WO2003029109A2 - Verfahren zum herstellen eines flexiblen schüttgutbehälters und danach hergestellte schüttgutbehälter - Google Patents

Verfahren zum herstellen eines flexiblen schüttgutbehälters und danach hergestellte schüttgutbehälter Download PDF

Info

Publication number
WO2003029109A2
WO2003029109A2 PCT/EP2002/010923 EP0210923W WO03029109A2 WO 2003029109 A2 WO2003029109 A2 WO 2003029109A2 EP 0210923 W EP0210923 W EP 0210923W WO 03029109 A2 WO03029109 A2 WO 03029109A2
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
area
seam
energy conversion
blank
Prior art date
Application number
PCT/EP2002/010923
Other languages
English (en)
French (fr)
Other versions
WO2003029109A3 (de
Inventor
Siegfried Hartmann
Egon Wurr
E. K. Wolff
U. Glotzbach
Original Assignee
Eurea Verpackungs Gmbh & Co. Kg
Institut Für Angewandte Biotechnik Und Systemanalyse An Der Universität Witten/Herdecke Ggmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP20010123507 external-priority patent/EP1297944B1/de
Priority claimed from EP01123553A external-priority patent/EP1298075B1/de
Application filed by Eurea Verpackungs Gmbh & Co. Kg, Institut Für Angewandte Biotechnik Und Systemanalyse An Der Universität Witten/Herdecke Ggmbh filed Critical Eurea Verpackungs Gmbh & Co. Kg
Priority to AU2002338831A priority Critical patent/AU2002338831A1/en
Priority to US10/491,062 priority patent/US20050041893A1/en
Publication of WO2003029109A2 publication Critical patent/WO2003029109A2/de
Publication of WO2003029109A3 publication Critical patent/WO2003029109A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/16Large containers flexible
    • B65D88/1612Flexible intermediate bulk containers [FIBC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/135Single hemmed joints, i.e. one of the parts to be joined being hemmed in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/16Large containers flexible
    • B65D88/1612Flexible intermediate bulk containers [FIBC]
    • B65D88/1675Lifting fittings
    • B65D88/1681Flexible, e.g. loops, or reinforcements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/232Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4326Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms for making hollow articles or hollow-preforms, e.g. half-shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • B29C66/7292Textile or other fibrous material made from plastics coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • B29K2995/0027Transparent for light outside the visible spectrum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7126Containers; Packaging elements or accessories, Packages large, e.g. for bulk storage

