WO2003031992A1 - Beschleunigungsaufnehmer für kraftfahrzeuge - Google Patents
Beschleunigungsaufnehmer für kraftfahrzeuge Download PDFInfo
- Publication number
- WO2003031992A1 WO2003031992A1 PCT/EP2002/010292 EP0210292W WO03031992A1 WO 2003031992 A1 WO2003031992 A1 WO 2003031992A1 EP 0210292 W EP0210292 W EP 0210292W WO 03031992 A1 WO03031992 A1 WO 03031992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- signal
- acceleration
- signal output
- sensor according
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 39
- 238000012545 processing Methods 0.000 claims description 4
- 238000011156 evaluation Methods 0.000 claims 1
- 239000004020 conductor Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/016—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
- B60G17/0165—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/019—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/019—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
- B60G17/01908—Acceleration or inclination sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/019—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
- B60G17/01933—Velocity, e.g. relative velocity-displacement sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P1/00—Details of instruments
- G01P1/02—Housings
- G01P1/023—Housings for acceleration measuring devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C19/00—Electric signal transmission systems
- G08C19/02—Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/10—Acceleration; Deceleration
- B60G2400/102—Acceleration; Deceleration vertical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/20—Speed
- B60G2400/206—Body oscillation speed; Body vibration frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/20—Speed
- B60G2400/208—Speed of wheel rotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/50—Pressure
- B60G2400/52—Pressure in tyre
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/90—Other conditions or factors
- B60G2400/91—Frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/70—Estimating or calculating vehicle parameters or state variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/70—Estimating or calculating vehicle parameters or state variables
- B60G2800/702—Improving accuracy of a sensor signal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/90—System Controller type
- B60G2800/91—Suspension Control
- B60G2800/916—Body Vibration Control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
- G01P2015/0828—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
Definitions
- the invention relates to an acceleration sensor according to the preamble of claim 1 and an arrangement according to the preamble of claim 9.
- wheel speed sensor modules in chip technology are required for the precise magnetic detection of the wheel speed, as described for example in German patent application P 44 45 120 (P 7805) or in DE-A-199 226 72 (P 9641).
- the wheel speed sensor modules described contain a magnetoresistive element with which the magnetic field of a magnetic encoder rotating with the wheel is scanned.
- the modules are electrically active, which means that the recorded wheel speed information can be transmitted to an integrated brake control unit largely independently of the air gap via a current interface.
- a combination sensor for detecting the wheel speed and accelerations is known, the necessary sensors being combined in a common, uniform housing.
- the speed sensor element contained in the combination sensor is an inductive or magnetoresistive sensor.
- the accelerometer has an inert mechanical mass, the movement of which provides information about the existing acceleration.
- the sensory information is transmitted via a multi-core cable that can be used by both sensors.
- the combination sensor described is therefore not an active sensor, in which the electrical energy required for operation by the sensor is made available via the signal lines by a control device intended for receiving the signals.
- the object of the invention is to provide a structurally, electrically and signal-technically improved and optimized for rough operation in the motor vehicle, for the detection of accelerations, which can also be produced inexpensively.
- the acceleration sensor according to the invention is linked to a wheel speed sensor known per se, this preferably being done in a common device which is attached to a common holder, e.g. can be mechanically rigidly attached to the wheel axle.
- a common device which is attached to a common holder, e.g. can be mechanically rigidly attached to the wheel axle.
- the sensor according to the invention can be used to record the axis acceleration as well as emergency accelerations for airbag systems or to record the vehicle acceleration for ESP systems. Another possible use is to improve the detection of the current vehicle status in an electronic control unit by additional sensory information. For example, the vehicle speed with locked wheels can be recognized with increased reliability. Furthermore, the sensory information of the sensor according to the invention can be used in actively controlled damper systems.
- the accelerometer according to the invention advantageously enables the use of manufacturing facilities and tools that are already used for the production of wheel turning number sensors are available.
