WO2003031992A1 - Beschleunigungsaufnehmer für kraftfahrzeuge - Google Patents

Beschleunigungsaufnehmer für kraftfahrzeuge Download PDF

Info

Publication number
WO2003031992A1
WO2003031992A1 PCT/EP2002/010292 EP0210292W WO03031992A1 WO 2003031992 A1 WO2003031992 A1 WO 2003031992A1 EP 0210292 W EP0210292 W EP 0210292W WO 03031992 A1 WO03031992 A1 WO 03031992A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
signal
acceleration
signal output
sensor according
Prior art date
Application number
PCT/EP2002/010292
Other languages
English (en)
French (fr)
Inventor
Peter Lohberg
Michael Zydek
Wolfgang Ziebart
Original Assignee
Continental Teves Ag & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves Ag & Co. Ohg filed Critical Continental Teves Ag & Co. Ohg
Priority to US10/491,734 priority Critical patent/US7207423B2/en
Priority to EP02777090A priority patent/EP1436634A1/de
Priority to JP2003534924A priority patent/JP2005504990A/ja
Priority to DE10294625T priority patent/DE10294625D2/de
Publication of WO2003031992A1 publication Critical patent/WO2003031992A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01908Acceleration or inclination sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01933Velocity, e.g. relative velocity-displacement sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/206Body oscillation speed; Body vibration frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/208Speed of wheel rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/52Pressure in tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/91Frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • B60G2800/702Improving accuracy of a sensor signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/916Body Vibration Control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Definitions

  • the invention relates to an acceleration sensor according to the preamble of claim 1 and an arrangement according to the preamble of claim 9.
  • wheel speed sensor modules in chip technology are required for the precise magnetic detection of the wheel speed, as described for example in German patent application P 44 45 120 (P 7805) or in DE-A-199 226 72 (P 9641).
  • the wheel speed sensor modules described contain a magnetoresistive element with which the magnetic field of a magnetic encoder rotating with the wheel is scanned.
  • the modules are electrically active, which means that the recorded wheel speed information can be transmitted to an integrated brake control unit largely independently of the air gap via a current interface.
  • a combination sensor for detecting the wheel speed and accelerations is known, the necessary sensors being combined in a common, uniform housing.
  • the speed sensor element contained in the combination sensor is an inductive or magnetoresistive sensor.
  • the accelerometer has an inert mechanical mass, the movement of which provides information about the existing acceleration.
  • the sensory information is transmitted via a multi-core cable that can be used by both sensors.
  • the combination sensor described is therefore not an active sensor, in which the electrical energy required for operation by the sensor is made available via the signal lines by a control device intended for receiving the signals.
  • the object of the invention is to provide a structurally, electrically and signal-technically improved and optimized for rough operation in the motor vehicle, for the detection of accelerations, which can also be produced inexpensively.
  • the acceleration sensor according to the invention is linked to a wheel speed sensor known per se, this preferably being done in a common device which is attached to a common holder, e.g. can be mechanically rigidly attached to the wheel axle.
  • a common device which is attached to a common holder, e.g. can be mechanically rigidly attached to the wheel axle.
  • the sensor according to the invention can be used to record the axis acceleration as well as emergency accelerations for airbag systems or to record the vehicle acceleration for ESP systems. Another possible use is to improve the detection of the current vehicle status in an electronic control unit by additional sensory information. For example, the vehicle speed with locked wheels can be recognized with increased reliability. Furthermore, the sensory information of the sensor according to the invention can be used in actively controlled damper systems.
  • the accelerometer according to the invention advantageously enables the use of manufacturing facilities and tools that are already used for the production of wheel turning number sensors are available.
  • the senor is designed as a double or multiple sensor, so that, in addition to one or more acceleration sensor elements, it additionally comprises at least one further sensor element for detecting a further physical variable, such as magnetic field, temperature, pressure, yaw rate, etc.
  • a further physical variable such as magnetic field, temperature, pressure, yaw rate, etc.
  • the wheel speed is additionally detected by the double or multiple sensor in a manner known per se by means of a magnetic field-sensitive element.
  • a suitable sensor with a magnetoresistive sensor element which is used particularly preferably, is described in WO 98/09173.
  • the additional sensor information is expediently transmitted together with the acceleration information via the two-wire connection provided for the acceleration sensor.
  • the acceleration sensor according to the invention can preferably also be used as a structure-borne sound microphone, for example for detecting vibrations of the tires and the chassis.
  • the invention further relates to an arrangement of a sensor and a control device according to claim 9.
  • Show it 1 is a schematic representation of the arrangement according to the invention.
  • Fig. 2 is a schematic diagram of an inventive
  • FIG. 5 shows a micromechanical acceleration sensor as used in the sensor according to FIGS. 1 to 4,
  • Fig. 6 different housing configurations of the exemplary transducer
  • FIG. 7 shows a sensor that is assembled for a brake system.
  • At least one accelerometer 1 is connected to a control unit 2 via a two-wire connection 3 for signal exchange.
  • Control unit 2 supplies electrical energy for supplying the sensor (s) via operating voltages U B , which are applied to the respective two-wire lines.
  • the signal currents I S ⁇ , I s2 , I Sn are modulated via connecting lines 3 as a function of the sensor signals.
  • the modulated signal streams can then be converted in the control device into suitable digital signals for a computing unit.
  • an acceleration sensor 1 which contains an acceleration sensor 4, which generates an acceleration-dependent electrical signal (change in resistance, capacitance, voltage, inductance, etc.).
  • Sensor 4 is, for example, a micromechanical electromechanical transducer, which causes a change in the bridge voltage of a resistance bridge in response to acting forces, or a corresponding change in capacitance, depending on the principle of the sensor used.
  • the signal of the sensor 4 is detected by a signal processing stage 5, corrected if necessary and then shaped into a signal pattern associated with the acceleration and fed to a modulator 6 which controls a current source 7 which follows the rhythm of the signal pattern.
  • the above function groups 4 to 8 are structurally combined to form a sensor module with the signal output K 3 , K.
  • Line 3 connects terminals K 3 , K 4 to terminals K x , K 2 of control unit 2.
  • the current signal generated by the transducer is preferably pulse-coded. The signal current is detected in control unit 2 and the signal pattern is interpreted as a measured value sequence.
  • Transducer 1 also includes observer stage 8, which acts on the transducer in terms of signal technology via modulator 6 when a defined pulse pattern of voltage U B occurs at terminals K 3 , K 4 , which can be generated by signal receiver 2.
  • the sensor module can be set to different operating modes and can communicate with the signal receiver via the current interface, on which the observer also acts.
  • Such a defined operating mode can, for example, be designed in such a way that calibration processes are carried out.
  • the acceleration signal is transmitted analogously to that described in international patent application WO 98/09173 principle.
  • FIG. 3 shows two examples of signal patterns for transmitting the acceleration information to control unit 2.
  • the signal current I is plotted over time t in the diagrams.
  • the acceleration and the direction of acceleration are coded as positive amplitude deviation ⁇ l (+ a) and negative amplitude deviation ⁇ l (-a) with respect to the signal current I ⁇ (0).
  • Is (0) is assigned to either zero acceleration or another comparison value, eg gravitational acceleration.
  • the acceleration values are digitally encoded as a current pattern, which is formed from pulses with three different amplitudes I L , I M and I H.
  • a signal current of I H of duration t 0 with subsequent level I L of duration ti is used for synchronization with the signal receiver.
  • Bit patterns corresponding to the acceleration values are encoded in the periods t 2 to t 13 . 12 bits were selected as an example here, but this number is not defined according to the invention.
  • bit patterns written in can be coded so that a level I M corresponds to a logic "1" and a level I L corresponds to a logic "0" (amplitude coding).
  • bit information is edge-coded, for example according to the principle of Manchester coding known per se.
  • the time interval between the signal amplitudes I H corresponds to the sampling rate of the measurement process. In principle, it can be changed by communication of the sensor module via the observer stage with the signal receiver, but is always chosen such that between the last data bit (here t 3 ) and the start bit (here to) a sufficient time interval is maintained.
  • an acceleration sensor 1 is shown in a spatial representation, which is composed of two housing units.
  • the first housing unit 9 surrounds the accelerometer 4.
  • the electronics for signal processing 27 are arranged in a second housing unit 10, which is connected to the housing 1 via strip-shaped conductors 12.
  • Housing part 9 has two markings 11 and 11 ', which facilitate precise insertion into a mold for later encapsulation of the housings 9 and 10.
  • the contacts K 3 , K 4 protrude from the housing part 10, also as strip-shaped conductors, which are connected to the contacts Ki, K 2 of an electronic operating circuit.
  • the basic structure of a suitable electronic operating circuit 30 for the transducer 1 is shown in partial image a).
  • the circuit is supplied by DC voltage U BB .
  • Signal voltage u s can be tapped at the output of the amplifier for further electronic processing.
  • a force F acts on the housing part 9, e.g. in the direction of arrow F shown, sensor element 4 reacts to the associated acceleration.
  • the integrated circuit 10 forms an associated signal current pattern therefrom.
  • FIG. 5 shows in cross section examples of acceleration sensor elements 4 'which can be used according to the invention and which are produced in bulk micromechanics.
  • the desired three-dimensional structures are integrated into one massive semiconductor material, especially silicon, etched.
  • Elements 4 ' are therefore cuboid components with an edge length of a few millimeters. They consist of a small semiconductor trough 14 which is closed with a cover 15.
  • a gas 16 for damping the sensor mechanism consisting of semiconductor material 17 and a suspension 18, which has reset properties corresponding to a torsion spring.
  • Electrodes 19a, 19b are applied in pairs between mass 17 and trough 14.
  • the electrodes are connected via electrical connections a, b, c to an integrated circuit, which is preferably arranged in housing 10. If acceleration forces F x or F_ act on the masses 17, the distances between the electrodes change in pairs in opposite directions and thus the capacitances ⁇ Ci and ⁇ C 2 between the terminals ab and bc.
  • the mass is a symmetrical pendulum suspension and reacts in the X direction or Y direction, but not in the Z direction. According to the invention, preference is given to using micromechanical acceleration sensors with a measuring range of less than 50 g, in particular from about 1 g to about 2 g.
  • the mass of the sensor element has an asymmetrical suspension and accordingly reacts predominantly to the Z component of the acceleration F z . It is expedient to reduce the thickness d of the mass to a narrow strip at the pivot point height.
  • FIG. 6 shows further housing designs for transducers 1.
  • FIG. 6a shows a sensor module in which the housing parts 9, 10 are not connected by three (FIG. 4) but by four strip-shaped conductors. These four conductors create a piezoresistive bridge circuit in the housing of the accelerator connected to the electronics in the housing part 10.
  • the housing assembly connected to bendable conductors makes it possible to adapt the direction of action of the sensor element in housing part 9 'with respect to the direction of assembly of the sensor to the direction of action of the force component F.
  • a separate production of housing designs for detecting force components in different directions of action can thus advantageously be omitted.
  • Sub-picture b) represents a sensor 1, in which the housing elements 9 and 10 have been combined in a common housing 28.
  • transducer 1 is encapsulated with plastic, so that a finger-shaped sensor 21 results. This protects it from environmental influences (e.g. moisture).
  • the assembled sensor consists of head 20, an untwisted two-wire cable 23 and connecting plug 25. On cable 23, sleeves 24 are provided with which the sensor can be mounted.
  • Tab 29 is connected to sensor head 20, which has a fastening bushing 22 for fastening the sensor to the vehicle chassis, e.g. by an unsigned screw.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Es wird ein Beschleunigungsaufnehmer (1) mit einem Beschleunigungssensorelement (4) vorgeschlagen, bei dem der Aufnehmer (1) ein elektrisches Signal an einem Signalausgang (k3,k4) ausgibt, der Aufnehmer (1) elektrisch aktiv ist und über den Signalausgang mit elektrischer Energie versorgt wird. Weiterhin ist eine Anordnung aus dem vorstehenden Aufnehmer und einem Steuergerät beschrieben, wobei der Aufnehmer mindestens eine Signalleitung (3) aufweist, die mit Steuergerät (2) verbunden ist, wobei das Steuergerät insbesondere ein elektronisches Kraftfahrzeugbremsensteuergerät ist, und das Steuergerät (2) die Energie für den oder die angeschlossenen Aufnehmer (1) über die Signalleitungen (3) überträgt.

Description

Beschleunigungsaufnehmer für Kraftfahrzeuge
Die Erfindung betrifft einen Beschleunigungsaufnehmer gemäß Oberbegriff von Anspruch 1 und eine Anordnung gemäß Oberbegriff von Anspruch 9.
In elektronischen Kraftfahrzeugbremssystemen werden zur präzisen magnetischen Erfassung der Raddrehzahl hochwertige Raddrehzahlsensormodule in Chiptechnologie benötigt, wie sie beispielsweise in der Deutschen Patentanmeldung P 44 45 120 (P 7805) oder in der DE-A-199 226 72 (P 9641) beschrieben sind. Die beschriebenen Raddrehzahlsensormodule enthalten ein magnetoresistives Element, mit dem das Magnetfeld eines mit dem Rad rotierenden magnetischen Encoders abgetastet wird. Die Module sind elektrisch aktiv, wodurch die erfaßte Raddrehzahlinformation weitestgehend luftspaltunabhängig über eine Stromschnittstelle an ein integriertes Bremsensteuergerät übertragen werden kann.
Aus der DE-A-38 09 886 ist ein Kombinationssensor zur Erfassung der Raddrehzahl und von Beschleunigungen bekannt, wobei die notwendigen Sensoren in einem gemeinsamen einheitlichen Gehäuse zusammengefaßt sind. Bei dem im Kombinationssensor enthaltenen Drehzahlsensorelement handelt es sich um einen induktiven oder magnetoresistiven Meßwertaufnehmer. Der Beschleunigungsaufnehmer besitzt eine träge feinmechanische Masse, deren Bewegung Aufschluß über die vorliegende Beschleunigung gibt. Die Übertragung der sensorischen Informationen erfolgt über eine mehradrige gemeinsam durch beide Sensoren nutzbare Leitung. Es handelt sich bei dem beschriebenen Kombinationssensor demzufolge nicht um einen Aktivsensor, bei dem die vom Sensor zum Betrieb benötigte elektrische Energie über die Signalleitungen von einem zum Empfang der Signale bestimmten Steuergerät zur Verfügung gestellt wird. Aufgabe der Erfindung ist es, einen baulich, elektrisch und signaltechnisch verbesserten und für den rauhen Betrieb im Kraftfahrzeug optimierten Meßwertaufnehmer zur Erfassung von Beschleunigungen anzugeben, welcher zugleich kostengünstig hergestellt werden kann.
Diese Aufgabe wird gelöst durch einen Beschleunigungsaufnehmer gemäß Anspruch 1.
Nach einer bevorzugten Ausführungsform der Erfindung wird der erfindungsgemäße Beschleunigungsaufnehmer mit einem an sich bekannten Raddrehzahlsensor verknüpft, wobei dies vorzugsweise in einer gemeinsamen Vorrichtung erfolgt, die an einer gemeinsamen Halterung, z.B. an der Radachse mechanisch steif befestigt werden kann. Dies bietet den Vorteil, daß eine gemeinsame Nutzung der Schnittstelle zum Steuergerät und der erforderlichen Stromversorgung bei gleichzeitig kostengünstiger Herstellung möglich wird.
Der erfindungsgemäß Aufnehmer kann zur Erfassung der Achsbeschleunigung als auch von Notfall-Beschleunigungen für Air- bag-Systeme oder auch zur Erfassung der Fahrzeugbeschleunigung für ESP-Systeme genutzt werden. Eine weitere Verwendungsmöglichkeit besteht darin, die Erkennung des aktuellen Fahrzeugzustandes in einem elektronischen Steuergerät durch zusätzliche sensorische Informationen zu verbessern. So kann zum Beispiel die Fahrzeuggeschwindigkeit bei blockierenden Rädern mit erhöhter Zuverlässigkeit erkannt werden. Weiterhin kann die sensorische Information des erfindungsgemäßen Sensors in aktiv geregelten Dämpfersystemen genutzt werden.
Der Beschleunigungsaufnehmer nach der Erfindung ermöglicht vorteilhaft die Nutzung von Fertigungseinrichtungen und Werkzeugen, welche bereits für die Produktion von Raddreh- zahlaufnehmern vorhanden sind.
Gemäß einer weiteren bevorzugten Ausführungsform des Aufnehmers ist dieser als Doppel- oder Mehrfachsensor ausgeführt, so daß dieser neben einem oder mehreren Beschleunigungssensorelementen zusätzlich mindestens ein weiteres Sensorelement zur Erfassung einer weiteren physikalischen Größe, wie Magnetfeld, Temperatur, Druck, Gierrate etc., umfaßt. Besonders bevorzugt wird durch den Doppel- oder Mehrfachsensor zusätzlich auf an sich bekannte Weise die Raddrehzahl mittels eines magnetfeldempfindlichen Elements erfaßt. Ein hierzu geeigneter Sensor mit einem magnetoresistiven Sensorelement, welches besonders bevorzugt eingesetzt wird, ist in der WO 98/09173 beschrieben.
Die Übertragung der zusätzlichen Sensorinformation erfolgt zweckmäßigerweise gemeinsam mit der Beschleunigungsinformation über die für den Beschleunigungsaufnehmer vorgesehene zweiadrige Verbindung.
Der Beschleunigungsaufnehmer gemäß der Erfindung kann mit geringfügigen Änderungen vorzugsweise auch als Körperschallmikrofon, zum Beispiel zur Erfassung von Vibrationen der Reifen und des Fahrgestells, eingesetzt werden.
Die Erfindung betrifft weiterhin eine Anordnung aus einem Aufnehmer und einem Steuergerät gemäß Anspruch 9.
Weitere bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung eines Ausführungsbeispiels an Hand von Figuren.
Es zeigen Fig. 1 eine schematische Darstellung der erfindungsgemäßen Anordnung,
Fig. 2 eine Prinzipdarstellung eines erfindungsgemäßen
Aufnehmers, welcher mit einem Steuergerät verbunden ist,
Fig. 3 Diagramme, welche die Ausgangssignalströme des Aufnehmers darstellen,
Fig. 4 die Darstellung eines gehäusten Aufnehmers und dessen elektrische Beschaltung,
Fig. 5 einen mikromechanischen Beschleunigungsgeber, wie er im Aufnehmer nach Fig. 1 bis 4 eingesetzt wird,
Fig. 6 verschiedene Gehäusekonfigurationen des beispielgemäßen Aufnehmers, und
Fig. 7 einen für ein Bremssystem konfektionierten Meßfühler.
In Fig. 1 ist mindestens ein Beschleunigungsaufnehmer 1 mit einem Steuergerät 2 über eine zweiadrige Verbindung 3 zum Signalaustausch verbunden. Steuergerät 2 liefert elektrische Energie zur Versorgung des/der Aufnehmer über Betriebsspannungen UB, welche an den jeweiligen Zweidrahtleitungen anliegen. Über Verbindungsleitungen 3 werden in Abhängigkeit der Sensorsignale die Signalströme ISι, Is2, ISn moduliert. Im Steuergerät können die modulierten Signalströme dann in geeignete Digitalsignale für eine Recheneinheit umgewandelt werden.
Fig. 2 zeigt in einer detaillierteren Darstellung den sehe- matischen Aufbau eines erfindungsgemäßen Beschleunigungsaufnehmers 1. Dieser enthält einen Beschleunigungssensor 4, welcher ein beschleunigungsabhängiges elektrisches Signal erzeugt (Änderung des Widerstands, der Kapazität, der Spannung, der Induktivität etc.). Sensor 4 ist beispielsweise ein mikromechanischer elektromechanischer Wandler, welcher in Reaktion auf einwirkende Kräfte eine Veränderung der Brückenspannung einer Widerstandsbrücke hervorruft, oder eine entsprechende Kapazitätsänderung, je nach verwendetem Prinzip des Sensors.
Das Signal des Sensors 4 wird durch eine Signalaufbereitungsstufe 5 erfaßt, ggf. korrigiert und danach in ein der Beschleunigung zugeordnetes Signalmuster geformt und einem Modulator 6 zugeführt, der eine Stromquelle 7 steuert, die dem Rhythmus des Signalmusters folgt. Die vorstehenden Funktionsgruppen 4 bis 8 sind baulich zu einem Sensormodul mit dem Signalausgang K3, K zusammengefaßt. Leitung 3 verbindet Klemmen K3, K4 mit den Klemmen Kx, K2 des Steuergeräts 2. Das durch den Aufnehmer erzeugte Stromsignal ist bevorzugt impulskodiert. In Steuergerät 2 wird der Signalstrom detek- tiert und das Signalmuster als Meßwertfolge interpretiert. Aufnehmer 1 umfaßt weiterhin Beobachterstufe 8, die signaltechnisch über Modulator 6 auf den Aufnehmer einwirkt, wenn an den Klemmen K3, K4 ein definiertes Pulsmuster der Spannung UB auftritt, das von Signalempfänger 2 erzeugt werden kann. Mittels der erwähnten definierten Pulsmuster kann das Sensormodul in unterschiedliche Betriebsmodi versetzt werden und über die Stromschnittstelle, auf die der Beobachter ebenfalls einwirkt, mit dem Signalempfänger kommunizieren. Ein solcher definierter Betriebsmodus kann zum Beispiel derart gestaltet sein, daß Kalibriervorgänge ausgeführt werden. Die Übertragung des Beschleunigungssignals erfolgt analog dem in der Internationalen Patentanmeldung WO 98/09173 be- schriebenen Prinzip.
Fig. 3 zeigt zwei Beispiele für Signalmuster zur Übertragung der Beschleunigungsinformation an Steuergerät 2. In den Diagrammen ist der Signalstrom I über die Zeit t aufgetragen. In Teilbild a) sind Beschleunigung und Beschleunigungsrichtung als positive Amplitudenabweichung Δl(+a) und negative Amplitudenabweichung Δl(-a) gegenüber dem Signalstrom IΞ(0) kodiert. Is(0) ist entweder der Beschleunigung Null oder einem anderen Vergleichswert, z.B. der Erdbeschleunigung, zugeordnet.
In Teilbild b) sind die Beschleunigungswerte digital als Strommuster kodiert, welches aus Impulsen mit drei unterschiedlichen Amplituden IL, IM und IH gebildet wird. Ein Signalstrom von IH der Dauer t0 mit anschließendem Pegel IL der Dauer ti dient zur Synchronisation mit dem Signalempfänger. In die Zeiträume t2 bis t13 sind Bitmuster kodiert, die den Beschleunigungswerten entsprechen. Als Beispiel wurden hier 12 Bit gewählt, doch ist diese Anzahl erfindungsgemäß nicht festgelegt .
Die eingeschriebenen Bitmuster können so kodiert sein, daß ein Pegel IM einer logischen "1" und ein Pegel IL einer logischen "0" entspricht (Amplitudencodierung) . In einer bevorzugten Ausführungsform ist vorgesehen, daß die Bit- Information flankenkodiert ist, z.B. nach dem Prinzip der an sich bekannten Manchester-Kodierung.
Der zeitliche Abstand der Signalamplituden IH entspricht der Abtastrate des Meßvorgangs. Sie ist durch Kommunikation des Sensormoduls über die Beobachterstufe mit dem Signalempfänger prinzipiell veränderbar, jedoch stets so gewählt, daß zwischen dem letzten Datenbit (hier tι3) und dem Startbit (hier to) ein ausreichenden zeitlicher Abstand gewahrt bleibt.
In Figuren 4a) und 4b) ist in räumlicher Darstellung ein Beschleunigungsaufnehmer 1 dargestellt, welcher aus zwei Gehäuseeinheiten zusammengesetzt ist. Die erste Gehäuseeinheit 9 umschließt Beschleunigungsgeber 4. Die Elektronik zur Signalverarbeitung 27 ist in einer zweiten Gehäuseeinheit 10 angeordnet, welche mit Gehäuse 1 über streifenförmige Leiter 12 verbunden ist. Gehäuseteil 9 besitzt zwei Markierungen 11 und 11', die das präzise Einlegen in eine Form zur späteren ümspritzung der Gehäuse 9 und 10 erleichtern. Aus dem Gehäuseteil 10 ragen, ebenfalls als streifenförmige Leiter, die Kontakte K3, K4 heraus, die mit den Kontakten Ki, K2 einer elektronischen Betriebsschaltung verbunden sind.
In Teilbild a) ist der prinzipielle Aufbau einer geeigneten elektronischen Betriebsschaltung 30 für den Aufnehmer 1 gezeigt. Die Schaltung wird von Gleichspannung UBB versorgt. Sensormodul 1 und Widerstand R bilden einen Spannungsteiler ÜB + Is * R = UBB, wobei am Eingang von Verstärker 13 die Spannung Is * R anliegt. Am Ausgang des Verstärkers kann Signalspannung üs zur weiteren elektronischen Verarbeitung abgegriffen werden.
Wirkt auf das Gehäuseteil 9 eine Kraft F, z.B. in der dargestellten Pfeilrichtung F, so reagiert Sensorelement 4 auf die damit verbundene Beschleunigung. Der integrierte Schaltkreis 10 formt daraus ein zugehöriges Signalstrommuster.
In Fig. 5 sind im Querschnitt Beispiele für erfindungsgemäß einsetzbare Beschleunigungssensorelemente 4' gezeigt, die in Bulk-Mikromechanik hergestellt sind. Nach dieser Methode werden die gewünschten dreidimensionalen Strukturen in ein massives Halbleitermaterial, insbesondere Silizium, geätzt. Elemente 4' sind daher quaderförmige Bauteile von wenigen Millimetern Kantenlänge. Sie bestehen aus einer kleinen Halbleiterwanne 14, die mit einem Deckel 15 verschlossen ist. Im Innenraum befindet sich ein Gas 16 zur Dämpfung der Sensormechanik, bestehend aus Halbleitermaterial 17 und einer Aufhängung 18, die Rückstelleigenschaften entsprechend einer Drehfeder hat. Zwischen Masse 17 und Wanne 14 sind paarweise Elektroden 19a, 19b aufgebracht. Die Elektroden sind über elektrische Anschlüsse a, b, c mit einem integrierten Schaltkreis verbunden, welcher bevorzugt in Gehäuse 10 angeordnet ist. Wirken Beschleunigungskräfte Fx bzw. F_ auf die Massen 17, so verändern sich die Abstände der Elektroden paarweise gegenläufig und damit die Kapazitäten ΔCi und ΔC2 zwischen den Klemmen a-b und b-c. Im Element gemäß Fig. 5a ist die Masse eine symmetrische Pendelaufhängung und reagiert in X-Richtung oder Y-Richtung, jedoch nicht in Z-Richtung. Erfindungsgemäß bevorzugt werden mikromechanische Beschleunigungssensoren mit einem Meßbereich von weniger als 50 g, insbesondere von etwa 1 g bis etwa 2 g, eingesetzt.
In der in Fig. 5b dargestellten Ausführungsform hat die Masse des Sensorelements eine unsymmetrische Aufhängung und reagiert dementsprechend vorwiegend auf die Z-Komponente der Beschleunigung Fz. Es ist dabei zweckmäßig, die Dicke d der Masse bis auf einen schmalen Streifen in Drehpunkthöhe zu reduzieren.
Fig.6 zeigt weitere Gehäuseausführungen für Aufnehmer 1. In Fig. 6a ist ein Sensormodul gezeigt, bei dem die Gehäuseteile 9, 10 nicht durch drei (Fig. 4), sondern durch vier streifenförmige Leiter verbunden sind. Mit diesen vier Leitern wird eine piezoresistive Brückenschaltung im Gehäuse des Beschleunigungsgebers mit der Elektronik in Gehäuseteil 10 verbunden. Durch den mit abwinkelbaren Leitern verbundenen Gehäuseverbund ist es möglich, die Wirkrichtung des Sensorelements in Gehäuseteil 9' bezüglich der Montagerichtung des Fühlers an die Wirkrichtung der Kraftkomponente F anzupassen. Eine gesonderte Herstellung von Gehäuseausführungen zur Erfassung von Kraftkomponenten in unterschiedlichen Wirkrichtungen kann somit vorteilhafterweise entfallen.
Teilbild b) stellt einen Fühler 1 dar, bei dem die Gehäuseelemente 9 und 10 in einem gemeinsamen Gehäuse 28 vereinigt wurden.
In Fig. 7 ist Aufnehmer 1 durch Umspritzen mit Kunststoff umhüllt, so daß sich ein fingerförmiger Fühler 21 ergibt. Hierdurch ist dieser vor Umwelteinflüssen (z.B. Feuchtigkeit) geschützt. Der konfektionierte Fühler besteht aus Kopf 20, einem unverdrillten Zweidrahtkabel 23 und Anschlußstek- ker 25. An Kabel 23 sind Tüllen 24 vorgesehen, mit denen der Fühler montiert werden kann. Mit Fühlerkopf 20 ist Lasche 29 verbunden, die eine Befestigungsbuchse 22 zur Befestigung des Fühlers am Fahrzeugchassis z.B. durch eine nichtgezeichnete Schraube aufweist.

Claims

Patentansprüche
1. Beschleunigungsaufnehmer (1) mit einem Beschleunigungssensorelement (4), wobei der Aufnehmer (1) ein elektrisches Signal an einem Signalausgang (k3,k4) ausgibt, dadurch gekennzeichnet, daß der Aufnehmer (1) elektrisch aktiv ist und über den Signalausgang mit elektrischer Energie versorgt wird.
2. Aufnehmer nach Anspruch 1, dadurch gekennzeichnet, daß das an dem Signalausgang ausgegebene elektrische Signal ein Stromsignal ist, bei dem insbesondere die Stromamplitude ein Maß für die gemessene Beschleunigung ist.
3. Aufnehmer nach Anspruch 1, dadurch gekennzeichnet, daß das an dem Signalausgang ausgegebene elektrische Signal ein binärkodiertes Stromsignal ist, insbesondere unter Verwendung von Impulsen mit drei verschiedenen Amplituden IL, IM und IH.
4. Aufnehmer nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Sensor und/oder der Aufnehmer Beschleunigungen in zwei oder drei Raumrichtungen unterscheiden kann.
5. Aufnehmer nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Aufnehmer eine Modusum- schaltung umfaßt, wobei die Modusumschaltung über den oder die Ausgänge (k3,k4) hervorgerufen werden kann.
6. Aufnehmer nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Aufnehmer aus zwei oder mehreren getrennten, elektrisch miteinander verbundenen Gehäusen zusammengesetzt ist, wobei insbesondere ein er- stes Gehäuse (9) Sensorelemente (4) enthält und ein zweites Gehäuse (10) eine elektrische Auswerteschaltung zur Sensorsignalverarbeitung (27) .
7. Aufnehmer nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß dieser ein Doppel- oder Mehrfachsensor ist, bei dem der Aufnehmer neben einem oder mehreren Beschleunigungssensorelementen zusätzlich mindestens ein weiteres Sensorelement zur Erfassung einer weiteren physikalischen Größe, wie Magnetfeld, Temperatur, Druck, Gierrate etc., umfaßt.
8. Aufnehmer nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Beschleunigungssensorelement ein mikromechanischer Sensor (4') ist.
9. Anordnung aus einem Aufnehmer gemäß mindestens einem der Ansprüche 1 bis 8 und einem Steuergerät (2), wobei der Aufnehmer mindestens eine Signalleitung (3) aufweist, die mit Steuergerät (2) verbunden ist, wobei das Steuergerät insbesondere ein elektronisches Kraftfahrzeugbremsensteuergerät ist, und das Steuergerät (2) die Energie für den oder die angeschlossenen Aufnehmer (1) über die Signalleitungen (3) überträgt.
10. Anordnung nach mindestens einem der Ansprüche 9, dadurch gekennzeichnet, daß das Steuergerät eine Einrichtung zur Modusumschaltung des/der Aufnehmer (s) über die Signalleitung (3) umfaßt.
PCT/EP2002/010292 2001-10-05 2002-09-13 Beschleunigungsaufnehmer für kraftfahrzeuge WO2003031992A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/491,734 US7207423B2 (en) 2001-10-05 2002-09-13 Acceleration sensor for motor vehicles
EP02777090A EP1436634A1 (de) 2001-10-05 2002-09-13 Beschleunigungsaufnehmer für kraftfahrzeuge
JP2003534924A JP2005504990A (ja) 2001-10-05 2002-09-13 自動車用加速度センサユニット
DE10294625T DE10294625D2 (de) 2001-10-05 2002-09-13 Beschleunigungsaufnehmer für Kraftfahrzeuge

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10149247 2001-10-05
DE10149247.2 2001-10-05
DE10201026 2002-01-11
DE10201026.9 2002-01-11

Publications (1)

Publication Number Publication Date
WO2003031992A1 true WO2003031992A1 (de) 2003-04-17

Family

ID=26010307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/010292 WO2003031992A1 (de) 2001-10-05 2002-09-13 Beschleunigungsaufnehmer für kraftfahrzeuge

Country Status (5)

Country Link
US (1) US7207423B2 (de)
EP (1) EP1436634A1 (de)
JP (1) JP2005504990A (de)
DE (1) DE10294625D2 (de)
WO (1) WO2003031992A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022808A1 (de) * 2004-05-08 2005-12-01 Conti Temic Microelectronic Gmbh Aufnehmersystem/Auslösesensor, geeignet für Diagnose-/Sicherheitsvorrichtung, insbesondere für Unfallschutzeinrichtungen in einem Fahrzeug
EP1736387A2 (de) * 2005-06-24 2006-12-27 Dana Corporation Achsstummel mit Mehrzweck-Beschleunigungsmessvorrichtung
WO2007031673A1 (fr) * 2005-09-16 2007-03-22 Peugeot Citroen Automobiles Sa Systeme et dispositif de mesure de la vitesse de rotation d'une roue de vehicule automobile avec capteur d’acceleration integre
DE102005060607A1 (de) * 2005-12-17 2007-06-21 Conti Temic Microelectronic Gmbh Vorrichtung und Verfahren zur Erfassung und Verarbeitung von Messwerten
EP1826037A1 (de) * 2006-02-28 2007-08-29 Delphi Technologies, Inc. Verfahren und Vorrichtung zur Schätzung der Straßenneigung für ein Fahrzeug.

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005010118A1 (de) * 2005-03-02 2006-09-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Steuereinrichtung eines Schienenfahrzeugs
JP2010139313A (ja) * 2008-12-10 2010-06-24 Mitsubishi Electric Corp センサ装置の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569747A (en) * 1965-07-14 1971-03-09 Kistler Instr Corp Piezoelectric transducer
DE3809886A1 (de) 1988-03-24 1989-10-05 Teves Gmbh Alfred Sensor fuer kraftfahrzeuge
DE4445120A1 (de) 1993-12-22 1995-06-29 Teves Gmbh Alfred Vorrichtung zur Erfassung von Dreh- oder Winkelbewegungen
DE19634715A1 (de) * 1996-08-28 1998-03-05 Teves Gmbh Alfred Anordnung zur Erfassung des Drehverhaltens eines Rades
DE19705365A1 (de) * 1997-02-12 1998-08-20 Autoliv Dev Vorrichtung zur zeitmultiplexen Übertragung von Informationen
DE19909535C1 (de) * 1999-03-04 2000-09-07 Siemens Ag Datenübertragungsverfahren und -system, insbesondere in einem Kraftfahrzeug-Insassenschutzsystem
DE19961299A1 (de) * 1999-12-18 2001-06-21 Bosch Gmbh Robert Sensor zur Erkennung des Klopfens bei einer Brennkratmaschine
DE10012862A1 (de) * 2000-03-16 2001-09-27 Siemens Ag Steuersystem zur Verwendung in einem Kraftfahrzeug

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69116435T2 (de) * 1990-05-30 1996-08-14 Hitachi Automotive Eng Halbleiterbeschleunigungsmesser und Kraftfahrzeugsteuerungssystem mit einem solchen
EP0557034B1 (de) * 1992-02-17 1998-10-07 Hitachi, Ltd. Ein Sensor zur Erfassung von Differenzbeschleunigung.
US5353641A (en) * 1992-08-07 1994-10-11 Ford Motor Company Digital capacitive accelerometer
JP3269274B2 (ja) * 1994-03-15 2002-03-25 株式会社デンソー 加速度センサ
DE4411130A1 (de) * 1994-03-30 1995-10-05 Siemens Ag Sensoreinheit mit mindestens einem Beschleunigungssensor, z. B. zur Kfz-Airbagauslösung, und Verfahren zu seiner Herstellung
US6193303B1 (en) * 1998-04-03 2001-02-27 Honda Giken Kogyo Kabushiki Kaisha Control device for controlling rigidity and deformation of car body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569747A (en) * 1965-07-14 1971-03-09 Kistler Instr Corp Piezoelectric transducer
DE3809886A1 (de) 1988-03-24 1989-10-05 Teves Gmbh Alfred Sensor fuer kraftfahrzeuge
DE4445120A1 (de) 1993-12-22 1995-06-29 Teves Gmbh Alfred Vorrichtung zur Erfassung von Dreh- oder Winkelbewegungen
DE19634715A1 (de) * 1996-08-28 1998-03-05 Teves Gmbh Alfred Anordnung zur Erfassung des Drehverhaltens eines Rades
WO1998009173A1 (de) 1996-08-28 1998-03-05 Itt Manufacturing Enterprises, Inc. Anordnung zur erfassung des drehverhaltens eines rades
DE19705365A1 (de) * 1997-02-12 1998-08-20 Autoliv Dev Vorrichtung zur zeitmultiplexen Übertragung von Informationen
DE19909535C1 (de) * 1999-03-04 2000-09-07 Siemens Ag Datenübertragungsverfahren und -system, insbesondere in einem Kraftfahrzeug-Insassenschutzsystem
DE19961299A1 (de) * 1999-12-18 2001-06-21 Bosch Gmbh Robert Sensor zur Erkennung des Klopfens bei einer Brennkratmaschine
DE10012862A1 (de) * 2000-03-16 2001-09-27 Siemens Ag Steuersystem zur Verwendung in einem Kraftfahrzeug

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022808A1 (de) * 2004-05-08 2005-12-01 Conti Temic Microelectronic Gmbh Aufnehmersystem/Auslösesensor, geeignet für Diagnose-/Sicherheitsvorrichtung, insbesondere für Unfallschutzeinrichtungen in einem Fahrzeug
EP1736387A2 (de) * 2005-06-24 2006-12-27 Dana Corporation Achsstummel mit Mehrzweck-Beschleunigungsmessvorrichtung
EP1736387A3 (de) * 2005-06-24 2009-03-25 Dana Heavy Vehicle Systems Group, LLC Achsstummel mit Mehrzweck-Beschleunigungsmessvorrichtung
WO2007031673A1 (fr) * 2005-09-16 2007-03-22 Peugeot Citroen Automobiles Sa Systeme et dispositif de mesure de la vitesse de rotation d'une roue de vehicule automobile avec capteur d’acceleration integre
FR2891054A1 (fr) * 2005-09-16 2007-03-23 Peugeot Citroen Automobiles Sa Systeme et dispositf de mesure de la vitesse de rotation d'une roue de vehicule automobile
DE102005060607A1 (de) * 2005-12-17 2007-06-21 Conti Temic Microelectronic Gmbh Vorrichtung und Verfahren zur Erfassung und Verarbeitung von Messwerten
EP1826037A1 (de) * 2006-02-28 2007-08-29 Delphi Technologies, Inc. Verfahren und Vorrichtung zur Schätzung der Straßenneigung für ein Fahrzeug.

Also Published As

Publication number Publication date
JP2005504990A (ja) 2005-02-17
US7207423B2 (en) 2007-04-24
EP1436634A1 (de) 2004-07-14
DE10294625D2 (de) 2004-07-22
US20060086577A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
DE19719780B4 (de) Beschleunigungserfassungseinrichtung
DE102009027897B4 (de) Mikromechanischer Drehratensensor
DE102008040525B4 (de) Mikromechanisches Sensorelement
DE102013223227A1 (de) Vibrationsrobuster Drehratensensor
DE102008040682A1 (de) Sensoranordnung und Verfahren zum Betrieb einer Sensoranordnung
DE102004014708B4 (de) Halbleitersensor für eine dynamische Grösse
DE19822171A1 (de) Kapazitiver Beschleunigungssensor
EP1064520B1 (de) Drehratensensorsystem
EP1436634A1 (de) Beschleunigungsaufnehmer für kraftfahrzeuge
DE102015216460A1 (de) Zweiachsiger ultrarobuster Drehratensensor für Automotive Anwendungen
DE102007052367A1 (de) Mikromechanisches System
EP3167253B1 (de) Körperschallentkopplung an mit geberfeldern arbeitenden sensoren
DE19811095A1 (de) Sensoreinrichtung und Verfahren zur Datenübertragung mit einer solchen Sensoreinrichtung
DE4008167C2 (de) Verfahren und Vorrichtung zur Ermittlung eines Lenkeinschlagwinkels
DE10107949B4 (de) Kraftfahrzeugsteuersystem
EP1118508B1 (de) Verfahren zum Betreiben einer Sensorbaugruppe mit richtungsempfindlichen Sensoren sowie entsprechende Beschleunigungsaufnehmerbaugruppe
DE102008015861A1 (de) Sensoranordnung
DE4223349A1 (de) Winkelgeschwindigkeitssensor
DE19939984C2 (de) Verfahren zur richtungsselektiven Ausrichtung einer passiven Sicherheitseinrichtung
DE102007046306B4 (de) Beschleunigungssensor
DE3804032A1 (de) Verfahren und vorrichtung zur beschleunigungsmessung
EP1183501B1 (de) Seitenwand-Torsionssensor
EP3042209B1 (de) Fehlerübermittlung im zweipegel-drehzahlsensor
DE102015206299B4 (de) Über Leiterplatte auf Leadframe verschaltete Sensorschaltung
WO2015162014A1 (de) Überwachung eines 3-achsen-inertialsensors mit einem 2-achsen-inertialsensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002777090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003534924

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002777090

Country of ref document: EP

REF Corresponds to

Ref document number: 10294625

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10294625

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2006086577

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10491734

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10491734

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607