Definitions

  • the invention relates to a method for producing a flexible bulk goods container.
  • the invention relates to flexible bulk containers, which are also referred to internationally as flexible intermediate bulk containers (FIBC), made of a plastic ribbon fabric, which comprise at least one circumferential side wall and at least one base section or a cover section.
  • FIBC flexible intermediate bulk containers
  • DE 39 38 414 AI shows a bulk container that is composed in the usual way of several blanks to a cuboid-shaped container, which in the filled state can approach a cylindrical shape due to the internal pressure of the bulk material.
  • Four side parts are provided, which are sewn together along the side edges.
  • the side walls are sewn to a bottom section, which can also be supplemented with attached dispensing aids such as sockets and the like.
  • An additional cover section can be provided on the top of the container thus formed, which can be provided with filling aids.
  • Additionally are on the top corners of the container Carrying loops sewn on to allow use with hoists.
  • the manufacture of a bulk container by sewing individual blanks has several disadvantages.
  • the needle puncture alone weakens the material, which is usually a plastic fabric made from ribbons made of polypropylene, polyethylene or HD polyethylene film, so that a perforation line is created in the area of the punctures along the the tap holes widen when the bulk container is heavily loaded. Due to the perforations, the bulk goods container must be provided with an inner lining or a seam cover if very fine-grained bulk goods are to be transported or if the bulk goods container is to be suitable for holding food so that the bulk material is hermetically sealed from environmental influences.
  • corner reinforcements In order to weaken the strong forces on the side seams, it is known to sew in corner reinforcements over the entire height of the container, so that the rubble is prevented. flows well directly into the side seam areas and excessive forces act directly on the side seams.
  • corner reinforcements can only be sewn up to a limited height of the container, since with a seam length of more than one meter to be bridged, it is no longer possible to produce the seam even with industrial sewing machines.
  • US Pat. No. 5,845,995 specifies a packaging sack which is formed by folding from a polyolefin tubular fabric. A melted intermediate layer made of a thermoplastic polymer is then placed in the area of the folded layers, to which the folded layers adhere, so that the floor area is sealed.
  • the introduction of the heated intermediate layer is difficult. It is also disadvantageous that the strong heat input, the infiltrating melt from the intermediate layer and the full-surface gluing adhere the fabric and the fabric loses its flexibility.
  • the so-called memory effect occurs due to the heat, i.e. the stretching is reduced, as a result of which the strength of the fabric decreases.
  • a method for producing a flexible bulk goods container which comprises the following method steps: a) introducing an energy converting agent, which absorbs the light energy of a laser beam with the wavelength ⁇ and converts it into heat energy, into a seam region of at least one tissue blank, the tissue blank being made of a plastic that is permeable to the laser beam; b) producing an overlap of the fabric cut in the seam area with formation of an interface between the overlapping fabric layers; c) irradiating at least one of the fabric layers with a laser beam with a wavelength ⁇ in the seam area; d) partial melting of the fabric layers in the surface area at the boundary layer and cooling to form a weld seam as an intimate connection between the fabric layers; and e) repetition of steps b
  • the laser beam passes through the polypropylene fabric of the outer layer and strikes the energy conversion means introduced into the boundary layer in the area of an interface between the adjacent fabric layers.
  • the radiated light energy is converted into thermal energy, which leads to local heating and partial melting of the tissue.
  • the melting of both joining partners in the area of the boundary layer leads to a fusion and thus to a material connection.
  • the method according to the invention can be automated and can therefore be carried out inexpensively. With laser transmission welding, it is thus possible to arrange weld seams wherever they are essential to the function. Seams can also be produced by welding in places that are not accessible to a sewing machine. This makes it possible to redesign a bulk goods container and greatly reduce the number of individual parts for its manufacture.
  • a fabric can be selected which has a lower basis weight than is required for sewn containers.
  • the position of the seams can be easily adapted to the force flows in the tissue and that even complicated forms of cutting can be provided without significantly increasing the production costs. It is also possible to connect firm and flexible fabrics with each other. This is possible with all thermoplastic material combinations where mixing of the melt is possible. For example, if a polypropylene Ribbon fabric used, injection molded parts made of polypropylene can be easily welded to the fabric. As a result, pipe sockets can be welded into the base or cover area, which considerably facilitate docking to a filling or unloading station. Additional parts can also be welded on, which enable automated gripping of the filling and outlet connections of the bulk goods container, for example those which are designed in the manner of a bayonet catch.
  • corner reinforcements are also possible with the help of laser transmission welding, since only the laser head has to be guided along the inner wall of the container in order to attach the corner reinforcement to the side wall. There is no restriction on the seam length, as is the case with sewing machines.
  • the entire surface of the tissue is coated with an energy conversion agent that absorbs the light energy of a laser at a specific wavelength, or that the plastic is mixed overall with an energy conversion agent before the tissue is manufactured.
  • the prepared fabric blank is preferably provided with an energy conversion means, for example by printing, only in the area of the subsequent weld seams.
  • the energy conversion means can also be provided in the form of a welding film which is inserted into the boundary layer in the area of the desired seam courses.
  • the welding foil consists of a carrier plastic that is mixed with pigments that absorb light energy.
  • the thickness of the welding foil, its softening temperature or the degree of absorption of the pigments can be chosen such that either the welding foil completely melts in the area of the weld seam and a melt bath made of plastic is produced, which in turn causes local melting of the surfaces of the tissue to be welded, or in such a way that the welding foil is only heated up to a great extent and the two layers of tissue adhere to each other through the interposed welding foil be intensively connected.
  • microperforation be carried out by laser energy applied at certain points.
  • laser energy applied at certain points.
  • micro-perforations can be made without any problems, which contribute to a controlled ventilation of the interior of the container, but without any bulk material flowing out from the interior.
  • the previously required reinforcement areas can be dispensed with. It is proposed here to fan out the tab area welded to the container in the case of particularly loaded containers and to weld the individual fingers of the fan in order to achieve a more favorable force distribution. The bigger one The number and length of the weld seams no longer means a disadvantage in the automatable method of the invention.
  • Fig. La, lb the welding of a fabric blank to a cylinder in a schematic view
  • 3a to 3c show the fabrication of a tissue tube section by folding and folding in different process stages
  • FIG. 6 shows a further prefabricated fabric section for the production of a bulk goods container by welding at the edge
  • FIG. 7 shows the welding of an overlap area in a schematic sectional illustration; and 8 shows a further embodiment of a bulk material container in a perspective view.
  • FIG. 1 a shows a fabric blank 20 in which an energy conversion means is printed on or applied in some other way in the seam region 25.
  • the energy conversion agent can consist of carbon, in particular in the form of carbon black. Since carbon absorbs light of all wavelengths, various lasers can be used, especially inexpensive semiconductor lasers.
  • the fabric blank 20 is rolled into a cylinder to form an overlap in the seam region 25.
  • the laser beam 11 deflected by a laser 10 is deflected at an optical device 14 and guided along the seam region 25.
  • the welding of the fabric blank by means of laser transmission welding is explained with reference to FIG. 2.
  • Two adjacent fabric layers 20.1, 20.2 are shown there, in the boundary layer 22 of which an energy conversion means 24 is partially introduced.
  • the size relationships shown in the drawing in FIG. 2 are not to scale and are only used for illustration.
  • the energy conversion means 24 is usually applied in a layer thickness of approximately 10 to 100 ⁇ m, so that the boundary layer 22 also has this thickness.
  • the thickness of the fabric layer 20.1 lying at the top, to be irradiated, is appropriate
  • the thickness of the non-irradiated, lower plastic part 20.2 is arbitrary in any case.
  • the laser beam passes through the plastic part 20.1, strikes the energy conversion means 24 introduced there in the boundary layer 22, the light energy being converted into thermal energy.
  • the amount of heat can be calculated per time that must be introduced into the boundary layer 22 in order to achieve a melting of the fabric layers 20.1, 20.2, but without causing a complete melting, softening or even destroying the fabric layers 20.1, 20.2 ,
  • a weld seam 23 which is lenticular in section is formed, which is initially in the form of a melt and cools and solidifies after the end of the irradiation with laser light.
  • the plane of symmetry of the weld seam 23 lies approximately in the boundary layer 22, as a result of which a uniform force profile and a high load-bearing capacity of the seam region 25 are achieved.
  • Another laser 10 ⁇ with a wavelength ⁇ 2 can be provided.
  • an energy conversion means which only absorbs part of the light at the wavelengths ⁇ i and ⁇ . If only one of the laser beams 10 or 10 is irradiated, only local heating takes place, but no melting and welding. Only when several laser beams 11, 11 * with the wavelengths ⁇ i and ⁇ 2 are used at the same time is the energy input sufficient to produce a weld seam 23, 23 ⁇ . It is thus possible, for example, to weld only the crossing points in the fabric if the weft threads are coated with the first energy conversion means 24 and the warp threads with the second energy conversion means 24 ⁇ .
  • the two energy conversion means 24, 24 are adjacent to one another, so that a laser beam with the wavelength ⁇ 2 can only weld there, while it can otherwise sweep the entire surface of the tissue without melting it. By simply connecting the nodes, the tissue remains flexible.
  • a flexible tissue is also obtained when a single laser is coupled to an image processing system and a control device, by means of which the laser beam is only switched on at the crossing points of the
  • Warp and weft threads are made. In this case, it is sufficient to apply an energy conversion agent to the warp or weft.
  • 3a to 3c is the preparation of a fabric hose section for the manufacture of a bulk container shown. Either a fabric tube is selected or, as shown above with reference to FIGS. La, b, a flat fabric blank 20 is connected to form a tube.
  • a polypropylene ribbon fabric is preferably selected, the ribbons preferably having a width of 1 to 4 mm and preferably being stretched in a ratio of 1: 7 to 1: 6.
  • the monoaxial stretching in particular achieves tensile strengths of the fabric of approximately 250 N / mm 2 .
  • the tapes of polypropylene are composed, for example, as follows:
  • anti-chippings e.g. Calcium carbonate, titanium dioxide, talc, etc.
  • fabrics made of PE, HDPE and PET can be processed in accordance with the invention.
  • the fabric blank 20 is provided with an imprint of an energy conversion means 24, which corresponds to the later course of the seam.
  • the tube section is laid flat to form a flat web 30. Then fold markings 41, 43, 44 are applied several times and corners are folded over until a folded bottom or lid section of the bulk goods container is formed.
  • a bottom and / or lid area is preferably folded by the following further method steps (cf. FIG. 3a):
  • a first fold marking 41 is made on the two fabric layers 20.1, 20.2 over the entire width of the flat web 30 produced, namely at a distance from the lower edge 31 corresponding to half the width of the flat web 30.
  • a second and third fold mark 43, 44 are produced starting from the center of the lower edge 31 to the respective intersection of the first fold mark 41 with a side edge 32, 33 of the flat web 30.
  • the fabric is folded over along the second and third fold markings 43, 44.
  • the side edge sections 32.1, 33.1 lie against the first fold marking 41 in the interior of the double-layer flat web 30.
  • a configuration is produced which is shown in FIG. 3b and has clearly visible triangular regions 45, 46. These are folded in about half so that their corners 46, 47 rest in the area of the first fold marking 41 and the initial state shown in FIG. 3c is reached.
  • FIG. 4 shows a finished bulk goods container 100, which is provided with carrying loops 60.
  • the welding tabs 61 of the loops 60 are each fanned out; the individual compartments are welded to the side walls so that they are arranged approximately along the expected force curve.
  • Laser beam welding with a printed energy conversion medium enables a large number of complex seam courses to be provided, including the fanned-out welding tabs. The production costs are not increased since the energy conversion means can be printed on for all seam areas in one work step and the welding by means of a laser beam can be automated by means of an electronic path control.
  • FIG. 5a shows a further flat web 30, which has four-part circular recesses 26 at the corners of the lower edge 31. There is also a further semicircular recess 27, which is enclosed by the imprint of the energy conversion means 24.
  • a bulk material container is then obtained in which the quarter and semicircular recesses 26; 27 to one in Fig. 5b complete circular recess 28 shown, to which filling or outlet aids can also be attached.
  • At least one fabric blank 40 (cf. FIG. 6) is formed by recessing two asymmetrical trapezoidal sections 44 opposite one another in mirror image form on one edge.
  • the fabric blank 40 thus obtained has at least:
  • Either a fabric tube can be processed accordingly, or four identical fabric blanks 40 are combined. If a fabric hose is provided with recesses 44, an endless hose body is retained in the side wall area. In both cases, in the preferred embodiment according to FIG. 7, a fabric blank 40 is folded over in the seam region 25. The folded short end is welded, as this minimizes the peeling effect on the weld seams. With the method according to the invention, the weld seam on the concealed folded seam region can be carried out by irradiating a laser 10 from the easily accessible outside. The laser beam 11 passes through through the outer fabric layers until it meets the energy conversion means 24 and there causes the overlapping fabric sections 40 to fuse.
  • Fig. 8 shows a hergestell- of four tissue blanks 40 th bulk container 100 ⁇ .
  • the side wall areas 42 are connected to one another in edge-side seam areas 25, which are each indicated by a dashed line in the figure, so that an approximately cuboid but flexible container results in the side wall area 42, which goes down through the interconnected trapezoidal bottom areas 43 and is limited at the top by the interconnected trapezoidal cover areas 45.
  • this bulk container 100 ⁇ is completed by mechanically moving the laser with only four seam lines 25, while a similar bulk container manufactured according to the prior art had to be formed, for example, by manually sewing 20 individual blanks on 36 individual seams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Textile Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

Die Erfindung betrifft einen flexiblen Schüttgutbehälter aus wenigstens einem Gewebezuschnitt aus einem Kunststoff-Bandchengewebe and ein Verfahren zu seiner Herstellung. In den Nahtbereichen (25) ist der Gewebezuschnitt (20.1) über-lappend oder mit einem weiteren aufgelegten Gewebezuschnitt (20.2) versehen. In die zwischen der Überlappung und/oder den aufeinanderliegenden Gewebezuschnitten (20.1, 20.2) be-findliche Grenzschicht (22) ist ein Energiekonvertierungs-mittel (24) eingebracht. Der bzw. die Gewebezuschnitte (20.1, 20.2) ist bzw. sind durch auf das Energiekonvertie-rungsmittel (24) einwirkende Laserstrahlen verschmolzen.

Description

Verfahren zum Herstellen eines flexiblen Schüttgutbehälters und danach hergestellte Schüttgutbehälter
Die Erfindung betrifft ein Verfahren zum Herstellen eines flexiblen Schüttgutbehälters.
Außerdem betrifft die Erfindung flexible Schüttgutbehälter, die international auch als Flexible Intermediate Bulk Container (FIBC) bezeichnet werden, aus einem Kunststoff- Bändchengewebe, die wenigstens eine umlaufende Seitenwand und wenigstens einen Bodenabschnitt oder einen Deckelab- schnitt umfassen.
Die DE 39 38 414 AI zeigt einen Schüttgutbehälter, der in üblicher Weise aus mehreren Zuschnitten zu einem quaderför- migen Behälter zusammengesetzt ist, welcher sich im ausgefüllten Zustand durch den Innendruck des Schüttguts sich ei- ner Zylinderform annähern kann. Es sind vier Seitenteile vorgesehen, die entlang der Seitenkanten miteinander vernäht sind. Die Seitenwände sind mit einem Bodenabschnitt vernäht, der außerdem noch mit angesetzten Ausschütthilfen wie Stutzen und dergleichen ergänzt sein kann. An der Oberseite des so gebildeten Behälters kann ein zusätzlicher Deckelabschnitt vorgesehen sein, der mit Einfüllhilfen versehen sein kann. Zusätzlich sind an den oberen Ecken des Behältnisses Tragschlaufen angenäht, um eine Nutzung mit Hebezeugen zu ermöglichen.
Die Herstellung eines Schüttgutbehälters durch Vernähen einzelner Zuschnitte birgt mehrere Nachteile in sich. So er- folgt allein schon durch den Nadeleinstich eine Schwächung des Materials, bei dem es sich üblicherweise um Kunststoff- gewebe aus Bändchen aus Polypropylen-, Polyethylen oder HD- Polyethylen-Folie handelt, so dass im Bereich der Einstiche eine Perforationslinie entsteht, entlang der es bei starker Belastung des Schüttgutbehälters zu einer Aufweitung der Stichlöcher kommt. Aufgrund der Perforationen muss der Schüttgutbehälter mit einer Innenauskleidung oder einer Nahtabdeckung versehen werden, wenn sehr feinkörnige Schüttgüter transportiert werden sollen oder wenn der Schüttgutbe- hälter zur Aufnahme von Lebensmittel geeignet sein soll, damit eine hermetische Abschottung des Schüttguts von Umwelteinflüssen sichergestellt ist.
Um ein Aufweiten der Nähte zu verhindern, muss eine starke Flächenware verwendet werden, die im Hinblick auf die theo- retisch auf das ungeschwächte Gewebe wirkenden Kräfte überdimensioniert ist. Teilweise müssen zusätzliche Verstärkungslagen in den Nahtbereich eingenäht werden.
Zudem erfordert die Herstellung gemäß dem Stand der Technik eine Vielzahl von Fertigungsschritten vom Zuschneiden und Vorkonfektionieren der Einzelteile, dem anschließenden Vernähen bis zu einer abschließenden Sichtkontrolle. Die Herstellung muss weitgehend manuell erfolgen.
Um die starken Kräfte auf die Seitennähte abzuschwächen, ist es bekannt, über die gesamte Höhe des Behälters Eckverstär- kungen einzunähen, so dass verhindert wird, dass das Schutt- gut direkt bis in die seitlichen Nahtbereiche fließt und so zu hohe Kräfte direkt auf die Seitennähte wirken. Solche Eckverstärkungen können jedoch gemäß dem Stand der Technik nur bis zu einer begrenzten Höhe des Behälters eingenäht werden, da bei einer zu überbrückenden Nahtlänge von mehr als einem Meter selbst mit Industrienähmaschinen eine Herstellung der Naht nicht mehr möglich ist.
In der US-PS 5845995 wird ein Verpackungssack angegeben, der durch Falten aus einem polyolefinischen Schlauchgewebe ge- bildet wird. Anschließend wird im Bereich der gefalteten Lagen eine angeschmolzene Zwischenschicht aus einem thermoplastischen Polymer eingelegt, an der die gefalteten Lagen anhaften, so dass eine dichte Verklebung des Bodenbereichs erfolgt. Das Einbringen der erwärmten Zwischenschicht ist allerdings schwierig. Nachteilig ist auch, dass durch den starken Wärmeeintrag, die einsickernde Schmelze aus der Zwischenschicht und die vollflächige Verklebung das Gewebe verklebt wird und das Gewebe damit seine Flexibilität verliert. Bei einem Gewebe aus verstreckten Kunststoffbändchen tritt durch die Wärmeeinwirkung der sogenannte memory effect ein, d.h. es erfolgt ein Abbau der Verstreckung, wodurch die Festigkeit des Gewebes sinkt.
Es stellt sich daher die Aufgabe, ein Herstellungsverfahren für einen flexiblen Schüttgutbehälter anzugeben, das eine wesentlich einfachere und kostengünstigere Herstellung gegenüber dem Stand der Technik ermöglicht. Auch soll die Belastbarkeit erhöht sein bzw. der Einsatz von Geweben mit geringerem Flächengewicht ermöglicht sein. Diese Aufgabe wird gemäß der Erfindung durch ein Verfahren zum Herstellen eines flexiblen Schüttgutbehälters gelöst, das folgende Verfahrensschritte umfasst: a) Einbringen eines die Lichtenergie eines Laserstrahls mit der Wellenlänge λ absorbierenden und in Wärmeenergie umwandelnden Energiekonvertierungsmittels in einen Nahtbereich wenigstens eines Gewebezuschnitts, wobei der Gewebezuschnitt aus einem Kunststoff besteht, der durchlässig für den Laserstrahl ist; b) Herstellen einer Überlappung des GewebeZuschnitts im Naht- bereich unter Ausbildung einer Grenzschicht zwischen den überlappenden Gewebelagen; c) Durchstrahlen wenigstens einer der Gewebelagen mit einem Laserstrahl mit einer Wellenlänge λ im Nahtbereich; d) partielles Aufschmelzenlassen der Gewebelagen im Oberflächenbereich an der Grenzschicht und Abkühlenlassen unter Ausbildung einer Schweißnahtstelle als innige Verbindung zwischen den Gewebelagen; und e) Wiederholung der Schritte b) bis d) bis zur Verschweißung aller Nahtbereiche.
Der Laserstrahl tritt durch das Polypropylen-Gewebe der äußeren Lage hindurch und trifft im Bereich einer Grenzfläche zwischen den aneinanderliegenden Gewebelagen auf das in die Grenzschicht eingebrachte Energiekonvertierungsmittel . Hier wird die eingestrahlte Lichtenergie in Wärmeenergie umgewandelt, die zu einer lokalen Erwärmung und partiellen Auf- schmelzung des Gewebes führt. Die AufSchmelzung beider Fügepartner im Bereich der Grenzschicht führt zu einer Verschmelzung und damit zu einer Stoffschlüssigen Verbindung. Es ist sogar möglich, den Laserstrahl durch mehrere Gewebelagen hindurch zu leiten und an einer innenliegenden, von außen nicht einsehbaren Grenzschicht eine Schweißnaht zu erzeugen, wozu an dieser Grenzschicht wenigstens im Nahtbereich ein Energiekonvertierungsmittel eingebracht wird. Das erfindungsgemäße Verfahren ist automatisierbar und daher kostengünstig durchführbar. Mit dem Laserdurchstrahlschweißen ist es somit möglich, Schweißnähte überall dort anzuordnen, wo sie funktionswesentlich sind. Es können auch Nähte durch Schweißen an Stellen hergestellt werden, die für eine Nähmaschine nicht zugänglich sind. Damit ist es möglich, ei- nen Schüttgutbehälter neuartig zu konzipieren und die Anzahl der Einzelteile zu seiner Herstellung stark zu reduzieren.
Vorteilhaft ist auch, dass die Festigkeit der für die Herstellung von flexiblen Schüttgutbehältern meist verwendeten verstreckten Kunststoffbänder erhalten bleibt, da im Gegen- satz zum Heizelementschweißen keine vollständige Erwärmung des Gewebes und damit keine Rückstellung der Verstreckung erfolgt .
Da im Bereich der Schweißnähte, im Gegensatz zum Vernähen ■ mit einer Nähnadel , keine Schwächung des Gewebes mehr durch Perforationen erfolgt, kann ein Gewebe gewählt werden, das ein geringeres Flächengewicht aufweist, als dies bei vernähten Behältern erforderlich ist .
Vorteilhaft ist weiterhin, dass die Lage der Nähte einfach an die Kraftflüsse im Gewebe anpassbar ist und selbst kom- plizierte Formen des Zuschnitts ohne wesentliche Erhöhung der Fertigungskosten vorgesehen sein können. Weiterhin ist es möglich, feste und flexible Gewebe miteinander zu verbinden. Dies ist mit allen thermoplastischen Materialkombinationen möglich, bei denen eine Vermischung der Schmelze mög- lieh ist. Wird beispielsweise ein Polypropylen- Bändchengewebe verwendet, so können Spritzgussteile aus Polypropylen ohne weiteres mit dem Gewebe verschweißt werden. Hierdurch können Rohrstutzen im Boden- bzw. Deckelbereich eingeschweißt werden, die ein Andocken an eine Befüll- oder Entladestation wesentlich erleichtern. Auch können Zusatz- teile angeschweißt werden, die ein automatisiertes Greifen der Einfüll- und Auslassstutzen des Schüttgutbehälters ermöglichen, beispielsweise solche, die nach Art eines Bajonettverschlusses ausgebildet sind.
Das Einsetzen von Eckverstärkungen ist mit Hilfe des Laser- DurchstrahlSchweißens ebenfalls problemlos möglich, da lediglich der Laserkopf entlang der Innenwandung des Behälters geführt werden muss, um die Eckverstärkung an der Seitenwand zu befestigen. Eine Beschränkung der Nahtlänge, wie bei Näh- maschinen gegeben, existiert hier nicht.
Es kann vorgesehen sein, das Gewebe vollflächig mit einem Energiekonvertierungsmittel, das die Lichtenergie eines Lasers bei bestimmter Wellenlänge absorbiert, zu beschichten oder den Kunststoff vor der Gewebeherstellung insgesamt mit einem Energiekonvertierungsmittel zu vermischen.
Bevorzugt wird der vorbereitete Gewebezuschnitt nur im Bereich der späteren Schweißnähte mit einem Energiekonvertie- rungsmittel, beispielsweise durch Aufdrucken, versehen.
Das Energiekonvertierungsmittel kann weiterhin in Form einer Schweißfolie bereitgestellt werden, die in die Grenzschicht im Bereich der gewünschten Nahtverläufe eingelegt wird. Die Schweißfolie besteht aus einem Trägerkunststoff, der mit Lichtenergie absorbierenden Pigmenten gemischt ist. Die Dicke der Schweißfolie, deren Erweichungstemperatur oder der Absorptionsgrad der Pigmente können, so gewählt sein, dass entweder die Schweißfolie vollständig im Bereich der Schweißnaht aufschmilzt und ein Schmelzebad aus Kunststoff erzeugt wird, das seinerseits eine lokale AufSchmelzung der Oberflächen des zu verschweißenden Gewebes bewirkt oder so, dass die Schweißfolie lediglich stark erwärmt wird und die beiden Gewebelagen durch die zwischengelegte Schweißfolie aneinander haften bzw. intensiv verbunden werden.
Es ist möglich, einen ersten Gewebezuschnitt zu einem Zylinder zu verschweißen, der anschließend mit einem zweiten Ge- webezuschnitt als Bodenabschnitt und ggf. weiteren Zusatz- teilen wie Deckelabschnitten und Ein- und Auslasshilfen verschweißt wird.
Bei dem Verfahren der Erfindung wird bevorzugt von einem abgelängten Schlauchgewebe ausgegangen, so dass der Zuschnitt weiter vereinfacht ist. Der Gewebezuschnitt wird dann mehrfach gefaltet und im Bereich der Überlappung der Faltung durch Einwirkung eines Laserstrahls verschweißt.
Vorgeschlagen wird auch, eine Mikroperforation durch punktu- ell aufgebrachte Laserenergie vorzunehmen. Mit einem stark fokussiertem Laserstrahl können, insbesondere in mechanisch wenig belasteten Bereichen, problemlos Mikroperforationen eingebracht werden, die zu einer kontrollierten Entlüftung des Innenraums des Behälters beitragen, ohne dass jedoch ein Ausfließen von Schüttgut aus dem Inneren erfolgt.
Im Bereich der Tragschlaufen kann auf die bisher erforderliche Anbringung von Verstärkungsbereichen verzichtet werden. Vorgeschlagen wird hier, bei besonders belasteten Behältern den an den Behälter angeschweißten Laschenbereich aufzufächern und die einzelnen Finger des Fächers anzuschweißen, um eine günstigere Kraftverteilung zu erreichen. Die größere Anzahl und Länge der Schweißnähte bedeutet bei dem automatisierbaren Verfahren der Erfindung keinen Nachteil mehr.
Die Anbringung üblicher Anschweißlaschen mit nahezu rechteckigem Zuschnitt ist ebenfalls möglich.
Die Erfindung wird nachfolgend anhand von Ausführungsbei- spielen und mit Bezug auf die Zeichnung näher erläutert . Es zeigen im einzelnen:
Fig. la, lb das Verschweißen eines Gewebezuschnitts zu einem Zylinder in schematische Ansicht;
Fig. 2a, 2b das Verschweißen zweier bzw. dreier Gewebe- lagen mittels Laserdurchstrahlschweißen in schematischer Schnittansicht;
Fig. 3a bis 3c die Konfektionierung eines Gewebeschlauchab- schnittes durch Falzen und Umlegen in ver- schiedenen Verfahrensstadien;
Fig. 4 einen erfindungsgemäß hergestellten Schuttgutbehalter mit besonderer Tragschlaufenausbildung in perspektivischer Ansicht;
Fig. 5a, 5b einen weiteren vorkonfektionierten Gewebeab- schlauchabschnitt für die Herstellung eines
Schüttgutbehälters durch Falzen und Umlegen;
Fig. 6 einen weiteren vorkonfektionierten Gewebeabschnitt für die Herstellung eines Schüttgut- behälters durch randseitiges Verschweißen;
Fig. 7 das Verschweißen eines Überlappungsbereichs in schematischer Schnittdarstellung; und Fig. 8 eine weitere Ausführungsform eines Schutt- gutbehälters in perspektivischer Ansicht.
Fig. la zeigt einen Gewebezuschnitt 20, bei dem im Nahtbereich 25 ein Energiekonvertierungsmittel aufgedruckt oder in anderer Weise aufgebracht ist. Das Energiekonvertierungsmittel kann aus Kohlenstoff bestehen, insbesondere in Form von Russ. Da Kohlenstoff Licht aller Wellenlängen absorbiert, sind verschiedene Laser einsetzbar, insbesondere kostengünstige Halbleiterlaser.
In Fig. lb ist der Gewebezuschnitt 20 unter Ausbildung einer Überlappung im Nahtbereich 25 zu einem Zylinder gerollt. Der von einem Laser 10 ausgelenkte Laserstrahl 11 wird an einer optischen Einrichtung 14 umgelenkt und entlang des Nahtbereichs 25 geführt.
Das Verschweißen des Gewebezuschnitts mittels Laserdurchstrahlschweißen wird mit Bezug auf Figur 2 erläutert. Dort sind zwei aneinanderliegende Gewebelagen 20.1, 20.2 dargestellt, in deren Grenzschicht 22 partiell ein Energiekonvertierungsmittel 24 eingebracht ist. Die zeichnerisch darge- stellten Großenverhältnisse der Figur 2 sind nicht maßstäblich und dienen nur zur Verdeutlichung. Üblicherweise wird das Energiekonvertierungsmittel 24 in einer Schichtdicke von ca. 10...100 μm aufgebracht, so dass die Grenzschicht 22 e- benfalls diese Dicke hat. Die Dicke der oben liegenden, zu durchstrahlenden Gewebelage 20.1 ist bei entsprechender
Lichtdurchlässigkeit für den Laserstrahl 11 nahezu beliebig, solange die Lichtdämpfung in der Gewebelage 20.1 nicht so stark ist, dass eine AufSchmelzung der Grenzschicht 22 nicht mehr erreichbar ist. Die Dicke des nicht durchstrahlten, un- teren Kunststoffteils 20.2 ist in jedem Fall beliebig. Der Laserstrahl durchläuft das Kunststoffteil 20.1, trifft in der Grenzschicht 22 auf das dort eingebrachte Energiekonvertierungsmittel 24, wobei die Lichtenergie in Wärmeenergie umgewandelt wird. Nach den Gesetzmäßigkeiten der Thermodynamik und unter Berücksichtigung von Umwelteinflüssen, z. B. durch Abkühlung, kann die Wärmemenge pro Zeit berechnet werden, die in die Grenzschicht 22 eingebracht werden muss, um ein Anschmelzen der Gewebelagen 20.1, 20.2 zu erreichen, ohne jedoch ein vollständiges Aufschmelzen, Erweichen oder gar Zerstören der Gewebelagen 20.1, 20.2 zu bewirken.
Bei allen erfindungsgemäßen Schweißvorgängen bildet sich eine im Schnitt linsenförmige Schweißnahtstelle 23, die zunächst schmelzeförmig vorliegt und nach dem Ende der Be- Strahlung mit Laserlicht abkühlt und erstarrt. Die Symmetrieebene der Schweißnahtstelle 23 liegt etwa in der Grenzschicht 22, wodurch ein gleichmäßiger Kraftverlauf und eine hohe Belastbarkeit des Nahtbereichs 25 erreicht wird.
Außerdem ergibt sich bei dem erfindungsgemäßen Verfahren folgende in Figur 2b schematisch dargestellte Möglichkeit:
Es kann ein weiterer Laser 10 λ mit einer Wellenlänge λ2 vorgesehen werden. In die Grenzschicht 22 oder - bei mehr als zwei Gewebelagen 20.1, 20.2, 20.3 - in eine weitere Grenzschicht 22 wird außer in den bereits bestehenden Nahtbe- reich 25 ein weiteres Energiekonvertierungsmittel 24 Λ eingebracht, das Licht mit der Wellenlänge λ2 absorbiert, aber nicht das Licht mit der Wellenlänge λi in einem Maße, dass eine AufSchmelzung bewirkt wird. Es wird so ein weiterer Nahtbereich 25 λ ausgebildet. Damit ist es möglich, zwei Näh- te oder mehr gleichzeitig nebeneinander oder übereinander durch Laserstrahlschweißen herzustellen.
Weiterhin ist es möglich, ein Energiekonvertierungsmittel zu verwenden, das bei den Wellenlängen λi und λ nur jeweils ei- nen Teil des Lichtes absorbiert. Bei Bestrahlung mit nur einem der Laserstrahlen 10 oder 10 erfolgt nur eine lokale Erwärmung, aber noch keine AufSchmelzung und Verschweißung. Erst wenn mehrere Laserstrahlen 11, 11* mit den Wellenlänge λi und λ2 gleichzeitig eingesetzt werden, ist der Energieein- trag ausreichend, um eine Schweißnahtstelle 23, 23 λ herzustellen. Somit ist es beispielsweise möglich, bei dem Gewebe nur die Kreuzungspunkte zu verschweißen, wenn die Schussfäden mit dem ersten Energiekonvertierungsmittel 24 und die Kettfäden mit dem zweiten Energiekonvertierungsmittel 24 λ beschichtet sind. Im Überlappungsbereich am Knotenpunkt liegen beide Energiekonvertierungsmittel 24, 24 aneinander vor, so dass ein Laserstrahl mit der Wellenlänge λ2 nur dort eine Verschweißung bewirken kann, während er ansonsten voll- flächig über das Gewebe streichen kann, ohne dieses aufzu- schmelzen. Durch die bloße Verbindung der Knotenpunkte bleibt das Gewebe flexibel .
Ein flexibles Gewebe wird auch dann erhalten, wenn ein einzelner Laser mit einem Bildverarbeitungssystem und einer Steuerungseinrichtung gekoppelt ist, durch welche ein Ein- schalten des Laserstrahls nur an den Kreuzungspunkten der
Kett- und Schussfäden erfolgt. In diesem Fall reicht es aus, auf den Kett- oder auf den Schussfaden ein Energiekonvertie- rungsmittel aufzubringen.
In den Fig. 3a bis 3c ist die Vorbereitung eines Gewebe- Schlauchabschnitts zur Herstellung eines Schüttgutbehälters dargestellt. Es wird entweder ein Gewebeschlauch gewählt o- der, wie oben unter Bezug auf Fig. la, b dargestellt, ein ebener Gewebezuschnitt 20 zu einem Schlauch verbunden.
Bevorzugt wird ein Polypropylen-Bändchengewebe gewählt, wo- bei die Bändchen vorzugsweise eine Breite von 1 bis 4 mm aufweisen und vorzugsweise in einem Verhältnis von 1 : 7 bis 1 : 6 verstreckt sind. Insbesondere durch die monoaxiale Verstreckung werden Zugfestigkeiten des Gewebes um ca. 250 N/mm2 erreicht. Die Bändchen des Polypropylens setzen sich beispielsweise wie folgt zusammen:
- 95 % PP
- 1,5 % UV-Stabilisator
- 3,5 % Antisplitt, z.B. Calciumcarbonat , Titandioxid, Talkum etc . Daneben sind insbesondere Gewebe aus PE, HDPE und PET erfindungsgemäß verarbeitbar.
In Bereich einer Unterkante 31 ist der Gewebezuschnitt 20 mit einem Aufdruck eines Energiekonvertierungsmittels 24 versehen, welcher dem späteren Nahtverlauf entspricht.
Wie in Fig. 3a dargestellt, ist der Schlauchabschnitt zu einer Flachbahn 30 flachgelegt. Anschließend werden mehrfach Falzmarkierungen 41, 43, 44 angebracht und Ecken umgelegt, bis ein gefalteter Boden- oder Deckelabschnitt des Schüttgutbehälters entsteht.
Vorzugsweise erfolgt das Falten eines Boden- und/oder Deckelbereichs durch folgende weitere Verfahrensschritte (vgl . Fig. 3a) :
Zunächst wird eine erste Falzmarkierung 41 an beiden Gewebe- lagen 20.1, 20.2 über die gesamte Breite der Flachbahn 30 hergestellt und zwar in einem Abstand zu der Unterkante 31 entsprechend der halben Breite der Flachbahn 30.
Eine zweite und dritte Falzmarkierung 43, 44 werden ausgehend von der Mitte der Unterkante 31 bis zum jeweiligen Schnittpunkt der ersten Falzmarkierung 41 mit einer Seitenkante 32, 33 der Flachbahn 30 hergestellt.
Ein erster und ein zweiter Seitenkantenabschnitt 32.1, 33.1, der sich jeweils zwischen der Unterkante 31 und der ersten Falzmarkierung 41 erstreckt, werden ins Innere der doppella- gigen Flachbahn 30 geschoben. Dabei wird das Gewebe entlang der zweiten und dritten Falzmarkierung 43, 44 umgeknickt. In der Endstellung dieses Herstellungsschrittes liegen die Sei- tenkantenabschnitte 32.1, 33.1 im Inneren der doppellagigen Flachbahn 30 an der ersten Falzmarkierung 41 an.
Es entsteht eine Konfiguration, die in Figur 3b dargestellt ist und deutlich sichtbare Dreiecksbereiche 45, 46 aufweist. Diese werden etwa hälftig umgeknickt, so dass ihre Ecken 46, 47 im Bereich der ersten Falzmarkierung 41 anliegen und der in Fig. 3c dargestellte Ausgangszustand erreicht wird.
Auf die freiliegenden Ecken 46, 47 des so gebildeten Schutt- gutbehälters wirken nur noch sehr geringe Zugkräfte, so dass jeweils eine sehr kurze Schweißnaht, mit der die Ecken 46, 47 durch Laserstrahlschweißen an das Gewebe 20 angeschlossen sind, ausreichend ist. Beispielsweise können die Ecken über einen bogenförmigen Schweißnahtbereich 25 angebunden werden.
Die dargelegte, sehr einfache Herstellung eines Schüttgutbehälters 100 durch Falzen und Umlegen basiert ganz wesentlich auf dem hier eingesetzten Laserschweißverfahren, denn mit herkömmlichen Nähtechniken wäre es nicht möglich, im Innen- bereich des Boden- bzw. Deckelabschnitts Nahtabschnitte 25 maschinell zu vernähen.
Fig. 4 zeigt einen fertigen Schüttgutbehälter 100, der mit Tragschlaufen 60 versehen ist. Die Anschweißlaschen 61 der Tragschlaufen 60 sind jeweils aufgefächert; die einzelnen Fächer sind so an die Seitenwände angeschweißt, dass sie etwa entlang des erwarteten Kraftverlaufs angeordnet sind. Das Laserstrahlschweißen mit einem aufgedrucktem Energiekonvertierungsmittel ermöglicht, eine Vielzahl komplexer Nahtver- laufe vorzusehen, so auch bei den aufgefächerten Anschweißlaschen. Eine Erhöhung der Herstellungskosten erfolgt nicht, da das Aufdrucken des Energiekonvertierungsmittels für alle Nahtbereiche in einem Arbeitsgang erfolgen kann und das Verschweißen mittels Laserstrahls durch eine elektronische Bahnsteuerung automatisierbar ist.
Ein Anschweißen üblicher Tragschlaufen mit etwa rechteckigen Anschweißlaschen ist erfindungsgemäß ebenfalls möglich. Solche Anschweißlaschen sind ausreichend bei üblicher Belastung. Auch hier ist durch die Erfindung eine schnelle Ferti- gung der Nähte zu erzielen.
In Fig. 5a ist eine weitere Flachbahn 30 dargestellt, die an den Ecken der Unterkante 31 vierteilkreisförmige Ausnehmungen 26 aufweist. Außerdem ist eine weitere, durch den Aufdruck des Energiekonvertierungsmittels 24 eingefasste halb- kreisförmige Ausnehmung 27 vorhanden. Unter Anwendung der zuvor mit Bezug auf die Fig. 3a bis 3c erläuterten Verfahrensschritte wird dann ein Schüttgutbehälter erhalten, bei dem sich am Boden- bzw. Deckelabschnitt die viertel- und halbkreisförmigen Ausnehmungen 26; 27 zu einer in Fig. 5b dargestellten kreisförmigen Ausnehmung 28 ergänzen, an der noch Einfüll- bzw. Auslasshilfen angebracht werden können.
Ebenfalls erst durch die erfindungsgemäße Anwendung des Laserstrahlschweißens mit beispielsweise aufgedruckten Ener- giekonvertierungsmitteln ermöglicht ist die weitere Herstellungsweise eines Schüttgutbehälters, die mit Bezug auf die Figuren 6 bis 8 erläutert wird:
Wenigstens ein Gewebezuschnitt 40 (vgl. Fig. 6) wird durch eckseitiges Ausnehmen zweier asymmetrischer, sich Spiegel- bildlich an einer Kante gegenüberliegender Trapezabschnitte 44 gebildet. Der so erhaltene Gewebezuschnitt 40 weist wenigstens auf :
- einen rechteckigen Seitenwandbereich 42;
- einen sich an den Seitenwandbereich 42 anschließenden tra- pezfδrmigen Boden- oder Deckelbereich 43; 45 und
- einen sich an jeweils an den Boden- und/oder an den Deckelbereich 43; 45 anschließenden rechteckigen Stutzenbereich 41.
Es kann entweder ein Gewebeschlauch entsprechend bearbeitet werden oder aber es werden vier gleichartige Gewebezuschnitte 40 kombiniert. Wird ein Gewebeschlauch mit Ausnehmungen 44 versehen, bleibt im Seitenwandbereich ein endloser Schlauchkörper erhalten. In beiden Fällen wird in der bevorzugten Ausführungsform gemäß Fig. 7 ein Gewebezuschnitt 40 im Nahtbereich 25 umgelegt. Verschweißt wird das umgelegte kurze Ende, da so die Schälwirkung auf die Schweißnähte minimiert ist. Mit dem erfindungsgemäßen Verfahren kann die Schweißnaht an dem verdeckt liegenden umgelegten Nahtbereich durch Einstrahlen eines Lasers 10 von der leicht zugängli- chen Außenseite her erfolgen. Der Laserstrahl 11 tritt durch die äußeren Gewebelagen hindurch, bis er auf das Energiekonvertierungsmittel 24 trifft und dort eine Verschmelzung der überlappenden Gewebezuschnitte 40 bewirkt.
Fig. 8 zeigt einen aus vier Gewebezuschnitten 40 hergestell- ten Schüttgutbehälter 100 λ. Die Seitenwandbereiche 42 sind in randseitigen Nahtbereichen 25, die in der Figur jeweils durch eine gestrichelte Linie angedeutet sind, miteinander verbunden, so dass sich im Seitenwandbereich 42 ein etwa quaderförmiger, aber flexibler Behälter ergibt, der nach un- ten durch die miteinander verbundenen trapezförmigen Bodenbereiche 43 und nach oben durch die miteinander verbundenen trapezförmigen Deckelbereiche 45 begrenzt ist. In der jeweiligen Mitte des Bodens bzw. Deckels schließt sich ein Einfüll- bzw. Auslassstutzen an. Dieser Schüttgutbehälter 100 λ wird erfindungsgemäß durch maschinelles Abfahren mit dem Laser von nur vier Nahtlinien 25 fertiggestellt, während ein gemäß dem Stand der Technik hergestellter, gleichartiger Schüttgutbehälter beispielsweise durch manuelles Vernähen von 20 Einzelzuschnitten an 36 Einzelnähten zu bilden war.

Claims

Patentansprüche :
1. Verfahren zum Herstellen eines flexiblen Schüttgutcon- tainers (100;100') aus einem Kunststoff-Bändchengewebe mit folgenden Verfahrensschritten:
f) Einbringen eines die Lichtenergie eines Laserstrahls
(11; 11') mit der Wellenlänge λi absorbierenden und in Wärmeenergie umwandelnden Energiekonvertierungsmittels (24;24') in einen Nahtbereich (25) wenigstens eines Gewebezuschnitts (20;40), wobei der Gewebezuschnitt aus einem Kunststoff besteht, der durchlässig für den Laserstrahl ist; g) Herstellen einer Überlappung des Gewebezuschnitts (20; 40) im Nahtbereich (25) unter Ausbildung einer Grenzschicht (22) zwischen den überlappenden Gewebelagen (20.1, 20.2); h) Durchstrahlen wenigstens einer der Gewebelagen (20.1,
20.2) mit einem Laserstrahl (11;11') mit einer Wellenlänge λi im Nahtbereich (25) ; i) partielles Aufschmelzenlassen der Gewebelagen (20.1, 20.2) im Oberflächenbereich an der Grenzschicht (22) und Abkühlenlassen unter Ausbildung einer Schweißnahtstelle (23) als innige Verbindung zwischen den Gewebelagen (20.1, 20.2); und j ) Wiederholung der Schritte b) bis d) bis zur Verschweißung aller Nahtbereiche (25) .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Energiekonvertierungsmittel (24; 24') auf wenigstens eine der Gewebelagen (20.1, 20.2) aufgedruckt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Energiekonvertierungsmittel (24,-24') im Nahtbereich aufgedruckt wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Energiekonvertierungsmittel (24; 24') vollflächig aufgedruckt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Energiekonvertierungsmittel
(24; 24') in Form einer lichtenergieabsorbierenden Schweißfolie zwischen die Gewebelagen (20.1, 20.2) gelegt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Energiekonvertierungsmittel (24;24') in den Kunststoff wenigstens einer der Gewebelagen (20.1, 20.2) ein- gemischt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein erster Gewebezuschnitt (20) zu einem Zylinder verschweißt wird, der mit einem zweiten Gewebeabschnitt als Bodenabschnitt verschweißt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein erster Gewebezuschnitt (20) zu einem Zylinder verschweißt wird oder der Gewebezuschnitt (20) aus einem abgelängten Schlauchgewebe besteht und dass an dem Gewebezuschnitt (20) durch mehrfaches Falzen und Umlegen von Teilbereichen des GewebeZuschnitts (20) ein Bodenabschnitt ausgebildet wird, wobei die Falze durch Laserdurchstrahlschweißen fixiert werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass ein Boden- und/oder Deckelbereich durch folgende Verfahrensschritte gebildet wird: a) Flachlegen des zylinderförmigen Gewebezuschnitts (20) zu einer doppellagigen Flachbahn (30) ; b) Herstellen einer ersten Falzmarkierung (31) an beiden Gewebelagen (20.1, 20.2) über die gesamte Breite der Flachbahn (30) in einem Abstand entsprechend der halben Breite der Flachbahn (30) zu einer Unterkante (31) ; c) Herstellen einer zweiten und dritten Falzmarkierung (42, 43) ausgehend von der Mitte der Unterkante (31) bis zum jeweiligen Schnittpunkt der ersten Falzmarkierung (41) mit einer Seitenkante (32, 33) der Flachbahn (30) ; d) Einschieben eines ersten und zweiten Seitenkantenab- Schnitts (32.1, 33.1), der sich jeweils zwischen der Unterkante (31) und der ersten Falzmarkierung (41) erstreckt, ins Innere der doppellagigen Flachbahn (30) unter Umknickung des Gewebes entlang der zweiten und dritten Falzmarkierung (42, 43) bis zur Anlage der Seitenkantenab- schnitte (32.1, 33.1) an der ersten Falzmarkierung (41) im Inneren der doppellagigen Flachbahn (30) ; e) Umknickung der so gebildeten Dreiecksbereiche (45, 46) und Anlagen der Ecken (46,47) in den Bereich der ersten Falzmarkierung; und f) Fixieren der Dreiecksbereiche (45, 46) und/oder durch Laserdurchstrahlschweißen der Nahtbereiche (25) .
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass wenigstens ein Gewebezuschnitt (40) durch eckseitiges Ausnehmen zweier asymmetrischer, sich spiegelbildlich an einer Kante gegenüberliegender Tra- pezabschnitte (44) gebildet wird, wobei der so erhaltene Gewebezuschnitt (40) wenigstens aufweist:
- einen rechteckigen Seitenwandbereich (42) ;
- einen sich an den Seitenwandbereich (42) anschließen- den trapezförmigen Boden- oder Deckelbereich (43; 45) und
- einen sich an jeweils an den Boden- und/oder an den Deckelbereich (43; 45) anschließenden rechteckigen Stutzenbereich (41) , welche Seitenwand-, Boden-, Deckel- und/oder Stutzenbereiche (41; 42;43; 44,-45) jeweils in randseitigen Nahtbereichen (25) verschweißt werden.
11. Flexibler Schüttgutbehälter (100) aus wenigstens einem Gewebezuschnitt (20) aus einem Kunststoff- Bändchengewebe, wobei in den Nahtbereichen (25) der Gewebezuschnitt überlappend ist oder mit einem weiteren aufgelegten Gewebezuschnitt versehen ist und wobei in die zwischen der Überlappung und/oder den aufeinander- liegenden Gewebezuschnitten befindliche Grenzschicht (22) ein Energiekonvertierungsmittel (24, 24 x) eingebracht ist und der bzw. die Gewebezuschnitte durch auf das Energiekonvertierungsmittel (24, 24 λ) einwirkende Laserstrahlen (ll,llx) verschmolzen ist bzw. sind.
12. Flexibler Schüttgutbehälter (100) nach Anspruch 11, ge- kennzeichnet durch eine umlaufende Seitenwand und wenigstens einen Bodenabschnitt oder einen Deckelabschnitt, wobei die Seitenwand und der Bodenabschnitt und/oder der Deckelabschnitt aus demselben Gewebezuschnitt (20) gebildet sind und dass der Gewebezuschnitt in den Nahtbereichen (25) überlappend mit einem in die zwischenliegende Grenzschicht (22) eingebrachten Energiekonvertierungsmittel (24, 2 Λ) ausgebildet und durch auf das Energiekonvertierungsmittel (24, 24 v) einwirkende Laserstrahlen (11, 11') verschmolzen ist.
13. Flexibler Schüttgutbehälter (100) nach Anspruch 12, dadurch gekennzeichnet, dass der Bodenabschnitt und/oder der Deckelabschnitt eine runde Ausnehmung aufweist, die durch viertelkreisförmige Ausnehmungen (26) an wenigstens zwei Ecken des zu einer Flachbahn (30) zusammenge- legten Gewebezuschnitts (20;40) und durch wenigstens eine in der Mitte einer offenen Kante (31) der Flachbahn (30) angeordnete halbkreisförmige Ausnehmung (27) gebildet ist.
14. Flexibler Schüttgutbehälter (100) nach Anspruch 11, ge- kennzeichnet durch wenigstens eine umlaufende Seitenwand und wenigstens einen Bodenabschnitt oder einen Deckelabschnitt und durch vier Gewebezuschnitte (40) , die in randseitigen Nahtbereichen (25) verschweißt sind, wobei jeder Gewebezuschnitt (40) wenigstens aufweist: - einen rechteckigen Seitenwandbereich (42) ;
- einen sich an den Seitenwandbereich (42) anschließenden trapezförmigen Boden- oder Deckelbereich (43; 45); und
- einen sich an jeweils an den Boden- und/oder an den Deckelbereich (43; 45) anschließenden rechteckigen
Stutzenbereich (41) .
15. Schüttgutbehälter (100; 100') nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass an der Seitenwand wenigstens eine Tragschlaufe (60) angeordnet ist, die ü- ber eine fingerförmig aufgefächerte Anschweißlasche (61) mit der Seitenwand verbunden ist.
16. Schüttgutbehälter (100;100') nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass der Gewebezuschnitt (20;40) wenigstens teilweise mit Mikroperforationen versehen ist, die durch punktuelle Einstrahlung von Laserstrahlen (ll,ll ) eingeschmolzen sind.
PCT/EP2002/010923 2001-09-29 2002-09-28 Verfahren zum herstellen eines flexiblen schüttgutbehälters und danach hergestellte schüttgutbehälter WO2003029109A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002338831A AU2002338831A1 (en) 2001-09-29 2002-09-28 Method for the production of a flexible bulk-material container and bulk-material container produced according to said method
US10/491,062 US20050041893A1 (en) 2001-09-29 2002-09-28 Method for the production of a flexible bulk-material container and bulk-material container produced according to said method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01123507.4 2001-09-29
EP20010123507 EP1297944B1 (de) 2001-09-29 2001-09-29 Verfahren zum Laserdurchstrahlschweissen von Kunststoffteilen
EP01123553.8 2001-10-01
EP01123553A EP1298075B1 (de) 2001-10-01 2001-10-01 Verfahren zum Herstellen eines flexiblen Schüttgutbehälters und danach hergestellte Schüttgutbehälter

Publications (2)

Publication Number Publication Date
WO2003029109A2 true WO2003029109A2 (de) 2003-04-10
WO2003029109A3 WO2003029109A3 (de) 2003-09-12

Family

ID=26076729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/010923 WO2003029109A2 (de) 2001-09-29 2002-09-28 Verfahren zum herstellen eines flexiblen schüttgutbehälters und danach hergestellte schüttgutbehälter

Country Status (3)

Country Link
US (1) US20050041893A1 (de)
AU (1) AU2002338831A1 (de)
WO (1) WO2003029109A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517307B2 (en) 2005-01-21 2009-04-14 Kraft Foods Global Brands Llc Method of assembling a carton blank into a carton
DE102016103060A1 (de) * 2016-02-22 2017-08-24 Evosys Laser GmbH Verfahren zum Schweißen einer Verbindung zwischen einer ersten Fügefläche eines ersten Formteils und einer zweiten Fügefläche eines zweiten Formteils und zugehörige Vorrichtung

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505283B1 (de) * 2007-02-05 2008-12-15 Starlinger & Co Gmbh Verfahren zum herstellen von bahnabschnitten aus flexiblem bahnmaterial sowie zum herstellen von verpackungsbehältern
EP2125575A1 (de) * 2007-03-01 2009-12-02 Isbir Sentetik Dokuma Sanayi Anonim Sirketi Leicht herzustellende, flexible und praktische schüttgutbehälter
BRPI0816197B1 (pt) * 2007-09-05 2018-12-18 Albany Int Corp método de solda de parte de tecido industrial e costura.
CA2645464A1 (en) * 2007-11-30 2009-05-30 Gordon Hogan Heat reservoir
EP2343179B1 (de) * 2010-01-12 2014-11-12 TWE Group GmbH Ultraschall- und Laserschweißen in der Rohrsanierung
EP2644311A1 (de) * 2012-03-27 2013-10-02 Nexans Verfahren zum Schweißen mittels eines Lasers
US20140307983A1 (en) * 2013-04-15 2014-10-16 Dennis Limbaugh Bulk material transport & storage bag
CN109641559A (zh) * 2016-09-05 2019-04-16 河西工业株式会社 汽车用内饰部件
EP3456639A1 (de) * 2017-09-19 2019-03-20 Borregaard AS Kompaktes system zur verpackung von mikrofibrillierter cellulose

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473432A (en) * 1983-02-04 1984-09-25 Harold Leader Dot heat stapling
EP0180379A2 (de) * 1984-10-29 1986-05-07 Imperial Chemical Industries Plc Intermediäre Behälter für Schüttgut
US4597102A (en) * 1984-06-20 1986-06-24 Nattrass-Hickey & Sons, Ltd. Intermediate bulk container
FR2634468A1 (fr) * 1988-07-20 1990-01-26 Fabrication Materiel Emballage Sac pour produits divises ou pulverulents
WO1997047796A1 (en) * 1996-06-11 1997-12-18 Akzo Nobel N.V. Grid comprising polymeric drawn strips and a process for making same
US5873498A (en) * 1996-06-14 1999-02-23 Quality Rail Services, L.C. Railway locomotive fuel service truck

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574031A (en) * 1967-03-24 1971-04-06 Heller William C Jun Method of heat welding thermoplastic bodies using a stratum of susceptor material
US4480766A (en) * 1982-09-24 1984-11-06 Ibc Transport Containers, Ltd. Bulk transport bag
US4781475A (en) * 1987-11-10 1988-11-01 Custom Packaging Systems, Inc. Reinforced bulk bag
AT400831B (de) * 1994-05-04 1996-03-25 Starlinger & Co Gmbh Sack aus polymer-, insbesondere polyolefingewebe und verfahren zu seiner herstellung
US5865540A (en) * 1997-02-06 1999-02-02 Super Sack Mfg. Corp. One piece flexible intermediate bulk container and process for manufacturing same
US5924796A (en) * 1997-02-06 1999-07-20 Super Sack Manufacturing Corp. One piece flexible intermediate bulk container and process for manufacturing same
DE29818049U1 (de) * 1998-11-13 1999-05-12 Eurea Verpackungsgesellschaft Flexibler Transportbehälter
US6244443B1 (en) * 1999-09-03 2001-06-12 B.A.G. Corporation Octagon shaped stackable flexible intermediate bulk container and method of manufacture
US6527445B2 (en) * 2001-05-02 2003-03-04 Scholle Corporation Liners or bags and method of making them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473432A (en) * 1983-02-04 1984-09-25 Harold Leader Dot heat stapling
US4597102A (en) * 1984-06-20 1986-06-24 Nattrass-Hickey & Sons, Ltd. Intermediate bulk container
EP0180379A2 (de) * 1984-10-29 1986-05-07 Imperial Chemical Industries Plc Intermediäre Behälter für Schüttgut
FR2634468A1 (fr) * 1988-07-20 1990-01-26 Fabrication Materiel Emballage Sac pour produits divises ou pulverulents
WO1997047796A1 (en) * 1996-06-11 1997-12-18 Akzo Nobel N.V. Grid comprising polymeric drawn strips and a process for making same
US5873498A (en) * 1996-06-14 1999-02-23 Quality Rail Services, L.C. Railway locomotive fuel service truck

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517307B2 (en) 2005-01-21 2009-04-14 Kraft Foods Global Brands Llc Method of assembling a carton blank into a carton
DE102016103060A1 (de) * 2016-02-22 2017-08-24 Evosys Laser GmbH Verfahren zum Schweißen einer Verbindung zwischen einer ersten Fügefläche eines ersten Formteils und einer zweiten Fügefläche eines zweiten Formteils und zugehörige Vorrichtung
US11673342B2 (en) 2016-02-22 2023-06-13 Evosys Laser GmbH Method for welding a connection between a first joining surface of a first molded part and a second joining surface of a second molded part

Also Published As

Publication number Publication date
WO2003029109A3 (de) 2003-09-12
AU2002338831A1 (en) 2003-04-14
US20050041893A1 (en) 2005-02-24

Similar Documents

Publication Publication Date Title
DE69726220T2 (de) Seitenfaltbeutel mit Reissverschluss sowie Verfahren zu seiner Herstellung
WO2005110878A1 (de) Standbodenbeutel
WO1995030598A1 (de) Sack aus polymer-, insbesondere polyolefingewebe und verfahren zu seiner herstellung
EP2302117B1 (de) Transportsack und Verfahren zur Herstellung eines Transportsacks
EP2845820B1 (de) Seitenfaltenbeutel aus einem Kunststoffgewebeverbund
WO2003029109A2 (de) Verfahren zum herstellen eines flexiblen schüttgutbehälters und danach hergestellte schüttgutbehälter
CH699121A1 (de) Verfahren zur Herstellung eines Verpackungsbeutels.
DE69722265T2 (de) Behälterinliner
CH627701A5 (en) Method for producing a tubular, transversely divided web of film, and use thereof, and device for continuously carrying out the method
EP2504150B1 (de) Verfahren zum verschliessen eines sackkörpers
EP0244674B1 (de) Flüssigkeitspackung, Herstellung derselben und Kunststoffbahn zur Herstellung der Flüssigkeitspackung
EP1298075B1 (de) Verfahren zum Herstellen eines flexiblen Schüttgutbehälters und danach hergestellte Schüttgutbehälter
WO1996005986A1 (de) Verfahren zur herstellung eines airbag-hohlkörpers
EP2673207B1 (de) VERFAHREN ZUM VERSCHLIEßEN EINES SCHLAUCHFÖRMIGEN SACKKÖRPERS
EP1113966A1 (de) Sack und verschliessverfahren für säcke
DE60003241T2 (de) Tragezugbeutel mit tragegriff
DE2232799B2 (de) Verpackungsbehaelter
DE2213908C2 (de) Ventilsack
EP3450343B1 (de) Kunststofftragetasche und halteschlaufe für eine kunststofftragetasche
DE2656804C3 (de) Verfahren zum T- oder Stumpfschweißen von Schichtkörpern mit einer Innenschicht aus thermoplastischem Schaumkunststoff
CH433102A (de) Ganzkunststoffbeutel mit Einfüllöffnung und Verfahren zu dessen Herstellung
DE3131867C2 (de)
EP3875387B1 (de) Kunststofffolien-bodenbeutel und dessen verwendung sowie zuschnitt für einen kunststofffolien-bodenbeutel
DE1479837B2 (de) Tragbeutel und verfahren zu seiner herstellung
DE3020052A1 (de) Mehrlagiger sack

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AU AZ BA BB BR BY CA CN CO CR CU DM DZ EC EE GD GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LV MA MD MK MN MW MX MZ NO NZ OM PH RO RU SD SG SI SL TJ TM TN TT TZ UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM BF BJ CF CG CI CM GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10491062

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP