a protein comprising the step of expressing the RNA obtained in step (2) in a cell-free translation system or a living cell.
  • reaction of two different types of single-stranded or double-stranded DNA having a common sequence complementary to each other using a DNA synthetase in the absence of a primer Preparing a mixture containing ligated DNA and unligated DNA;
  • step (3) modifying the 3 ′ end of the RNA obtained in step (2) with a nucleic acid derivative
  • a method for producing a complex of a protein and a nucleic acid encoding the same comprising the step of expressing the RNA obtained by modifying the 3 ′ end obtained in step (3) with a nucleic acid derivative in a cell-free translation system or living cells Is provided.
  • the nucleic acid derivative is a compound containing the chemical structural skeleton of puromycin, 3, -N-aminoacylpuromycin amino nucleoside, 3, -N-aminoaminosyl adenosine amino nucleoside, or an analog thereof. It is.
  • mRNA used is an mRNA having a nucleic acid derivative bound to the 3, terminal via a spacer.
  • the spacer is a high molecule such as polyethylene or polyethylene dalicol.
  • FIG. 1 shows a specific example of a conventional in vitro virus virion purification technique.
  • FIG. 2 is a schematic diagram of the construction of an in vitro virus genome using the Y-ligation method according to the present invention.
  • FIG. 3 shows the structure of a nucleic acid construct that can be used in the present invention.
  • FIG. 4 shows a specific example of a nucleic acid construct that can be used in the present invention.
  • FIG. 5 is a diagram showing the results of electrophoresis of mRNA before ligation and mRNA after ligation with RT-thio.
  • FIG. 6 is a diagram showing the results of electrophoresis of a reverse transcript of mRNA after ligation (lane 3) and a product obtained by treating the reverse transcript with Rase H (lane 2).
  • FIG. 7 shows the results of electrophoresis of mRNA before ligation and mRNA after ligation with Hybri spacer.
  • FIG. 8 is a view showing the results of electrophoresis of a translation product obtained by adding a ligation product to a cell-free translation system on a 15% SDS-polyacrylamide gel.
  • FIG. 9 is a diagram showing the results of ligation between mRNA and T-Spacer (T-splint3FA) of the present invention.
  • FIG. 1 shows the results of in vitro virus virion generation using CUa-, an in vitro virus genome containing the T-Spacer of the present invention.
  • Fig. 11f shows the results of reverse in vitro analysis of the in vitro virus genome containing the T-Spacer of the present invention.
  • FIG. 12 shows the results obtained by reversing the in vitro virus virion produced using the in vitro virus genome containing the T-Spacer of the present invention.
  • FIG. 13 shows the results of in vitro virus purification using T-spacer (using biotin as an affinity substance).
  • Figure 14 shows the results of in vitro virus purification using a T-spacer (using Poly A as an affinity substance).
  • FIG 15 shows the results from Pool (negative control ZP0U) according to the method of the present invention. The result of selecting the B domain of protein A is shown.
  • FIG. 16 shows the result of selecting the B domain of protein A from Pool (negative control ZP0U) according to the method of the present invention.
  • FIG. 17 shows the results of electroswing a spacer using ZF-puromycin CPG synthesized in Example 4.
  • FIG. 18 shows a schematic diagram of the outline of the present invention.
  • FIG. 19 shows a schematic diagram of staring a sugar chain-binding peptide as one embodiment of the present invention.
  • FIG. 20 shows the construction of DNA “T7-Kozac”, DNA “Lec-random” and DNA “Pou” with the constant sequence of the support.
  • FIG. 21 shows the results of analysis of the ligation product “T '7-Lec-random” by 8 M urea-denatured acrylamide electrophoresis.
  • FIG. 22 shows the results of analysis of the ligation product “T ′ 7-Lec-random-Pou” by 8 M urea-denatured acrylamide electrophoresis.
  • FIG. 23 shows the results of analyzing the transcript of T, 7-Lec-random-Pou by 8 M urea-denatured acrylamide electrophoresis.
  • FIG. 24 shows the results of screening of glycopeptides.
  • FIG. 25 shows the result of sequencing the sequence obtained as a result of screening for the sugar chain peptide.
  • Parentheses indicate amino acids capable of hydrogen bonding. Sequences containing more hydrogen-bondable amino acids have been selected after selection than before selection.
  • the method for producing an RNA-DNA conjugate according to the present invention comprises:
  • the single-stranded RNA to be bound and the single-stranded DNA have mutually complementary sequences.
  • the single-stranded RNA and the single-stranded DNA having complementary sequences are annealed under suitable conditions so that they are associated with each other, and then treated with RNA ligase to link them efficiently. can do.
  • the method of the present invention is an extension of the method of linking DNAs by the Y-ligation method.
  • the present invention by using an RNA-DNA conjugate obtained by converting one of the nucleic acids to be ligated into RNA into a new use, a new efficient in vitro virus genome (Nemoto, N., et, al. (1997) FEBS Lett. 414, 405-408.).
  • the 3 'end of RNA and the 5' end of DNA having a sequence complementary to the sequence in RNA are covalently bound by RNA ligase by the Y-ligation method.
  • the RNA used in the method of the present invention is a single-stranded RNA, and more specifically, is preferably an RNA containing a coding sequence encoding a protein, and annealing at the 3 ′ end in the 5 ′ to 3 ′ direction. It is preferable to have an array and a branch array.
  • branch sequence refers to a sequence that does not anneal to each other when the annealing sequences in the single-stranded RNA and single-stranded DNA or their derivatives are annealed, but exists in a single-stranded state. is there.
  • the length of the single-stranded RNA and the single-stranded DNA or the branch sequence in the derivative thereof is not particularly limited as long as both are long enough to be ligated by RNA ligase treatment. In general, the length of a branch array is short; ⁇ has high connection efficiency, but the upper limit is not particularly limited.
  • the length of the branch sequence is preferably about 1 to 100 bases, more preferably about 1 to 10 bases. In both nucleic acids The lengths of the columns may be the same or different.
  • annealing sequence refers to a sequence that can anneal to DNA to be ligated, and is complementary to the annealing sequence in single-stranded RNA. It is present in single-stranded DNA to be bound. Will do.
  • the length of the annealing sequence is not particularly limited as long as it is long enough to allow both strands to hybridize, but is generally 10 to 50 bases, more preferably 10 to 3 bases. It is about 0 bases.
  • the single-stranded RNA and the single-stranded DNA or a derivative thereof bound by the method of the present invention have mutually complementary sequences, they can be annealed under certain conditions. More specifically, the annealing sequence in the single-stranded RNA and the sequence complementary to the annealing sequence in the single-stranded DNA or its derivative hybridize to form a double-strand. . At that time, since the branch sequence in the single-stranded RNA and the branch sequence in the single-stranded DNA or its derivative remain single-stranded, these portions form a Y-shape as a whole. (See the top diagram in Figure 2). The name Y-ligation derives from the shape of this structure. The feature of this method is that the ligation efficiency can be improved by changing the reaction for linking two kinds of nucleic acids from an intermolecular reaction to an intramolecular reaction. Therefore, it can be applied to low-concentration substrates.
  • the above-mentioned single-stranded RN ⁇ having a sequence complementary to each other and a single-stranded DNA or a derivative thereof (hereinafter, these may be collectively referred to as “single-stranded nucleic acid”). Let me eager.
  • Annealing is carried out by dissolving the two single-stranded nucleic acids in an appropriate buffer (preferably a buffer for RNA ligase for the sake of convenience in the subsequent procedure) and gradually reducing the temperature from high to low. Can be performed. Such a temperature change can also be performed using a PCR device or the like.
  • An example of the annealing condition is a condition of cooling from 94 ° C. to 25 ° C. over 10 minutes, but this is only an example, and the temperature and time can be changed as appropriate.
  • Annealing conditions moderate The composition of the impingement solution, the annealing temperature, the annealing time, etc.
  • the molar ratio of single-stranded RNA to single-stranded DNA or a derivative thereof in the annealing reaction is not particularly limited as long as the annealing reaction proceeds, but from the viewpoint of reaction efficiency, it is about 1: 1 to 1: 2.5. Preferably, there is.
  • the annealing product is treated with RNA ligase, and the end of the single-stranded RNA and the end of the single-stranded DNA or its derivative are treated with RNA ligase. The ends are linked.
  • RNA ligase used in the present invention may be any one that can link two single-stranded nucleic acids, and preferably T4 RNA ligase can be used.
  • the solution containing the annealing product can be used as it is for the ligase reaction.
  • the product is recovered by a conventional nucleic acid purification method, and then dissolved in a buffer for RNA ligase to prepare a solution for ligase reaction.
  • the conditions for the ligation reaction may be any conditions under which the activity of the RNA ligase to be used is exhibited.
  • a suitable buffer for example, T4 RNA ligase buffer (50 mM Tris-HCl, pH 7.5, lOraM MgCl 2 , lOmM DTT, lmM ATP), etc.
  • T4 RNA ligase buffer 50 mM Tris-HCl, pH 7.5, lOraM MgCl 2 , lOmM DTT, lmM ATP
  • the temperature and the reaction time shown here are only examples, and can be appropriately changed so as to increase the reaction efficiency.
  • an RNA-DNA conjugate can be obtained by purifying the reaction product by a conventional method such as phenol extraction and ethanol precipitation.
  • the thus obtained RNA-DNA conjugate itself is also within the scope of the present invention.
  • the type of single-stranded RNA used in the present invention is not particularly limited, and may be RNA derived from natural tissues or cells, or RNA expressed in vitro from DNA. Further, not all of the nucleic acids constituting the single-stranded RNA need to be ribonucleotides, and only a part thereof may be of the RNA type, and the other regions may be of the following type. Further, a peptide or a sugar or the like may be bonded.
  • the length of the single-stranded RNA used in the present invention is not particularly limited as long as a ligation reaction is possible. Generally, the length of a single-stranded RNA is about several tens to several tens of kilobases, for example, about 10 to about 500,000 bases, and more preferably about 20 to 500 bases. It is about 100,000 bases.
  • the single-stranded RNA used in the present invention preferably contains a sequence encoding a protein, and specifically, is preferably an mRNA or an mRNA library.
  • the single-stranded RNA to be ligated includes (1) a promoter sequence, and (2) a It preferably contains a base sequence recognized by the ribosome, and (3) a sequence encoding the target protein. Furthermore, it may contain a sequence encoding a tag sequence such as FLAG or His tag or a common sequence for amplification by PCR.
  • the type of the promoter sequence is not particularly limited as long as it is appropriately selected as appropriate for the expression system to be applied.
  • a T7 promoter sequence or an SP6 promoter sequence recognized by RNA polymerase of Escherichia coli virus T7 may be mentioned.
  • the DNA sequence recognized by the ribosome during translation includes the DNA sequence corresponding to the 5th RNA sequence (Kozak sequence) recognized by the eukaryotic ribosome during translation and the DNA sequence recognized by the prokaryotic ribosome. And the Shine-Dalgarno array recognized
  • the type of the sequence encoding the target protein is not particularly limited, and is appropriately determined according to the purpose. You can choose.
  • the single-stranded DNA or a derivative thereof used in the present invention may be a single-stranded DNA prepared from a naturally occurring DNA, a single-stranded DNA prepared by a genetic recombination technique, or prepared by chemical synthesis. Single-stranded DNA may be used.
  • nucleic acids constituting the single-stranded DNA are deoxyribonucleotides, and only some of them may be of the DNA type, and the other regions may be liponucleotides. Oxyribonucleotides or PNA types. Also, it may be a peptide or a sugar or the like.
  • the length of the single-stranded DNA or a derivative thereof used in the present invention is not particularly limited as long as a ligation reaction is possible.
  • the length of a single-stranded DNA is about several bases to several hundred bases, for example, about 10 bases to about 500 bases, and more preferably about 20 bases to about 200 bases. It is.
  • the single-stranded DNA or a derivative thereof a single-stranded DNA derivative having a nucleic acid derivative bound to the 3, terminal.
  • the ribosome When a protein is translated in a cell-free protein translation system or a living cell using such a single-stranded DNA derivative, the ribosome is stopped by the double-stranded DNA, and puromycin enters the A site of the ribosome. Can bind to proteins (see Figure 2).
  • nucleic acid derivative examples include, but are not limited to, a cell-free protein translation system or a compound capable of binding to the C-terminus of a synthesized protein when translation of the protein is performed in a living cell. Those whose 3 'terminus has a similar chemical structure and skeleton to aminoacyl-tRNA can be selected.
  • Representative compounds include puromycin having an amide bond, 3, -N-aminoacylpuromycin aminonucleoside (3, -N-Aminoacylpuromycin aminonucleoside, PANS-amino acid), for example, amino acid PANS-Gly with a glycine part, PANS-Val with an amino acid part with valine, PANS-Ala with an amino acid part with aranine, and other PANS-amino acid compounds where the amino acid part corresponds to all amino acids.
  • 3 -N-aminoacylpuromycin aminonucleoside
  • PANS-amino acid for example, amino acid PANS-Gly with a glycine part, PANS-Val with an amino acid part with valine, PANS-Ala with an amino acid part with aranine, and other PANS-amino acid compounds where the amino acid part corresponds to all amino acids.
  • AANS-A 3, -N-aminoacyl adenosine aminonucleoside
  • amino acids are AANS-Gly of glycine
  • amino acids are AANS-Val of valine
  • amino acids are NS-Ala of alanine
  • amino acids are all amino acids of all amino acids.
  • AANS-amino acid compounds corresponding to the above can be used.
  • nucleosides or nucleosides and ester bonds of amino acids can also be used. Furthermore, all compounds chemically linked to a nucleic acid or a substance having a chemical structure skeleton similar to a nucleic acid and a base and a substance having a chemical structure skeleton similar to an amino acid are included in the nucleic acid derivative used in the present method. .
  • nucleic acid derivative puromycin, a compound in which a PANS-amino acid or an AANS-amino acid is bonded to a nucleoside via a phosphate group is more preferable.
  • puromycin derivatives such as puromycin, lipocitidyl puromycin, deoxycytidyl puromycin, and deoxyperidyl puromycin are particularly preferred.
  • the single-stranded DNA or a derivative thereof a single-stranded DNA or a derivative thereof having a nucleic acid derivative bound to the 3, terminal via a spacer.
  • a polymer material such as polyethylene or polyethylene glycol or a derivative thereof, a biopolymer material such as an oligonucleotide peptide or a derivative thereof, or the like is used, and preferably polyethylene glycol is used.
  • the length of the spacer is not particularly limited, but preferably, the force having a molecular weight of 150 to 600, or the number of atoms in the main chain is from 10 to 400 atoms, More preferably, the force has a molecular weight of 600 to 300, or the number of atoms in the main chain is from 40 atoms to 200 atoms.
  • the spacer may be a nucleic acid such as deoxyliponucleotide, a derivative thereof, a fluorescent dye such as fluorescein or a derivative thereof, an affinity substance such as biotin or a derivative thereof, or a biochemical or chemical reaction.
  • a photo-decomposable substance such as a 5-substituted 1-2-nitroacetophenone derivative.
  • the single-stranded DNA derivative as described above can be produced by a chemical bonding method known per se. Specifically, when a synthetic unit is bound by a phosphodiester bond, it can be synthesized by solid phase synthesis by a phosphoramidite method generally used in a DNA synthesizer. When introducing a peptide bond, the synthetic units are linked by an active ester method or the like. However, when synthesizing a complex with DNA, a protecting group capable of coping with both synthesis methods is required.
  • RNA-DNA conjugate obtained by the method of the present invention is introduced into a protein translation system and translated into a protein to form an RNA-protein complex, which includes RNA. By subjecting this to a reverse transcription reaction, it is possible to produce a conjugate containing a DNA sequence complementary to RNA.
  • RNA-DNA-protein conjugate can be produced by a transcription reaction from NA to DNA.
  • a reverse transcription reaction it is preferable that a sequence acting as a primer at the time of reverse transcription of the single-stranded RNA is present at the 3 ′ end of the single-stranded DNA or a derivative thereof. The presence of such a primer sequence allows a reverse transcription reaction to be performed without newly adding a primer.
  • the derivative of the single-stranded DNA includes a single-stranded DNA sequence complementary to the sequence at the 3, terminal side of the single-stranded RNA, and the 3, terminal end of the DNA sequence.
  • Has a primer sequence for reverse transcription of the single-stranded DNA and further binds to the single-stranded DNA sequence in a branched state with a spacer having a nucleic acid derivative at the end.
  • the present nucleic acid constructs can be used. Since such a nucleic acid construct has a T-shaped structure, it is also referred to as a T-Spacer in this specification.
  • Fig. 4 shows a specific example of such a T-Spacer.
  • primer sequence for reverse transcription of single-stranded RNA refers to a nucleic acid construct of the present invention obtained by ligation of a nucleic acid construct (T-Spacer) with a single-stranded RNA.
  • T-Spacer nucleic acid construct
  • an RNA-DNA conjugate obtained by the method of the present invention is introduced into a protein translation system to translate a single-chain RNA into a protein.
  • a method for producing an RNA-protein complex comprising NA and a protein encoded by the RNA, and an RNA-protein complex produced by the production method are provided.
  • Transcription / translation systems for artificially producing the protein it encodes from nucleic acids are known to those skilled in the art.
  • a cell-free protein synthesis system in which a component having a protein synthesis ability is extracted from a suitable cell, and a target protein is synthesized using the extract.
  • Such a cell-free protein synthesis system contains ribosomes, initiation factors, elongation factors, tRNA, and other elements necessary for the transcription / translation system.
  • cell-free protein synthesis system examples include a cell-free translation system composed of a prokaryotic or eukaryotic extract, for example, Escherichia coli, Egret reticulocyte extract, A wheat germ extract or the like can be used, but any one may be used as long as it produces the target protein from DNA or RNA.
  • a cell-free translation system that is commercially available as a kit can be used. For example, ⁇ egret reticulocytes 3 ⁇ 4 Rabbit Reticulocyte Lysate Systems (Nuclease Treated, Promega) and wheat germ extract (PR0TEI0S , T0Y0B0; Wheat Germ Extract, Promega).
  • living cells may be used. Specifically, prokaryotic or eukaryotic organisms, for example, E. coli cells and the like can be used.
  • the cell-free translation system or living cells are not limited as long as protein synthesis is performed by adding or introducing a nucleic acid encoding a protein therein. Les ,.
  • the RNA and the DNA are encoded by introducing the RNA-DNA conjugate into the above-described protein translation system, translating single-stranded RNA into a protein, and removing ribosomes.
  • An RNA-protein complex consisting of a protein can be produced.
  • a method for producing a nucleic acid-protein complex comprising DNA and a protein encoded by the DNA, comprising subjecting the RNA-protein complex obtained above to a reverse transcription reaction, Also provided is a nucleic acid-protein complex produced by the production method.
  • RNA-protein complex comprising RNA and a protein encoded by the RNA with reverse transcriptase
  • reverse transcription from RNA to DNA occurs, and the DNA and the protein encoded by the DNA
  • An RNA-DNA-protein complex is produced.
  • the DNA-protein complex is produced by degrading the obtained RNA-DNA-protein complex RNA using an RNase or the like.
  • the RNA-DNA-protein complex and the DNA-protein complex may be collectively referred to as "nucleic acid-protein complex".
  • RNA-protein complex and the nucleic acid-protein complex obtained as described above provide useful materials in the analysis of the function of nucleic acids and the like.
  • the nucleic acid construct of the present invention is used for producing a complex of single-stranded RNA and a protein encoded by the same or a nucleic acid-protein complex, and has a structure of single-stranded RNA of 3,3.
  • a primer sequence having a primer sequence and a nucleic acid derivative at the end It is characterized in that the peptide is bound to any of the single-stranded DNAs in a branched state, and an affinity substance is bound to the 5, terminal side of the single-stranded DNA sequence.
  • the compatibilizing substance is used for binding an RNA-protein complex or a nucleic acid-protein complex to a solid phase, or for performing purification.
  • FIG. 3 shows a schematic diagram of an example of the nucleic acid construct of the present invention.
  • the nucleic acid construct shown in FIG. 3 binds an immobilized RNA-protein complex or a nucleic acid-protein complex (hereinafter sometimes referred to as “in vitro virus virionj”) via an affinity substance. It has a double-stranded DNA having a restriction enzyme recognition site for separation from a solid phase (support), and a biotin or poly A as an affinity substance.
  • the figure shows a state in which single-stranded RNA (mRNA) has been annealed.
  • mRNA single-stranded RNA
  • an affinity substance for in vitro virus virion purification examples include the method of purification using a dT column when polyA is used as the affinity substance, and the use of Ni when His-tag is used as the affinity substance. There are a method of purification, and a method of purifying by using this antibody when using a FLAG peptide as an affinity substance.
  • FIG. 4 shows the structure of a specific example of the nucleic acid construct of the present invention.
  • the single-stranded DNA sequence forms a double-stranded sequence complementary to each other via the loop region, and an affinity substance binds to the loop region.
  • an affinity substance binds to the loop region.
  • T- splint3FB A structure in which a main chain sequence is formed, an affinity substance is bound to the 3 'end of the complementary DNA strand, and a restriction enzyme recognition site is present in the double-stranded sequence (T- splint3FB, T-splint3FA, T-splint6FB, and T-splint6FA).
  • a nucleic acid having Psoralen and another nucleic acid are mixed, and when both nucleic acids are chemically bonded by irradiating ultraviolet rays, a crosslinking agent is used.
  • the binding include binding using RNA ligase or the like, and binding using the aforementioned Y-ligation.
  • Frame Specific examples of the crosslinking agent include bivalent reagents such as N- (6-maleimidocaproyloxy) succinimide.
  • the nucleic acid construct of the present invention comprises a single-stranded DNA sequence capable of annealing to the single-stranded RNA at the terminal end. Accordingly, in the present invention, the single-stranded RNA and the single-stranded DNA having mutually complementary sequences are annealed by annealing under suitable conditions, and then the both are annealed by treating with RNA ligase. Can be connected efficiently.
  • a single-stranded DNA sequence that can anneal to the 3, terminal sequence of single-stranded RNA is a sequence that can anneal to each other, and a DNA sequence that has a sequence that is complementary to the RNA sequence.
  • the length of such a complementary sequence is not particularly limited as long as it is long enough to anneal both strands, but is generally 10 to 50 bases, more preferably 10 to 30 bases. It is about a base.
  • the single-stranded DNA used in the present invention is a single-stranded DNA prepared from a naturally-derived DNA.
  • It may be DNA, a single-stranded DNA prepared by genetic recombination technology, or a single-stranded DNA prepared by chemical synthesis.
  • nucleic acids constituting the single-stranded DNA are deoxyribonucleotides, and only a part thereof may be of the DNA type, and the other region may be composed of ribonucleotides (2 '— RNA type such as O-methylribonucleotide), deoxyribonucleotide derivative or PNA type. In addition, it may be a peptide or a sugar or the like.
  • the length of the single-stranded DNA used in the present invention is not particularly limited, but is generally about several bases to several hundred bases, for example, about 10 bases to 500 bases, and more preferably about 20 bases. About 200 bases.
  • RNA Primer sequence is bound.
  • primer sequence for reverse transcription of single-stranded RNA refers to a nucleic acid construct obtained by ligation of a nucleic acid construct (T-Spacer) with a single-stranded RNA.
  • T-Spacer a nucleic acid construct
  • the use of the nucleic acid construct of the present invention makes it possible to easily convert RNA of the RNA-protein complex to DNA. That is, since the nucleic acid construct of the present invention also serves as a reverse transcription primer, the buffer is exchanged by immobilizing the in vitro virus virion on a solid phase such as a column or the like, and then immediately reverse transcribed to turn RNA into DNA, It can stabilize virus virions. Conventional in vitro virus virion cannot be purified from the reaction solution of protein translation system, and it is necessary to raise the temperature to hybridize the externally added reverse transcription primer to single-stranded RNA. However, this has the potential to denature the linked protein, which has been a major problem. The nucleic acid construct of the present invention does not have such a problem, and the in vitro virus virion can be easily stabilized by DNA conversion.
  • a single-stranded DNA sequence of the nucleic acid construct of the present invention is linked to a spacer having a nucleic acid derivative at the end in a branched state.
  • the ribosome When a single-stranded DNA derivative is used to translate a protein in a cell-free protein translation system or in a live cell, the ribosome is stopped by the double-stranded DNA, and the nucleic acid derivative (eg, puromycin, etc.) The protein can be bound by inserting it into the A site of the ribosome.
  • the nucleic acid derivative eg, puromycin, etc.
  • nucleic acid derivative examples include, but are not limited to, a cell-free protein translation system or a compound capable of binding to the C-terminus of a synthesized protein when translation of the protein is performed in a living cell.
  • Chemical structure of 3'-terminal aminoacyl-tRNA Those having similar skeletons can be selected.
  • Representative compounds include puromycin having an amide bond (Puromycin), 3, aminoacylpuromycinnonucleoside (3, -N-Aminoacylpuromycin aminonucleoside, PANS-amino acid), for example, PANS-Gly in which the amino acid portion is glycine, Examples include PANS-Val having an amino acid portion of / phosphorus, PANS-Ala having an amino acid portion of alanine, and PANS-amino acid compounds having an amino acid portion corresponding to all amino acids.
  • AAS-amino 3'-N-aminoacyladenosine aminonucleoside
  • AS-amino 3'-N-aminoacyladenosine aminonucleoside
  • the amino acid part is AANS-Gly of glycine
  • the amino acid part is AA S-Val of valine
  • the amino acid part is S-Ala of alanine
  • the other amino acids are all amino acids.
  • the corresponding AANS-amino acid compound can be used.
  • nucleosides or nucleosides and ester bonds of amino acids can also be used.
  • all compounds chemically linked to a nucleic acid or a substance having a chemical structure skeleton similar to a nucleic acid and a base and a substance having a chemical structure skeleton similar to an amino acid are included in the nucleic acid derivative used in the present invention. .
  • puromycin a compound in which a PANS-amino acid or an AANS-amino acid is bonded to a nucleoside via a phosphate group is more preferable.
  • puromycin derivatives such as puromycin, ribocytidyl puromycin, deoxycytidyl puromycin, and deoxyperidyl puromycin are particularly preferred.
  • the nucleic acid derivative is bound to the single-stranded DNA via a spacer.
  • a spacer a polymer material such as polyethylene or polyethylene glycol or a derivative thereof, or a biopolymer material such as an oligonucleotide peptide or a derivative thereof is used, and preferably, polyethylene glycol is used.
  • the length of the spacer is not particularly limited, but is preferably a force having a molecular weight of 150 to 600, or the number of atoms in the main chain is 10 to 400 atoms, and Preferably, the force has a molecular weight of 600 to 300, or the number of atoms in the main chain is 40 to 200 atoms.
  • the nucleic acid derivative as described above can be produced by a chemical bonding method known per se. Specifically, when a synthetic unit is bound by a phosphodiester bond, it can be synthesized by solid phase synthesis by a phosphoramidite method generally used in a DNA synthesizer. When a peptide bond is introduced, the synthetic unit is bound by an active ester method or the like. However, when a complex with DNA is synthesized, a protecting group capable of coping with both synthetic methods is required.
  • a restriction enzyme recognition site is present at the 5 'end.
  • the 5 'end means a position adjacent to the affinity substance.
  • Restriction enzyme recognition sites usually consist of two strands of DNA.
  • an affinity substance is bound to the nucleic acid construct of the present invention.
  • the affinity substance By introducing the affinity substance, the in vitro virus virion in which the nucleic acid construct of the present invention has been prepared and various nucleic acid constructs prepared using the same can be easily bound to a solid phase (support).
  • the type of the affinity substance is not particularly limited, and examples thereof include biotin, polyA, various kinds of antigens or antibodies, FLAG, and His tag.
  • the affinity substance may be bound to the nucleic acid construct via a spacer as described above. (2) RNA-DNA conjugate and its production
  • the nucleic acid construct described in the above (1) is annealed to a single-stranded RNA, and the 5 ′ end of the double-stranded region of the nucleic acid construct and the 3 ′ end of the single-stranded RNA are ligated.
  • the present invention provides a method for producing an RNA-DNA conjugate, which is characterized by being ligated, and an RNA-DNA conjugate produced by the production method.
  • RNA and a single-stranded DNA having mutually complementary sequences are annealed by annealing under suitable conditions, and then both are efficiently treated by treatment with RNA ligase. Can be well connected.
  • the above-described single-stranded RNA having a sequence complementary to each other is annealed with the nucleic acid construct of the present invention.
  • Annealing is carried out by dissolving the two nucleic acids in an appropriate buffer solution (a buffer solution for RNA ligase is preferred for the sake of convenience in the subsequent procedure), and gradually reducing the temperature from a high temperature. Can be performed. Such a temperature change can also be performed using a PCR device or the like.
  • An example of annealing conditions is a condition of cooling from 94 ° C to 25 ° C over 10 minutes. This force is only an example, and the temperature and time can be changed as appropriate. Annealing conditions (such as the composition of the buffer, the annealing temperature, and the annealing time) can be appropriately set according to the length of the annealing ⁇ row, the base composition, and the like.
  • the molar ratio of the single-stranded RNA to the nucleic acid construct in the annealing reaction is not particularly limited as long as the annealing reaction proceeds, but from the viewpoint of reaction efficiency, it may be about 1: 1 to 1: 2.5. preferable.
  • the annealing product links the 3 'end of the single-stranded RNA to the 5' end of the nucleic acid construct.
  • This ligation may be performed by any method as long as the 3 ′ end of the single-stranded RNA is linked to the 5 ′ end of the nucleic acid construct. The method described in the specific examples can be used.
  • RNA ligase used in the present invention is capable of linking two single-stranded nucleic acids.
  • T4 RNA ligase can be preferably used.
  • the solution containing the annealing product can be used as it is for the ligase reaction, otherwise, annealing is performed.
  • the product is dissolved in a buffer for RNA ligase to prepare a solution for ligase reaction.
  • the conditions for the ligation reaction may be any conditions under which the activity of the RNA ligase to be used is exhibited.
  • a suitable buffer for example, T4 RNA ligase buffer (50m Tris-HCl, pH 7.5, lOmM MgCl 2 , lOmM DTT, IraM ATP)
  • T4 RNA ligase buffer 50m Tris-HCl, pH 7.5, lOmM MgCl 2 , lOmM DTT, IraM ATP
  • the reaction can be carried out at 25 ° C for 30 minutes.
  • the temperature and reaction time shown here are merely examples, and can be appropriately changed so as to increase the reaction efficiency.
  • RNA-DNA conjugate By purifying the reaction product by a conventional method such as ethanol precipitation after the reaction, an RNA-DNA conjugate can be obtained.
  • the thus obtained RNA-DNA conjugate itself is also within the scope of the present invention.
  • the type of the single-stranded RNA used in the present invention is not particularly limited, and may be RNA derived from natural tissues or cells, or RNA expressed in vitro from DNA.
  • nucleic acids constituting the single-stranded RNA are ribonucleotides, and only some of them may be of the RNA type, and the other regions may be of the ribonucleotide type. Further, a peptide or a sugar or the like may be bonded.
  • the length of the single-stranded RNA used in the present invention is not particularly limited as long as a ligation reaction is possible. Generally, the length of a single-stranded RNA is about several tens to several tens of kilobases, for example, about 10 to about 500,000 bases, and more preferably about 20 to 500 bases. It is about 100,000 bases.
  • the single-stranded RNA used in the present invention preferably contains a sequence encoding a protein. More specifically, it is preferably an mRNA or an mRNA library.
  • the single-stranded RNA to be ligated is recognized by (1) a promoter sequence, and (2) ribosome during translation. And (3) a sequence encoding the target protein. Furthermore, it may contain a sequence encoding a tag such as FLAG or His tag, or a common sequence for amplification by PCR.
  • the type of the promoter sequence is not particularly limited as long as it is appropriately selected as appropriate for the expression system to be applied. Examples include a T7 promoter sequence and an SP6 promoter sequence recognized by RNA polymerase of Escherichia coli virus T7.
  • the DNA sequence recognized by the ribosome during translation includes the DNA sequence corresponding to the RNA sequence (Kozak sequence) recognized by the eukaryotic ribosome during translation and the DNA sequence recognized by the prokaryotic ribosome.
  • Shine-Dalgarno Sequences such as the rooster sequence recognized by the ribosomes of tabacco mosaic virus such as omega control system, rabbit _globlin, Xenopus ⁇ -globlin or bromo mosaic virus. Can be
  • the type of the sequence encoding the target protein is not particularly limited, and can be appropriately selected depending on the purpose.
  • an RNA encoded by the RNA characterized in that the RNA_DNA conjugate according to the above (2) is introduced into a protein translation system to translate single-stranded RNA into a protein.
  • the present invention provides a method for producing an RNA-protein complex comprising a protein, and an RNA-protein complex produced by the production method.
  • Transcription / translation systems for artificially producing the protein it encodes from nucleic acids are known to those skilled in the art. Specifically, cell-free protein synthesis in which a component having protein synthesis ability is extracted from appropriate cells and the target protein is synthesized using the extracted solution System. Such a cell-free protein synthesis system contains ribosomes, initiation factors, elongation factors, tRNA, and other elements necessary for the transcription / translation system.
  • cell-free protein synthesis system examples include a cell-free translation system composed of a prokaryotic or eukaryotic extract, for example, Escherichia coli, Egret reticulocyte extract, A wheat germ extract or the like can be used, but any one may be used as long as it produces the target protein from DNA or RNA.
  • a cell-free translation system those commercially available as kits can be used.
  • Rabbit Reticulocyte Lysate Systems Rabbit Reticulocyte Lysate Systems, Nuclease Treated, Promega
  • wheat germ extract PRETEIOS, TOYOBO; Wheat Germ Extract, Promega
  • living cells may be used. Specifically, prokaryotic or eukaryotic organisms, for example, E. coli cells and the like can be used.
  • the cell-free translation system or living cells are not limited as long as protein synthesis is carried out by adding or introducing a nucleic acid encoding a protein therein.
  • the RNA and DNA are encoded by introducing the RNA-DNA conjugate into the above-described transcription / translation system to translate the single-stranded RNA into a protein, and then removing the ribosome.
  • An RNA-protein complex consisting of the protein to be prepared can be produced.
  • nucleic acid-protein complex comprising subjecting the RNA-DNA conjugate according to (2) or the RNA-protein complex according to (3) to a reverse transcription reaction. And a nucleic acid-protein complex produced by the production method.
  • RNA portion by treating a nucleic acid containing an RNA portion with reverse transcriptase, reverse transcription from RNA to DNA occurs, and the nucleotide sequence of the RNA portion can be converted to DNA.
  • Reagents and reaction conditions necessary for the reverse transcription reaction are well known to those skilled in the art. Can be selected appropriately.
  • a chip on which a nucleic acid-containing product prepared using the nucleic acid construct of the present invention is immobilized According to the present invention, the RNA-DNA conjugate according to the above (2), the conjugate according to the above (3), There is provided a chip in which the RNA-protein complex and the nucleic acid-protein complex described in (4) above are immobilized on a support.
  • An affinity substance is bound to the nucleic acid construct of the present invention. Therefore, by bringing the above-described nucleic acid-protein complex prepared using the nucleic acid construct of the present invention into contact with a support on which a substance having affinity for the affinity substance has been immobilized in advance, the nucleic acid-protein The composite can be easily fixed on the support. The chip produced in this way is useful for analyzing the function of nucleic acids.
  • affinity substances examples include biotin / streptavidin, poly-A sequence no oligo dT sequence, antigen / antibody, His tag sequence ZN i, ligand / receptor, FLAGZ anti-FLAG antibody, and the like. Not limited to
  • the support used for preparing the chip is not particularly limited as long as it can be used for usual immobilization of nucleic acids or proteins.
  • the shape of the support is not particularly limited as long as it does not adversely affect the formation of bonds between the affinity substances, and may take any form such as a plate, a microwell, or a bead.
  • the material of the support include ceramics such as glass, cement, and porcelain; polymers such as polyethylene terephthalate, acetate / rerose, bisphenol phenol A, polycarbonate, polystyrene, and polymethyl methacrylate; silicon, activated carbon, and porous.
  • porous materials such as porous glass, porous ceramics, porous silicon, porous activated carbon, woven or knitted fabric, nonwoven fabric, filter paper, short fiber, and membrane filter.
  • the nucleic acid construct used in the present invention is used to prepare a conjugate of single-stranded RNA and a protein encoded by the single-stranded RNA, and its structure is annealed to the sequence at the 3 ′ end of the single-stranded RNA. Includes three single-stranded DNA sequences at the end.
  • the nucleic acid construct has a primer sequence for reverse transcription of the single-stranded RNA at the 3 ′ end of the single-stranded DNA sequence, and a spacer having a nucleic acid derivative at the end is branched. Those having a structure in which they are bonded in a state are preferable. Further, those having a structure in which an affinity substance is bound to the 5, terminal side of the single-stranded DNA sequence are also preferable.
  • the details of such a nucleic acid construct are as described in (I) and (II) above in this specification.
  • RNA-DNA conjugate produced as described above is introduced into a translation system to translate the single-stranded RNA into a protein.
  • Transcription / translation systems for artificially producing a protein encoded by a nucleic acid are known to those skilled in the art, and are as described in (I) and (II) above in the specification.
  • an RNA-DNA conjugate in vitro virus genome
  • RNA-protein complex in vitro virus virion consisting of the protein to be prepared.
  • the RNA-DNA conjugate or RNA-protein complex described above may be subjected to a reverse transcription reaction to be used as an RNA-DNA-protein complex. Further, the RNA-DNA-protein complex obtained is degraded by using an RNA-degrading enzyme or the like, whereby a DNA-protein complex is produced.
  • RNA portion of the RNA-protein complex by treating the RNA portion of the RNA-protein complex with reverse transcriptase, reverse transcription from RNA to DNA occurs, and the nucleotide sequence of the RNA portion can be converted to DNA.
  • the reagents and reaction conditions required for the reverse transcription reaction are well known to those skilled in the art. Yes, and can be selected as needed.
  • the nucleic acid-protein complex thus prepared can be further bound with an affinity substance according to the above method (II). Therefore, by bringing the nucleic acid-protein complex prepared using the nucleic acid construct into contact with a support on which a substance capable of binding to the affinity substance has been previously immobilized, the nucleic acid-containing product can be easily placed on the support. Can be immobilized. After washing the immobilized substance, the nucleic acid-protein complex is eluted by an appropriate method, for example, by elution with an appropriate eluent, or cut from the support by using a restriction enzyme recognition site present in the nucleic acid construct. Can be purified. The combination of the affinity substance and the substance capable of binding thereto and the support are as described in the above (II) in the present specification.
  • a protein having a desired function can be selected and obtained as the in vitro virus virion.
  • This selection step means a step of evaluating the function (biological activity) of the protein part constituting the in vitro virus virion and selecting the in vitro virus virion based on the target biological activity.
  • a test substance that can interact with the constructed in vitro virus virion, for example, proteins, peptides, nucleic acids, carbohydrates, lipids, low molecular weight compounds, etc.
  • the in vitro virus You can select virion.
  • test substances can be used by binding to the solid phase (support) described above.
  • Such processes are known per se, for example, in Scott, JK & Smith, GP (1990) Science, 249, 386-390; Devlin, PE et al. (1990) Science, 249, 404-406; Mattheakis, Natl. Acad. Sci. USA, 91, 9022-9026, and the like.
  • the in vitro virus virion to be subjected to the selection step may be the above-described RNA-protein complex or a nucleic acid-protein complex in which the RNA portion is reverse-transcribed into DNA.
  • RNA-protein complex or a nucleic acid-protein complex in which the RNA portion is reverse-transcribed into DNA.
  • the use of a nucleic acid-protein complex is preferred because the stability of the nucleic acid portion is good. Good.
  • the in vitro virus virion selected in (3) above is selected again based on the interaction with the test substance, whereby a protein having a more appropriate interaction can be selected and obtained. .
  • the single-stranded RNA portion of the selected in vitro virus virion is reverse-transcribed as necessary, and then amplified. Then, based on the amplified DNA strand, (2) the construction process is performed to produce in vitro virus virion,
  • the steps (1) and (2) can be performed as described in the above (I) and (II).
  • the in vitro virus virion subjected to the selection step is preferably a nucleic acid-protein complex. This increases the stability of the in vitro virus virion in the subsequent steps.
  • the amplification step is preferably performed using PCR, for example, as follows.
  • the region to be amplified is at least the region containing the protein-coding portion (hereinafter, this may be referred to as “ORF”).
  • ORF protein-coding portion
  • the 5'-side primer is ligated to the 5, upstream side of the ORF.
  • the sequence linked to the third side of the ORF is preferably used.
  • the primer on the 5th side is preferably a DNA sequence recognized by ribosomes during translation.
  • a tag sequence or a common sequence is preferably used. Since the DNA thus amplified contains only the ORF, the DNA sequence (1) promoter sequence described in (I) and (II) above, and (2) the DNA sequence recognized by the ribosome during translation (hereinafter, referred to as These may be referred to as “5′-side additional sequences”, tag sequences, common sequences, annealing sequences, branch sequences, etc. (hereinafter, these may be referred to as “3′-side additional sequences”). I do.
  • PCR primers consist of a 5'-added sequence having a sequence common to the 5 'end of the amplified DNA at the 3' end, and a sequence common to the 3 'end of the amplified DNA at the 5' end. A sequence consisting of three additional sequences is used.
  • an additional sequence having a sequence common to the 5 'end of the amplified DNA at the 3' end is prepared, and this is annealed, followed by DNA polymerase and the like.
  • a double-stranded DNA is synthesized using the DNA, and a 3′-added sequence having a sequence common to the 3′-end of the amplified DNA at the 5′-end is prepared, and after annealing, a DNA polymerase or the like is prepared.
  • This is a method of synthesizing a double-stranded DNA using the method described above.
  • the above-mentioned 5, 5 side additional sequence and 3 'side additional sequence may be combined one by one or both at the same time.
  • the double-stranded DNA thus synthesized may be further amplified by PCR using primers having base sequences at both ends.
  • the steps (1) and (2) can be performed according to the construction method described in detail above.
  • the in vitro virus virion subjected to the selection step is preferably subjected to reverse transcription. This ensures virion stability in subsequent processes Sex etc. increase.
  • a mutation is introduced as necessary into the nucleic acid portion of the selected in vitro virus virion, and amplification is performed with PCR or the like.
  • the nucleic acid portion of the in vitro virus virion is: mRNA
  • the mutation may be introduced after synthesizing cDNA using reverse transcriptase, and the amplification of the nucleic acid portion may be performed while introducing the mutation.
  • Mutagenesis can be performed using the established error-prone PCR (Leung, DW, et al., (1989) J. Methods Cell Mol. Biol., 1, 11–15) or Sexual PCR (Stemmer, WPC (1994). Natl. Acad. Sci. USA 91, 10747-10751).
  • RNA-DNA conjugate in the preparation process and use it to prepare (2) Nucleic acid-protein complex in the construction process, and (3) Select the target organism Selection can be made depending on the activity, and further (4) mutagenesis and amplification can be performed. By repeating these steps as necessary, it becomes possible to modify the function of the protein and to create a protein having a new function.
  • the construction step of constructing a nucleic acid-protein complex generally comprises the steps of (1) synthesizing mRNA from a gene library or a cDNA library; And a preparation step for preparing an in vitro virus genome (RNA-DNA conjugate), and (2) using a cell-free protein synthesis system to link mRNA and its corresponding protein on ribosomes. Includes a construction step for constructing an in vitro virus virion.
  • RNA-DNA conjugate is synthesized using RNA polymerase from cDNA containing a sequence of known DNA containing a sequence corresponding to the ORF or cDNA containing DNA of unknown sequence and fragmented with an appropriate restriction enzyme. This is equivalent to constructing an in vitro virus genome (RNA-DNA conjugate).
  • the step (1) of constructing the in vitro virus genome and the step (2) of constructing the in vitro virus virion can be performed according to the method described in detail above.
  • the assay step (6) which examines the interaction between in vitro virus virion and other proteins or nucleic acids (DNA or RNA)
  • a protein having a desired function is selected from the constructed nucleic acid-protein complex
  • the selection step (3) to be performed includes, if necessary, steps such as reverse transcription, amplification, and sequencing.
  • the target protein or nucleic acid (DNA or RNA) and other substances, such as carbohydrates and lipids, are preliminarily bound to microplate / beads via covalent bonds or non-covalent bonds.
  • the assay step (6) includes a step of amplifying the in vitro virus virion released in the selection step (3) by, for example, PCR, directly or cloning the amplified DNA, and then determining the sequence thereof. .
  • the detection of the interaction is preferably performed after the reverse transcription of virion. This increases the stability of virion, reduces the interference of the interaction, and enables more accurate detection of the interaction.
  • RNA-DNA conjugate an in vitro virus genome
  • in vitro virus virion constructs in vitro virus virion, (3) select only those that bind to other substances, such as carbohydrates and lipids, and select (4) select Reverse transcription, amplification, cloning, and sequencing of the in vitro virus virions will allow the identification of the function of the gene product (protein) corresponding to the unknown gene.
  • the present invention relates to a puromycin derivative represented by the following formula (1) or a salt thereof (
  • R 1 represents a hydrogen atom or a protecting group for a hydroxyl group
  • R 2 represents a hydrogen atom or a reactive group
  • X represents an amino acid residue or a peptide.
  • the carboxyl group is bonded to the amino group in the puromycin by an amide bond, and the ⁇ -amino group of the amino acid residue or the peptide and the functionality of the side chain are present.
  • the groups can be protected as desired.
  • Examples of the hydroxyl-protecting group represented by R 1 include known protecting groups in the field of organic chemical synthesis, and specific examples include the following in addition to the dimethoxytrityl group.
  • Methyl group methoxymethyl group, methylthiomethyl group, benzyloxymethyl group, t-butoxymethyl group, 2-methoxyethoxymethinole group, 2,2,2-trichloromethylethoxymethyl group, bis (2-chloro Mouth ethoxy) methyl group, 2— (trimethyl (Silyl) ethoxymethyl group, tetrahydroviranyl group, 3-bromotetrahydrovinylil group, tetrahydrothiopyranyl group, 4-methoxytetrahydroviranyl group, 4-methoxytetrahydrothiopyranyl group, 4-methoxytetrahydro group Thioviranyl S, S-dioxide group, tetrahydrofuranyl group, tetrahydrothiofuranyl group, triisopropylsilyloxymethyl group (TOM group);
  • 1-ethoxyxetyl group 1-methyl-1-methoxethyl group, 1- (isopropoxy) ethyl group, 2,2,2-trichloroethynole group, 2- (phenylselenyl) ethyl group , T-butyl group, aryl group, cinnamyl group, p-chlorophenyl group, benzonole group, p-methoxybenzinole group, o-nitrobenzinole group, 12-trobenzyl group, p —Halobenzyl group, ⁇ -cyanobenzyl group, 3-methyl-1-picolyl N-oxide group, diphenylmethyl group, 5-dibenzosuberyl group, triphenylmethyl group, naphthyldiphenylmethyl group, p-methoxyphenyldiphenyl Enyl methinole group,-( ⁇ '-bromophenacinoleoxy) phenyldiphen
  • Examples of the reactive group represented by R 2 include a group having a reactive functional group at a terminal via a linking group.
  • Reactive functional groups include, but are not limited to, one COOH, —OH, —NH 2 , one CHO, one NHNH 2 , one NCS, an epoxy group, or a Bier group.
  • Preferable examples of the reactive group represented by R 2 include a reactive group having a carboxyl group (—COOH) at a terminal, and particularly preferably a succinyl group (one COCH 2 CH 2 COOH).
  • X represents a peptide
  • the number of residues contained therein is not particularly limited, but is preferably 2 to 10 residues.
  • the type of the amino acid residue represented by X or the amino acid residue contained in the peptide is not particularly limited, and may be either a natural amino acid or an unnatural amino acid.
  • the aromatic amino acid residue represented by X The type of the amino acid is not particularly limited as long as it contains an aromatic group, and it may be a natural amino acid or an unnatural amino acid, and ⁇ ; -amino acid, 3-amino acid, ⁇ -amino acid, ⁇ -amino acid. It may be any of amino acids, but is preferably an ⁇ -amino acid which is a natural amino acid.
  • the non-natural amino acid means all amino acids other than the natural amino acids (20 kinds in total) that constitute the natural protein, and specifically, (1) The atom in the natural amino acid is replaced with another amino acid.
  • Non-natural amino acids whose hydrophobicity, reactivity, charge state, molecular size, hydrogen bonding ability, etc. are changed by substituting the side chains of natural amino acids. These unnatural amino acid residues can also be used as long as they can be deprotected by treating the puromycin derivative represented by the formula (1) with peptidase or protease.
  • amino acid residue or peptide represented by X are, for example, aromatic amino acid residues when the peptidase or protease is chymotrypsin, and particularly preferably the ⁇ -amino group is a benzyloxycarbonyl group. Is a phenylalanine residue protected by
  • the carboxyl residue of the amino acid residue or peptide is bonded to the amino group in puromycin by an amide bond.
  • the ⁇ -amino group of the amino acid residue or peptide and the amino group of the side chain may be protected as desired.
  • the protecting group for the amino group include protecting groups known in the field of organic chemical synthesis. Specific examples include a formyl group and a C 1-6 alkyl monopropanol.
  • Nyl group for example, acetyl, ethylcarbonyl, etc.
  • C 16 alkyl-sulfonyl group tert-butyloxycarbonyl group, benzyloxycarbonyl group, aryloxycarbonyl group, fluorenylmethyloxycarbonyl group, aryl Carbonyl group (e.g., phenylcarbonyl, naphthylcarbonyl, etc.), phenylsulfonyl group (e.g., phenylsulfoninole, naphthinoles / lefonyl, etc.), Methoxycarbonyl, ethoxycarbonyl, etc.), C 7-10 aralkyl monocarbonyl group (eg, benzylcarbonyl), methyl group, aralkyl group (eg, benzyl, diphenylmethyl, trityl group, etc.), phthaloyl group, etc.
  • Can be These groups may be substituted with 1 to 3 halogen atoms (for example, fluorine, chlorine, bromine, etc.), an ethoxy group, and the like. Specific examples thereof include a p-nitrobenzinoleoxycanoleboninole group, — Benzobenzyloxycarbonyl group, m-benzobenzyloxycarbonyl group, p-methoxybenzyloxycarbonyl group and the like.
  • Specific examples of particularly preferred protecting groups for an amino group include a benzyloxycarbonyl group and a tert-butyloxycarbonyl group.
  • the carboxyl group, hydroxyl group, mercapto group, guanidino group, imidazole group, etc., of the amino acid residue or the side chain of the peptide may be protected with a protecting group known in the field of organic chemical synthesis, if desired. Les ,. Specifically, methyl, ethyl, t-butyl, 1-adamantyl, benzyl, 2-phenylisopropyl, phenacyl, etc. are ester-type carboxyl protecting groups, and t-hydroxyl protecting groups are hydroxyl groups.
  • Butyl group, trityl group, benzyl group, 2-bromobenzyloxycarbonyl group, etc., and t-butyl group, trityl group, p-methoxybenzyl group, acetamidomethyl group, etc. as mercapto-protecting groups are guanidino groups.
  • the protecting group include p-toluenesulfonyl group, 4-methoxy2,3,6-trimethylbenzenesulfonyl group, 2,2,5,7,8-pentamethylchroman-6-sulfoel group, and imidazole group.
  • Examples of the protecting group include a t-butyloxycarbonyl group, a benzyloxymethyl group, and a trityl group.
  • the puromycin derivative of the formula (1) depends on the type of functional group present in the side chain. May be present in the form of a salt, but such salt forms of the puromycin derivative of the formula (1) are also within the scope of the invention.
  • the kind of the salt is not particularly limited, and examples thereof include an acid addition salt, a metal salt, an ammonium salt, and an organic amine addition salt.
  • the acid addition salts include inorganic acid salts such as hydrochloride, sulfate, nitrate, and phosphate, and organic acid salts such as acetate, maleate, fumarate, and citrate.
  • the metal salt include alkali metal salts such as a sodium salt and a potassium salt, alkaline earth metal salts such as a magnesium salt and a calcium salt, an aluminum salt, a zinc salt, and the like.
  • the ammonium salt an ammonium salt or a tetravalent salt is used. Salts such as methylammonium and the like are added, and examples of the organic amine addition salts include addition salts such as morpholine and piperidine.
  • the puromycin derivatives of formula (1) include all possible isomers in which isomers such as positional isomers, geometric isomers, tautomers or optical isomers exist, and
  • the puromycin derivative of the formula (1) or a salt thereof may exist in the form of an adduct (hydrate or solvate) with water or various solvents. Are within the range. Also, any crystal forms of the puromycin derivative of the formula (1) and salts thereof are within the scope of the present invention.
  • the puromycin derivative represented by the formula (1) is treated with a peptidase or a protease to produce a compound represented by the formula (2) as defined herein.
  • a method for deprotecting a puromycin derivative by treatment with a peptidase or a protease is also included in the scope of the present invention.
  • peptidases or proteases examples include thermolysin, chymotrypsin, elastase, pepsin, proteinase endoproteinase Glu-C, and the like. Not limited.
  • a preferred specific example of a combination of an amino acid residue or peptide represented by X and a peptidase or a protease is ⁇ -alpha-benzyloxycarbylphenyl Araninole group and chymotrypsin.
  • the puromycin derivative represented by the formula (1) of the present invention can be produced by using puromycin as a starting material and modifying a functional group contained in the puromycin as described in the following Examples.
  • puromycin dihydrochloride is dissolved in an appropriate solvent (for example, water), and then dimethoxyethane ( DME) and 10% aqueous sodium carbonate.
  • the target compound can be synthesized by adding a solution prepared by dissolving benzyloxycarbonyl-protected phenylalanyl OSu in DME to this solution, and further adding a 10% aqueous solution of sodium carbonate to react.
  • a benzyloxycarbonyl-protected phenylamine derivative is required.
  • the corresponding reagent may be used instead of Osuru.
  • puromycin derivative A is a puromycin derivative in which in formula (1), represents a hydrogen atom and R 2 represents a hydrogen atom.
  • a puromycin derivative in which R 1 represents a hydroxyl-protecting group can be produced by protecting the 5-position hydroxyl group of the pyreuromycin derivative A.
  • an appropriate solvent for example, pyridine
  • dimethoxytrityl chloride is added thereto, and the reaction is carried out.
  • a puromycin derivative having a protected hydroxyl group at the position (hereinafter referred to as a puromycin derivative B) can be produced.
  • a protecting group other than a dimethoxytrityl group is used, a corresponding reagent may be used instead of dimethoxytrityl chloride.
  • the puromycin derivative B obtained above is a puromycin derivative of the formula (1) in which R 1 represents a hydroxyl-protecting group and R 2 represents a hydrogen atom.
  • a puromycin derivative in which R 1 represents a hydroxyl-protecting group and R 2 represents a reactive group. can be produced by introducing a reactive group into the hydroxyl group at the 2-position of puromycin derivative B.
  • an appropriate solvent for example, pyridine
  • a pyridine solution of succinic anhydride and dimethylaminopyridine is added to react.
  • the puromycin derivative of the formula (1) of the present invention can be used as a puromycin derivative-immobilized support by binding to the support.
  • a support for immobilizing a pyreuromycin derivative is also included in the scope of the present invention.
  • the puromycin derivative-immobilized support of the present invention comprises a reactive group represented by R 2 in the puromycin derivative of the formula (1) and a reactive group in the support, as specifically described in Examples below. It can be produced by reacting with a group.
  • the type of the support is not particularly limited as long as it has a functional group capable of reacting with and binding to the reactive group represented by R 2 .
  • Specific examples include, for example, CPG LCA (CPG) , NovaSyn TG amino resin (novabiochem, Amino PEGA resin (novabiochem), TentaGel S NH2 SS (Advanced Chemtech) and the like.
  • the puromycin derivative of the present invention can be applied to synthesis in a liquid phase
  • the present inventors first immobilized the puromycin derivative of the present invention on two types of solid supports as shown in the following examples. After synthesizing the oligomer by the phosphoramidite method, it was confirmed that the amino group of puromycin was protected by the Z-Phe group and that the Z_Phe group was almost quantitatively deprotected by chymotrypsin treatment. confirmed.
  • the puromycin derivative of the present invention can be applied not only to the phosphoramidite method but also to many synthetic methods for synthesizing a puromycin derivative.
  • the idea of facilitating the selective reaction by introducing an enzymatically removable protecting group is not limited to the synthesis of Pyuguchi mycin derivatives, but also for the synthesis of biopolymers such as nucleic acids for which the synthetic method has been established. It can be widely applied.
  • nucleic acid compounds containing a puromycin derivative represented by the formula (1) of the present invention belong to the scope of the present invention. Further, a method for producing a nucleic acid compound using the puromycin derivative or the puromycin derivative-immobilized support of the present invention also falls within the scope of the present invention.
  • the puromycin derivative-immobilized support of the present invention is subjected to a usual phosphoramidite method, and a nucleic acid compound having a puromycin derivative in which an ⁇ -amino group is protected at the 3′-terminal is subjected to a usual deprotection by a conventional method.
  • the nucleic acid compound having the puromycin derivative of the present invention at the 3, -terminus can be produced by cutting out from the support and further purifying it.
  • the nucleic acid compound referred to in the present specification includes not only a naturally occurring nucleic acid but also a non-naturally occurring nucleic acid. That is, not only a nucleic acid consisting of nucleotides A, G, C, T and U which constitute a natural nucleic acid, but also modified nucleotides thereof may be contained. Specific examples of modified nucleotides include biotinylated dT, Amino modifier C6 dT, and fluorescein dT. In addition, a suitable spacer group may be present in the nucleic acid compound, and specific examples of the spacer group include polymers such as polyethylene and polyethylene dalicol.
  • the present invention relates to a carrier protein for presenting without impairing the functions of the peptide and the protein, and in particular, presenting various proteins in a cell-free translation system by an in vitro virus method or the like. It is used to obtain a functional protein (peptide) from a protein.
  • the support protein preferably satisfies the following conditions. (1) It is a globular protein that is easy to fold, (2) it is stable, and (3) it does not contain disulfide (S-S) bonds.
  • the present inventors have selected the Pou-specific domain of Oct-1 (73 amino acid residue) (Dekker, N. et al. (1993) Nature 362, 852-854) as a protein satisfying these conditions. . Since this protein contains only one Cys residue, a mutant in which this Cys residue was substituted with an Ala residue was created (SEQ ID NO: 21). Even if the peptide to be displayed contains Cys, such a protein does not change its structure by S—S bond with the support protein.
  • this protein interacts with the spacer part (in the case of in vitro virus method) at the C-terminal side when a random peptide is presented at the N-terminal side because the N-terminal side and the C-terminal side are separated. It is considered difficult. Since this protein is composed of four ⁇ helices and is considered to be easy to fold, and it is difficult to express short peptides in a cell-free translation system, it is necessary to create a fusion protein with such a support. There is.
  • such a protein mutant for a support capable of presenting a functional peptide in a retrievable form is considered to play an important role in the future, such as in vitro virus method using a cell-free translation system.
  • the support protein of the present invention is characterized by comprising a globular protein consisting of 30 to 200 amino acid residues. Preferably, it does not contain a cysteine residue, does not have a P-sheet structure, has a helical structure, and preferably has a three-dimensional structure in which the N-terminal and the C-terminal are separated from each other. It is preferable that the protein does not interact with the protein.
  • the target peptide or target protein is not particularly limited.
  • a peptide or protein having any property according to the purpose of one Jung can be used as the target peptide or protein in the present specification.
  • a ligand capable of binding to a receptor a translocation signal peptide or signal protein contributing to translocation into a cell, or a large number of unspecified random peptides used for screening can be mentioned.
  • These target peptides or target proteins recognize the target substance mainly by protein-protein interaction. Therefore, the target protein is preferably one that can sufficiently or directly recognize the target substance by interaction.
  • the receptor includes, for example, a cell surface receptor protein, an antibody, a growth factor and the like. Further, the target protein of the present invention may bind to a polynucleotide such as DNA or RNA.
  • One of the preferred embodiments of the present invention is to randomly select a target protein having a specific amino acid sequence having a specific interaction with a specific target in order to screen and further identify the target protein.
  • a random sequence having a contiguous or discontinuous amino acid sequence can be used as the target peptide. For example combinations of 1 0 2 0 types randomly chosen amino acids from about 1 X 1 0 13 kinds theoretical (about 1 0 trillion), and to detect specific Amino acid sequence by subscription-learning Is considered sufficient.
  • the number of amino acids randomly selected as the target peptide or the target protein is not particularly limited. It is easy for a person skilled in the art to synthesize a desired number, preferably 3 to 40, of random peptides by using synthetic means known to those skilled in the art. For example, DNA encoding such a random peptide can be synthesized using a commercially available automatic DNA synthesizer or the like.
  • the DNA encoding the random peptide is preferably of the formula: (NNK) n (where N Is a deoxyribonucleotide of any of A, G, C, or T, and K is a deoxyribonucleotide of either G or T. And n represents the number of amino acids in these random portions. ).
  • n is preferably at least 3 or more, more preferably a number encoding 5 to 40 amino acids.
  • the limitation of the number n is not limited by the method of synthesizing the random DNA, and there is no substantial limitation on the upper limit of the number n.
  • the target protein can be efficiently presented by adding cysteines to both sides (N-terminal side and C-terminal side) of the target protein.
  • N-terminal side of the target protein used herein includes not only the N-terminus of the target protein but also any place separated by several to several tens of amino acids from the N-terminus of the target protein
  • C-terminal side of the target protein is intended to include not only the case of the C-terminal of the target protein but also any position separated by several to several tens of amino acids from the C-terminal of the target protein.
  • Molecules having a loop in the molecule via cysteine include immunoglobulin (IgG, IgM) of immunoglobulin family, T cell receptor, MHC class II molecule, LFA-3, ICAM- 1, VC AM-1 etc. are known.
  • the size of the target protein suitable for forming a loop can be designed with reference to these known molecules.
  • support protein of the present invention include proteins having any one of the following amino acid sequences.
  • the term “one to several” in the “amino acid sequence in which one to several amino acids are deleted, substituted, added and / or inserted in the amino acid sequence” is generally 1 to 20 preferably, Means 1 to 10, more preferably 1 to 5, particularly preferably about 1 to 3.
  • the present invention also relates to a fusion protein comprising the peptide of interest or the protein of interest and the above-described support protein of the present invention.
  • the fusion protein is, for example, a target peptide or a target protein comprising a target peptide or a base sequence encoding the target protein and a base sequence encoding the support protein of the present invention directly or via a linker.
  • a nucleic acid encoding a fusion protein consisting of a protein and a support protein or a modified form thereof can be prepared by expressing it in a cell-free translation system or a living cell.
  • the nucleic acid encoding the fusion protein is a nucleic acid containing a nucleic acid encoding a support protein and a nucleic acid encoding a target peptide or a target protein.
  • the nucleic acid may be located at any position, for example, between the nucleic acid encoding the support protein and the nucleic acid encoding the target peptide or the target protein, as long as the property of functionally displaying the fusion protein is not impaired. It may contain DNA encoding a spacer or any other amino acid.
  • nucleic acid of the present invention can easily synthesize using a commercially available automatic DNA synthesizer or the like. Also, an amino acid sequence in which one to several amino acids are deleted, substituted, added and / or inserted in the amino acid sequence of SEQ ID NO: 21 and codes for an amino acid sequence constituting a globular protein. Nucleic acids can also be synthesized using commercially available automatic DNA synthesizers and the like.
  • the target peptide or the target protein can be separated and recovered by applying a known biological technique after the screening.
  • a known biological technique for example, by providing an appropriate spacer amino acid sequence between the support protein and the target peptide or the target protein, the target protein can be suitably separated.
  • Such a spacer amino acid sequence can be inserted based on a known molecular biochemical technique.
  • a DNA encoding the amino acid sequence of interest can be inserted at an arbitrary position using a known genetic engineering technique. For example, if you want to cut a spacer by trombining,
  • DNA encoding (Leu-Val-Pro-Arg-Gly-Ser) (CTG-GTT-CCG-CGT-GGA-TCC) Is introduced between the support protein and the target peptide or the target protein, the peptide is expressed and becomes cleavable by thrombin.
  • DNA encoding (lie-Glu-Gly-Arg-X, X is an amino acid other than Arg, Pro) (ATC-GAA-GGT-CGT-YYY , YYY may introduce DNA that does not code Arg, Pro.
  • the type of the modified product in the “nucleic acid or its modified product” referred to in the present specification is not particularly limited, and includes any modified nucleic acid known in the art.
  • One specific example of a nucleic acid-modified product that can be used in the present invention is one having a nucleic acid derivative bound to its 3 ′ end. That is, in a preferred embodiment of the present invention, a target peptide comprising a base sequence encoding a target peptide or a target protein and a base sequence encoding a support protein of the present invention directly or via a linker.
  • an mRNA encoding a fusion protein consisting of a target protein and a support protein, the mRNA having a nucleic acid derivative bound to its 3 ′ end is expressed in a cell-free translation system or a live cell.
  • a complex comprising the fusion protein and the nucleic acid encoding the fusion protein is produced.
  • the ribosome is stopped with two strands, puromycin, etc. By inserting the nucleic acid derivative into the A site of the ribosome, it can be bound to the protein.
  • the nucleic acid derivative is not limited as long as it is a compound having the ability to bind to the C-terminus of the synthesized protein when the protein is translated in a cell-free protein translation system or a living cell.
  • Representative compounds include puromycin having an amide bond, 3, -N-aminoacylpuromycina ⁇ nonnucleoside (3, -N-Aminoacylpuromycin aminonucleoside, PANS-amino acid).
  • the amino acid moiety is glycine.
  • PANS-Gly of amino acid part PANS-Val of valine amino acid part
  • PANS-Ala of alanine amino acid part and all other amino acid parts PANS-amino acid compounds corresponding to amino acids.
  • AANS-amino acid 3, -N-aminoacyl adenosine aminonucleoside (AANS-amino acid), in which the amino group of 3,1-aminoadenosine and the carboxyl group of the amino acid are linked by an amide bond formed by dehydration condensation.
  • the amino acid part corresponds to AAS-Gly of glycine
  • the amino acid part corresponds to MNS-Val of palin
  • the amino acid part corresponds to AANS-Ala of alanine
  • the amino acid part corresponds to each amino acid of all amino acids.
  • AANS-amino acid compounds can be used.
  • nucleosides or nucleosides and ester bonds of amino acids can also be used. Furthermore, all compounds chemically linked to a nucleic acid or a substance having a chemical structure skeleton similar to a nucleic acid and a base and a substance having a chemical structure skeleton similar to an amino acid are included in the nucleic acid derivative used in the present method. .
  • nucleic acid derivative puromycin, a compound in which a PANS-amino acid or an AANS-amino acid is bonded to a nucleoside via a phosphate group is more preferable.
  • puromycin derivatives such as puromycin, ribocytidine / repumycin, deoxycytidyl puromycin, and deoxyperidinorepuromycin are particularly preferred.
  • nucleic acid encoding the fusion protein or a modified form thereof a modified nucleic acid having a nucleic acid derivative bound to the 3 ′ end via a spacer.
  • a polymer material such as polyethylene or polyethylene glycol or a derivative thereof, a biopolymer material such as an oligonucleotide peptide or a derivative thereof, or the like is used, and preferably polyethylene dalicol is used.
  • the length of the spacer is not particularly limited, but is preferably a force having a molecular weight of 150 to 600, or the number of atoms in the main chain is from 10 to 400, more preferably. Is a force having a molecular weight of 600 to 300, or the number of atoms in the main chain is from 40 atoms to 200 atoms.
  • the nucleic acid derivative as described above is produced by a chemical bonding method known per se. be able to. Specifically, when a synthetic unit is linked by a phosphodiester bond, synthesis can be performed by solid phase synthesis by a phosphoramidite method generally used for a DNA synthesizer. When a peptide bond is introduced, the synthetic unit is bound by an active ester method or the like. However, when a complex with DNA is synthesized, a protecting group capable of coping with both synthetic methods is required.
  • a fusion protein by expressing the above-described nucleic acid or a modified product thereof in a protein translation system or a living cell.
  • Transcription / translation systems for artificially producing the protein it encodes from nucleic acids are known to those skilled in the art. Specifically, it is as described in (II) above in this specification.
  • the complex of the fusion protein thus obtained and the nucleic acid encoding the same or the fusion protein comprising the target peptide or the target protein of the present invention and a support protein according to the present invention is described in (I) and (II) above as the target protein.
  • the in vitro virus virion constructed by the method of (1) is capable of producing the desired polypeptide or protein by appropriately performing the above-mentioned (III) selection step, (4) mutation introduction step, and (5) amplification step. Can be obtained.
  • the present invention also includes in vitro virus virions obtained in the above steps.
  • a peptide library or a protein library can be used as the target peptide or target protein.
  • a fusion protein obtained by expressing such a library in a form fused with the support protein of the present invention By screening a fusion protein obtained by expressing such a library in a form fused with the support protein of the present invention, and selecting a desired peptide or a desired protein having a desired function.
  • a functional peptide or protein can be screened.
  • the method for linking nucleic acids of the present invention comprises the steps of: providing a diverse DNA library fragment containing a random sequence; a sequence for transcription and translation; a sequence encoding a tag; or a support. It can be used to link a DNA fragment having a constant sequence such as a sequence encoding a protein (hereinafter, these may be referred to as “constant sequence”) in a manner that does not impair diversity. it can.
  • the present invention relates to the production of single-stranded RNA for the production of in vitro virus virions by transcription of the thus ligated DNA into type III.
  • the nucleic acid ligation method of the present invention is characterized in that two or more different single-stranded or double-stranded DNAs having a common sequence complementary to each other are reacted using a DNA synthetase in the absence of a primer. I do. '
  • the mutually complementary common sequences only need to have sufficient complementarity to anneal under suitable conditions, and need not be completely (ie, 100%) complementary. Further, the length of the complementary sequence is not particularly limited, but is usually about 5 to 100 bases, and preferably about 5 to 50 bases.
  • DNA synthase various DNA polymerases can be used, and preferably, Taq polymerase is used. In the present invention, it is preferable to ligate the DNA by polymerase chain reaction (PCR) using Taq polymerase.
  • PCR polymerase chain reaction
  • a nucleic acid synthesis reaction using a DNA polymerase such as Taq polymerase can be performed under ordinary conditions known to those skilled in the art. Specifically, a nucleic acid synthesis reaction can be carried out by adding two kinds of DNA fragments to be ligated, a mixture of dNTPs and DNA polymerase to a suitable buffer, and incubating at a suitable temperature for a certain period of time. .
  • a nucleic acid synthesis reaction is performed by PCR, Taq polymerase is used as the DNA polymerase, for example, at 95 ° C for 30 seconds (denaturation), at 54 ° C for 2 seconds (evaluation), and the like.
  • nucleic acid synthesis By repeating the cycle of 30 seconds (elongation) multiple times (for example, about 25 times), nucleic acid synthesis can be performed.
  • the conditions of the PCR reaction temperature, time, number of cycles) and the like can be appropriately changed depending on the type of nucleic acid to be ligated.
  • the present invention also includes a conjugate of DNA obtained by the above method.
  • One of the DNAs is a DNA library or the like.
  • the other DNA is a DNA having a constant sequence.
  • the kind of the target sequence is not particularly limited, and any sequence can be used according to the purpose of the screening. Specific examples and preferred embodiments of the target sequence are as described in the above (V) in the present specification.
  • the other one of the two different single- or double-stranded DNAs is a DNA having a constant sequence.
  • the support protein used as the constant sequence it is preferable to use a support protein consisting of a globular protein consisting of 30 to 200 amino acid residues. More preferably, it does not contain a cysteine residue, has a secondary structure of the protein; does not have an 8-sheet structure, has an ⁇ -helix structure, and has a ⁇ -terminal and a C-terminal separated from each other in the three-dimensional structure of the protein; Support proteins that do not interact with the biopolymer can be used.
  • support protein as described above include a support protein having any one of the following amino acid sequences.
  • amino acid sequence in which one to several amino acids are deleted, substituted, added and / or inserted in the amino acid sequence generally means 1 to 20. , Preferably 1 to 10, more preferably 1 to 5, and particularly preferably about 1 to 3.
  • DNA used in the present invention can be easily performed by those skilled in the art using a commercially available automatic DNA synthesizer or the like.
  • amino acid sequence of SEQ ID NO: 21 one or more amino acids are deleted, substituted, added, or inserted, and the amino acid sequence constituting the globular protein is Code
  • the nucleic acid can also be synthesized using a commercially available automatic DNA synthesizer or the like.
  • (1) two different types of single-stranded or double-stranded DNA having a common sequence complementary to each other are ligated by reacting with DNA synthase in the absence of a primer. Preparing a mixture containing DNA not linked to DNA; and
  • step (1) can be performed as described above in the present specification.
  • the above step (2) is a step of generating RNA by transcribing the linked DNA obtained in step (1).
  • the reaction mixture obtained in step (1) contains both ligated DNA and unligated DNA.
  • virus-derived RNA polymerase such as T7 RNA polymerase has high promoter specificity and utilizes the property of specifically recognizing double-stranded DNA. That is, in the present invention, it is preferable to use an RNA polymerase derived from a virus having high promoter specificity and specifically recognizing double-stranded DNA as described above, and it is particularly preferable to use T7 RNA polymerase. .
  • RNA polymerase By using such an RNA polymerase, RNA can be synthesized without purifying the reaction mixture.
  • the reaction mixture obtained by the above-mentioned transcription reaction is treated with a DNase to decompose and remove the DNA present in the mixture, so that only the RNA is isolated while maintaining the random sequence diversity. Can be released.
  • the present invention also includes RNA obtained by the above method.
  • the present invention provides (1) reacting two different types of single-stranded or double-stranded DNA having a mutually complementary common sequence using a DNA synthetase in the absence of a primer, Prepare a mixture containing ligated and unligated DNA Step;
  • a method for producing a protein comprising a step of expressing the nucleic acid construct containing the RNA obtained in the step (3) in a cell-free translation system or a living cell;
  • Two different single- or double-stranded DNAs having a common sequence complementary to each other are not linked to linked DNA by reacting with DNA synthase in the absence of a primer Preparing a mixture comprising DNA;
  • a method for producing a complex of a protein and a nucleic acid encoding the same comprising a step of expressing the RNA obtained by modifying the 3 ′ end obtained in step (4) with a nucleic acid derivative in a cell-free translation system or living cells I will provide a.
  • in vitro virus virion can be produced by the method described in the above (I) or (II) using the RNA obtained in the above (3).
  • nucleic acid derivative When a protein is translated in a cell-free protein translation system or in living cells using mRNA with a nucleic acid derivative bound to the 3 'end as described above, the liposome is stopped by double strands, puromycin A nucleic acid derivative such as this can be bound to a protein by inserting it into the A site of the ribosome.
  • the nucleic acid derivative include those described in the above (V) in the present specification.
  • a modified nucleic acid in which a nucleic acid derivative is bound to the 3, terminal of RNA via a spacer.
  • the spacer include those described in the above (V) in the present specification.
  • the nucleic acid derivative as described above is produced by a chemical bonding method known per se. be able to. Specifically, it is as described in the above (V) in the present specification. In the method of the present invention, it is preferable to produce a protein by expressing the above-described nucleic acid or a modified product thereof in a cell-free translation system or a living cell.
  • a transcription / translation system for artificially producing a protein encoded by a nucleic acid from a nucleic acid is known to those skilled in the art, and specific examples thereof include those described in (II) above in the present specification.
  • a sequence encoding a peptide library or a protein library can be used as the target sequence.
  • a target peptide or a target protein having a desired function is selected.
  • the functional peptide or protein can be screened.
  • FIG. 2 shows a schematic diagram of the construction of an in vitro virus genome using the Y-ligation method according to the present invention.
  • Example 1
  • Example 11 A Ligation of Thioredoxin mRNA to DNA fragment and reverse transcription from this DNA fragment
  • Escherichia coli virus with high transcription efficiency DNA sequence (T7 promoter sequence) recognized by RNA polymerase of T7 and DNA sequence (Kozak sequence) recognized by eukaryotic ribosome during translation and ribosome of prokaryotic cell Be recognized
  • SEQ ID NO: 1 Single-stranded DNA (SEQ ID NO: 1) containing the T7 promoter system (J (Rosenberg, AH, et al., Gene, 56, 125-135 (1987)) and the Kozak consensus sequence and Shine-Dalgarno sequence was ligated. It was synthesized organically, converted to type I, and subjected to polymerase chain reaction (PCR) using a DNA primer (SEQ ID NO: 2) and a primer encoding a part of thioredoxin (SEQ ID NO: 3).
  • PCR polymerase chain reaction
  • PCR conditions were as follows: a cycle of 95 ° C for 20 seconds, 68 ° C for 2 seconds, and 74 ° C for 15 seconds was repeated 30 times. To remove it, phenol was extracted with a primer remover (edge science) and then ethanol precipitated.
  • the pTrxFus plasmid (manufactured by Invitrogene) carrying thioredoxin was used as a type I polymerase chain reaction by using the antisense primer (SEQ ID NO: 4) of SEQ ID NO: 3 and the DNA primer (SEQ ID NO: 5).
  • the DNA region encoding thioredoxin was amplified.
  • a cycle of 95 ° C for 20 seconds, 68 ° C for 20 seconds, and 74 ° C for 20 seconds was repeated 25 times. After phenol extraction, the PCR product was precipitated with ethanol using a primer remover.
  • the DNA primer (SEQ ID NO: 5) is designed so that the mRNA has a AAA sequence that is more suitable as a substrate for T4RA ligase.
  • the DNA prepared by the above method was transcribed into mRNA using 10 g of force per 1 reaction solution [1], using an RNA synthesis system Ribomax Large Scale RNA Production System (Promega).
  • a cap analog (RNA capping Analog; manufactured by Gibco BRL) was added to a final concentration of 7.2 mM to modify the 5 'end of the mRNA.
  • NTP nucleotide triphosphate
  • ethanol precipitation was performed using a primer remover (Primer Remover: Edge Biosystems).
  • RT-thio (SEQ ID NO: 6) was synthesized by Nippon Flour Milling. RT-thio has a part of thioredoxin as an antisense sequence.
  • Thioredoxin mRNA and RT-thiol are mixed at a ratio of 1: 1.5 (molar ratio), and dissolved in T4 RA ligase buffer (50raM Tris-HCl, pH7.5, lOraM MgC12, lOraM DTT, ImM ATP), and specificity is determined.
  • T4 RA ligase buffer 50raM Tris-HCl, pH7.5, lOraM MgC12, lOraM DTT, ImM ATP
  • DMSO dimethyl sulfoxide
  • Annealing was performed by cooling to 94 ° C to 25 ° C over 10 minutes using a PCR device.
  • the ligation product was purified using Rneasy Mini (QIAGEN).
  • the left lane shows the molecular weight marker
  • the middle lane shows the result of electrophoresis of the original mRNA
  • the right lane shows the result of electrophoresis of the ligation product.
  • RNA in which 8 pmol of RT-thiol was bound to the 3 end was reverse-transcribed using AMV Reverse Transcriptase (Promega). Then, half was digested with 2 units of RNase H (Takara), and it was confirmed whether reverse transcribed DNA was present.
  • Fig. 6 shows the results. In FIG. 6, lane M shows the molecular weight marker, lane 1 shows the result of electrophoresis of mRNA before ligation, and lane 2 shows the result of reverse transcription of the ligation product treated with RNase H.
  • lane 3 shows the result of electrophoresis of the product obtained by reverse transcription of the ligation product.
  • lane 2 a band corresponding to the reverse transcript was observed, confirming that the reverse transcription reaction was performed.
  • Example 1-B In vitro virus virion formation by 7 ligation to Thioredoxin mRNA by hybri spacer
  • the Hybri spacer is obtained by chemically linking a derivative of PEG (Polyethylene glycol) and dCdC-puromycin as a spacer to the 3, side of the RT-thio used in Example 1-A. It functions as a pointer.
  • the specific manufacturing method is as follows.
  • the phosphoramidites corresponding to the d C d C, Spacer-18 (GLEN RESEARCH), and Rt-thio sequences are sequentially linked on a DNA synthesizer. Deprotection and purification were performed. At this time, the length of PEG is changed by changing the number of Spacer-18. Next, Hybri spacer formation is performed by performing normal DNA synthesis.
  • the ligation reaction was performed according to the same operation as in Example 11A, in order to confirm that the above-described RT-thio primer processed Hybri spacer can perform the ligation reaction under the same conditions as in Example 11A.
  • the result of electrophoresis of the reaction product is shown in FIG. In FIG. 7, the left lane shows the molecular weight marker, the middle lane shows the result of electrophoresis of the original mRNA, and the right lane shows the result of electrophoresis of the ligation product.
  • the ligation product had a higher molecular weight than the original mRNA, confirming that the ligation reaction was performed.
  • This ligation reaction product was purified using RNeasy Mini (QIAGEN) and used as an in vitro virus genome.
  • Hybri spacer was prepared, and the ligation product of mRNA and Hybri spacer was prepared based on (1).
  • the mRNA 1 / zg with each spacer and 35S Met of IMBq were added to the wheat germ cell-free translation system, and reacted at 30 ° C for 45 minutes to give a final concentration of 20 mM MgCl 2. , 600 mM KCl, and refrigerated at -20 ° C.
  • EDTA was added to a final concentration of ⁇ after purification using Micro BioSpin Coloumn-6 (Biolad).
  • the ribosome with the added mRNA is completely separated, leaving only the in vitro virus virion in which the mRNA and the protein are bound.
  • FIG. 8 shows the results of confirming the translation product purified as described above by 15% SDS-polyacrylamide gel electrophoresis.
  • lane 1 shows the connection of five spacer-18 spacers (GLEN RESEARCH)
  • lane 2 shows the connection of six
  • lane 3 shows the connection of seven
  • lane 4 shows the connection of eight. .
  • the following modified DNAs were synthesized with a DNA synthesizer as a raw material of T-Spacer.
  • DNA1 (thiol) (Spc) (Spc) (Spc) (Spc) CC (ZFP)
  • DNA2 (Pso) TACGCCAGCTGCACCCCCCGCCGCCCCCCG (At) CCGC
  • DNA3 CCCGG (Ft) GCAGCTGGCGTATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
  • DNA4 CCCGGTGCAGCTGTTTCATC (Bt) CGGAAACAGCTGCACCCCCCGCCG
  • (Thiol) in the sequence is 5, -Thiol-modifier C6, (Spc) is Spacer 18, (Bt) is Biotin-dT, (Ft) is Fluorescein-dT, (At) is Amino-modifier C6 dT, ( (Pso) indicates Psoralen C6 (all above are Glen Research), and (ZFP) indicates Z-phenylalanyl-puromycin.
  • the target compound bound via a cross-linking agent is isolated by reverse-phase high-performance liquid chromatography (reverse-phase HPLC), dissolved in 50 mM phosphate buffer (pH 8.0), and the chymotrypsin solution is added to the weight of the enzyme relative to the substrate. The mixture was left at 36 ° C for 1 hour so that the ratio became about 10%. Purification by reverse phase HPLC yielded T-splint: 3FA (FIG. 4).
  • Escherichia coli virus with high transcription efficiency DNA sequence recognized by RNA polymerase of T7 (T7 promoter sequence) and DNA sequence recognized by eukaryotic ribosome during translation (Kozak sequence) and recognition by prokaryotic ribosome (Shine-Dalgarno sequence), which encodes a part of Oct-1 (P0U), FLAG sequence, and a sequence (Y-tag) for linking with T-Spacer.
  • T7 promoter sequence DNA sequence recognized by RNA polymerase of T7
  • Kozak sequence DNA sequence recognized by eukaryotic ribosome during translation
  • prokaryotic ribosome Shaine-Dalgarnosome
  • Y-tag sequence for linking with T-Spacer.
  • the prepared DNA was added to 10 ⁇ g per 100 ⁇ l of the reaction solution, and transcribed into mRNA using an RNA synthesis kit Ribomax Large Scale RNA Production System (Promega).
  • a cap analog (RNA Capping Analog; Gibco BRL) was added to a final concentration of 7.2 mM to modify the 5 'end of the mRNA.
  • NTP nucleotide triphosphate
  • ethanol precipitation was performed using a primer remover (Primer Remover; Edge Biosystems).
  • T-Spacer (T-splint3FA) prepared in (1) above and mRNA prepared in (2) above Ligation was performed according to the method described in Example 11A. The details are as follows.
  • the mRNA prepared in the above (2) and the T-Spacer (T-splint3FA) prepared in the above (1) were mixed at a ratio (molar ratio) of 1: 1.2-1.5, and a T4 RA ligase buffer (50raM It was dissolved in Tris-HC1, pH 7.5, 10 mM MgCl 2 , lOraM DTT, and lmM ATP), and DMSO (Dimethyl sulfoxide) was added as a denaturant to a final concentration of 5% to improve specificity.
  • the resulting mixture was annealed by cooling to 94 ° C to 25 ° C over 10 minutes using a PCR device.
  • T4 Polynucleotide Kinase (Takara) and T4 RNA ligase (Takara) were added to the annealed solution, and reacted at 25 ° C. for 30 minutes.
  • the ligation product was purified using the RNeasy Mini Kit (QIAGEN). To confirm the ligation efficiency, 4% acrylamide 8M urea denaturing gel electrophoresis, electrophoresed the sample at 65 ° (:, 250 V), stained with Vistra Green (Amersham Pharmacia), Molecular Imager (Bio Rad) In addition, the fluorescence (Fluorescein) introduced into the spacer was also confirmed, and the results are shown in Fig. 9. In Fig. 9, lane 1 shows the result of electrophoresis of the original mRNA.
  • Figure 2 shows the ligation product electrophoresed.When electrophoresis was performed under denaturing conditions, the ligation product had a higher molecular weight than the original mRNA, indicating that the ligation reaction was performed. This ligation product was named in vitro virus genome.
  • in vitro virus genome force s actually in vitro virus virion confirmed the formation can force etc. cormorant force.
  • In vitro virus genome (4 pmol) was reacted at 26 ° C for 30 minutes using the wheat germ-free J3 package translation system PR0TEI0S (T0Y0B0) at 30 ° C for translation, and finally used to bind the translated peptide to puromycin (virionization). Salt was added so that the concentration became 40 mM MgCl 2 and 1 M KC1, and the mixture was reacted at 26 ° C. for 1 hour.
  • the left lane shows the result of electrophoresis of the sample before the translation reaction.
  • the right lane shows the electrophoresed sample after virion formation.
  • lane 1 shows the result of in vitro virus genome migration
  • lane 2 shows the result of reverse transcription of in vitro virus genome
  • lane 3 reverses in vitro virus genome.
  • the transcript of the transcribed product treated with RNase H is shown. The presence of a band corresponding to the reverse transcript confirmed that the reverse transcription reaction was performed.
  • the eluted fractions 1 and 2 were mixed and reverse-transcribed using TrueScript II Reverse Transcriptase (sawady).
  • the in vitro virus genome was used as a negative control and the in vitro virus genome was inverted as a positive control (Fig. 11), and a sense primer (SEQ ID NO: 8) and an antisense primer (SEQ ID NO: 9) were used.
  • Polymerase chain reaction (PCR) was performed.
  • TaKaRa Ex Taq (TAKARA) was used as a DNA synthase.
  • the sample was electrophoresed on a 6M urea-denatured 6% polyacrylamide gel at 250 V, stained with Vistra Green (Amersham pharmacia), and imaged with a Molecular Imager (Bio Rad). The results are shown in FIG.
  • Lane 2 lane If, in vitro virus genome N lane 2 shows reverse transcription of in vitro virus genome, and lane 3 shows in vitro virus purified and reverse transcribed after virion conversion.
  • the figure shows an electrophoresis of a sample subjected to PCR. Reversed in vitro virus force produced and reversed after Vilioni dani
  • the target DNA was amplified, and purified after virion purification. Then, it was confirmed that reverse transcription was possible using the in vitro virus power T-sapcer.
  • DNA 1 (thiol) (Spc) (Spc) (Spc) (Spc) CC (ZFP)
  • DNA 2 CCCGGTGCAGCTGTTTCATC (Bt) CGGAAACAGCTGCACCCCCC (Ft) CCGCCCCCCG (At) CCG C
  • DNA 3 (Pso) TACGCCAGCTGCACCCCCCGCCGCCCCCCG (At) CCGC
  • ZFP indicates the residue of N-CK- (Na-benzyloxycarbonyl-L-phenylalanyl) -puromycin, which was immobilized on a support CPG and used on a DNA synthesizer. According to the method described in the specification of 044955, it was synthesized as follows and introduced at the 3 'end of the sequence.
  • Puromycin dihydrochloride (Wako Pure Chemical Industries, Ltd.) (250 mg) was dissolved in water (3 ml), and dimethoxetane (DME) (2 ml) and a 10% sodium carbonate aqueous solution (0.5 ml) were added.
  • DME dimethoxetane
  • the target substance in which DNA 1 and DNA 2 are bound via a cross-linking agent, is isolated by reversed-phase high-performance liquid chromatography (reverse-phase HPLC), dissolved in 50 phosphate buffer (pH 8.0), and the chymotrypsin solution is dissolved.
  • the enzyme was added so that the weight ratio of the enzyme to the substrate became about 10%, and left at 36 ° C for 1 hour. Purification by reverse phase HPLC gave T-splintlFB.
  • Escherichia coli virus with high transcription efficiency DNA sequence recognized by RA polymerase of T7 (T7 promoter sequence), DNA sequence recognized by eukaryotic ribosome during translation (Kozak sequence), and recognized by prokaryotic ribosome (Shin-Dalgarno sequence), and a portion of Oct-1 (P0U; SEQ ID NO: 1), a FLAG sequence, and a sequence (Y-tag) for linking to the T-Spacer downstream of it was constructed.
  • the DNA prepared by the above method was transcribed into mRNA using the RNA synthesis kit Ribomax Large Scale RNA Production System (Promega) at 10 ⁇ g per 100 ⁇ l of the reaction solution.
  • a cap analog RNA Capping Analog; manufactured by Gibco BRL
  • Primer removal to remove cap and excess NTP (nucleotide triphosphate)! j Primer Remover; manufactured by Edge Biosystems) A precipitation was performed.
  • T-Spacer T-splint3FA
  • mRNA mRNA
  • the above-prepared mRNA and T-spacer were mixed at a ratio (molar ratio) of 1: 1.2 to 1.5, and a T4 RNA ligase buffer (50 mM Tris-HC1, pH 7.5, lOmM MgCl 2 , lOmM DTT, It was dissolved in ImM ATP), and DMSO (Dimethyl sulfoxide) was added as a denaturant to increase the specificity to a final concentration of 5%.
  • the resulting mixture was annealed using a PCR machine by cooling to 94 ° C to 25 ° C over 10 minutes.
  • T4 Polynucleotide Kinase manufactured by Takara
  • T4 RNA ligase manufactured by Takara
  • the ligation product was purified using the RNeasy Mini Kit (QIAGEN).
  • QIAGEN RNeasy Mini Kit
  • Example 2-D In vitro virus virion formation using T-spacer
  • In vitro virus genome f> ⁇ it was confirmed whether the ability to form in vitro virus virion when laughing.
  • In vitro virus genome 4pmol was reacted at 26 ° C for 30 minutes using wheat germ cell-free translation system PR0TEI0S (manufactured by T0Y0B0) for translation, and the final concentration to bind the translated peptide to puromycin (virionization).
  • There 40mM M g Cl 2, 1 M KC1 salt to be added and allowed to react for 1 hour at 26 ° C.
  • the sample was run on a 5M urea denaturing 5% SDS-PAGE gel at 20 mA.
  • Example 2 Purification of in vitro virus using E: T-spacer
  • lane 1 shows the in vitro virus that has been virionized and desalted using BioSpin Column-6
  • lane 2 shows the supernatant after binding to MAGNOTEX-SA.
  • Lanes 3 to 5 show the washed MAGNOTEX-SA after removing the supernatant
  • Lane 6 shows the washed MAGNOTEX-SA
  • Lane 7 shows the washed one.
  • the supernatant after the treated MAGNOTEX-SA was treated with the restriction enzyme was electrophoresed
  • lane 8 shows the result of the MAGNOTEX-SA after the treatment of the MAGNOTEX-SA treated with the restriction enzyme.
  • lane 1 shows the in vitro virus genome that has been virionized and desalted using the BioSpin Column-6
  • lane 2 shows the MAGNOTEX-containing the Biotinylated Oligo (dT) Probe.
  • the supernatants that did not bind to SA are electrophoresed, and lanes 3 to 7 show the results of washing the MAGNOTEX-SA to which the Biotinylated Oligo (dT) Probe was attached after removing the supernatant.
  • Lanes 8 to 10 swim the eluted MAGNOTEX-SA bound with the washed Biotinylated Oligo (dT) Probe, and lane 11 binds the eluted Biotinylated Oligo (dT) Probe.
  • Escherichia coli virus with high transcription efficiency DNA sequence recognized by RNA polymerase of T7 (T7 promoter sequence) and DNA sequence recognized by eukaryotic ribosome during translation (Kozak sequence) and recognition by prokaryotic ribosome (Shine-Dalgarno), a part of Oct-1 (negative control P0U; SEQ ID NO: 7) or the B domain of protein A (SEQ ID NO: 1) 0), a FLAG sequence, and a DNA encoding a sequence (Y-tag) for linking to the T-Spacer were constructed.
  • the DNA constructed in the above (1) was transcribed according to the method described in Example 2 to prepare mRNA.
  • T prepared in Example 2-A - with each mRNA created with Spacer (Tsplint3FA) and (2) above, and Raigeshiyon according to the method described in Example 2-C, was prepared in vitro virus genome 0
  • virion was formed using the in vitro virus genome prepared in (3) above.
  • the B domain and P0U in vitro virus genome were 1:20, 1: 200 or 1: 200, 1: 20000, 1: 2000000, 1: 200000000 were translated into a total of 8 pmol.
  • Example 2-E Virion purification was performed according to the method described in (2).
  • the reverse transcription reaction (40 ⁇ l each) was prepared so as to obtain final 50 mM Tris-HCl, 150 raM NaCl, 0.25% Triton-X100, 50 g / ml BSA, 0.5 ⁇ g / ml tRNA (total 50 ⁇ ). This was bound to 10 ⁇ l of Protein G Sepharose beads (Amersham Pharmacia) bound to 10 ⁇ g of anti-FLAG ⁇ 2 antibody (manufactured by sigma) at 4 ° C for 1 hour, and washed three times with 40 ⁇ l of TBS. Elution was performed three times with 20 ⁇ l of 0.1 M Glycine-HC1 (pH 2.7), and each was neutralized by adding 1 ⁇ M of 1 M Tris (pH 9.0) to obtain an in vitro virus virion.
  • the above eluted fractions were collected, and a 1/10 volume thereof was used as a sample before selection.
  • the remaining eluted fraction was prepared so as to have final 50 mM Tris-HC1, 150 mM NaCl 0.25% Triton-X100, 50 ⁇ g / ml BSA, 0.5 g / ml tRNA (total 60.91). This is transferred to IgG Sepharose beads (Amersham pharmacia). After binding for 1 hour with C, the cells were washed three times with 40 ⁇ l of TBS. The washed beads were used as the selected sample.
  • Samples before and after selection were treated with RaseA (lOunit RaseA (manufactured by QIAGEN), 37 ° C, 30 minutes), and then treated with proteinase K (100 ⁇ g / ml protease K (manufactured by GIBC0), final lOOmM KC1 ( pH 8.0), 50 mM EDTA, 500 raM NaCl, 37 ° C, 30 minutes), followed by ethanol precipitation and PCR.
  • proteinase K 100 ⁇ g / ml protease K (manufactured by GIBC0), final lOOmM KC1 ( pH 8.0), 50 mM EDTA, 500 raM NaCl, 37 ° C, 30 minutes
  • DNA synthase TaKaRa Ex Taq (manufactured by TAKARA) was used.
  • the primers were: sense side: GTT TAA CTT TAA GAA GGA GTT GCC ACC ATG (SEQ ID NO: 8), antisense side: TTT CCC GCC GCC CCC CGT CCG CTT CCG CCC TTG TCA TCG TCA TCC TTG TAA TC (SEQ ID NO: 9).
  • the sample was electrophoresed on a 6M urea-denatured 4% polyacrylamide gel at 250 V, stained with Vistra Green (manufactured by Amersham Pharmacia), and image-immobilized with Molecular Imager (manufactured by Bio Rad).
  • Figure 15 shows the results.
  • the quantitative determination of the pando was performed by numerical analysis of the image formed by a Molecular Imager (manufactured by Bio Rad) using analysis software. The results are shown in Tables 1 and 2. The values in the table are the ratio of the B domain when the amount of P0U is 1. When P0U was present at a ratio of 1: 200 or more, a B domain band was not detected as a PCR band.
  • DNA is separated on agarose gel and QIA quick gel extraction kit (QIAGEN) was purified.
  • QIAGEN QIA quick gel extraction kit
  • a 5 'untranslated region was ligated to the DNA.
  • TaKaRa Ex Taq manufactured by TAKARA
  • the sequence of the linked 5 'untranslated region is as follows. GCT CCG AGC TCA TTA ATA CGA CTC ACT
  • the 1 st does not react with IgG in round POU in vitro virus genome, mix each bind in a proportion physician B domain in vitro virus genome, carried both the reaction of the subsequent virion of Was.
  • the in vitro virus genome was adjusted to a total of about 8 pmol, and the reaction was performed.
  • the in vitro virus virion was reduced to about 0.1 pmol before binding to IgG. Has become. This was taken as a 1/10 volume and used as a sample before selection. The remaining 9/10 was bound to an IgG column, and the remaining sample after washing was used as a sample after selection. PCR was performed on each of them, and the electrophoresed products were shown in Figs. 15 and 16.
  • Figure 15 shows the band intensities of the P0U and B domains before and after selection.
  • the quantification does not mean that the B domain and P0U are 1:20 or 1: 200.
  • the mixture mixed at 1: 200 at the beginning shows a ratio close to that before the selection of 1:20 after selection, so it is considered that it was concentrated 10-fold.
  • the one starting at 1: 200 is concentrated 100 times to about 1: 2, and the one starting at 1: 20,000 is concentrated 10,000 times to about 1: 2, 1: 200 Those starting with 10,000 are concentrated 100,000 times to about 1:20, and those starting with 1: 200 million are concentrated 10 million times to about 1:20.
  • ZF-puromycin was incubated with chymotrypsin (1/5 by weight) at 37 for 1 hour in 25 mM phosphate buffer (pH 8.0) containing 20% glycerol.
  • the product was analyzed by reversed-phase HPLC and MALDI-TOF-MS, and it was confirmed that puromycin was obtained from ZF-puromycin by chymotrypsin treatment.
  • ZF-puromycin CPG 28 mg (equivalent to 0.8 ⁇ mol) is packed in a synthetic ram (Glen Research 20-0030-00) and set on a synthesizer, and the synthesis of modified DNA having the following sequence is performed at 1 ⁇ Performed on a scale.
  • (At) indicates Amino modifier C6 dT
  • (Ft) indicates Fluorescein dT
  • (Spc) indicates Spacer 18 (all over Spotify Research)
  • ZFP indicates ZF-puromycin.
  • FIG. 19 shows a schematic diagram of the concept of the present embodiment.
  • DNA "T7-Kozac” having a T7 promoter and Kozac sequence (SEQ ID NO: 13; gctccgagct cattaatacg actcactata gggagaccac aacggtttcc ctcttggaax aatttxgttt aactttaaga aggagttgcc accatg) and DNA having a Jund "Lec-random number (J sequence) 4: gctcaagctc ctcaaggtcg ccaccgcctc cggaagggtc zyxzyxzyxz yxzyxgaagg tgtcaaattc aacgtcagtc aggtgaataaa tttatcgct catggtggca tctctttt 120) and DNA with constant array of supports "Pou” (SEQ ID NO:
  • the Pou of the system U number 15 is ttgagcttga gcgacgacct tgaggagctt gagca (system 'J number' ⁇ 16) and gaggacgggg ggcggcgggggg ggcagctcta gagctgcctc cccc Polymerase chain reaction (PCR) was performed as a primer to make it double-stranded (Fig. 20).
  • Taq polymerase uses 2 units of EX Taq. (Takara), and the reaction conditions are 25 cycles of 30 seconds at 95 ° C, 20 seconds at 64 ° C, and 20 seconds at 72 ° C. Repeat.
  • the ligation product ' ⁇ 7-Lec-random' was analyzed by 8 M urea denaturing acrylamide electrophoresis ( Figure 21). As a result, it was confirmed that almost all were connected.
  • the product ligated in (2) above was treated with phenol and purified using PrimerRemover (Edge System Science). Measure the molarity of the DNA using a spectrometer, add 2.5 / zg to the reaction composition of the RiboMax T7 transcription kit (Promega) to a final volume of 50 ⁇ l, and react at 37 ° C for 1 hour. I let it. Next, 2.5 units of RQ1 Rnase-free DNase (Promega) was added to the reaction solution, and the mixture was reacted at 37 ° C for 15 minutes. This was extracted with phenol and purified with PrimerRemover. This was analyzed by 8 M urea denaturing acrylamide electrophoresis. The results are shown in FIG. The results in FIG. 23 indicate that RNA from the ligated DNA was transcribed as the main band.
  • the sequence of the lectin-like peptide containing five random residues and the Pou-specific domain, which encodes the support protein Pou—specific domain, was prepared for use as an in vitro virus. After cooling with Pisa (DNA-PEG-Puromycin) from 50 ° C to 20 ° C for about 15 minutes, add T4 RNA ligase (Takara) and react at 25 ° C for 20 minutes. And connected.
  • the spacer for in vitro virus was prepared from Puromycin CPG (GLEN RESEARCH: 20-4040-01) on which puromycin was immobilized.
  • an in vitro virus virion (mRNA and protein bound) was prepared using a wheat germ-based cell-free translation system, and buffer A (in the presence of calcium).
  • the mixture was mixed with avidin beads (EY Laboratories) immobilized with N-acetyldarcosamine with Tris-HClOmM, NaCl 150 mM, CaCl 2 25 mM, pH 6.8) and incubated at room temperature for 1 hour.
  • buffer B Tris-HCl 10 mM, NaCl 150 mM, EDTA 2.5 mM, pH 6.8 from which potassium was removed.
  • the eluted mRNA of in vitro virus virion was reverse-transcribed using a reverse transcription primer (gtcctctaga gctgcc; SEQ ID NO: 7 J) with TrueScript II Reverse Transcriptase (Category) under the following conditions.
  • Scale 90 ° C for 2 minutes, 75 ° C to 25 ° C ⁇ -— Cool at 0.055 ° C / s, 2 minutes at 25 ° C where reverse transcriptase, Rnase Inhibitor
  • the reaction was carried out at 50 for 1 hour.
  • reaction mixture was subjected to Extaq Polymerase using the following primers (gatcccgcga aattaatacg actcactata ggg; sigma lj number 20) and (gaggacgggg ggcggcgggggg ggcagctcta gagctgcctc ccc; SEQ ID NO: 17).
  • primers gatcccgcga aattaatacg actcactata ggg; sigma lj number 20
  • PCR was performed under the conditions. 30 seconds at 95 ° C, 20 seconds at 64 ° C, 20 seconds at 72 Knoll 20 times.
  • the present invention it has become possible to provide a method for efficiently producing an RNA-DNA conjugate in a short time. Further, according to the present invention, it has become possible to efficiently produce a protein-RNA complex. That is, according to the method of the present invention, it is possible to synthesize an in vitro virus genome, which had been inefficiently produced by the conventional method, at a high efficiency of 90% or more in a short time. Translation by a cell translation system has made it possible to improve the binding efficiency between proteins and RNA by more than 10 times. In addition, by adding a primer sequence for reverse transcription of RNA to DNA, reverse transcription can be performed as it is, and it can be stabilized by forming a complex of protein and DNA. . INDUSTRIAL APPLICABILITY The method of the present invention can be widely used for obtaining various new functional proteins in evolutionary molecular engineering and for analyzing protein interaction in the bost genome.
  • the T-Spacer of the present invention can construct an in vitro virus genome by ligating with the mRNA, and can easily produce an in vitro virus virion by translating this. Further, since the T-Spacer of the present invention has a DNA sequence that acts as a primer for reverse transcription of mRNA, it can be obtained by subjecting the in vitro virus virion obtained above to a reverse transcription reaction. It can convert mRNA to DNA. In addition, since the T-Spacer of the present invention has an affinity substance, it can not only purify the in vitro virus virion on the mRNA side, but also fix the mRNA on a support and prepare a protein chip. It is also useful in Furthermore, RNA-protein complexes produced using the T-Spacer of the present invention and D The NA-protein complex can be a useful material for analyzing the function of nucleic acids and the like.
  • a protein having a desired function (biological activity) and / or a protein having a desired function (in vitro virus virion) is produced by using a nucleic acid-protein complex (in vitro virus virion) produced using the T-Spacer having the above-mentioned features.
  • a nucleic acid-protein complex in vitro virus virion
  • efficient selection of nucleic acids, interaction detection, and functional analysis can be performed.
  • DNA containing a random sequence can be linked to an encoded standard sequence DNA such as a support protein without impairing its diversity, and then transcribed to RNA. This is a very important method for screening proteins in vitro, such as the in vitro virus method.

Description

R NA- D N A結合体およぴその利用 技術分野
本発明は、 互いに相補的な配列を有する一本鎖 R N Aと一本鎖 D N Aとをァニ 一リングさせた後に R NAリガーゼで処理することを特徴とする核酸の連結方法 並びにその利用に関する。
さらに本発明は、 標的 m R NAと結合させた後に翻訳することにより、 該標的 m R N Aとそれがコードするタンパク質との連結体を作製させることができる核 酸構築物、 並びにその利用に関する。
さらに本発明は、 標的 m R N Aとそれがコードするタンパク質との連結体を用 いる核酸およびノまたはタンパク質の選択方法、 並びに、 タンパク質と被験物質 との相互作用の検出方法に関する。
さらに本発明は、 酵素反応で最終脱保護を行なうピューロマイシン誘導体およ ぴ支持体に関する。
さらに本発明は、 ランダム配列から成るぺプチドライブラリ一などの比較的短 いアミノ酸残基を有する目的ぺプチドまたは目的タンパク質を無細胞翻訳系にお いて機能的に発現させる際に有用な支持体タンパク質、 上記支持体タンパク質を 用いてペプチドライブラリーを機能的に発現させる方法、 並びに上記支持体タン パク質を用いて機能性ぺプチド又はタンパク質をスクリーニングする方法に関す る。
さらに本発明は、 互いに相捕的な共通配列を有する異なる 2種類の 1本鎖また は 2本鎖 D N Aをプライマーの非存在下において連結する方法、 並びに上記した 核酸の連結方法を用いてぺプチドライブラリーなどのぺプチド又はタンパク質を 発現させる方法に関する。 景技術 ( 1 ) 遺伝子工学において核酸の切断および連結は最も重要な基本的手法の一 つである。 2種類の核酸を連結させる方法としては、 従来はライゲーシヨンが主 であり、 D N Aリガーゼを用いたものがほとんどであった。
一方、 RN Aの連結は T 4 RN Aリガーゼを用いて、 主に人工 rRNAの合成 (Bruce AG, Uhlenbech 0C: Biochemistry, (1982)21(5) 855-61) や全長 c DNA 作製のための mRNAの 5' 端へのプライマー付加する方法(TrouttAB, et al. : Proc Natl Acad Sci USA (1992) 89 (20): 9823-5) などがある。
最近になって進化分子工学の手法として mRNAとそれによりコードされたタ ンパク質を無細胞翻訳系の中で共有結合させる技術 (in vitro virus 法) (Nemoto, N. , et al. (1997) FEBS Lett. 414, 405- 408)が登場し、 そこで mRNA とその 3' 末端に DNAを連結する必要がでてきた。 一般に RN Aは一本鎖であ るため、 繫げょうとする DNAと RNAの配列に相捕な添え木となる DNAをハ イブリダィズさせて、 DNAリガーゼで連結する方法が考えられる。 しかし, こ れは効率の面で好ましくなく、 in vitro virus法の利用にあたって大きな課題と なっている。
一方、 西垣らは一本鎖の DNA同志を連結させるために, それらの一部に相補 な配列を持たせ, ハイブリダィズさせることで、 濃度効果を高め, T4RNAリ ガーゼを用いて効率良く一本鎖 DNA同志を連結させる方法を考案している(Y 一ライゲーション法とも称される) (K. Nis igaki, (1998) Molecular Diversity, 4: 187-190)。 し力 しながら、一本鎖 RNAと一本鎖 DNAとを Y—ライゲーショ ン法を用いて連結することは報告されていない。
(2) 1990年に開発されたファージディスプレイ法 (Scott JK &Smith GP, (1990) Science, 249; 386-390) は、 様々なタンパク質を大腸菌ファージ表面に 提示して特定のターゲット分子に特異的に結合するタンパク質を迅速に見い出す ことができる進化分子工学的手法の一つである。 ファージディスプレイ法の実用 化により、 この手法を利用して様々な応用が始まった。 また、 大腸菌等の細胞表 面の膜タンパク質を利用してこのようなランダムな配列のペプチドを提示し、 機 能ペプチドを取得する方法も開発された (Lu, Z. et al. (1995) Bio/Technology 13: 366-372) 。
これらの方法はいずれも機能べプチドを取得する有効な方法であるが、 生細胞 を用いるため、 提示するペプチド配列に片寄りが生じるなどの問題点も有してい る。
一方、 1 9 9 7年に開発された in vitro virus法は、 無細胞翻訳系中において mR NAとそれによりコードされたタンパク質を mR NAの 3, 末端側にピュー ロマイシン付スぺーサを介して連結させる方法である (Nemoto, N. et al. (1997) FEBS Lett. 414, 405-408, Roberts, R. W. et al (1997) Proc. Natl. Acad. Sci. USA 94, 12297 - 12302) 。 このようにして作成された mR NAとタンパク質 との複合体;以下これを単に「R NA—タンパク質複合体」 と称することがある) では、 無細胞翻訳系でタンパク質を発現させるために、 生細胞を用いた場合に問 題となる配列の片寄りが生じにくく、 また、 1回でスクリーニングするライブラ リーサイズが大きいという利点を有する。 し力 しながら、 下記するような幾つか の問題点も有している。
ファージディスプレイ法又は大腸菌の表面にぺプチド等を提示する方法の場合 には、 培地中からのタンパク質又はペプチドの精製が容易であるが、 無細胞翻訳 系は細胞を破碎した中からの抽出物であるため、 R N A分解酵素や D N A分解酵 素等のような夾雑物の含有量が極めて多い。 また、 in vitro virus法で作製され る in vitro virus virionは、 核酸とタンパク質が結合した形態であるが、 この うちの核酸部分は遺伝子情報をコードしているため分解されることで大きなダメ ージを受ける。 従って、 in vitro virus法では、 in vitro virus virionを無細 胞翻訳系から迅速に分離することが重要な課題である。 また、 in vitro virus virion の mR N Aはなるべく早く D NAに転化して分解されにくくすることが 望ましい。 しかし、 無細胞翻訳系の中での逆転写は困難であるため、 無細胞翻訳 系から in vitro virus virionを迅速に分離することが望ましい。 従来の in vitro virus virionの精製技術としては大きく 2つに分けることが できる。 一つは、 poly Aを含む puromycinスぺーサを利用して oligo dTで精製 する方法 (RW Roberts & JW Szostack (1997) Proc. Natl. Acad. Sci. USA, 94, 12297-12302) であり (図 1の ( 1 ) を参照) 、 もう一つは、遺伝子の両端に FLAG と His X 6タグを連結させておき翻訳後、 F L A G抗体及ぴ N i— N T Aカラム で精製するやり方である(AD Keefe & JW Szostak, (2001) Nature, 410, 715 - 718) (図 1の(2 )を参照)。これらのスぺーサによって精製は可能であるが、 in vitro virus virionを安定ィヒするために逆転写することが難しい。
そこで、 逆転写可能な T型の puromycinスぺーサが提案された (I Tabuchi, et al. (2001) FEBS lett. 508 (3) ; 309-312) (図 1の (3 ) を参照) 。 このような T型の puromycin スぺーサを用いることにより、 逆転写が可能になり in vitro virus virionを D N A化して安定化することができる。 し力 し、 この場合、 精製 に際し、図 1の(1 )の場合のようにスぺーサを用いて精製することができない。 また、図 1の(2 )の場合のようにタンパク質側で精製することは可能であるが、 mR N Aにァフィ二ティータグをコードさせることが必要になる。
( 3 ) アミノアシル tRNA3'—末端部分の構造疑似体としてリポソーム上におい てぺプチド鎖に結合し翻訳反応を停止するピュー口マイシンは、遺伝情報とその翻 訳産物を結び付けるための分子ッールとして近年分子進化工学などの分野で注目 され始め、実用的な誘導体が数多く合成されるようになっている(Nemoto, N. et al (1997) FEBS Lett. 414, 405-408, Roberts, R. W. et al (1997) Proc. Natl. Acad. Sci. USA 94, 12297-12302) 0 分子進化工学的な応用 (In Vitro Virus法) に用い られる誘導体には、ピューロマイシン及ぴそれを m R N Aに結合させるための相補 D NA、 さらに精製や検出のためのプローブなどが含まれることが必要とされ、そ れらは一般にオリゴヌクレオチド合成の手法、すなわちホスホアミダイト法によつ て調製されている。分子進化工学分野以外でのピューロマイシンの応用例としては、 タンパクの C末端を特異的に蛍光プローブなどで修飾する C末端ラベル法があり (Nemoto, N. , et al (1999) FEBS Lett. 462, 43 - 46)、 この場合も用いられるピ ユーロマイシン誘導体の調製にはホスホアミダイト法が使われることが多い。 ピューロマイシンをホスホアミダイト法の 3, 一支持体に導入して用いる場合、 通常のヌクレオシドと同様に 5 ' 一水酸基はジメトキシトリチル (DMT) 基で保護 し、 2 ' —水酸基は通常の 3 ' —水酸基の代わりとしてコハク酸を介して担体に結 合させ、ァミノ酸部分の α—アミノ基は伸長反応終了後の濃ァンモユア水による脱 保護で除去できるトリフルォロアセチル (Tfac) 基で保護するのが一般的である と考えられる。実際にこのような形でピューロマイシンを C P G (Controlled Pore Glass) 上に固定した支持体 (ピューロマイシン CPG) がダレンリサーチ社より市 販されるようになつており、 3,一末端にピューロマイシンを有するオリゴヌクレ ォチドを固相合成機上で合成することが一般的に可能になっている。蛍光プローブ なども実用的なホスホアミダイトに誘導体化されたものが入手可能であれば合成 機上で導入することができ、ある程度の機能が導入されたピュー口マイシン誘導体 の調製が可能である。
ピューロマイシン C P Gの Tfac基は伸長サイクルにおける反応に耐え、 濃アン モニァ水処理によりリン酸ジエステルの保護基であるシァノエチル基や塩基部分 の保護基などと共に除去されるという点で通常のホスホアミダイト法による D N A合成に適している。 し力 し、合成機上でピューロマイシン誘導体を合成した後に さらに修飾などの反応を行なう場合、 a—アミノ基が脱保護された状態で次の反応 に進むことは多くの場合困難を伴う。例えば、固相合成後にプローブなどを配列の 途中に導入することを考えてオリゴヌクレオチドを合成する時はァミノ修飾 dT
(グレンリサーチ)のような特殊ホスホアミダイトを特定の場所に力ップリングさ せ、合成終了後に活性ェステルイ匕されたプローブなどでこのアミノ基を修飾するの が一般的であるが、ピューロマイシンの α—ァミノ基が脱保護されている時はァミ ノ修飾 dT部分だけで特異的に修飾反応を行なうことが難しくなる。 α—ァミノ基 はピュー口マイシンの活性に必須の官能基であるためそれが修飾された誘導体に は活性を全く期待できないばかりでなく、他のアミノ基のみで修飾された目的物を 分離精製することも誘導体がある程度の大きさを持ったオリゴマーになれば不可 肯 に近くなる。
新たな機能が付加されたピューロマイシン誘導体を容易に調製するための手段 を得ることはその応用展開を効率的に進めるためにも重要であると考えられる。用 途に合わせて特殊なホスホアミダイトを合成することも 1つの手段であるが、合成 にコストがかかるだけでなく、ホスホアミダイト法の反応に耐えられない物質は数 多くあり、誘導体化も制限を受けることになる。 α—了ミノ基の保護基を残した状 態でホスホアミダイト法による合成を完了させ、修飾反応を行なった後に副反応を 起こさない穏やかな条件で a—アミノ基を脱保護することが可能になれば、市販の 試薬などを用いて様々な誘導体化を容易に行なうことが出来るようになるのは確 実である。