- the senor is designed as a double or multiple sensor, so that, in addition to one or more acceleration sensor elements, it additionally comprises at least one further sensor element for detecting a further physical variable, such as magnetic field, temperature, pressure, yaw rate, etc.
- a further physical variable such as magnetic field, temperature, pressure, yaw rate, etc.
- the wheel speed is additionally detected by the double or multiple sensor in a manner known per se by means of a magnetic field-sensitive element.
- a suitable sensor with a magnetoresistive sensor element which is used particularly preferably, is described in WO 98/09173.
- the additional sensor information is expediently transmitted together with the acceleration information via the two-wire connection provided for the acceleration sensor.
- the acceleration sensor according to the invention can preferably also be used as a structure-borne sound microphone, for example for detecting vibrations of the tires and the chassis.
- the invention further relates to an arrangement of a sensor and a control device according to claim 9.
- Show it 1 is a schematic representation of the arrangement according to the invention.
- Fig. 2 is a schematic diagram of an inventive
- FIG. 5 shows a micromechanical acceleration sensor as used in the sensor according to FIGS. 1 to 4,
- Fig. 6 different housing configurations of the exemplary transducer
- FIG. 7 shows a sensor that is assembled for a brake system.
- At least one accelerometer 1 is connected to a control unit 2 via a two-wire connection 3 for signal exchange.
- Control unit 2 supplies electrical energy for supplying the sensor (s) via operating voltages U B , which are applied to the respective two-wire lines.
- the signal currents I S ⁇ , I s2 , I Sn are modulated via connecting lines 3 as a function of the sensor signals.
- the modulated signal streams can then be converted in the control device into suitable digital signals for a computing unit.
- an acceleration sensor 1 which contains an acceleration sensor 4, which generates an acceleration-dependent electrical signal (change in resistance, capacitance, voltage, inductance, etc.).
- Sensor 4 is, for example, a micromechanical electromechanical transducer, which causes a change in the bridge voltage of a resistance bridge in response to acting forces, or a corresponding change in capacitance, depending on the principle of the sensor used.
- the signal of the sensor 4 is detected by a signal processing stage 5, corrected if necessary and then shaped into a signal pattern associated with the acceleration and fed to a modulator 6 which controls a current source 7 which follows the rhythm of the signal pattern.
- the above function groups 4 to 8 are structurally combined to form a sensor module with the signal output K 3 , K.
- Line 3 connects terminals K 3 , K 4 to terminals K x , K 2 of control unit 2.
- the current signal generated by the transducer is preferably pulse-coded. The signal current is detected in control unit 2 and the signal pattern is interpreted as a measured value sequence.
- Transducer 1 also includes observer stage 8, which acts on the transducer in terms of signal technology via modulator 6 when a defined pulse pattern of voltage U B occurs at terminals K 3 , K 4 , which can be generated by signal receiver 2.
- the sensor module can be set to different operating modes and can communicate with the signal receiver via the current interface, on which the observer also acts.
- Such a defined operating mode can, for example, be designed in such a way that calibration processes are carried out.
- the acceleration signal is transmitted analogously to that described in international patent application WO 98/09173 principle.
- FIG. 3 shows two examples of signal patterns for transmitting the acceleration information to control unit 2.
- the signal current I is plotted over time t in the diagrams.
- the acceleration and the direction of acceleration are coded as positive amplitude deviation ⁇ l (+ a) and negative amplitude deviation ⁇ l (-a) with respect to the signal current I ⁇ (0).
- Is (0) is assigned to either zero acceleration or another comparison value, eg gravitational acceleration.
- the acceleration values are digitally encoded as a current pattern, which is formed from pulses with three different amplitudes I L , I M and I H.
- a signal current of I H of duration t 0 with subsequent level I L of duration ti is used for synchronization with the signal receiver.
- Bit patterns corresponding to the acceleration values are encoded in the periods t 2 to t 13 . 12 bits were selected as an example here, but this number is not defined according to the invention.
- bit patterns written in can be coded so that a level I M corresponds to a logic "1" and a level I L corresponds to a logic "0" (amplitude coding).
- bit information is edge-coded, for example according to the principle of Manchester coding known per se.
- the time interval between the signal amplitudes I H corresponds to the sampling rate of the measurement process. In principle, it can be changed by communication of the sensor module via the observer stage with the signal receiver, but is always chosen such that between the last data bit (here t 3 ) and the start bit (here to) a sufficient time interval is maintained.
- an acceleration sensor 1 is shown in a spatial representation, which is composed of two housing units.
- the first housing unit 9 surrounds the accelerometer 4.
- the electronics for signal processing 27 are arranged in a second housing unit 10, which is connected to the housing 1 via strip-shaped conductors 12.
- Housing part 9 has two markings 11 and 11 ', which facilitate precise insertion into a mold for later encapsulation of the housings 9 and 10.
- the contacts K 3 , K 4 protrude from the housing part 10, also as strip-shaped conductors, which are connected to the contacts Ki, K 2 of an electronic operating circuit.
- the basic structure of a suitable electronic operating circuit 30 for the transducer 1 is shown in partial image a).
- the circuit is supplied by DC voltage U BB .
- Signal voltage u s can be tapped at the output of the amplifier for further electronic processing.
- a force F acts on the housing part 9, e.g. in the direction of arrow F shown, sensor element 4 reacts to the associated acceleration.
- the integrated circuit 10 forms an associated signal current pattern therefrom.
- FIG. 5 shows in cross section examples of acceleration sensor elements 4 'which can be used according to the invention and which are produced in bulk micromechanics.
- the desired three-dimensional structures are integrated into one massive semiconductor material, especially silicon, etched.
- Elements 4 ' are therefore cuboid components with an edge length of a few millimeters. They consist of a small semiconductor trough 14 which is closed with a cover 15.
- a gas 16 for damping the sensor mechanism consisting of semiconductor material 17 and a suspension 18, which has reset properties corresponding to a torsion spring.
- Electrodes 19a, 19b are applied in pairs between mass 17 and trough 14.
- the electrodes are connected via electrical connections a, b, c to an integrated circuit, which is preferably arranged in housing 10. If acceleration forces F x or F_ act on the masses 17, the distances between the electrodes change in pairs in opposite directions and thus the capacitances ⁇ Ci and ⁇ C 2 between the terminals ab and bc.
- the mass is a symmetrical pendulum suspension and reacts in the X direction or Y direction, but not in the Z direction. According to the invention, preference is given to using micromechanical acceleration sensors with a measuring range of less than 50 g, in particular from about 1 g to about 2 g.
- the mass of the sensor element has an asymmetrical suspension and accordingly reacts predominantly to the Z component of the acceleration F z . It is expedient to reduce the thickness d of the mass to a narrow strip at the pivot point height.
- FIG. 6 shows further housing designs for transducers 1.
- FIG. 6a shows a sensor module in which the housing parts 9, 10 are not connected by three (FIG. 4) but by four strip-shaped conductors. These four conductors create a piezoresistive bridge circuit in the housing of the accelerator connected to the electronics in the housing part 10.
- the housing assembly connected to bendable conductors makes it possible to adapt the direction of action of the sensor element in housing part 9 'with respect to the direction of assembly of the sensor to the direction of action of the force component F.
- a separate production of housing designs for detecting force components in different directions of action can thus advantageously be omitted.
- Sub-picture b) represents a sensor 1, in which the housing elements 9 and 10 have been combined in a common housing 28.
- transducer 1 is encapsulated with plastic, so that a finger-shaped sensor 21 results. This protects it from environmental influences (e.g. moisture).
- the assembled sensor consists of head 20, an untwisted two-wire cable 23 and connecting plug 25. On cable 23, sleeves 24 are provided with which the sensor can be mounted.
- Tab 29 is connected to sensor head 20, which has a fastening bushing 22 for fastening the sensor to the vehicle chassis, e.g. by an unsigned screw.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/491,734 US7207423B2 (en) | 2001-10-05 | 2002-09-13 | Acceleration sensor for motor vehicles |
EP02777090A EP1436634A1 (de) | 2001-10-05 | 2002-09-13 | Beschleunigungsaufnehmer für kraftfahrzeuge |
JP2003534924A JP2005504990A (ja) | 2001-10-05 | 2002-09-13 | 自動車用加速度センサユニット |
DE10294625T DE10294625D2 (de) | 2001-10-05 | 2002-09-13 | Beschleunigungsaufnehmer für Kraftfahrzeuge |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10149247 | 2001-10-05 | ||
DE10149247.2 | 2001-10-05 | ||
DE10201026 | 2002-01-11 | ||
DE10201026.9 | 2002-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003031992A1 true WO2003031992A1 (de) | 2003-04-17 |
Family
ID=26010307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2002/010292 WO2003031992A1 (de) | 2001-10-05 | 2002-09-13 | Beschleunigungsaufnehmer für kraftfahrzeuge |
Country Status (5)
Country | Link |
---|---|
US (1) | US7207423B2 (de) |
EP (1) | EP1436634A1 (de) |
JP (1) | JP2005504990A (de) |
DE (1) | DE10294625D2 (de) |
WO (1) | WO2003031992A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004022808A1 (de) * | 2004-05-08 | 2005-12-01 | Conti Temic Microelectronic Gmbh | Aufnehmersystem/Auslösesensor, geeignet für Diagnose-/Sicherheitsvorrichtung, insbesondere für Unfallschutzeinrichtungen in einem Fahrzeug |
EP1736387A2 (de) * | 2005-06-24 | 2006-12-27 | Dana Corporation | Achsstummel mit Mehrzweck-Beschleunigungsmessvorrichtung |
WO2007031673A1 (fr) * | 2005-09-16 | 2007-03-22 | Peugeot Citroen Automobiles Sa | Systeme et dispositif de mesure de la vitesse de rotation d'une roue de vehicule automobile avec capteur d’acceleration integre |
DE102005060607A1 (de) * | 2005-12-17 | 2007-06-21 | Conti Temic Microelectronic Gmbh | Vorrichtung und Verfahren zur Erfassung und Verarbeitung von Messwerten |
EP1826037A1 (de) * | 2006-02-28 | 2007-08-29 | Delphi Technologies, Inc. | Verfahren und Vorrichtung zur Schätzung der Straßenneigung für ein Fahrzeug. |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005010118A1 (de) * | 2005-03-02 | 2006-09-14 | Knorr-Bremse Systeme für Schienenfahrzeuge GmbH | Steuereinrichtung eines Schienenfahrzeugs |
JP2010139313A (ja) * | 2008-12-10 | 2010-06-24 | Mitsubishi Electric Corp | センサ装置の製造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3569747A (en) * | 1965-07-14 | 1971-03-09 | Kistler Instr Corp | Piezoelectric transducer |
DE3809886A1 (de) | 1988-03-24 | 1989-10-05 | Teves Gmbh Alfred | Sensor fuer kraftfahrzeuge |
DE4445120A1 (de) | 1993-12-22 | 1995-06-29 | Teves Gmbh Alfred | Vorrichtung zur Erfassung von Dreh- oder Winkelbewegungen |
DE19634715A1 (de) * | 1996-08-28 | 1998-03-05 | Teves Gmbh Alfred | Anordnung zur Erfassung des Drehverhaltens eines Rades |
DE19705365A1 (de) * | 1997-02-12 | 1998-08-20 | Autoliv Dev | Vorrichtung zur zeitmultiplexen Übertragung von Informationen |
DE19909535C1 (de) * | 1999-03-04 | 2000-09-07 | Siemens Ag | Datenübertragungsverfahren und -system, insbesondere in einem Kraftfahrzeug-Insassenschutzsystem |
DE19961299A1 (de) * | 1999-12-18 | 2001-06-21 | Bosch Gmbh Robert | Sensor zur Erkennung des Klopfens bei einer Brennkratmaschine |
DE10012862A1 (de) * | 2000-03-16 | 2001-09-27 | Siemens Ag | Steuersystem zur Verwendung in einem Kraftfahrzeug |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69116435T2 (de) * | 1990-05-30 | 1996-08-14 | Hitachi Automotive Eng | Halbleiterbeschleunigungsmesser und Kraftfahrzeugsteuerungssystem mit einem solchen |
EP0557034B1 (de) * | 1992-02-17 | 1998-10-07 | Hitachi, Ltd. | Ein Sensor zur Erfassung von Differenzbeschleunigung. |
US5353641A (en) * | 1992-08-07 | 1994-10-11 | Ford Motor Company | Digital capacitive accelerometer |
JP3269274B2 (ja) * | 1994-03-15 | 2002-03-25 | 株式会社デンソー | 加速度センサ |
DE4411130A1 (de) * | 1994-03-30 | 1995-10-05 | Siemens Ag | Sensoreinheit mit mindestens einem Beschleunigungssensor, z. B. zur Kfz-Airbagauslösung, und Verfahren zu seiner Herstellung |
US6193303B1 (en) * | 1998-04-03 | 2001-02-27 | Honda Giken Kogyo Kabushiki Kaisha | Control device for controlling rigidity and deformation of car body |
-
2002
- 2002-09-13 WO PCT/EP2002/010292 patent/WO2003031992A1/de active Application Filing
- 2002-09-13 US US10/491,734 patent/US7207423B2/en not_active Expired - Fee Related
- 2002-09-13 DE DE10294625T patent/DE10294625D2/de not_active Expired - Fee Related
- 2002-09-13 EP EP02777090A patent/EP1436634A1/de not_active Ceased
- 2002-09-13 JP JP2003534924A patent/JP2005504990A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3569747A (en) * | 1965-07-14 | 1971-03-09 | Kistler Instr Corp | Piezoelectric transducer |
DE3809886A1 (de) | 1988-03-24 | 1989-10-05 | Teves Gmbh Alfred | Sensor fuer kraftfahrzeuge |
DE4445120A1 (de) | 1993-12-22 | 1995-06-29 | Teves Gmbh Alfred | Vorrichtung zur Erfassung von Dreh- oder Winkelbewegungen |
DE19634715A1 (de) * | 1996-08-28 | 1998-03-05 | Teves Gmbh Alfred | Anordnung zur Erfassung des Drehverhaltens eines Rades |
WO1998009173A1 (de) | 1996-08-28 | 1998-03-05 | Itt Manufacturing Enterprises, Inc. | Anordnung zur erfassung des drehverhaltens eines rades |
DE19705365A1 (de) * | 1997-02-12 | 1998-08-20 | Autoliv Dev | Vorrichtung zur zeitmultiplexen Übertragung von Informationen |
DE19909535C1 (de) * | 1999-03-04 | 2000-09-07 | Siemens Ag | Datenübertragungsverfahren und -system, insbesondere in einem Kraftfahrzeug-Insassenschutzsystem |
DE19961299A1 (de) * | 1999-12-18 | 2001-06-21 | Bosch Gmbh Robert | Sensor zur Erkennung des Klopfens bei einer Brennkratmaschine |
DE10012862A1 (de) * | 2000-03-16 | 2001-09-27 | Siemens Ag | Steuersystem zur Verwendung in einem Kraftfahrzeug |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004022808A1 (de) * | 2004-05-08 | 2005-12-01 | Conti Temic Microelectronic Gmbh | Aufnehmersystem/Auslösesensor, geeignet für Diagnose-/Sicherheitsvorrichtung, insbesondere für Unfallschutzeinrichtungen in einem Fahrzeug |
EP1736387A2 (de) * | 2005-06-24 | 2006-12-27 | Dana Corporation | Achsstummel mit Mehrzweck-Beschleunigungsmessvorrichtung |
EP1736387A3 (de) * | 2005-06-24 | 2009-03-25 | Dana Heavy Vehicle Systems Group, LLC | Achsstummel mit Mehrzweck-Beschleunigungsmessvorrichtung |
WO2007031673A1 (fr) * | 2005-09-16 | 2007-03-22 | Peugeot Citroen Automobiles Sa | Systeme et dispositif de mesure de la vitesse de rotation d'une roue de vehicule automobile avec capteur d’acceleration integre |
FR2891054A1 (fr) * | 2005-09-16 | 2007-03-23 | Peugeot Citroen Automobiles Sa | Systeme et dispositf de mesure de la vitesse de rotation d'une roue de vehicule automobile |
DE102005060607A1 (de) * | 2005-12-17 | 2007-06-21 | Conti Temic Microelectronic Gmbh | Vorrichtung und Verfahren zur Erfassung und Verarbeitung von Messwerten |
EP1826037A1 (de) * | 2006-02-28 | 2007-08-29 | Delphi Technologies, Inc. | Verfahren und Vorrichtung zur Schätzung der Straßenneigung für ein Fahrzeug. |
Also Published As
Publication number | Publication date |
---|---|
JP2005504990A (ja) | 2005-02-17 |
US7207423B2 (en) | 2007-04-24 |
EP1436634A1 (de) | 2004-07-14 |
DE10294625D2 (de) | 2004-07-22 |
US20060086577A1 (en) | 2006-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19719780B4 (de) | Beschleunigungserfassungseinrichtung | |
DE102009027897B4 (de) | Mikromechanischer Drehratensensor | |
DE102008040525B4 (de) | Mikromechanisches Sensorelement | |
DE102013223227A1 (de) | Vibrationsrobuster Drehratensensor | |
DE102008040682A1 (de) | Sensoranordnung und Verfahren zum Betrieb einer Sensoranordnung | |
DE102004014708B4 (de) | Halbleitersensor für eine dynamische Grösse | |
DE19822171A1 (de) | Kapazitiver Beschleunigungssensor | |
EP1064520B1 (de) | Drehratensensorsystem | |
EP1436634A1 (de) | Beschleunigungsaufnehmer für kraftfahrzeuge | |
DE102015216460A1 (de) | Zweiachsiger ultrarobuster Drehratensensor für Automotive Anwendungen | |
DE102007052367A1 (de) | Mikromechanisches System | |
EP3167253B1 (de) | Körperschallentkopplung an mit geberfeldern arbeitenden sensoren | |
DE19811095A1 (de) | Sensoreinrichtung und Verfahren zur Datenübertragung mit einer solchen Sensoreinrichtung | |
DE4008167C2 (de) | Verfahren und Vorrichtung zur Ermittlung eines Lenkeinschlagwinkels | |
DE10107949B4 (de) | Kraftfahrzeugsteuersystem | |
EP1118508B1 (de) | Verfahren zum Betreiben einer Sensorbaugruppe mit richtungsempfindlichen Sensoren sowie entsprechende Beschleunigungsaufnehmerbaugruppe | |
DE102008015861A1 (de) | Sensoranordnung | |
DE4223349A1 (de) | Winkelgeschwindigkeitssensor | |
DE19939984C2 (de) | Verfahren zur richtungsselektiven Ausrichtung einer passiven Sicherheitseinrichtung | |
DE102007046306B4 (de) | Beschleunigungssensor | |
DE3804032A1 (de) | Verfahren und vorrichtung zur beschleunigungsmessung | |
EP1183501B1 (de) | Seitenwand-Torsionssensor | |
EP3042209B1 (de) | Fehlerübermittlung im zweipegel-drehzahlsensor | |
DE102015206299B4 (de) | Über Leiterplatte auf Leadframe verschaltete Sensorschaltung | |
WO2015162014A1 (de) | Überwachung eines 3-achsen-inertialsensors mit einem 2-achsen-inertialsensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DE JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002777090 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003534924 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002777090 Country of ref document: EP |
|
REF | Corresponds to |
Ref document number: 10294625 Country of ref document: DE Date of ref document: 20040722 Kind code of ref document: P |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10294625 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 2006086577 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10491734 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10491734 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8607 |