EP0989195A1 - Warmfeste Aluminiumlegierung vom Typ AlCuMg - Google Patents

Warmfeste Aluminiumlegierung vom Typ AlCuMg Download PDF

Info

Publication number
EP0989195A1
EP0989195A1 EP98810967A EP98810967A EP0989195A1 EP 0989195 A1 EP0989195 A1 EP 0989195A1 EP 98810967 A EP98810967 A EP 98810967A EP 98810967 A EP98810967 A EP 98810967A EP 0989195 A1 EP0989195 A1 EP 0989195A1
Authority
EP
European Patent Office
Prior art keywords
weight
aluminum alloy
plate
max
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98810967A
Other languages
English (en)
French (fr)
Other versions
EP0989195B1 (de
Inventor
Günther Höllrigl
Christophe Jaquerod
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alcan Technology and Management Ltd
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8236350&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0989195(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcan Technology and Management Ltd, Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to DE59803924T priority Critical patent/DE59803924D1/de
Priority to EP98810967A priority patent/EP0989195B1/de
Priority to ES98810967T priority patent/ES2175647T3/es
Priority to AT98810967T priority patent/ATE216737T1/de
Priority to PT98810967T priority patent/PT989195E/pt
Publication of EP0989195A1 publication Critical patent/EP0989195A1/de
Application granted granted Critical
Publication of EP0989195B1 publication Critical patent/EP0989195B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium

Definitions

  • the invention relates to an aluminum alloy of the AlCuMg condition high mechanical strength and high heat resistance, which are used in the solution-annealed quenched, stretched and aged a yield stress at room temperature of Rp0.2> 450 MPa, after a pre-storage of 300 h at 160 ° C a yield stress at 160 ° C of Rp0.2> 340 MPa and after a creep load of 1000 h at 160 ° C below a tensile stress of 260 MPa has an elongation of less than 0.5%.
  • AlCuMg alloys with high mechanical strength and high heat resistance have in practice especially the alloy AA2618 and, due to its good weldability, the alloy AA2219 enforced.
  • a newer alloy of type AA2618 with good Heat resistance is known from EP-A-0756014.
  • the invention has for its object an alloy of the type AlCuMg of the type mentioned with a compared to the known alloys to create increased thermal stability according to the prior art.
  • the alloy for the production of plastic molds i.e. Injection molds for injection molding plastic, at operating temperatures up to about 160 ° C.
  • the preferred copper content is 5.2 to 5.4% by weight.
  • the maximum solubility for copper in this alloy is around 5.2 to 5.3% Cu.
  • Part of the copper is absorbed in the primary intermetallic phases AlFeMnCu, which makes it possible to practically reach the solubility limit.
  • the primary eutectic phase Al 2 Cu forms in the structure, which does not contribute to the strength, but as a local cathodic element, however, reduces the corrosion resistance of the alloy.
  • the alloy according to the invention preferably lies mainly in the phase field of the ⁇ '-precipitation hardening, with the equilibrium phase Al 2 Cu. If the magnesium content rises above 0.6%, there are corresponding proportions of S'-precipitation hardening with the equilibrium phase Al 2 CuMg.
  • the positive effect of a silver additive on precipitation hardening is preferably effective in ⁇ '-precipitation hardening because the silver can form the ⁇ phase together with the magnesium on the (111) lattice planes of the aluminum matrix, which leads to an additional increase in strength . With even higher magnesium contents, the excretion of the ⁇ phase is superimposed by the S 'excretion and reduces the strength-increasing effect of silver.
  • an alloy with higher magnesium contents is sensitive to the speed of the quenching treatment, which leads to a loss of strength in the middle of thick plates.
  • an optimum between achievable strength at room temperature and at elevated temperatures is achieved.
  • the alloy according to the invention is therefore particularly suitable for the production of thick plates.
  • the alloy can be used to further increase strength Contain 0.05 to 0.5 wt .-%, preferably 0.3 to 0.5 wt .-% silver.
  • an isotropic distribution of the internal stresses in the cross section of the plates produced by hot rolling is to be aimed for.
  • the grain size and the grain shape in the plate are of importance for the reduction of the internal stresses.
  • the finer and more uniform the crystal thaw after the recrystallization with the solution annealing preferably carried out in the range from 510 to 525 ° C., the better the internal stresses in the cross-section of the plate can balance.
  • the grain boundaries act as sinks for dislocations when local stress peaks are reduced.
  • a fine grain structure can be achieved in the hot-rolled plate by controlling the heat treatment and the hot rolling temperatures in such a way that the distribution of submicron precipitates of Al 3 Zr in the structure is as homogeneous as possible.
  • the homogenized cast ingots can either be cooled from the homogenization temperature to the holding or hot rolling temperature or heated up to this temperature range.
  • a heterogenization occurs with the elimination of the equilibrium phase Al 2 Cu.
  • the phase interfaces of the Al 2 Cu particles are formed as preferred nucleation sites for the Al 3 Zr precipitates.
  • the hot-rolled plate is subsequently heated to the solution annealing temperature, the Al 2 Cu particles dissolve and what remains is a uniform distribution of the fine, submicron Al 3 Zr precipitates, which are preferably due to the original Al 2 Cu particle boundaries and to sub-grain boundaries and thus one result in homogeneous distribution.
  • These fine Al 3 Zr particles cause a strong growth inhibition during recrystallization during solution treatment and the desired isotropic grain structure results in the plate.
  • the sum of iron and silicon has also proven to be expedient and the sum of zirconium and titanium each to max. 0.25% by weight limit.
  • the preferred content range for manganese is 0.2 to 0.4% by weight.
  • the alloy which is particularly suitable for the production of Plastic molds are suitable, starting from a casting block without kneading operations are further processed, however, the manufacturing process usually includes at least one kneading step. If it is the dimensions of a Allow shape to be produced are preferred as the starting material hot-rolled plates used. In certain cases it can also turn out to be prove expedient, for example a decrease in thickness in a first Direction by hot rolling and in a second direction by forging to create. In particular for the production of inexpensive forms for The production of mass parts can also be extrusion as a processing step be considered. The extrusion process opens up basically also the possibility of certain contours of a later form already preform.
  • Alloys A and B are according to the invention, alloys AA2618 and AA 2219 serve as reference alloys or reference materials.
  • Alloys A and B were used as continuous cast ingots on an industrial scale poured.
  • the homogenization of the cast ingots to compensate for the solidification Crystal segregation was carried out according to the usual procedure for AlCuMg alloys.
  • the ingots cooled after the homogenization annealing were raised to 410 ° C heated, held at this temperature for 3 h and then starting rolled from this temperature to a plate thickness of 70 mm. Subsequently the plates were at a temperature of 520 ° C solution annealed and subsequently in water using a defined convective Heat transfer quenched so that the resulting residual stresses were controllable by the subsequent stretching operation. The stretched Plates were then at a temperature of 180 ° C during Cured warm for 12 hours.
  • the yield stresses Rp 0.2 were determined after 300 h and 500 h pre-storage at a temperature of 160 ° C by tensile tests at room temperature (RT) and at 160 ° C on samples of the thermoset plates and on samples of the reference materials taken from commercially available plates. The results are shown in Tables 2 and 3.
  • the plates used as reference materials had a thickness of 20 mm in the case of alloy AA2618 and a thickness of 90 mm in the case of alloy AA2219.
  • the creep data were determined on round specimens with a measuring length of 160 mm. Out the strain-time diagram in Fig. 1 are the results for the four examined Alloys visible.
  • the load applied to the test bars was 260 MPa, the test temperature was set to 160 ° C.
  • the curves show clearly the improved heat resistance compared to the comparative alloys the alloy according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Insulated Conductors (AREA)
  • Arc Welding In General (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Eine Aluminiumlegierung vom Typ AlCuMg in geknetetem Zustand mit hoher mechanischer Festigkeit und hoher Wärmebeständigkeit weist im lösungsgeglühten, abgeschreckten, gestreckten und warmausgelagerten Zustand (T8) eine Fliessspannung bei Raumtemperatur von Rp0.2 > 450 MPa, nach einer Vorlagerung von 300 h bei 160°C eine Fliessspannung bei 160°C von Rp0.2 > 340 MPa und nach einer Kriechbelastung von 1000 h bei 160°C unter einer Zugspannung von 260 MPa eine Dehnung von weniger als 0.5% auf. Die Legierung enthält 4.5 bis 5.5 Gew.-% Kupfer, 0.45 bis 0.65 Gew.-% Magnesium, max. 0.2 Gew.-% Silizium, max. 0.25 Gew.-% Eisen, max. 0.8 Gew.-% Mangan, max. 0.15 Gew.-%Titan wahlweise noch, 0.12 bis 0.25 Gew.-% Zirkonium, 0.05 bis 0.5 Gew.-% Silber sowie Aluminium als Rest mit herstellungsbedingten Verunreinigungen einzeln max. 0.05 Gew.-%, insgesamt max. 0.15 Gew.-%. Die Legierung eignet sich insbesondere zur Herstellung von Kunststoffformen. <IMAGE>

Description

Die Erfindung betrifft eine Aluminiumlegierung vom Typ AlCuMg Zustand mit hoher mechanischer Festigkeit und hoher Wärmebeständigkeit, die im lösungsgeglühten, abgeschreckten, gestreckten und warmausgelagerten Zustand eine Fliessspannung bei Raumtemperatur von Rp0.2 > 450 MPa, nach einer Vorlagerung von 300 h bei 160°C eine Fliessspannung bei 160°C von Rp0.2 > 340 MPa und nach einer Kriechbelastung von 1000 h bei 160°C unter einer Zugspannung von 260 MPa eine Dehnung von weniger als 0.5% aufweist.
Zur Herstellung von Kunststoffbauteilen durch Spritzgiesstechnik werden heute Betriebstemperaturen bis gegen 160°C angewendet. Für den Formenbau werden hochfeste Aluminiumlegierungen eingesetzt, welche ihre Festigkeit durch Ausscheidungshärtung erhalten. Die erwähnten Betriebstemperaturen von ca. 160°C erreichen jedoch den Überhärtungsbereich der aushärtbaren hochfesten Werkstoffe vom Typ AlZnMgCu. Für den Einsatz bei erhöhten Temperaturen sind deshalb AlCu- und AlCuMg-Legierungen besser geeignet, um ein hohes Festigkeitsniveau bei diesen erhöhten Betriebstemperaturen über einen langen Zeitraum zu erhalten.
Als Legierungen vom Typ AlCuMg mit gleichzeitig hoher mechanischer Festigkeit und hoher Wärmebeständigkeit haben sich in der Praxis vor allem die Legierung AA2618 und, wegen ihrer guten Schweissbarkeit, die Legierung AA2219 durchgesetzt. Eine neuere Legierung vom Typ AA2618 mit guter Warmfestigkeit ist aus EP-A-0756014 bekannt.
Der Erfindung liegt die Aufgabe zugrunde, eine Legierung vom Typ AlCuMg der eingangs genannten Art mit einer gegenüber den bekannten Legierungen nach dem Stand der Technik erhöhten thermischen Stabilität zu schaffen. Insbesondere soll die Legierung zur Herstellung von Kunststoffformen, d.h. Spritzgiessformen zum Spritzgiessen von Kunststoff, bei Betriebstemperaturen bis zu etwa 160°C geeignet sein.
Zur erfindungsgemässen Lösung der Aufgabe führt, dass die Legierung
  • 4.5 bis 5.5 Gew.-% Kupfer
  • 0.45 bis 0.65 Gew.-% Magnesium
  • max. 0.2 Gew.-% Silizium
  • max. 0.25 Gew.-% Eisen
  • max. 0.8 Gew.-% Mangan
  • max. 0.15 Gew.-% Titan
    wahlweise noch
  • 0.12 bis 0.25 Gew.-% Zirkonium
  • 0.05 bis 0.5 Gew.-% Silber
    sowie Aluminium als Rest mit herstellungsbedingten Verunreinigungen einzeln max. 0.05 Gew.-%, insgesamt max. 0.15 Gew.-% enthält.
  • Es hat sich gezeigt, dass die erfindungsgemässe Legierung gegenüber den AlCuMg-Legierungen nach dem Stand der Technik eine geringere Abschreckempfindlichkeit aufweist, was dazu führt, dass bei der Herstellung dicker Platten der Festigkeitsverlust in der Plattenmitte kleiner ist.
    Zur Erzielung einer möglichst hohen Festigkeit bei gleichzeitig guter Korrosionsbeständigkeit beträgt der bevorzugte Kupfergehalt 5.2 bis 5.4 Gew.-%.
    Die maximale Löslichkeit für Kupfer liegt bei dieser Legierung bei etwa 5.2 bis 5.3% Cu. Ein Teil des Kupfers wird in den primären intermetallischen Phasen AlFeMnCu absorbiert, was es überhaupt ermöglicht, praktisch an die Löslichkeitsgrenze zu gehen. Bei höheren Kupfergehalten entsteht im Gefüge die primäre eutektische Phase Al2Cu, die keinen Beitrag an die Festigkeit leistet, als kathodisches Lokalelement jedoch den Korrosionswiderstand der Legierung herabsetzt.
    Bevorzugt liegt die erfindungsgemässe Legierung hauptsächlich im Phasenfeld der '-Ausscheidungshärtung, mit der Gleichgewichtsphase Al2Cu. Steigt der Magnesiumgehalt über 0.6%, so ergeben sich entsprechend Anteile von S'-Ausscheidungshärtung, mit der Gleichgewichtsphase Al2CuMg. Der positive Effekt eines Silberzusatzes auf die Ausscheidungshärtung ist jedoch bei der '-Ausscheidungshärtung bevorzugt wirksam, weil das Silber zusammen mit dem Magnesium die Ω-Phase bilden kann, und zwar auf den (111) Gitterebenen der Aluminiummatrix, was zu einem zusätzlichen Festigkeitsanstieg führt. Bei noch höheren Magnesiumgehalten wird die Ausscheidung der Ω-Phase von der S'-Ausscheidung überlagert und setzt die festigkeitssteigernde Wirkung von Silber herab. Hinzu kommt, dass eine Legierung mit höheren Magnesiumgehalten empfindlich auf die Geschwindigkeit der Abschreckbehandlung reagiert, was zu einem Festigkeitsverlust in der Mitte von dicken Platten führt. Mit der erfindungsgemässen Beschränkung des Magnesiumgehaltes wird ein Optimum zwischen erzielbarer Festigkeit bei Raumtemperatur und bei erhöhten Temperaturen erreicht. Die erfindungsgemässe Legierung eignet sich daher insbesondere zur Herstellung dicker Platten.
    Wie vorstehend erwähnt, kann zur weiteren Steigerung der Festigkeit die Legierung 0.05 bis 0.5 Gew.-%, vorzugsweise 0.3 bis 0.5 Gew.-% Silber enthalten.
    Insbesondere für die Anwendung der erfindungsgemässen Legierung als Werkstoff für den Formenbau ist eine möglichst isotrope Verteilung der Eigenspannungen im Querschnitt der durch Warmwalzen gefertigten Platten anzustreben. Für den Abbau der Eigenspannungen ist u.a. die Korngrösse und die Kornform in der Platte von Bedeutung. Je feiner und gleichmässiger die Kristaue nach der Rekristallisation bei der vorzugsweise im Bereich von 510 bis 525°C durchgeführten Lösungsglühung vorliegen, desto besser können sich die Eigenspannungen im Querschnitt der Platte ausgleichen. Die Korngrenzen wirken dabei als Senken für Versetzungen beim Abbau von lokalen Spannungsspitzen. Durch einen Zusatz von 0.12 bis 0.25 Gew.-% Zirkonium kann ein feines Korngefüge in der warmgewalzten Platte erreicht werden, indem man die Wärmebehandlung und die Warmwalztemperaturen so steuert, dass eine möglichst homogene Verteilung von submikronen Ausscheidungen von Al3Zr im Gefüge entsteht.
    Die erfindungsgemässe Herstellung einer Platte ist gekennzeichnet durch die Schritte
    • Giessen eines Barrens aus der Legierung,
    • Homogenisieren des gegossenen Barrens,
    • Halten des Barrens während mindestens 2.5 h in einem Temperaturbereich von 380 bis 440°C,
    • Warmwalzen des Barrens zur Platte im Temperaturbereich von 380 bis 440°C,
    • Lösungsglühen der Platte,
    • Abschrecken der Platte,
    • Strecken der Platte um 1 bis 5%, und
    • Warmaushärten der Platte.
    Die homogenisierten Gussbarren können entweder von der Homogenisierungstemperatur auf die Halte- bzw. Warmwalztemperatur abgekühlt oder in diesen Temperaturbereich aufgeheizt werden. Beim Halten des Barrens im Temperaturbereich von 380 bis 440°C tritt mit der Ausscheidung der Gleichgewichtsphase Al2Cu eine Heterogenisierung ein. Beim anschliessenden Warmwalzen in demselben Temperaturbereich werden die Phasengrenzflächen der Al2Cu-Teilchen als bevorzugte Keimstellen für die Al3Zr-Ausscheidungen gebildet. Beim darauffolgenden Aufheizen der Warmwalzplatte auf die Lösungsglühtemperatur lösen sich die Al2Cu-Teilchen auf und zurück bleibt eine gleichmässige Verteilung der feinen, submikronen Al3Zr-Ausscheidungen, welche bevorzugt an den ursprünglichen Al2Cu-Teilchengrenzen sowie an Subkorngrenzen liegen und damit eine homogene Verteilung ergeben. Diese feinen Al3Zr-Teilchen bewirken eine starke Wachstumshemmung bei der Rekristallisation während der Lösungsglühung und es resultiert das gewünschte isotrope Korngefüge in der Platte.
    Weiter hat sich als zweckmässig herausgestellt, die Summe von Eisen und Silizium und die Summe von Zirkonium und Titan je auf max. 0.25 Gew.-% zu begrenzen.
    Der bevorzugte Gehaltsbereich für Mangan liegt bei 0.2 bis 0.4 Gew.-%.
    Grundsätzlich kann die Legierung, die sich insbesondere zur Herstellung von Kunststoffformen eignet, ausgehend von einem Gussblock ohne Knetoperationen weiterverarbeitet werden, jedoch beinhaltet das Herstellungsverfahren üblicherweise mindestens einen Knetschritt. Sofern es die Dimensionen einer herzustellenden Form zulassen, werden als Ausgangsmaterial bevorzugt warmgewalzte Platten eingesetzt. In gewissen Fällen kann es sich auch als zweckmässig erweisen, eine Dickenabnahme beispielsweise in einer ersten Richtung durch Warmwalzen und in einer zweiten Richtung durch Schmieden zu erzeugen. Insbesondere zur Herstellung von kostengünstigen Formen für die Produktion von Massenteilen kann auch Strangpressen als Verarbeitungsschritt in Betracht gezogen werden. Mit dem Strangpressen eröffnet sich grundsätzlich auch die Möglichkeit, gewisse Konturen einer späteren Form bereits vorzuformen.
    Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt schematisch in
    - Fig. 1
    Dehnungs-Zeit Diagramm von erfindungsgemässen Legierungen im Vergleich zu Legierungen nach dem Stand der Technik.
    Beispiele
    Die chemischen Analysen der untersuchten Legierungen sind aus der Tabelle 1 ersichtlich. Die Legierungen A und B sind erfindungsgemäss, die Legierungen AA2618 und AA 2219 dienen als Vergleichslegierungen bzw. Referenzwerkstoffe.
    Leg. Zusammensetzung [Gew.-%]
    Si Fe Cu Mn Mg Ag Ti V Zr Ni
    A 0.10 0.14 5.25 0.30 0.60 0.38 0.08 -- 0.18 --
    B 0.10 0.14 5.30 0.30 0.60 -- -- 0.09 0.20 --
    AA2618 0.15 1.05 2.60 -- 1.65 -- 0.06 -- -- 1.10
    AA2219 0.06 0.06 6.11 0.31 0.02 -- 0.04 0.08 0.12 --
    Die Legierungen A und B wurden als Stranggussbarren in industriellem Massstab gegossen. Die Homogenisierung der Gussbarren zum Ausgleich der erstarrungsbedingten Kristallseigerungen erfolgte nach der üblichen Vorschrift für AlCuMg-Legierungen.
    Die nach der Homogenisierungsglühung abgekühlten Barren wurden auf 410°C aufgeheizt, 3 h bei dieser Temperatur gehalten und nachfolgend ausgehend von dieser Temperatur auf eine Plattendicke von 70 mm gewalzt. Anschliessend wurden die Platten während 40 min bei einer Temperatur von 520°C lösungsgeglüht und nachfolgend in Wasser mittels definierter konvektiver Wärmeübertragung so abgeschreckt, dass die entstehenden Eigenspannungen durch die nachfolgende Streckoperation kontrollierbar waren. Die gestreckten Platten wurden anschliessend bei einer Temperatur von 180°C während 12 h warm ausgehärtet.
    An Proben der warmausgehärteten Platten sowie an aus kommerziell erhältlichen Platten entnommenen Proben der Referenzwerkstoffe wurden die Fliessspannungen Rp 0.2 nach 300 h und 500 h Vorlagerung bei einer Temperatur von 160°C durch Zugversuche bei Raumtemperatur (RT) und bei 160°C ermittelt. Die Ergebnisse sind in den Tabellen 2 und 3 dargestellt. Die als Referenzwerkstoffe verwendeten Platten wiesen im Falle der Legierung AA2618 eine Dicke von 20 mm und bei der Legierung AA2219 eine Dicke von 90 mm auf.
    Legierung Zugversuch bei RT (20°C)
    Rp0.2 [MPa] nach 300 h Rp0.2 [MPa] nach 500 h
    A 432 405
    B 407 390
    AA2618 418 --
    AA2219 340 335
    Legierung Zugversuch bei 160°C
    Rp0.2 [MPa] nach 300 h Rp0.2 [MPa] nach 500 h
    A 370 350
    B 342 332
    AA2618 350 --
    AA2219 281 270
    Die Kriechdaten wurden an Rundproben mit 160 mm Messlänge ermittelt. Aus dem Dehnungs-Zeit Diagramm in Fig. 1 sind die Ergebnisse für die vier untersuchten Legierungen ersichtlich. Die an die Probestäbe angelegte Last betrug 260 MPa, die Prüftemperatur wurde auf 160°C eingestellt. Die Kurven zeigen deutlich die gegenüber den Vergleichslegierungen verbesserte Warmfestigkeit der erfindungsgemässen Legierung.

    Claims (12)

    1. Aluminiumlegierung vom Typ AlCuMg mit hoher mechanischer Festigkeit und hoher Wärmebeständigkeit, die im lösungsgeglühten, abgeschreckten, gestreckten und warmausgelagerten Zustand (T8) eine Fliessspannung bei Raumtemperatur von Rp0.2 > 450 MPa, nach einer Vorlagerung von 300 h bei 160°C eine Fliessspannung bei 160°C von Rp0.2 > 340 MPa und nach einer Kriechbelastung von 1000 h bei 160°C unter einer Zugspannung von 260 MPa eine Dehnung von weniger als 0.5% aufweist,
      dadurch gekennzeichnet, dass die Legierung
      4.5 bis 5.5 Gew.-% Kupfer
      0.45 bis 0.65 Gew.-% Magnesium
      max. 0.2 Gew.-% Silizium
      max. 0.25 Gew.-% Eisen
      max. 0.8 Gew.-% Mangan
      max. 0.15 Gew.-% Titan
      wahlweise noch
      0.12 bis 0.25 Gew.-% Zirkonium
      0.05 bis 0.5 Gew.-% Silber
      sowie Aluminium als Rest mit herstellungsbedingten Verunreinigungen einzeln max. 0.05 Gew.-%, insgesamt max. 0.15 Gew.-% enthält.
    2. Aluminiumlegierung nach Anspruch 1, dadurch gekennzeichnet, dass sie 5.2 bis 5.4 Gew.-% Kupfer enthält.
    3. Aluminiumlegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie 0.3 bis 0.5 Gew.-% Silber enthält.
    4. Aluminiumlegierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Summe von Eisen und Silizium max. 0.25 Gew.-% beträgt.
    5. Aluminiumlegierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Summe von Zirkonium und Titan max. 0.25 Gew.-% beträgt.
    6. Aluminiumlegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie 0.2 bis 0.4 Gew.-% Mangan enthält.
    7. Aluminiumlegierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie im gekneteten Zustand vorliegt.
    8. Aluminiumlegierung nach Anspruch 7, dadurch gekennzeichnet, dass der geknetete Zustand durch Warmwalzen erzeugt worden ist.
    9. Aluminiumlegierung nach Anspruch 7, dadurch gekennzeichnet, dass der geknetete Zustand durch Schmieden erzeugt worden ist.
    10. Aluminiumlegierung nach Anspruch 7, dadurch gekennzeichnet, dass der geknetete Zustand durch Strangpressen erzeugt worden ist.
    11. Verfahren zur Herstellung einer Platte aus einer Aluminiumlegierung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch die Schritte
      (a) Giessen eines Barrens aus der Legierung,
      (b) Homogenisieren des gegossenen Barrens,
      (c) Halten des Barrens während mindestens 2.5 h in einem Temperaturbereich von 380 bis 440°C,
      (d) Warmwalzen des Barrens zur Platte im Temperaturbereich von 380 bis 440°C,
      (e) Lösungsglühen der Platte,
      (f) Abschrecken der Platte,
      (g) Strecken der Platte um 1 bis 5%, und
      (h) Warmaushärten der Platte.
    12. Verwendung einer Aluminiumlegierung nach einem der Ansprüche 1 bis 10 oder einer Platte hergestellt mit dem Verfahren nach Anspruch 11 zur Herstellung von Kunststoffformen.
    EP98810967A 1998-09-25 1998-09-25 Warmfeste Aluminiumlegierung vom Typ AlCuMg Revoked EP0989195B1 (de)

    Priority Applications (5)

    Application Number Priority Date Filing Date Title
    DE59803924T DE59803924D1 (de) 1998-09-25 1998-09-25 Warmfeste Aluminiumlegierung vom Typ AlCuMg
    EP98810967A EP0989195B1 (de) 1998-09-25 1998-09-25 Warmfeste Aluminiumlegierung vom Typ AlCuMg
    ES98810967T ES2175647T3 (es) 1998-09-25 1998-09-25 Aleacion de aluminio resistente al calor del tipo alcumg.
    AT98810967T ATE216737T1 (de) 1998-09-25 1998-09-25 Warmfeste aluminiumlegierung vom typ alcumg
    PT98810967T PT989195E (pt) 1998-09-25 1998-09-25 Liga de aluminio resistente ao calor do tigo alcumg

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP98810967A EP0989195B1 (de) 1998-09-25 1998-09-25 Warmfeste Aluminiumlegierung vom Typ AlCuMg

    Publications (2)

    Publication Number Publication Date
    EP0989195A1 true EP0989195A1 (de) 2000-03-29
    EP0989195B1 EP0989195B1 (de) 2002-04-24

    Family

    ID=8236350

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98810967A Revoked EP0989195B1 (de) 1998-09-25 1998-09-25 Warmfeste Aluminiumlegierung vom Typ AlCuMg

    Country Status (5)

    Country Link
    EP (1) EP0989195B1 (de)
    AT (1) ATE216737T1 (de)
    DE (1) DE59803924D1 (de)
    ES (1) ES2175647T3 (de)
    PT (1) PT989195E (de)

    Cited By (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2004018721A1 (en) * 2002-08-20 2004-03-04 Corus Aluminium Walzprodukte Gmbh Al-Cu ALLOY WITH HIGH TOUGHNESS
    US6777106B2 (en) 2001-04-24 2004-08-17 Pechiney Rhenalu Metal blocks suitable for machining applications
    WO2008003503A2 (en) * 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Method of manufacturing aa2000 - series aluminium alloy products
    US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
    CN100469928C (zh) * 2007-03-30 2009-03-18 中南大学 一种高强耐热铝合金及其管材的制备方法
    US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
    US8043445B2 (en) 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
    CN105274408A (zh) * 2015-10-15 2016-01-27 东北轻合金有限责任公司 一种航空航天用铝合金铆钉线材的制造方法
    CN109825749A (zh) * 2019-04-10 2019-05-31 上海裕纪金属制品有限公司 一种可冲压铝合金型材耐热耐腐蚀热处理方法及铝合金型材
    CN109898000A (zh) * 2019-03-29 2019-06-18 郑州轻研合金科技有限公司 一种超高强耐热铝合金及其制备方法
    US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
    CN115874031A (zh) * 2022-12-07 2023-03-31 东北轻合金有限责任公司 一种航空用2a12铝合金板材的加工方法

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product

    Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0224016A1 (de) * 1985-10-31 1987-06-03 BBC Brown Boveri AG Aluminium-Knetlegierung des Typs A1/Cu/Mg mit hoher Festigkeit im Temperaturbereich zwischen 0 und 250o C
    WO1995027091A1 (en) * 1994-03-30 1995-10-12 Reynolds Metals Company Method of producing aluminum alloy extrusions
    WO1996029440A1 (en) * 1995-03-21 1996-09-26 Kaiser Aluminum & Chemical Corporation A method of manufacturing aluminum aircraft sheet
    EP0756017A1 (de) * 1995-07-28 1997-01-29 Pechiney Rhenalu Aluminium-Kupfer-Magnesium-Legierung mit hohe Kriechbeständigkeit
    US5630889A (en) * 1995-03-22 1997-05-20 Aluminum Company Of America Vanadium-free aluminum alloy suitable for extruded aerospace products
    US5652063A (en) * 1995-03-22 1997-07-29 Aluminum Company Of America Sheet or plate product made from a substantially vanadium-free aluminum alloy
    US5800927A (en) * 1995-03-22 1998-09-01 Aluminum Company Of America Vanadium-free, lithium-free, aluminum alloy suitable for sheet and plate aerospace products

    Patent Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0224016A1 (de) * 1985-10-31 1987-06-03 BBC Brown Boveri AG Aluminium-Knetlegierung des Typs A1/Cu/Mg mit hoher Festigkeit im Temperaturbereich zwischen 0 und 250o C
    WO1995027091A1 (en) * 1994-03-30 1995-10-12 Reynolds Metals Company Method of producing aluminum alloy extrusions
    WO1996029440A1 (en) * 1995-03-21 1996-09-26 Kaiser Aluminum & Chemical Corporation A method of manufacturing aluminum aircraft sheet
    US5630889A (en) * 1995-03-22 1997-05-20 Aluminum Company Of America Vanadium-free aluminum alloy suitable for extruded aerospace products
    US5652063A (en) * 1995-03-22 1997-07-29 Aluminum Company Of America Sheet or plate product made from a substantially vanadium-free aluminum alloy
    US5800927A (en) * 1995-03-22 1998-09-01 Aluminum Company Of America Vanadium-free, lithium-free, aluminum alloy suitable for sheet and plate aerospace products
    EP0756017A1 (de) * 1995-07-28 1997-01-29 Pechiney Rhenalu Aluminium-Kupfer-Magnesium-Legierung mit hohe Kriechbeständigkeit

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    ANYALEBECHI P N ET AL: "EFFECT OF SUPEREUTECTIC HOMOGENIZATION ON INCIDENCE OF POROSITY IN ALUMINUM ALLOY 2014 INGOT", METALLURGICAL AND MATERIALS TRANSACTIONS B: PROCESS METALLURGY & MATERIALS PROCESSING SCIENCE, vol. 25B, no. 1, 1 February 1994 (1994-02-01), pages 111 - 122, XP000425868 *
    M.J.HAYNES AND R.P.GANGLOFF: "ELEVATED TEMPERATURE FRACTURE TOUGHNESS OF Al-Cu-Mg-Ag SHEET: CHARACTERIZATION AND MODELING", METALLURGICAL AND MATERIALS TRANSACTIONS, vol. 28A, no. 9, pages 1815 - 1829, XP002087749 *

    Cited By (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6777106B2 (en) 2001-04-24 2004-08-17 Pechiney Rhenalu Metal blocks suitable for machining applications
    GB2406578A (en) * 2002-08-20 2005-04-06 Corus Aluminium Walzprod Gmbh Al-Cu Alloy with high toughness
    GB2406578B (en) * 2002-08-20 2006-04-26 Corus Aluminium Walzprod Gmbh Al-Cu alloy with high toughness
    CN1325682C (zh) * 2002-08-20 2007-07-11 克里斯铝轧制品有限公司 具有高韧性的Al-Cu合金
    WO2004018721A1 (en) * 2002-08-20 2004-03-04 Corus Aluminium Walzprodukte Gmbh Al-Cu ALLOY WITH HIGH TOUGHNESS
    US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
    US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
    US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
    US7815758B2 (en) 2002-08-20 2010-10-19 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
    US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
    US8043445B2 (en) 2003-06-06 2011-10-25 Aleris Aluminum Koblenz Gmbh High-damage tolerant alloy product in particular for aerospace applications
    DE112004000995B4 (de) 2003-06-06 2021-12-16 Corus Aluminium Walzprodukte Gmbh Hoch schadenstolerantes Aluminiumlegierungsprodukt, insbesondere für Luft- und Raumfahrtanwendungen
    WO2008003503A2 (en) * 2006-07-07 2008-01-10 Aleris Aluminum Koblenz Gmbh Method of manufacturing aa2000 - series aluminium alloy products
    RU2443798C2 (ru) * 2006-07-07 2012-02-27 Алерис Алюминум Кобленц Гмбх Способ производства продуктов из алюминиевых сплавов серии аа2000
    WO2008003503A3 (en) * 2006-07-07 2008-02-21 Aleris Aluminum Koblenz Gmbh Method of manufacturing aa2000 - series aluminium alloy products
    CN100469928C (zh) * 2007-03-30 2009-03-18 中南大学 一种高强耐热铝合金及其管材的制备方法
    CN105274408A (zh) * 2015-10-15 2016-01-27 东北轻合金有限责任公司 一种航空航天用铝合金铆钉线材的制造方法
    CN109898000A (zh) * 2019-03-29 2019-06-18 郑州轻研合金科技有限公司 一种超高强耐热铝合金及其制备方法
    CN109825749A (zh) * 2019-04-10 2019-05-31 上海裕纪金属制品有限公司 一种可冲压铝合金型材耐热耐腐蚀热处理方法及铝合金型材
    CN115874031A (zh) * 2022-12-07 2023-03-31 东北轻合金有限责任公司 一种航空用2a12铝合金板材的加工方法
    CN115874031B (zh) * 2022-12-07 2023-08-15 东北轻合金有限责任公司 一种航空用2a12铝合金板材的加工方法

    Also Published As

    Publication number Publication date
    PT989195E (pt) 2002-08-30
    ATE216737T1 (de) 2002-05-15
    EP0989195B1 (de) 2002-04-24
    ES2175647T3 (es) 2002-11-16
    DE59803924D1 (de) 2002-05-29

    Similar Documents

    Publication Publication Date Title
    DE69326838T3 (de) Zähe aluminiumlegierung mit kupfer und magnesium
    DE69836569T3 (de) Verfahren zur Erhöhung der Bruchzähigkeit in Aluminium-Lithium-Legierungen
    DE112004000995B4 (de) Hoch schadenstolerantes Aluminiumlegierungsprodukt, insbesondere für Luft- und Raumfahrtanwendungen
    US10435774B2 (en) 2XXX series aluminum lithium alloys having low strength differential
    EP0918095B1 (de) Verfahren zur Herstellung eines Strukturbauteiles aus einer Aluminium-Druckgusslegierung
    DE112004003147B4 (de) Al-Zn-Mg-Cu-Legierung
    DE102016118729A1 (de) Ein neues Hochdruck-Spritzgussverfahren für Aluminiumlegierungen für Anwendungen bei hoher Temperatur und in korrosiver Umgebung
    EP0610006A1 (de) Superplastische Aluminiumlegierung und Verfahren zu ihrer Herstellung
    DE2264997A1 (de) Ausscheidungshaertbare nickel-, eisenlegierung
    AT413035B (de) Aluminiumlegierung
    EP1682688A1 (de) Al-mg-si-aluminium-gusslegierung mit scandium
    DE2953182A1 (en) Aluminum alloy
    EP0989195B1 (de) Warmfeste Aluminiumlegierung vom Typ AlCuMg
    EP1518000B1 (de) Al-cu-mg-ag-legierung mit si, halbzeug aus einer solchen legierung sowie verfahren zur herstellung eines solchen halbzeuges
    DE60023753T2 (de) Wärmebehandlung für alterungshärtende aluminiumlegierungen
    DE102009049999A1 (de) Wärmebehandlung mit direktem Abschrecken für Aluminiumlegierung-Gussteile
    EP3176275A1 (de) Aluminium-silizium-druckgusslegierung. verfahren zur herstellung eines druckgussbauteils aus der legierung und karosseriekomponente mit einem druckgussbauteil
    DE102019100250A1 (de) Aluminium-legierung und verfahren zur herstellung
    DE10163039C1 (de) Warm- und kaltumformbares Bauteil aus einer Aluminiumlegierung und Verfahren zu seiner Herstellung
    DE60114281T2 (de) Guss- und Schmiedprodukt unter Verwendung einer Kupfer-basis Legierung
    DE112017007033T5 (de) Aluminiumlegierungen
    EP1587965B1 (de) Aluminiumlegierung mit hoher festigkeit und geringer abschreckempfindlichkeit
    DE60220835T2 (de) Aluminiumlegierung, gussköprer aus einer aluminiumlegierung und verfahren zur herstellung eines gussköprers aus einer aluminiumlegierung
    DE1483228A1 (de) Aluminiumlegierungen sowie aus diesen gefertigte Artikel
    DE2335113A1 (de) Aluminium-knetlegierungen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL PT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000929

    AKX Designation fees paid

    Free format text: AT BE CH DE DK ES FI FR GB IT LI NL PT SE

    17Q First examination report despatched

    Effective date: 20010222

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

    RBV Designated contracting states (corrected)

    Designated state(s): AT BE CH DE ES FR GB IT LI NL PT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL PT

    REF Corresponds to:

    Ref document number: 216737

    Country of ref document: AT

    Date of ref document: 20020515

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59803924

    Country of ref document: DE

    Date of ref document: 20020529

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020726

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20020522

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2175647

    Country of ref document: ES

    Kind code of ref document: T3

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 20030122

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APBQ Date of receipt of statement of grounds of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA3O

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 20030122

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20070926

    Year of fee payment: 10

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20070924

    Year of fee payment: 10

    Ref country code: AT

    Payment date: 20070904

    Year of fee payment: 10

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    R26 Opposition filed (corrected)

    Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

    Effective date: 20030122

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20070926

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20070923

    Year of fee payment: 10

    Ref country code: IT

    Payment date: 20070926

    Year of fee payment: 10

    Ref country code: DE

    Payment date: 20071031

    Year of fee payment: 10

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: ALERIS ALUMINUM KOBLENZ GMBH

    RDAF Communication despatched that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSNREV1

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20071025

    Year of fee payment: 10

    27W Patent revoked

    Effective date: 20071207

    GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

    Effective date: 20071207

    Free format text: 20071207

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MP4A

    Effective date: 20080409

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20070917

    Year of fee payment: 10

    NLR2 Nl: decision of opposition

    Effective date: 20071207

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20070831

    Year of fee payment: 10