Tfac 基に代わる新たなピューロマイシンひーァミノ基の保護基には幾つかの 条件が求められる。まず Tfac基と同様にホスホアミダイト法の伸長サイクルにお ける各反応に耐えられること、そして Tfac基と異なり濃ァンモユア水処理による 脱保護反応で除去されないこと、 さらに副反応を起こさない条件で最終的に除去 されること、 の主に 3点である。 一般に用いられるァミノ保護基の中でこれらの 条件を満たすものは皆無に近く、 例えば代表的なァミノ保護基である Boc (t-butoxycarbonyl)基は、伸長サイクルにおける脱保護において徐々に遊離が進 むだけでなく、 完全な脱保護をトリフルォロ酢酸溶液中で行なおうとした時に、 アデノシンゃグァノシンでの脱プリンという深刻な副反応を伴うためホスホアミ ダイト法による DNA合成には適さなレ、。 実用レベルですべての条件を満たす保護 基を得るためには、 新規の脱保護法の導入も含めた対応策の検討が必要となる。
( 4 ) 様々な配列のペプチドまたはタンパク質をファージ等のコートタンパク 質と融合させてディスプレイ (ファージディスプレイ法) (Scott, J. K. & Smith, G. P. , (1990) Science 1990, 249: 386 - 390) させることにより、 目的分子に結 合する機能ペプチドをこのファージ集団から取得する方法が開発されている。 ま た、 大腸菌等の細胞表面の膜タンパク質を利用してこのようなランダムな配列の ペプチドを提示し、 機能ペプチドを取得する方法も開発された (Lu, Z. et al. (1995) Bio/Technology 13: 366-372)。 これらの方法はいずれも機能ペプチドを 取得するための有効な方法であるが、 生細胞を用いるため提示するぺプチド配列 に片寄りが生じるなどの問題点も有している。
一方、最近になって無細胞翻訳系中で mRNAとそれにコードされたタンパク質を mR A の 3'末端側にピューロマイシン付スぺーサを介して連結させる方法が開発 された (Nemoto, N. et al. (1997) FEBS Lett. 414, 405-408, Roberts, R. W. et al (1997) Proc. Natl. Acad. Sci. USA 94, 12297-12302)。 この方法では無 細胞翻訳系を用いるため上述のような配列の片寄りが生じることはない。ただし、 短いペプチドは無細胞翻訳系では発現しにくく mRNAに比べて小さいため、ランダ ムなぺプチドを提示するための支持体となるタンパク質が必要となる。 支持体と なるタンパク質はそれ自体がフォールデイングしゃすく、 提示するぺプチドとの 相互作用が生じにくいことが要求される。 また、 mRNA等の核酸や他のタンパク質 と相互作用しにくいことが望ましい。 現在、 このような複数の要求にあったタン パク質を作成することが求められている。 フォールデイングしやすく Cysを含ま ない支持体としては、 Staphylococcus areusのプロティン Aの一部 B ドメイン B (Moks, T. , et al. , (1986) Eur. J. Biochem. 156, 637-643. ) が知られている。 し力 し、 B ドメインは IgGの Fcフラグメントに強く結合するために、例えば抗体 のェピトープをスクリーニングする際の支持体としては使用できない。
( 5 ) 従来より遺伝子組み換え等で DNAの連結は最も基本的で重要な技術とな つている。 一般的に最もよく使われている方法は、 2本鎖 DNAを T4 DNA Ligase (Sgaramella V, & Ehrlich SD (1978) Eur J Biochem 86, 531-537)を用いて連結さ せる方法である。 この場合、 連結しようとする DNAには用いる制限酵素の認識部 位が含まれていないことが必要であり、 従ってあらかじめ連結しょうとする DNA の 1次配列は既知の必要がある。 一方、 1985年にポリメラーゼ連鎖反応法 (PCR法) (Saiki RK, et al. , (1985) Science, 230, 1350-1354)が報告されたことにより、 これを利用した DNA連結法 である Overlap extension PCR法が Hortonらによって開発された (Horton RM, et al. , (1989) Gene, 77, 61- 68)。 これは連結しょうとする 2つの DNA断片のうち、 片方の 3 '末端側ともう一方の 5 ' 末端側に相捕な共通配列を持たせる (overlap させる) ことで、 制限酵素を使わずに連結させることができる点で優れた方法で あった。 連結された DNAはその両端から増幅させるための PCR用プライマーで容 易に連結された DNAを取得できる。 これは特定の DNA断片同志を連結する際に極 めて有用である。
1 9 9 0年、 様々なタンパク質を大腸菌ファージ表面に提示して特定のターゲ ット分子に特異的に結合するタンパク質を迅速に見い出す進化分子工学的手法で あるファージディスプレイ法 (Scott JK &Smith GP, (1990) Science, 249; 386-390) が実用化され、様々な応用が始まった。 その際、 ファージのコートタン パク質の N末端側に DNAレベルでランダムな配列を連結させる必要がある。 DNA をファージのゲノムに挿入するためには、 ファージゲノムのそのものの長さが PCRするには長いため、 Overlap extension PCR法を用レヽず制限酵素を用いて揷入 箇所で切断後、 同じ制限酵素サイトを両端にもつ DNAを挿入していた。 挿入する DNA にランダムな配列がある場合、 その中に制限酵素部位があると切断されるた め、 ライブラリの配列が制限されることになる。
一方、 1 9 9 7年に開発された in vitro virus法は無細胞翻訳系中で mR Aと それにコードされたタンパク質を mRNAの 3,末端側にピューロマイシン付スぺー サを介して連結させる (Nemoto, N. et al. (1997) FEBS Lett. 414, 405-408, Roberts, R. W. et al (1997) Proc. Natl. Acad. Sci. USA 94, 12297 - 12302)。 この場合、 PCRプロセスと無細胞翻訳系プロセスのみであるためファージデイス プレイのように制限酵素を用いた連結法を用いる必要はない。 従来の PCR法では プライマーにより元の 1本の铸型 MAから 1万倍以上の DNAが複製する。 これは 数種類の DNAを連結する場合には問題とならないが、 in vitro virus法のように 1 0の 1 3乗の様々な配列を含むライブラリを必要とする場合には,通常の PCR では元のライブラリの多様性を著しく損なう。 したがって多様性を損なわずにラ ンダムな DNAライブラリを連結し、 mRNAを作成する技術が求められている。 上記した通り、 in vitro virus法のように in vitroで莫大な配列空間をもつ ライブラリ集団を扱う場合、 スクリーニング過程までそのライブラリの多様性を 保持させる技術は極めて重要である。
in vitro virus法では l ml当たり 1 0の 1 3乗を超える分子がスクリーユング 可能である。 これは従来のファージディスプレイ法が l ml当たり 1 0の 7乗程度 の分子数であることに比べると飛躍的な向上となる。 し力 し、 コピー数が多く含 まれるとスクリーニングする実際の分子種が減少する。 PCR法で 2 0サイクルの 反応をくり返すとそれだけで、理論的には 1 0の 6乗のコピー数となり、 in vitro virus法でもファージディスプレイ法と同等の多様性しか持たないことになる。 発明の開示
本発明の第一の目的は、 一本鎖 R N Aと一本鎖 D N Aとを連結するための新規 な方法、 例えば、 in vitro virus virionを作製するための鎵型となる構造物 (以 下、 これを in vitro virus genomeと称することがある) の新規な構築法を提供 することである。 これに関連して、 本発明はまた、 短時間に効率よく R N A— D NA結合体を製造する方法を提供することを目的とする。 本発明はさらに、 上記 方法により得られた R N A— D N A結合体を無細胞翻訳系に付してタンパク質と R NAの結合体を効率よく製造する方法を提供することを目的とする。
本発明の第二の目的は、 煩雑な操作をすることなく in vitro virus genomeに 親和性物質を付け、 in vitro virion の精製に有用で、 かつ支持体に固定化して プロテインチップ作成する際においても有用な技術を提供することである。
本発明の第三の目的は、 煩雑な操作をすることなく in vitro virus genomeに 親和性物質を付け、 in vitro virus virion の精製に有用で、 かつ支持体に固定 化してプロティンチップを作成する際においても有用な核酸とタンパク質との複 合体 (核酸一タンパク質複合体) を用いる、 所望の機能を有するタンパク質の効 率的な選択方法等を提供することである。
本発明の第四の目的は、 ピューロマイシンのひーァミノ基が酵素的に脱保護さ れるようにァミノ酸誘導体またはべプチド誘導体で保護した新規ピュー口マイシ ン誘導体を提供することである。
本発明の第五の目的は、 比較的短いぺプチドを無細胞翻訳系で発現させること を可能とする支持体タンパク質、 より具体的には、 フォールデイングしやすく、 提示するぺプチドとの相互作用が生じにくい支持体タンパク質、及び mRNA等の核 酸や他のタンパク質と相互作用しにくい支持体タンパク質を提供することである。 本発明の第六の目的は、 ランダム配列などの目的配列をコ一ドした DNA断片の コピー数を増やさずに他の D N A断片と連結させて、 in vitro virus genome に 用いるための一本鎖 R NAを作製するための方法を提供することである。 本発明者らは上記した本発明の第一の目的を解決するために鋭意検討した結果、 互いに相補的な配列を有する一本鎖 R N Aと一本鎖 D N A又はその誘導体とをァ ニーリングさせた後に RN Aリガーゼで処理することにより、 短時間に効率よく R NA— D NA結合体を製造することができることを見出した。
即ち、本発明によれば、 (1 )互いに相捕的な配列を有する一本鎖 R NAと一本 鎖 D NA又はその誘導体とをァユーリングさせる工程;及ぴ
( 2 ) ァエーリング産物を R NAリガーゼで処理して、 一本鎖 R NAの 3 ' 末端 と一本鎖 D N A又はその誘導体の 5, 末端とを連結する工程:
を含む R N A— D N A結合体の製造方法が提供される。
本発明の好ましい態様によれば、 (1 ) 蛋白質をコードするコード配列を含み、 3, 末端側に 5 ' から 3, 方向にアニーリング配列とブランチ配列とを有する一 本鎖 R NAと、 3, から 5, 方向に上記アニーリング配列と相補的な配列とブラ ンチ配列とを有する一本鎖 D NA又はその誘導体とをアニーリングする工程;及 び (2) アニーリング産物を RN Aリガーゼで処理して、 一本鎖 RN Aの 3, 末端 と一本鎖 DN A又はその誘導体の 5, 末端とを連結する工程:
を含む R N A— D N A結合体の製造方法が提供される。
好ましくは、 一本鎖 RNAは mRNA又は mRNAライブラリーである。 好ましくは、 一本鎖 RNAは、 (1) プロモーター配列、 (2) 翻訳の際にリボ ソームによって認識される塩基配列、 及ぴ (3) 目的タンパク質をコードする配 列を有することを特徴とする。
好ましくは、 目的タンパク質は、 目的ペプチド又は目的タンパク質と、 30か ら 200アミノ酸残基からなる球状タンパク質から成ることを特徴とする目的ぺ プチド又は目的タンパク質を融合タンパク質として発現及ぴ提示するための支持 体タンパク質とから成る融合タンパク質である。
好ましくは、 一本鎖 DNA又はその誘導体として、 3' 末端に核酸誘導体が結 合している一本鎖 DN Aの誘導体を使用する。
好ましくは、 一本鎖 DNA又はその誘導体として、 3' 末端に核酸誘導体がス ぺーサ一を介して結合している一本鎖 D N Aの誘導体を使用する。
好ましくは、 一本鎖 DNA又はその誘導体として、 3, 末端に、 一本鎖 RNA の逆転写の際にプライマーとして作用する配列を有する一本鎖 DN Aの誘導体を 使用する。
好ましくは、 一本鎖 DNA又はその誘導体として、 3, 末端に、 該一本鎖 RN Aの逆転写のためのプライマ一配列を有し、 かつ核酸誘導体を末端に有するスぺ ーサ一が枝分かれした状態で結合している一本鎖 D N Aの誘導体を使用する。 好ましくは、 核酸 |導体は、 ピューロマイシン、 3, -N-アミノアシルピュー口 マイシンァミノヌクレオシド、 3' - N -ァミノアシルアデノシンァミノヌクレオシ ドの化学構造骨格を含む化合物又はそれらの類縁体である。
好ましくは、 スぺーサ一は、 ポリエチレン又はポリエチレングリコールなどの 高分子である。
R N Aリガーゼは好ましくは T4RNAリガーゼである。 本発明のさらに別の側面によれば、 本発明の方法により得られる RNA— DN A結合体が提供される。
本発明のさらに別の側面によれば、 本発明の方法により得られる RNA— DN A結合体を逆転写反応に付して DN A結合体を製造する方法が提供される。 本発明のさらに別の側面によれば、 本発明の方法により得られる RNA— DN A結合体をタンパク質翻訳系に導入して RN Aをタンパク質に翻訳することを特 徴とする、 RNAと該 RNAによりコードされるタンパク質から成る RNA—タ ンパク質複合体の製造方法が提供される。
本発明のさらに別の側面によれば、 上記した方法により製造される RNA—タ ンパク質複合体が提供される。
本発明のさらに別の側面によれば、 上記した本発明の RNA—タンパク質複合 体を逆転写反応に付することを特徴とする、 DNAと該 DNAによりコードされ るタンパク質から成る核酸一タンパク質複合体の製造方法が提供される。
本発明のさらに別の側面によれば、 上記した製造方法により製造される核酸一 質複合体が提供される。 さらに、 本発明者らは上記した本発明の第二の目的を解決するために鋭意検討 した結果、 一本鎖 RNAの 3, 末端側の配列とアニーリングすることができる一 本鎖 DNA配列の 3, 末端に、 該一本鎖 RNAの逆転写のためのプライマー配列 と、 核酸誘導体を末端に有するスぺーサ一とが枝分かれした状態で結合した丁字 型の構造を有する核酸構築物 (以下、 T- Spacerとも称する) において、 5' 末端 側に親和性物質と制限酵素認識部位を導入した T - Spacerを用いることにより、一 本鎖 R N Aとそれがコードするタンパク質との複合体を簡単に作製でき、 かつ精 製できることを見出した。
即ち、 本発明によれば、 一本鎖 RNAの 3, 末端側の配列とアニーリングする ことができる一本鎖 DNA配列を 3' 末端側に含み、 該一本鎖 DNA配列がその 3, 末端に、 該一本鎖 RNAの逆転写のためのプライマー配列を有し、 かつ核酸 誘導体を末端に有するスぺーサ一が枝分かれした状態で結合しており、 該一本鎖
DNA配列の 5, 末端側に親和性物質が結合している、 一本鎖 RNAとそれがコ ードするタンパク質との複合体を作製するための核酸構築物が提供される。 好ましくは、該一本鎖 DNA配列の 5,末端側に制限酵素認識部位が存在する。 本発明の第一の好ましい態様によれば、 一本鎖 R N Aの 3, 末端側の配列と了 ニーリングすることができる一本鎖 D N A配列を 3, 末端側に含む、 一本鎖 R N Aとそれがコードするタンパク質との複合体を作製するための核酸構築物におい て、
(1) 該一本鎖 DNA配列が、 その 3, 末端に、 該一本鎖 RN Aの逆転写のため のプライマー配列を有し、 かつ核酸誘導体を末端に有するスぺーサ一が枝分かれ した状態で結合しており、
( 2 )該核酸構築物にぉレ、て該一本鎖 RNAとアニーリングしない 5'末端側は、 ループ領域を介して互いに相補的な二本鎖配列を形成しており、
( 3 ) 該ループ領域に親和性物質が結合している、
ことを特徴とする上記の核酸構築物が提供される。
本発明の第二の好ましい態様によれば、 一本鎖 RNAの 3, 末端側の配列とァ ニーリングすることができる一本鎖 DN A配列を 3 ' 末端側に含む、 一本鎖 RN Aとそれがコードするタンパク質との複合体を作製するための核酸構築物におい て、
(1) 該一本鎖 DNA配列が、 その 3, 末端に、 該一本鎖 RNAの逆転写のため のプライマー配列を有し、 かつ核酸誘導体を末端に有するスぺーサ一が枝分かれ した状態で結合しており、
( 2 )該核酸構築物において該一本鎖 RN Aとァニーリングしない 5 '末端側は、 相補 DN A鎖と化学的に結合して互いに相補的な二本鎖配列を形 しており、
(3) 該相補 DNA鎖の 3' 末端に親和性物質が結合している、
ことを特徴とする上記の核酸構築物が提供される。
好ましくは、 上記の二本鎖配列中には制限酵素認識部位が存在する。 好ましくは、 核酸誘導体は、 ピューロマイシン、 3, -N-アミノアシルピュー口 マイシンァミノヌクレオシド、 3, - N-ァミノアシルアデノシンアミノヌクレオシ ドの化学構造骨格を含む化合物又はそれらの類縁体である。
好ましくは、 スぺーサ一はポリエチレン又はポリエチレングリコールなどの高 分子である。
好ましくは、 親和性物質はビォチン又はポリ A配列である。
本発明の別の側面によれば、 上記した核酸構築物と一本鎖 RNAとをァニーリ ングさせ、 該核酸構築物の二本鎖領域の 5, 末端と一本鎖 RNAの 3' 末端とを ライゲーシヨンさせることを含む、 RNA— DNA結合体の作製方法が提供され る。
好ましくは、 ライゲーションは T4RNAリガーゼを用いて行なう。
好ましくは、 一本鎖 RNAは mRNA又は mRNAライブラリーである。 好ましくは、 一本鎖 RNAは、 (1) プロモーター配列、 (2) 翻訳の際にリボ ソームによって認識される塩基配列、 及び (3) 目的タンパク質をコードする配 列を有する。
好ましくは、 目的タンパク質は、 目的ペプチド又は目的タンパク質と、 30か ら 200アミノ酸残基からなる球状タンパク質から成ることを特徴とする目的べ プチド又は目的タンパク質を融合タンパク質として発現及ぴ提示するための支持 体タンパク質とから成る融合タンパク質である、
本発明のさらに別の側面によれば、 上記方法により得られる RN A— DN A結 合体、 並びに該 R NA— D N A結合体を支持体上に固定ィヒしたチップが提供され る。
本発明のさらに別の側面によれば、 上記方法により得られる RNA— DNA結 合体を逆転写反応に付して DNA結合体を製造する方法、 上記方法により得られ る D N A結合体、 並びに該 D N A結合体を支持体上に固定化したチップが提供さ れる。
本発明のさらに別の側面によれば、 上記の RNA— DNA結合体をタンパク質 翻訳系に導入して RNAをタンパク質に翻訳することを特徴とする、 RNAと該 RNAによりコードされるタンパク質から成る RNA—タンパク質複合体の製造 方法が提供される。
好ましくは、 翻訳は無細胞翻訳系で行なう。
本発明のさらに別の側面によれば、 上記の RNA— DNA結合体をタンパク質 翻訳系に導入して RNAをタンパク質に翻訳することにより得られる、 RNAと 該 RNAによりコードされるタンパク質から成る RNA—タンパク質複合体、 並 ぴに該 RN A—タンパク質複合体を支持体上に固定化したチップが提供される。 本発明のさらに別の側面によれば、 上記の RNA—タンパク質複合体を逆転写 反応に付することを特徴とする、 DNAと該 DNAによりコードされるタンパク 質から成る核酸一タンパク質複合体の製造方法、 該製造方法により得られる核酸 —タンパク質複合体、 並びに、 該核酸一タンパク質複合体を支持体上に固定化し たチップが提供される。 さらに本発明者らは、 上記した本発明の第三の目的を解決するために鋭意検討 した結果、 一本鎖 RNAの 3, 末端側の配列とアニーリングすることができる一 本鎖 DNA配列の 3, 末端に、 該一本鎖 RNAの逆転写のためのプライマー配列 と、 核酸誘導体を末端に有するスぺーサーとが枝分かれした状態で結合した丁字 型の構造を有する核酸構築物 (以下、 T- Spacerとも称する) において、 5' 末端 側に親和性物質と制限酵素認識部位を導入した T-Spacerを用いることにより、一 本鎖 R N Aとそれがコードするタンパク質との複合体を簡単に構築することがで き、 さらにこの核酸とタンパク質との複合体を用いることにより効率的に所望の 機能を有するタンパク質を選択できることを見出した。
即ち、 本発明によれば、 (1) 上記した本発明による RNA— DNA結合体を 調製する調製工程、 (2) 調製工程で得られた RNA— DNA結合体をタンパク 質翻訳系に導入して RNAをタンパク質に翻訳させて RNAと該 RNAによりコ ードされるタンパク質から成る RN A—タンパク質複合体を構築する構築工程、 ( 3 ) 構築工程で得られた R N A—タンパク質複合体を被験物質との相互作用に 基づいて選抜する選抜工程、 および、 (5) 選抜工程で選択された RNA—タン パク質複合体の核酸部分を増幅する増幅工程とを含むことを特徴とする核酸およ び Zまたはタンパク質の選択方法が提供される。
本発明の好ましい態様によれば、 増幅工程で得られた核酸を、 一本鎖 RNAと して RNA— DNA結合体を調製する調製工程に供し、 (1) 調製工程、 (2) 構築工程、 ( 3 ) 選抜工程、 および、 ( 5 ) 増幅工程を繰り返し行うことを特徴 とする上記方法が提供される。
また、 本発明の別の態様によれば、 (1) )—本鎖 RNAの 3, 末端側の 配列とアニーリングすることができる一本鎖 D N A配列を 3, 末端側に含む核酸 構築物を調製し、 (b)該核酸構築物と一本鎖 RNAとをアニーリングさせ、 (c) 該アニーリング産物の一本鎖 RN Aの 3, 末端と核酸構築物の 5' 末端とを連結 させて RNA— DNA結合体を調製する調製工程、 (2) 調製工程で得られた R NA— DNA結合体をタンパク質翻訳系に導入して RN Aをタンパク質に翻訳さ せて RNAと該 RNAによりコードされるタンパク質から成る核酸一タンパク質 複合体を構築する構築工程、 (3) 構築工程で得られた核酸一タンパク質複合体 を被験物質との相互作用に基づいて選抜する選抜工程、 (4) 選抜工程で選択さ れた核酸一タンパク質複合体の核酸部分に変異を導入する変異導入工程、およぴ、 ( 5 ) 変異導入工程で得られた核酸部分を増幅する増幅工程とを含むことを特徴 とする核酸およぴ Zまたはタンパク質の選択方法が提供される。
本発明の好ましい態様によれば、 増幅工程で得られた核酸を、 一本鎖 RNAと して RNA— DNA結合体を調製する調製工程に供し、 (1) 調製工程、 (2) 構築工程、 (3) 選抜工程、 (4) 変異導入工程、 および、 (5) 増幅工程を繰 り返し行うことを特徴とする上記方法が提供される。
さらに、 本発明の別の態様によれば、 (1) (a) —本鎖 RNAの 3' 末端側 の配列とァニーリングすることができる一本鎖 D N A配列を 3 ' 末端側に含む核 酸構築物を調製し、 (b) 該核酸構築物と一本鎖 RNAとをアニーリングさせ、 ( c ) 該アニーリング産物の一本鎖 R NAの 3, 末端と核酸構築物の 5, 末端と を連結させて R NA— D NA結合体を調製する調製工程、 (2 ) 該 RNA— D N A結合体をタンパク質翻訳系に導入して R NAをタンパク質に翻訳させて R NA と該 R NAによりコードされるタンパク質から成る核酸一タンパク質複合体を構 築する構築工程、 および、 (6 ) 構築工程で得られた核酸一タンパク質複合体と 被験物質との相互作用を調べる検定工程とを含むことを特徴とするタンパク質と 被験物質との相互作用の検出方法が提供される。 さらに本発明者らは上記した本発明の第四の目的を解決するために鋭意検討を 重ね、ホスホアミダイト法におけるすべての反応に耐え、なおかつ副反応を起こさ ない穏やかな条件で除去される保護基としてべプチダーゼによって加水分解され るアミノ酸誘導体を考え、 幾つかの保護基とぺプチダーゼの組合わせを検討した。 その結果、 Z (benzyloxycarbonyl) 基で保護されたフエ二ルァラニン (Z - Phe基) とキモトリプシンの組み合わせが実用的であることを見い出した。
即ち、本発明によれば、 下記式(1 ) で表されるピューロマイシン誘導体又はそ の塩が提供される。
Figure imgf000019_0001
X (式中、 R1は水素原子、 又は水酸基の保護基を示し;
R 2は水素原子又は反応性基を示し;
Xはアミノ酸残基あるいはペプチドを示し、 Xにおいて、そのカルボキシル基が ピューロマイシン中のアミノ基とアミド結合により結合しており、該アミノ酸残基 あるいはぺプチドの αアミノ基および側鎖の官能基は所望により保護されていて もよい。)
好ましくは、 アミノ酸残基あるいはぺプチドは芳香族アミノ酸残基である。 好ましくは、 該芳香族アミノ酸残基はフエ二ルァラニン残基である。
特に好ましくは、 Xは、 Ν α— (N o;—ベンジルォキシカルボユルフェ二ルァラ ニル基である。
好ましくは、 R 2が示す反応性基は、 末端にカルボキシル基を有する反応性基で ある。
特に好ましくは、 R 2が示す反応性基はスクシニル基である。
本発明の別の側面によれば、上記のピューロマイシン誘導体を支持体に結合して なる、 ピューロマイシン誘導体固定化支持体が提供される。
好ましくは、 本発明のピューロマイシン誘導体固定化支持体は、 R 2が示す反応 性基と、 支持体中の反応性基とを反応させることにより得ることができる。
好ましくは、 支持体は、 C P G (Controlled Pore Glass)である。
本発明のさらに別の側面によれば、上記のピューロマイシン誘導体をぺプチダー ゼあるいはプロテアーゼで処理することにより、下記式(2 ) で表される化合物を 製造することを含む、 ピュー口マイシン誘導体の脱保護方法が提供される。
Figure imgf000021_0001
(式中、 R1は水素原子、又は水酸基の保護基を示し; R 2は水素原子又は反応性基 を示す。)
好ましくは、 ぺプチダーゼあるいはプロテアーゼはキモトリプシンである。 本発明のさらに別の側面によれば、上記したピューロマイシン誘導体又はピュー ロマイシン誘導体固定化支持体を用いた核酸化合物の製造方法が提供される。 本発明のさらに別の側面によれば、上記したピューロマイシン誘導体を有する核 酸化合物が提供される。
本発明のさらに別の側面によれば、上記した核酸化合物をぺプチダーゼあるいは プロテアーゼで処理することによりピューロマイシン誘導体の脱保護を行う、脱保 護方法が提供される。
好ましくは、 ぺプチダーゼあるいはプロテアーゼはキモトリプシンである。 さらに本発明者らは上記した本発明の第五の目的を解決するために鋭意検討し た結果、支持体タンパク質としては、 (1 )球状タンパク質であってフォールディ ングしゃすい、 かつ (2 ) 安定性があるという条件が必要であることを見出し、 これらの条件を満たすタンパク質として Oct- 1の Pou- specific domain (73ァミ ノ酸残基) (Dekker, N. et al. (1993) Nature 362, 852-854) を支持体タンパク 質の候補として選択した。 そして、 このタンパク質中の Cys残基を Ala残基に置 換した変異体タンパク質を作成し、 このタンパク質を支持体としてペプチドライ ブラリ一を無細胞翻訳系で発現させた結果、 機能性ぺプチドを効率よく発現でき ることを見出した。
即ち、 本発明によれば、 3 0から 2 0 0アミノ酸残基からなる球状タンパク質 カ ら成ることを特徴とする、 目的ぺプチド又は目的タンパク質を融合タンパク質 として発現及ぴ提示するための支持体タンパク質が提供される。
上記した本発明の支持体タンパク質のなかでも好ましい態様によれば、 システ イン残基を含まない支持体タンパク質;タンパク質の二次構造として シート構 造を有さず、 αヘリックス構造からなる支持体タンパク質;タンパク質の立体構 造において、 Ν末端と C末端が離れている支持体タンパク質;及び、 他の生体高 分子と相互作用しなレ、支持体タンパク質が提供される。
本発明の特に好ましい態様によれば、 下記の何れかのアミノ酸配列を有する、 目的ペプチド又は目的タンパク質を融合タンパク質として提示するための支持体 タンパク質が提供される。
( 1 ) 配列番号 2 1に記載のァミノ酸配列;又は
( 2 )配列番号 2 1に記載のアミノ酸配列において 1から数個のアミノ酸が欠失、 置換、 付加および Ζまたは挿入しているアミノ酸配列であって、 球状タンパク質 を構成するアミノ酸配列:
本発明の別の側面によれば、 目的べプチド又は目的タンパク質をコードする塩 基配列および上記した何れかの支持体タンパク質をコードする塩基配列が直接ま たはリンカ一を介して連結してなる、 目的ペプチド又は目的タンパク質と支持体 タンパク質とから成る融合タンパク質をコードする核酸またはその修飾体が提供 される。
本発明のさらに別の側面によれば、 目的ぺプチド又は目的タンパク質と上記し た何れかの支持体タンパク質とから成る融合タンパク質が提供される。
本発明のさらに別の側面によれば、 上記した核酸またはその修飾体を、 無細胞 翻訳系または生細胞において発現させる工程を含む、 融合タンパク質を製造する 方法が提供される。
本発明のさらに別の側面によれば、 目的べプチド又は目的タンパク質をコード する塩基配列おょぴ上記した何れかの支持体タンパク質をコードする塩基配列が 直接またはリンカ一を介して連結してなる目的ぺプチド又は目的タンパク質と支 持体タンパク質とから成る融合タンパク質をコードする mR NAであって、 その 3 ' 末端に核酸誘導体が結合している mR NAを、 無細胞翻訳系または生細胞に おいて発現させる工程を含む、 融合タンパク質とそれをコードする核酸とから成 る複合体を製造する方法が提供される。
好ましくは、 核酸誘導体は、 ピューロマイシン、 3, -N-アミノアシルピュー口 マイシンァミノヌクレオシド、 3' - N-ァミノァシルアデノシンァミノヌクレオシ ドの化学構造骨格を含む化合物又はそれらの類縁体である。
好ましくは、 融合タンパク質をコードする mR NAとして、 3, 末端に核酸誘 導体がスぺーサーを介して結合している mR NAを使用する。
好ましくは、 スぺーサ一はポリエチレン又はポリエチレンダリコールなどの高 分子である。
本発明のさらに別の側面によれば、 (1 ) 無細胞翻訳系または生細胞において、 目的ぺプチド又は目的タンパク質を含むライブラリ一を、 上記した何れかの方法 により、 本発明の支持体タンパク質との融合タンパク質の形態で発現させるェ 程;及び、
( 2 ) 工程 (1 ) で得られた融合タンパク質をスクリーニングすることにより所 望の機能を有する目的ぺプチド又は目的タンパク質を選択する工程:
を含む、 機能性ぺプチド又はタンパク質のスクリーニング方法が提供される。 さらに本発明者らは上記した本発明の第六の目的を解決するために鋭意検討を 行い、 先ず、 互いに相補的な共通配列を有する異なる 2種類の 1本鎖または 2本 鎖 D NAを連結するために P C Rを行う際に、 プライマーを用いないで P C R反 応を行った。 この場合、 連結した全長 2本鎖 D NAの他に、 連結されなかった D N Aの相補鎖がそのまま残ることになる。 通常、 このような余分な DNAは精製す べきであるが 1 0 0塩基以上あるためプライマー除去用の簡易カラムを使うこと ができず、 電気泳動後ゲルから切り出す必要がある。 これは作業上効率が悪く収 率が低下することが分かっている。
そこで、 この問題を回避するために、 T 7 RNAポリメラーゼ等のウィルス由来の RNA ポリメラーゼはプロモータ特異性が高く、 2本鎖 D N Aを特異的に認識する という性質を有することを利用して、 一切の精製作業をせずに R N Aが合成され るかどうカ調べた。 その結果、 所期の目的どおりの R N Aが合成されることがわ かった。 また、 同時に混在する D N Aは D N A分解酵素を用いて分解後、 精製す ることで容易に除去できることもわかった。
即ち、 本発明によれば、 互いに相補的な共通配列を有する異なる 2種類以上の 1本鎖または 2本鎖 D NAをプライマーの非存在下において D N A合成酵素を用 いて反応させる工程、 上記工程で得た混合物を用いて R NAポリメラーゼの存在 下で転写反応を行レ、 R N Aを合成する工程、 および D N A分解酵素で D N Aを分 解する工程を含む、 上記した本発明の方法に用いるための一本鎖 R N Aの製造方 法が提供される。
好ましくは、 D N A合成酵素を用いた反応は、 T a qポリメラーゼを用いるポ リメラーゼ連鎖反応 (P C R) である。
好ましくは、 異なる 2種類以上の 1本鎖または 2本鎖 D N Aのうちの片方の D N Aは目的配列を含む D N Aである。 より好ましくは、 異なる 2種類以上の 1本 鎖または 2本鎖 D NAのうちの片方の D NAは目的配列を含む D NAであり、 他 方の D NAが転写、 翻訳のための配列、 タグをコードする配列、 あるいは支持体 タンパク質をコードする配列のようなコンスタントな配列 (コンスタント配列) である。
好ましくは、 支持体タンパク質が、 3 0から 2 0 0アミノ酸残基からなる球状 タンパク質から成るタンパク質である。
本発明のさらに別の側面によれば、 上記した方法により得られる R N Aが提供 される。
本発明のさらに別の側面によれば、 ( 1 )互いに相補的な共通配列を有する異な る 2種類の 1本鎖または 2本鎖 DN Aをプライマーの非存在下において DN A合 成酵素を用いて反応させることにより、 連結した DNAと連結しない DNAを含 む混合物を調製する工程;
(2) 工程 (1) で得た混合物を用いて RN Aポリメラーゼの存在下で転写反応 を行い RN Aを合成する工程;及び
(3) 工程 (2) で得た RNAを、 無細胞翻訳系または生細胞において発現させ る工程を含む、 タンパク質の製造方法が提供される。
本発明のさらに別の側面によれば、 (1)互いに相補的な共通配列を有する異な る 2種類の 1本鎖または 2本鎖 DNAをプライマーの非存在下において DNA合 成酵素を用いて反応させることにより、 連結した DNAと連結しない DNAを含 む混合物を調製する工程;
(2) 工程 (1) で得た混合物を用いて RN Aポリメラーゼの存在下で転写反応 を行い RN Aを合成する工程;
(3) 工程 (2) で得た RN Aの 3' 末端を核酸誘導体で修飾する工程;及ぴ
(4) 工程 (3) で得た 3' 末端を核酸誘導体で修飾した RNAを、 無細胞翻訳 系または生細胞において発現させる工程を含む、 タンパク質とそれをコードする 核酸との複合体の製造方法が提供される。
好ましくは、 核酸誘導体は、 ピューロマイシン、 3, -N-アミノアシルピュー口 マイシンァミノヌクレオシド、 3, - N -ァミノァシルアデノシンァミノヌクレオシ ドの化学構造骨格を含む化合物又はそれらの類縁体である。
好ましくは、 mRNAとして、 3, 末端に核酸誘導体がスぺーサーを介して結 合している mRN Aを使用する。
好ましくは、 スぺーサ一はポリエチレン又はポリエチレンダリコールなどの高 分子である。 図面の簡単な説明
図 1は、 従来の in vitro virus virionの精製技術の具体例を示す。
図 2は、 本発明による Y—ライゲーション法を用いた in vitro virusのゲノム 構築の模式図である。
図 3は、 本発明で使用可能な核酸構築物の構造を示す。
図 4は、 本発明で使用可能な核酸構築物の具体例を示す。
図 5は、 ライゲーシヨン前の mR NA、 及び RT- thioとのライゲーシヨン後の m R N Aを電気泳動した結果を示す図である。
図 6は、 ライゲーシヨン後の m R N Aの逆転写産物 (レーン 3 )、 及ぴそれを R ase Hで処理した産物 (レーン 2 ) を電気泳動した結果を示す図である。
図 7は、 ライゲーシヨン前の m R NA、及ぴ Hybri spacerとのライゲーシヨン 後の m R N Aを電気泳動した結果を示す図である。
図 8は、 ライゲーション産物を無細胞翻訳系に添加して得られる翻訳産物を 1 5 % S D S—ポリアクリルアミドゲルで電気泳動した結果を示す図である。
図 9は、 mRNAと本発明の T- Spacer (T- splint3FA)とのライゲーションの結果を 示す図である。
図丄 CUa-、 本発明の T一 Spacerを含む in vitro virus genomeを用レヽて in vitro virus virionを开$成した結果を示す。
図 1 1 fま、 本発明の T— Spacerを含む in vitro virus genomeを逆早s吞した結果 を示す。
図 1 2は、 本発明の T- Spacerを含む in vitro virus genomeを用いて作製した in vitro virus virionを逆 した結果を示す。
図 1 3は、 T - spacer (親和性物資としてビォチンを使用) を用いて in vitro virusを精製した結果を示す。
図 1 4は、 T- spacer (親和性物資として Poly Aを使用)を用いて in vitro virus を精製した結果を示す。
図 1 5は、 本発明の方法に従い Pool (ネガティブコントロール ZP0U) から protein Aの B ドメインを選択した結果を示す。
図 1 6は、 本発明の方法に従い Pool (ネガティブコントロール ZP0U) から protein Aの B ドメインを選択した結果を示す。
図 1 7は、 実施例 4で合成した ZF-puromycin CPGを用いたスぺーサーを電気泳 動した結果を示す。
図 1 8は、 本発明の概要の模式図を示す。
図 1 9は、 本発明の一実施例として糖鎖結合ぺプチドのスタリ一ニングの模式 図を示す。
図 2 0は、 DNA"T7- Kozac"、 DNA "Lec- random"及ぴ支持体のコンスタントな配列 を持つ DNA "Pou"の構築を示す。
図 2 1は、 連結産物" T' 7- Lec- random"を 8 M尿素変性ァクリルァミド電気泳動 で解析した結果を示す。
図 2 2は、連結産物 〃T' 7-Lec- random-Pou"を 8 M尿素変性ァクリルァミド電気 泳動で解析した結果を示す。
図 2 3は、 T, 7- Lec- random- Pouの転写産物を 8 M尿素変性ァクリルァミド電気 泳動で解析した結果を示す。
図 2 4は、 糖鎖ぺプチドのスクリ一二ングの結果を示す。
図 2 5は、 糖鎖ぺプチドのスクリ一二ングの結果として取得された配列をシー クエンスした結果を示す。 括弧は水素結合できるアミノ酸を示す。 選択前より選 択後の方が、 水素結合可能なアミノ酸を多く含む配列が選択されてきている。 発明を実施するための最良の形態
以下、 本発明の実施の形態についてより詳細に説明する。
( I ) R NA- D N A結合体の製造方法およびその利用
本発明による R N A— D N A結合体の製造方法は、
( 1 ) 互いに相補的な配列を有する一本鎖 R NAと一本鎖 D N A又はその誘導体 とをァエーリングさせる工程;及び
(2) アニーリング産物を RNAリガーゼで処理して、 一本鎖 RNAの 3, 末端 と一本鎖 DNA又はその誘導体の 5, 末端とを連結する工程:
を含むことを特徴とする。
本発明の方法では、 結合するべき一本鎖 RNAと一本鎖 DNA (又はその誘導 体) は互いに相捕的な配列を有することが必要である。 互いに相補的な配列を有 する一本鎖 R N Aと一本鎖 D N Aとを好適な条件下でァニーリングすることによ り両者を会合させ、 次いで、 RNAリガーゼで処理することにより両者を効率よ く連結することができる。
本発明の方法は、 Y—ライゲーシヨン法で DN A同志を連結させる方法を発展 させたものである。 本発明では、 連結すべき核酸の片方を RNAにすることによ つて得られた RNA— DNA結合体を新しい用途に用いることにより、 効率の良 い新規の in vitro virus genome ( Nemoto, N. , et, al. (1997) FEBS Lett. 414, 405-408. )の構築法を提供することが可能になる。
本発明の方法では、 Y—ライゲーシヨン法により RNAの 3 ' 末端と、 その R N A中の配列と相補的な配列を有する D N Aの 5, 末端とを R N Aリガーゼで共 有結合させる。 本発明の方法で用いる RNAは一本鎖 RNAであり、 より具体的 には、 蛋白質をコードするコード配列を含む RNAであることが好ましく、 また 3' 末端側に 5' から 3' 方向にアニーリング配列とブランチ配列とを有するこ とが好ましい。
本明細書で言うブランチ配列とは、 一本鎖 RN A及び一本鎖 DN A又はその誘 導体中のアニーリング配列同士がアニーリングした際に互いにアニーリングせず、 一本鎖の状態で存在する配列である。 一本鎖 RN A及び一本鎖 DN A又はその誘 導体中におけるブランチ配列の長さは、 両者を RN Aリガーゼ処理により連結で きる程度の長さであれば特に限定されない。 一般にブランチ配列の長さは短い;^ が連結効率は高いが、 上限は特に制限されない。 ブランチ配列の長さは、 好まし くは 1から 100塩基、 より好ましくは 1から 10塩基程度である。 両核酸中の 己列の長さは同一でも異なっていてもよい。
本明細書で言ぅァニーリング配列とは、 結合すべき D N Aとァニーリングする ことができる配列であり、一本鎖 R N A中のァニーリング配列に相補的な配列力 結合すべき一本鎖 D NA中に存在することになる。 アニーリング配列の長さは、 両鎖がハイブリダイズすることができるのに十分な長さであれば特に限定されな いが、 一般的には 1 0から 5 0塩基、 より好ましくは 1 0から 3 0塩基程度であ る。
本発明の方法で結合される一本鎖 R N Aと一本鎖 D N A又はその誘導体は互 ヽ に相補的な配列を有することにより、 両者は一定の条件下でァニーリングするこ とが可能になる。 より詳細には、 一本鎖 R NA中のアニーリング配列と、 一本鎖 D N A又はその誘導体中の上記アニーリング配列と相補的な配列とがハイブリダ ィズすることにより両配列は二本鎖を形成する。 その際、 一本鎖 R NA中のブラ ンチ配列と一本鎖 D N A又はその誘導体中のブランチ配列は一本鎖のまま存在す るため、 これらの部分は全体としては Y字の形を形成することになる (図 2の一 番上の図を参照)。Y—ライゲーション法という名称はこの構造体の形に由来する。 この方法の特徴は 2種の核酸を連結する反応を分子間反応から分子内反応とした ことにより連結効率を向上させることができる点にある。 従って、 低濃度の基質 についても応用することが可能である。
本発明の方法では先ず、 上記した互いに相補的な配列を有する一本鎖 R N Αと 一本鎖 D N A又はその誘導体 (以下、 これらをまとめて 「一本鎖核酸」 と称する ことがある) とをァユーリングさせる。
アニーリングは上記した 2種の一本鎖核酸を適当な緩衝液 (以後の操作の便宜 上から言うと、 RN Aリガーゼ用の緩衝液が好ましい) に溶解し、 高温から段階 的に低温にすることにより行なうことができる。 このような温度変化は P C R装 置などを用いて行なうこともできる。 アニーリング条件の一例としては、 9 4 ¾ から 2 5 °Cまで 1 0分かけて冷却するという条件が挙げられるが、 これは一例に すぎず、 温度おょぴ時間は適宜変更することができる。 アニーリングの条件 (緩 衝液の組成、 アニーリング温度、 及びアニーリング時間など) は、 アニーリング 配列の長さや塩基組成などに応じて適宜設定することができる。
アニーリング反応における一本鎖 RNAと一本鎖 DNA又はその誘導体のモル 比はアニーリング反応が進行する限り、 特に限定されないが、 反応効率の観点か らは、 1 : 1〜1 : 2. 5程度であることが好ましい。
一本鎖 RN Aと一本鎖 DNA又はその誘導体とのアニーリング後、 ァニーリン グ産物は RNAリガーゼで処理して、 一本鎖 RNAの 3, 末端と一本鎖 DN A又 はその誘導体の 5, 末端とが連結される。
本発明で用いる RN Aリガーゼは 2つの一本鎖核酸同士を連結できるものであ ればよく、 好ましくは T 4 RNAリガーゼを使用できる。
なお、 アニーリングの際の溶液として RNAリガーゼの緩衝液として適当なも のを使用した場合には、 ァニーリング生成物を含む溶液をそのままリガーゼ反応 に使用することができ、 そうでない場合には、 アニーリング生成物を通常の核酸 精製方法により回収した後、 RNAリガーゼ用の緩衝液に溶解してリガーゼ反応 用の溶液を調製する。
連結反応 (リガーゼ反応) の条件は、 使用する RNAリガーゼの活性が発揮さ れる条件であればよく、例えば、好適な緩衝液(例えば、 T4 RNA ligase buffer (50mM Tris-HCl, pH7.5, lOraM MgCl2, lOmM DTT, lmM ATP)など) 中で、 25 °Cの温度一 定で反応させたり、 あるいは 25°Cで 30分間と 45°Cで 2分間のサイクルを反 復した後に 25°Cで 30分間反応させたりすることができる。 ここに示した温度 及ぴ反応時間は一例に過ぎず反応効率が高くなるように適宜設定変更することが できる。
反応後にフエノール抽出及びエタノール沈殿などの常法により反応生成物を精 製することにより、 RNA— DNA結合体を得ることができる。 このようにして 得られる RNA—DN A結合体自体も本発明の範囲内である。
本発明で用いる一本鎖 R N Aの種類は特に限定されず、 天然の組織又は細胞由 来の RNAでも、 DNAからインビトロで発現させた RNAでもよい。 また、 一本鎖 R NAの構成要素である核酸の全てがリボヌクレオチドである必 要はなく、その一部のみが R NAタイプであるものでもよく、それ以外の領域は、 でもよい。 また、 ペプチドでも糖などが結合したものでもよい。
本発明で用いる一本鎖 R N Aの長さは、 連結反応が可能である限り、 特に限定 されない。 一般的には、 一本鎖 R NAの長さは、 数十塩基から数十キロ塩基程度 であり、 例えば 1 0塩基から 5 0, 0 0 0塩基程度であり、 より好ましくは 2 0 塩基から 1 0, 0 0 0塩基程度である。
本発明で用いる一本鎖 R NAは、 蛋白質をコードする配列を含むことが好まし く、 具体的には mR NA又は mR NAライブラリーであることが好ましい。
本発明の方法で得られる R NA— D N A連結体をタンパク質翻訳系に導入する ような場合には、 連結すべき一本鎖 R NAは、 (1 ) プロモーター配列、 (2 ) 翻 訳の際にリボソームによって認識される塩基配列、 及び (3 ) 目的タンパク質を コードする配列が含まれていることが好ましい。 さらに、 F L A G、 H i sタグ 等のタグ配列をコードする配列あるいは P C Rにより増幅するための共通配列を 含むことができる。
プロモータ一配列の種類は、 適用する発現系に適したものを適宜選択すればよ く特に限定されない。 例えば、 大腸菌ウィルス T7の RNA polymeraseによって認 識される T7 プロモーター配列あるいは S P 6プロモーター配列などが挙げられ る。
翻訳の際にリボソームによって認識される D NA配列としては、 翻訳の際に真 核細胞のリボソームによつて認識される R N A酉 5列 (Kozak配列) に対応する D N A配列や原核細胞のリボソームによつて認識されるシャイン ·ダルガノ配列
(Shine- Dalgarno)、 オメガ配歹 IJ等の tabacco mosaic virusのリボソームによつ て認識される配列、 rabbit β一 globlin、 Xenopus β -globlin あるいは bromo mosaic virusのリボゾーム認識領域などが挙げられる。
目的タンパク質をコードする配列の種類は特に限定されず、 目的に応じて適宜 選択できる。
本発明で用いる一本鎖 D NA又はその誘導体としては、 天然由来の D NAから 作成した一本鎖 D N Aでもよいし、 遺伝子組換え技術により作成した一本鎖 D N Aでもよいし、 化学合成により作成した一本鎖 D NAでもよい。
また、 一本鎖 D N Aの構成要素である核酸の全てがデォキシリボヌクレオチド である必要はなく、 その一部のみが D NAタイプであるものでもよく、 それ以外 の領域は、 リポヌクレオチドでもデォキシリボヌクレオチドでも P N Aタイプで もよレ、。 また、 ペプチドでも糖などが結合したものでもよレ、。
本発明で用いる一本鎖 D NA又はその誘導体の長さは、 連結反応が可能である 限り、 特に限定されない。 一般的には、 一本鎖 D NAの長さは、 数塩基から数百 塩基程度であり、 例えば 1 0塩基から 5 0 0塩基程度であり、 より好ましくは 2 0塩基から 2 0 0塩基程度である。
本発明の方法では、 一本鎖 D N A又はその誘導体として、 3, 末端に核酸誘導 体が結合している一本鎖 D N Aの誘導体を使用することが好ましい。
このような一本鎖 D N Aの誘導体を使用して無細胞タンパク質翻訳系又は生細 胞中でタンパク質の翻訳を行った場合、 2本鎖でリボソームを止め、 ピューロマ イシンがリボソームの Aサイトに入れることによりタンパク質と結合させること ができる (図 2を参照)。
この核酸誘導体としては、 無細胞タンパク質翻訳系又は生細胞中でタンパク質 の翻訳が行われた時に、 合成されたタンパク質の C末端に結合する能力を有する 化合物である限り限定されなレ、が、その 3 '末端がアミノアシル tRNAに化学構造 骨格が類似しているものを選択することができる。 代表的な化合物として、 アミ ド結合を有するピューロマイシン(Puromycin)、 3, -N-アミノアシルピューロマ ィシンァミノヌクレ才シド (3, -N-Aminoacylpuromycin aminonucleoside、 PANS— アミノ酸)、 たとえば、 ァミノ酸部がグリシンの PANS-Gly、 ァミノ酸部がバリン の PANS-Val、ァミノ酸部がァラ二ンの PANS - Ala、その他、ァミノ酸部が全ての各 アミノ酸に対応する PANS—アミノ酸化合物が挙げられる。 また、 3, 一アミノアデノシンのァミノ基とアミノ酸のカルボキシル基が脱水 縮合して形成されるアミド結合で連結した 3, - N -ァミノアシルァデノシンアミノ ヌクレオシト (3, -Aminoacyladenosine aminonucleoside, AANS—ァ ^ノ酸八 ァこと えば、ァミノ酸部がグリシンの AANS- Gly、 ァミノ酸部がバリンの AANS- Val、 ァミ ノ酸部がァラニンの NS- Ala、 その他、 アミノ酸部が全アミノ酸の各アミノ酸に 対応する AANS-ァミノ酸化合物を使用できる。
また、 ヌクレオシドあるいはヌクレオシドとアミノ酸のエステル結合したもの なども使用できる。 さらにまた、 核酸あるいは核酸に類似した化学構造骨格及び 塩基を有する物質と、 アミノ酸に類似した化学構造骨格を有する物質とを化学的 に結合した化合物は、 すべて本方法において用いられる核酸誘導体に含まれる。 核酸誘導体としては、 ピューロマイシン、 P AN S—アミノ酸もしくは AAN S—アミノ酸がリン酸基を介してヌクレオシドと結合している化合物がより好ま しい。これらの化合物の中でピューロマイシン、リポシチジルピューロマイシン、 デォキシシチジルピューロマイシン、 デォキシゥリジルピューロマイシンなどの ピューロマイシン誘導体が特に好ましい。
本発明の方法では、 一本鎖 D N A又はその誘導体として、 3, 末端に核酸誘導 体がスぺーサーを介して結合している一本鎖 D NA又はその誘導体を使用するこ とが好ましい。
スぺーサ一としては、 ポリエチレン又はポリエチレングリコールあるいはその 誘導体などの高分子物質や、 オリゴヌクレオチドゃぺプチドあるいはその誘導体 などの生体高分子物質等が用いられ、 好ましくはポリエチレングリコ一ルが用レヽ られる。 スぺーサ一の長さは特に限定されなレ、が、 好ましくは、 分子量 1 5 0〜 6 0 0 0である力、 または主鎖の原子数は 1 0原子から 4 0 0原子であり、 さら に好ましくは、 分子量 6 0 0〜3 0 0 0である力、 または主鎖の原子数が 4 0原 子から 2 0 0原子である。 スぺーサ一には、 デォキシリポヌクレオチドなどの核 酸おょぴその誘導体、 フルォレセイン等の蛍光色素およびその誘導体、 ピオチン 等の親和性物質およびその誘導体、 あるいは生化学または化学反応により切断さ れる結合を持つ物質、 例えば、 5—置換一 2—二トロアセトフヱノン誘導体など の光分解性物質等を含むことができる。
上記したような一本鎖 D N Aの誘導体は、 それ自体既知の化学結合方法によつ て製造することができる。 具体的には、 リン酸ジエステル結合で合成ュニットを 結合させる場合は、 D N A合成機に一般的に用いられているホスホアミダイド法 などにより固相合成で合成することが可能である。 ぺプチド結合を導入する場合 は、 活性エステル法などにより合成ユニットを結合させるが、 D NAとの複合体 を合成する場合は、 両方の合成法に対応が可能な保護基が必要になる。
本発明の方法で得られる R NA— D N A連結体は、 これをタンパク質翻訳系に 導入してタンパク質に翻訳することにより R N A—タンパク質複合体が形成され るが、 この中には R NAが含まれ、 これを逆転写反応に付することにより R N A に相補的な D N A配列を含む結合体を製造することが可能である。
即ち、上記した R N Aと D N Aとの Y—ライゲーシヨン法による連結反応後に、 該連結体をタンパク質翻訳系に導入して R N Aをタンパク質に翻訳し、 さらにそ の後に逆転写酵素を用いて反応させると R NAから D NAへの転写反応により R NA—D NA—タンパク質連結体を製造することができる。 このような逆転写反 応を意図する場合、 一本鎖 D N A又はその誘導体の 3 ' 末端に、 一本鎖 R NAの 逆転写の際にプライマーとして作用する配列を存在せしめておくことが好ましい。 このようなプライマー配列を存在させておくことにより、 プライマーを新たに添 加することなく逆転写反応を行なうことができる。
本発明の好ましい態様によれば、 一本鎖 D NAの誘導体として、 一本鎖 R NA の 3, 末端側の配列に相補的な一本鎖 D N A配列を含み、 該 D N A配列の 3, 末 端に、 該一本鎖 R NAの逆転写のためのプライマー配列を有し、 さらに核酸誘導 体を末端に有するスぺーサ一が枝分かれした状態で該一本鎖 D N A配列のレ、ずれ かに結合している核酸構築物を使用することができる。 なお、 このような核酸構 築物は T字型の構造を有するため、 本明細書においては、 T- Spacer とも称する。 このような T- Spacerの具体例を図 4に示す。 なお、本明細書で言う「一本鎖 R NAの逆転写のためのプライマー配列」とは、 核酸構築物 (T- Spacer) と一本鎖 R NAとのライゲーシヨンにより得られる本発 明の核酸構築物を逆転写反応系に導入した場合に、 逆転写反応を開始するための プライマー配列として作用する塩基配列を意味し、 一般的には、 一本鎖 R NAの 配列と相補的な配列から構成されることが好ましい。
さらに、 本発明によれば、 本発明の方法で得られる R NA— D NA結合体をタ ンパク質翻訳系に導入して一本鎖 R NAをタンパク質に翻訳することを特徴とす る、 R NAと該 R NAによりコードされるタンパク質から成る R NA—タンパク 質複合体の製造方法、 並びに当該製造方法により製造される R NA—タンパク質 複合体が提供される。
核酸からそれがコードするタンパク質を人工的に生成させるための転写翻訳系 は当業者に公知である。 具体的には、 適当な細胞よりタンパク質合成能を有する 成分を抽出し、 その抽出液を用いて目的の蛋白質を合成させる無細胞蛋白質合成 系が挙げられる。 このような無細胞蛋白質合成系には、 リボゾーム、 開始因子、 伸長因子及び t R NA等の転写 ·翻訳系に必要な要素が含まれている。
このような無細胞蛋白質合成系 (細胞溶解物由来の系) としては、 原核又は真 核生物の抽出物により構成される無細胞翻訳系が挙げられ、 例えば大腸菌、 ゥサ ギ網状赤血球抽出液、 小麦胚芽抽出液などが使用できるが、 D NA又は R NAか ら目的とする蛋白質を産生するものであればいずれでもよい。 また、 無細胞翻訳 系はキットとして市販されているものを使用することができ、 例えば、 ゥサギ網 状赤血 ¾佃出液 (Rabbit Reticulocyte Lysate Systems, Nuclease Treated, Promega)や小麦胚芽抽出液 (PR0TEI0S, T0Y0B0; Wheat Germ Extract, Promega) などが挙げられる。
タンパク質翻訳系としては、 生細胞を使用してもよく、 具体的には、 原核又は 真核生物、 例えば大腸菌の細胞などが使用できる。
無細胞翻訳系又は生細胞などは、 その中にタンパク質をコードする核酸を添加 又は導入することによってタンパク質合成が行われるものである限り制限されな レ、。
本発明では、 RNA— DNA連結体を上記したようなタンパク質翻訳系に導入 して一本鎖 RNAをタンパク質に翻訳した後、 リボゾームを除去することによつ て、 RNAと該 RNAによりコードされるタンパク質から成る RNA—タンパク 質複合体を製造することができる。
さらに本発明によれば、 上記で得られる RNA—タンパク質複合体を逆転写反 応に付することを特徴とする、 DNAと該 DNAによりコードされるタンパク質 から成る核酸一タンパク質複合体の製造方法、 並びに当該製造方法により製造さ れる核酸一タンパグ質複合体が提供される。
即ち、 RNAと該 RNAによりコードされるタンパク質から成る RNA—タン パク質複合体を逆転写酵素で処理することにより、 RNAから D N Aへの逆転写 が起こり、 DNAと該 DNAによりコードされるタンパク質から成る RNA— D NA—タンパク質複合体が製造されることになる。 さらに得られた RNA— DN A—タンパク質複合体の RN Aを RNA分解酵素などを用いて分解することによ れば DNA—タンパク質複合体が製造される。 本明細書では、 上記 RNA— DN A—タンパク質複合体おょぴ D N A—タンパク質複合体をあわせて 「核酸一タン パク質複合体」 と称することがある。
上記のようにして得られる、 RN A—タンパク質複合体及び核酸一タンパク質 複合体は、 核酸の機能の解析などにおいて有用な材料を提供するものである。
(I I) 核酸構築物およびその利用
(1) 本発明の核酸構築物
本発明の核酸構築物は、 一本鎖 RN Aとそれがコードするタンパク質との複合 体又は核酸一タンパク質複合体を作製するために使用するものであり、 その構造 は、 一本鎖 RNAの 3, 末端側の酉己列とァニーリングすることができる一本鎖 D N A配列を 3, 末端側に含み、 該一本鎖 DN A配列の 3, 末端に、 該一本鎖 RN Aの逆転写のためのプライマー配列を有し、 さらに核酸誘導体を末端に有するス ぺーサ一が該一本鎖 D NAのいずれかに枝分かれした状態で結合しており、 該ー 本鎖 D NA配列の 5, 末端側に親和性物質が結合していることを特徴とする。 親 和性物質は、 R N A—タンパク質複合体又は核酸一タンパク質複合体を固相に結 合させるためや、 精製を行なうために用いられる。
本発明の核酸構築物の一例の模式図を図 3に示す。 図 3に示す核酸構築物は、 固定化した R NA—タンパク質複合体又は核酸一タンパク質複合体 (以下、 これ らを 「in vitro virus virionj と称することがある。) を親和性物質を介して結 合している固相 (支持体) 上から切り離すための制限酵素認識部位をもつ 2本鎖 D NAと、親和性物質としてピオチンまたは poly Aを有している。なお、図 3は、 該核酸構築物に一本鎖 R NA (mR NA) をアニーリングさせた状態を示してい る。
親和性物質を in vitro virus virionの精製に用いる例としては、 親和性物質 として polyAを用いる場合、 dTカラムによって精製する方法や、親和性物質とし て His - tagを用いる場合は N iを用いて精製する方法、 並びに親和性物質として FLAGペプチドを用いる場合はこの抗体を用レ、て精製する方法などがある。
本発明の核酸構築物の具体例の構造を図 4に示す。 一本鎖 D N A配列の 5 ' 末 端側の構造としては、 一本鎖 D N A配列がループ領域を介して互いに相補的な二 本鎖配列を形成しており、 該ループ領域に親和性物質が結合しており、 該ニ本鎖 配列中に制限酵素認識部位が存在している構造 (図 4の T- splintlFB、 T-splint4FB) あるいは、 相補 DNA鎖と化学的に結合して互いに相補的な二本 鎖配列を形成しており、該相補 D N A鎖の 3 '末端に親和性物質が結合しており、 該ニ本鎖配列中に制限酵素認識部位が存在している構造 (図 4の T- splint3FB、 T - splint3FA、 T - splint6FB、 T- splint6FA) などが挙げられる。
なおここで言う 「化学的に結合」 の具体例としては、 Psoralenを有する核酸と 別の核酸とを混合して、 紫外線を照射することによって両核酸を化学的に結合す る場合、架橋剤により結合する場合、 R N Aリガーゼなどによつて結合する場合、 あるいは前述の Y—ライゲーシヨンによって結合する場合などが挙げられる。 架 橋剤として具体的には、 N— (6—マレイミドカプロィルォキシ) スクシイミド 等の 2価性試薬が挙げられる。
以下、 本発明の核酸構築物の各構成要素について説明する。
(RNAに相補的な一本鎖 D N A配列)
本発明の核酸構築物は、 一本鎖 RN Aの 3, 末端側の配列とァニーリングする ことができる一本鎖 DNA配列を 3, 末端側に含む。 これにより、 本発明では、 互いに相補的な配列を有する一本鎖 R N Aと一本鎖 D N Aとを好適な条件下でァ ニーリングすることにより両者をアニーリングさせ、 次いで、 RNAリガーゼで 処理することにより両者を効率よく連結することができる。
一本鎖 RNAの 3, 末端側の配列とアニーリングすることができる一本鎖 DN A配列とは、 互いにアニーリングすることができる配列であり、 RNA配列に相 捕的な配列を有する DN A配列を言う。 このような相捕的な配列の長さは、 両鎖 がアニーリングすることができるのに十分な長さであれば特に限定されないが、 一般的には 10から 50塩基、 より好ましくは 10から 30塩基程度である。 本発明で用いる一本鎖 DN Aとしては、 天然由来の DN Aから作成した一本鎖
DNAでもよいし、 遺伝子組換え技術により作成した一本鎖 DN Aでもよいし、 化学合成により作成した一本鎖 DN Aでもよい。
また、 一本鎖 DN Aの構成要素である核酸の全てがデォキシリボヌクレオチド である必要はなく、 その一部のみが DNAタイプであるものでもよく、 それ以外 の領域は、 リボヌクレオチド (2' — O—メチルリボヌクレオチドなどの RN A タイプ)でもデォキシリボヌクレオチド誘導体でも PNAタイプでもよレ、。また、 ぺプチドでも糖などが結合したものでもよレ、。
本発明で用いる一本鎖 DN Aの長さは、 特に限定されないが、 一般的には、 数 塩基から数百塩基程度であり、 例えば 10塩基から 500塩基程度であり、 より 好ましくは 20塩基から 200塩基程度である。
(プライマー配列)
本発明の核酸構築物の一本鎖 DN A配列の 3, 末端には、 RNAの逆転写のた めのプライマー配列が結合している。
本明細書で言う 「一本鎖 R NAの逆転写のためのプライマー配列」 とは、 核酸 構築物 (T - Spacer) と一本鎖 R NAとのライゲーシヨンにより得られる核酸構築 物を逆転写反応系に導入した場合に、 逆転写反応を開始するためのプライマー配 列として作用する塩基配列を意味し、 一般的には、 一本鎖 R NAの配列と相補的 な配列から構成されることが好ましい。
このような R NAの逆転写のためのプライマーを有することにより、 本発明の 核酸構築物を用いれば R NA—タンパク質複合体の R N Aの D N A化も容易に可 能である。 即ち、 本発明の核酸構築物は、 逆転写プライマーの役割も持っため、 in vitro virus virion をカラム等の固相に固定化するなどしてバッファー交換 後、 ただちに逆転写して R N Aを D N A化し、 in vitro virus virion を安定ィ匕 することができる。 従来の in vitro virus virionではタンパク質翻訳系の反応 液中から精製できず、 しかも外から添加した逆転写プライマーを一本鎖 R NAに ハイブリダィゼーションさせるために温度を上げることが必要であつたが、 これ は連結させたタンパク質を変性させる可能性があり大きな問題となっていた。 本 発明の核酸構築物ではこのような問題がなく、 in vitro virus virion の D NA 化による安定化が容易である。
(核酸誘導体を末端に有するスぺーサ一)
本発明の核酸構築物の一本鎖 D N A配列には、 核酸誘導体を末端に有するスぺ ーサ一が、 枝分かれした状態で結合している。
このような一本鎖 D N Aの誘導体を使用して無細胞タンパク質翻訳系又は生細 胞中でタンパク質の翻訳を行った場合、 2本鎖でリボソームを止め、 核酸誘導体 (例えば、 ピューロマイシンなど) がリボソームの Aサイトに入れることにより タンパク質と結合させることができる。
この核酸誘導体としては、 無細胞タンパク質翻訳系又は生細胞中でタンパク質 の翻訳が行われた時に、 合成されたタンパク質の C末端に結合する能力を有する 化合物である限り限定されなレ、が、その 3 '末端がアミノアシル tRNAに化学構造 骨格が類似しているものを選択することができる。 代表的な化合物として、 アミ ド結合を有するピューロマイシン (Puromycin)、 3, アミノアシルピューロマ ィンンァ ノヌクレオシド (3, -N-Aminoacylpuromycin aminonucleoside、 PANS— アミノ酸)、 たとえば、 アミノ酸部がグリシンの PANS- Gly、 アミノ酸部が/ リン の PANS - Val、アミノ酸部がァラニンの PANS - Ala、その他、アミノ酸部が全ての各 アミノ酸に対応する PANS—アミノ酸化合物が挙げられる。
また、 3, 一アミノアデノシンのァミノ基とアミノ酸のカルボキシル基が脱水 縮合して形成されるアミド結合で連結した 3 ' -N-アミノアシルアデノシンアミノ ヌクレ Γシド (3, -Aminoacyladenosine aminonucleoside, AA S—ァミノ酸)、 にと えば、ァミノ酸部がグリシンの AANS - Gly、ァミノ酸部がバリンの AA S - Val、 ァミ ノ酸部がァラニンの S - Ala、 その他、 アミノ酸部が全アミノ酸の各アミノ酸に 対応する AANS -ァミノ酸化合物を使用できる。
また、 ヌクレオシドあるいはヌクレオシドとアミノ酸のエステル結合したもの なども使用できる。 さらにまた、 核酸あるいは核酸に類似した化学構造骨格及び 塩基を有する物質と、 アミノ酸に類似した化学構造骨格を有する物質とを化学的 に結合した化合物は、 すべて本発明で用いられる核酸誘導体に含まれる。
核酸誘導体としては、 ピューロマイシン、 P AN S—アミノ酸もしくは AAN S—アミノ酸がリン酸基を介してヌクレオシドと結合している化合物がより好ま しい。これらの化合物の中でピューロマイシン、リボシチジルピューロマイシン、 デォキシシチジルピューロマイシン、 デォキシゥリジルピューロマイシンなどの ピューロマイシン誘導体が特に好ましい。
本発明では、 核酸誘導体はスぺーサーを介して一本鎖 D N Aに結合している。 スぺーサ一としては、 ポリエチレン又はポリエチレングリコールあるいはその誘 導体などの高分子物質や、 オリゴヌクレオチドゃぺプチドあるいはその誘導体な どの生体高分子物質等が用いられ、 好ましくはポリエチレングリコールが用いら れる。 スぺーサ一の長さは特に限定されないが、 好ましくは、 分子量 1 5 0〜6 0 0 0である力、 または主鎖の原子数は 1 0原子から 4 0 0原子であり、 さらに 好ましくは、 分子量 6 0 0〜3 0 0 0である力、、 または主鎖の原子数が 4 0原子 から 2 0 0原子である。
上記したような核酸誘導体は、 それ自体既知の化学結合方法によって製造する ことができる。 具体的には、 リン酸ジエステル結合で合成ュニットを結合させる 場合は、 D NA合成機に一般的に用いられているホスホアミダイド法などにより 固相合成で合成することが可能である。 ペプチド結合を導入する場合は、 活性ェ ステル法などにより合成ュニットを結合させるが、 D NAとの複合体を合成する 場合は、 両方の合成法に対応が可能な保護基が必要になる。
(制限酵素認識部位)
本発明の核酸構築物の好ましい態様においては、 5 ' 末端側には、 制限酵素認 識部位が存在する。 5 ' 末端側とは親和性物質に隣接する位置を意味する。 制限 酵素認識部位は通常は、 DNA の 2本鎖から構成される。 このような制限酵素認識 部位を導入することにより、 in vitro virus virion を親和性物質から切り離す ことができる。 例えば、 in vitro virus virion を親和性物質を介して固相に結 合させている場合、 in vitro virus virion を固相 (支持体) 上から切り離すこ とが可能になる。 即ち、 親和性物質同士 (例えば、 ビォチン一ストレブトァビジ ンなど) の結合等により支持体に強く結合した in vitro virus virionを 3 7 °C という温和な条件下で制限酵素によって切り離し精製する.ことができる。 制限酵 素認識部位の配列は特に限定されず、 PvuII など任意の制限酵素認識配列を使用 することができる。
(親和性物質)
本発明の核酸構築物には、 親和性物質が結合している。 親和性物質を導入する ことにより、 本発明の核酸構築物を作成した in vitro virus virion並びにそれ を用いた作成した各種核酸構築物を固相 (支持体) に容易に結合させることがで きる。 親和性物質の種類は特に限定されないが、 例えば、 ビォチン、 ポリ A、 各 種の抗原又は抗体、 FLAG、 His タグなどが挙げられる。 親和性物質は核酸構築物 に上記したようなスぺーサーを介して結合していてもよい。 (2) RNA— DNA結合体とその製造
本発明によれば、 上記 (1) に記載した核酸構築物と一本鎖 RNAとをァニー リングさせ、 該核酸構築物の二本鎖領域の 5 ' 末端と一本鎖 RN Aの 3, 末端と をライゲーションさせることを特徴とする、 RNA— DNA結合体の製造方法、 並びに当該製造方法により製造される RNA—DNA結合体が提供される。
本発明では、 互いに相補的な配列を有する一本鎖 RNAと一本鎖 DNAとを好 適な条件下でアニーリングすることにより両者をアニーリングさせ、 次いで、 R NAリガーゼで処理することにより両者を効率よく連結することができる。
本発明の方法では先ず、 上記した互いに相補的な配列を有する一本鎖 R N Aと 本発明の核酸構築とをアニーリングさせる。
アニーリングは上記した 2種の核酸を適当な緩種 ϊ液 (以後の操作の便宜上から 言うと、 RN Aリガーゼ用の緩種夜が好ましい) に溶解し、 高温から段階的に低 温にすることにより行なうことができる。 このような温度変化は P C R装置など を用いて行なうこともできる。 アニーリング条件の一例としては、 94°Cから 2 5°Cまで 10分かけて冷却するという条件が挙げられる力 これは一例にすぎず、 温度おょぴ時間は適宜変更することができる。 アニーリングの条件 (緩衝液の組 成、 アニーリング温度、 及ぴアニーリング時間など) は、 アニーリング酉 δ列の長 さや塩基組成などに応じて適宜設定することができる。
アニーリング反応における一本鎖 RNAと、 核酸構築物とのモル比はァニーリ ング反応が進行する限り、 特に限定されないが、 反応効率の観点からは、 1 : 1 〜1 : 2. 5程度であることが好ましい。
一本鎖 RN Αと核酸構築物とのアニーリング後、 アニーリング産物では、 一本 鎖 RNAの 3, 末端と核酸構築物の 5' 末端とが連結される。 この連結は、 一本 鎖 RNAの 3' 末端と核酸構築物の 5' 末端とが連結すればいずれの方法によつ てもよいが、 例えば、 RNAリガーゼ、 架橋剤等、 上述の 「科学的結合」 を行う 具体例に挙げた方法等を用いることができる。
本発明で用いる R N Aリガーゼは 2つの一本鎖核酸同士を連結できるものであ ればよく、 好ましくは T 4 R NAリガーゼを使用できる。
なお、 アニーリングの際の溶液として R NAリガーゼの緩衝液として適当なも のを使用した場合には、 ァニーリング生成物を含む溶液をそのままリガーゼ反応 に使用することができ、 そうでない場合には、 アニーリング生成物を通常の核酸 精製方法により回収した後、 R N Aリガーゼ用の緩衝液に溶解してリガーゼ反応 用の溶液を調製する。
連結反応 (リガーゼ反応) の条件は、 使用する R NAリガーゼの活性が発揮さ れる条件であればよく、例えば、好適な緩衝液(例えば、 T4 RNA ligase buffer (50m Tris-HCl, pH7. 5, lOmM MgCl2, lOmM DTT, IraM ATP)など) 中で、 2 5 °Cの温度一 定で反応させたり、 あるいは 2 5 °Cで 3 0分間と 4 5 °Cで 2分間のサイクルを反 復した後に 2 5 °Cで 3 0分間反応させたりすることができる。 ここに示した温度 及び反応時間は一例に過ぎず反応効率が高くなるように適宜設定変更することが できる。
反応後にエタノール沈殿などの常法により反応生成物を精製することにより、 R NA— D NA結合体を得ることができる。 このようにして得られる R NA— D N A結合体自体も本発明の範囲内である。
本発明で用いる一本鎖 R N Aの種類は特に限定されず、 天然の組織又は細胞由 来の R NAでも、 D NAからインビトロで発現させた R NAでもよい。
また、 一本鎖 R N Aの構成要素である核酸の全てがリボヌクレオチドである必 要はなく、その一部のみが R NAタイプであるものでもよく、それ以外の領域は、 でもよレ、。 また、 ペプチドでも糖などが結合したものでもよい。
本発明で用いる一本鎖 R NAの長さは、 連結反応が可能である限り、 特に限定 されなレ、。 一般的には、 一本鎖 R NAの長さは、 数十塩基から数十キロ塩基程度 であり、 例えば 1 0塩基から 5 0, 0 0 0塩基程度であり、 より好ましくは 2 0 塩基から 1 0, 0 0 0塩基程度である。
本発明で用いる一本鎖 R N Aは、 蛋白質をコードする配列を含むことが好まし く、 具体的には mRNA又は mRNAライブラリ一であることが好ましい。
本発明の方法で得られる RNA— DNA連結体を転写翻訳系に導入するような 場合には、 連結すべき一本鎖 RNAは、 (1) プロモーター配列、 (2) 翻訳の際 にリボソームによって認識される DN A配列、 及ぴ (3) 目的タンパク質をコー ドする配列が含まれていることが好ましい。 さらに、 FLAG、 H i sタグ等の タグをコードする配列、 あるいは P C Rにより増幅するための共通配列を含むこ ともできる。
プロモーター配列の種類は、 適用する発現系に適したものを適宜選択すればよ く特に限定されない。 例えば、 大腸菌ウィルス T7の RNA polymeraseによって認 識される T7プロモーター配列、 S P 6プロモーター配列などが挙げられる。 翻訳の際にリボソームによって認識される DNA配列としては、 翻訳の際に真 核細胞のリボソームによつて認識される R N A配列 (Kozak配列) に対応する D N A配列や原核細胞のリボソームによつて認識されるシャイン ·ダルガノ配列 (Shine-Dalgarno) オメガ配歹 lj等の tabacco mosaic virusのリボソームによつ て認識される酉己列、 rabbit _globlin、 Xenopus β -globlin あるいは bromo mosaic virusのリボゾーム認識領域などが挙げられる。
目的タンパク質をコードする配列の種類は特に限定されず、 目的に応じて適宜 選択できる。
(3) RNA—タンパク質複合体とその製造
さらに、 本発明によれば、 上記 (2) に記載のRNA_DNA結合体をタンパ ク質翻訳系に導入して一本鎖 RNAをタンパク質に翻訳することを特徴とする、 RNAと該 RNAによりコードされるタンパク質から成る RNA—タンパク質複 合体の製造方法、 並びに当該製造方法により製造される RNA—タンパク質複合 体が提供される。
核酸からそれがコードするタンパク質を人工的に生成させるための転写翻訳系 は当業者に公知である。 具体的には、 適当な細胞よりタンパク質合成能を有する 成分を抽出し、 その抽出液を用いて目的の蛋白質を合成させる無細胞蛋白質合成 系が挙げられる。 このような無細胞蛋白質合成系には、 リボゾーム、 開始因子、 伸長因子及ぴ t R N A等の転写 ·翻訳系に必要な要素が含まれている。
このような無細胞蛋白質合成系 (細胞溶解物由来の系) としては、 原核又は真 核生物の抽出物により構成される無細胞翻訳系が挙げられ、 例えば大腸菌、 ゥサ ギ網状赤血球抽出液、 小麦胚芽抽出液などが使用できるが、 D NA又は R NAか ら目的とする蛋白質を産生するものであればいずれでもよい。 また、 無細胞翻訳 系はキットとして市販されているものを使用することができ、 例えば、 ゥサギ網 状赤皿球抽出液 (Rabbit Reticulocyte Lysate Systems, Nuclease Treated, Promega)や小麦胚芽抽出液 (PRETEIOS, TOYOBO; Wheat Germ Extract, Promega) などが挙げられる。
タンパク質翻訳系としては、 生細胞を使用してもよく、 具体的には、 原核又は 真核生物、 例えば大腸菌の細胞などが使用できる。
無細胞翻訳系又は生細胞などは、 その中にタンパク質をコードする核酸を添カロ 又は導入することによってタンパク質合成が行われるものである限り制限されな レ、。
本発明では、 R NA— D NA連結体を上記したような転写翻訳系に導入して一 本鎖 R NAをタンパク質に翻訳した後、 リボゾームを除去することによって、 R NAと該 R NAによりコードされるタンパク質から成る R NA—タンパク質複合 体を製造することができる。
( 4 ) 逆転写反応とその産物
本発明によれば、 上記 (2 ) に記載の R N A— D N A結合体または上記 (3 ) に記載の R N A—タンパク質複合体を逆転写反応に付することを特徴とする、 核 酸一タンパク質複合体の製造方法、 並びに当該製造方法により製造される核酸一 タンパク質複合体が提供される。
即ち、 R N A部分を含む核酸を逆転写酵素で処理することにより、 R NAから D NAへの逆転写が起こり、 R NA部分の塩基配列を D NAに転換することがで きる。 逆転写反応に必要な試薬及ぴ反応条件は当業者に周知であり、 必要に応じ て適宜選択することができる。
( 5 ) 本発明の核酸構築物を用いて作製した核酸含有産物を固定化したチップ 本発明によれば、 上記 (2 ) に記載の R NA— D NA結合体、 上記 (3 ) に記 載の R NA—タンパク質複合体、 並びに上記 (4 ) に記載の核酸一タンパク質複 合体を支持体上に固定ィヒしたチップが提供される。
本発明の核酸構築物には親和性物質が結合している。 従って、 この親和性物質 に親和性を有する物質を予め固定化した支持体に、 本発明の核酸構築物を用いて 作製した上記の核酸一タンパク質複合体を接触させることにより、 当該核酸一タ ンパク質複合体を支持体上に容易に固定ィ匕することができる。 このようにして作 製されるチップは、 核酸の機能の解析などにおレ、て有用である。
親和性物質の組み合わせとしては、 ビォチン /ストレプトァビジン、 ポリ A配 列ノオリゴ d T配列、抗原/抗体、 Hisタグ配列 ZN i、 リガンド /レセプター、 F L AGZ抗 F L AG抗体などが挙げられるが、 これらに限定されるものではな レ、。
チップの作製に用いる支持体としては、 通常の核酸またはタンパク質の固定化 に用いることができる支持体であれば特に限定されない。 支持体としては、 親和 性物質同士の間の結合形成に悪影響を及ぼさないものであれば、 その形状は特に 限定されず、 例えば、 平板、 マイクロウェル、 ビーズ等の任意の形態をとること ができる。 支持体の材質としては、 例えば、 ガラス、 セメント、 陶磁器等のセラ ミックス ;ポリエチレンテレフタレート、 酢酸セ/レロース、 ビスフエノーノレ Aの ポリカーボネート、 ポリスチレン、 ポリメチルメタクリレート等のポリマー類; シリコン、 活十生炭、 多孔質ガラス、 多孔質セラミックス、 多孔質シリコン、 多孔 質活性炭、 織編物、 不織布、 濾紙、 短繊維、 メンブレンフィルタ一等の多孔質物 質を挙げることができる。
( I I I ) 核酸および/またはタンパク質の選択方法
( 1 ) R NA— D NA結合体を調製する調製工程 本発明で用いる核酸構築物は、 一本鎖 R N Aとそれがコードするタンパク質と の結合体を作製するために使用するものであり、その構造は、一本鎖 RNAの 3' 末端側の配列とアニーリングすることができる一本鎖 DNA配列を 3, 末端側に 含む。 該核酸構築物は、 該一本鎖 DNA配列の 3' 末端に、 該一本鎖 RNAの逆 転写のためのプライマー配列を有し、 核酸誘導体を末端に有するスぺーサ一が枝 分力れした状態で結合している構造を有するものが好ましい。 さらに、 該一本鎖 DNA配列の 5, 末端側に親和性物質が結合している構造を有するものも好まし い。 このような核酸構築物の詳細は、 本明細書中の上記 (I) および (I I) に 記載した通りである。
(2) 核酸一タンパク質複合体を構築する構築工程
上記により製造した RNA— DN A結合体を翻訳系に導入して一本鎖 R N Aを タンパク質に翻訳する。
核酸からそれがコードするタンパク質を人工的に生成させるための転写翻訳系 は当業者に公知であり、 明細書中の上記 (I) および (I I) に記載した通りで ある。
本発明では、 RNA— DNA結合体 (in vitro virus genome) を上記したよう な翻訳系に導入して一本鎖 RNAをタンパク質に翻訳した後、 リポゾームを除去 することによって、 RNAと該 RNAによりコードされるタンパク質から成る R N A—タンパク質複合体 (in vitro virus virion) を製造することができる。 本発明においては、 上記に記載の RNA— DNA結合体または RNA—タンパ ク質複合体を逆転写反応に付することにより、 R N A— D N A—タンパク質複合 体として用いてもよい。 さらに、 得られた RNA—DNA—タンパク質複合体の R N Aを R N A分解酵素などを用レ、て分解することによれば、 D N A—タンパク 質複合体が製造される。
即ち、 RN A—タンパク質複合体の RN A部分を逆転写酵素で処理することに より、 RNAから DNAへの逆転写が起こり、 RNA部分の塩基配列をDNAに 転換することができる。 逆転写反応に必要な試薬及び反応条件は当業者に周知で あり、 必要に応じて適宜選択することができる。
かくして調製される核酸一タンパク質複合体には、 さらに上記 (I I ) の方法 によれば親和性物質を結合させることができる。 従って、 この親和性物質に結合 しうる物質を予め固定ィ匕した支持体に、 前記核酸構築物を用いて調製した核酸一 タンパク質複合体を接触させることにより、 当該核酸含有産物を支持体上に容易 に固定化することができる。 この固定化物を洗浄後、 適当な方法、 例えば適当な 溶出液により溶出する、 あるいは、 核酸構築物中に存在する制限酵素認識部位を 利用する等して支持体から切断して、 核酸一タンパク質複合体を精製することが できる。 親和性物質とそれに結合しうる物質の組み合わせ、 並びに支持体につい ては、 本明細書中の上記 (I I ) に記載した通りである。
( 3 ) 核酸一タンパク質複合体を選抜する選抜工程
上記 ( 2 ) で構築された in vitro virus virion中のタンパク質が有する機能 (生物活性) を用いて所望の機能を有するタンパク質を in vitro virus virion として選択して取得することができる。
この選抜工程とは、 in vitro virus virionを構成するタンパク質部の機能 (生 物活性) を評価し、 目的とする生物活性に基づいて in vitro virus virionを選 択する工程を意味する。 即ち、 構築された in vitro virus virionと相互作用を し得る被験物質、 例えばタンパク質、 ペプチド、 核酸、 糖質、 脂質、 低分子化合 物等との相互作用の有無や強弱に基づいて、 in vitro virus virion を選択する ことができる。 これらの被験物質は、 前記した固相 (支持体) に結合させて用い ることもできる。 このような工程はそれ自体既知の方法、例えば、 Scott, J. K. & Smith, G. P. (1990) Science, 249, 386—390; Devlin, P. E. et al. (1990) Science, 249, 404-406; Mattheakis, L. C. gt al. (1994) Proc. Natl. Acad. Sci. USA, 91, 9022-9026等に記載されている方法等により行うことができる。
選抜工程に付する in vitro virus virionは、 上記 R N A—タンパク質複合体 でもよいし、 R N A部分を D N Aに逆転写した核酸一タンパク質複合体でもよレ、。 このうち、 核酸一タンパク質複合体を用いれば、 核酸部分の安定性がよいため好 ましい。
(5) 増幅工程
上記 (3) で選択された in vitro virus virionは、 これを再度被検物質との 相互作用に基づいて選抜することにより、 該相互作用がより適当なタンパク質を 選抜おょぴ取得することができる。 一度選抜された in vitro virus virionを、 再度被検物質と接触させるためには、 選抜された in vitro virus virionの一本 鎖 RN A部分を必要に応じて逆転写する等した後に、 これを増幅し、 増幅された DNA鎖をもとに (2) 構築工程を行って in vitro virus virionを製造して、
(3) 選抜工程に付することにより可能となる。 これら (1)調製工程、 (2) 構 築工程、 (3) 選抜工程、 (5) 増幅工程を必要に応じてくりかえし行うことによ り、 被験物質との相互作用がより適当なタンパク質を選抜およぴ取得することが できる。
このうち、 (1) および (2) の工程については上記 (I) および(I I) に詳 述したとおりに行うことができる。 ここで、 選抜工程に供する in vitro virus virionは核酸一タンパク質複合体が好ましい。これにより以降の工程における in vitro virus virionの安定性等が増加する。
(5)増幅工程は、 PCRを用いて、例えば以下のように行うことが好ましい。 in vitro virus virion の核酸中、 増幅するのは、 少なくともタンパク質をコー ドしている部分 (以下、 これを 「ORF」 と称することがある) を含む領域であ る。 該領域を増幅するのに用いられる PCRプライマーとしては、 特に制限はな いが、 全ての in vitro virus virionに共通に用いられる配列として、 5' 側の プライマーは、 ORFの 5, 上流側に連結されている配列が、 また 3, 側のプラ イマ一は、 ORFの 3, 側に連結されている配列が好ましく用いられる。 具体的 には、 上記 (I) および (I I) に記載の構造を有する in vitro virus virion の場合、 5, 側のプライマーは、 翻訳の際にリボソームによって認識される DN A配列などが好ましく用いられ、 3' 側のプライマーは、 タグ配列や共通配列が 好ましく用いられる。 かくして増幅された DNAは、 ORFのみを含むものであるので、 上記 (I) および(I I) に記載の (1) プロモーター配列、 (2) 翻訳の際にリボソームに よって認識される DN A配列 (以下、 これらを 「5' 側付加配列」 と称すること がある)、 タグ配列、共通配列、 並びにアニーリング配列、 ブランチ配列など (以 下、 これらを 「3' 側付加配列」 と称することがある) を結合する。 これらの配 列の結合は、 DNAライゲ一ス、 下述するオーバーラップエクステンション法、 PCR法を用いて行うことができる。 PCRのプライマーとしては、 増幅された D N Aの 5 '末端と共通の配列を 3 '末端に有する 5 '付加配列からなるものと、 増幅された DNAの 3, 末端と共通の配列を 5, 末端に有する 3, 付加配列から なるものが用いられる。
オーバーラップエクステンション法による結合方法は、 まず増幅された DNA の 5' 末端と共通の配列を 3' 末端に有する 5, 付加配列を用意し、 これをァニ 一リングさせた後に、 DNAポリメラーゼなどを用いて 2本鎖 DNAを合成し、 さらに増幅された DN Aの 3' 末端と共通の配列を 5' 末端に有する 3' 付加配 列を用意し、 これをアニーリングさせた後に、 DNAポリメラーゼなどを用いて 2本鎖 DN Aを合成する方法である。 上記の 5, 側付加配列および 3' 側付加配 列の結合は、 片方ずつ行っても、 両方同時に行ってもよい。 かくして合成された 2本鎖 DNAは、 これを両末端の塩基配列を有するプライマー等を用いてさらに PCRで増幅してもよレヽ。
(4) 変異導入工程、 (5) 増幅工程、 及び (6) 検定工程
上記 (3) で選択された in vitro virus virion (核酸一タンパク質複合体)の 核酸部分に変異を導入し、増幅を行う。 これら (1)調製工程、 (2)構築工程、
(3) 選抜工程、 (4) 変異導入工程、 (5) 増幅工程を必要に応じて繰り返し 行うことによりタンパク質の機能 (生物活性) の改変及び新たな機能の創製が可 能となる。 この内、 (1) 及び (2) の工程については上記に詳述した構築方法に 従って行うことができる。 ここで、 選抜工程に供する in vitro virus virionは 逆転写を行ったものが好ましい。これにより、以降の工程における virionの安定 性等が増加する。
( 4 )変異導入及び( 5 )増幅の工程において、選択された in vitro virus virion の核酸部に必要に応じて変異を導入して PC R等で増幅する。 ここで、 in vitro virus virionの核酸部が: m RNAの場合は、 逆転写酵素により c DNAを合成し た後に変異の導入を行えば良く、核酸部の増幅は変異導入しながら行っても良い。 変異導入は、 すでに確立している Error- prone PCR (Leung, D. W. , et al., (1989) J. Methods Cell Mol. Biol. , 1, 11—15) や Sexual PCR ( S temmer, W. P. C. (1994) Proc. Natl. Acad. Sci. USA91, 10747-10751)を用いて容易 に行うことができる。
さらに、 変異が導入され増幅された in vitro virus virionの核酸部を用いて、
(1) 調製工程にて RNA— DNA結合体を調製し、 それを用いて (2) 構築ェ 程にて核酸一タンパク質複合体を調製し、 それを (3) 選抜工程にかけ目的とす る生物活性によって選択し、さらに(4)変異導入及び増幅を行うことができる。 これらの工程を必要に応じて繰り返すことにより、 タンパク質の機能改変及ぴ新 たな機能を有するタンパク質の創製が可能となる。
本発明のタンパク質一タンパク質またはタンパク質一核酸相互作用の検定方法 における、 核酸一タンパク質複合体を構築する構築工程は、 一般には、 (1) 遺 伝子ライブラリ一や c DNAライブラリ一から mRN Aを合成し、 in vitro virus genome (RNA— DNA結合体) を調製する調製工程、 及び、 (2) 無細胞タン パク質合成系を利用して、 mRNAとそれに対応するタンパク質とをリボソーム 上で連結した in vitro virus virionを構築する構築工程を含む。
(1) の工程は、 配列既知の DNAで ORFに対応する配列を含む cDNAや 配列未知の D N Aで適当な制限酵素で断片化した断片を含む cDNAから RNA ポリメラーゼを用いて mRNAを合成し、 in vitro virus genome (RNA-DN A結合体) を構築することに相当する。
上記 ( 1 ) の in vitro virus genomeの構築と、 ( 2 ) の in vitro virus virion の構築工程は、 上記に詳述した方法に従って行うことができる。 in vitro virus virion と他のタンパク質や核酸 (D NAまたは R NA) との 相互作用を調べる検定工程 (6 ) は、 構築された核酸一タンパク質複合体の中か ら所望の機能をもつタンパク質を選抜する選抜工程 (3 ) 、 必要に応じて、 逆転 写、 増幅、 配列決定等の工程も含まれる。
( 3 ) の選抜工程では、 標的のタンパク質や核酸 (D NAまたはR NA) や他の 物質、 例えば糖質や脂質などをマイクロプレートゃビーズに予め共有結合や非共 有結合を介して結合させておき、これに(2 )調製工程で調製した in vitro virus genome (R NA— D NA結合体) を加え、 ある温度条件で、 一定時間反応させた 後、 洗浄し、 標的に結合しない in vitro virus virionを除去する。 その後、 標 的に結合した in vitro virus virionを遊離させる。 この工程は、 前記の通り、 すでに確立している方法で行うことができる。
( 6 ) の検定工程には、 (3 ) の選抜工程で遊離した in vitro virus virionを、 例えば P C Rにより増幅させ、 増幅した D NAを直接あるいはクローユングした 後、 その配列を決定する工程も含まれる。 相互作用の検出は、 virionの逆転写後 に行うのが好ましい。 これにより、 virionの安定性が増し、 また相互作用の妨害 作用も減少し、 より精度の高い相互作用の検出が可能となる。
本発明の検出方法により、(1)配列既知あるいは未知の遺伝子 D NAから mR N Aを合成し、 in vitro virus genome (R NA— D NA結合体) を構築し、 (2)そ れ 用レヽて in vitro virus virion 構築し、 (3) in vitro virus virionの中力 ら標的のタンパク質あるいは核酸あるレ、は他の物質、 たとえば糖質や脂質などと 結合するもののみを選択し、(4)選択した in vitro virus virionを逆転写、増幅、 クローユング、 配列決定することにより、 機能未知の遺伝子に対応する遺伝子産 物 (タンパク質) の機能を同定することが可能になる。
なお、 本明細書における、 上記した核酸の単離 ·調製、 核酸の連結、 核酸の合 成、 P C R、 プラスミドの構築、 無細胞系での翻訳等の遺伝子操作技術は、 特に 明記しない限り、 Sambrook et al. (1989) Molecular Cloning, 2nd Edition, Cold Spring Harbor Laboratory Pressに記載の方法またはそれに準じた方法により行 うことができる。
( I V) ピューロマイシン誘導体およびその利用
( 1 ) ピューロマイシン誘導体
本発明は、下記式(1 )で表されるピューロマイシン誘導体又はその塩に関する (
Figure imgf000053_0001
式 (1 ) 中、 R1は水素原子、 又は水酸基の保護基を示し;
R 2は水素原子又は反応性基を示し;
Xはアミノ酸残基あるいはペプチドを示し、 Xにおいて、 そのカルボキシル基が ピュー口マイシン中のァミノ基とアミ ド結合により結合しており、該ァミノ酸残基 あるいはペプチドの αアミノ基および側鎖の官能基は所望により保護されていて もよい。
R 1が示す水酸基の保護基としては、 有機化学合成の分野で既知の保護基が挙げ られ、 具体的には、 ジメ トキシトリチル基の他に以下のものが挙げられる。
(エーテル型)
メチル基、メ トキシメチル基、メチルチオメチル基、ベンジルォキシメチル基、 t—ブトキシメチル基、 2—メ トキシェトキシメチノレ基、 2 , 2, 2—トリクロ 口エトキシメチル基、 ビス (2—クロ口エトキシ) メチル基、 2— (トリメチル シリル) エトキシメチル基、 テトラヒドロビラニル基、 3—ブロモテトラヒドロ ビラ二ル基、 テトラヒドロチォピラニル基、 4—メ トキシテトラヒドロビラニル 基、 4—メ トキシテトラヒドロチォピラニル基、 4ーメ トキシテトラヒドロチォ ビラニル S, S—ジォキシド基、 テトラヒドロフラニル基、 テトラヒドロチオフ ラニル基、 トリイソプロビルシリルォキシメチル基 (TOM基) ;
1—エトキシェチル基、 1—メチルー 1ーメ トキシェチル基、 1— (イソプロ ポキシ) ェチ 7レ基、 2, 2, 2—トリクロロェチノレ基、 2 - (フエ二ルセレニル) ェチ/レ基、 t—ブチル基、 ァリル基、 シンナミル基、 p—クロ口フエ二ル基、 ベ ンジノレ基、 p—メ トキシべンジノレ基、 o—ニト口べンジノレ基、 一二トロべンジ ル基、 p—ハロベンジル基、 ρ—シァノベンジル基、 3—メチル一2—ピコリル N—ォキシド基、 ジフエニルメチル基、 5—ジベンゾスべリル基、 トリフエニル メチル基、 一ナフチルジフヱニルメチル基、 p—メ トキシフエニルジフエニル メチノレ基、 - ( ρ ' 一ブロモフエナシノレオキシ) フエニルジフエニルメチル基、 9一アントリル基、 9 _ ( 9—フエニル) キサンテュル基、 9 - ( 9—フエニル — 1 0—ォキソ) アントリル基、 ベンズィソチアゾリル S, S—ジォキシド基、 ; トリメチルシリル基、 トリェチルシリル基、 イソプロピルジメチルシリル基、 tーブチルジメチルシリル基 (T B DM S基)、 (トリフエニルメチル) ジメチル シリノレ基、 t—ブチルジフエニルシリル基、 メチルジイソプロビルシリル基、 メ チルジー t一ブチルシリル基、 トリベンジルシリル基、 トリー p—キシリルシリ ル基、 トリイソプロビルシリル基、 トリフエニルシリル基;
(エステル型)
ホノレメート、 ベンゾイノレホノレメート、 アセテー ト、 クロ口アセテート、 ジクロ 口アセテート、 トリクロ口アセテート、 トリフルォロアセテート、 メ トキシァセ テート、 トリフエニルメ トキシアセテート、 フエノキシアセテート、 p—クロ口 フエノキシアセテート、 2 , 6—ジクロロー 4一メチルフエノキシアセテート、 2, 6—ジクロロー 4 _ ( 1, 1, 3, 3—テトラメチルブチル) フエノキシァ セテート、 2 , 4一ビス ( 1 , 1ージメチルプロピル) フエノキシアセテート、 クロロジフエニノレアセテート、 p—P—フエ二ノレアセテート、 3—フエ二ノレプロ ピオネート、 3—ベンゾィルプロピオネート、 イソブチレート、 モノスクシノエ ート、 4一ォキソペンタノエート、 ピバロエート、 ァダマントエート、 クロトネ ート、 4ーメ トキシクロトネート、 (E) — 2—メチル _ 2—ブテノエート、ベン ゾエート、 o— (ジブロモメチレ) ベンゾエート、 o— (メ トキシカノレポ二ノレ) ベンゾエート、 p—フエニルベンゾエート、 2, 4, 6— トリメチノレべンゾエー ト、 p— P—べンゾエート、 ひ一ナフトェート;
(カーボネート型)
メチルカーポネート、 ェチルカーボネート、 2, 2, 2—トリクロロェチルカ 一ボネート、 イソブチルカ一ボネ一ト、 ビニノレ力一ボネート、 ァリルカ一ボネ一 ト、 シンナミノレカーボネート、 p—ニトロフエ二ノレカーボネート、 ベンジルカー ボネート、 p—メ トキシベンジルカーボネート、 3, 4—ジメトキシベンジルカ ーボネート、 o—ニトロべンジレカーボネート、 p—ニトロべンジノレカーボ不一 ト、 S—べンジノレチ才カーボネート ;
(その他)
N—フエ二ルカルバメート、 N—イミダゾリルカルバメート、 ボレート、 ニト レート、 N, N, N,, N' —テトラメチルホスホロジアミダート、 2, 4—ジニ トロフエニノレスノレフエネート :
上記した保護基の導入法及ぴ脱保護法は当業者に公知であり、例えば、 Teodora, W. Green, Protective Groups in Organic Syntnesis, John & Wiley & Sons Inc. (1981) などに記載されている。
R2が示す反応性基としては、 連結基を介して末端に反応性の官能基を有する 基が挙げられる。 反応性の官能基としては、 一 COOH、 -OH, _NH2、 一 CHO、 一 NHNH2、 一 NCS、 エポキシ基、 またはビエル基などが挙げられ るが、 これらに限定されるものではない。 R 2が示す反応性基の好ましい例とし ては、 末端にカルボキシル基 (-COOH) を有する反応性基が挙げられ、 特に 好ましくは、 スクシ二ル基 (一 COCH2CH2COOH) である。 Xがペプチドを示す時、 それに含まれる残基数は特に限定されないが、 好まし くは 2〜1 0残基である。
Xが示すアミノ酸残基、 あるいはぺプチドに含まれるアミノ酸残基の種類は特 に限定されず、 天然型アミノ酸と非天然型アミノ酸の何れでもよく、 Xが示す芳 香族ァミノ酸残基としては、 芳香族基を含むアミノ酸であればその種類は特に限 定されず、 天然型アミノ酸でも非天然型アミノ酸の何れでもよく、 また ο;—アミ ノ酸、 3—アミノ酸、 γ—アミノ酸、 δ—アミノ酸の何れでもよいが、 好ましく は天然型アミノ酸である α—アミノ酸である。
非天然型アミノ酸とは、 天然型蛋白質を構成する天然型アミノ酸 (全部で 2 0 種類) 以外の全てのアミノ酸を意味し、具体的には、 (1 ) 天然型アミノ酸中の原 子を他の物質で置換した非天然型ァミノ酸、 ( 2 )天然型ァミノ酸の側鎖の光学異 性体、 ( 3 )天然型ァミノ酸の側鎖に置換基を導入した非天然型ァミノ酸、並びに
( 4 ) 天然型アミノ酸の側鎖を置換して疎水性、 反応性、 荷電状態、 分子の大き さ、 水素結合能などを変化させた非天然型アミノ酸などが挙げられる。 これらの 非天然型アミノ酸残基についても、 式 (1 ) で表されるピューロマイシン誘導体 をぺプチダーゼあるいはプロテアーゼで処理することにより脱保護できる基であ れば使用することができる。
Xが示すァミノ酸残基あるいはぺプチドの好ましい例は、例えばぺプチダーゼあ るいはプロテアーゼがキモトリプシンである場合は芳香族アミノ酸残基であり、特 に好ましくは αアミノ基がベンジルォキシカルボニル基などで保護されたフエ二 ルァラニン残基である。
Xが示すアミノ酸残基あるいはぺプチドは、 該アミノ酸残基あるいはぺプチド のカルボキシル残基がピューロマイシン中のアミノ基とアミ ド結合により結合し ている。
また、該ァミノ酸残基あるいはべプチドの αァミノ基およぴ側鎖のァミノ基は所 望により保護されていてもよい。ァミノ基の保護基としては、有機化学合成の分野 で既知の保護基が挙げられ、具体的には、 ホルミル基、 C 1—6アルキル一力ルポ ニル基 (例えばァセチル、 ェチルカルポニル等)、 C 1一 6アルキルースルホニル 基、 tert—ブチルォキシカルボニル基、ベンジルォキシカルボ二ル基、 ァリルォキ シカルポニル基、 フルォレニルメチルォキシカルボニル基、ァリール力ルポニル基 (例えばフエ二ルカルポニル、ナフチルカルポニル等)、了リ一ルスルホニル基(例 えばフエニルスルホニノレ、 ナフチノレス/レホニル等)、 C 1— 6ァノレキノレオキシ一力 ルポニル基 (例えば、 メ トキシカルボニル、 エトキシカルボニル等)、 C 7 - 1 0 ァラルキル一カルボニル基 (例えばべンジルカルボニル等)、 メチル基、 ァラルキ ル基 (例えばベンジル、 ジフエニルメチル、 トリチル基等)、 フタロイル基等が用 いられる。 これらの基は 1ないし 3個のハロゲン原子 (例えばフッ素、 塩素、 臭素 等)、 エトロ基等で置換されていてもよく、 その具体例としては、 p—ニトロベン ジノレォキシカノレボニノレ基、 p—クロ口べンジルォキシカノレポ二ノレ基、 m—クロ口べ ンジルォキシカルボニル基、 p _メ トキシベンジルォキシカルボニル基などが挙げ られる。特に好ましいァミノ基の保護基の具体例としては、ベンジルォキシカルボ ニル基、 tert-ブチルォキシカルボニル基が挙げられる。
また、 該アミノ酸残基あるいはペプチドの側鎖のカルボキシル基、 水酸基、 メ ルカプト基、 グァニジノ基、 イミダゾール基なども、 所望により有機化学合成の 分野で既知の保護基を用いて保護されていてもよレ、。 具体的には、 カルボキシル 基の保護基としてはエステル型としてメチル、 ェチル、 t -プチル、 1-ァダマンチ ル、 ベンジル、 2-フエニルイソプロピル、 フエナシルなどが、 水酸基の保護基と しては t-ブチル基、 トリチル基、 ベンジル基、 2-ブロモベンジルォキシカルボ二 ル基などが、 メルカプト基の保護基としては t -プチル基、 トリチル基、 p メ トキ シベンジル基、 ァセトアミ ドメチル基などが、 グァニジノ基の保護基としては p - トルエンスルホニル基、 4 -メ トキシ 2, 3 , 6 -トリメチルベンゼンスルホニル基、 2, 2, 5, 7, 8-ペンタメチルクロマン- 6 -スルホエル基などが、ィミダゾール基の保護 基としては t -ブチルォキシカルボニル基、 ベンジルォキシメチル基、 トリチル基 などがそれぞれ用いられる。
式 (1 ) のピューロマイシン誘導体は、 側鎖に存在する官能基の種類によって は塩の形態で存在することができる場合があるが、そのような塩の形態の式(1 ) のピューロマイシン誘導体も本発明の範囲内である。
塩の種類は特に限定されないが、例えば、酸付加塩、金属塩、アンモニゥム塩、 又は有機アミン付加塩等が包含される。 酸付加塩としては、 塩酸塩、 硫酸塩、 硝 酸塩、 リン酸塩等の無機酸塩、 酢酸塩、 マレイン酸塩、 フマル酸塩、 又はクェン 酸塩等の有機酸塩が挙げられる。 金属塩としては、 ナトリウム塩、 カリウム塩等 のアルカリ金属塩、 マグネシウム塩、 カルシウム塩等のアルカリ土類金属塩、 ァ ルミニゥム塩、 又は亜鉛塩等が挙げられ、 アンモニゥム塩としては、 アンモニゥ ム又はテトラメチルアンモニゥム等の塩が拳げられ、有機ァミン付加塩としては、 モルホリン又はピペリジン等の付加塩が挙げられる。
式 (1 ) のピューロマイシン誘導体には、 位置異性体、 幾何異性体、 互変異性 体、 又は光学異性体のような異性体が存在する力 全ての可能な異性体、 並びに
2種類以上の該異性体を任意の比率で含む混合物も本発明の範囲内のものである。 また、 式 (1 ) のピューロマイシン誘導体又はその塩は、 水あるいは各種溶媒 との付加物 (水和物又は溶媒和物) の形で存在することもあるが、 これらの付カロ 物も本発明の範囲内のものである。 また、 式 (1 ) のピューロマイシン誘導体及 ぴその塩の任意の結晶形も本発明の範囲内のものである。
式(1 ) で表されるピューロマイシン誘導体は、ぺプチダーゼあるいはプロテア ーゼで処理することにより、本明細書に定義した式(2 ) で表される化合物が生成 する。このようなぺプチダーゼあるいはプロテアーゼ処理によるピューロマイシン 誘導体の脱保護方法も本発明の範囲内に属するものである。
ぺプチダーゼあるいはプロテアーゼとしてはサーモライシン、キモトリプシン、 エラスターゼ、 ペプシン、 プロティナ一ゼ エンドプロティナーゼ Glu-Cなど が挙げられるが、 これらはピューロマイシンの αアミノ基を含むアミド結合を加 水分解する酵素であれば特に限定されない。
Xが示すァミノ酸残基あるいはペプチドと、ぺプチダーゼあるいはプロテアーゼ の組合わせの好ましい具体例は、 Ν-アルファ-ベンジルォキシカルボユルフェニル ァラニノレ基とキモトリプシンである。
( 2 ) ピューロマイシン誘導体の製造
本発明の式(1 )で表されるピューロマイシン誘導体は以下の実施例に記載する ように、 ピューロマイシンを出発物質として使用し、それに含まれる官能基を修飾 することにより製造することができる。 例えば、 N α—(N o;—ベンジルォキシカ ルボエルフェ二ルァラ二ル)一 pUromycin を製造する場合、 ピューロマイシン 2塩 酸塩を適当な溶媒 (例えば、 水) に溶解した後、 ジメトキシェタン (DME)と 10%炭 酸ナトリゥム水溶液を加える。この溶液に benzyloxycarbonyl基で保護されたフエ 二ルァラ二ルー OSuを DMEに溶かした溶液を加え、 さらに 10%炭酸ナトリゥム水溶 液を加えて反応させることにより、 目的化合物を合成することができる。
式( 1 )において Xが示す芳香族ァミノ酸残基が N a—ベンジルォキシカルボ二 ルフエニルァラエル基以外の基であるピュー口マイシン誘導体を製造する場合は、 benzyloxycarbonyl基で保護されたフエ二ルァラ二ルー Osuの代わりに対応する試 薬を使用すればよい。
上記で得られる誘導体(以下、 ピューロマイシン誘導体 Aと称する) は、式(1 ) において が水素原子を示し、 R 2が水素原子を示すピューロマイシン誘導体であ る。 式 (1 ) において R1が水酸基の保護基を示すピューロマイシン誘導体は、 ピ ユーロマイシン誘導体 Aの 5,位の水酸基を保護することにより製造することがで きる。 例えば、 水酸基の保護基として、 ジメトキシトリチル基を使用する場合は、 ピューロマイシン誘導体 Aを適当な溶媒 (例えば、 ピリジン) に溶解し、塩化ジメ トキシトリチルを加えて反応させることにより、 目的とする 5 '位の水酸基が保護 されたピューロマイシン誘導体(以下、これをピュー口マイシン誘導体 Bと称する) を製造することができる。 ジメトキシトリチル基以外の保護基を使用する場合は、 塩化ジメトキシトリチルの代わりに対応する試薬を使用すればよい。
上記で得られるピューロマイシン誘導体 Bは、 式 (1 ) において R1が水酸基の 保護基を示し、 R 2が水素原子を示すピューロマイシン誘導体である。 式 (1 ) に おいて R1が水酸基の保護基を示し、 R 2が反応性基を示すピューロマイシン誘導体 は、 ピューロマイシン誘導体 Bの 2,位の水酸基に反応性基を導入することにより 製造することができる。 例えば、 反応性基としてスクシ二ル基を使用する場合は、 ピューロマイシン誘導体 Bを適当な溶媒 (例えば、 ピリジン) に溶解し、 無水コハ ク酸とジメチルァミノピリジンのピリジン溶液を加えて反応させることにより、目 的とするピュー口マイシン誘導体の 2,位の水酸基に反応性基を導入した誘導体を 製造することができる。スクシニル基以外の反応性基を使用する場合は、無水コハ ク酸とジメチルァミノピリジンの代わりに好適な反応性試薬を使用すればよい。
( 3 ) ピューロマイシン誘導体固定化支持体
本発明の式 (1 ) のピューロマイシン誘導体は、 支持体に結合することにより、 ピューロマイシン誘導体固定ィ匕支持体として使用することができる。このようなピ ユーロマイシン誘導体固定化支持体も本発明の範囲内に属するものである。
本発明のピュー口マイシン誘導体固定化支持体は、以下の実施例に具体的に記載 する通り、 式 (1 ) のピューロマイシン誘導体における R 2が示す反応性基と、 支 持体中の反応性基とを反応させることにより製造することができる。
支持体としては、 R 2が示す反応性基と反応して結合することができる官能基を 有する支持体であればその種類は特に限定されないが、 具体例としては、 例えば、 CPG LCA (CPG) , NovaSyn TG amino resin (novabiochem , Amino PEGA resin (novabiochem) , TentaGel S NH2 SS (Advanced Chemtech)などカ挙げられる。
( 4 ) ピューロマイシン誘導体の利用
本発明のピューロマイシン誘導体は液相での合成にも応用できるが、本発明者ら は、以下の実施例に示す通り、先ず、 2種類の固相担体に本発明のピューロマイシ ン誘導体を固定し、ホスホアミダイト法によりオリゴマーを合成したのちにピュー ロマイシンのひ -ァミノ基が Z- Phe基で保護されていること、 及ぴ Z_Phe基がキモ トリプシン処理でほぼ定量的に脱保護されることを確認した。
Z - Phe基は疎水性が高いため、逆相高速液体クロマトグラフィ (逆相 HPLC) によ る脱保護の確認と精製は極めて容易であった。 合成機上で 61ュニットから成る誘 導体の合成を試みた場合も合成、脱保護ともに大きな問題は観察されず、 さらに最 終的に得られた誘導体は In Vitro Virus法における応用で期待された活性を示し、 Z-Phe基がピューロマイシンの保護基として充分実用的であることが証明された。 上記の結果から分かるように、本発明のピューロマイシン誘導体はホスホアミダ ィト法に限らず、ピューロマイシンの誘導体を合成するための多くの合成法に適用 することができる。 さらに、酵素的に除去できる保護基を導入して選択的な反応を 容易にするという考え方は、ピュー口マイシン誘導体の合成に限らず合成手法が確 立された核酸などの生体高分子の合成に幅広く応用することが可能である。
従って、本発明の式(1 ) で表されるピューロマイシン誘導体を含む核酸化合物 は全て本発明の範囲内に属するものである。 また、本発明のピューロマイシン誘導 体又はピューロマイシン誘導体固定化支持体を用いた核酸化合物の製造方法も本 発明の範囲内に属するものである。
即ち、 本発明のピューロマイシン誘導体固定化支持体を通常のホスホアミダイ ト法に付し、 αァミノ基が保護されたピューロマイシン誘導体を 3' -末端にもつ 核酸化合物を通常のアル力リ脱保護により支持体から切り出し、 さらに精製を行 うことにより、 本発明のピューロマイシン誘導体を 3, -末端に有する核酸化合物 を製造することができる。
また、 本発明の上記核酸ィヒ合物に種々の修飾反応を施したのち、 酵素で処理す ることでピュー口マイシンの αアミノ基を脱保護することも可能である。
本明細書で言う核酸化合物とは天然型の核酸のみならず、 非天然型の核酸も含 むものである。 即ち、 天然型の核酸を構成するヌクレオチドある A、 G、 C、 T 及ぴ Uのみで構成される核酸のみでなく、 これらの修飾ヌクレオチドが含まれて いてもよい。 修飾ヌクレオチドの具体例としては、 ビォチン化 d T、 Amino modifier C6 dT、 フルォレセイン d Tなどが挙げられる。 また、 核酸化合物の中 には適当なスぺーサ一基が存在してもよく、 スぺーサ一基の具体例としては、 ポ リエチレン又はポリエチレンダリコールなどの高分子が挙げられる。
(V) 支持体タンパク質およびその利用 本発明は、 ぺプチド及ぴタンパク質の機能を損なうことなく提示するための支 持体タンパク質に関するものであり、 特に in vitro virus法等で無細胞翻訳系中 で種々のタンパク質を提示させ、 その中から機能性タンパク質 (ペプチド) を取 得する際に用いるものである。
支持体タンパク質としては、一般的には、以下の条件を満たすものが好ましい。 ( 1 ) 球状タンパク質であってフォールデイングしやすい、 (2 ) 安定性がある、 ( 3 ) ジスルフィド (S - S) 結合を含まない等である。 本発明者らは今回、 これら の条件を満たすタンパク質として Oct - 1の Pou- specific domain (73ァミノ酸残 基) (Dekker, N. et al. (1993) Nature 362, 852 - 854) を選んだ。 このタンパク 質は 1つだけ Cys残基を含むため、 この Cys残基を Ala残基に置換した変異体を 作成した(配列番号 2 1 )。 このようなタンパク質は提示しょうとするペプチドに Cysが含まれていてもこの支持体タンパク質と S-S結合して構造を変えることは ない。 また、 このタンパク質は N末端側と C末端側が離れているためにランダム なペプチドを N末端側に提示した際に、 C末端側にあるスぺーサ部分 (in vitro virus 法の場合) と相互作用しにくいと考えられる。 このタンパク質は 4つの α ヘリックスからなりフォールデイングしやすいと考えられ、 また、 無細胞翻訳系 においては短 ヽぺプチドは発現されにくいことから、 このような支持体と融合タ ンパク質を作る必要性がある。
従って、 機能ぺプチドを取得可能な形で提示できるこのような支持体用タンパ ク変異体は無細胞翻訳系を用いる in vitro virus法等の技術で今後、 重要な役割 を担うと考えられる。
本発明の支持体タンパク質は、 3 0から 2 0 0アミノ酸残基からなる球状タン パク質から成ることを特徴とする。 好ましくは、 システィン残基を含まず、 Pシ ート構造を有さず、 ひへリックス構造からなり、 立体構造において N末端と C末 端が離れていることが好ましく、 また他の生体高分子と相互作用しないタンパク 質であることが好ましい。
本発明において、 目的ペプチド又は目的タンパク質は特に限定されず、 スクリ 一ユングの目的に応じて任意の性質を有するペプチド又はタンパク質を、 本明細 書で言う目的ペプチド又は目的タンパク質として使用することができる。
例えば、 レセプターに結合可能なリガンド、 細胞内への移行性に寄与する移行 シグナルペプチド又はシグナルタンパク質、 またはスクリーニングに用いる多数 の不特定のランダムべプチドなどを挙げることができる。 これらの目的ぺプチド または目的タンパク質は、 標的物質を、 主にタンパク質一タンパク質相互作用に より認識する。 従って、 目的タンパク質は、 標的物質を直接または間接的に相互 作用により十分認識可能であるものが好ましい。なお、前記レセプターとしては、 例えば、 細胞表面の受容体タンパク質、 抗体、 増殖因子等がある。 さらに、 本発 明の目的タンパク質は、 D NA、 R N Aなどのポリヌクレオチドに結合するもの であってもよい。
本発明における好ましい実施形態の 1つとしては、 特定のターゲットとの特異 的な相互作用を有する特定のァミノ酸配列を有する目的タンパク質を、 スクリー ユングし、 さらには同定するために、 ランダムに選ばれた連続する、 または不連 続なアミノ酸配列を有するランダム配列を目的ぺプチドと使用することができる。 例えば 1 0個のランダムに選ばれた 2 0種類のアミノ酸からなる組合せは理論上 約 1 X 1 0 13種類 (約 1 0兆個) となり、 スクリ一二ングにより特定ァミノ酸配 列を検出するには十分と考えられる。
本発明においては、 目的ペプチド又は目的タンパク質としてランダムに選ばれ るアミノ酸の数に特に制限はなレ、。当業者に公知の合成手段を用いることにより、 所望の数の、 好ましくは 3から 4 0個のランダムペプチドを合成することは当業 者には容易である。 例えば、 このようなランダムペプチドをコードする D NAの 合成は、 市販の自動 D NA合成装置等を用いても可能である。
本発明の特に好ましい実施形態において、 目的ぺプチドとしてランダムぺプチ ドを呈示させる場合、該ランダムペプチドをコードする D NA (ランダム D NA) は、 好ましくは式: (NNK) n (式中、 Nは A, G, C , または Tの何れかのデ ォキシリボヌクレオチドであり、 Kは Gまたは Tの何れかのデォキシリボヌクレ ォチドであり、 nはこれらランダム部分のアミノ酸数を表す。)によって表すこと ができる。 本発明では、 nは、 少なくとも 3以上であることが好ましく、 さらに 好ましくは 5から 4 0アミノ酸をコードする数であることが望ましい。 但し、 こ の nの数の制限は、 該ランダム D N Aの合成手法によつて制限されるものではな く、 nの数の上限に実質上の制限はない。
また、 目的タンパク質の両側に (N端側及び C端側) にシスティンを付加して 含ませることにより、 目的タンパク質を効率よく呈示させることができる場合が ある。 ここでいう目的タンパク質の N端側とは、 目的タンパク質の N末端の場合 のみならず目的タンパク質の N末端から数個から数十個のァミノ酸を隔てた場所 のいずれの場合をも含み、 また目的タンパク質の C端側とは、 目的タンパク質の C末端の場合のみならず目的タンパク質の C末端から数個から数十個のアミノ酸 を隔てた場所のいずれの場合をも含む意味である。
システィンを介して分子中にループを有する分子には、 免疫グロプリンフアミ リーの免疫グロブリン(I g G、 I g M)、 T細胞受容体、 MH Cクラス II分子、 L F A— 3、 I C AM— 1、 V C AM— 1等が知られている。 ループを形成させ るのに適した目的タンパク質の大きさは、 これら既知の分子を参照して設計可能 である。
本発明の支持体タンパク質の具体例としては、 下記の何れかのアミノ酸配列を 有するタンパク質が挙げられる。
( 1 ) 配列番号 2 1に記載のァミノ酸配列;又は
( 2 )配列番号 2 1に記載のアミノ酸配列において 1から数個のアミノ酸が欠失、 置換、 付加おょぴ Zまたは挿入しているアミノ酸配列であって、 球状タンパク質 を構成するアミノ酸配列:
本明細書において、 「アミノ酸配列において 1から数個のアミノ酸が欠失、置換、 付加および/または挿入しているアミノ酸配列」 における 1から数個とは一般的 には 1から 2 0個、 好ましくは 1から 1 0個、 より好ましくは 1から 5個、 特に 好ましくは 1から 3個程度を意味する。 さらに、 本発明は、 目的ぺプチド又は目的タンパク質と上記した本発明の支持 体タンパク質とから成る融合タンパク質にも関する。 上記融合タンパク質は、 例 えば、 目的ぺプチド又は目的タンパク質をコードする塩基配列および本発明の支 持体タンパク質をコードする塩基配列が直接またはリンカーを介して連結してな る、 目的ぺプチド又は目的タンパク質と支持体タンパク質とから成る融合タンパ ク質をコードする核酸またはその修飾体を、 無細胞翻訳系または生細胞において 発現させることにより調製することができる。
本発明における、 融合タンパク質をコードする核酸とは、 支持体タンパク質を コードする核酸と目的ぺプチド又は目的タンパク質をコードする核酸とを含む核 酸である。 上記核酸は、 上記融合タンパク質を機能的に提示する性質を損なわな い限り、 任意の位置、 例えば、 支持体タンパク質をコードする核酸と目的ぺプチ ド又は目的タンパク質をコードする核酸との間に、 スぺーサーその他の任意のァ ミノ酸をコードする D NAを含んでいてもよい。
本発明の核酸の合成は、 市販の自動 D N A合成装置等を用いて当業者であれば 容易に行うことができる。 また、 配列番号 2 1に記載のアミノ酸配列において 1 から数個のアミノ酸が欠失、 置換、 付加および/または挿入しているアミノ酸配 列であって、 球状タンパク質を構成するァミノ酸配列をコードする核酸も同様に 市販の自動 D N A合成装置等を用いて合成することができる。
本発明においては、 スクリーニング後に、 公知の生物学的手法を適用すること によって、 目的ペプチド又は目的タンパク質を分離回収することができる。 例え ば、 支持体タンパク質と目的ペプチド又は目的タンパク質の間に適当なスぺーサ ーァミノ酸配列を設けることにより好適に該目的タンパク質を分離することがで きる。 このようなスぺーサーァミノ酸配列の挿入は公知の分子生物化学的手法に 基づいて行うことができる。 例えば、 目的のアミノ酸配列をコードする D NAを 任意の位置に、 公知の遺伝子操作技術を用いて挿入することができる。 例えば、 スぺーサー を ト ロ ン ビンに よ り 切断する よ う な場合に は、
(Leu-Val-Pro-Arg-Gly-Ser ) をコードする D N A (CTG- GTT- CCG- CGT- GGA- TCC) を支持体タンパク質と目的ペプチド又は目的タンパク質との間に導入することに より、 該ペプチドが発現し、 トロンビンにより切断可能となる。 同様に、 スぺー サーを FactorXaで切断する場合においては、 (lie- Glu- Gly- Arg- X, Xは Arg, Pro 以外のァミノ酸)をコードする D N A (ATC-GAA-GGT-CGT-YYY、 YYYは Arg, Proを コードしない D NA) を導入すればよい。
本明細書で言う 「核酸またはその修飾体」 における修飾体の種類は特に限定さ れず、 当分野で公知の任意の核酸修飾体を包含する。 本発明で使用できる核酸修 飾体の一つの具体例としては、 その 3 ' 末端に核酸誘導体が結合しているものが 挙げられる。 即ち、 本発明の好ましい実施態様では、 目的ペプチド又は目的タン パク質をコードする塩基配列およぴ本発明の支持体タンパク質をコードする塩基 配列が直接またはリンカーを介して連結してなる目的べプチド又は目的タンパク 質と支持体タンパク質とから成る融合タンパク質をコードする m R NAであって、 その 3 ' 末端に核酸誘導体が結合している mR N Aを、 無細胞翻訳系または生細 胞において発現させることにより、 融合タンパク質とそれをコードする核酸とか ら成る複合体が製造される。
また、 3 ' 末端に核酸誘導体が結合している mR NAを使用して無細胞タンパ ク質翻訳系又は生細胞中でタンパク質の翻訳を行った場合、 2本鎖でリボソーム を止め、 ピューロマイシンなどの核酸誘導体がリボソームの Aサイトに入れるこ とによりタンパク質と結合させることができる。
この核酸誘導体としては、 無細胞タンパク質翻訳系又は生細胞中でタンパク質 の翻訳が行われた時に、 合成されたタンパク質の C末端に結合する能力を有する 化合物である限り限定されないが、その 3 '末端がアミノアシル tRNAに化学構造 骨格が類似しているものを選択することができる。 代表的な化合物として、 アミ ド結合を有するピューロマイシン (Puromycin)、 3, -N-アミノアシルピューロマ ィシンァ ^ノヌクレオシド (3, -N-Aminoacylpuromycin aminonucleoside、 PANS— アミノ酸)、 たとえば、 ァミノ酸部がグリシンの PANS- Gly、 ァミノ酸部がバリン の PANS-Val、アミノ酸部がァラニンの PANS - Ala、その他、アミノ酸部が全ての各 アミノ酸に対応する PANS—アミノ酸化合物が挙げられる。
また、 3, 一アミノアデノシンのァミノ基とアミノ酸のカルボキシル基が脱水 縮合して形成されるアミド結合で連結した 3, - N -ァミノアシルアデノシンアミノ ヌクレオシド (3, -Aminoacyladenosine aminonucleoside, AANS—ァミノ酸 、 7こと えば、ァミノ酸部がグリシンの AA S - Gly、 ァミノ酸部がパリンの MNS-Val、 ァミ ノ酸部がァラニンの AANS- Ala、 その他、アミノ酸部が全アミノ酸の各アミノ酸に 対応する AANS-ァミノ酸化合物を使用できる。
また、 ヌクレオシドあるいはヌクレオシドとアミノ酸のエステル結合したもの なども使用できる。 さらにまた、 核酸あるいは核酸に類似した化学構造骨格及び 塩基を有する物質と、 アミノ酸に類似した化学構造骨格を有する物質とを化学的 に結合した化合物は、 すべて本方法において用いられる核酸誘導体に含まれる。 核酸誘導体としては、 ピューロマイシン、 P AN S—アミノ酸もしくは AAN S—アミノ酸がリン酸基を介してヌクレオシドと結合している化合物がより好ま しい。これらの化合物の中でピューロマイシン、リボシチジ /レピュー口マイシン、 デォキシシチジルピューロマイシン、 デォキシゥリジノレピューロマイシンなどの ピュー口マイシン誘導体が特に好ましい。
本発明の方法では、 融合タンパク質をコードする核酸又はその修飾体として、 3 ' 末端に核酸誘導体がスぺーサーを介して結合している核酸修飾体を使用する ことが好ましい。
スぺーサ一としては、 ポリエチレン又はポリエチレングリコー^レあるいはその 誘導体などの高分子物質や、 オリゴヌクレオチドゃぺプチドあるいはその誘導体 などの生体高分子物質等が用いられ、 好ましくはポリエチレンダリコールが用い られる。 スぺーサ一の長さは特に限定されないが、 好ましくは、 分子量 1 5 0〜 6 0 0 0である力、 または主鎖の原子数は 1 0原子から 4 0 0原子であり、 さら に好ましくは、 分子量 6 0 0〜3 0 0 0である力 \ または主鎖の原子数が 4 0原 子から 2 0 0原子である。
上記したような核酸誘導体は、 それ自体既知の化学結合方法によって製造する ことができる。 具体的には、 リン酸ジエステル結合で合成ユニットを結合させる 場合は、 D NA合成機に一般的に用いられているホスホアミダイド法などにより 固相合成で合成することが可能である。 ペプチド結合を導入する場合は、 活性ェ ステル法などにより合成ュニットを結合させるが、 D NAとの複合体を合成する 場合は、 両方の合成法に対応が可能な保護基が必要になる。
本発明の方法では、 上記した核酸またはその修飾体を、 タンパク質翻訳系また は生細胞において発現させることにより融合タンパク質を製造することが好まし レ、。 核酸からそれがコードするタンパク質を人工的に生成させるための転写翻訳 系は当業者に公知である。 具体的には、 本明細書中の上記 (I I ) に記載した通 りである。
かくして得られた上記融合タンパク質とそれをコードする核酸の複合体又は本 発明の目的ペプチド又は目的タンパク質と支持体タンパク質とから成る融合タン パク質を目的タンパク質として上記 (I ) および (I I ) に記載の方法により構 築された in vitro virus virionは、 上記 (I I I ) の選抜工程、 (4 ) 変異導入 工程、 ( 5 )増幅工程などを適宜行なうことにより、所望のポリぺプチドまたはタ ンパク質を取得することができる。 本発明には、 上記の工程で得られる in vitro virus virionも含まれる。
さらに本発明では、 目的ペプチド又は目的タンパク質としてペプチドライブラ リー又はタンパク質ライブラリーを使用することができる。 このようなライブラ リ一を本発明の支持体タンパク質と融合させた形態で発現させて得られる融合タ ンパク質をスクリーニングし、 所望の機能を有する目的ぺプチド又は目的タンパ ク質を選択することにより、 機能性ぺプチド又はタンパク質をスクリ一ユングす ることができる。
(V I ) 核酸の連結方法おょぴその利用
本発明の核酸の連結方法は、 ランダムな配列を含む多様性のある D NAライプ ラリ断片と、 転写 ·翻訳のための配列、 タグをコードする配列、 あるいは支持体 タンパク質をコードする配列のようなコンスタントな配列 (以下、 これらを 「コ ンスタント配列」 と称することがある) をもつ DN A断片とを多様性を損なわな い形で連結させる場合に使用することができる。 また、 本発明は、 そのようにし て連結した DNAを錶型にした転写による、 in vitro virus virion製造用の一 本鎖 RN Aの製造に関するものである。
本発明の核酸の連結方法は、 互いに相補的な共通配列を有する異なる 2種類以 上の 1本鎖または 2本鎖 DNAをプライマーの非存在下において DNA合成酵素 を用いて反応させることを特徴とする。 '
互いに相補的な共通配列とは、 好適な条件下でァニーリングできる程度の相補 性を有していればよく、 完全 (即ち、 100%) に相補的である必要はない。 ま た、 相補配列の長さも特に限定されないが、 通常は 5塩基から 100塩基、 好ま しくは 5塩基から 50塩基程度である。
DN A合成酵素は、 各種の DN Aポリメラーゼを使用できるが、 好ましくは T a qポリメラーゼである。 本発明では、 T a qポリメラーゼを用いるポリメラー ゼ連鎖反応 (PCR) により DNAを連結するのが好ましい。
T a qポリメラーゼなどの DN Aポリメラーゼを用いた核酸合成反応は当業者 に公知の通常の条件下で行うことができる。 具体的には、 連結すべき 2種類の D NA断片、 dNTP混合物及ぴ DNAポリメラーゼを好適な緩衝液に添加し、 好 適な温度で一定時間ィンキュベートすることにより核酸合成反応を行うことがで きる。 核酸合成反応を PC Rにより行う場合には、 DN Aポリメラーゼとして T a qポリメラーゼを使用し、 例えば、 95°Cで 30秒 (変性)、 54°Cで 2秒 (ァ ユーリング)、及ぴ 74で 30秒 (伸長) のサイクルを複数回 (例えば、 25回程 度) 繰り返すことにより核酸合成を行うことができる。 PCR反応の条件 (温度 及ぴ時間、 サイクル数) などは連結すべき核酸の種類などに応じて適宜変更する ことができる。
本発明は上記した方法により得られる D N Aの連結体も包含する。
本発明の好ましい態様では、 異なる 2種類以上の 1本鎖または 2本鎖 D の うちの片方の D NAが D NAライブラリーなどである。 他方の D NAがコンスタ ント配列を有する D N Aである。
本発明において、 目的配列の種類は特に限定されず、 スクリーニングの目的に 応じて任意の配列を使用することができる。 目的配列の具体例及び好ましい実施 形態については、 本明細書中の上記 (V) に記載した通りである。
本発明の好ましい態様では、 異なる 2種類の 1本鎖または 2本鎖 D N Aのうち の他方の D N Aはコンスタント配列を有する D N Aである。
コンスタント配列として用いられる支持体タンパク質としては、 3 0から 2 0 0ァミノ酸残基からなる球状タンパク質から成る支持体タンパク質を用いること が好ましい。 さらに好ましくは、 システィン残基を含まず、 タンパク質の二次構 造として ;8シート構造を有さず、 αヘリックス構造からなり、 タンパク質の立体 構造において Ν末端と C末端が離れていて、 他の生体高分子と相互作用しない支 持体タンパク質を使用することができる。
上記したような支持体タンパク質の具体例としては、 下記の何れかのァミノ酸 配列を有する支持体タンパク質が挙げられる。
( 1 ) 配列番号 2 1に記載のァミノ酸配列;又は
( 2 )配列番号 2 1に記載のアミノ酸配列において 1から数個のアミノ酸が欠失、 置換、 付加および/または挿入しているアミノ酸配列であって、 球状タンパク質 を構成するアミノ酸配列:
本明細書において、 「ァミノ酸配列において 1から数個のァミノ酸が欠失、置換、 付加および/または挿入しているァミノ酸配列」 における 1から数個とは一般的 には 1から 2 0個、 好ましくは 1から 1 0個、 より好ましくは 1から 5個、 特に 好ましくは 1から 3個程度を意味する。
なお、 本発明で用いる D NAの合成は、 市販の自動 D NA合成装置等を用いて 当業者であれば容易に行うことができる。 また、 配列番号 2 1に記載のアミノ酸 配列において 1から数個のアミノ酸が欠失、 置換、 付加おょぴ Ζまたは挿入して いるアミノ酸酉己列であって、 球状タンパク質を構成するアミノ酸配列をコードす る核酸も同様に市販の自動 DN A合成装置等を用いて合成することができる。 さらに本発明によれば、 (1)互いに相補的な共通配列を有する異なる 2種類の 1本鎖または 2本鎖 DNAをプライマーの非存在下において DNA合成酵素を用 いて反応させることにより、 連結した DNAと連結しない DNAを含む混合物を 調製する工程;及ぴ
(2) 工程 (1) で得た混合物を用いて RN Aポリメラーゼの存在下で転写反応 を行い RN Aを合成する工程;
を含む、 核酸を連結及び転写するための方法が提供される。
上記工程 (1) は本明細書中上記した通り行うことができる。
上記工程 (2) は、 工程 (1) で得られる連結した DN Aを転写して RN Aを 生成する工程である。 工程 (1) で得られる反応混合物中には、 連結した DNA と連結しない DN Aの両方が含まれている。 本発明では、 この反応混合物をその まま用いて RNAポリメラーゼの存在下で転写反応を行うことにより、 連結され た DNAのみが転写される。 これは、 T 7 RNAポリメラーゼ等のウィルス由来 の RNAポリメラーゼはプロモータ特異性が高く、 2本鎖 DNAを特異的に認識 するという性質を利用しているためである。 即ち、 本発明では、 上記したような プロモータ特異性が高く、 2本鎖 DNAを特異的に認識するウィルス由来の RN Aポリメラーゼを使用することが好ましく、 T 7 RNAポリメラーゼを使用する ことが特に好ましい。 このような RNAポリメラーゼを使用することにより、 反 応混合物の精製操作をせずに R N Aを合成することができる。
上記転写反応により得られた反応混合物を DNA分解酵素で処理することによ り混合物中に存在する DNAを分解し、 除去することにより、 ランダム配列の多 様性を維持したまま RN Aのみを単離することができる。 本発明は上記した方法 により得られる RNAも包含する。
さらに本発明は、 ( 1 )互いに相捕的な共通配列を有する異なる 2種類の 1本鎖 または 2本鎖 DN Aをプライマーの非存在下において DN A合成酵素を用いて反 応させることにより、 連結した DNAと連結しない D N Aを含む混合物を調製す る工程;
(2) 工程 (1) で得た混合物を用いて RNAポリメラーゼの存在下で転写反応 を行い RNAを合成する工程;
(3) DNA分解酵素で DNAを分解する工程;及ぴ
(4) 工程 (3) で得た RNAを含む核酸構築物を、 無細胞翻訳系または生細胞 において発現させる工程を含む、 タンパク質の製造方法;並びに、
( 1 ) 互いに相補的な共通配列を有する異なる 2種類の 1本鎖または 2本鎖 DN Aをプライマーの非存在下において DNA合成酵素を用いて反応させることによ り、 連結した DNAと連結しない DNAを含む混合物を調製する工程;
(2) 工程 (1) で得た混合物を用いて RN Aポリメラーゼの存在下で転写反応 を行い RN Aを合成する工程;
(3) DN A分解酵素で DN Aを分解する工程;及び '
(4) 工程 (3) で得た RNAの 3, 末端を核酸誘導体で修飾する工程;及ぴ
(5) 工程 (4) で得た 3' 末端を核酸誘導体で修飾した RNAを、 無細胞翻訳 系または生細胞において発現させる工程を含む、 タンパク質とそれをコードする 核酸との複合体の製造方法を提供する。 また、 上記 (3) で得られた RNAを用 いて上記 (I) または (I I) に記載の方法により in vitro virus virionを製 造することができる。
上記したような 3 ' 末端に核酸誘導体が結合している mRNAを使用して無細 胞タンパク質翻訳系又は生細胞中でタンパク質の翻訳を行つた場合、 2本鎖でリ ポソームを止め、 ピューロマイシンなどの核酸誘導体がリボソームの Aサイトに 入れることによりタンパク質と結合させることができる。 この核酸誘導体として は、 本明細書中の上記 (V) に記載したものが挙げられる。
本発明の方法では、 RNAの 3, 末端に核酸誘導体がスぺーサーを介して結合 している核酸修飾体を使用することが好ましい。 スぺーサ一としては、 本明細書 中の上記 (V) に記載したものが挙げられる。
上記したような核酸誘導体は、 それ自体既知の化学結合方法によって製造する ことができる。 具体的には、 本明細書中の上記 (V) に記載した通りである。 本発明の方法では、 上記した核酸またはその修飾体を、 無細胞翻訳系または生 細胞において発現させることによりタンパク質を製造することが好ましい。
核酸からそれがコードするタンパク質を人工的に生成させるための転写翻訳系 は当業者に公知であり、 具体的には、 本明細書中の上記 (I I ) に記載したもの が挙げられる。
本発明では、 目的配列としてペプチドライブラリー又はタンパク質ライブラリ 一をコードする配列を使用することができる。 このようなライブラリー D NAを 本究明の核酸の連結方法に従って支持体タンパク質と連結した形で機能的に発現 させたものをスクリーニングし、 所望の機能を有する目的ぺプチド又は目的タン パク質を選択することにより、 機能性ぺプチド又はタンパク質をスクリ一ユング することができる。 実施例
以下の実施例により本発明をさらに具体的に説明するが、 本発明は実施例によ つて限定されることはない。 なお、 本発明による Y—ライゲーシヨン法を用いた in vitro virusのゲノム構築の模式図を図 2に示す。 実施例 1
実施例 1一 A: Thioredoxin mRNAと D NA断片のライゲーション及ぴこの D NA 断片からの逆転写
( 1 ) 転写用 D NAの構築と mR NAの作成
転写効率の高い大腸菌ウィルス T7の RNA polymeraseによって認識される D N A配列 (T 7プロモーター配列) と翻訳の際に真核細胞のリボソームによって認、 識される D N A配列 (Kozak配列) と原核細胞のリボソームによって認識される
(シャイン ·ダルガノ配列: Shine-Dalgarno) を有し, その下流に Thioredoxin をコードした DNAを次のように構築した。 まず、 T 7 プロモーター配歹 (J (Rosenberg, A. H., et al. , Gene, 56, 125 - 135 (1987))と Kozakコンセンサス配列及び Shine- Dalgarno配列を含む 1本鎖 DNA (配列番号 1) を有機合成し、 これを铸型にして、 DNAプライマー (配列番 号 2) と thioredoxinの一部をコードしたプライマー (配列番号 3) によってポ リメラーゼ連鎖反応 (P C R) を行った。 DN A合成酵素は、 KOD Taq Polymerase (T0YOBO製)を用レ、た。 P C Rの条件は、 95 °C 20秒、 68 °C 2秒、 74°C15秒のサイクルを 30回繰り返した。 この PCR産物は、 プライマーを 除去するために、 プライマーリムーバー (エッジサイエンス) でフエノーノレ抽出 後、 エタノール沈殿した。
一方、 thioredoxinを載せた pTrxFusプラスミド(Invitrogene社製)を铸型とし て配列番号 3のアンチセンスプライマー (配列番号 4) と DNAプライマー (配 列番号 5) を用いてポリメラーゼ連鎖反応を行うことにより、 thioredoxin をコ ードした DN A領域を増幅した。 PCRの条件は、 95°C20秒、 68°C20秒、 74°C20秒のサイクルを 25回繰り返した。 PCR産物はフエノール抽出後、 プライマーリムーバーでエタノール沈殿した。
尚、 DNAプライマー (配列番号 5) は T4 R A ligaseの基質としてより適当 な AAAの配列を mRNAが持つようにデザインされている。
上記した 2つの P C R産物を重複伸長 (Overlap extension) 法(Horton RM, et al. (1989) Gene 77, 61-68)に従って結合させ, 2つのプライマー (配列番号 2 と配列番号 5 )で T7プロモーター配列- Kozakコンサンサス配列- Shine - Dalgarno 配列- Thioredoxinを作成した。 いずれの P C Rにおいても D N A合成酵素は K0D Taq Polymerase (T0Y0B0製)を用いた。
上記した方法で作成した DNAを、 反応液 100 1当たり 10 g力 [1え、 RNA合成 ャット Ribomax Large Scale RNA Production System (Promega社製) を使って mRNA に転写した。 翻訳効率を上げるためにキャップアナログ (RNA capping Analog; Gibco BRL社製) を最終濃度が 7.2 mMになるように加え、 mRNAの 5' 側 を修飾した。 キヤップアナ口グおよび過剰の NTP (ヌクレオチド 3リン酸) を除 去するために、 プライマー除去剤 (Primer Remover: Edge Biosystems社製) を使 つてエタノール沈殿を行った。
(2) 連結用 DN Aの作製
RT-thio (配列番号 6) は、 日本製粉で合成された。 RT- thio は thioredoxin の一部をアンチセンス配列としてもつている。
( 3 ) mR Aと RT - thioの了ニーリング条件
Thioredoxin mRNA及び RT- thioを 1 : 1.5の割合 (モル比) で混合し、 T4 R A ligase buffer (50raM Tris-HCl, pH7.5, lOraM MgC12, lOraM DTT, ImM ATP)に溶解 し、 特異性を上げるため変性剤として DMSO (Dimethyl sulfoxide)を最終濃度 5 % になるように加えた。
PCR装置を用いて、 94°C〜25°Cまで 10分かけて冷却することによりァ ニーリングした。
(4) T4 RNA ligaseによるライゲーシヨン反応
(3 ) でァニーリングした溶液中に T4 RNA ligase を 2 5 unit と T4 polynucleotide kinase lOunitカロえ、 25°Cで 15分間反応させた。
反応後, Rneasy Mini (QIAGEN社)を行つてライゲーション産物を精製した。
(5) ライゲーシヨン反応の確認
ライゲーシヨンの効率を確認するために、 6%アクリルアミド 8M尿素変性ゲ ル電気泳動、 65°C、 220V、 12 OmA、 50分の条件でサンプルを流し、 Vistra Green (Amersham pharmaciaネ: pで染色し、 Molecular Imager (Bio Rad社)で画像 ィ匕した。 結果を図 5に示す。
図 5において、 左のレーンは分子量マーカーを示し、 真中のレーンは元の mR NAを泳動したものを示し、 右のレーンはライゲーシヨン産物を泳動したものを 示す。 変性条件下で電気泳動した場合で、 ライゲーシヨン産物の方が元の mRN Aよりも分子量が大きくなつていることからライゲーション反応が行なわれてい ることが確認された。
(6) RT- thioによる逆転写の確認 RT-thioがライゲーシヨンされた精製した mRNAが実際に逆転写できるかどうか を確認した。 8pmol の RT- thio が 3, 末端に結合した mRNA を AMV Reverse Transcriptase (Promega)を用いて逆転写した。 その後、 半分を RNase H (Takara) 2 unitsで分解し、逆転写した DNAがあるかどう力確認した。結果を図 6に示す。 図 6において、 レーン Mは分子量マーカーを示し、 レーン 1はライゲーシヨン 前の mR NAを電気泳動したものを示し、 レーン 2はライゲーション産物を逆転 写した産物を RNase Hで処理した産物を電気泳動したものを示し、 レーン 3は、 ライゲーション産物を逆転写した産物を電気泳動したものを示す。 レーン 2にお いて、 逆転写産物に対応するバンドが見られることから、 逆転写反応が行なわれ たことが確認された。 実施例 1— B : Thioredoxin mRNAに ligation され 7こ hybri spacerによる in vitro virus virion形成
Hybri spacerは実施例 1— Aで用いた RT- thioの 3, 側にスぺーサとして PEG (Polyethylene glycol)の誘導体及び dCdC- puromycinを化学的に連結したもので あり、 いわゆる in vitro virusのスぺーサとして機能するものである。 具体的な 作製方法は、 以下の通りである。
固相支持体の PuromycinCPG (GLEN RESEARCH)を出発物質とし、 D NA合成機上 で d C d C、 Spacer- 18 (GLEN RESEARCH)、 および Rt- thioの配列に相当するホス ホアミダイ トを順次連結し、 脱保護と精製を行なった。 この際、 Spacer-18 の個 数を変えることで、 P E Gの長さを変える。 次に、 通常の D N A合成を行なうこ とで Hybri spacerカ哈成される。
( 1 ) mRNAと Hybri spacerのライゲーション反応とその確認
上記した RT - thioプライマーを加工した Hybri spacerも実施例 1一 Aと同様の 条件でライゲーション反応ができることを確かめるために、 実施例 1一 Aと同様 の操作に従ってライゲーシヨン反応を行った。 反応産物を電気泳動した結果を図 7に示す。 図 7において、 左のレーンは分子量マーカーを示し、 真中のレーンは元の mR NAを泳動したものを示し、 右のレーンはライゲーション産物を泳動したものを 示す。 変性条件下で電気泳動した場合で、 ライゲーシヨン産物の方が元の mR N Aよりも分子量が大きくなつていることからライゲーシヨン反応が行なわれてい ることが確認された。
このライゲーシヨン反応産物を、 RNeasy Mini (QIAGEN社)を行って精製し、 in vitro virus genomeとして用レヽた。
( 2 ) in vitro virus virion形成の確認
in vitro virus virionの形成に関しては, スぺーサ長の影響が大きいため, 4 種類の異なる PEG (具体的には、 Spacer- 18を 5個、 6個、 7個又は 8個連結した) をもつ Hybri spacerを用意し、 mRNAと Hybri spacerのライゲーション産物を( 1 ) に基づいて調製した。
これらの各スぺーサを付けた mRNA 1 /z gと IMBqの 35S Met (Amersham社) を小 麦胚芽無細胞翻訳系に加え、 3 0 °Cで 4 5分間反応させ、 最終濃度が 20mM MgCl 2, 600mM KClになるように塩を加え、 _ 2 0 °Cでー晚冷蔵した。 次に翻訳産物に 取り込まれないフリーの 35SMet を取り除く ために、 Micro BioSpin Coloumn - 6 (Biolad社)を用いて精製後、 EDTAを最終濃度 ΙΟΟ μ Μになるように加え た。 これにより mRNAを加えたままのリボソームは完全に離れ、 mRNAとタンパク 質が結合した in vito virus virionのみが残る。
上記の通り精製した翻訳産物を 1 5 % S D S—ポリアクリルアミドゲル電気泳 動で確認した結果を図 8に示す。
図 8において、 レーン 1は、 スぺーサーとして spacer- 18 (GLEN RESEARCH社) が 5個連結したもの、 レーン 2は 6個、 レーン 3は 7個、 レーン 4は 8個連結し たものを示す。
図 8の結果から分かるように、 spacer- 18 (GLEN RESEARCH社)が 5個連結したス ぺーサを用いた場合 (レーン 1 ) 力 最も効率良く連結していた。 実施例 1一 C : T一 Spacerを用いた in vitro virus virion形成と逆転写
( 1 ) T- Spacerの作製法
以下のような修飾 DNAを T- Spacerの原料として DNA合成機で合成した。
DNA1 : (thiol) (Spc) (Spc) (Spc) (Spc) CC (ZFP)
DNA2 : (Pso) TACGCCAGCTGCACCCCCCGCCGCCCCCCG (At) CCGC
DNA3 : CCCGG (Ft) GCAGCTGGCGTATAAAAAAAAAAAAAAAAAAAAAAAAAA
DNA4 : CCCGGTGCAGCTGTTTCATC (Bt) CGGAAACAGCTGCACCCCCCGCCG
CCCCCCG(At) (Ft) (Spc) (Spc) (Spc) (Spc) CC (ZFP)
DNA5 : (thiol) CGCT
配列の中の(thiol)は 5, -Thiol- modifier C6、 (Spc)は Spacer 18、 (Bt)は Biotin- dT、 (Ft) は Fluorescein- dT、 (At)は Amino- modifier C6 dT、 (Pso)は Psoralen C6 (以上すベてグレンリサーチ)、 (ZFP)は Z-phenylalanyl-puromycin をそれぞれ示す。
(A) T-splint3FA
DNA2 (12 nmol) と DNA3 (12 nmol) を TBS緩衝液 (25 mM Tris - HC1、 pH7. 0、 100 mM NaCl) 0. 48 mlに溶力 し、 85°Cで 40秒加熱したのち室温で放冷した。 氷 浴上で 5分放置したのちハンディ UVランプ(365 nm) で 8分間光照射し、 反応生 成物を逆相 HPLCで精製した。 この DNA 4 nmolを 0. 1 M リン酸水素 2ナトリウム 水溶液 15 μ 1に溶かし、 EMUS (架橋剤;同仁化学) の 5 mM 011?溶液4 1を加え て 20分室温で撹拌した。 この溶液に DNA 1 (20nmol) を 0· 1 Mリン酸緩衝液 (ρΗ 7. 1) 40 μ ΐに溶かした溶液を加え、 さらに室温で 16時間撹拌した。 逆相高速液 体クロマトグラフィ (逆相 HPLC) で架橋剤を介して結合した目的物を単離し、 50 mMリン酸緩衝液 (pH 8. 0) に溶かしてキモトリブシン溶液を基質に対して酵素の 重量比が 10%程度になるように加えて 36°Cで 1時間放置した。 逆相 HPLCで精製 し、 T- splint:3FAを得た (図 4 )。
( B ) T-splint4FB
DNA 4 (5 nmol) を 0. 1 M リン酸水素 2ナトリゥム水溶液 15 ^ 1 に溶かし、 Sulfo-KMUS (架橋剤;同仁化学) の 10 niM DMF溶液 5 1を加えて 20分室温で撹 拌した。 この溶液にさらに DNA 5 (60 nmol) を 0. 1 Mリン酸緩衝液 (pH 7. 1) 0 1に溶かした溶液を加え、 さらに室温で 16時間撹拌した。 DNA4と DNA5が架橋 剤を介して結合した目的物を逆相 HPLCで精製し、 T-splint3FAと同様にキモトリ プシンで消化を行なった。逆相 HPLCで再度精製し、 T-splint4FBを得た(図 4 )。
( 2 ) 転写用 DNAの構築と mRNAの作製
転写効率の高い大腸菌ウィルス T7の RNA polymeraseによって認識される DNA 配列 (T7プロモーター配列) と翻訳の際に真核細胞のリボソームによって認識さ れる DNA配列 (Kozak配列) と原核細胞のリボソームによつて認識される (シャ イン ·ダルガノ配列: Shine- Dalgarno) を有し、 その下流に Oct- 1の一部 (P0U) と FLAG配列、 T- Spacerと連結するための配列 (Y- tag) をコードした DNA (下記 の配列番号 7 ) を構築した。
GATCCCGCGA AATTAATACG ACTCACTATA GGGAGACCAC AACGGTTTCC CTCTTGAAAT AATTTTGTTT AACTTTAAGA AGGAGATTCC ACCATGGACC TTGAGGAGCT TGAGCAGTTT GCCAAGACCT TCAAACAAAG ACGAATCAAA CTTGGATTCA CTCAGGGTGA TGTTGGGCTC GCTATGGGGA AACTATATGG AAATGACTTC AGCCAAACTA CCATCTCTCG ATTTGAAGCC TTGAACCTCA GCTTTAAGAA CATGGCTAAG TTGAAGCCAC TTTTAGAGAA GTGGCTAAAT GATGCAGAGG GGGGAGGCAG CGATTACAAG GATGACGATG ACAAGGGCGG AAGCGGACGG GGGGCGGCGG GAAA (配列番号 7 )
作製した DNAを、 反応液 100 μ 1あたり 10 μ gを加え、 RNA合成キット Ribomax Large Scale RNA Production System (Promega) を使って mRNAに転写した。 翻訳 効率をあげるためにキャップアナログ (RNA Capping Analog ; Gibco BRL) を最 終濃度が 7. 2mMになるように加え、 mRNAの 5' 側を修飾した。 キャップアナログ および過剰の NTP (ヌクレオチド 3リン酸) を除去するために、 プライマー除去 剤 (Primer Remover ; Edge Biosystems) を使ってエタノーノレ沈 を行った。
( 3 ) mRNAと T- Spacer (T_splint3FA)との ligation
上記 (1 ) で作製した T- Spacer (T- splint3FA)と上記 (2 ) で作製した mRNA とのライゲーシヨンは、 実施例 1一 Aに記載の方法に準じて行なった。 具体的に は以下の通りである。
上記 (2 ) で作製した mRNAと上記 (1 ) で作製した T - Spacer (T- splint3FA)を 1 : 1. 2- 1. 5の割合 (モル比) で混合し、 T4 R A ligase buffer (50raM Tris- HC1、 pH7. 5、 10mM MgCl 2、 lOraM DTT、 lmM ATP)に溶解し、 特異性をあげるため変性剤 として DMSO (Dimethyl sulfoxide)を最終濃度 5%になるように加えた。 得られた 混合物は、 PCR装置を用いて、 94°C〜25°Cまで 10分かけて冷却することによりァ ニーリングした。
続けて、 上記のアニーリングした溶液中に T4 Polynucleotide Kinase (Takara) と T4 RNA ligase (Takara製) を至適量加え、 25°Cで 30分間反応させた。
反応後、 RNeasy Mini Kit (QIAGEN製)を使って、 ライゲーシヨン産物を精製し た。 ライゲーシヨンの効率を確認するために、 4%アクリルアミド 8M尿素変性ゲ ル電気泳動、 65° (:、 250V の条件でサンプルを泳動し、 Vistra Green (Amersham Pharmacia)で染色し、 Molecular Imager (Bio Rad)で画像化した。 また、 スぺー サ一に導入してある蛍光 (Fluorescein)についても確認した。 結果を図 9に示す。 図 9において、 レーン 1は元の mRNAを泳動したものを示し、 レーン 2はライゲ ーシヨン産物を泳動したものを示す。 変性条件下で電気泳動した場合、 ライゲー シヨン産物の方が元の mRNA よりも分子量が大きくなつていることからライゲー シヨン反応が行われていることが確認された。 このライゲーシヨン産物を in vitro virus genomeと名付けた。
( 4 ) T- Spacer (T - splint3FA)を用いた in vitro virus virion形成
in vitro virus genome力 s、 実際に in vitro virus virionを形成できる力 ど う力確認した。 in vitro virus genome 4pmolを小麦胚芽無細 J3包翻訳系 PR0TEI0S (T0Y0B0)を用いて、 26°Cで 30分間反応し翻訳させ、 ピューロマイシンに翻訳され たペプチドを結合させる (virion化) ために最終濃度が 40mM MgCl2、 1M KC1に なるように塩を加え、 26°Cで 1時間反応させた。
Virion化の効率を確認するために、 5M尿素変性 5%SDS- PAGEゲル、 20mAの条 件でサンプルを泳動した。 T - Spacerに導入してある蛍光 (Fluorescein)を使って、 Molecular Imager (Bio Rad)で画像化した。 結果を図 1 0に示す。
図 1 0において、 左のレーンは翻訳反応前のサンプルを泳動したものを示す。 右のレーンはビリオン形成後のサンプルを泳動したもの示す。
( 5 ) T- Spacer (T- splint3FA)を用いた逆転写反応の確認
in vitro virus genome I 実際に逆転写できるかどうかを確認した。 2pmol の in vitro virus genome ¾r TrueScript 丄丄 Reverse Transcriptase (sawady) を用いて逆転写した。 その後、 半分を R ase H(Takara) 2unitsで分解し、 逆転写 した DNAがあるかどう力確認した。 4%ァクリルァミド 8M尿素変性ゲル電気泳動 でサンプルを泳動し、 Vistra Green (Amersham pharmacia製)で染色し、 Molecular Imager (Bio Rad)で画像化した。 また、 Spacerに導入してある蛍光(Fluorescein) についても確認した。 結果を図 1 1に示す。
図 1 1において、 レーン 1は、 in vitro virus genomeを泳動したものを示し、 レーン 2は、 in vitro virus genome を逆転写した産物を泳動したものを示し、 レーン 3は、 in vitro virus genomeを逆転写した産物を RNase Hで処理した産 物を泳動したものを示す。 逆転写産物に対応するバンドがみられることから、 逆 転写反応が行われたことが確認された。
( 6 ) T— spacer (T- splin1:3FA)を用いた in vitro virus virion开成後の逆転写 反応の確認
in vitro virus virionを形成し、 翻訳系より精製した後、 T- spacerを用いて 実際に逆転写できるかどうかを確認した。
8pmolの in vitro virus genomeを上 の方法で virionィ匕レ、 buffer交 をす るために、 Micro BioSpin Column- 6 (Bio- Rad)を用いて脱塩後、 1M NaCl、 lOOmM Tris-HCl (pH8. 0)、 lOmM EDTA、 0. 25% Triton-XlOO になるように調整し、 Biotinylated Oligo (dT) Probe (Promega)を結合させた MAGNOTEX - SA (Takara) 5 μ 1と 4°C、 約 1時間結合させる。 その後、 上清をとり、 洗浄 bufferA (lM NaCl, lOOmM Tris-HCl (pH8. 0)、 0. 25% Triton- X100) 20 μ 1で 3回洗い、 buf f erB (500mM NaCl、 lOOmM Tris-HCl (pH8. 0)、 0. 25% Triton- X100) 20 μ 1 で 1 回洗い、 bufferC (250mM NaCl, lOOmM Tris-HCl (pH8. 0)、 0. 25% Triton-XlOO) 20 μ 1で 1 回洗い、 その後、 Dep水 10 z lで 3回溶出して in vitro virus が精製できるか どうか確認した。
次に、 溶出画分の 1 と 2 をまぜ、 TrueScript II Reverse Transcriptase (sawady)を用いて逆転写した。 さらに、 ネガティブコントロールとして in vitro virus genome ポンアイブコントローレとして in vitro virus genomeを逆転 ■ したもの (図 1 1 ) とともに、 センスプライマー (配列番号 8 ) とアンチセンス プライマー (配列番号 9 ) をもちいて、 ポリメラーゼ連鎖反応 (PCR)を行った。 DNA合成酵素は、 TaKaRa Ex Taq (TAKARA)を用いた。
結果を確認するために、 6M尿素変性 6%ポリアクリルアミドゲル、 250Vの条件 でサンプノレを泳動し、 Vistra Green (Amersham pharmacia )で染色し、 Molecular Imager (Bio Rad)で画像ィ匕した。 結果を図 1 2に示す。
図丄 2におレヽ 、 レーン I f 、 in vitro virus genomeN レーン 2は、 in vitro virus genomeを逆転写したもの、 レーン 3は、 ビリオン化後に精製して逆転写し た in vitro virusを铸型として PCRを行ったサンプルを泳動したものを示す。 ビ リオンィ匕後に 製して逆転 した in vitro virus力 in vitro virus genomeを 逆転写したものを錄型として PCRを行ったものと同様に、 目的の DNAが増幅でき ていたことより、 ビリオン化後に精製して in vitro virus力 T-sapcerをもち いて、 逆転写できたことが確認された。
配列番号 8、 5, -GTT TAA CTT TAA GAA GGA GTT GCC ACC ATG —3,
配列番号 9、 5 ' -TTT CCC GCC GCC CCC CGT CCG CTT CCG CCC TTG TCA TCG TCA TCC
TTG TAA TC —3 , 実施例 2 :
実施例 2— A : スぺーサ一の作製
以下のような修飾 DNAをスぺーサ一の原料として DNA合成機で合成した。 DNA 1: (thiol) (Spc) (Spc) (Spc) (Spc) CC (ZFP)
DNA 2: CCCGGTGCAGCTGTTTCATC (Bt) CGGAAACAGCTGCACCCCCC (Ft) CCGCCCCCCG (At) CCG C
DNA 3: (Pso) TACGCCAGCTGCACCCCCCGCCGCCCCCCG (At) CCGC
DNA 4: CCCGG (Ft) GCAGCTGGCGTATAAAAAAAAAAAAAAAAAAAAAAAAAA
上記配列中の (thiol)、 (Spc)、 (Bt)、 (Ft)、 (At)及び (Pso)はユニットの略称で あり、 すべてダレンリサーチ社製の合成試薬を用いて配列中に導入した。 これら ユニットの略称、 合成 (導入) 試薬の品名及びその化学名は、 それぞれ次の通り である。
(thiol)
5 - Thiol- modifier C6
(S~Tr i ty 1-6-mer c aptohexy 1 ) - (2-cyanoehyl) - (N, N-diisopropyl) ] -phosphoramid ite
(Spc)
Spacer Phosphoramidite 18
18-Q-Dimethoxytritylhexaet yleneglycol, l—[ (2— cyanoethyl) - (N, N-diisopropy
1) ] -phosphoramidite
(Bt)
Biotin—dT
5, -Dimethoxytrityl-5- [N— ( (4-t-butylbenzoyl) -biotinyl) -aminohexyl)—3- aery limido] - 2, -deoxyUridine, 3, - L (2- cyanoethyl) - (N, N-diisopropyl) ]-phosphoram idite
(Ft)
Fluorescein— dT
5, -Dimethoxytrityl-5- [N- ( (3', 6, -dipivaloylf luoresceinyl) -aminohexyl) -3-a crylimido] -2' -deoxyUridine, 3, -[ (2- cyanoethyl) - (N, N-diisopropyl) ]-phospho ramidite (At)
Amino— modifier C6 dT
5,一 Dimethoxytrityl - 5 - [N - (trifluoroacetylaminohexyl)— 3— acrylimido]—2,一 deo xyUridine, 3,一 [ (2-cyanoethyl) - (N, N-diisopropyl) ] -pho sphor ami d i t e
(Pso)
Psoralen C6 Phosphoramidite
2— [4, - (hydroxymethyl) -4, 5,, 8— rimethylpsoralen]— hexyl— 1一 0— (2— cyanoethyl) - (N, N-diisopropyl) -pho sphor am i d i t e
また、 (ZFP)は N- CK - (N- a - benzyloxycarbonyl - L- phenylalanyl) -puromycin残 基を示し、 支持体 CPG に固定して DNA合成機上で使えるようにしたものを特願 2002-044955 号明細書に記載の方法に準じて次の通り合成して配列の 3' 末端に 導入した。
ピューロマイシン 2塩酸塩 (和光純薬工業) 250 mgを水 3 mlに溶かし、 ジメ トキシェタン (DME) 2 ml、 10%炭酸ナトリゥム水溶液 0. 5 mlを加えた。 撹拌しな 力 ら こ の溶 夂に Z— Phe_0Su (N- —benzyloxycarbonyl— L— phenylalanine N-hydroxysuccinimide ester ; BACHEM社) 200 mg (1. 1当量) を DME 2 mlに溶力 した溶液を加え、 さらに 10%炭酸ナトリウム水溶液 0. 5 mlを加えた。 1時間室温 で撹拌したのち析出した固体をグラスフィルタ一上で濾取し、 50%DME水溶液 2 ml で 2回、 水 2 mlで 3回、 冷却した DME 2 mlで 2回洗浄したのち真空ポンプで乾 し て N- 一 (N— 一 benzyloxycarbonyl— L—pheny丄 alanyl)— puromycin (ZF-puromycin) ¾r 330 mg得た。
ZF- puromycin 315 mgをピリジン 2. 5 mlに溶かし、塩化ジメトキシトリチル 149 mgを加えて室温で 1時間撹拌した。 氷浴で冷却してから水 0. 1 mlを加え、 10分 撹拌したのち水と酢酸ェチルで分液し、 有機層を水で 3回洗ってから濃縮し、 真 空ポンプで乾燥して粗 5, -dimethoxytrityl ZF-puromycin (DMTr-ZF- puromycin) を 450 mg得た。
DMTr - ZF - puromycin 450 mgをピリジン 2 mlに溶力、し、 無水コハク酸 61 mg、 ジ メチルァミノピリジンの 0. 5 Mピリジン溶液 40 μ 1を加えて、 窒素雰囲気下、 室 温で 3日間撹拌した。 氷浴で冷却してから水 0. 1 mlを加え、 10分撹拌したのち 水と酢酸ェチルで分液し、 有機層を水で 3回、 飽和食塩水で 1回洗ったのち濃縮 した。 酢酸ェチルを展開溶媒としてシリカゲルクロマトグラフィで精製し、 目的 物である DMTr-ZF-puromycin- 3, -succinateを 385 mg得た。
D Tr-ZF-puromycin-3' -succinate 255 mgをジメチルホノレムァミ ド(DMF) 0. 4 ml に溶かし、 ジィソプロピルカルボジィミド(DIC)の 1. 0 M DMF溶液 0. 2 mlと N-ヒ ドロキシベンゾトリァゾール (HOBt)の 0. 5 M DMF溶液 0. 4 mlを加え、 16時間室 温で撹拌した。 この溶液に CPG (CPG LCA00500A ; 0. 17 mmol/g) 500 mgを加えて 2時間室温で撹拌し、 さらに DICの 1. 0 M DMF溶液 0. 15 mlと HOBtの 0. 5 M DMF 溶液 0. 3 mlを加えて 16時間室温で撹拌した。 CPGをグラスフィルター上に濾取 し、 DMF、 50% DMF水溶液、 ァセトニトリルで洗ったのちポンプで乾燥した。 全量 を DMF 2 mlに懸濁させ、 ピリジン 0. 5 ml、 無水酢酸 125 mgを加えて 1時間室温 で撹拌したのち CPGを濾取して DMFとァセトニトリルで洗浄した。 真空ポンプで 乾燥し、 ZF- puromycin CPGを 520 mg得た。 一部を固相反応用の容器に入れ、 ト リク口口酢酸の 3%塩ィ匕メチレン溶液を加えて室温で 1分撹拌し、ァセトニトリル で洗浄したのち濃アンモエア水を加えて室温で 2 時間撹拌した。 回収された ZF- puromycinを定量し、 CPG 1グラム当たり 28 ^ molと算出した。
( 1 ) T-splintlFB
DNA 2 (4 nmol)を 0. 1 M リン酸水素 2 ナトリゥム水溶液 15 に溶かし、 Ν- (6-maleimidocaproyloxy) succinimide (EMCS) (架橋剤;同仁化学製) の 5 DMF溶液 4 1を力!]えて 20分室温で撹拌した。 この溶液に DNA 1 (20 nmol) を 0. 1 Mリン酸緩衝液 (pH 7. 1) ΑΟ μ Ιに溶かした溶液を加え、 さらに室温で 16時間撹 拌した。 逆相高速液体ク口マトグラフィ (逆相 HPLC) で DNA 1と DNA 2が架橋剤 を介して結合した目的物を単離し、 50 リン酸緩衝液 (pH 8. 0) に溶かしてキ モトリプシン溶液を基質に対して酵素の重量比が 10%程度になるように加えて 36°Cで 1時間放置した。 逆相 HPLCで精製し、 T-splintlFBを得た。 ( 2 ) T-splint3FA
DNA 3 (12 nmol)と DNA 4 (12 nmol)を TBS緩衝液 (25 mM Tris - HC1、 pH7. 0、 100 mM NaCl) 0. 48 mlに溶力 し、 85°Cで 40秒加熱したのち室温で放冷した。 氷 浴上で 5分放置したのちハンディ UVランプ (365 nm) で 8分間光照射し、 反応生 成物を逆相 HPLCで精製した。これを T- splintlFB調製の際と同様に EMCSで DNA 1 と架橋し、 キモトリプシン処理ののち精製して T- splint3FAを得た。 実施例 2— B :転写用 D NAの構築と mR NAの作製
転写効率の高い大腸菌ウィルス T7の R A polymeraseによって認識される DNA 配列 (T7プロモーター配列) と翻訳の際に真核細胞のリボソームによって認識さ れる DNA配列 (Kozak配列) と原核細胞のリボソームによって認識される (シャ ィン ·ダルガノ配列: Shine- Dalgarno) を有し、 その下流に Oct- 1の一部 (P0U ; 配列番号 1 )と FLAG配列、 T- Spacerと連結するための配列 (Y- tag) をコードし た DNAを構築した。
GATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTTGAAAT AATTTTGTTTMCTTTAAGAAGGAGATTCCACCATGGACCTTGAGGAGCTTGAGCAGTTT GCCAAGACCTTCAAACAAAGACGAATCAAACTTGGATTCACTCAGGGTGATGTTGGGCTC GCTATGGGGAAACTATATGGAAATGACTTCAGCCAAACTACCATCTCTCGATTTGAAGCC TTGAACCTCAGCTTTAAGAACATGGCTAAGTTGAAGCCACTTTTAGAGAAGTGGCTAMT GATGCAGAGGGGGGAGGCAGCGATTACAAGGATGACGATGACAAGGGCGGAAGCGGACGG GGGGCGGCGGGAAA (配列番号 7 )
上記の方法で作製した DNAを、反応液 100 μ 1あたり 10 μ gを加え、 RNA合成キ ット Ribomax Large Scale RNA Production System (Promega製) 使って mRNA に転写した。 翻訳効率をあげるためにキャップアナログ (RNA Capping Analog ; Gibco BRL製) を最終濃度が 7. 2mMになるように加え、 mRNAの 5'側を修飾した。 キヤップアナ口グおよび過剰の NTP (ヌクレオチド 3リン酸)を除去するために、 プライマー除去斉! j (Primer Remover ; Edge Biosystems製) を使ってエタノーノレ 沈澱を行った。 実施例 2—C : mR NAと T—スぺーサ一とのライゲーシヨン
上記の実施例 2— Aで作製した T- Spacer (T - splint3FA)と上記の実施例 2— B で作製した mRNAとのライゲーションは、特願 2002-012820号明細書に記載の方法 に準じて行なった。 具体的には以下の通りである。
上記で作製した mRNAと T- spacerを 1: 1. 2〜1. 5の割合(モル比)で混合し、 T4 RNA ligase buffer (50mM Tris - HC1、 pH7. 5、 lOmM MgCl2、 lOmM DTT、 ImM ATP) に溶解し、 特異性をあげるため変性剤として DMSO (Dimethyl sulfoxide)を最終 濃度 5%になるように加えた。得られた混合物は、 PCR装置を用いて、 94°C〜25°C まで 10分かけて冷却することによりアニーリングした。
つづけて、上記のァニーリングした溶液中に T4 Polynucleotide Kinase (Takara 製)と T4 RNA ligase (Takara製) を至適量加え、 25°Cで 30分間反応させた。 反応後、 RNeasy Mini Kit (QIAGEN製)を使って、 ライゲーシヨン産物を精製し た。 ライゲーシヨンの効率を確認するために、 4%アクリルアミド 8M尿素変性ゲ ル電気泳動、 65°C、 250V の条件でサンプルを泳動し、 Vistra Green (Amersham Pharmacia製)で染色し、 Molecular Imager (Bio Rad)で画像ィ匕した。また、 T— spacer に導入してある蛍光(Fluoroscein)についても確認した。 この結果から、 mMA と T - spacerとの結合率 (RNA- DNA結合体の形成率) は 80〜90%であることが確認 された。 実施例 2—D: T—スぺーサーを用いた in vitro virus virion开成
in vitro virus genome f>ゝ、 笑際に in vitro virus virionを形成できる力 ど うか確認した。 in vitro virus genome 4pmolを小麦胚芽無細胞翻訳系 PR0TEI0S (T0Y0B0製)を用いて、 26°Cで 30分間反応し翻訳させ、 ピューロマイシンに翻訳 されたペプチドを結合させる (virion化) ために最終濃度が 40mM MgCl2、 1 M KC1 になるように塩を加え、 26°Cで 1時間反応させた。 Virion化の効率を確認するために、 5M尿素変性 5%SDS- PAGEゲル、 20mAの条 件でサンプルを泳動した。 実施例 2— E : T一スぺーサーを用いた in vitro virusの精製
in vitro virus virionを开成した後、 T- spacerを用いて、 実際に精製できる かどうかを確認した。
( 1 ) ピオチン (T- splintlFB)
8pmolの in vitro virus genomeを上 dの方法で virionィ匕し、 buffer交換をす るために、 Micro BioSpin Column- 6 (Bio- Rad製)を用いて脱塩後、 lMNaCl, lOOmM Tris-HCl (pH8. 0)、 lOmM EDTA、 0. 25% Triton- X100 になるように調整し、 MAGNOTEX-SA (Takara製) 5 μ 1 と 4°C、 約 2時間結合させる。 その後、 上清をと り、 洗浄 buffer (1M NaCl、 lOOmM Tris-HCl (pH8. 0) 、 lOmM EDTA、 0. 25% Triton- Χ100) 20 μ 1で 3回洗い、その後、 MAGNOTEX- SAを 2つにわけ、一方を制限 酵素 Pvu II (Takara製) 37°C、 約 1時間処理し、 その上清を得て、 in vitro virus が精製できるかどうカゝ確認した。
精製効率を確認するために、 5M尿素変性 5%SDS_PAGEゲル、 20mAの条件でサン プルを泳動した。 スぺーサ一に導入してある蛍光(Fluoroscein)を使って、 Molecular Imager (Bio Rad製)で画像化した。 その結果を図 1 3に示す。
図 1 3において、 レーン 1は、 virion化し BioSpin Column- 6を用いて脱塩さ れた in vitro virusを泳動したものを示し、 レーン 2は、 MAGNOTEX- SAと結合さ せた後の上清を泳動したものを示し、 レーン 3〜5は、 上清を除いた後の MAGNOTEX- SA を洗浄したものを泳動し、 レーン 6は、 洗浄した後の MAGNOTEX- SA を泳動し、 レーン 7は、 洗浄した MAGNOTEX- SAを制限酵素で処理した後の上清を 泳動し、 レーン 8は、 MAGNOTEX- SAを制限酵素で処理した後の MAGNOTEX- SAを泳 動したものを示す。 洗浄した MAGNOTEX-SAを制限酵素で処理した後の上清に、 in vitro virusカ存在すること力 り、 T— splintスぺーサーを使って in vitro virus が精製できることが確認された。 ( 2 ) Poly A (T-splint3FA)
8pmol の in vitro virus genomeを上 ( 1 ) の方法で virionィ匕し、 buffer 交換をするために、 Micro BioSpin Column- 6 (Bio- Rad製)を用いて脱塩後、 lM NaCl、 lOOmM Tris-HCl (pH8. 0)、 lOmM EDTA、 0. 25% Triton- X100 になるように調整し、 Biotinylated Oligo (dT) Probe (Promega製)を結合させた MAGNOTEX- SA (Takara 製) 5 μ 1と 4° (:、 約 1時間結合させる。 その後、 上清をとり、 洗浄 buffer A (1M NaCl、 lOOmM Tris-HCl (pH8. 0)、 0. 25% Triton-XlOO) 20 で 3回洗い、 buffer B (500mM NaCl、 lOOmM Tris-HCl (pH8. 0)、 0. 25% Triton-XlOO) で 1回洗 い、 buffer C (250niM NaCl、 100 mM Tris-HCl (pH8. 0)、 0. 25% Triton-XlOO) 20 μ ΐで 1回洗い、 その後、 Dep水 10 μ 1で 3回溶出して in vitro virus virion が精製できるかどうカ確認した。
精製効率を確認するために、 5M尿素変性 5%SDS- PAGEゲル、 20mAの条件でサン プルを泳動した。 スぺーサ一に導入してある蛍光(Fluoroscein)を使って、 Molecular Imager (Bio Rad製)で画像化した。 その結果を図 1 4に示す。
図 1 4において、 レーン 1は、 virion化し BioSpin Column - 6を用いて脱塩さ れた in vitro virus genomeを泳動しにもの 示し、 レーン 2は、 Biotinylated Oligo (dT) Probeを結合させた MAGNOTEX - SAと結合しなかった上清を泳動したも のを示し、 レーン 3〜7は、 上清を除いた後の Biotinylated Oligo (dT) Probe を結合させた MAGNOTEX-SAを洗浄したものを泳動し、 レーン 8〜 1 0は、 洗浄し た Biotinylated Oligo (dT) Probeを結合させた MAGNOTEX- SAを溶出したものを泳 動し、 レーン 1 1は、 溶出した後の Biotinylated Oligo (dT) Probeを結合させた MAGN0TEX-SAを泳動したものを示す。 Biotinylated Oligo (dT) Probeを結合させ た MAGNOTEX- SAを溶出したもの in vitro virus virionが存在することから、 T— splint spacerを使って in vitro virus virionが精製できることが確認され た。 実施例 3 : Pool (ネガテイブコント口ール ZP0U) からの protein Aの B ドメイ ンの選択
( 1 ) 転写用 DNAの構築
転写効率の高い大腸菌ウィルス T7の RNA polymeraseによって認識される DNA 配列 (T7プロモーター配列) と翻訳の際に真核細胞のリボソームによって認識さ れる DNA配列 (Kozak配列) と原核細胞のリボソームによつて認識される (シャ イン ·ダルガノ酉己歹 IJ: Shine - Dalgarno) を有し、 その下流に Oct- 1の一部 (ネガ ティブコントロールノ P0U;配列番号 7 ) あるいは protein Aの B ドメイン (配列 番号 1 0 ) と FLAG配列、 T- Spacerと連結するための配列 (Y - tag) をコードした DNAを構築した。
GATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTTGAMT
AATTTTGTTTAACTTTAAGAAGGAGTTGCCACCATGGATAACAAATTCMCAAAGAACAA
CAAAATGCTTTCTATGAAATCTTACATTTACCTAACTTAAACGAAGAACAACGCAATGGT
TTCATCCAMGCCTAAAAGATGACCCAAGCCAAAGCGCTAACCTTTTAGCAGAAGCTAAA
AAGCTAAATGATGCTCAAGCACCAAAAGCTGACAACAAATTCAACGGGGGAGGCAGCGAT
TACAAGGATGACGATGACAAGGGCGGAAGCGGACGGGGGGCGGCGGGAAA
(配列番号 1 0 )
( 2 ) mR NAの作成
上記 ( 1 ) で構築された DNAを実施例 2に記載の方法に従つて転写し、 mR Aを 調製した。
( 3 ) mR NAと Tースぺーサ一とのライゲーシヨン
実施例 2— Aで作成した T - Spacer (Tsplint3FA)と上記( 2 )で作成した各 mRNA とを、 実施例 2—Cに記載の方法に従ってライゲーシヨンし、 in vitro virus genomeを調製した 0
( 4 ) in vitro virus virion形成
実施例 2—Dに記載の方法で、 上記 ( 3 ) で調製した in vitro virus genome を用いて virion形成をさせた。
Virion形成させる際に、 B ドメインと P0Uの in vitro virus genomeを、 1 : 1、 1:20、 1:200あるいは 1:200、 1:20000、 1:2000000、 1:200000000であわせて 8 pmol になるようにして翻訳させた。
( 5 ) in vitro virus virionの
実施例 2— E (2) に記載の方法に準じて virion精製を行った。
( 6 ) |g in vitro virus virionの: ^心
上記(5) で得られた in vitro virus精製画分を用いて、 実施例 1— Cの (6) に記載の方法に準じて逆転写を行つた。
(7) B ドメインの選択一 1
逆転写反応したもの (それぞれ 40ul) を、 final 50mMTris-HCl、 150raMNaCl、 0.25% Triton - X100、 50 g/ml BSA、 0.5 μ g/ml tRNAになるように調製した(total 50 μΐ) 。 これを、 10 μ gの抗 FLAG Μ2抗体 (sigma製) を結合させたプロテイン Gセファロースビーズ 10 μ 1 (アマシャム ·ファルマシァ)に 4°C、 1時間結合させ、 40μ 1の TBSで 3回洗い、 20μ 1の 0.1M Glycine- HC1 (pH2.7) で 3回溶出し、 そ れぞれ lM Tris (pH9.0)を Ιμΐ加えることによって、 中性にし、 in vitro virus virionを得た。
上記の溶出画分を集め、 その 1/1 0量 を選択前のサンプルとした。 残り の溶出画分を、 final 50mMTr is- HC1、 150mMNaCl 0.25% Triton- X100、 50 μ g/ml BSA、 0.5 g/ml tRNAになるように調製した (total 60.9 1) 。 これを、 IgGセ ファロースビーズ (Amersham pharmacia製) に、 4。Cで 1時間〜ー晚結合させ、 40 μ 1の TBSで 3回洗つた。 洗浄後のビーズを選択後のサンプルとした。
選択前、 後のサンプルを R aseA処理 (lOunit R ase A (QIAGEN製) , 37°C, 30 分)し、次いで proteinase K処理 (100 μ g/ml protease K(GIBC0製) , final lOOmM KC1 (pH8.0), 50mM EDTA, 500raM NaCl, 37°C, 30分) し、 エタノール沈澱後 PCR を行った。 DNA合成酵素は、 TaKaRa Ex Taq (TAKARA製)をもちいた。 プライマー は、 センス側: GTT TAA CTT TAA GAA GGA GTT GCC ACC ATG (配列番号 8) 、 アン チセンス側: TTT CCC GCC GCC CCC CGT CCG CTT CCG CCC TTG TCA TCG TCA TCC TTG TAA TC (配列番号 9) を用いた。 結果を確認するために、 6M尿素変性 4%ポリアクリルアミドゲル、 250Vの条件 でサンプノレを泳動し、 Vistra Green (Amersham pharmacia製)で染色し、 Molecular Imager (Bio Rad製)で画像ィ匕した。 その結果を図 1 5に示す。
パンドの定量は Molecular Imager (Bio Rad製)で画像化したものを、 解析ソフ トを用いて数値ィ匕した。 その結果を表 1及ぴ表 2に示す。 表中の値は、 P0Uの量 を 1としたときの B ドメインの比である。 なお、 1: 200以上の割合で P0Uが存在 している場合には、 PCRのバンドとして Bドメインのバンドは検出できなかった。
round
Figure imgf000092_0001
表 2
B ドメイン: P0U
1 : 200 1 : 2万 1 : 2百万 1 : 2億
選択前 選択後 選択前 選択後 選択刖 選択後 選択前 選択後 未検出 0. 58 未検出 0. 86 未検出 0. 40 未検出 0. 38
( 8 ) B ドメインの選択一 2
上記 (7 ) 1st roundで選択、 濃縮された B ドメインとネガティブコントロール (POU) DNAをもちいて、 in vitro virus用に再ライブラリー化し、 さらに、 B ド メインを次の通り選択した。
先ず、 1st roundで選択、濃縮された Bドメインとネガティブコント口ール(P0U)
DNAをァガロースゲルで分離し、 QIA quick gel extraction キット (QIAGEN製) で精製した。その DNAに 5' 非翻訳領域を連結させた。 DNA合成酵素は、 TaKaRa Ex Taq (TAKARA製)をもちいた。連結させた 5' 非翻訳領域の配列は次の通りである。 GCT CCG AGC TCA TTA ATA CGA CTC ACT
ATAGGGAGACCACMCGGTTTCCCTCTTGAAATAATTTTGTTTAACTTTAAGAAGGAGTTGCCACCATG
(配列番号 1 1 )
転写以降は、 1st roundと同様に行った。 その結果を図 1 6に示す。
( 9 ) 選択結果の評価
上記の通り、本実施例 3においては、 1st roundで IgGと反応しない POU in vitro virus genomeに、それぞれの割合いで結合する B ドメイン in vitro virus genome を混ぜて、 ビリオン化以降の反応を共に行った。 その際、 in vitro virus genome を、 計約 8pmolになるように調整して反応を行い、 それぞれの過程を踏んだ後、 IgGに結合させる前には in vitro virus virionとしては 0. 1 pmol程度になって いる。 これを、 1/10量とっておき選択前のサンプルとした。 残りの 9/10を IgG カラムに結合させ、 洗浄したあと残ったものを選択後のサンプルとした。 それぞ れについて PCR を行い、 泳動したものを図 1 5及ぴ 1 6に示した。
図 1 5は、選択前と選択後の P0Uと Bドメインのバンドの濃さを示しているが、 そのまま定量して B ドメインと P0Uが 1 : 20や 1 : 200になっているわけではない。 検出されているバンドの比にから逆算して、 初め 1 : 200で混ぜたものが、 選択後 には 1 : 20の選択前に近い比を示すので、 10倍濃縮されたというように考える。 今回の結果から考えると、 1 : 200で始めたものは 100倍濃縮されて 1 : 2程度に、 1 : 2万ではじめたものは 1万倍濃縮されて 1 : 2程度に、 1 : 200万ではじめたものは 10万倍濃縮されて 1: 20程度に、 1: 2億ではじめたものは 1000万倍濃縮されて 1: 20 程度になる。
この選択後のものから in vitro virus virionを作製し、 2nd roundを行った。 1st roundでそれぞれ 1: 2から 1: 20まで濃縮されているので、 1st roundの 1: 1力 ら 1 : 20でみられた濃縮パターンと同じような結果が得られた (図 1 6 ) 。
今回は、 ライブラリ一のサイズとして選択時に約 lxlO11の in vitro virusビリ オンを用いて行つたが、 目的に合わせてサイズは増減できる。 実施例 4 :
( 1 ) ピューロマイシン支持体 (ZF-Puromycin resin, ZF-Puromycin CPG) の合成 ピューロマイシン 2塩酸塩 (和光純薬工業) 250 mgを水 3 mlに溶かし、 ジメト キシェタン (DME) 2 ml, 10°/。炭酸ナトリウム水溶液 0. 5 mlを加えた。 撹拌しなが らこの溶液に Z- Phe - OSu (BACHEM社) 200 mg (1· 1当量) を DME 2 mlに溶かした 溶液を加え、 さらに 10%炭酸ナトリゥム水溶液 0. 5 mlを加えた。 1時間室温で撹 拌したのち析出した固体をグラスフィルタ一上で濾取し、 50%DME水溶液 2 mlで 2 回、 水 2 mlで 3回、 冷却した DME2 mlで 2回洗浄したのち真空ポンプで乾燥して Ν α - (Ν α—べンジルォキシカノレポユルフェニノレアラニノレ) -ピュー口マイシン (ZF-puromycin) (構造を以下に示す) を得た。
H,C.
Figure imgf000095_0001
Figure imgf000095_0002
収量 330 mg。
MS (MALDI-TOF-MS) 754.0 [M+H]+; HI腿 (500 MHz, d6- DMSO) 8.46 (IH, s), 8.23 (IH, s), 8.15 (IH, d), 8,03 (1H, d), 7.50 (IH, d), 7.28 (2H, dd), 7.24-7.17 (10H, m), 6.82 (2H, d), 6.04 (br, IH), 5.99 (d, IH), 4.93 (d, IH), 4.61 (dt, IH), 4. 9-4.44 (m, 2H), 4.22 (td, IH), 3.94 (br, 1H), 3.70 (s, 3H), 3.67 (s, 1H), 3.40 (br, 6H), 3.25 (dd, 2H), 2.93 (ddd, 2H), 2.80 (dd, IH), 2.66 (dd, IH)
ZF-puromycinの一部を 20%グリセロールを含む 25 mM リン酸緩衝液 (pH 8.0) 中でキモトリプシン (重量比で 1/5) と共に 37でで 1時間ィンキュベートした。 生成物を逆相 HPLC と MALDI- T0F- MS で分析し、 キモトリプシン処理により ZF-puromycinからピューロマイシンが得られていることを確認した。
(MS 472. 6 [M+H] +)
ZF-puromycin 315 mgをピリジン 2. 5 mlに溶かし、 塩化ジメトキシトリチル 149 mgを加えて室温で 1時間撹拌した。 氷浴で冷却してから水 0. 1 mlを加え、 10分撹 拌したのち水と酢酸ェチルで分液し、有機層を水で 3回洗ってから濃縮し、真空ポ ンプで乾燥して粗 5'—ジメトキシトリチル ZF- puromycin (DMTr-ZF-puromycin) (構 造を以下に示す) を 450 mg得た。
Figure imgf000096_0001
DMTr-ZF-puromycin 450 mgをピリジン 2 mlに溶かし、 無水コハク酸 61 ragN ジ メチルァミノピリジンの 0. 5 Mピリジン溶液 0 μ 1を加えて窒素雰囲気下室温で 3日間撹拌した。 氷浴で冷却してから水 0. 1 mlを加え、 10分撹拌したのち水と酢 酸ェチルで分液し、有機層を水で 3回、飽和食塩水で 1回洗ったのち濃縮した。酢 酸ェチルを展開溶媒としてシリカゲルクロマトグラフィで精製し、 目的物である DMTr-ZF-puromycin-3' -succinate (構造を以下に示す) を 385 mg得た。
Figure imgf000097_0001
DMTr-ZF-puromycin-3' -succinate 255 mgをジメチルホノレムァミド (DMF) 0. 4 ml に溶かし、 ジイソプロピルカルポジィミド (DIC) の 1· 0 M DMF溶液 0· 2 ml と N - ヒドロキシベンゾトリアゾール (HOBt) の 0. 5 M DMF溶液 0. 4 mlを加え、 16時間 室温で撹拌した。 この溶液に NovaSyn TG amino resin (novabiochem ; 0. 29 讓 ol/gram) 500 mgを加えて 2時間室温で撹拌し、さらに DICの 1. 0 M DMF溶液 0. 15 mlと HOBtの 0. 5 M DMF溶液 0. 3 mlを加えて 16時間室温で撹拌した。 レジンをグ ラスフィルター上に濾取し、 DMF、 50% DMF水溶液、 ァセトニトリルで洗ったのち ポンプで乾燥した。全量を DMF 2 mlに懸濁させ、 ピリジン 0. 5 ml、無水酢酸 125 mg を加えて 1時間室温で撹拌したのちレジンを濾取して DMF とァセトニトリルで洗 浄した。真空ポンプで乾燥し、 式(3 ) の構造を有する ZF- puromycin resin 550 mg を得た。 但し、 式 ( 3 ) において、 solid support は NovaSyn TG amino resin を示す。
Figure imgf000098_0001
一部を固相反応用の容器に入れ、 トリクロ口酢酸の 3%塩化メチレン溶液を加え て室温で 1分撹拌し、ァセトニトリルで洗浄したのち濃アンモニア水を加えて室温 で 2時間撹拌した。 回収された ZF- puromycinを定量し、 レジン 1グラム当たり 45 μ ηιοΐと算出した。
NovaSyn TG amino resinの代わりに CPG (CPG LCA00500A ; 0. 17 mmol/gram) を 用いて同様の反応を行ない、 DNA合成機用の式(3 ) の構造を有する ZF- puromycin CPG (28 μ mol/gram) を得た。 但し、 式 (3 ) において、 solid support は CPGを 示す。
( 2 ) ZF- puromycin CPGを用いたスぺーサ一の合成
ZF - puromycin CPG 28 mg (0. 8 μ mol 相当) を合成力ラム (グレンリサーチ 20-0030-00) に詰めて合成機にセットし、 以下のような配列の修飾 DNAの合成を 1 μ ηιοΐスケールで行なった。 配列の中の(At)は Amino modifier C6 dT、 (Ft)は Fluorescein dT、 (Spc)は Spacer 18 (以上すベてダレンリサーチ)、 (ZFP)は ZF- puromycinをそれぞれ示す。
5' -CGGAAACAGCTGCACCCCCCGCCGCCCCCCG (At)
(Ft) (Spc) (Spc) (Spc) (Spc) CC (ZFP) -3,
逆相 HPLCによる精製のあと 35 nmolの目的物が得られた。
このうち 5 nmol を 0. 1 M リン酸水素 2ナトリゥム水溶液 15 ^ 1 に溶かし、 Sulfo-KMUS (架橋剤;同仁化学) の 10 raM DMF溶液 5 μ 1を加えて 20分室温で撹拌 した。 逆相 HPLCで架橋剤と反応した DNAのフラクションを集め、 溶液状態のまま 5' - (thiol) - CGCT-3' (5'末端がチオール修飾されたテトラヌクレオチド) 20 nmol と混合して濃縮し、 さらに 0. 1 Mリン酸緩衝液 (pH 7. 1) 100 mlを加えて室温で 16 時間撹拌した。 架橋剤を介してテトラヌクレオチドが (At)部分に結合したと考 えられる生成物を逆相 HPLCで精製し、 50 raMリン酸緩衝液 (pH 8. 0) に溶かして キモトリプシン溶液を基質に対して酵素の重量比が 10%程度になるように加えて 36°Cで 1時間放置した。 逆相 HPLCで目的物であるスぺーサーを精製した。
上記で得られたスぺーサーを、原料の DNAを同様にキモトリプシンで消化したも のと共にポリアクリルアミドゲル(15%)で電気泳動し、スぺーサー(左のレーン) が遅く泳動されていることを確認した (図 1 7 )。 実施例 5 :変異体 Pou- specific domainに提示したランダム- 一からの糖鎖結合べプチドの取得
糖鎖の 1種である N—ァセチルダルコサミンにカルシウム存在下で結合するぺ プチド(12残基)が天然のレクチンタンパク質から得られている(Yamamoto, K. , et al. (1992) J. Biochem. Ill 436-439) 0 そこでこの中の 5残基をランダムな 配列にし、 これを変異体 Pou- spec ic domain (配列番号 21) の N末端側に融 合させてカルシウム存在下で糖鎖に結合するペプチドをスクリーニングできるか どうかを調べた。 本実施例の概念の模式図を図 19に示す。
まず、.ペプチドを提示する支持体である変異体 Pou- specific domain DNAを作 成するために次のような手順で行つた。
T7プロモーターと Kozac配列をもつ DNA"T7- Kozac" (配列番号 13; gctccgagct cattaatacg actcactata gggagaccac aacggtttcc ctcttgaaax aatttxgttt aactttaaga aggagttgcc accatg) とフンダム酉己歹 (J をもつ DNA "Lec— random" (目 li 列番号 1 4 : gctcaagctc ctcaaggtcg ccaccgcctc cggaagggtc zyxzyxzyxz yxzyxgaagg tgtcaaattc aacgtcagtc aggtgaataa ttttatcgct catggtggca tctccttctt 120) と支持体のコンスタントな配列を持つ DNA "Pou" (配列番号 1 5 : gaccttgagg agcttgagca gtttgccaag accttcaaac aaagacgaat caaacttgga ttcactcagg gtgatgttgg gctcgctatg gggaaactat atggaaatga cttcagccaa actaccatct ctcgatttga agccttgaac ctcagcttta agaacatggc taagttgaag ccacttttag agaagtggct aaatgatgca gaggggggag gcagctctag agctg) を有機合成 した。 なお、 配列番号 14において、 X, Υ, Zの各塩基の組成は以下の通りで ある。 これは 20種類のアミノ酸が均等に出現し、 かつ終止コドンが少ないよう に理論計算したものである。
X: A (35%), T (13%), G (32%), C (20%)
Y: A (30%), T (24%), G (24%), C (22%)
Z : A ( 0 %) , T (37%), G (26%), C (37%)
配歹 U番号 15の Pouは ttgagcttga gcgacgacct tgaggagctt gagca (配歹' J番"^ 1 6 )及ぴ gaggacgggg ggcggcgggg ggcagctcta gagctgcctc cccc 己歹 [J番 丄 /ノを プライマーとしてポリメレース連鎖反応 (PCR) を行い 2本鎖化した (図 2 0 )。
( 1 ) T 7 -Kozacと Lec - randomの連結
T 7 - Kozacと Lec- randomを連結させるために、プライマーを使わず各々 l pmol を以下の条件で伸長反応サイクルを行った。 Taq polymeraseは EX Taq. (Takara) を 2 units用い、 反応条件は、 9 5 °Cで 3 0秒、 6 4 °Cで 2 0秒、 7 2 °Cで 2 0 秒のサイクルを 2 5回くり返す。 連結産物 'Ύ 7- Lec- random〃は 8 M尿素変性ァク リルアミド電気泳動で解析した(図 2 1 )。 この結果、ほとんど全て連結されたこ とが確認できた。
( 2 ) T' 7-Lec-randomと Pouの連結
上記(1 )で連結した T,7-Lec- randomと Pouを連結するために、プライマーを 使わず各々 1 O pmolを以下の条件で伸長反応サイクルを行った。 Taq polymerase は KOD Dash. (T0Y0B0)を 1. 25units用い、 反応条件は、 9 5 °Cで 3 0秒、 5 4 °C で 2秒、 7 4 °C 3 0秒のサイ クルを 2 5 回く り返す。 連結産物 Ύ 7 - Lec - random-Pou 8 M尿素変性ァクリルァミド電気泳動で解析した (図 2 2 )。 この結果、 T' 7-Lec-random-Pou が連結されたことが確認でき、 また、 T' 7-Lec-randomと Pouの連結されない側の 1本鎖 DNAも確認された。
( 3 ) T' 7- Lec- random- Pouの転写
上記 (2 ) で連結した産物をフエノール処理し、 PrimerRemover (Edge System Science)を用いて精製した。分光計を用いて D N Aのモル濃度を測定し、 2 . 5 /z gを RiboMax T7転写キット (Promega) の反応組成に最終体積 5 0 μ 1になるよう に加え、 3 7 °Cで 1時間反応させた。 次にこの反応液に RQ1 Rnase— free DNase (Promega)を 2 . 5 units加え、 3 7 °Cで 1 5分反応した。 これをフエノール抽出 し、 PrimerRemoverで精製した。 これを 8 M尿素変性アクリルアミド電気泳動で 解析した。 結果を図 2 3に示す。 図 2 3の結果力 ら、 連結された D NAからの R N Aが主バンドとして転写されたことがわかった。
このように作成したランダムな 5残基を含むレクチン様ぺプチドの配列と支持 体タンノ ク質 Pou— specific domainをコードし 7こ mR NAfま in vitro virus用ス ぺーサ(DNA- PEG - Puromycin) と 5 0 °Cから 2 0 °Cになるまで 1 5分ほどかけて冷 やした後、 T4 RNA ligase (Takara)を加え 2 5 °Cで 2 0分反応させ連結した。 in vitro virus用スぺーサは,ピューロマイシンが固定されだレジン Puromycin CPG (GLEN RESEARCH: 20-4040-01) から 5, 側に向けて, スぺーサホスホアミダ イト 18 (GLEN RESEARCH: 10-1918-90)を 3ュニット合成し, Amino-Modif ier C6 - dT (GLEN RESEARCH: 10-1039-90) を続けて結合、 その後、 通常の DNA合成試薬を用 いて, D NA合成 (ccccccgccg ccccccgtcc tc;配歹 U番号 1 8 ) を行った.
これを R NA精製カラム (QIAGEN) で精製後、 小麦胚芽系の無細胞翻訳系を用 いて、 in vitro virus virion (mRNAとタンパク質が結合したもの)を作成、 カル シゥム存在下、 ノ ッファー A (Tris-HCl lOmM, NaCl 150 mM, CaCl2 25 mM, pH 6. 8) で N—ァセチルダルコサミンを固定したアビジンビーズ(EY Laboratories) と混 ぜ、 室温で 1時間インキュベーションした。 次にバッファー Aで 4回洗浄後、 力 ルシゥムを除いたバッファー B (Tris-HCl lOmM, NaCl 150 mM, EDTA 2. 5 mM, pH 6. 8) で溶出した。 バッファー Aで 4回洗浄すると溶出される in vitro virus virion はほとんどなくなるが、 カルシウムのないバッファー Bで洗浄すると in vitro virus virion力31再ぴ溶出 れること力 ら、 in vitro virus virionに提不 されていたぺプチドはカルシウムに依存してこの糖鎖に結合するぺプチドである ことがわかる (図 2 4 )。
溶出された in vitro virus virionの mR NAは逆転写プライマー (gtcctctaga gctgcc;配列番号 7 J を用いて、 TrueScript II ReverseTranscriptase (ケヮテ ィー) で以下の条件で逆転写した。反応は 2 0 // 1スケール。 9 0 °Cで 2分、 75°C から 25°C^ -— 0 . 0 5 5°C/秒で冷却、 2 5 °Cで 2分。 ここで、逆転写酵素、 Rnase Inhibitorを加え、 5 0 で 1時間反応を行った。
その後、 この反応液を Ι μ ΐ 取りプライマー (gatcccgcga aattaatacg actcactata ggg ; s己歹 lj番号 2 0 ) と ( gaggacgggg ggcggcgggg ggcagctcta gagctgcctc cccc;配列番号 1 7 ) を用レヽて Extaq Polymerase (Takara) で以下 の条件で P C Rした。 9 5 °Cで 3 0秒、 6 4 °Cで 2 0秒、 7 2でで 2 0秒のサイ クノレを 2 0回。
また、 取得された配列をシークェンスした結果、 最初のライプラリーに比べ水 素結合しゃす!/、側鎖を多く持つぺプチドが得られてきた(図 2 5 )。このことから、 この変異体 Pou - specif ic domainは機能べプチドを提示する支持体タンパク質と して有用であることがわかった。 産業上の利用の可能性
本発明により、 短時間に効率よく R N A— D N A結合体を製造する方法を提供 することが可能になった。 さらに本発明により、 タンパク質と R NAの複合体を 効率よく製造することが可能になった。 即ち、 本発明の方法により、 従来の方法 では製造の効率が悪かった in vitro virus genomeを短時間に 9 0 %以上の効率 で合成することが可能になり、 さらにこの R N A— D N A結合体を無細胞翻訳系 で翻訳することにより、 タンパク質と R NAの結合効率も 1 0倍以上向上させる ことが可能になった。 また、 R NAの逆転写のためのプライマー配列を D NAに 付加させることにより、 そのまま逆転写することが可能になり、 タンパク質と D NAの複合体とすることで安定化することも可能である。 本発明の方法は、 進化 分子工学における様々な新機能タンパク質の取得や, ボストゲノムにおけるタン パク質の相互作用解析に幅広く利用可能である。
また、本発明の T - Spacerは、 mRNAとライゲーションすることにより、 in vitro virus genomeを構築することができ、さらにこれを翻訳することで in vitro virus virionを容易に作製することができる。 また、 本発明の T- Spacerには、 mRNAの 逆転写のためのプライマーとして作用する DNA配列を有していることから、 上記 で得られた in vitro virus virionを逆転写反応に付することにより、 mRNAを DNA に転換することができる。また、本発明の T - Spacerは親和性物質を有することに より、mRNA側で in vitro virus virionの精製を行なうことができるだけでなく、 mRNA を支持体に固定ィ匕してプロテインチップ作成する際においても有用である。 さらに、本発明の T- Spacerを用いて製造された R NA—タンパク質複合体及ぴ D N A—タンパク質複合体は、 核酸の機能の解析などにおいて有用な材料となり得 るものである。
さらに本発明によれば、上記した特長を有する T - Spacerを用いて製造された核 酸一タンパク質複合体 (in vitro virus virion) を用いて、 所望の機能を (生物 活性) を有するタンパク質および/または核酸の効率的な選択、 相互作用の検出 や機能の解析などが可能となる。
さらに本発明によれば、ピューロマイシンの α—ァミノ基が酵素的に脱保護され るようにァミノ酸誘導体で保護した新規ピューロマイシン誘導体を提供すること が可能になった。
さらに本発明によれば、 比較的短いぺプチドは無細胞翻訳系で発現させること を可能とする支持体タンパク質を提供することが可能になった。
さらに本発明によれば、 ランダムな配列を含む D NAをその多様性を損なわず に支持体タンパク質等のコードされた定型配列 D NAに連結し、 続けて R NAに 転写できることがわかった。 これは in vitro virus法のような in vitroでタン パク質のスクリ一ユングをする場合、 極めて重要な方法である。

Claims

請求の範囲
1. (1) 互いに相補的な配列を有する一本鎖 RNAと一本鎖 DN A又はそ の誘導体とをアニーリングさせる工程;及ぴ
(2) アニーリング産物を RN Aリガーゼで処理して、 一本鎖 RN Aの 3, 末端 と一本鎖 DN A又はその誘導体の 5 ' 末端とを連結する工程:
を含む R N A _ D N A結合体の製造方法。
2. (1) 蛋白質をコードするコード配列を含み、 3, 末端側に 5, から 3, 方向にアニーリング配列とブランチ配列とを有する一本鎖 RNAと、 3,カゝら 5, 方向に上記ァニーリング配列と相補的な配列とブランチ配列とを有する一本鎖 D N A又はその誘導体とをアニーリングする工程;及ぴ
(2) アニーリング産物を RN Aリガーゼで処理して、 一本鎖 RN Aの 3, 末端 と一本鎖 DN A又はその誘導体の 5 ' 末端とを連結する工程:
を含む R N A— D N A結合体の製造方法。
3. 一本鎖 RNAが mRNA又は mRNAライブラリーである、 請求項 1又 は 2に記載の方法。
4. 一本鎖 RNAが、 (1) プロモーター配列、 (2) 翻訳の際にリボソーム によって認識される塩基配列、 及ぴ (3) 目的タンパク質をコードする配列を有 することを特徴とする、 請求項 1力 ら 3の何れかに記載の方法。
5. 目的タンパク質が、 目的ペプチド又は目的タンパク質と、 30から 20 0ァミノ酸残基からなる球状タンパク質から成ることを特徴とする目的ぺプチド 又は目的タンパク質を融合タンパク質として発現及び提示するための支持体タン パク質とから成る融合タンパク質である、請求項 1から 4の何れかに記載の方法。
6. 一本鎖 DNA又はその誘導体として、 3' 末端に核酸誘導体が結合して いる一本鎖 DNAの誘導体を使用する、 請求項 1から 5の何れかに記載の方法。
7. 一本鎖 DN A又はその誘導体として、 3, 末端に核酸誘導体がスぺーサ 一を介して結合している一本鎖 DNAの誘導体を使用する、 請求項 1から 6の何 れかに記載の方法。
8. 一本鎖 DN A又はその誘導体として、 3, 末端に、 一本鎖 RNAの逆転 写の際にプライマーとして作用する配列を有する一本鎖 D N Aの誘導体を使用す る、 請求項 1カゝら 6の何れかに記載の方法。
9. 一本鎖 DNA又はその誘導体として、 3' 末端に、 該一本鎖 RNAの逆 転写のためのプライマー配列を有し、 かつ核酸誘導体を末端に有するスぺーサー が枝分かれした状態で結合している一本鎖 D N Aの誘導体を使用する、 請求項 1 から 5の何れかに記載の方法。
10. 核酸誘導体が、 ピューロマイシン、 3, -N -アミノアシルピュー口マイ シンァミノヌクレオシド、 3' - N-ァミノアシルアデノシンァミノヌクレオシドの 化学構造骨格を含む化合物又はそれらの類縁体である、 請求項 5から 9の何れか に記載の方法。
1 1. スぺーサ一がポリエチレン又はポリエチレングリコールなどの高分子 である、 請求項 7から 10の何れかに記載の方法。
12. RNAリガーゼが T4RNAリガーゼである、 請求項 1から 11の何 れかに記載の方法。
13. 請求項 1から 12の何れかに記載の方法により得られる RNA— DN A結合体。
14. 請求項 1から 12の何れかに記載の方法により得られる RNA— DN A結合体を逆転写反応に付して DN A結合体を製造する方法。
15. 請求項 1から 12の何れかに記載の方法により得られる RNA— DN A結合体をタンパク質翻訳系に導入して RNAをタンパク質に翻訳することを特 徴とする、 RNAと該 RNAによりコードされるタンパク質から成る RNA—タ ンパク質複合体の製造方法。
16. 請求項 15に記載の製造方法により製造される RNA—タンパク質複 合体。
17. 請求項 16に記載の RNA—タンパク質複合体を逆転写反応に付する ことを特徴とする、 DNAと該 DNAによりコードされるタンパク質から成る核 酸—タンパク質複合体の製造方法。
18. 請求項 17に記載の製造方法により製造される核酸一タンパク質複合 体。
19. 一本鎖 RNAの 3, 末端側の配列とアニーリングすることができる一 本鎖 DNA配列を 3, 末端側に含み、 該一本鎖 DNA配列が、 その 3, 末端に、 該一本鎖 R N Aの逆転写のためのプライマ一配列を有し、 かつ核酸誘導体を末端 に有するスぺーサ一が枝分かれした状態で結合しており、 該一本鎖 DN A配列の 5' 末端側に親和性物質が結合している、 一本鎖 RNAとそれがコードするタン パク質との複合体を作製するための核酸構築物。
20. 該一本鎖 DN A配列の 5' 末端側に制限酵素認識部位が存在する、 請 求項 19に記載の核酸構築物。
21. —本鎖 RNAの 3' 末端側の配列とアニーリングすることができる一 本鎖 DN A配列を 3, 末端側に含む、 一本鎖 RN Aとそれがコードするタンパク 質との複合体を作製するための核酸構築物において、
(1) 該一本鎖 DN A配列が、 その 3, 末端に、 該一本鎖 RN Aの逆転写のため のプライマー配列を有し、 かつ核酸誘導体を末端に有するスぺーサ一が枝分かれ した状態で結合しており、
( 2 )該核酸構築物において該一本鎖 RN Aと了ニーリングしない 5 '末端側は、 ループ領域を介して互いに相補的な二本鎖配列を形成しており、
( 3 ) 該ループ領域に親和性物質が結合している、
ことを特徴とする上記の核酸構築物。
22. 一本鎖 RNAの 3, 末端側の配列とァニーリングすることができる一 本鎖 DNA配列を 3, 末端側に含む、 一本鎖 RNAとそれがコードするタンパク 質との複合体を作製するための核酸構築物において、
(1) 該一本鎖 DNA配列が、 その 3, 末端に、 該一本鎖 RN Aの逆転写のため のプライマー配列を有し、 かつ核酸誘導体を末端に有するスぺーサ一が枝分かれ した状態で結合しており、
( 2 )該核酸構築物において該一本鎖 RN Aとァニーリングしない 5,末端側は、 相補 DNA鎖と化学的に結合して互いに相補的な二本鎖配列を形成しており、
(3) 該相捕 DNA鎖の 3' 末端に親和性物質が結合している、
ことを特徴とする上記の核酸構築物。
23. 該ニ本鎖配列中に制限酵素認識部位が存在する、 請求項 21又は 22 に記載の核酸構築物。
24. 核酸誘導体が、 ピューロマイシン、 3, - N -アミノアシルピュー口マイ シンアミノヌクレオシド、 3, -N -ァミノァシルアデノシンァミノヌクレオシドの 化学構造骨格を含む化合物又はそれらの類縁体である、 請求項 19から 23の何 れかに記載の核酸構築物。
25. スぺーサ一がポリエチレン又はポリエチレンダリコールなどの高分子 である、 請求項 19から 24の何れかに記載の核酸構築物。
26. 親和性物質がピオチン又はポリ A配列である、 請求項 19から 25の 何れかに記載の核酸構築物。
27. 請求項 19から 26の何れかに記載の核酸構築物と一本鎖 R N Aとを ァニーリングさせ、 該核酸構築物の二本鎖領域の 5, 末端と一本鎖 RNAの 3, 末端とをライゲーシヨンさせることを含む、 RNA— DNA結合体の作製方法。
28. ライゲーシヨンを T 4 RN Aリガーゼを用いて行なう、 請求項 27に 記載の方法。
29. —本鎖 RNAが mRNA又は mRNAライブラリーである、 請求項 2 7又は 28に記載の方法。
30. —本鎖 RNAが、 (1) プロモーター配列、 (2) 翻訳の際にリポソ一 ムによって認識される塩基配列、 及び (3) 目的タンパク質をコードする配列を 有することを特徴とする、 請求項 27から 29の何れかに記載の方法。
31. 目的タンパク質が、 目的ペプチド又は目的タンパク質と、 30から 2 00アミノ酸残基からなる球状タンパク質から成ることを特徴とする目的べプチ ド又は目的タンパク質を融合タンパク質として発現及び提示するための支持体タ ンパク質とから成る融合タンパク質である、 請求項 27から 30の何れかに記載 の方法。
32. 請求項 27から 31の何れかに記載の方法により得られる RNA— D NA結合体。
33. 請求項 32に記載の RNA— DNA結合体を支持体上に固定化したチ ップ。
34. 請求項 27から 31の何れかに記載の方法により得られる RNA— D N A結合体を逆転写反応に付して D N A結合体を製造する方法。
35. 請求項 27から 31の何れかに記載の方法により得られる RNA— D N A結合体を逆転写反応に付することにより得られる DN A結合体。
36. 請求項 35に記載の DN A結合体を支持体上に固定ィ匕したチップ。
37. 請求項 32に記載の RN A— DN A結合体をタンパク質翻訳系に導入 して RNAをタンパク質に翻訳することを特徴とする、 RNAと該 RNAにより コードされるタンパク質から成る RNA—タンパク質複合体の製造方法。
38. 翻訳を無細胞翻訳系で行なう、 請求項 37に記載の作製方法。
39. 請求項 32に記載の RN A— DN A結合体をタンパク質翻訳系に導入 して RNAをタンパク質に翻訳することにより得られる、 RNAと該 RNAによ りコードされるタンパク質から成る RNA—タンパク質複合体。
40. 請求項 39に記載の RNA—タンパク質複合体を支持体上に固定化し たチップ。
41. 請求項 39に記載の RNA—タンパク質複合体を逆転写反応に付する ことを特徴とする、 核酸と該核酸によりコードされるタンパク質から成る核酸一 タンパク質複合体の製造方法。
42. 請求項 39に記載の RN A—タンパク質複合体を逆転写反応に付する ことにより得られる核酸一タンパク質複合体。
43. 請求項 42に記載の核酸一タンパク質複合体を支持体上に固定ィヒした チップ。
44. (1) 請求項 13または 32に記載の RNA— DNA結合体を調製す る調製工程、 ( 2 )調製工程で得られた RNA— DN A結合体をタンパク質翻訳系 に導入して RNAをタンパク質に翻訳させて RNAと該 RNAによりコードされ るタンパク質から成る RNA—タンパク質複合体を構築する構築工程、 ( 3 )構築 工程で得られた R N A—タンパク質複合体を被験物質との相互作用に基づいて選 抜する選抜工程、および、 (5)選抜工程で選択された RN A—タンパク質複合体 の核酸部分を増幅する増幅工程とを含むことを特徴とする核酸および Zまたはタ ンパク質の選択方法。
45. 増幅工程で得られた核酸を、 一本鎖 RNAとして RNA— DNA結合 体を調製する調製工程に供し、 (1) 調製工程、 (2) 構築工程、 (3) 選抜ェ 程、 および、 (5) 増幅工程を繰り返し行うことを特徴とする請求項 44に記載 の方法。
46. (1) (a) —本鎖 RN Aの 3, 末端側の配列とアニーリングするこ とができる一本鎖 DN A配列を 3' 末端側に含む核酸構築物を調製し、 (b) 該 核酸構築物と一本鎖 RN Aとをアニーリングさせ、 (c) 該アニーリング産物の 一本鎖 RNAの 3, 末端と核酸構築物の 5, 末端とを連結させて RNA— DNA 結合体を調製する調製工程、 (2) 調製工程で得られた RNA— DNA結合体を タンパク質翻訳系に導入して RN Aをタンパク質に翻訳させて RN Aと該 RN A によりコードされるタンパク質から成る RNA—タンパク質複合体を構築する構 築工程、 (3) 構築工程で得られた RNA—タンパク質複合体を被験物質との相 互作用に基づいて選抜する選抜工程、 (4) 選抜工程で選択された RN A—タン パク質複合体の核酸部分に変異を導入する変異導入工程、 および、 (5) 変異導 入工程で得られた核酸部分を増幅する増幅工程とを含むことを特徴とする核酸お よび Zまたはタンパク質の選択方法。
47. 増幅工程で得られた核酸を、 一本鎖 RNAとして RNA— DNA結合 体を調製する調製工程に供し、 (1) 調製工程、 (2) 構築工程、 (3) 選抜ェ 程、 (4) 変異導入工程、 および、 (5) 増幅工程を繰り返し行うことを特徴と する、 請求項 46に記載の方法。
48. (1) (a) —本鎖 RNAの 3, 末端側の配列とアニーリングするこ とができる一本鎖 DNA配列を 3, 末端側に含む核酸構築物を調製し、 (b) 該 核酸構築物と一本鎖 RN Aとをアニーリングさせ、 (c) 該アニーリング産物の 一本鎖 RNAの 3, 末端と核酸構築物の 5, 末端とを連結させて RNA— DNA 結合体を調製する調製工程、 (2) 該 RNA— DNA結合体をタンパク質翻訳系 に導入して RNAをタンパク質に翻訳させて RNAと該 RNAによりコードされ るタンパク質から成る核酸一タンパク質複合体を構築する構築工程、 およぴ、
( 6 ) 構築工程で得られた核酸一タンパク質複合体と被験物質との相互作用を調 ベる検定工程とを含むことを特徴とするタンパク質と被験物質との相互作用の検 出方法。
49. 下記式 (1) で表されるピューロマイシン誘導体又はその塩。
Figure imgf000111_0001
(式中、 R1は水素原子、 又は水酸基の保護基を示し;
R 2は水素原子又は反応性基を示し;
Xはアミノ酸残基あるいはペプチドを示し、 Xにおいて、そのカルボキシル基が ピュー口マイシン中のァミノ基とアミド結合により結合しており、該ァミノ酸残基 あるいはぺプチドの ァミノ基おょぴ側鎖の官能基は所望により保護されていて もよい。)
5 0 . アミノ酸残基あるいはペプチドが芳香族アミノ酸残基である、請求項 4 9に記載のピューロマイシン誘導体叉はその塩。
5 1 . 該芳香族ァミノ酸残基がフヱニルァラ二ン残基である、 請求項 4 9又 は 5 0に記載のピューロマイシン誘導体又はその塩。
5 2 . Xが、 Ν α—(N o;—べンジルォキシカルボユルフェニルァラニル基で ある、 請求項 4 9から 5 1の何れかに記載のピューロマイシン誘導体又はその塩。
5 3 . R 2が示す反応性基力 S、末端にカルボキシル基を有する反応性基である、 請求項 4 9から 5 2の何れかに記載のピューロマイシン誘導体又はその塩。
5 4 . R 2が示す反応性基がスクシ二/レ基である、 請求項 4 9力ら 5 3の何れ かに記載のピュー口マイシン誘導体又はその塩。
5 5 . 請求項 4 9から 5 4の何れかに記載のピューロマイシン誘導体を支持体 に結合してなる、 ピューロマイシン誘導体固定化支持体。
5 6 . R 2が示す反応性基と、 支持体中の反応性基とを反応させることにより 得られる、 請求項 5 5に記載のピュー口マイシン誘導体固定化支持体。
5 7 . 支持体が、 C P G (Controlled Pore Glass)である、 請求項 5 5又は 5 6に記載のピュー口マイシン誘導体固定化支持体。
5 8 . 請求項 4 9から 5 4の何れかに記載のピューロマイシン誘導体をぺプチ ダーゼあるいはプロテアーゼで処理することにより、 下記式(2 ) で表される化合 物を製造することを含む、 ピュー口マイシン誘導体の脱保護方法。
Figure imgf000113_0001
(式中、 R1は水素原子、又は水酸基の保護基を示し; R 2は水素原子又は反応性基 を示す。)
5 9 . ぺプチダーゼあるいはプロテアーゼがキモトリプシンである、請求項 5 8に記載のピュー口マイシン誘導体の脱保護方法。
6 0 . 請求項 4 9から 5 4の何れかに記載のピュー口マイシン誘導体又は請求 項 5 5から 5 7の何れかに記載のピューロマイシン誘導体固定化支持体を用いた 核酸化合物の製造方法。
6 1 . 請求項 4 9から 5 4の何れかに記載のピューロマイシン誘導体を有する 核酸化合物。
6 2 . 請求項 6 1に記載の核酸ィヒ合物をぺプチダーゼあるいはプロテアーゼで 処理することによりピューロマイシン誘導体の脱保護を行う、 脱保護方法。
6 3 . ぺプチダーゼあるいはプロテァーゼがキモトリプシンである、請求項 6 2に記載の脱保護方法。
6 4 . 3 0から 2 0 0アミノ酸残基からなる球状タンパク質から成ることを 特徴とする、 目的ぺプチド又は目的タンパク質を融合タンパク質として発現及ぴ 提示するための支持体タンパク質。
6 5 . システィン残基を含まなレ、、 請求項 6 4に記載の支持体タンパク質。
6 6 . タンパク質の二次構造として /3シート構造を有さず、 αヘリックス構 造からなる、 請求項 6 4又は 6 5に記載の支持体タンパク質。
6 7 . タンパク質の立体構造において、 N末端と C末端が離れている、 請求 項 6 4から 6 6の何れかに記載の支持体タンパク質。
6 8 . 他の生体高分子と相互作用しない、 請求項 6 4から 6 7の何れかに記 載の支持体タンパク質。
6 9 . 下記の何れかのアミノ酸配列を有する、 目的ペプチド又は目的タンパ ク質を融合タンパク質として提示するための支持体タンパク質。
( 1 ) 配列番号 2 1に記載のァミノ酸配列;又は
( 2 )配列番号 2 1に記載のアミノ酸配列において 1から数個のアミノ酸が欠失、 置換、 付加および/または挿入しているアミノ酸配列であって、 球状タンパク質 を構成するアミノ酸配列:
7 0 . 目的ペプチド又は目的タンパク質をコードする塩基配列および請求項 6 4から 6 9の何れかに記載の支持体タンパク質をコードする塩基配列が直接ま たはリンカ一を介して連結してなる、 目的ペプチド又は目的タンパク質と支持体 タンパク質とから成る融合タンパク質をコードする核酸またはその修飾体。
7 1 . 目的ペプチド又は目的タンパク質と請求項 6 4から 6 9の何れかに記 載の支持体タンパク質とから成る融合タンパク質。
7 2 . 請求項 7 0に記載の核酸またはその修飾体を、 無細胞翻訳系または生 細胞において発現させる工程を含む、 請求項 7 1に記載の融合タンパク質を製造 する方法。
7 3 . 目的べプチド又は目的タンパク質をコードする塩基配列および請求項 6 4から 6 9の何れかに記載の支持体タンパク質をコードする塩基配列が直接ま たはリンカ一を介して連結してなる目的ぺプチド又は目的タンパク質と支持体タ ンパク質とから成る融合タンパク質をコードする mR NAであって、 その 3, 末 端に核酸誘導体が結合している mR NAを、 無細胞翻訳系または生細胞において 発現させる工程を含む、 融合タンパク質とそれをコードする核酸とから成る複合 体を製造する方法。
74. 核酸誘導体が、 ピューロマイシン、 3, - N -アミノアシルピュー口マイ シンアミノヌクレオシド、 3, - N -ァミノアシルアデノシンアミノヌクレオシドの 化学構造骨格を含む化合物又はそれらの類縁体である、請求項 73に記載の方法。
75. 融合タンパク質をコードする mRNAとして、 3 ' 末端に核酸誘導体 がスぺーサーを介して結合している mRNAを使用する、 請求項 73又は 74に 記載の方法。
76. スぺーサ一がポリエチレン又はポリエチレングリコールなどの高分子 である、 請求項 74又は 75に記載の方法。
77. ( 1 ) 無細胞翻訳系または生細胞において、 目的ぺプチド又は目的タ ンパク質を含むライブラリーを、 請求項 72から 76の何れかの方法により、 請 求項 64から 69の何れかに記載の支持体タンパク質との融合タンパク質の形態 で発現させる工程;及び、
(2) 工程 (1) で得られた融合タンパク質をスクリーニングすることにより所 望の機能を有する目的べプチド又は目的タンパク質を選択する工程:
を含む、 機能性ぺプチド又はタンパク質のスクリ一二ング方法。
78. 互いに相補的な共通配列を有する異なる 2種類以上の 1本鎖または 2 本鎖 DNAをプライマーの非存在下において DNA合成酵素を用いて反応させる 工程、 上記工程で得た混合物を用いて RNAポリメラーゼの存在下で転写反応を 行い R N Aを合成する工程、 および D N A分解酵素で D N Aを分解する工程を含 む、 請求項 1から 12、 14、 15、 17、 27から 30、 31、 34、 37、 38、 41、 44から 48の何れかに記載の方法に用いるための一本鎖 RNAの 製造方法。
79. DN A合成酵素を用いた反応が、 T a qポリメラーゼを用いるポリメ ラーゼ連鎖反応(P C R)である、請求項 78に記載の一本鎖 RN Aの製造方法。
80. 異なる 2種類以上の 1本鎖または 2本鎖 DN Aのうちの片方の DN A が目的配列を含む DNAである、 請求項 78または 79に記載の一本鎖 RNAの 製造方法。
81. 異なる 2種類以上の 1本鎖または 2本鎖 DNAのうちの片方の DNA が目的配列を含む DN Aであり、 他方の DN Aが支持体タンパク質をコードする DNAである、 請求項 78から 80の何れかに記載の一本鎖 RN Aの製造方法。
82. 支持体タンパク質が、 30から 200アミノ酸残基からなる球状タン パク質から成るタンパク質である、 請求項 81に記載の核酸の一本鎖 RN Aの製 造方法。
83. 請求項 78から 82の何れかに記載の方法により得られる RNA。
84. (1) 互いに相補的な共通配列を有する異なる 2種類以上の 1本鎖ま たは 2本鎖 DN Aをプライマーの非存在下において DN A合成酵素を用いて反応 させることにより、 連結した D N Aと連結しない D N Aを含む混合物を調製する 工程;
(2) 工程 (1) で得た混合物を用いて RN Aポリメラーゼの存在下で転写反応 を行い RN Aを合成する工程;及ぴ
(3) 工程 (2) で得た RNAを、 無細胞翻訳系または生細胞において発現させ る工程を含む、 タンパク質の製造方法。
85. (1) 互いに相補的な共通配列を有する異なる 2種類以上の 1本鎖ま たは 2本鎖 DN Aをプライマーの非存在下において DN A合成酵素を用いて反応 させることにより、 連結した DNAと連結しない DNAを含む混合物を調製する 工程;
. (2) 工程 (1) で得た混合物を用いて RN Aポリメラーゼの存在下で転写反応 を行い RN Aを合成する工程;
(3) 工程 (2) で得た RN Aの 3, 末端を核酸誘導体で修飾する工程;及び
(4) 工程 (3) で得た 3' 末端を核酸誘導体で修飾した RNAを、 無細胞翻訳 系または生細胞において発現させる工程を含む、 タンパク質とそれをコードする 核酸との複合体の製造方法。
86. 核酸誘導体が、 ピューロマイシン、 3, -N -アミノアシルピュー口マイ シンアミノヌクレオシド、 3, -N-Tミノアシルアデノシンァミノヌクレオシドの 化学構造骨格を含む化合物又はそれらの類縁体である、請求項 85に記載の方法。
87. mRNAとして、 3, 末端に核酸誘導体がスぺーサーを介して結合し ている mRNAを使用する、 請求項 85又は 86に記載の方法。
88. スぺーサ一がポリエチレン又はポリエチレングリコールなどの高分子 である、 請求項 87に記載の方法。
PCT/JP2003/000544 2002-01-22 2003-01-22 Produit de ligation arn-adn, et utilisation correspondante WO2003062417A1 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002-12820 2002-01-22
JP2002012820A JP2002291491A (ja) 2001-01-23 2002-01-22 Rna−dna結合体
JP2002031779 2002-02-08
JP2002-31779 2002-02-08
JP2002-44955 2002-02-21
JP2002044955 2002-02-21
JP2002211405 2002-07-19
JP2002-211405 2002-07-19

Publications (1)

Publication Number Publication Date
WO2003062417A1 true WO2003062417A1 (fr) 2003-07-31

Family

ID=27617718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000544 WO2003062417A1 (fr) 2002-01-22 2003-01-22 Produit de ligation arn-adn, et utilisation correspondante

Country Status (1)

Country Link
WO (1) WO2003062417A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932992B2 (en) 2001-06-20 2015-01-13 Nuevolution A/S Templated molecules and methods for using such molecules
US9096951B2 (en) 2003-02-21 2015-08-04 Nuevolution A/S Method for producing second-generation library
US9109248B2 (en) 2002-10-30 2015-08-18 Nuevolution A/S Method for the synthesis of a bifunctional complex
US9121110B2 (en) 2002-12-19 2015-09-01 Nuevolution A/S Quasirandom structure and function guided synthesis methods
US9574189B2 (en) 2005-12-01 2017-02-21 Nuevolution A/S Enzymatic encoding methods for efficient synthesis of large libraries
US10731151B2 (en) 2002-03-15 2020-08-04 Nuevolution A/S Method for synthesising templated molecules
US10730906B2 (en) 2002-08-01 2020-08-04 Nuevolutions A/S Multi-step synthesis of templated molecules
US11118215B2 (en) 2003-09-18 2021-09-14 Nuevolution A/S Method for obtaining structural information concerning an encoded molecule and method for selecting compounds
US11225655B2 (en) 2010-04-16 2022-01-18 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171392A (ja) * 1997-09-01 1999-03-16 Tokyo Ika Shika Univ ピューロマイシンを3′−リン酸末端にもつ核酸化合物及びその合成方法
WO2000000632A1 (en) * 1998-06-29 2000-01-06 Phylos, Inc. Methods for generating highly diverse libraries
JP2002265492A (ja) * 2001-03-08 2002-09-18 Gencom Co ピューロマイシン誘導体及びその利用
JP2002291491A (ja) * 2001-01-23 2002-10-08 Gencom Co Rna−dna結合体
JP2003070482A (ja) * 2001-09-06 2003-03-11 Mitsubishi Chemicals Corp ペプチド又はタンパク質を提示するための支持体タンパク質

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171392A (ja) * 1997-09-01 1999-03-16 Tokyo Ika Shika Univ ピューロマイシンを3′−リン酸末端にもつ核酸化合物及びその合成方法
WO2000000632A1 (en) * 1998-06-29 2000-01-06 Phylos, Inc. Methods for generating highly diverse libraries
JP2002291491A (ja) * 2001-01-23 2002-10-08 Gencom Co Rna−dna結合体
JP2002265492A (ja) * 2001-03-08 2002-09-18 Gencom Co ピューロマイシン誘導体及びその利用
JP2003070482A (ja) * 2001-09-06 2003-03-11 Mitsubishi Chemicals Corp ペプチド又はタンパク質を提示するための支持体タンパク質

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ASSA-MUNT N. ET AL.: "The solution structure of the Oct-1 POU-specific domain reveals a striking siilarity to the bacteriophage lambda repressor DNA-binding domain", CELL, vol. 73, 1993, pages 193 - 205, XP002967092 *
HEEJOO LEE ET AL.: "Puromycin analogues. Effect of aryl-substituted puromycin analogues on the ribosomal peptidyltransferase reaction", J. MED. CHEM., vol. 24, no. 3, 1981, pages 304 - 308, XP002967090 *
KLEMM J.D. ET AL.: "Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules", CELL, vol. 77, 1994, pages 21 - 32, XP002967091 *
NEMOTO ET AL.: "In vitro virus: Bonding of mRNA bearing puromycin at the 3'-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro", FEBS LETTERS, vol. 414, 1997, pages 405 - 408, XP004366358 *
NISHIGAKI ET AL.: "Y-ligation: an efficient method for ligating single-stranded DNAs and RNAs with T4 RNA ligase", MOLECULAR DIVERSITY, vol. 4, no. 3, 1998, pages 187 - 190, XP002907772 *
ROBERTS R.W. ET AL.: "RNA-peptide fusions for the in vitro selection of peptides and proteins", PROC. NATL. ACAD. SCI. USA, vol. 94, 1997, pages 12297 - 12302, XP002944663 *
ROBINS MORRIS J. ET AL.: "Syntheses of puromycin from adenosine and 7-deazapuromycin fro tubercidin and biological comparisons of the 7-Aza/Deaza pair", J. ORG. CHEM., vol. 66, no. 24, 2001, pages 8204 - 8210, XP002967088 *
VINCE ROBERT ET AL.: "Carbocyclic puromycin: synthesis and inhibition of protein biosynthesis", J. MED. CHEM., vol. 29, no. 11, 1986, pages 2400 - 2403, XP002967089 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932992B2 (en) 2001-06-20 2015-01-13 Nuevolution A/S Templated molecules and methods for using such molecules
US10669538B2 (en) 2001-06-20 2020-06-02 Nuevolution A/S Templated molecules and methods for using such molecules
US10731151B2 (en) 2002-03-15 2020-08-04 Nuevolution A/S Method for synthesising templated molecules
US10730906B2 (en) 2002-08-01 2020-08-04 Nuevolutions A/S Multi-step synthesis of templated molecules
US10077440B2 (en) 2002-10-30 2018-09-18 Nuevolution A/S Method for the synthesis of a bifunctional complex
US9284600B2 (en) 2002-10-30 2016-03-15 Neuvolution A/S Method for the synthesis of a bifunctional complex
US9109248B2 (en) 2002-10-30 2015-08-18 Nuevolution A/S Method for the synthesis of a bifunctional complex
US11001835B2 (en) 2002-10-30 2021-05-11 Nuevolution A/S Method for the synthesis of a bifunctional complex
US9121110B2 (en) 2002-12-19 2015-09-01 Nuevolution A/S Quasirandom structure and function guided synthesis methods
US9096951B2 (en) 2003-02-21 2015-08-04 Nuevolution A/S Method for producing second-generation library
US11118215B2 (en) 2003-09-18 2021-09-14 Nuevolution A/S Method for obtaining structural information concerning an encoded molecule and method for selecting compounds
US11965209B2 (en) 2003-09-18 2024-04-23 Nuevolution A/S Method for obtaining structural information concerning an encoded molecule and method for selecting compounds
US9574189B2 (en) 2005-12-01 2017-02-21 Nuevolution A/S Enzymatic encoding methods for efficient synthesis of large libraries
US11702652B2 (en) 2005-12-01 2023-07-18 Nuevolution A/S Enzymatic encoding methods for efficient synthesis of large libraries
US11225655B2 (en) 2010-04-16 2022-01-18 Nuevolution A/S Bi-functional complexes and methods for making and using such complexes

Similar Documents

Publication Publication Date Title
CA2382545C (en) Methods for encoding and sorting in vitro translated proteins
AU773236B2 (en) Selection of proteins using RNA-protein fusions
AU775997B2 (en) DNA-protein fusions and uses thereof
ES2373110T3 (es) Selección de proteínas usando fusiones de arn-proteína.
EP1477561B1 (en) Molecule assigning genotype to phenotype and use thereof
CN110637086B (zh) Rna分子与肽的复合体的制造方法及其利用
JP2003508761A5 (ja)
KR20020033743A (ko) 펩티드 수용체 리게이션 방법
JP6057185B2 (ja) 核酸リンカー
EP2952582A1 (en) Flexible display method
WO2003062417A1 (fr) Produit de ligation arn-adn, et utilisation correspondante
JP2008253176A (ja) 高親和性分子取得のためのリンカー
JP2011087573A (ja) cDNA/mRNA−タンパク質連結体の効率的合成法
JP2004097213A (ja) 核酸および/またはタンパク質の選択方法
WO2013065782A1 (ja) タンパク質固定化固相、及びポリヌクレオチド固定化固相、並びに、核酸回収方法
JP3706942B2 (ja) 物質と蛋白質との間の相互作用の検出方法、物質と相互作用する蛋白質のスクリーニング方法、及び、物質とその物質と相互作用する蛋白質との複合体の形成方法
JPWO2005024018A1 (ja) 核酸構築物およびその製造方法
JP3683902B2 (ja) 遺伝子型と表現型の対応付け分子及びその利用
JP2002291491A (ja) Rna−dna結合体
JP2016098198A (ja) Dnaライブラリの製造方法、dnaライブラリ、スクリーニング方法及びスクリーニングキット
WO2021182587A1 (ja) 光架橋塩基を活用した、新規ペプチドアプタマー探索用標的モジュール、新規ペプチドアプタマー探索用リンカー及びそれらを用いる新規ペプチドアプタマーの探索方法
JP2003299489A (ja) 核酸構築物
JP4747292B2 (ja) 翻訳テンプレートおよびそのライブラリー、それらから合成される蛋白質および蛋白質のライブラリー、ならびにそれらを構成する要素、ならびにそれらの製造法および利用方法
JP2013039060A (ja) 酵素様活性を有するタンパク進化用リンカー及びそのリンカーを用いた酵素様活性を有するタンパクのスクリーニング方法
JP2003070483A (ja) 核酸の連結方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase