WO2003054243A1 - Warm- und kaltumformbare aluminiumlegierung - Google Patents

Warm- und kaltumformbare aluminiumlegierung Download PDF

Info

Publication number
WO2003054243A1
WO2003054243A1 PCT/EP2002/014452 EP0214452W WO03054243A1 WO 2003054243 A1 WO2003054243 A1 WO 2003054243A1 EP 0214452 W EP0214452 W EP 0214452W WO 03054243 A1 WO03054243 A1 WO 03054243A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
semi
finished product
less
silicon
Prior art date
Application number
PCT/EP2002/014452
Other languages
English (en)
French (fr)
Inventor
Andreas Barth
Patrick Laevers
Arne Mulkers
Original Assignee
Daimlerchrysler Ag
Corus Aluminium N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag, Corus Aluminium N.V. filed Critical Daimlerchrysler Ag
Priority to DE50202955T priority Critical patent/DE50202955D1/de
Priority to US10/499,755 priority patent/US20050095167A1/en
Priority to AT02787956T priority patent/ATE294252T1/de
Priority to EP02787956A priority patent/EP1458898B1/de
Priority to AU2002352255A priority patent/AU2002352255A1/en
Publication of WO2003054243A1 publication Critical patent/WO2003054243A1/de
Priority to US11/974,466 priority patent/US20080078480A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the invention relates to a hot and cold formable aluminum alloy according to claim 1 and a method for producing an aluminum component according to claim 5 and the use of an aluminum alloy according to claim 9.
  • High-strength Cu e.g. Al Mg Si 1 Cu 0.5
  • Zn-containing, heat-treated Al semi-finished products and Al forgings have high static strength values, but their elongation at break is low. In the case of a notch effect (e.g. stone chips), this results in a low dynamic strength.
  • These alloys are also susceptible to corrosion, so that expensive corrosion protection is necessary to avoid notch-causing corrosion scars. Because e.g. highly stressed, forged aluminum chassis parts are always exposed to stone chips (notches) and corrosion, in these areas only in exceptional cases Cu / Zn-containing AI materials are used. More ductile or notch-sensitive AI Mg Si 1 alloys such. B. the EN-AW 6082 are corrosion-resistant due to their very low Cu and Zn content, but these alloys do not achieve sufficient strength values.
  • German Offenlegungsschriften DE OS 2 103 614 and DE OS 2 213 136 each describe an aluminum-silicon-magnesium alloy which reacts to inhibit recrystallization, but these alloys are too weak in strength, and the tendency to recrystallize this alloy is for multi-formed or cold formed components still too high. The same applies to the well-known alloy according to EN-AW 6082.
  • the object of the invention is to provide a component and a method for producing a component which have a better recrystallization-inhibiting effect compared to the prior art and lead to a higher strength and corrosion resistance of the components.
  • the object is achieved in a component or semi-finished product according to claim 1 and in a method according to claim 9.
  • the component or semi-finished product according to the invention consists of an aluminum alloy with the following composition:
  • Titan serves to refine the grain, zinc can contribute to increasing the strength.
  • the alloy contains unavoidable impurities that are due to the manufacturing process.
  • the alloy has a silicon content between 0.9 and 1.7% by weight.
  • the invention is also characterized in that the alloy elements manganese, chromium and zirconium and / or hafnium together have a proportion of at least 0.4% by weight. The proportion of these is preferably Elements higher than 0.6% by weight. These elements act as recrystallization inhibitors.
  • intermetallic dispersoids with the aluminum during homogenization annealing, which anchor the grain boundaries and do not dissolve or only dissolve to a small extent during further temperature treatments. By anchoring the dispersoids to the grain boundaries, the growth of the grains to coarse grains is prevented, so that recrystallization is sustainably suppressed.
  • Zirconium and hafnium-containing dispersoids are particularly temperature-stable, which has an inhibiting effect on recrystallization at high temperatures.
  • the alloy has a silicon content of 0.9 to 1.3%. It has been found that a lower silicon content does not lead to the required strength values.
  • the silicon works in combination with the magnesium in the form of precipitation hardening (heat treatment), which occurs in the form of Mg2S ⁇ deposits. Higher levels of manganese and chromium also lead to hardening of the precipitate or increase in strengthening.
  • the ratio of silicon to magnesium is therefore preferably between 1.1 to 1.3 to 1, particularly preferably between 1.16 to 1.24 to 1.
  • the alloy is particularly resistant to recrystallization in both hot and cold forming. Almost independent of a manufacturing process, it exhibits high strength and a low tendency to corrode. The minor The tendency to corrode is mainly due to the low proportion of copper and zinc.
  • the process is characterized in that the cast raw material of the alloy is homogenized at temperatures between 420 ° C and 540 ° C, preferably between 460 ° C and 500 ° C.
  • the alloy components magnesium and silicon are finely distributed in the aluminum matrix and the dispersoids are formed, which, as described, are based on zirconium or hafnium, manganese, chromium and / or iron.
  • the raw material is formed into semi-finished products at a temperature between 450 ° C and 560 ° C (e.g. extrusion or rolling of sheets) and optionally quenched.
  • the semi-finished product is preferably formed between 500 ° C and 560 ° C, with the highest possible temperature being selected in order to
  • the semi-finished products are separated into workpieces that are suitable for forming and either cold-formed once or several times or, if necessary, formed several times hot into components or other semi-finished products. Machining the semi-finished products, e.g. B. by turning or milling is also useful. The hot or cold forming or the machining can take place within the scope of the professional ability and, if necessary, include the usual heat treatments.
  • the hot forming of the semi-finished product follows at temperatures which are in the range of the usual solution annealing (between 440 ° C and 560 ° C). During the forming process, especially during several forming steps, it must be ensured that the The temperature of the workpiece does not fall below the specified temperature, which has resulted in coarse deposits in the component structure. The forming process therefore replaces the process step of solution annealing, which has a significant impact on process costs and process duration.
  • the forming temperatures according to the invention which also include solution annealing, are higher than the usual forming temperatures, which results in less solidification and thus less recrystallization nucleation in the structure.
  • the recrystallization is thus sustainably suppressed.
  • the result is higher strength values and, above all, significantly higher elongation at break in highly formed areas.
  • the workpiece is preferably quenched in water, which freezes the structure. Subsequent hot curing between 160 ° C and 240 ° C results in the desired increase in strength.
  • the aluminum component according to the invention has a tensile strength of at least 400 MPa and a minimum elongation at break (A5) of 10% with a composition corresponding to the alloy specifications.
  • Components of this type are preferably used as tension struts or other chassis parts, profiles, bolts, screws or wheels.
  • the bars are poured into bars.
  • the bars are homogenized at a temperature of 480 ° C for 12 h.
  • the round bars are quenched and separated into approximately 20 cm long workpieces.
  • the tension struts are quenched in water and aged at 200 ° C for 4 hours.
  • the tensile struts have a tensile strength of more than 400 MPa and an elongation at break (A5) of more than 13% both in the area of a central strut and in the area of a large eye, which usually has a high degree of recrystallization due to the high degree of deformation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Cookers (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

Die Erfindung betrifft ein Bauteil oder Halbzeug aus einer warmumformbaren Aluminiumlegierung mit folgender Zusammensetzung in Gewichts %: Silizium 0,9 - 1,3, Magnesium 0,7 - 1,2, Mangan 0,5 - 1,0, Kupfer kleiner 0,1, Eisen kleiner 0,5, Chrom kleiner 0,25, Titan kleiner 0,1, Zink kleiner 0,2, Zirkon und/oder Hafnium 0,05 - 0,2 und weitere unvermeidliche Verunreinigungen, wobei der Gesamtanteil an Chrom und Mangan und Zirkon und/oder Hafnium mindestens 0,4 Gewichts beträgt. Das Bauteil zeichnet sich dadurch aus, dass neben Magnesiumsilizid-Ausscheidungen Aluminium-Silizium-Mischkristalle vorliegen.

Description

Warm- und kaltumformbare Aluminiumlegierung
Die Erfindung betrifft eine warm- und kaltumformbare Aluminiumlegierung nach Anspruch 1 sowie ein Verfahren zur Herstellung eines Aluminiumbauteils nach Anspruch 5 und die Verwendung einer Aluminiumlegierung nach Anspruch 9.
Hochfeste Cu- (z.B. AI Mg Si 1 Cu 0,5) oder Zn-haltige, warmebehandelte AI-Halbzeuge und Al-Schmiedeteile haben zwar hohe statische Festigkeitswerte, jedoch ist deren Bruchdehnung niedrig. Im Fall von Kerbwirkung (z.B. Steinschlag) resultiert somit eine geringe dynamische Festigkeit. Auch sind diese Legierungen anfällig gegenüber Korrosion, so dass zur Vermeidung kerbwirkender Korrosionsnarben ein teurer Korrosionsschutz erforderlich ist. Da z.B. hoch belastete, geschmiedete Al-Fahrwerksteile immer Steinschlag- (Kerben) und Korrosion ausgesetzt sind, werden in diesen Bereichen nur m Ausnahmefallen Cu-/Zn- haltige AI-Werkstoffe eingesetzt. Duktilere bzw. kerbunempfmlichere AI Mg Si 1-Legιerungen wie z. B. die EN-AW 6082 sind zwar wegen ihres sehr geringen Cu- und Zn- Gehaltes korrosionsbeständig, jedoch erreichen diese Legierungen keine ausreichende Festigkeitswerte.
Ein weiterer Nachteil derartiger Legierungen besteht darin, dass beim Umformen und spateren Warmebehandeln hoch umgeformte Schmiede- und Halbzeugzonen grobkörnig rekristallisieren. Ein grobkörniges bzw. sprödes und minder festes Gefuge fuhrt zu einem frühen Ausfall des Al- Bauteiles .
Dies gilt vor allem dann, wenn z. B. zu Erzielung einer hohen Materialausbeute eine Mehrfachumformung beim Schmieden erforderlich ist. Bei der Mehrfachumformung erfolgt meist der höchste Umformungsgrad erst am Ende des Umformprozesses und somit bei Temperaturen zwischen 390°C und 450 °C, so dass das Gefuge beim spateren Warmebehandeln rekristallisiert. Noch problematischer ist das Rekristalli- sationsverhalten kalt umgeformter AI-Halbzeuge, die spater warmebehandelt werden. So wird z.B. für das Herstellen hoch fester AI-Schrauben kalt gezogener Draht oder Stangen verwendet, der dann über Stauchen und Pressen zu einem Schraubenrohling kalt umgeformt wird. Beim spateren Warmebehandeln ist somit das Gefuge hoch rekristallisationsanfallig . Dasselbe gilt für kalt geschmiedete Al-Rader.
Die deutschen Offenlegungsschriften DE OS 2 103 614 und DE OS 2 213 136 beschreiben jeweils eine Aluminium-Silizium- Magnesium -Legierung, die rekristallisationshemmend reagiert, diese Legierungen weisen jedoch eine zu geringe Festigkeit auf, zudem ist die Neigung zur Rekristallisation dieser Legierung für mehrfachumgeformte oder kaltumgeformte Bauteile immer noch zu hoch. Das selbe gilt für die bekannte Legierung nach der EN-AW 6082.
Die Aufgabe der Erfindung besteht darin, ein Bauteil und ein Verfahren zur Herstellung eines Bauteils bereitzustellen, die gegenüber dem Stand der Technik besser rekristallisationshemmend wirken und zu einer höheren Festigkeit und Korrosionsbeständigkeit der Bauteile fuhren. Die Lösung der Aufgabe besteht in einem Bauteil oder Halbzeug nach Anspruch 1 und in einem Verfahren nach Anspruch 9.
Das erfindungsgemäße Bauteil oder Halbzeug besteht aus einer Aluminiumlegierung mit folgender Zusammensetzung:
• Silizium 0,9 - 1, 3,
• Magnesium 0,7 - 1,2,
• Mangan 0,5 - 1,0,
• Kupfer kleiner 0,1,
• Eisen kleiner 0,5,
• Chrom kleiner 0,25,
• Zirkon und/oder Hafnium 0,05 - 0,2. In vorteilhafter Weise liegen bestimmte Legierungsbestandteile in folgender Zusammensetzung vor:
• Kupfer kleiner 0,05,
• Eisen 0,1 - 0,5,
• Chrom 0,05 - 0,2,
• Zink kleiner 0,05.
Zudem kann die Legierung, die Elemente
• Zink kleiner 0,2
• Titan kleiner 0,1 enthalten. Titan dient hierbei zur Kornverfeinerung, Zink kann zur Festigkeitssteigerung beitragen. Zusätzlich enthält die Legierung unvermeidbare Verunreinigungen, die auf den Herstellungsprozess zurückzuführen sind.
In einer vorteilhaften Ausgestaltungsform weist die Legierung einen Siliziumanteil zwischen 0,9 und 1,7 Gew.% auf .
Die Erfindung zeichnet sich zudem dadurch aus, dass die Legierungselemente Mangan, Chrom und Zirkon und/oder Hafnium zusammen einen Anteil von mindestens 0,4 Gew. % aufweisen. In bevorzugter Weise liegt der Anteil dieser Elemente hoher als 0,6 Gew. %. Diese Elemente fungieren als Rekristallisationshemmer .
Diese Elemente bilden mit dem Aluminium beim Homogenisierungsgluhen intermetallische Dispersoide, die die Korngrenzen verankern und sich auch wahrend weiterer Temperaturbehandlungen nicht oder nur im geringen Masse wieder auflosen. Durch die Verankerung der Dispersoide an den Korngrenzen w rd das Wachstum der Korner zu Grobkorn verhindert, wodurch somit die Rekristallisation nachhaltige unterdruckt wird. Zirkon und hafniumhaltige Dispersoide sind besonders temperaturstabil, was sich hemmend auf die Rekristallisation bei hohen Temperaturen auswirkt.
Die Legierung weist einen Siliziumanteil von 0,9 bis 1,3 % auf. Es hat sich herausgestellt, dass ein niedrigerer Siliziumanteil nicht zu den geforderten Festigkeitswerten fuhrt. Das Silizium wirkt in Kombination mit dem Magnesium in Form einer Ausscheidungshartung (Wärmebehandlung) , die sich in Form von Mg2Sι-Ausscheιdungen einstellt. Höhere Gehalte an Mangan und Chrom fuhren ebenfalls zu einer Ausscheidungshartung bzw. Festigungssteigerung.
Darüber hinaus ist es zweckmäßig, dass für eine Mischkristallhartung, also einer Bildung von AlSi- Mischkristallen ein Uberschuss an Silizium besteht, der nicht in Mg2Sι-Ausscheιdungen gebunden ist. Das Verhältnis von Silizium zu Magnesium liegt somit bevorzugt zwischen 1,1 bis 1,3 zu 1, besonders bevorzugt zwischen 1,16 bis 1,24 zu 1.
Die Legierung ist besonders resistent gegen Rekristallisation sowohl bei Warmumformung als auch bei Kaltumformung. Sie weist an sich nahezu unabhängig von einem Herstellungsverfahren eine hohe Festigkeit und eine geringe Korrosionsneigung auf. Die geringe Korrosionsneigung ist vor allem auf den geringen Anteil an Kupfer und Zink zurückzuführen.
Das Verfahren zeichnet sich dadurch aus, dass gegossenes Rohmaterial der Legierung bei Temperaturen zwischen 420° C und 540°C, bevorzugt zwischen 460°C und 500°C homogenisiert wird. Wahrend dieser Homogenisierung werden die Legierungsbestandteile Magnesium und Silizium fein in der Aluminium-Matrix verteilt zudem bilden sich die Dispersoide, die, wie beschrieben, auf Basis vom Zirkon oder Hafnium, Mangan, Chrom und/oder Eisen bestehen.
Es hat sich als vorteilhaft herausgestellt, das Rohmaterial mindestens 4 h zu homogenisieren, besonders bevorzugt wird eine Homogenisierung von 12 h angewendet.
Im weiteren Verfahren wird das Rohmaterial bei einer Temperatur zwischen 450° C und 560° C zu Halbzeugen geformt (z. B. Strangpressen oder Walzen von Blechen) und gegebenenfalls abgeschreckt. Bevorzugt erfolgt die Halbzeugformung zwischen 500°C und 560°C, wobei jeweils die höchstmögliche Temperatur zu wählen ist um
Rekristallisationskeime zu vermeiden. Die Halbzeuge werden falls notwendig in umformgerechte Werkstucke vereinzelt und entweder ein- oder mehrfach kalt umgeformt oder gegebenenfalls mehrfach warm zu Bauteilen oder weiteren Halbzeugen umgeformt. Eine spanende Bearbeitung der Halbzeuge, z. B. durch Drehen oder Fräsen ist ebenfalls zweckmäßig. Das Warm- oder Kaltumformen oder das spanende Bearbeiten kann im Rahmen des fachmannischen Könnens erfolgen und gegebenenfalls übliche Wärmebehandlungen beinhalten .
Das Warmumformen des Halbzeugs folgt bei Temperaturen, die im Bereich des üblichen Losungsgluhen liegen (zwischen 440°C und 560°C). Es ist wahrend des Umformens insbesondere wahrend mehrerer Umformschritte darauf zu achten, dass die Temperatur des Werkstucks nicht unter die genannte Temperatur fallt, was grobe Ausscheidungen im Bauteilgefuge zur Folge hatte. Der Umformvorgang ersetzt demnach den Prozessschritt des Losungsgluhens, was sich erheblich auf die Prozesskosten und die Prozessdauer auswirkt.
Die erfindungsgemaßen Umformtemperaturen, die gleichzeitig ein Losungsgluhen beinhalten, liegen hoher als die üblichen Umformtemperaturen, was eine geringere Verfestigung und somit eine geringere Rekristallisationskeimbildung im Gefuge bewirkt. Somit wird die Rekristallisation nachhaltig unterdruckt. Höhere Festigkeitswerte und vor allem deutliche höhere Bruchdehnung in hochumgeformten Bereiche sind die Folge.
Nach dem Umformen wird das Werkstuck bevorzugt in Wasser abgeschreckt, wodurch das Gefuge eingefroren wird. Beim anschließenden Warmausharten zwischen 160°C und 240°C erfolgt die gewünschte Festigkeitssteigerung.
Das erfmdungsgemaße Aluminiumbauteil weist bei einer der Legierungsangaben entsprechenden Zusammensetzung eine Zugfestigkeit von mindestens 400 MPa und eine minimale Bruchdehnung (A5) von 10 % auf. Derartige Bauteile werden bevorzugt als Zugstreben oder andere Fahrwerksteile, Profile, Bolzen, Schrauben oder Rader verwendet.
Im Folgenden wird die Erfindung an Hand von zwei Beispielen naher erläutert. Das den Beispielen 1 und 2 zugrundeliegende Verfahrensschema ist in Fig. 1 dargestellt .
Beispiel 1:
Eine Legierungsschmelze mit der Zusammensetzung in Gewicht o.. o •
• Silizium 1 ,
• Magnesium 1/0, Mangan 0,5,
Kupfer 0,05,
Eisen 0,2,
Chrom 0,2,
Titan 0,05,
Zink 0,1,
Zirkon 0,2,
wird zu Barren gegossen. Die Barren werden bei einer Temperatur von 480° C für 12 h homogenisiert. Im nächsten Verfahrensschritt werden die Barren bei einer Temperatur von 500° C in Rundstangen (=Halbzeug) gepresst. Die Rundstangen werden abgeschreckt und in etwa 20 cm lange Werkstucke vereinzelt.
Die Werkstucke werden auf eine Temperatur von 530° C erhitzt und in mehreren Schmiedeprozessen (=Umformen) zu Zugstreben umgeformt. Wahrend des Schmiedens fallt die Temperatur des Werkstuckes nicht unter 440°C. Die Zugstreben werden in Wasser abgeschreckt und bei 200°C 4 h warmausgelagert. Die Zugstreben weisen sowohl im Bereich einer Mittelstrebe als auch im Bereich eines großen Auges, das auf Grund des hohen Umformgrades üblicherweise einen hohen Grad an Rekristallisation aufweist, eine Zugfestigkeit von mehr als 400 MPa und eine Bruchdehnung (A5) von mehr als 13 % auf.
Beispiel 2:
Analog Beispiel 1 werden Gussbarren homogenisiert und anschließend bei einer Temperatur von 500°C zu Blechen (=Halbzeug) gewalzt. Aus den Blechen werden runde Werkstucke ausgestanzt und diese in mehreren Schritten kalt zu Rädern umgeformt.

Claims

Patentansprüche
Bauteil oder Halbzeug bestehend aus einer Aluminiumlegierung wobei die Legierung neben Aluminium folgende Zusammensetzung in Gewichts % aufweist:
Silizium 0,9 - 1,3,
Magnesium 0,7 - 1,2,
Kupfer kleiner 0,1,
Eisen kleiner 0,5,
Chrom kleiner 0,25,
Zirkon und/oder Hafnium 0,05 - 0,2,
Mangan 0,5 - 1,0, wobei der Gesamtanteil an Chrom und Mangan und
Zirkon und/oder Hafnium mindestens 0, 6 Gewichts % beträgt, d a d u r c h g e k e n n z e i c h n e t,
• dass in einem Gefüge des Bauteils oder Halbzeuges neben Magnesiumsilizid-Ausscheidungen Aluminium- Silizium-Mischkristalle vorliegen und
• das Bauteil oder Halbzeug-Material eine Zugfestigkeit von 400 MPa aufweist.
2. Bauteil oder Halbzeug bestehend aus einer Aluminiumlegierung wobei die Legierung neben Aluminium folgende Zusammensetzung in Gewichts % aufweist:
• Silizium 0,9 - 1,7,
• Magnesium 0,7 - 1,2, Kupfer kleiner 0,1,
Eisen kleiner 0,5,
Chrom kleiner 0,25,
Zirkon und/oder Hafnium 0,05 - 0,2, Mangan 0,5 - 1,0, wobei der Gesamtanteil an Chrom und Mangan und Zirkon und/oder Hafnium mindestens 0,6 Gewichts % beträgt, d a d u r c h g e k e n n z e i c h n e t,
• dass in einem Gefüge des Bauteils oder Halbzeuges neben Magnesiumsilizid-Ausscheidungen Aluminium- Silizium-Mischkristalle vorliegen und
• das Bauteil oder Halbzeug-Material eine Zugfestigkeit von mehr als 390 MPa aufweist.
3. Bauteil oder Halbzeug nach Anspruch 1 oder 2 d a d u r c h g e k e n n z e i c h n e t, dass die Legierung zusätzlich folgende Bestandteile in Gew. % aufweist:
• Titan kleiner 0,1,
• Zink kleiner 0,2,
• sowie unvermeidbare Verunreinigungen.
4. Bauteil oder Halbzeug nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass das Verhältnis von Silizium zu Magnesium zwischen 1,1 zu 1 und 1,3 zu 1 liegt.
5. Bauteil oder Halbzeug nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, dass das Verhältnis von Silizium zu Magnesium zwischen 1,16 zu 1 und 1,24 zu 1 liegt.
6. Bauteil oder Halbzeug nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, dass an Korngrenzen des Gefüges zirkon- und/oder hafniumhaltige Dispersoide verankert sind.
7. Bauteil oder Halbzeug nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass das Bauteil eine Bruchdehnung A5 von mehr als 10 % aufweist .
8. Bauteil oder Halbzeug nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass das Bauteil oder Halbzeug ein Fahrwerksteil, insbesondere eine Zugstrebe oder ein Bolzen, ein Profil eine Schraube oder ein Rad ist.
9. Verfahren zur Herstellung eines Bauteils oder Halbzeuges nach einem der Ansprüche 1 bis 8, wobei
• ein gegossenes Rohmaterial bei einer Temperatur zwischen 420°C und 540°C homogenisiert wird,
• bei einer Temperatur zwischen 450°C und 560°C zu Halbzeugen geformt wird ,
• das Halbzeug anschließend auf eine Lösungsglühtemperatur zwischen 440°C und 560°C erwärmt wird,
• bei dieser Temperatur gegebenenfalls mehrfach warmumgeformt wird,
• das Schmiedeteil in Wasser oder an Luft abgeschreckt wird und
• bei einer Temperatur zwischen 160°C und 240°C warmausgelagert wird.
10. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass das gegossene Rohmaterial mindestens vier Stunden homogenisiert wird.
11. Verfahren nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, dass das gegossene Rohmaterial zwölf Stunden homogenisiert wird.
PCT/EP2002/014452 2001-12-21 2002-12-18 Warm- und kaltumformbare aluminiumlegierung WO2003054243A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE50202955T DE50202955D1 (de) 2001-12-21 2002-12-18 Verfahren zur herstellung eines aus aluminiumlegierung bauteils durch warm- und kaltumformung
US10/499,755 US20050095167A1 (en) 2001-12-21 2002-12-18 Hot-and cold-formed aluminum alloy
AT02787956T ATE294252T1 (de) 2001-12-21 2002-12-18 Verfahren zur herstellung eines aus aluminiumlegierung bauteils durch warm- und kaltumformung
EP02787956A EP1458898B1 (de) 2001-12-21 2002-12-18 Verfahren zur herstellung eines aus aluminiumlegierung bauteils durch warm- und kaltumformung
AU2002352255A AU2002352255A1 (en) 2001-12-21 2002-12-18 Hot- and cold-formed aluminium alloy
US11/974,466 US20080078480A1 (en) 2001-12-21 2007-10-12 Hot-and cold-formed aluminum alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10163039.5 2001-12-21
DE10163039A DE10163039C1 (de) 2001-12-21 2001-12-21 Warm- und kaltumformbares Bauteil aus einer Aluminiumlegierung und Verfahren zu seiner Herstellung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/974,466 Division US20080078480A1 (en) 2001-12-21 2007-10-12 Hot-and cold-formed aluminum alloy

Publications (1)

Publication Number Publication Date
WO2003054243A1 true WO2003054243A1 (de) 2003-07-03

Family

ID=7710217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014452 WO2003054243A1 (de) 2001-12-21 2002-12-18 Warm- und kaltumformbare aluminiumlegierung

Country Status (7)

Country Link
US (2) US20050095167A1 (de)
EP (1) EP1458898B1 (de)
AT (1) ATE294252T1 (de)
AU (1) AU2002352255A1 (de)
DE (2) DE10163039C1 (de)
ES (1) ES2239261T3 (de)
WO (1) WO2003054243A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880780A1 (de) * 2006-07-18 2008-01-23 Kabushiki Kaisha Kobe Seiko Sho Bolzen und dessen Herstellungsverfahren, sowie Vorform für Bolzen und deren Herstellungsverfahren und Vorrichtung
EP2644725B1 (de) 2012-03-30 2015-09-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Geschmiedetes Aluminiumlegierungsmaterial für Automobile und Verfahren zur Herstellung davon
WO2021064320A1 (fr) * 2019-10-04 2021-04-08 Constellium Issoire Toles de precision en alliage d'aluminium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060297A1 (de) * 2005-11-14 2007-05-16 Fuchs Kg Otto Energieabsorbtionsbauteil
DE102007032143A1 (de) * 2007-07-09 2009-01-15 Thyssenkrupp Drauz Nothelfer Gmbh Tür eines Kraftfahrzeuges
EP2149618B1 (de) 2008-07-30 2011-10-26 Olab S.r.l. Heisspressverfahren, insbesondere zur Herstellung von metallischen Kupplungsstücken für pneumatische, hydraulische und fluid-betriebene Kreisläufe, sowie durch dieses Verfahren hergestellte metallische Kupplungsstücke
DE102009059804A1 (de) 2009-12-21 2011-06-22 Daimler AG, 70327 Verfahren zur Wärmebehandlung von miteinander verschraubbaren Gussbauteilen
IN2014MN01031A (de) 2011-12-02 2015-05-01 Uacj Corp
WO2014003074A1 (ja) * 2012-06-27 2014-01-03 株式会社Uacj ブロー成形用アルミニウム合金板およびその製造方法
JP6557476B2 (ja) * 2015-02-10 2019-08-07 三菱アルミニウム株式会社 アルミニウム合金フィン材
SI24911A (sl) 2016-03-04 2016-07-29 Impol 2000, d.d. Visokotrdna aluminijeva zlitina Al-Mg-Si in njen postopek izdelave
CN109415780B (zh) * 2016-06-01 2021-02-23 阿莱利斯铝业迪弗尔私人有限公司 6xxx系列铝合金锻造坯料及其制造方法
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
CN112522552B (zh) * 2020-11-04 2022-04-26 佛山科学技术学院 一种耐蚀的铝合金及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717512A (en) * 1971-10-28 1973-02-20 Olin Corp Aluminum base alloys
US4174232A (en) * 1976-12-24 1979-11-13 Swiss Aluminium Ltd. Method of manufacturing sheets, strips and foils from age hardenable aluminum alloys of the Al-Si-Mg-type
JPH03287738A (ja) * 1990-04-03 1991-12-18 Kobe Steel Ltd 真空ろう付け法により組立てられる熱交換器用フィン材及びその製造方法
DE4421744A1 (de) * 1993-07-02 1995-01-12 Fuchs Fa Otto Verwendung einer Knetlegierung des Types AlMgSiCu zur Herstellung von hochfesten und korrosionsbeständigen Teilen
EP0987344A1 (de) * 1998-08-25 2000-03-22 Kabushiki Kaisha Kobe Seiko Sho Schmiedstücke aus hochfester Aluminium-Legierung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945860A (en) * 1971-05-05 1976-03-23 Swiss Aluminium Limited Process for obtaining high ductility high strength aluminum base alloys
CA962172A (en) * 1971-05-05 1975-02-04 Olin Corporation High ductility high strength aluminum base alloys and process for obtaining same
JPS58156197A (ja) * 1982-03-10 1983-09-17 Sumitomo Light Metal Ind Ltd 超高圧用プレ−トフイン型熱交換器
FR2529578B1 (fr) * 1982-07-02 1986-04-11 Cegedur Procede pour ameliorer a la fois la resistance a la fatigue et la tenacite des alliages d'al a haute resistance
FR2617188B1 (fr) * 1987-06-23 1989-10-20 Cegedur Alliage a base d'al pour boitage et procede d'obtention
US5108519A (en) * 1988-01-28 1992-04-28 Aluminum Company Of America Aluminum-lithium alloys suitable for forgings
JPH07197219A (ja) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The 成形用アルミニウム合金板材の製造方法
FR2737225B1 (fr) * 1995-07-28 1997-09-05 Pechiney Rhenalu Alliage al-cu-mg a resistance elevee au fluage
FR2744136B1 (fr) * 1996-01-25 1998-03-06 Pechiney Rhenalu Produits epais en alliage alznmgcu a proprietes ameliorees
JPH11310841A (ja) * 1998-04-28 1999-11-09 Nippon Steel Corp 疲労強度に優れたアルミニウム合金押出形材およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717512A (en) * 1971-10-28 1973-02-20 Olin Corp Aluminum base alloys
US4174232A (en) * 1976-12-24 1979-11-13 Swiss Aluminium Ltd. Method of manufacturing sheets, strips and foils from age hardenable aluminum alloys of the Al-Si-Mg-type
JPH03287738A (ja) * 1990-04-03 1991-12-18 Kobe Steel Ltd 真空ろう付け法により組立てられる熱交換器用フィン材及びその製造方法
DE4421744A1 (de) * 1993-07-02 1995-01-12 Fuchs Fa Otto Verwendung einer Knetlegierung des Types AlMgSiCu zur Herstellung von hochfesten und korrosionsbeständigen Teilen
EP0987344A1 (de) * 1998-08-25 2000-03-22 Kabushiki Kaisha Kobe Seiko Sho Schmiedstücke aus hochfester Aluminium-Legierung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.R. DAVIS: "Aluminum and aluminum alloys", ASM INTERNATIONAL, OHIO, USA, XP002233422 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 118 (C - 0922) 25 March 1992 (1992-03-25) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880780A1 (de) * 2006-07-18 2008-01-23 Kabushiki Kaisha Kobe Seiko Sho Bolzen und dessen Herstellungsverfahren, sowie Vorform für Bolzen und deren Herstellungsverfahren und Vorrichtung
EP2644725B1 (de) 2012-03-30 2015-09-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Geschmiedetes Aluminiumlegierungsmaterial für Automobile und Verfahren zur Herstellung davon
WO2021064320A1 (fr) * 2019-10-04 2021-04-08 Constellium Issoire Toles de precision en alliage d'aluminium
FR3101641A1 (fr) * 2019-10-04 2021-04-09 Constellium Issoire Tôles de précision en alliage d’aluminium

Also Published As

Publication number Publication date
ATE294252T1 (de) 2005-05-15
US20080078480A1 (en) 2008-04-03
US20050095167A1 (en) 2005-05-05
ES2239261T3 (es) 2005-09-16
DE10163039C1 (de) 2003-07-24
EP1458898A1 (de) 2004-09-22
AU2002352255A1 (en) 2003-07-09
EP1458898B1 (de) 2005-04-27
DE50202955D1 (de) 2005-06-02

Similar Documents

Publication Publication Date Title
DE69326838T3 (de) Zähe aluminiumlegierung mit kupfer und magnesium
AT502310B1 (de) Eine al-zn-mg-cu-legierung
DE112015000499B4 (de) Verfahren zum Herstellen eines plastisch verformten Aluminiumlegierungsprodukts
EP1683882A1 (de) Abschreckunempfindliche Aluminiumlegierung sowie Verfahren zum Herstellen eines Halbzeuges aus dieser Legierung
EP2449145B1 (de) AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
AT413035B (de) Aluminiumlegierung
DE2264997A1 (de) Ausscheidungshaertbare nickel-, eisenlegierung
DE69911648T2 (de) Verfahren zur herstellung einer aluminium-automaten-legierung
US20080078480A1 (en) Hot-and cold-formed aluminum alloy
DE2103614B2 (de) Verfahren zur Herstellung von Halbzeug aus AIMgSIZr-Legierungen mit hoher Kerbschlagzähigkeit
EP1518000B1 (de) Al-cu-mg-ag-legierung mit si, halbzeug aus einer solchen legierung sowie verfahren zur herstellung eines solchen halbzeuges
DE3541781A1 (de) Hitzebestaendige, hochfeste aluminiumlegierung und verfahren zur herstellung eines bauteils, das aus dieser legierung gemacht ist
DE102017114162A1 (de) Hochfeste und hochkriechresistente aluminiumgusslegierungen und hpdc-motorblöcke
EP1017867B1 (de) Legierung auf aluminiumbasis und verfahren zu ihrer wärmebehandlung
DE2235168C2 (de) Verfahren zur Herstellung von Aluminiumlegierungen und deren Verwendung
EP1587965B1 (de) Aluminiumlegierung mit hoher festigkeit und geringer abschreckempfindlichkeit
DE2647391A1 (de) Herstellung von strangpressprodukten aus aluminiumlegierungen
DE2704765A1 (de) Kupferlegierung, verfahren zu ihrer herstellung und ihre verwendung fuer elektrische kontaktfedern
DE2242235C3 (de) Superplastische Aluminiumlegierung
DE1284095B (de) Verfahren zum Herstellen von Aluminiumlegierungsblechen hoher Zeitstandfestigkeit
EP0989195A1 (de) Warmfeste Aluminiumlegierung vom Typ AlCuMg
DE1483228B2 (de) Aluminiumlegierung mit hoher zeitstandfestigkeit
DE2500083A1 (de) Aluminium-knetlegierungen und verfahren zur verarbeitung
DE2751577A1 (de) Verfahren zur herstellung faellungsgehaerteter kupferlegierungen und deren verwendung fuer kontaktfedern
DE102019202676B4 (de) Gussbauteile mit hoher Festigkeit und Duktilität und geringer Heißrissneigung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002787956

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002787956

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10499755

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002787956

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP