WO2003042339A1 - Procede de raffinage a echelle commerciale de gaz de petrole liquefie - Google Patents

Procede de raffinage a echelle commerciale de gaz de petrole liquefie Download PDF

Info

Publication number
WO2003042339A1
WO2003042339A1 PCT/CN2002/000806 CN0200806W WO03042339A1 WO 2003042339 A1 WO2003042339 A1 WO 2003042339A1 CN 0200806 W CN0200806 W CN 0200806W WO 03042339 A1 WO03042339 A1 WO 03042339A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied petroleum
petroleum gas
mpa
disulfide
catalyst
Prior art date
Application number
PCT/CN2002/000806
Other languages
English (en)
French (fr)
Inventor
Qing Wu
Zhenyi Liu
Original Assignee
Beijing Sj Environmental Protection And New Material Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sj Environmental Protection And New Material Co.,Ltd. filed Critical Beijing Sj Environmental Protection And New Material Co.,Ltd.
Priority to US10/495,250 priority Critical patent/US7342145B2/en
Publication of WO2003042339A1 publication Critical patent/WO2003042339A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane

Definitions

  • the invention belongs to the field of refining and processing of liquefied petroleum gas, and particularly relates to a method for industrially removing sulfur compounds in liquefied petroleum gas under alkali-free conditions.
  • the liquefied petroleum gas before refining in refining contains a certain amount of sulfides, including inorganic sulfides such as hydrogen sulfide and elemental sulfur, and organic sulfides such as mercaptans, disulfides, and thiophene.
  • sulfides including inorganic sulfides such as hydrogen sulfide and elemental sulfur, and organic sulfides such as mercaptans, disulfides, and thiophene.
  • the original active sulfur such as sulfur has strong corrosiveness, odor and toxicity, and during the use of the product, these sulfur compounds will be converted into highly corrosive toxic and harmful substances, such as sulfur dioxide, sulfur trioxide, etc. It seriously pollutes the environment and harms human health.
  • the desulfurization process generally uses alcohol amine solvents such as monoethanolamine, diethanolamine, N-methyldiethanolamine, or diisopropanolamine to remove hydrogen sulfide from liquefied petroleum gas obtained during processing such as catalytic cracking, delayed coking, and hydrocracking. (Hereinafter referred to as alcoholamine treatment). Under appropriate operating conditions, hydrogen sulfide can be removed to trace levels. Liquefied petroleum gas generally still contains a small amount of hydrogen sulfide after being treated with alcohol amines.
  • the deodorization process includes two steps: First, the above-mentioned liquefied petroleum gas treated with alcohol amines is firstly subjected to pre-alkali washing (usually using sodium hydroxide solution) to further remove hydrogen sulfide (also known as fine desulfurization, The reaction of sodium hydroxide and hydrogen sulfide to generate sodium sulfide), the lye after pre-alkali washing is recycled, but when the sodium sulfide content reaches a certain level, it must be replaced; the second is to liquefied petroleum gas after pre-alkali washing to mercaptan Conversion processing.
  • pre-alkali washing usually using sodium hydroxide solution
  • hydrogen sulfide also known as fine desulfurization
  • the thiol conversion method for liquefied petroleum gas was first proposed by the Universal Oil Company (UOP) in 1958, and has developed a mature liquid-liquid extraction-catalytic oxidation process.
  • the most basic process of this process is to dissolve sodium hydroxide solution in cobalt polyphthalocyanine or sulfonated cobalt phthalocyanine catalyst, and then mix and react with the liquefied petroleum gas in the tower or container.
  • the thiol in the liquefied petroleum gas is hydrogen.
  • the sodium oxide reacts to form sodium thiolate and enters the catalyst lye.
  • the reaction formula is:
  • the catalyst lye containing sodium thiolate when the catalyst lye containing sodium thiolate is mixed with air and reacted in the oxidation tower, the tail gas generated not only causes serious environmental pollution (one of the major malodor sources in the plant area), but also causes material loss. Third, the process equipment and procedures are relatively complicated, and the operating costs are also high.
  • CN 1194294A discloses an alkali-free deodorization process for aviation kerosene, which comprises mixing raw aviation fuel with an activator solution and desulfurizing it with air through a catalyst bed.
  • the catalyst used is sulfonated cobalt phthalocyanine.
  • DE 19525190 A1 discloses a method for removing thiols from hydrocarbon distillates such as crude oil distillates, gasoline, kerosene, and diesel by an oxidation method.
  • an oxidant is used to convert the thiol to two Sulfides, wherein the heterogeneous catalyst composition includes water-soluble inorganic salts of Cu, Fe, M, and / or Co, and oxides of Ca, Si, Cu, Mg, Mn, Fe, Zn, and / or Al.
  • JP Sho 47-30162B discloses a method for converting a thiol into a disulfide by an oxidation method.
  • US 5659106 discloses a method for removing mercaptans and olefins from a petroleum feed liquid by a catalytic distillation process.
  • CN1196971 discloses a desulfurizing agent and a preparation method thereof.
  • the effective component of the desulfurizing agent is Ca 2 Fe 2 0 5 , which is used for removing hydrogen sulfide from chemical raw material gas made from coal or petroleum.
  • the main purpose of the present invention is to provide a method for industrially refining liquefied stone sleeves with a small amount of three waste treatments, a high utilization rate of raw materials, and high-efficiency gas liquefaction.
  • a further object of the present invention is to obtain a disulfide product in a refined liquefied petroleum gas.
  • the general technical idea of the present invention is to make a big change to the original industrial deodorization process: the fixed-bed reaction method is used to finely desulfurize the liquefied petroleum gas after the alcohol amine treatment, instead of the original sodium hydroxide solution. Pre-alkali washing and fine desulfurization process; fixed-bed catalytic oxidation is used to perform thiol conversion on liquefied petroleum gas instead of the original liquid-liquid extraction-catalytic thiol oxidation conversion process; Separation of liquefied petroleum gas Liquefied petroleum gas refined products and disulfide-containing mixtures were obtained. Further separation of the disulfide-containing mixture can result in high-value disulfide products.
  • the basic technical solution for realizing the main purpose of the present invention is: the liquefied petroleum gas treated with alcohol amines is subjected to refined desulfurization and conversion of mercaptans in sequence through a desulfurizing agent and a catalyst provided in a fixed bed reactor, and the The product of the reaction between hydrogen sulfide and iron calcium oxide or hydrated iron calcium oxide is attached to the desulfurizing agent.
  • the thiol in the liquefied petroleum gas and the trace air remaining in the liquefied petroleum gas react under the catalytic action of the catalyst when the thiol is converted.
  • Disulfide is generated, and the generated disulfide exits the fixed-bed reactor with the liquefied petroleum gas stream; the liquefied petroleum gas after conversion of mercaptan is subjected to rectification treatment to obtain a liquefied petroleum gas refined product;
  • the desulfurizing agent is an active ingredient of iron calcium oxide Or hydrated iron calcium oxide desulfurizer,
  • the catalyst is a catalyst whose active ingredient is iron calcium oxide or hydrated iron calcium oxide.
  • the first embodiment of the present invention is: based on the above basic technical solution, fine desulfurization and conversion of thiols are performed in different fixed-bed reactors; the liquefied petroleum gas treated with alcohol amine first enters the bed provided with a desulfurizing agent In the first-stage fixed-bed reactor, the LPG flows through the desulfurizer bed from the bottom to the top to perform fine desulfurization; after the desulfurization, the liquefied petroleum gas enters the back-stage fixed-bed reactor equipped with the catalyst bed, from bottom to top.
  • rectification is to separate the mixture containing disulfide and liquefied petroleum gas after the conversion of thiol through a rectifying tower, and then collect the liquefied petroleum gas refined product from the top of the column, At the end, a disulfide-containing mixture is obtained.
  • the inlet concentration of hydrogen sulfide in the liquefied petroleum gas is less than or equal to
  • the fixed-bed reactor is preferably a fixed-bed desulfurization tower.
  • the bed of the fixed desulfurization tower is provided with a solid desulfurizer bed.
  • the operating conditions for fine desulfurization are: 10 to 100 ° C, preferably normal temperature or 30 to 60 ° C, pressure (gauge pressure) is 0.4 to 2.5 MPa (MPa), preferably 0.8 to 1.8 MPa, liquid space velocity is 1 to 2 hours ⁇ 1 (" 1 ), desulfurizer filling height is less than or It is equal to 10 meters (10 m) and the aspect ratio is 3 to 6 to 1.
  • the replacement cycle is generally not less than six months .
  • the invention adopts a high-efficiency desulfurizing agent to completely remove hydrogen sulfide in liquefied petroleum gas.
  • a suitable desulfurizing agent is a desulfurizing agent using iron calcium oxide or hydrated iron calcium oxide as an active ingredient.
  • the iron calcium oxide is dicalcium ferrate (chemical formula 2CaO ⁇ Fe 2 0 3 or Ca 2 Fe 2 0 5 ) is preferred.
  • Iron hydrated calcium oxide is tricalcium ferrate hexahydrate (chemical formula is 3CaO ⁇ Fe 2 0 3 ⁇ 63 ⁇ 40 or Ca 3 (Fe0 3 ) 2 ⁇ 63 ⁇ 40) is preferred, and tricalcium ferrite hexahydrate is more preferred among dicalcium ferrite and tricalcium ferrite hexahydrate.
  • the content of the active ingredient accounts for more than 80% (80% -100%), preferably 85% -95%, more preferably 91 ⁇ 95% based on the total amount of the desulfurizing agent.
  • the desulfurizing agent may contain other ingredients, mainly calcium oxide . Pinching In sulfur, the products produced by the reaction of hydrogen sulfide with dicalcium ferrite or tricalcium ferrite hexahydrate are mainly sulfur, ferrous sulfide, and the symbiosis of ferrous sulfide and sulfur.
  • the fixed-bed reactor when the thiol is converted, is preferably a fixed-bed catalytic reactor.
  • a solid catalyst bed is provided on the fixed bed of the catalytic reactor, and the thiol content in the liquefied petroleum gas after fine desulfurization is refined.
  • the inlet concentration is less than or equal to 10,000 ppm.
  • the operating conditions for thiol conversion are: temperature is 0 to 100 ° C, preferably normal temperature or 30 to 60 ° C, pressure (gauge pressure) is 0.4 to 2.3 MPa, preferably 0.7 to 1.6 MPa, and liquid space velocity is 1 to 4 hours- 1 , catalyst loading height is less than or equal to 10 meters, and the aspect ratio is 3 to 6 to 1.
  • the disulfide exits the fixed-bed catalytic reactor with the liquefied petroleum gas stream; after one end of the operation, when the doctor's experiment out of the fixed-bed catalytic reactor fails or the copper sheet corrosion test fails, that is, the catalyst When deactivated, the catalyst needs to be replaced. According to estimates, the replacement cycle is generally not less than two years.
  • the invention uses a high-efficiency catalyst to completely convert the thiol in the liquefied petroleum gas.
  • a suitable catalyst is a catalyst using iron calcium oxide or hydrated iron calcium oxide as an active ingredient, and the iron calcium oxide is dicalcium ferrate. 2CaO ⁇ Fe 2 0 3 is preferred. Ferric calcium oxide hydrate is tricalcium ferrate hexahydrate. 3CaO ⁇ Fe 2 0 3 ⁇ 63 ⁇ 40 is preferred. Among dicalcium ferrate and tricalcium ferrite hexahydrate, iron hexahydrate is more preferred. Tricalcium acid.
  • the active ingredient content accounts for more than 80% (80% -100%), preferably 85% -95%, and more preferably 91 ⁇ 95% based on the total amount of the catalyst.
  • the catalyst may contain other components, mainly calcium oxide.
  • the mixture containing disulfide and liquefied petroleum gas after the thiol conversion is sent from the lower part to the rectification tower, where the disulfide inlet concentration is 10-300 ppm,
  • the bottom pressure of the tower is 0.3 to 2.1 MPa
  • the top pressure is 0.2 to 2.0 MPa
  • the temperature at the bottom of the tower is 60 to 130 ° C
  • the temperature at the top of the tower is 50 to 70 ° C
  • the reflux ratio is 2 to 9
  • the reflux temperature is 25 to 45 ° C
  • after separation collect sulfur-free or ultra-low sulfur (less than 1 ppm) liquefied petroleum gas refined products from the top of the tower, and obtain a disulfide-containing mixture from the bottom of the tower, where the disulfide content is 10 To 80% by weight.
  • the second embodiment of the present invention is that the remaining first embodiment is the same, except that the rectification includes first-stage rectification and post-stage rectification, and the first-stage rectification is the same as that in the first embodiment.
  • the rectification includes first-stage rectification and post-stage rectification
  • the first-stage rectification is the same as that in the first embodiment.
  • the specific operating conditions of the post-stage distillation are: the disulfide and liquefied petroleum gas output from the bottom of the previous stage distillation column
  • the mixture is sent from the lower part to the subsequent distillation column for further separation: hot water or low pressure (gauge pressure 0.1 to 0.6Mpa) steam is used as the heat source, the raw materials are heated by the reboiler, and the light components are gasified in the column.
  • hot water or low pressure (gauge pressure 0.1 to 0.6Mpa) steam is used as the heat source, the raw materials are heated by the reboiler, and the light components are gasified in the column.
  • Ascending the internal parts of the column are trays or packings, and the liquid phase is reorganized and concentrated at the bottom of the column to separate the gas and liquid.
  • the bottom pressure of the subsequent distillation column is 0.15 to 1.9 MPa, and the top pressure is 0.1 to 1.8.
  • the temperature at the bottom of the column is 60 to 110 C
  • the temperature at the top of the column is 45 to 65 V
  • the reflux ratio is 2-6
  • the reflux temperature is 25 to 45 ° C.
  • the purity is 85 from the bottom of the distillation column. % Of disulfide products.
  • the third embodiment of the present invention is: The remaining first embodiment described above is the same, except that: refined desulfurization and conversion of mercaptans are performed in the same fixed-bed reactor;
  • the fixed-bed reactor is preferably a fixed-bed reaction tower,
  • the fixed bed of the reaction tower is provided with a solid desulfurization agent bed and a solid catalyst bed above the desulfurization agent bed;
  • the inlet concentration of hydrogen sulfide in the liquefied petroleum gas is less than or equal to 1000 ppm, preferably less than or equal to 100 ppm, refined desulfurization and conversion
  • the operating conditions of the thiol are: the temperature is 10 to 100 ° C, preferably normal temperature or 30 to 6CTC, the pressure (gauge pressure) is 0.4 to 2.5 MPa (MPa), preferably 0.8 to 1.6 MPa, and the liquid space velocity is 0.5 to For 1 hour (h " 1 ), the total loading height of the desulfurizer and catalyst is less than or equal to 10 meters (10 m),
  • the liquefied petroleum gas flows through the fixed-bed reaction tower in order from bottom to top. Desulfurizer bed and catalyst bed; when flowing through the desulfurizer bed, the product of the reaction between hydrogen sulfide and desulfurizer adheres to the desulfurizer and completely removes the hydrogen sulfide; when flowing through the catalyst bed, Catalyst
  • residual traces of air (or dissolved oxygen) in the liquefied petroleum gas react with the thiols contained in the liquefied petroleum gas to form a disulfide (sulfide), and the disulfide exits the fixed-bed reaction with the liquefied petroleum gas stream.
  • the fourth embodiment of the present invention is: The remaining second embodiment is the same, except that the refined desulfurization and conversion of mercaptans are performed in the same fixed-bed reactor;
  • the fixed-bed reactor is preferably a fixed-bed reaction tower,
  • the fixed bed of the reaction tower is provided with a solid desulfurization agent bed and a solid catalyst bed above the desulfurization agent bed;
  • the inlet concentration of hydrogen sulfide in the liquefied petroleum gas is less than or equal to 1000 ppm, preferably less than or equal to 100 ppm, refined desulfurization and conversion
  • the operating conditions of the thiol are: the temperature is 10 to 100 ° C, preferably normal temperature or 30 to 60 ° C, the pressure (gauge pressure) is 0.4 to 2.5 MPa (MPa), preferably 0.8 to 1.6 MPa, and the liquid space velocity is 0.5 to 1 hour (h " 1 ), the total loading height of the desulfurizer and catalyst is less than or equal to 10 meters (10 m), and the
  • the liquefied petroleum gas flows through the fixed bed in order from bottom to top.
  • Desulfurization agent bed and catalyst bed of reaction tower When flowing through the desulfurization agent bed, the product of reaction between hydrogen sulfide and desulfurization agent is attached to the desulfurization agent to completely remove hydrogen sulfide therein;
  • the catalyst In use, the residual trace air (or dissolved oxygen) in the liquefied petroleum gas reacts with the thiol contained in the liquefied petroleum gas to form a disulfide (sulfide).
  • the disulfide exits the fixed-bed reaction with the liquefied petroleum gas stream.
  • Device Device.
  • the liquefied petroleum gas refining method of the present invention completely abandons the traditional lye treatment process, and only needs to use a solid desulfurizing agent and a catalyst through the fine desulfurization step and The step of converting thiol can achieve the purpose of complete desulfurization and conversion of thiol.
  • the solid desulfurizing agent and catalyst used therein have high desulfurization efficiency and thiol conversion efficiency, and the disulfide formed in the thiol conversion can be separated and recovered, thereby obtaining high-quality liquefied petroleum gas products and disulfide at the same time. ⁇ ⁇ Product.
  • the process of the invention is greatly simplified, the cost is reduced, and the economic benefit is improved.
  • it is not necessary to add organic alkali or inorganic depletion, to achieve a truly completely alkali-free deodorization process, and without alkali residue and secondary pollution, protecting the environment and human health.
  • (2) When the method of the present invention is used to convert thiols contained in liquefied petroleum gas, under the action of a catalyst, only the "dissolved oxygen" in the liquefied petroleum gas can be used to directly oxidize the thiols therein to disulfides It is not necessary to pass in air or oxygen during oxidation, which just meets the safety requirements for the treatment of liquefied petroleum gas.
  • thiol is first absorbed and dissolved in a catalyst-containing lye (sodium hydroxide) to generate sodium thiol, and then the catalyst lye brings sodium thiol into the oxidation tower, and at the same time, air or oxygen is introduced.
  • the sodium thiolate is oxidized to disulfide and the lye is regenerated.
  • the method of the present invention fundamentally changes the method for regenerating mercaptans in liquefied petroleum gas by aeration oxidation, and the conversion of mercaptans is complete, which solves the unresolved problems that people have long to solve.
  • the prior art has not disclosed or mentioned the desulfurization of liquefied petroleum gas with a desulfurizing agent using iron calcium oxide as an active ingredient, nor has it disclosed or mentioned the use of hydrated iron calcium oxide as a desulfurizing agent or the desulfurization.
  • Agent for desulfurization of liquefied petroleum gas no disclosure or mention of a catalyst using iron calcium oxide or hydrated iron calcium oxide as an active ingredient or the catalyst used to convert thiol of liquefied petroleum gas, nor did it disclose or mention
  • the disulfide produced by the thiol conversion is further separated in the refined liquefied petroleum gas to obtain a disulfide product of industrial or commercial value; these are further innovations that distinguish the present invention from the prior art.
  • two fixed-bed reactors are preferably used to perform refined desulfurization and conversion of mercaptan to the liquefied petroleum gas, respectively, which has positive significance in industrialized production.
  • fine desulfurization the active ingredient iron calcium oxide or hydrated iron calcium oxide participates in the reaction as a reactant, so the failure time is short (six months or more).
  • the active ingredient iron calcium oxide or iron calcium hydrate Oxide participates in the reaction as a catalyst, so the deactivation time is longer (two years or more); therefore, refined desulfurization and conversion of thiols are performed in different fixed-bed reactors, which is more convenient for replacing the desulfurizing agent and catalyst.
  • FIG. 1 is a schematic diagram of a process flow of Embodiment 1 of the present invention.
  • FIG. 2 is an X-ray diffraction pattern of a desulfurizing agent used in the present invention.
  • the active ingredient is dicalcium ferrite 2CaO ⁇ Fe 2 0
  • FIG. 3 is an X-ray diffraction pattern of another desulfurizing agent used in the present invention.
  • the active ingredient is tricalcium ferrite hexahydrate 3CaO ⁇ Fe 2 0 3 ⁇ 6H 2 0
  • a desulfurizing agent using iron calcium oxide as an active ingredient can be prepared as follows: 1 containing iron oxide and / or iron hydroxide and / or The powder of iron nitrate is mixed with powders of calcium oxide and / or calcium hydroxide and / or calcium bicarbonate and / or calcium carbonate, wherein the molar ratio of iron to calcium is 1: 1 to 1: 1.5, preferably 1: 1 to 1 : 1.2, more preferably 1: 1 to 1: 1.05; 2 stir the above mixture with water, shape and dry; 3 step 2 roast the product in an oxidizing atmosphere at 850 ⁇ 950 ° C for 2 ⁇ 3 hours; 4 step 3 The obtained product is cooled to obtain a strip-shaped desulfurizing agent Tl with dicalcium ferrite 2CaO ⁇ Fe 2 0 3
  • the preferred specifications of the desulfurizer are: specific surface area of 1.8-10 m 2 / g, porosity of 40-65%, bulk density of 1.0-1. Lg / cm 2 , and penetrating sulfur capacity of 30 weight or more % And the lateral pressure strength was 110 N / cm.
  • a sample of the desulfurizing agent T1 was taken for X-ray diffraction, and the X-ray diffraction pattern shown in FIG. 2 was obtained. After comparison with an X-ray card (JCRD.S. card), the data in FIG. 2 shows that the main The composition is dicalcium ferrite 2CaO * Fe 2 0 3 .
  • desulfurizer T2 with hydrated iron calcium oxide as an active ingredient.
  • the final product has a brown stripe appearance, and the diameter of the final product during molding is 2-4 mm and the length is 5-25 mm.
  • the specifications of the desulfurizer T2 are: specific surface area is 1.8-10 m 2 / g, void ratio is 40-60%, and bulk density is ll-1.2g / cm 2 .
  • the penetrating sulfur capacity is 30% by weight or more, and the lateral pressure strength is 80 N / cm.
  • a sample of the desulfurizing agent T2 was taken for X-ray diffraction.
  • the X-ray diffraction pattern shown in FIG. 3 was found and compared with an X-ray card (JCPDS card).
  • JCPDS card X-ray card
  • catalyst Cl with iron calcium oxide as active ingredient.
  • the preparation method of this catalyst is the same as the above-mentioned method for preparing a desulfurizing agent using iron calcium oxide as an active ingredient.
  • catalyst C2 using iron hydrated calcium oxide as an active ingredient.
  • the preparation method of this catalyst is the same as the above-mentioned method for preparing a desulfurizing agent using hydrated iron calcium oxide as an active ingredient.
  • a two-stage fixed-bed reactor is used to refine desulfurization and conversion of mercaptan, and a two-stage distillation method to refine liquefied petroleum gas.
  • A is a fixed-bed precision desulfurization reactor (tower) for removing hydrogen sulfide
  • B is a fixed-bed catalytic reactor / tower for catalytic oxidation of thiol and conversion to disulfide
  • C and D are respectively front The first-stage rectification tower and the latter-stage rectification tower, the former-stage rectification tower is used for separating disulfide in liquefied petroleum gas, and the latter-stage rectification tower is used for obtaining disulfide products.
  • 1 is a buffer tank
  • 2 are reboilers
  • 3 5 are reflux tanks
  • 6, 7, 8 are pumps
  • 9, 10, 11 are coolers.
  • the liquefied petroleum gas is processed from the inlet i through a process consisting of eight, B, C, and D, and qualified liquefied petroleum gas products and disulfide products are obtained at the outlets al and a2, respectively. . If the pressure of the incoming material can meet the requirements, the buffer tank can be omitted.
  • 1'Fine desulfurization The liquefied petroleum gas after ethanolamine desulfurization is firstly subjected to a fine desulfurization treatment in a fixed bed desulfurization tower.
  • the desulfurizing agent used therein is the above-mentioned desulfurizing agent T2.
  • the desulfurizing agent T2 contains tricalcium ferrite hexahydrate 3CaO ⁇ Fe 2 0 3 ⁇ 6H 2 0 as the active ingredient, the content of tricalcium ferrite hexahydrate is 85-95%, and the remaining components are calcium oxide, and the bulk density is 1.15 g / cm 3 .
  • the desulfurization tower is equipped with 1-2 layers of non-embroidered steel mesh with perforations smaller than ⁇ 2 millimeters (mm).
  • the non-embroidered steel mesh is placed on a baffle fixed in the tower.
  • the thickness of the mesh is 200-300mm and the particle size is ⁇ 5-.
  • a 20 mm porcelain ball is filled with a desulfurizing agent on top of the porcelain ball layer, and then 1-2 layers of the upper layer porcelain ball with a thickness of 200-300 mm and a particle size of ⁇ 5-20 mm are laid on the desulfurizing agent, and then set on the upper layer porcelain ball
  • the steel wire mesh is not embroidered, but forms a bed of desulfurizing agent.
  • the filling height of the desulfurizing agent is 7 meters, and the diameter ratio is 5: 1.
  • the liquefied petroleum gas after ethanolamine dehydrosulfide flows from the bottom to the top of the desulfurizing agent bed.
  • the temperature is selected from normal temperature and the pressure is in the range of 0.6 ⁇ 2.5 MPa.
  • the preferred range is 0.8 ⁇ 1.8 MPa (MPa).
  • the flow rate of the liquefied petroleum gas can be controlled according to the technical indicators of the filling height, the aspect ratio, the bulk density, and the liquid space velocity of the liquefied petroleum gas.
  • the flow of liquefied petroleum gas shall be equal to the product of the volume and bulk density of the space occupied by the desulfurizing agent and the liquid space velocity of the liquefied petroleum gas. Its value is 24.78 tons / hour.
  • the content of hydrogen sulfide in the LPG material is less than 1 ppm.
  • the products produced by the reaction of hydrogen sulfide with dicalcium ferrite or tricalcium ferrite hexahydrate are mainly sulfur, ferrous sulfide, and the symbiotic organism of ferrous sulfide and sulfur. The products are attached to the desulfurizer and the The hydrogen sulfide was completely removed.
  • the desulfurization agent After running for a period of time, when hydrogen sulfide appears in the liquefied petroleum gas after the fine desulfurization, that is, the desulfurization agent fails, the desulfurization agent should be unloaded, and nitrogen should be purged before the unloading, and an appropriate amount of water is sprayed into the tower. Then remove the desulfurizing agent that has failed.
  • the liquefied petroleum gas after the fine desulfurization treatment is sent to a fixed-bed reactor in the subsequent stage for mercaptan conversion.
  • the latter stage fixed bed reactor is a catalytic oxidation fixed bed reactor, in which the catalyst used is the above-mentioned catalyst C2, and the catalyst C2 uses tricalcium ferrite hexahydrate 3CaO ⁇ Fe 2 0 3 ⁇ 6H 2 0 as the active ingredient, and ferric acid hexahydrate
  • the content of tricalcium is 85 ⁇ 95%, and the remaining components are calcium oxide; the bulk density is 1.15 g / cra 3 .
  • the structure of the catalyst bed is basically the same as that of the above-mentioned desulfurizer bed.
  • the liquid space velocity (LHSV) is selected as Sh- 1 . Because the flow of liquefied petroleum gas from the previous fixed-bed reactor is 24.78 tons / hour, the height of the catalyst bed in this fixed-bed reactor is selected to be 7 meters. The diameter ratio is about 5.
  • the temperature is normal temperature and the pressure is selected in the range of 0.5 to 2.3 MPa. The principle is that the pressure of the fixed-bed reactor in this stage is slightly lower than that of the fixed-bed reactor in the previous stage (about 0.1 to 0.2 MPa lower), so it is preferred. The pressure range is 0.7 to 1.6 MPa.
  • the liquefied petroleum gas flows through the fixed bed of the catalyst from the bottom up to convert the thiol.
  • the catalyst under the action of the catalyst, the residual trace air (or dissolved oxygen) in the liquefied petroleum gas and the thiol contained in the liquefied petroleum gas occur.
  • the oxidation reaction generates disulfide (sulfide), and the disulfide exits the fixed-bed catalytic reactor with the liquefied petroleum gas stream.
  • the liquefied petroleum gas no longer contains mercaptans, and all the mercaptans are converted into disulfides.
  • the mercaptan is converted, when the doctor's experiment flowing out of the fixed-bed catalytic reactor fails or the copper sheet corrosion test fails, that is, the catalyst is deactivated, and the catalyst should be degassed, and nitrogen should be purged before degassing. After spraying an appropriate amount of water into the tower, the deactivated catalyst was taken out.
  • Liquefied petroleum gas refined products are obtained by fore-stage distillation: the liquefied petroleum gas after conversion of mercaptan is subjected to fore-stage distillation treatment, so as to separate the liquefied petroleum gas from the disulfide produced by the transformation, and obtain liquefied petroleum gas refined products and Sulfide materials.
  • the liquefied petroleum gas after the thiol conversion is sent from the lower part of the column to the fore-stage rectification column, and the disulfide content in the material at the inlet is about 80 ppm.
  • the pressure at the top of the tower is about 0.1 MPa lower than the pressure at the bottom of the tower, 0.2 ⁇ 2.0 MPa, preferably 0.5 l.4 MPa, the temperature at the bottom of the tower is about 110 ° C, and the top of the tower The temperature is about 55 ° F, the reflow ratio is 2 to 9, reflow The temperature is 25 to 45 ° C, preferably 30 to 40 ° C.
  • the gas collected from the top of the tower is condensed to obtain sulfur-free or ultra-low sulfur (less than 1 ppm) liquefied petroleum gas refined products.
  • Disulfide product is obtained by subsequent distillation:
  • the mixture containing disulfide and liquefied petroleum gas output from the bottom of the previous distillation column is sent from the lower part to the rear distillation column.
  • the disulfide content in the inlet material is 30%
  • the bottom pressure of the subsequent distillation column is 0.15 ⁇ 1.9 MPa, which is lower than the top pressure of the previous distillation column, preferably 0.5 MPa
  • the top pressure is slightly lower than the bottom pressure, which is 0.1 ⁇ 1.8 MPa
  • the bottom temperature of the rectification column is about 100 ° F
  • the top temperature is about 50 ° C
  • the reflux ratio is 2-6
  • the reflux temperature is 25 to 45 ° C, preferably 30 to 40 ° C
  • collected from the bottom of the column A disulfide product with a purity of about 90%.
  • the principles for determining the relevant parameters are as follows: 1
  • the logistics should be in a balanced state, for example: the flow of liquefied petroleum gas should be basically the same before and after. 2
  • the pressure of the downstream equipment is not greater than that of the upstream equipment.
  • Other embodiments of the invention should also adhere to the above principles.
  • Example 1 was repeated with the following differences:
  • the content of the active ingredient tricalcium ferrate 3CaO 3 FeO 3 3 CaO ⁇ Fe 2 0 3 ⁇ 6H 2 0 in the desulfurizing agent T2 used for fine desulfurization was 91-95%, and the remaining components were mainly
  • the relevant operating conditions chosen for calcium oxide with a bulk density of 1.2 g / cm 3 0 are:
  • the temperature is 10-30 ⁇
  • the available pressure range is 0.8-1.1 MPa
  • the liquid space velocity is 1 hour (h " 1 )
  • the filling height of the desulfurizing agent is about 7.49 meters
  • the aspect ratio is 4: 1.
  • the temperature is 30-50 ° C, the available pressure range is 1.1-1.4 MPa, the liquid space velocity is 1.5 hours (I 1 ), the filling height of the desulfurizer is about 7.60 meters, and the height-diameter ratio is 5: 1.
  • the temperature is 60-100 ° C, the available pressure range is 1.4-1.8 MPa, the liquid space velocity is 2 hours (If 1 ), the filling height of the desulfurizer is 7.79 meters, and the height-diameter ratio is 6: 1.
  • Example 1 was repeated, except that the desulfurizing agent T1 was used in the fine desulfurization, and the content of the active ingredient dicalcium ferric acid 2CaO -Fe 2 0 3 in the desulfurizing agent T1 was 91-95%, and the osmium component was mainly calcium oxide.
  • the bulk density was 1.1 g / cm 3 .
  • the hydrogen sulfide in the liquefied petroleum gas reacts with dicalcium ferrite to generate sulfur and a mixture of ferrous sulfide and Fe 7 S 8 , and the product is attached to the desulfurizing agent.
  • the relevant operating conditions selected are:
  • the temperature is 10-30 ° C
  • the pressure range available is 0.8-1.1 MPa
  • the liquid space velocity is 1 hour ⁇ 1 (h " 1 )
  • the desulfurizer filling height is about 7.71 meters
  • the height-diameter ratio 4: 1 The temperature is 10-30 ° C
  • the pressure range available is 0.8-1.1 MPa
  • the liquid space velocity is 1 hour ⁇ 1 (h " 1 )
  • the desulfurizer filling height is about 7.71 meters
  • the height-diameter ratio 4: 1 The temperature is 10-30 ° C
  • the pressure range available is 0.8-1.1 MPa
  • the liquid space velocity is 1 hour ⁇ 1 (h " 1 )
  • the desulfurizer filling height is about 7.71 meters
  • the height-diameter ratio 4: 1 The temperature is 10-30 ° C
  • the pressure range available is 0.8-1.1 MPa
  • the liquid space velocity is 1 hour ⁇ 1 (h " 1 )
  • the desulfurizer filling height is about 7.71
  • the temperature is 30-50 ° C, the available pressure range is 1.1-1.4 MPa, the liquid space velocity is 1.5 hours ⁇ (h—, The filling height of the desulfurizer is about 7.82 meters, and the aspect ratio is 5: 1.
  • the temperature is 60-100 ° C, the available pressure range is 1.4-1.8 MPa, the liquid space velocity is 2 hours (h " 1 ), the desulfurizer loading height is 8.02 meters, and the height-diameter ratio is 6: 1.
  • Example 1 was repeated, except that the content of the active ingredient tricalcium ferrate hexahydrate 3CaO ⁇ Fe 2 0 3 ⁇ 63 ⁇ 40 in the catalyst C2 used in the thiol conversion was 91-95%, and the remaining components were mainly calcium oxide
  • the relevant operating conditions chosen for a bulk density of 1.2gcm 3 0 are:
  • the temperature is 10-30 ⁇ , the available pressure range is 0.7-1.0 MPa, the liquid space velocity is 2.5 hours (h- 1 ), the filling degree of the desulfurizer is about 5.52 meters, and the aspect ratio is 4: 1.
  • the temperature is 30-50 ° C, the available pressure range is 1.0-1.3 MPa, the liquid space velocity is 3.0 hours — 1 (" 1 ), the desulfurization agent loading degree is about 6.03 meters, and the height-diameter ratio is 5: 1 .
  • the temperature is 60-100 ⁇ , the available pressure range is 1.3-1.6 MPa, the liquid space velocity is 3.5 hours h— 1 ), the desulfurizing agent loading degree is 6.47 meters, and the height-diameter ratio is 6: 1.
  • Example 1 was repeated, with the following differences: the catalyst Cl for the conversion of mercaptans into thiol, the content of the active ingredient dicalcium ferrite 2CaO * -e 2 0 3 in the catalyst C1 was 91-95%, and the remaining ingredients were mainly calcium oxide.
  • the bulk density was 1.1 g / cm 3 .
  • the relevant operating conditions selected are-
  • the temperature is 10-30 ⁇ , the available pressure range is 0.7-1.0 MPa, the liquid space velocity is 1.5 hours (IT 1 ), the catalyst loading height is about 6.73 meters, and the diameter ratio is 4: 1.
  • the temperature is 30-50 ⁇ , and the available pressure range is 1.0-1.3 MPa, the liquid space velocity is 2.5 hours (h—the catalyst loading height is about 6.59 meters, and the aspect ratio is 5: 1.
  • the temperature is 60-100 ° C, and the available pressure range is 1.3-1.6 MPa, the liquid space velocity is 3.0 hours ⁇ (h—, the catalyst loading height is 7.01 meters, and the aspect ratio is 6: 1.
  • Example 1 was repeated, with the following differences: In the rectification, the bottom pressure of the fore-stage distillation column was about 0.5 MPa, the top pressure was about 0.4 MPa, and the temperature of the bottom of the fore-stage distillation column was about 60 °. C. The temperature at the top of the column is about 50 ° C; the bottom pressure of the post-stage rectification tower is 0.2 MPa, the top pressure is 0.1 MPa, the bottom temperature of the post-stage rectification tower is about 60 ° C, and the temperature at the top of the tower It is about 45 ° C. In the corresponding converted thiol, the pressure of the equipment is' 0.7 MPa, and the pressure of the equipment in the fine desulfurization is 0.8 MPa.
  • Example 7 Example 1 was repeated, with the following differences: In the rectification, the bottom pressure of the front-stage distillation column was about 2.0 MPa, the top pressure was about 1.9 MPa, and the temperature of the bottom of the front-stage distillation tower was about 130 °. C. The temperature at the top of the column is about 70 ° C; the bottom pressure of the subsequent distillation column is about 1.0 MPa, the pressure at the top of the column is about 0.8 MPa, the temperature at the bottom of the column is about 110 ° C, and the temperature at the top of the column It is about 65 ° C. In the corresponding converted thiol, the pressure of the equipment is 2.2 MPa, and the pressure of the equipment in the refined desulfurization is 2.4 MPa.
  • Example 1-7 One of Examples 1-7 was repeated, except that the mixture containing the disulfide after the separation in the front-stage rectification column was treated separately, and the operation in the back-stage rectification column was not performed, and only directly obtained from the outlet al. LPG refined products.
  • Example 1 was repeated with the following differences: fine desulfurization and conversion of mercaptans were performed in the same fixed-bed reactor; the fixed-bed reactor was preferably a fixed-bed reaction tower, and the fixed bed of the reaction tower was provided with tricalcium ferrate hexahydrate 3CaO ⁇ Fe 2 0 3 ⁇ 6H 2 0 is a solid fine desulfurization and conversion of thiol catalyst bed as an active ingredient; the inlet concentration of hydrogen sulfide in the liquefied petroleum gas is less than or equal to 1000 ppm, preferably less than or equal to 100 ppm.
  • the operating conditions for desulfurization and conversion of thiols are: temperature is 10 to 100 ° C, preferably normal temperature or 30 to 60 ° C, pressure (gauge pressure) is 0.4 to 2.5 MPa (MPa), preferably 0.8 to 1.6 MPa, liquid
  • pressure gauge pressure
  • MPa 2.5 MPa
  • MPa 0.8 to 1.6 MPa
  • liquid The space velocity is 0.5 to 1 hour — 1 (h ' 1 )
  • the total loading height of the desulfurization and catalyst is less than or equal to 10 meters (10 m)
  • the diameter ratio is 3 to 6 to 1.
  • the liquefied petroleum gas flows through the desulfurization and catalyst bed of the fixed-bed reaction tower in order from bottom to top; when passing through the lower half of the desulfurization and catalyst bed, the products of the reaction of hydrogen sulfide and desulfurization and catalyst adhere to the bottom half of the bed.
  • the hydrogen sulfide in the layer is completely removed; when flowing through the upper part of the desulfurization and catalyst bed, the residual trace gas in the liquefied petroleum gas and the mercaptan contained in the liquefied petroleum gas are under the action of the desulfurization and catalyst.
  • An oxidation reaction occurs to form a disulfide, and the disulfide exits the fixed-bed reactor with the liquefied petroleum gas stream.
  • Example 9 was repeated, with the following differences: fine desulfurization and conversion of mercaptans were carried out in a layered fixed-bed reaction tower; the lower layer of the reaction tower was effective with tricalcium ferrate hexahydrate 3CaO ⁇ Fe 2 0 3 ⁇ 63 ⁇ 40
  • the component desulfurizer bed is used for fine desulfurization.
  • the catalyst bed with tricalcium ferrate hexahydrate 3CaO ⁇ Fe 2 0 3 ⁇ 63 ⁇ 40 as the active component located on the upper part of the reaction tower is used to convert mercaptans; liquefied petroleum gas is from bottom to top.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)

Description

工业化精制液化石油气的方法
技术领域
本发明属于液化石油气的精制加工领域, 具体涉及一种在无碱条件下工业化脱除 液化石油气中硫化合物的方法。 背景技术
炼油中精制前的液化石油气含有一定数量的硫化物,包括硫化氢、单质硫等无机硫 化物和硫醇、二硫化物、 噻吩等有机硫化物, 其中硫化氢、硫醇以及初生态的单质硫等 原活性硫本身具有很强的腐蚀性、臭味和毒性,而且在产品使用过程中,这些硫化物均 会转化成腐蚀性很强的有毒、有害物质, 如二氧化硫、三氧化硫等, 严重污染环境并损 害人体健康, 即使是作为中间产品,其微量硫化物也会导致催化剂中毒和设备腐蚀等诸 多问题。这些杂质的存在会造成液化石油气的铜片腐蚀不合格,使产品质量达不到国家 规定标准, 从而影响正常生产与经济效益的提高。
目前国内外对液化石油气的精制包括脱硫和脱臭两个工序。脱硫工序一般用醇胺类 溶剂如单乙醇胺、 二乙醇胺、 N-甲基二乙醇胺或二异丙醇胺等对催化裂化、 延迟焦化、 加氢裂化等加工过程所得的液化石油气脱除硫化氢 (以下简称经醇胺处理)。 在合适的 操作条件下,可以将硫化氢脱至微量。液化石油气经醇胺处理后一般仍含有微量的硫化 氢, 如果不除去该杂质, 则会导致在脱臭工序中的催化剂失活, 影响精制效果和产品质 量。 因此, 脱臭工序包括两个步骤: 一是将上述经醇胺处理后的液化石油气, 先用预碱 洗(一般用氢氧化钠溶液)的方法进一步脱除硫化氢(也称作精脱硫, 由氢氧化钠与硫 化氢反应生成硫化钠), 预碱洗后的碱液循环使用, 但当硫化钠含量到一定程度时则必 须更换;二是将预碱洗后的液化石油气进行硫醇转化处理。液化石油气硫醇转化的方法 最早是美国环球油品公司 (UOP) 1958年提出的, 发展至今形成了成熟的液液抽提-催 化氧化工艺。该工艺最基本的过程是使氢氧化钠溶液溶解聚酞菁钴或磺化酞菁钴催化剂 后, 同液化石油气在塔内或容器内充分混合、反应, 液化石油气中的硫醇同氢氧化钠反 应生成硫醇钠进入催化剂碱液中。 反应式是:
RSH + NaOH ► RSNa + ¾0 携带了硫醇钠的催化剂碱溶液同空气混合后进入氧化塔反应生成二硫化物, 反应式是:
4RSNa + 02 + 2¾0 ► 2RSSR + 4NaOH 再经分离罐沉降使二硫化物与催化剂碱液分离,碱液循环回用。但实际上在二硫化物与 催化剂碱液分离时, 因工业化过程是一个连续的过程,二硫化物基本上仍留在催化剂碱 液中。
由此可见, 在脱臭工序过程中, 预碱洗所用减液必须经常更换, 有时甚至每天要更 换数次;氧化硫醇钠所生成的二硫化物基本上留在催化剂碱液中,致使催化剂碱液处理 过一定量的液化石油气后, 为保证液化石油气的含硫量达标, 必须更换; 这样, 脱臭工 序中就产生了大量的废碱液, 这些废碱液(俗称碱渣)的处理成为炼油企业的一个沉重 的负担。 对碱渣的排放处理不仅工艺复杂、 成本高, 而且会造成二次污染。 其次, 含硫 醇钠的催化剂碱液同空气混合后在氧化塔内反应时,所产生的尾气不仅造成严重的环境 污染(厂区主要恶臭源之一),还导致物料的损失。第三, 该工艺设备及流程较为复杂, 操作成本也较高。
CN 1194294A公开了一种航空煤油无碱脱臭工艺,包括将原料航煤与活化剂溶液经 混合后,与空气一起通过催化剂床层进行脱硫,所用催化剂为磺化酞菁钴。 DE 19525190 A1公开了一种通过氧化方法除去烃蒸馏物例如原油蒸镏物, 汽油, 煤油及柴油中硫醇 的方法, 即在碳纤维织物上的金属催化剂存在下, 利用氧化剂将硫醇转化成二硫化物, 其中, 非均相催化剂组成包括有 Cu, Fe, M和 /或 Co的水溶性无机盐, 和 Ca, Si, Cu, Mg, Mn, Fe, Zn和 /或 Al的氧化物。 JP昭 47-30162B公开了一种通过氧化方法 将硫醇转化成二硫化物的方法。 US 5659106公开了用催化蒸镏方法除去石油料液中硫 醇和烯烃的方法。 CN1196971公幵了一种脱硫剂及其制备方法。其中的脱硫剂的有效组 分为 Ca2Fe205,用于脱除由煤或石油制取的化工原料气中的硫化氢。该文献以及上述文 献均未提及对液化石油气使用固定床反应法精脱硫、也未提及使用固定床催化氧化法对 液化石油气进行硫醇转化。 发明内容
本发明的主要目的在于提供一种三废处理量少、原料利用率较高、并能高效率地对 液化石袖气迸行工业化精制的方法。本发明的进一步目的是在精制液化石油气中得到二 硫化物产品。
本发明总的技术构思是,对原有的工业化脱臭工序进行较大的改变:对经过醇胺处 理后的液化石油气使用固定床反应法精脱硫、而取代原有的用氢氧化钠溶液进行预碱洗 而精脱硫的工艺;使用固定床催化氧化法对液化石油气进行硫醇转化、而取代原有的液 液抽提 -催化氧化硫醇转化工艺;对硫醇转化后的含有二硫化物的液化石油气进行分离, 得到液化石油气精制品以及含有二硫化物的混合物。对含有二硫化物的混合物进行进一 步的分离, 可以得到高价值的二硫化物产品。
实现本发明主要目的的基本技术方案是:经过醇胺处理后的液化石油气通过设置在 固定床反应器中的脱硫剂和催化剂依次进行精脱硫和转化硫醇,精脱硫时液化石油气中 的硫化氢与铁钙氧化物或水合铁钙氧化物反应的生成物附着在脱硫剂上,转化硫醇时液 化石油气中的硫醇与液化石油气中残留的微量空气在催化剂的催化作用下反应生成二 硫化物,所生成的二硫化物随液化石油气流出固定床反应器;转化硫醇后的液化石油气 通过精馏处理得到液化石油气精制品;脱硫剂是有效成分为铁钙氧化物或水合铁钙氧化 物的脱硫剂, 催化剂是活性成分为铁钙氧化物或水合铁钙氧化物的催化剂。
本发明的第一个实施方案是: 以上述基本技术方案为基础,精脱硫和转化硫醇在不 同的固定床反应器中进行;经过醇胺处理后的液化石油气先进入设有脱硫剂床层的前级 固定床反应器,液化石油气自下向上流过脱硫剂床层而精脱硫;经过精脱硫后的液化石 油气进入设有催化剂床层的后级固定床反应器,自下向上流过催化剂床层而进行硫醇转 化;精馏是将转化硫醇后的含有二硫化物和液化石油气的混合物通过精熘塔分离后,从 塔顶收集得到液化石油气精制品, 从塔底得到含有二硫化物的混合物。
上述第一个实施方案中,在精脱硫时,液化石油气中硫化氢的入口浓度小于或等于
1000ppm 优选小于或等于 100 ppm, 固定床反应器优选固定床脱硫塔, 脱硫塔的固定' 床上设有固体脱硫剂床层; 精脱硫的操作条件是: 温度为 10至 100°C、 优选常温或 30 至 60°C, 压力 (表压) 为 0.4至 2.5兆帕 (MPa)、 优选 0.8至 1.8兆帕, 液体空速为 1 至 2小时―1 ( "1 ),脱硫剂装填高度为小于或等于 10米( 10 m)、高径比为 3至 6比 1。 液化石油气自下向上流过固定床脱硫塔的脱硫剂床层时,硫化氢与脱硫剂反应的生成物 附着在脱硫剂上而将其中的硫化氢完全除去。运行一段时间, 当经过精脱硫后的液化石 油气出现硫化氢、 也就是脱硫剂失效时, 则须更换脱硫剂。根据测算, 更换周期一般不 少于半年。
本发明采用高效脱硫剂彻底除去液化石油气中的硫化氢,适宜的脱硫剂是以铁钙氧 化物或水合铁钙氧化物为有效成分的脱硫剂, 铁钙氧化物以铁酸二钙 (化学式为 2CaO · Fe203或写成 Ca2Fe205) 为优, 水合铁钙氧化物以六水合铁酸三钙 (化学式为 3CaO · Fe203 · 6¾0或写成 Ca3(Fe03)2 · 6¾0) 为优, 在铁酸二钙与六水合铁酸三钙 中更优选六水合铁酸三钙。有效成分的含量以脱硫剂的总量计占 80%以上(80%-100%)、 优选占 85%-95%, 更优选 91~95%, 脱硫剂中可以含有其它成分, 主要是氧化钙。精脱 硫时,硫化氢与铁酸二钙或六水合铁酸三钙反应的生成物主要是硫、硫化亚铁以及硫化 亚铁与硫的共生物。
以铁酸二钙为有效成分时优选的脱硫剂的规格性能如下:
外观 棕褐色或土黄色条状;
规格 (mm) Φ 3-5 X 5-25;
堆积密度 (g/ml) 1.0-1.1;
比表面积 (m2/g) 1.8-10;
空隙率 (%) 40-65;
侧压强度 (N/cm) ^100;
穿透硫容 (wt%) 30。
以六水合铁酸三钙为有效成分时优选的脱硫剂的规格性能如下:
外观 褐色条状;
规格(mm) Φ 2-4X 5-25;
堆积密度 (g/ml) 1.1-1.2;
比表面积 (m2/g) 1.8-10;
空隙率 (%) 40-60%;
侧压强度 (N/cm) ^80;
穿透硫容 (wt%) 30。
上述第一个实施方案中, 在转化硫醇时, 固定床反应器优选固定床催化反应器, 催 化反应器的固定床上设有固体催化剂床层,精脱硫后的液化石油气中的硫醇的入口浓度 小于或等于 10000ppm。 转化硫醇的操作条件是: 温度为 0至 100°C、 优选常温或 30至 60°C , 压力(表压)为 0.4至 2.3兆帕、优选 0.7至 1.6兆帕, 液体空速为 1至 4小时―1, 催化剂装填高度为小于或等于 10米、 高径比为 3至 6比 1。 液化石油气自下向上流过 固定床的催化剂床层时, 在催化剂的作用下, 液化石油气中的残留的微量空气(或称溶 解氧) 与液化石油气所含的硫醇发生氧化反应生成二硫化物(硫醚), 二硫化物随液化 石油气流出固定床催化反应器;运行一端时间后, 当流出固定床催化反应器的博士实验 通不过或铜片腐蚀试验不合格、 也就是催化剂失活时, 则需要更换催化剂。 根据测算, 更换周期一般不少于两年。
本发明采用高效催化剂使液化石油气中的硫醇得到完全的转化,适宜的催化剂是以 铁钙氧化物或水合铁钙氧化物为有效成分的催化剂, 铁钙氧化物以铁酸二钙 2CaO · Fe203为优, 水合铁钙氧化物以六水合铁酸三钙 3CaO · Fe203 · 6¾0为优, 在 铁酸二钙与六水合铁酸三钙中更优选六水合铁酸三钙。活性成分的含量以催化剂的总量 计占 80%以上(80%-100%)、优选占 85%-95%, 更优选占 91~95%, 催化剂中可以含有 其它成分、 主要是氧化钙。
以铁酸二钙为活性成分时优选的催化剂的规格性能如下:
外观 棕褐色或土黄色条状;
规格 (mm) Φ 3-5 X 5-25;
堆积密度 (g/ml) 1.0-1.1;
比表面积(m2/g) 1.8-10;
空隙率 (%) 40-65;
侧压强度 (N/cm)
Figure imgf000006_0001
以六水合铁酸三钙为活性成分时优选的催化剂的规格性能如下:
外观 褐色条状;
规格 (mm) Φ 2-4X 5-25;
堆积密度(g/ml) 1.1-1.2;
比表面积 (m2/g) 1.8-10;
空隙率 (%) 40-60%;
侧压强度(N/cm) 80。
上述第一个实施方案中,在精馏时,转化硫醇后的含有二硫化物和液化石油气的混 合物从下部送入精熘塔, 其中的二硫化物入口浓度为 10-300ppm, 精馏塔的塔底压力为 0.3至 2.1兆帕, 塔顶压力为 0.2至 2.0兆帕, 塔底部温度为 60至 130Ό、塔顶部温度为 50至 70°C, 回流比为 2至 9, 回流温度为 25至 45°C ; 经分离后, 从塔顶部收集得到无 硫或超低硫 (小于 lppm) 的液化石油气精制品、 从塔底得到含有二硫化物的混合物, 其中二硫化物含量为 10至 80重量%。
本发明的第二个实施方案是:其余上述第一个实施方案相同, 不同之处在于: 精馏 包括前级精馏和后级精馏,前级精馏与第一个实施方案中的精镏相同,是将转化硫醇后 的含有二硫化物和液化石油气的混合物通过前级精馏塔分离后,从塔顶得到液化石油气 精制品,从塔底得到含有二硫化物的混合物; 后级精馏是将含有二硫化物的混合物经过 后级精馏塔分离后, 从塔底得到二硫化物产品。
后级精馏的具体操作条件是:将前级精馏塔塔底输出的含有二硫化物和液化石油气 的混合物从下部送入后级精馏塔中, 进行进一步的分离: 以热水或低压(表压 0.1 至 0.6Mpa)蒸汽为热源, 经再沸器加热原料, 轻组分在塔内气化上升, 塔内件为塔盘或填 料, 重组分为液相集中在塔底, 使气液得到分离; 后级精馏塔的塔底压力为 0.15至 1.9 兆帕、 塔顶压力为 0.1至 1.8兆帕, 塔底部温度为 60至 110 C、 塔顶部温度为 45至 65 V, 回流比为 2-6, 回流温度为 25至 45°C, 从后级精馏塔塔底部收集得到纯度纯度 85%的二硫化物产品。
本发明的第三个实施方案是: 其余上述第一个实施方案相同, 不同之处在于: 精脱 硫和转化硫醇在同一个固定床反应器中进行; 固定床反应器优选固定床反应塔,反应塔 的固定床上设有固体脱硫剂床层和位于脱硫剂床层上方的固体催化剂床层;液化石油气 中硫化氢的入口浓度小于或等于 1000ppm、优选小于或等于 100 ppm, 精脱硫及转化硫 醇的操作条件是: 温度为 10至 100°C、 优选常温或 30至 6CTC , 压力 (表压)为 0.4至 2.5兆帕 (MPa)、 优选 0.8至 1.6兆帕, 液体空速为 0.5至 1小时 (h"1 ), 脱硫剂及催 化剂的装填总高度为小于或等于 10米( 10 m)、 高径比为 3至 6比 1。 液化石油气自 下向上依次流过固定床反应塔的脱硫剂床层和催化剂床层; 当流过脱硫剂床层时,硫化 氢与脱硫剂反应的生成物附着在脱硫剂上而将其中的硫化氢完全除去;流过催化剂床层 时, 在催化剂的作用下, 液化石油气中的残留的微量空气(或称溶解氧)与液化石油气 所含的硫醇发生氧化反应生成二硫化物 (硫醚), 二硫化物随液化石油气流出固定床反 应器。
本发明的第四个实施方案是: 其余上述第二个实施方案相同, 不同之处在于:精脱 硫和转化硫醇在同一个固定床反应器中进行; 固定床反应器优选固定床反应塔,反应塔 的固定床上设有固体脱硫剂床层和位于脱硫剂床层上方的固体催化剂床层;液化石油气 中硫化氢的入口浓度小于或等于 1000ppm、优选小于或等于 lOO ppm, 精脱硫及转化硫 醇的操作条件是: 温度为 10至 100°C、 优选常温或 30至 60°C, 压力 (表压) 为 0.4至 2.5兆帕 (MPa)、 优选 0.8至 1.6兆帕, 液体空速为 0.5至 1小时 (h"1 ), 脱硫剂及催 化剂的装填总高度为小于或等于 10米( 10 m)、 高径比为 3至 6比 1。 液化石油气自 下向上依次流过固定床反应塔的脱硫剂床层和催化剂床层;当流过脱硫剂床层时,硫化 氢与脱硫剂反应的生成物附着在脱硫剂上而将其中的硫化氢完全除去;流过催化剂床层 时, 在催化剂的作用下, 液化石油气中的残留的微量空气(或称溶解氧)与液化石油气 所含的硫醇发生氧化反应生成二硫化物 (硫醚), 二硫化物随液化石油气流出固定床反 应器。 与现有技术相比,本发明具有如下积极的效果: (1 )本发明的液化石油气精制方法 完全摈弃了传统的碱液处理工艺,只需利用固体脱硫剂和催化剂,通过精脱硫步骤和转 化硫醇步骤处理即可达到完全脱硫和转化硫醇的目的。其中所用的固体脱硫剂、催化剂 具有较高的脱硫效率、硫醇转化效率,而且硫醇转化中形成的二硫化物可以经分离得到 回收,从而同时获得了高品质的液化石油气成品和二硫化物产品。本发明的工艺大为简 化, 成本降低, 经济效益提高。在进行所有反应时, 不必加入有机碱或无机减, 实现了 真正的完全无碱脱臭工艺, 并且无碱渣和无二次污染, 保护环境和人体健康。 (2)本发 明的方法用于转化液化石油气所含的硫醇时,在催化剂的作用下,只需液化石油气中的 "溶解氧"即可将其中的硫醇直接氧化为二硫化物, 不需要在氧化时通入空气或氧气, 这恰恰满足了对液化石油气处理的安全性要求。而传统工艺则是先将硫醇吸收、溶解在 含催化剂的碱液 (氢氧化钠) 中生成硫醇钠, 再由催化剂碱液将硫醇钠带入氧化塔中, 同时通入空气或氧气将硫醇钠氧化成二硫化物、并使碱液再生。本发明的方法在根本上 改变了转化液化石油气中的硫醇必须采用通风氧化再生的方法, 且对硫醇的转化彻底, 解决了人们长期以来要解决而未解决的问题。 (3)现有技术中没有公开或提到对液化石 油气使用固定床反应法精脱硫、所生成的硫化物附着在固定床的脱硫剂上,也未公开或 提到使用固定床催化氧化法对液化石油气进行硫醇转化、将液化石油气中的硫醇直接转 化成二硫化物; 这两点是本发明的主要创新点。另外,现有技术中也没有公开或提到过 用以铁钙氧化物为有效成分的脱硫剂对液化石油气进行脱硫,没有公开或提到过以水合 铁钙氧化物为脱硫剂或该脱硫剂对液化石油气进行脱硫,没有公开或提到过以铁钙氧化 物或水合铁钙氧化物为活性成分的催化剂或该催化剂用于转化液化石油气的硫醇,也未 没有公开或提到过在精制液化石油气中进一步把硫醇转化所生成的二硫化物进行分离、 以获取有工业或商业价值的二硫化物产品;这些都是本发明区别与现有技术的进一步的 创新点。 (4)本发明优选采用两个固定床反应器分别对液化石油气进行精脱硫和转化硫 醇,这在工业化生产中具有积极的意义。在精脱硫中有效成分铁钙氧化物或水合铁钙氧 化物作为反应物参与反应, 故失效时间较短 (半年或半年以上); 在转化硫醇中, 活性 成分铁钙氧化物或水合铁钙氧化物作为催化剂参与反应,故失活时间较长(两年或两年 以上); 所以, 精脱硫和转化硫醇在不同的固定床反应器中进行, 对更换脱硫剂和催化 剂更为方便。但这不排除将在一个固定床反应器中分段进行精脱硫和转化硫醇纳入本发 明的保护范围。另外, 由于本发明的脱硫剂具有转化硫醇的性能,而转化硫醇的催化剂 又具有精脱硫的性能,所以,对于设置两个固定床反应器的系统来说,只要对有关的操 作条件进行适当的调整,即可在固定床脱硫塔或固定床催化反应器中同时完成精脱硫并 转化硫醇, 然后, 直接进入精馏步骤。这样, 在配备系统的设备时, 就可以节省备用的 固定床催化反应器。上述这些只用一个反应器精脱硫和硫醇转化的技术方案均属于本发 明的保护范围。 由此还可知道,在选择两个固定床反应器时,进行精脱硫的反应器中也 可存在对液化石油气中的部分硫醇进行转化的现象, 这也应归入本发明的保护范围中。 附图说明
图 1为本发明实施例 1的工艺流程的示意图。
图 2 为本发明所用的一种脱硫剂的 X射线衍射图 。 其中的有效成分为铁酸二钙 2CaO · Fe20
图 3为本发明所用的另一种脱硫剂的 X射线衍射图。 其中的有效成分为六水合铁 酸三钙 3CaO · Fe203 · 6H20 具体实施方式
1、制备以铁钙氧化物为有效成分的脱硫剂 T1。以铁钙氧化物为有效成分的脱硫剂, 尤其是以铁酸二钙 2CaO * Fe203为有效成分的脱硫剂可以按照如下方法制备: ①含氧 化铁和 /或氢氧化铁和 /或硝酸铁的粉末与氧化钙和 /或氢氧化钙和 /或碳酸氢钙和 /或碳酸 钙的粉末混合,其中铁与钙的摩尔比为 1: 1至 1: 1.5,优选 1: 1至 1: 1.2,更优选 1: 1至 1: 1.05 ; ②将上述混合物加水搅拌, 成型并干燥; ③将步骤②所得物在氧化气 氛中, 于 850~950 Ό下焙烧 2〜3 小时; ④ 将步骤③所得物冷却即得到以铁酸二钙 2CaO · Fe203为有效成分外观为棕褐色或土黄色的条状脱硫剂 Tl, 其直径为 3-5毫米, 长度为 5-25毫米。 优选的该脱硫剂的规格性能是: 比表面积为 1.8-10 m2/g, 空隙率为 40-65%, 堆积密度为 1.0-1. lg/cm2, 穿透硫容为大于等于 30重量%, 侧压强度为 110 N/cm。 取脱硫剂 T1的样品进行 X射线衍射, 得到了图 2所示的 X射线衍射图, 经与 X射线卡片 (J.C.RD.S.卡片)检索对比, 图 2中的数据表明, 该脱硫剂的主要成 分为铁酸二钙 2CaO * Fe203
2、 制备以水合铁钙氧化物为有效成分的脱硫剂 T2。 以水合铁钙氧化物为有效成 分的脱硫剂, 尤其是以六水合铁酸三钙 3CaO * Fe203 * 6H20为有效成分的脱硫剂的制 备方法是, 将上述以铁酸二钙 2CaO · Fe203为有效成分的脱硫剂与水反应即可, 最终 产物外观为褐色条状物, 且其成型时的直径为 2-4毫米、 长度为 5-25毫米。 优选的该 脱硫剂 T2 的规格性能是: 比表面积为 1.8-10 m2/g, 空隙率为 40-60%, 堆积密度为 l.l-1.2g/cm2。 穿透硫容为大于等于( ) 30重量%, 侧压强度为 80 N/cm。 取脱硫剂 T2的样品进行 X射线衍射 , ί尋到了图 3所示的 X射线衍射图,经与 X射线卡片 (J. C. P. D. S. 卡片) 检索对比, 图 3 中的数据表明, 该脱硫剂 Τ2 的主要成分为六水合铁酸三钙 3CaO · Fe203 · 6H20。
3、 制备以铁钙氧化物为活性成分的催化剂 Cl。 该催化剂的制备方法与上述制备 以铁钙氧化物为有效成分的脱硫剂的方法相同。
4、 制备以水合铁钙氧化物为活性成分的催化剂 C2。 该催化剂的制备方法与上述 制备以水合铁钙氧化物为有效成分的脱硫剂的方法相同。
5、液化石油气精制的实施例。下面结合实施例对本发明液化石油气的精制方法作 进一步的说明。 但本发明的内容不局限于此。
(实施例 1 )
见图 1,本实施例采用两级固定床反应器分别精脱硫和转化硫醇以及两级精馏的方 法来精制液化石油气。 图中 A为固定床精脱硫反应器(塔), 用于脱除硫化氢; B为固 定床催化反应器 /塔, 用于硫醇催化氧化并转化成二硫化物; C和 D分别为前级精馏塔 和后级精馏塔,前级精馏塔用于分离液化石油气中的二硫化物,后级精馏塔用于得到二 硫化物产品。 图中 1为缓冲罐, 2、 4为再沸器, 3、 5为回流罐, 6、 7、 8分别为泵, 9、 10、 11分别为冷却器。 经过乙醇胺脱硫化氢(粗脱硫)后的液化石油气从入口 i通 过八、 B、 C、 D组成的工艺流程处理, 在出口 al和出口 a2分别得到合格的液化石油 气成品和二硫化物产品。 如果进入的物料压力能够满足要求, 则可以不使用缓冲罐。
①'精脱硫: 经过乙醇胺脱硫化氢后的液化石油气首先在固定床脱硫塔中进行精脱 硫处理。 其中所用的脱硫剂为上述脱硫剂 T2。 脱硫剂 Τ2 以六水合铁酸三钙 3CaO · Fe203 · 6H20为有效成分, 六水合铁酸三钙的含量为 85-95%, 其余成分为氧化 钙, 堆积密度为 1.15 g/cm 3。 脱硫塔内设 1-2层孔眼小于 Φ 2毫米(mm)不绣钢丝网, 不绣钢丝网置于固定在塔中的挡板上, 网上面铺设厚度为 200-300mm、 粒度为 Φ 5-20 mm的瓷球,在瓷球层上方装填脱硫剂,再在脱硫剂上方铺设 1-2层厚度为 200-300mm、 粒度为 Φ 5-20 mm的上层瓷球, 再在上层瓷球上设置不绣钢丝网, 而构成脱硫剂床层。 脱硫剂装填高度为 7米, 髙径比 5: 1。 经过乙醇胺脱硫化氢后的液化石油气由下向上 流过脱硫剂床层, 温度采用常温, 压力在 0.6~2.5兆帕的范围中进行选择、 优选范围是 0.8~1.8兆帕 (MPa), 液体空速 2小时 (11 )。 在压力的优选中, 可在 0.8~U兆帕、 1.1 1.4兆帕、 1.4~1.8兆帕三个 力段中选择对设备合适的压力。 根据脱硫剂的装填高 度、高径比、堆积密度以及液化石油气的液体空速的技术指标可以对液化石油气的流量 进行控制。液化石油气的流量应等于脱硫剂所占空间的体积与堆积密度以及液化石油气 的液体空速之积, 其值为 24.78吨 /小时。
经过本步骤处理后的液化石油气物料中硫化氢含量小于 1 ppm。精脱硫时, 硫化氢 与铁酸二钙或六水合铁酸三钙反应的生成物主要是硫、硫化亚铁以及硫化亚铁与硫的共 生物, 生成物附着在脱硫剂上而将其中的硫化氢完全除去。运行一段时间, 当经过精脱 硫后的液化石油气出现硫化氢、也就是脱硫剂失效时, 则要对脱硫剂卸剂, 在卸剂前应 用氮气吹扫, 向塔内喷入适量的水后再取出失效的脱硫剂。 '
②转化硫醇:精脱硫处理后的液化石油气送入后级固定床反应器中进行硫醇转化。 后级固定床反应器为催化氧化固定床反应器, 其中所用的催化剂为上述催化剂 C2, 催 化剂 C2以六水合铁酸三钙 3CaO · Fe203 · 6H20为有效成分, 六水合铁酸三钙的含量 为 85~95%, 其余成分为氧化钙; 堆积密度为 1.15 g/cra 3。 催化剂床层的结构与上述脱 硫剂床层的结构基本相同。 液体空速(LHSV)选择为 Sh—1, 因前级固定床反应器流出 的液化石油气的流量为 24.78吨 /小时,故本级固定床反应器的催化剂床层高度选择为 7 米, 高径比约为 5。 温度为常温、 压力在 0.5至 2.3兆帕的范围内进行选择, 原则是本 级固定床反应器的压力比前级固定床反应器的压力稍低(约低 0.1至 0.2兆帕),因此优 选的压力范围是 0.7至 1.6兆帕。 液化石油气从下向上流过催化剂的固定床层而转化硫 醇, 即在催化剂的作用下, 液化石油气中的残留的微量空气(或称溶解氧)与液化石油 气所含的硫醇发生氧化反应生成二硫化物(硫醚), 二硫化物随液化石油气流出固定床 催化反应器。经过催化剂床层后的液化石油气中不再含有硫醇,其硫醇全部转化成二硫 化物。当经过一段时间的转化硫醇,当流出固定床催化反应器的博士实验通不过或铜片 腐蚀试验不合格、也即催化剂失活时要对催化剂卸剂, 在卸剂前应用氮气吹扫, 向塔内 喷入适量的水后再取出失活的催化剂。
③前级精馏得到液化石油气精制品:转化硫醇后的液化石油气进行前级精馏处理, 使液化石油气与转化生成的二硫化物得以分离,获得液化石油气精制品以及含有二硫化 物物料。将转化硫醇后的液化石油气从塔下部送入前级精馏塔,入口处物料中二硫化物 含量为约 80ppm, 该精馏塔的塔底压力比后级固定床反应器的压力稍低, 为 0.3~2.1 MPa、 优选 0.6至 1.5MPa, 塔顶压力比塔底压力低约 0.1兆帕、 为 0.2~2.0 MPa、 优选 0.5 l.4MPa, 塔底部温度约为 110°C, 塔顶部温度约为 55Ό, 回流比为 2至 9, 回流 温度为 25至 45°C、 优选 30至 40°C; 经分离后, 从塔顶部收集的气体经冷凝得到无硫 或超低硫 (小于 lppm) 的液化石油气精制品, 从塔底部得到的液化石油气和二硫化物 的混合物。
④后级精馏得到二硫化物产品: 前级精馏塔塔底输出的含有二硫化物和液化石油 气的混合物从下部送入后级精镏塔,此时入口物料中二硫化物含量为 30%,后级精馏塔 的塔底压力为 0.15~1.9 MPa, 比前级精熘塔的塔顶压力低、 优选 0.5MPa, 塔顶压力比 塔底压力稍低、 为 0.1~1.8 MPa、 优选 0.4MPa, 精馏塔的底部温度为约 100Ό, 顶部温 度为约 50°C, 回流比为 2-6, 回流温度为 25至 45°C、 优选 30至 40°C ; 从塔底部收集 得到纯度为约 90%的二硫化物产品。
在本实施例的上述各步骤中, 有关参数的确定应遵守的原则是: ①物流应处于平 衡状态, 例如: 液化石油气的流量前后应基本相同。②在系统未配备增压泵的情况下, 后级设备的压力不大于前级设备的压力。 本发明的其他实施例也应遵守上述原则。
(实施例 2)
重复实施例 1, 不同之处在于: 精脱硫中釆用的脱硫剂 T2中的有效成分六水合铁 酸三钙 3CaO · Fe203 · 6H20的含量为 91-95%, 其余成分主要为氧化钙, 堆积密度为 1.2 g/cm 3 0 所选择的有关操作条件是:
①温度为 10-30Γ, 可供选择的压力范围是 0.8-1.1兆帕, 液体空速 1小时 (h"1), 脱硫剂装填高度约为 7.49米, 高径比 4 : 1。
②温度为 30-50°C,可供选择的压力范围是 1.1-1.4兆帕,液体空速 1.5小时 (I 1), 脱硫剂装填高度约为 7.60米, 高径比 5 : 1。
③温度为 60-100°C,可供选择的压力范围是 1.4-1.8兆帕,液体空速 2小时 (If1), 脱硫剂装填高度为 7.79米, 高径比 6 : 1。
(实施例 3)
重复实施例 1, 不同之处在于: 精脱硫中采用脱硫剂 Tl, 脱硫剂 T1中有效成分铁 酸二钙 2CaO -Fe203的含量为 91-95%,其佘成分主要为氧化钙,堆积密度为 1.1 g/cm 3。 液化石油气中的硫化氢与铁酸二钙反应生成硫以及硫化亚铁与 Fe7S8的混合物, 生成物 附着在脱硫剂上。 所选择的有关操作条件是:
①温度为 10-30°C, 可供选择的压力范围是 0.8-1.1兆帕, 液体空速 1小时―1 (h"1), 脱硫剂装填高度约为 7.71米, 高径比 4 : 1。
②温度为 30-50°C,可供选择的压力范围是 1.1-1.4兆帕,液体空速 1.5小时 ^ (h— , 脱硫剂装填高度约为 7.82米, 高径比 5 : 1。
③温度为 60-100°C,可供选择的压力范围是 1.4-1.8兆帕,液体空速 2小时 (h"1), 脱硫剂装填高度为 8.02米, 高径比 6 : 1。
(实施例 4)
重复实施例 1, 不同之处在于: 转化硫醇中采用的催化剂 C2中的活性成分六水合 铁酸三钙 3CaO · Fe203 · 6¾0的含量为 91-95%, 其余成分主要为氧化钙, 堆积密度为 1.2gcm3 0 所选择的有关操作条件是:
①温度为 10-30Ό,可供选择的压力范围是 0.7-1.0兆帕,液体空速 2.5小时 (h—1), 脱硫剂装填髙度约为 5.52米, 高径比 4 : 1。
②温度为 30-50°C,可供选择的压力范围是 1.0-1.3兆帕,液体空速 3.0小时— 1 ( "1), 脱硫剂装填髙度约为 6.03米, 高径比 5: 1。
③温度为 60-100Ό,可供选择的压力范围是 1.3-1.6兆帕,液体空速 3.5小时 h—1), 脱硫剂装填髙度为 6.47米, 高径比 6: 1。
(实施例 5)
重复实施例 1, 不同之处在于: 转化硫醇中釆用催化剂 Cl, 催化剂 C1中有效成分 铁酸二钙 2CaO *-e203的含量为 91-95%,其余成分主要为氧化钙,堆积密度为 1.1 g/cm3。 所选择的有关操作条件是-
①温度为 10-30Ό,可供选择的压力范围是 0.7-1.0兆帕,液体空速 1.5小时 (IT1), 催化剂装填高度约为 6.73米, 髙径比 4 : 1。
②温度为 30-50Ό,可供选择的压力范围是 1.0-1.3兆帕,液体空速 2.5小时 (h— 催化剂装填高度约为 6.59米, 高径比 5 : 1。
③温度为 60-100°C,可供选择的压力范围是 1.3-1.6兆帕,液体空速 3.0小时 ^(h— , 催化剂装填高度为 7.01米, 高径比 6 : 1。
(实施例 6)
重复实施例 1, 不同之处在于: 在精馏中, 前级精馏塔的塔底压力为约 0.5MPa、 塔顶压力为约 0.4MPa, 前级精馏塔的塔底部温度为约 60°C、塔顶部温度为约 50°C; 后 级精镏塔的塔底压力为 0.2MPa、塔顶压力为 O.lMPa,后级精馏塔的塔底部温度为约 60 °C、塔顶部温度为约 45°C。相对应的转化硫醇中, 设备的压力为 '0.7兆帕, 精脱硫中设 备的压力为 0.8兆帕。
(实施例 7) 重复实施例 1, 不同之处在于: 在精馏中, 前级精馏塔的塔底压力为约 2.0MPa、 塔顶压力为约 1.9MPa, 前级精镏塔的塔底部温度为约 130°C、 塔顶部温度为约 70Ό ; 后级精馏塔的塔底压力为约 l.OMPa, 塔顶压力为约 0.8MPa, 后级精馏塔的塔底部温度 为约 110°C、 塔顶部温度为约 65°C。 相对应的转化硫醇中, 设备的压力为 2.2兆帕, 精 脱硫中设备的压力为 2.4兆帕。
(实施例 8)
重复实施例 1-7之一, 不同之处在于: 对经过前级精馏塔分离后的含有二硫化物的 混合物另作处理,不进行后级精馏塔的操作, 仅直接从出口 al获得液化石油气精制品。
(实施例 9)
重复实施例 1, 不同之处在于: 精脱硫和转化硫醇在同一个固定床反应器中进行; 固定床反应器优选固定床反应塔, 反应塔的固定床上设有以六水合铁酸三钙 3CaO · Fe203 · 6H20 为有效成分和活性成分的固体精脱硫兼转化硫醇催化剂床层; 液 化石油气中硫化氢的入口浓度小于或等于 1000ppm、 优选小于或等于 lOO ppm, 精脱硫 及转化硫醇的操作条件是: 温度为 10至 100°C、 优选常温或 30至 60°C, 压力 (表压) 为 0.4至 2.5兆帕 (MPa)、 优选 0.8至 1.6兆帕, 液体空速为 0.5至 1小时— 1 (h'1 ), 脱 硫兼催化剂的装填总高度为小于或等于 10米( 10 m)、 髙径比为 3至 6比 1。 液化石 油气自下向上依次流过固定床反应塔的脱硫兼催化剂床层;当流过脱硫兼催化剂床层的 下半部分时,硫化氢与脱硫兼催化剂反应的生成物附着在下半部分的床层上而将其中的 硫化氢完全除去; 流过脱硫兼催化剂床层的上半部分时, 在脱硫兼催化剂的作用下, 液 化石油气中的残留的微量 气与液化石油气所含的硫醇发生氧化反应生成二硫化物,二 硫化物随液化石油气流出固定床反应器。
(实施例 10)
重复实施例 9, 不同之处在于: 精脱硫和转化硫醇在一个分层的固定床反应塔中进 行; 位于反应塔下层的以六水合铁酸三钙 3CaO · Fe203 · 6¾0为有效成分的脱硫剂床 层用于精脱硫, 位于反应塔上层的以六水合铁酸三钙 3CaO · Fe203 · 6¾0为活性成分 的催化剂床层用于转化硫醇;液化石油气自下向上依次流过固定床反应塔的脱硫剂床层 和催化剂床层; 当流过脱硫剂床层时,硫化复与脱硫剂反应的生成物附着在脱硫剂上而 将其中的硫化氢完全除去; 流过催化剂床层时, 在催化剂的作用下, 液化石油气中的残 留的微量空气与液化石油气所含的硫醇发生氧化反应生成二硫化物,二硫化物随液化石 油气流出固定床反应器。

Claims

权利要求书
1、 一种工业化精制液化石油气的方法, 其特征在于: 经过醇胺处理后的液化石油 气通过设置在固定床反应器中的脱硫剂和催化剂依次进行精脱硫和转化硫醇,精脱硫时 液化石油气中的硫化氢与铁钙氧化物或水合铁麪氧化物反应的生成物附着在脱硫剂上, 转化硫醇时液化石油气中的硫醇与液化石油气中残留的微量空气在催化剂的催化作用 下反应生成二硫化物,所生成的二硫化物随液化石油气流出固定床反应器;转化硫醇后 的液化石油气通过精馏处理得到液化石油气精制品;脱硫剂是有效成分为铁钙氧化物或 水合铁钙氧化物的脱硫剂, 催化剂是活性成分为铁钙氧化物或水合铁钙氧化物的催化 剂。 '
2、 根据权利要求 1所述的工业化精制液化石油气的方法, 其特征在于: 铁钙氧化 物为铁酸二钙 2CaO · Fe203, 水合铁钙氧化物为六水合铁酸三钙 3CaO · Fe203 · 6¾0; 精脱硫时,硫化氢与铁酸二钙或六水合铁酸三钙反应的生成物主要是硫、硫化亚铁以及 硫化亚铁与硫的共生物。
3、 根据权利要求 2所述的工业化精制液化石油气的方法, 其特征在于: 脱硫剂中 有效成分的含量以脱硫剂的总重量计占 80%-100%; 催化剂中活性成分的含量以催化剂 的总重量计占 80%- 100%。
4、 根据权利要求 3所述的工业化精制液化石油气方法, 其特征在于: 脱硫剂中有 效成分的含量占 91-95%,其它成分主要是氧化钙;催化剂中活性成分的含量占 91-95%, 其它成分主要是氧化钙。
5、 根据权利要求 1至 4之一所述的工业化精制液化石油气的方法, 其特征在于: 精脱硫和转化硫醇在不同的固定床反应器中进行;经过醇胺处理后的液化石油气先进入 设有脱硫剂床层的前级固定床反应器, 液化石油气自下向上流过脱硫剂床层而精脱硫; 经过精脱硫后的液化石油气进入设有催化剂床层的后级固定床反应器,自下向上流过催 化剂床层而进行硫醇转化;精馏是将转化硫醇后的含有二硫化物和液化石油气的混合物 通过精馏塔分离后,从塔顶收集得到液化石油气精制品,从塔底得到含有二硫化物的混 合物。
6、根据权利要求 5所述的工业化精制液化石油气方法,其特征在于: 在精脱硫时, 液化石油气中硫化氢的入口浓度小于或等于 lOOOppm; 精脱硫的操作条件是: 温度为 10至 100°C ,压力为 0.4至 2.5兆帕,液体空速为 1至 2小时―1, 脱硫剂装填高度为小于 或等于 10米、 髙径比为 3至 6比 1 ; 在转化硫醇时, 转化硫醇的操作条件是: 温度为 0 至 100°C, 压力为 0.4至 2.3兆帕, 液体空速为 1至 4小时— 催化剂装填高度为小于或 等于 10米、 高径比为 3至 6比 1 ; 在精馏时, 转化硫醇后的混合物从下部送入精馏塔, 该精馏塔的塔底压力为 0.3至 2.1兆帕, 塔顶压力为 0.2至 2.0兆帕, ±答底部温度为 60 至 130°C、塔顶部温度为 50至 70°C, 回流比为 2至 9, 回流温度为 30至 40°C; 经分离 后,从塔顶部收集得到无硫或超低硫的液化石油气精制品、从塔底得到含有二硫化物的 混合物。
7、根据权利要求 6所述的工业化精制液化石油气方法, 其特征在于: 在精脱硫时, 液化石油气中硫化氢的入口浓度小于或等于 lOOOppm; 操作条件中的温度为常温或 30 至 60°C, 压力为 0.8至 1.8兆帕; 在转化硫醇时, 操作条件中的温度为常温或 30至 60 。C, 压力为 0.7至 1.6兆帕; 在精熘时, 转化硫醇后的混合物中二硫化物浓度一般为 10-300ppm。
8、 根据权利要求 1至 4之一所述的工业化精制液化石油气的方法, 其特征在于 .· 精脱硫和转化硫醇在不同的固定床反应器中进行;经过醇胺处理后的液化石油气先进入 设有脱硫剂床层的前级固定床反应器, 液化石油气自下向上流过脱硫剂床层而精脱硫; 经过精脱硫后的液化石油气进入设有催化剂床层的后级固定床反应器,自下向上流过催 化剂床层而进行硫醇转化;精镏包括前级精馏和后级精馏,.前级精馏是将转化硫醇后的 含有二硫化物和液化石油气的混合物通过前级精馏塔分离后,从塔顶得到液化石油气精 制品,从塔底得到含有二硫化物的混合物;后级精馏是将含有二硫化物的混合物再经过 后级精馏塔的分离后, 从塔底得到二硫化物产品。
9、根据权利要求 8所述的工业化精制液化石油气方法,其特征在于: 在精脱硫时, 液化石油气中硫化氢的入口浓度小于或等于 lOOOppm; 精脱硫的操作条件是: 温度为 10至 100Γ ,压力为 0.4至 2.5兆帕,液体空速为 1至 2小时— 脱硫剂装填高度为小于 或等于 10米、 高径比为 3至 6比 1 ; 在转化硫醇时, 转化硫醇的操作条件是: 温度为 0 至 100Ό , 压力为 0.4至 2.3兆帕, 液体空速为 1至 4小时―1, 催化剂装填高度为小于或 等于 10米、 髙径比为 2至 6比 1 ; 在前级精镏时, 转化硫醇后的混合物从下部送入前 级精馏塔, 该精镏塔的塔底压力为 0.3至 2.1兆帕、塔顶压力为 0.2至 2.0兆帕, 塔底部 温度为 60至 130Ό、 塔顶部温度为 50至 70°C, 回流比为 2至 9, 回流温度为 25至 45 °C ; 经分离后, 从塔顶部收集得到无硫或超低硫的液化石油气精制品; 前级精馏塔塔底 部输出的含有二硫化物和液化石油气的混合物则从下部送入后级精馏塔; 在后级精馏 时,物料中二硫化物含量为 10至 80重量%,后级精馏塔的塔底压力为 0.15至 1.9兆帕、 塔顶压力为 0.1至 1.8兆帕, 塔底部温度为 60至 110°C、 塔顶部温度为 45至 65°C, 回 流比为 2-6, 回流温度为 25至 45°C, 从后级精馏塔塔底部收集得到纯度 85%的二硫 化物产品。
10、根据权利要求 9所述的工业化精制液化石油气的方法,其特征在于: 在精脱硫 时,液化石油气中硫化氢的入口浓度小于或等于 lOOOppm;操作条件中的温度为常温或 30至 60°C, 压力为 0.8至 1.8兆帕; 在转化硫醇时, 操作条件中的温度为常温或 30至 60°C, 压力为 0.7 至 1.6兆帕; 在精馏时, 转化硫醇后的混合物中二硫化物含量为 10-300ppm。
PCT/CN2002/000806 2001-11-13 2002-11-12 Procede de raffinage a echelle commerciale de gaz de petrole liquefie WO2003042339A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/495,250 US7342145B2 (en) 2001-11-13 2002-11-12 Process for refining liquefied petroleum gas in a commercial scale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN01134688.4 2001-11-13
CN01134688.4A CN1245488C (zh) 2001-11-13 2001-11-13 工业化精制液化石油气的方法

Publications (1)

Publication Number Publication Date
WO2003042339A1 true WO2003042339A1 (fr) 2003-05-22

Family

ID=4672671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2002/000806 WO2003042339A1 (fr) 2001-11-13 2002-11-12 Procede de raffinage a echelle commerciale de gaz de petrole liquefie

Country Status (3)

Country Link
US (1) US7342145B2 (zh)
CN (1) CN1245488C (zh)
WO (1) WO2003042339A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875236A1 (fr) * 2004-09-10 2006-03-17 Total Sa Procede et installation pour le traitement de dso

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321169C (zh) * 2005-05-02 2007-06-13 北京三聚环保新材料有限公司 精制催化液化石油气的方法
CN100363473C (zh) * 2005-05-30 2008-01-23 北京三聚环保新材料有限公司 转化液化石油气所含硫醇的方法
US7931815B2 (en) * 2005-09-15 2011-04-26 New Technology Ventures, Inc. Method for reducing oxygen content of fluid streams containing sulfur compounds
CN101077984B (zh) * 2007-07-25 2010-08-25 中国石油大学(北京) 一种液化石油气深度脱硫的方法
KR101725568B1 (ko) 2009-06-04 2017-04-10 더루우브리졸코오포레이션 마찰 조정제와 점도 조정제를 함유하는 윤활 조성물
US8835367B2 (en) 2009-06-04 2014-09-16 The Lubrizol Corporation Polymethacrylates as high VI viscosity modifiers
CN102950034A (zh) * 2012-10-19 2013-03-06 中国石油化工股份有限公司 一种由碱液再生过程副产的脱硫醇废液制备的硫化剂
CN102964281B (zh) * 2012-10-19 2015-04-29 中国石油化工股份有限公司 一种用碱液再生副产的脱硫醇废液制备硫化剂的工艺及设备
US9023237B2 (en) 2013-06-19 2015-05-05 New Technology Ventures, Inc. Highly active nano iron catalyst for the absorption of hydrogen sulfide
US9458027B2 (en) 2013-06-19 2016-10-04 New Technology Ventures, Inc. Sulfided iron (II) compound and method of manufacture
US9522861B2 (en) 2013-11-18 2016-12-20 Uop Llc Methods and apparatuses for producing low sulfur propane and butane
EP3116853B1 (en) 2014-03-14 2019-01-09 Reliance Industries Limited A process for the removal of sodium from di-sulfide oil
CN104194833B (zh) * 2014-07-15 2015-12-02 中国石油大学(华东) 一种液化气深度脱硫工艺方法
CN104789290B (zh) * 2015-03-25 2017-06-16 湖北华邦化学有限公司 液化石油气深度脱硫的方法
US11739277B2 (en) * 2020-03-18 2023-08-29 Indian Oil Corporation Limited Process for removal of sulfur and other impurities from olefinic liquefied petroleum gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659106A (en) * 1995-06-22 1997-08-19 Uop Catalytic distillation process for mercaptan and olefin removal
CN1194294A (zh) * 1997-03-21 1998-09-30 中国石化茂名石油化工公司 航空煤油无碱脱臭工艺
CN1229005A (zh) * 1998-03-18 1999-09-22 北京三聚化工技术有限公司 脱硫剂及其制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725252A (en) * 1970-07-27 1973-04-03 Universal Oil Prod Co Desulfurization with subsequent h{11 s absorption
JPS4940848Y2 (zh) 1971-05-04 1974-11-09
US3785964A (en) * 1971-07-16 1974-01-15 Gulf Research Development Co Oxidative sweetening of hydrocarbon with nitrogen containing compound and with a calcined copper-iron catalyst
US4039389A (en) * 1975-11-03 1977-08-02 Uop Inc. Liquid-liquid extraction apparatus
US4040947A (en) * 1976-04-08 1977-08-09 Uop Inc. Mercaptan extraction process utilizing a stripped alkaline solution
JPS5551422A (en) * 1978-10-11 1980-04-15 Takeda Chem Ind Ltd Deodorization
US4313820A (en) * 1980-02-28 1982-02-02 Phillips Petroleum Co. Hydrodesulfurization of organic sulfur compounds and hydrogen sulfide removal with incompletely sulfided zinc titanate materials
JPS5770219A (en) * 1980-10-21 1982-04-30 Nisshin Steel Co Ltd Method for dephosphorizing, desulfurizing and denitrifying iron alloy
US4383916A (en) * 1981-08-28 1983-05-17 Standard Oil Company (Indiana) Sweetening and desulfurizing sulfur-containing hydrocarbon streams
US4381993A (en) * 1981-10-14 1983-05-03 Standard Oil Company (Indiana) Process for treating hydrocarbon feedstocks with CO and H2 O in the presence of steam stable catalysts
US4913797A (en) * 1985-11-21 1990-04-03 Mobil Oil Corporation Catalyst hydrotreating and dewaxing process
US4626341A (en) * 1985-12-23 1986-12-02 Uop Inc. Process for mercaptan extraction from olefinic hydrocarbons
US4753722A (en) * 1986-06-17 1988-06-28 Merichem Company Treatment of mercaptan-containing streams utilizing nitrogen based promoters
FR2619391B1 (fr) * 1987-08-14 1990-01-12 Eurecat Europ Retrait Catalys Procede de reduction d'un catalyseur de raffinage avant sa mise en oeuvre
US5064525A (en) * 1991-02-19 1991-11-12 Uop Combined hydrogenolysis plus oxidation process for sweetening a sour hydrocarbon fraction
US5169516A (en) * 1991-07-30 1992-12-08 Carr Norman L Removal of arsenic compounds from light hydrocarbon streams
US5320742A (en) * 1991-08-15 1994-06-14 Mobil Oil Corporation Gasoline upgrading process
US5413701A (en) * 1993-11-15 1995-05-09 Uop Process for sweetening a sour hydrocarbon fraction using a supported metal chelate and a solid base
US5741415A (en) * 1994-09-27 1998-04-21 Chevron U.S.A. Inc. Method for the demercaptanization of petroleum distillates
DE19525190A1 (de) 1995-07-11 1997-01-16 Basf Ag Verfahren zur oxidativen Entfernung von Mercaptanen aus Kohlenwasserstoffdestillaten
US5846406A (en) * 1996-03-22 1998-12-08 Texaco Inc Selective hydrodesulfurization of cracked naphtha using novel manganese oxide octahedral molecular sieve supported catalysts
NZ334378A (en) * 1996-08-01 1999-06-29 Shell Int Research Single stage process for hydrotreating comprising passing a hydrocarbon distillate fraction over a stacked bed of two hydrotreating catalysts in the presence of hydrogen
US6495029B1 (en) * 1997-08-22 2002-12-17 Exxon Research And Engineering Company Countercurrent desulfurization process for refractory organosulfur heterocycles
CN1196971A (zh) 1998-03-18 1998-10-28 北京三聚化工技术有限公司 脱硫剂及其制备方法
US6306288B1 (en) * 1998-04-17 2001-10-23 Uop Llc Process for removing sulfur compounds from hydrocarbon streams
US6248230B1 (en) * 1998-06-25 2001-06-19 Sk Corporation Method for manufacturing cleaner fuels
US6946111B2 (en) * 1999-07-30 2005-09-20 Conocophilips Company Short contact time catalytic partial oxidation process for recovering sulfur from an H2S containing gas stream

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659106A (en) * 1995-06-22 1997-08-19 Uop Catalytic distillation process for mercaptan and olefin removal
CN1194294A (zh) * 1997-03-21 1998-09-30 中国石化茂名石油化工公司 航空煤油无碱脱臭工艺
CN1229005A (zh) * 1998-03-18 1999-09-22 北京三聚化工技术有限公司 脱硫剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875236A1 (fr) * 2004-09-10 2006-03-17 Total Sa Procede et installation pour le traitement de dso

Also Published As

Publication number Publication date
CN1245488C (zh) 2006-03-15
US7342145B2 (en) 2008-03-11
US20050038309A1 (en) 2005-02-17
CN1418937A (zh) 2003-05-21

Similar Documents

Publication Publication Date Title
CN101077984B (zh) 一种液化石油气深度脱硫的方法
WO2003042339A1 (fr) Procede de raffinage a echelle commerciale de gaz de petrole liquefie
CN102134519B (zh) 一种资源利用率高且环保效果好的天然气脱硫组合工艺
CN103992832B (zh) 一种液化石油气的精制方法
CN102049181A (zh) 一种含硫有机废气的净化方法
CN105228724B (zh) 减少cos和cs2的方法
CN102553390A (zh) 一种化工尾气净化处理工艺
CN111847478B (zh) 一种变换冷凝液的综合处理工艺
JPH02245222A (ja) 再生可能な吸収物質による循環流動床でのガス流出物の脱硫方法
CN104119946B (zh) 一种催化裂化烟气脱硫及酸性气处理工艺
CN108355463A (zh) 一种硫磺尾气的脱硫方法和装置
CN104119947B (zh) 一种催化裂化烟气脱硫及后处理工艺
CN106318475A (zh) 低温甲醇洗的改进工艺
CN107789969A (zh) 一种炼厂酸性气的处理方法与装置
CN107537297A (zh) 清洁环保的烟气循环脱硫工艺
CN101092574B (zh) 催化裂化汽油固定床无液碱脱硫化氢方法
CN111925847A (zh) 一种通过加氢脱除天然气中有机硫的工艺
CN108722138B (zh) 含硫化氢和二氧化碳的酸性气处理工艺及系统
CN113877405B (zh) 一种废润滑油加氢气体处理排放工艺
CN1194077C (zh) 液化石油气或天然气的无碱精制方法
CN111440637B (zh) 一种lpg常温干法脱硫净化工艺
CN112742203B (zh) 气体脱硫剂及其制备方法以及气体脱硫的方法
CN109943378A (zh) 一种焦炉煤气一体化净化方法
CN1245483C (zh) 工业化精制汽油的方法
CN101063043B (zh) 一种轻馏分油的氧化脱臭方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10495250

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP