WO2003023417A1 - Sensor capacity sensing apparatus and sensor capacity sensing method - Google Patents

Sensor capacity sensing apparatus and sensor capacity sensing method Download PDF

Info

Publication number
WO2003023417A1
WO2003023417A1 PCT/JP2002/009083 JP0209083W WO03023417A1 WO 2003023417 A1 WO2003023417 A1 WO 2003023417A1 JP 0209083 W JP0209083 W JP 0209083W WO 03023417 A1 WO03023417 A1 WO 03023417A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
capacitance
signal line
voltage
resistor
Prior art date
Application number
PCT/JP2002/009083
Other languages
English (en)
French (fr)
Inventor
Masami Yakabe
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to EP02765437A priority Critical patent/EP1424562B1/en
Priority to US10/488,598 priority patent/US7088112B2/en
Priority to DE60227266T priority patent/DE60227266D1/de
Priority to KR1020047003333A priority patent/KR100654472B1/ko
Publication of WO2003023417A1 publication Critical patent/WO2003023417A1/ja
Priority to NO20032015A priority patent/NO20032015L/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/228Circuits therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/007Protection circuits for transducers

Definitions

  • the present invention relates to a technology for detecting a sensor capacitance, and more particularly, to a sensor capable of fixing a potential of a connection line between a capacitance sensor for capacitance measurement and a detector in order to accurately perform minute capacitance measurement.
  • FIG. 1 shows a conventional sensor capacitance measuring device for measuring a sensor capacitance when a capacitance value changes at various frequencies, such as a condenser microphone.
  • the sensor capacitance measuring device includes an operational amplifier op having a feedback resistor R f and an AC voltage generator OSC generating an AC voltage V; n , and an input terminal of the operational amplifier OP.
  • the sensor capacitance C s is connected between the power supply and the AC voltage generator OSC via the signal line L.
  • the conventional sensor capacitance detecting device shown in FIG. 1 uses the AC voltage Vi from the AC voltage generator OSC. As a result, a current flows through the sensor capacitance c s . Since the input impedance of the operational amplifier OP is ideally infinite and the two input terminals of the operational amplifier OP are in an imaginary short state, the output terminal of the operational amplifier OP
  • V. ut — ( ⁇ ⁇ ; n C s ) ⁇ R f ⁇ V, ⁇
  • the resistance Rf is used as the feedback impedance.
  • V in V 'sin OJ in t, or
  • the sensor capacitance c s depending on the physical quantity to be applied, the angular frequency ⁇ about the standard capacity c d fixed.
  • the output voltage V. ut includes a term proportional to the angular frequency number omega c of the sensor capacitance, it will have a frequency characteristic that depends on the change frequency of the sensor capacitance C s.
  • the angular frequency ⁇ is provided after the sensor capacitance detecting device. Therefore, it is necessary to provide a processing circuit for canceling a term proportional to, and therefore, the scale of the entire apparatus becomes large.
  • the present invention has been made to solve the above-described problems of the conventional example, and an object of the present invention is to provide a sensor capacitance detection circuit in which even if a capacitor is used in a feedback circuit of an operational amplifier, the potential of a signal line is reduced. Is to be able to fix it. Disclosure of the invention
  • a sensor capacitance detection device that detects a capacitance of a capacitance sensor whose capacitance changes according to a change in a physical quantity, comprising: an AC voltage or a DC voltage A voltage generator that supplies at least one of the following: an operational amplifier; a capacitor; an impedance converter; a sensor connection to which a capacitive sensor can be connected at one end; an input terminal of the impedance converter at the other end; A signal line to which a condenser is connected, and a first resistor having both ends connected to the signal line and a reference voltage, wherein an output terminal of the voltage generator is connected to an input terminal of the operational amplifier;
  • the capacitor and the impedance converter are inserted in a feedback path of an operational amplifier.
  • the first resistor may be set so that almost no current flows in and out between the signal line and the first resistor, or a capacitance sensor is connected to the signal line, When the capacitance of the capacitance sensor changes, the impedance when the first resistance is viewed from the signal line is higher than the impedance when the feedback path or the capacitance sensor is viewed from the signal line. May be set as follows.
  • the sensor capacitance detection device has a capacity according to a change in a physical quantity.
  • a voltage generator that supplies at least one of an AC voltage and a DC voltage, an operational amplifier, a capacitor, an impedance converter, and one end.
  • a sensor connection part to which a capacitance sensor can be connected, a signal line to which the other end is connected to the input terminal of the impedance converter and the capacitor respectively, and both ends are connected to the signal line and an output terminal of the impedance converter.
  • An output terminal of the voltage generator is connected to an input terminal of the operational amplifier, and the capacitor and the impedance converter are inserted in a feedback path of the operational amplifier. It is characterized by.
  • the second resistor may be set so that almost no current flows in and out between the signal line and the second resistor, or a capacitance sensor is connected to the signal line, When the capacitance of the capacitance sensor changes, it is better than the impedance when the feedback path or the capacitance sensor is viewed from the signal line.
  • the impedance when the second resistor is viewed from the signal line is It may be set to be higher.
  • the first resistance or the second resistance is 10 M ⁇ or more.
  • the impedance converter may be formed by a voltage follower.
  • the sensor capacitance detection device further includes: a shield unit for electrically shielding at least a part of the signal line; a guard voltage application unit for applying a voltage having the same potential as the voltage of the signal line to the shield unit. May be provided.
  • a sensor capacitance detection method is a sensor capacitance detection method for detecting a capacitance of a capacitance sensor whose capacitance changes according to a change in a physical quantity. Connecting one end of the resistor to a connection point of a capacitor and an impedance converter inserted in series in a feedback path of the operational amplifier; and inputting at least one of an AC voltage and a DC voltage to the operational amplifier. And outputting an output voltage corresponding to the sensor capacitance from the output terminal of the operational amplifier.
  • the impedance when the resistance is viewed from the signal line is set higher than the impedance of the signal line. .
  • the present invention relates to a sensor capacitance detection method for detecting the capacitance of a capacitance sensor whose capacitance changes according to a change in a physical quantity, wherein one end of the capacitance sensor and one end of a resistor are connected in series to a feedback path of an operational amplifier. Connecting to the connection point of the inserted capacitor and the impedance converter; inputting at least one of an AC voltage and a DC voltage to the operational amplifier; and an output corresponding to a sensor capacitance from an output terminal of the operational amplifier.
  • a voltage output step may be provided so that when the capacitance of the capacitance sensor changes, there is almost no current inflow or outflow between the signal line and the resistor.
  • FIG. 1 is a circuit diagram showing a conventional sensor capacitance detecting device.
  • FIG. 2 is a circuit diagram showing another conventional sensor capacitance detecting device.
  • FIG. 3 is a circuit diagram showing a sensor capacitance detection device according to the first example of the present invention.
  • FIG. 4 is a circuit diagram showing a sensor capacitance detection device according to a second embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a specific configuration of the impedance converter provided in the first embodiment shown in FIG.
  • FIG. 6 is a graph showing a result of an actual device test performed using the sensor capacitance detection device shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a circuit diagram showing a configuration of the sensor capacitance detection device according to the first example of the present invention.
  • the sensor capacitance detection device includes a first operational amplifier and an impedance converter Hiz, and an output terminal of the first operational amplifier OP is connected to input terminals of the impedance converters H and z via a capacitor C.
  • the voltage follower circuit has a non-inverting input terminal as an input terminal of the circuit, a high input impedance, a low output impedance, and an absolute value of input / output gain of 1.
  • a signal line L is further connected to the input terminals of the impedance converters H and z , and an electrode (electrode of the sensor connection part) P, which forms one end of the capacitive sensor, is connected to the other end of the signal line L. It is connected.
  • the portion of the signal line L is indicated by a thick solid line.
  • the sensor connection is not shown.
  • Electrode P 2 at the other end of the capacitive sensor, the reference potential that is connected to a predetermined potential.
  • the reference potential may be a ground potential.
  • Electrode P 2 at the other end of the capacitive sensor it may also be in a floating state bur, it is better to connect the reference potential, thereby enabling measurement with high accuracy.
  • the capacitance sensor converts the received physical quantity (acceleration, pressure, gas, light, sound wave, etc.)
  • the non-inverting input terminal of the first operational amplifier OP is connected to a reference potential (a predetermined DC potential including a ground potential), and the inverting input terminal is connected to an AC voltage generator OSC via a first resistor R via a first resistor R.
  • input voltage V, n (the angular frequency omega i n) are marked pressurized.
  • AC voltage generator OSC also includes a first resistor R, and a second through a resistor 2 is connected to an input terminal of the impedance converter H i z, the output terminal of the [rho Omicron first operational amplifier , Connected to the output terminal OUT of the sensor capacitance detection device, and the output voltage V from the output terminal OUT. ut is output.
  • the second resistor R 2 , the capacitor C, and the impedance converter H; z constitute a feedback circuit of the first operational amplifier OP.
  • the signal line L is also connected to a third end of the resistor R 3, the other end of the resistor R 3 is connected to the reference potential (predetermined potential, including a ground potential).
  • the third resistor R 3 is connected to a signal line, when the capacitance of the capacitance sensor changes, rather than the impedance when the feedback path or the capacitance sensor is viewed from the signal line. It is set so that the impedance when the third resistor R3 is viewed from the signal line L is high.
  • FIG. 6 shows the results obtained when an actual device test was performed using the sensor capacitance detection device shown in FIG.
  • the value of the third resistor R 3 by changes variously to measure signal and noise to obtain the SZN ratio on the basis of these measurements.
  • the actual test results it divides it may be desirable to use a 1 0 M Omega more resistance as the third resistor R 3.
  • S ZN ratio sensor capacitance C s of the variation frequency f may determine the third value of the resistor R 3 in response to the time constant. It should be empirically estimated that other frequencies in the audio frequency band based on the above-mentioned actual device test have the same tendency.
  • the third resistor R 3 By using a high resistance as the third resistor R 3, when connecting the input terminal and the reference potential of the signal line L i.e. the impedance converter z through the resistor, the potential difference is generated in both ends of the resistor However, the AC current flowing through the sensor capacitor C hardly flows through the third resistor R 3, and there is no current flowing in and out.
  • I s - (R z R ⁇ d C s - V in sin OJ in t / dt (3) is obtained.
  • I c d C (V. ut — V 2 ) Z dt (4).
  • the output voltage V. ut is linearly related to the sensor capacitance C s and the output voltage V.
  • the sensor frequency C s has an angular frequency ⁇ around a capacitance value C d . Detection of the change AC when the change occurs in
  • the current i flowing through the first capacitor C flows all sensor capacitance C s, therefore, charge a first co-accumulated in the sensor capacitance C s Equal to the charge stored in capacitor C
  • the output voltage V. ut is because no dependency on the change frequency of the sensor capacitance C s, it is possible to obtain an output which depends linearly on the variation delta C of the sensor capacitance C s.
  • the third resistor R 3 for fixing the potential of the signal line is connected to the reference potential (predetermined potential including zero potential). In the case where the one shown in (1) is used, it may be connected to the output terminal of the second operational amplifier OP2 instead of the reference potential.
  • Figure 4 is thus that shows the second embodiment in the case of connecting the third resistor R 3 of high resistance to the signal line L and a second output terminal of the operational amplifier OP 2.
  • the signal line L is fixed at a potential determined by the AC voltages V, ⁇ and the potential of the non-inverting input terminal.
  • the third resistor R 3 is connected between the second operational amplifier Omicron [rho 2 of the inverting input terminal and the non-inverting input terminal, and these two input terminals is imaginarily cane one preparative conditions in order ideally be at the same potential, no potential difference to the third across the resistor R 3, the current flowing becomes zero. Therefore, all the current flowing through the sensor capacitance C s flows through the capacitor C, and no current flows into or out of the signal line L to or from the third resistor R 3. Inspection Can be realized.
  • an electronic element such as a diode or a transistor may be used as the third resistor R 3.
  • a diode When a diode is used, a high impedance in a reverse bias state is used. When a transistor is used, it is preferable to use the high impedance in the off state.
  • the AC voltage generator OSC is used in the first and second embodiments, a DC voltage generator may be used.
  • a DC voltage is V and any physical quantity is applied to the capacitance sensor, the capacitance of the capacitance sensor changes and the output V. ut also changes.
  • the equations (5) and (7) are expressed as the following equations (5) ′ and (7) ′, respectively.
  • the potential of the signal line connecting the capacitance sensor and the second operational amplifier is set to a predetermined resistance, and the capacitance sensor is connected to the signal line.
  • the floating state of the signal line can be avoided by fixing to a predetermined reference potential, thereby stabilizing the circuit operation. Can be.
  • the resistor is connected through both the resistor and the signal line. Ideally, the flowing current can be made zero and more accurate capacitance measurement can be performed.
  • the sensor capacitance detection circuit according to the present invention is used as a detection circuit of a capacitance type sensor, in particular, a microphone mouthpiece provided in a small-sized / light-weight device such as a capacitance measuring device for accurately measuring minute capacitance and a mobile phone. It can be used as a circuit for the device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Signal Processing (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Networks Using Active Elements (AREA)
  • Measuring Fluid Pressure (AREA)
  • Air Bags (AREA)

Description

明 細 センサ容量検出装置及びセンサ容量検出方法 技術分野
本発明は、 センサ容量の検出技術に関し、 より詳細には、 微小な容量 測定を精密に行うために、 容量測定の容量センサと検出器との間の接続 線の電位を固定することができるセンサ容量検出装置及び方法に関する, 背景技術
図 1 は、 コンデンサマイクロフォン等のように、 様々な周波数で静電 容量値が変化する場合のセンサ容量を測定するための従来例のセンサ容 量測定装置を示している。該センサ容量測定装置は、図 1 に示すように、 帰還抵抗 R f を備えた演算増幅器 o Pと、 交流電圧 V; nを発生する交流 電圧発生器 O S Cとを備え、 演算増幅器 O Pの入力端子と交流電圧発生 器 O S Cとの間に、 信号線 Lを介してセンサ容量 C sが接続される。
図 1 に示した従来例のセンサ容量検出装置は、 交流電圧発生器 O S C からの交流電圧 V i。により、 センサ容量 c sに電流が流れる。 演算増幅 器 O Pの入力インピーダンスが理想的には無限大であること、さらには、 演算増幅器 O Pの 2つの入力端子がイマ一ジナリショー ト状態であるこ とにより、 演算増幅器 O Pの出力端子から、
V 。 u t =— (Ί ω ; n C s ) ■ R f ■ V , π
なる電圧が出力される。 該出力電圧 V。 u tを信号処理することにより、 センサ容量 C sに対応する値を得ることができる。
図 1 に示した従来例のセンサ容量検出装置においては、 帰還インピー ダンスとして抵抗 R f を用いている。 V i n = V ' s i n OJ i n t と し、 ま た、 センサ容量 csが、 印加される物理量に応じて、 固定の標準容量 cd を中心として角周波数 ω。で変化する、 すなわち、
C s = C d + Δ C ■ s i n ω 0 t
とすると、 出力電圧 V。 u tは、 以下のように表すことができる。
V。 u t
=— R f [ ( C d + Δ C - s i n ω c t ) ■ ω i n ■ c o s ω i n t
+厶 C ' OJ c - c o s O) c t ■ s i n ω i n t ] V - s i n OJ i n t この式から明らかなように、 出力電圧 V。 u tは、 センサ容量の角周波 数 ω cに比例する項を含んでおり、センサ容量 C sの変化周波数に依存す る周波数特性を有してしまう。
したがって、 センサ容量検出装置の後段に、 該角周波数 ω。に比例す る項をキャンセルするための処理回路を設ける必要があり、 このため、 装置全体としての規模が大きくなってしまう。
そこで、 演算増幅器 Ο Ρの帰還抵抗を、 帰還コンデンサに置換するこ とにより、センサ容量 C sの角周波数 ω。に依存しない出力電圧 V。u tを 得ることができる装置がすでに提案されている。 図 2は、 このような帰 還コンデンサ C f を用いたセンサ容量検出装置を示しており、 この装置 における出力電圧 V。 u tは、 以下のように表すことができる。
V。 u t
=― ( C d + Δ C - s i η ω 0 t ) / C f ■ V ■ s i n ω n t
この式から明らかなように、 出力電圧 V。 u tはセンサ容量の変化周波 数依存性を持たないため、 角周波数 ω c成分に比例する項をキャンセル するための付加的な回路を必要としない。
図 2に示したセンサ容量検出装置においては、 演算増幅器の帰還ィン ピ一ダンスと して帰還コンデンサ C f を用いているため、 該コンデンサ C f とセンサ容量 C。とを接続する信号線 Lには外部からの電流の出入 りがない。 したがって、 信号線 Lは電気的にフローティング状態となる ことから電位が不安定となリ、 回路出力が電源電圧に飽和する等が生じ てしまうことにより、 正常に回路が動作しなくなるという問題がある。 本発明は、 上記した従来例の問題点を解決するためになされたもので あり、 その目的は、 センサ容量検出回路において、 演算増幅器の帰還回 路にコンデンサを用いた場合でも、 信号線の電位を固定することができ るようにすることである。 発明の開示
上記目的を達成するために、 本発明に係るセンサ容量検出装置は、 物 理量の変化に応じて容量が変化する容量センサの容量を検出するセンサ 容量検出装置であって、 交流電圧又は直流電圧の少なく とも一方を供給 する電圧発生器と、 演算増幅器と、 コンデンサと、 インピーダンス変換 器と、 一端に容量センサが接続可能なセンサ接続部と、 他端に前記イン ピーダンス変換器の入力端子及び前記コンデンザがそれぞれ接続された 信号線と、 両端が前記信号線及び基準電圧に接続される第 1 の抵抗とを 含み、 前記電圧発生器の出力端子は前記演算増幅器の入力端子に接続さ れ、 前記演算増幅器の帰還路に前記コンデンサと前記インピーダンス変 換器とが挿入されたことを特徴とする。
ここで、 前記第 1 の抵抗は、 前記信号線と前記第 1 抵抗との間で、 ほ ぼ電流の流入流出がなくなるように設定してもよいし、 容量センサが信 号線に接続され、 前記容量センサの容量が変化するときに、 前記信号線 から前記帰還路又は前記容量センサを見たときのインピーダンスよりも. 前記信号線から前記第 1 の抵抗を見たときのインピ一ダンスが高くなる ように設定してもよい。
また、 本発明に係るセンサ容量検出装置は、 物理量の変化に応じて容 量が変化する容量センサの容量を検出するセンサ容量検出装置であって. 交流電圧又は直流電圧の少なく とも一方を供給する電圧発生器と、 演算 増幅器と、 コンデンサと、 インピーダンス変換器と、 一端に容量センサ が接続可能なセンサ接続部と、 他端に前記ィンピーダンス変換器の入力 端子及び前記コンデンサがそれぞれ接続された信号線と、 両端が前記信 号線及び前記ィンピーダンス変換器の出力端子に接続される第 2の抵抗 とを含み、 前記電圧発生器の出力端子は前記演算増幅器の入力端子に接 続され、 前記演算増幅器の帰還路に前記コンデンサと前記インピーダン ス変換器とが挿入されたことを特徴とする。
ここで、 前記第 2の抵抗は、 前記信号線と前記第 2抵抗との間で、 ほ ぼ電流の流入流出がなくなるように設定してもよいし、 容量センサが信 号線に接続され、 前記容量センサの容量が変化するときに、 前記信号線 から前記帰還路又は前記容量センサを見たときのィンピーダンスよリも. 前記信号線から前記第 2の抵抗を見たときのインピ一ダンスが高くなる ように設定してもよい。
なお、 前記容量センサの容量の変化周波数がオーディオ周波数帯であ るとき、 前記第 1 の抵抗又は第 2の抵抗が 1 0 M Ω以上であることが好 ましい。 また、 前記インピーダンス変換器が、 ボルテージホロワによつ て形成されていてもよい。 そして、 前記センサ容量検出装置はさらに、 前記信号線の少なく とも一部を電気的にシールドするシールド手段と、 前記シールド手段に前記信号線の電圧と同電位の電圧を印加するガード 電圧印加手段とを備えてもよい。
なお、 センサの容量が変化するときとは、 周波数的な変化ばかりでな く、 時間的に変化するものすベてを含み、 例えば、 なだらかに上昇又は 下降するものや、 瞬間的に立ち上がるようなデジタル信号的なもの等も 含む。 また、 上記目的を達成するために、 本発明に係るセンサ容量検出方法 は、 物理量の変化に応じて容量が変化する容量センサの容量を検出する センサ容量検出方法であって、 容量センサの一端及び抵抗の一端を、 演 算増幅器の帰還路に直列に挿入されたコンデンサ及びインピーダンス変 換器の接続点に接続するステップと、 交流電圧又は直流電圧の少なく と も一方を前記演算増幅器に入力するステップと、 前記演算増幅器の出力 端子からセンサ容量に対応する出力電圧を出力するステップとからなリ . 前記容量センサの容量が変化するとき、 前記信号線から前記帰還路又は 前記容量センサを見たときのインピーダンスよリも、 前記信号線から前 記抵抗を見たときのインピーダンスの方が高いように設定されているこ とを特徴とする。
ここで、 本発明は、 物理量の変化に応じて容量が変化する容量センサ の容量を検出するセンサ容量検出方法であって、 容量センサの一端及び 抵抗の一端を、 演算増幅器の帰還路に直列に挿入されたコンデンサ及び インピーダンス変換器の接続点に接続するステップと、 交流電圧又は直 流電圧の少なく とも一方を前記演算増幅器に入力するステップと、 前記 演算増幅器の出力端子からセンサ容量に対応する出力電圧を出カステツ プとからなり、 前記容量センサの容量が変化する時、 前記信号線と前記 抵抗との間でほぼ電流の流入流出がなくなるように設定されているよう にしてもよい。 図面の簡単な説明
図 1 は、 従来例のセンサ容量検出装置を示す回路図である。
図 2は、 従来例の他のセンサ容量検出装置を示す回路図である。
図 3は、 本発明の第 1 の実施例に係るセンサ容量検出装置を示す回路 図である。 図 4は、 本発明の第 2の実施例に係るセンサ容量検出装置を示す回路 図である。
図 5は、 図 3に示した第 1 の実施例に具備されるインピーダンス変換 器の具体的構成を示す回路図である。
図 6は、 図 3に示したセンサ容量検出装置を用いて実機テス トを行つ た結果を示すグラフである。 発明を実施するための最良の形態
図 3は、 本発明の第 1 の実施例に係るセンサ容量検出装置の構成を示 す回路図である。 該センサ容量検出装置は、 第 1 の演算増幅器〇 及 びインピーダンス変換器 H i zを備え、 第 1 の演算増幅器 O P の出力端 子がコンデンサ Cを介してインピーダンス変換器 H , zの入力端子に接 続されている。 なお、 ここでは、 インピーダンス変換器 H ; zは、 図 5に 示したように、 第 2の演算増幅器 O P 2の反転入力端子と出力端子とが 短絡され、これによるボルテージフォロワ回路で構成されていてもよい。 該ボルテージフォロワ回路は、非反転入力端子を該回路の入力端子とし、 高入力インピーダンスで低出力インピーダンスであり、 かつ、 入出力ゲ インの絶対値が 1 である。 さて、 インピーダンス変換器 H , zの入力端子 には、 さらに信号線 Lが接続され、 該信号線 Lの他端には、 容量センサ の一端を形成する電極 (センサ接続部の電極) P,が接続されている。 図 3において、 信号線 Lの部分は、 太実線で示している。 なお、 センサ 接続部は図示していない。 容量センサの他端の電極 P 2は、 基準電位、 すなわち所定の電位に接続される。 基準電位は、 接地電位であってもよ い。 容量センサの他端の電極 P 2は、 フローティング状態であってもよ いが、 基準電位に接続した方が、 高精度の測定が可能となる。
容量センサは、 受けた物理量 (加速度、 圧力、 ガス、 光、 音波等) に 応じて、 電極 P 及び P 2の間の静電容量すなわちセンサ容量 c sが変化 されるものでぁリ、 コンデンサマイクロフォン、 微小変位容量センサ等 である。
第 1 の演算増幅器 O P の非反転入力端子は基準電位 (接地電位を含 む所定の D C電位) に接続され、 反転入力端子は、 交流電圧発生器 O S Cから第 1 の抵抗 R,を介して交流入力電圧 V , n (角周波数 ω i n) が印 加される。 交流電圧発生器 O S Cはまた、 第 1の抵抗 R,及び第 2の抵 抗 2を介してインピーダンス変換器 H i zの入力端子に接続されている, 第 1 の演算増幅器 Ο Ρ の出力端子は、 センサ容量検出装置の出力端子 O U Tに接続され、該出力端子 O U Tから出力電圧 V。 u tが出力される。 第 2の抵抗 R 2、 コンデンサ C、 及びインピーダンス変換器 H ; zは、 第 1 の演算増幅器 O P の帰還回路を構成している。
信号線 Lはまた、 第 3の抵抗 R 3の一端に接続され、 該抵抗 R 3の他端 が基準電位 (接地電位を含む所定の電位) に接続されている。 第 3の抵 抗 R 3は、 容量センサが信号線しに接続され、 容量センサの容量が変化 するときに、 信号線しから帰還路又は該容量センサを見たときのインピ —ダンスよりも、 信号線 Lから第 3の抵抗 R3を見たときのインピーダ ンスが高くなるように設定されている。
図 6は、 図 3に示したセンサ容量検出装置を用いて実機テス 卜を行つ た場合の結果を示している。 この実機テス トにおいては、 センサ容量 C sは、 オーディオ周波数帯 ( 2 0 H Z〜 20 K H Z ) で変化するが、 例 えばその周波数を f c (= ω 0/ ( 2 兀)) = 1 K H z と し、 第 1 のコ ン デンサ C = 0. 5 p Fとした。 そして、 第 3の抵抗 R 3の値を種々に変 化させて、 信号及びノイズを測定し、 これら測定値に基づいて SZN比 を求めた。 図 6に示すように、 この実機テス トの結果、 第 3の抵抗 R 3 として 1 0 M Ω以上の抵抗を用いることが望ましいことが分かつた。 し かしながら、 S ZN比は、 センサ容量 C sの変化周波数 f 。と第 1 のコン デンサ Cの容量とによって決定される時定数によっても変化するので、 該時定数に応じて第 3の抵抗 R 3の値を決定してもよい。 なお、 オーデ ィォ周波数帯の上記実機テス 卜による他の周波数については、 経験的に 同様な傾向となることが推測される。
第 3の抵抗 R 3として高い抵抗を用いることにより、 該抵抗を介して 信号線 Lすなわちインピーダンス変換器 zの入力端子と基準電位と を接続した場合、 該抵抗の両端に電位差が発生しているが、 センサ容量 C に流れる交流電流は、 ほとんど第 3の抵抗 R 3に流れることがなく、 電流の流入流出がない状態となつている。
次に、 図 3に示した第 1 の実施例のセンサ容量検出装置の検出動作を 説明する。 なお、 以下においては、 第 1 の演算増幅器 O P の非反転入 力端子、 容量センサの電極 P 2及び交流電圧発生器 O S Cの一端が接地 されているものとし、 また、 インピーダンス変換器 H i zは、 図 5に示し た構成のボルテージフォロワが使用されているものとして説明する。 <センサ容量の検出 >
第 1 及び第 2の演算増幅器 及び O P 2並びに第 1 及び第 2の抵 抗 1及び R 2によって、 第 2の演算増幅器 O P 2の出力端子には、 交流 入力電圧 V i nを一 R sZ F^倍した電圧 V 2が得られる。 すなわち、 V 2 = - R 2/R 1 - V i n ( 1 )
一方、 センサ容量 C sを介して流れる交流電流は、 第 2の演算増幅器 O P 2の入力インピーダンスが高いこと、 及び電位固定回路の出力イン ピーダンスが高いことから、 電流のほとんど全部がコンデンサ Cに流れ ることになる。すなわち、電位固定回路の抵抗 R3と信号線 Lとの間でほ ぼ電流の流入流出がない。 また、 第 2の演算増幅器 O P 2の 2つの入力 端子がイマジナリショート状態であって同電位であることから、 第 2の 演算増幅器 O P 2の非反転入力端子の電圧も V 2となり、 V i n = V . s ί π ω i n t とすると、 センサ容量 C sに流れる電流は、
I s = d C s - V 2Z d t ( 2 ) となる。 したがって、 式 ( 1 ) から、
I s = - ( R z R ■ d C s - V i n s i n OJ i n t / d t ( 3 ) が得られる。
—方、 コンデンサ Cを流れる電流 I 。は、
I c = d C ( V。 u t — V 2 ) Z d t ( 4 ) となる。
コンデンサ Cを流れる電流 I 。とセンサ容量 C sを流れる電流 I sとが 等しいので、出力端子 O U Tからの出力電圧 V。u tは、式( 3 )及び( 4 ) から、
V。 u t
=— ( R 2/ R 1 ) - ( 1 + C s / C ) - V - s i n ω i n t ( 5 ) で表される。
式 ( 5 ) から明らかなように、 出力電圧 V。 u tは、 センサ容量 C sと 線形関係にあり、 該出力電圧 V。 u tを信号処理することにより、 センサ 容量 C sの値を得ることができる。
<センサ容量の変化分の検出 >
次に、 コンデンサマイクロフォン等のように、 センサ容量 C sがある 容量値 C dを中心と して角周波数 ω。で変化する場合の該変化分 A Cの 検出、 すなわち、
C s = C d + Δ C s i η ω c
の場合の A Cの検出について説明する。
上記したように、 第 1 のコンデンサ Cに流れる電流 i は全てセンサ容 量 C sを流れ、 したがって、 センサ容量 C sに蓄積される電荷と第 1 のコ ンデンサ Cに蓄積される電荷とは等しい
C ( V 0 u t - V 2 ) = C s ■ V 2 ( 6 ) そして、 式 ( 6 ) を変形すると、 V = V s I n ω であるため、 以下の式 ( 7 ) が得られる。
V。 u t
= ( - R 2 / R! ) ■ ( 1 + Cノ C ) V ■ s i n 6ϋ j n
= (— R 2 / R τ ) · V ■ s ί η ω , t ( 1 + C d / C
+ Δ C ■ s i n ω c t / C ) ( 7 ) このように、 出力電圧 V。 u tがセンサ容量 C sの変化周波数に対する 依存性を持たないため、 センサ容量 C sの変化分 Δ Cに線形に依存する 出力を得ることができる。
図 3に示した実施例においては、 信号線の電位を固定するための第 3 の抵抗 R 3が基準電位 (ゼロ電位を含む所定の電位) に接続されている が、 インピーダンス変換器として図 5に示したものを用いた場合、 基準 電位の代わりに、 第 2の演算増幅器 O P 2の出力端子に接続されてもよ い。 図 4は、 このように、 高抵抗の第 3の抵抗 R 3を信号線 Lと第 2の 演算増幅器 O P 2の出力端子に接続した場合の第 2の実施例を示してい る。
この第 2の実施例においては、 信号線 Lは、 交流電圧 V , π及び非反転 入力端子の電位で決まる電位に固定されることになる。 また、 第 3の抵 抗 R 3は、第 2の演算増幅器 Ο Ρ 2の反転入力端子と非反転入力端子との 間に接続されており、 そして、 これら 2つの入力端子がイマジナリショ 一ト状態で理想的には同電位であるため、 第 3の抵抗 R 3の両端に電位 差がなく、 流れる電流はゼロとなる。 よって、 センサ容量 C sを流れる 電流はすべてコンデンサ Cを流れることになリ、 信号線 Lに第 3の抵抗 R 3との間で電流が流入又は流出することがなく、 よリ高精度の容量検 出を実現することができる。
第 "1 及び第 2の実施例において、 第 3の抵抗 R 3は、 ダイオード、 卜 ランジスタ等の電子的素子を用いてもよい。 ダイオードを用いる場合は その逆バイアス状態での高インピーダンスを利用し、 トランジスタを用 いる場合はそのオフ状態での高インピーダンスを利用することが好適で ωる。
また、 第 1 及び第 2の実施例において、 交流電圧発生器 O S Cを用い ているが、 直流電圧発生器を用いてもよい。 直流電圧を Vとしたとき、 容量センサに何らかの物理量が加わると、 当該容量センサの容量が変化 し、 出力 V。 u tも変化する。 そのとき、 式 ( 5 ) 及び式 ( 7 ) はそれぞ れ、 以下の式 ( 5 )' 及び式 ( 7 )' ように表される。
V。 u t = - ( R 2Z R ■ ( 1 + Cノ C ) ■ V ( 5 ), V。 u t = ( - R a / R η )
- ( 1 + C d / C + Δ C ■ s i n ω 0 t / C ) ■ V ( 7 ), さらに、 信号線 Lの一部又は全部をシールド線 (不図示) で被覆して 電気的にシールドし、 かつ、 該シールド線に信号線の電位と同電位のガ 一ド電圧を印加することにより、 信号線と基準電位との間に形成される 浮遊容量の影響を低減することができ、 出力電圧の S ZN比をよリー層 向上させることができる。
本発明は、 以上のように構成されているので、 容量センサと第 2の演 算増幅器とを接続する信号線の電位を、 所定の抵抗であって、 容量セン ザが信号線に接続され、 容量センサの容量が変化するときに、 信号線か ら帰還路又は容量センサを見たときのインピーダンスよりも、 信号線か ら抵抗を見たときのインピーダンスが高くなるように設定されている抵 抗を介して、 所定の基準電位に固定することにより、 信号線のフローテ イング状態を回避することができ、 よって、 回路動作を安定化すること ができる。
また、 信号線の電位固定用の上記のように設定された抵抗を、 第 2の 演算増幅器の出力端子と信号線との間に接続することにより、 該抵抗と 信号線との両者を介して流れる電流を理想的にはゼロとすることができ より正確な容量測定ができる。 産業上の利用の可能性
本発明に係るセンサ容量検出回路は、容量型センサの検出回路と して、 特に、 微小な容量測定を精密に行う容量測定装置や携帯電話機等の小 型 ' 軽量の機器に備えられるマイク口ホン装置のための回路として利用 することができる。

Claims

請 求 の 範 囲
1 . 物理量の変化に応じて容量が変化する容量センサの容量を検出 するセンサ容量検出装置であって、
交流電 E又は直流電圧の少なく とも一方を供給する電圧発生器と、 演算増幅器と、
コンデンサと、
ィンピ一ダンス変換器と、
—端に容量センサが接続可能なセンサ接続部と、 他端に前記ィンピー ダンス変換器の入力端子及び前記コンデンサがそれぞれ接続された信号 線と、
両端が前記信号線及び基準電圧に接続される第 1 の抵抗と
を含み、
前記電圧発生器の出力端子は前記演算増幅器の入力端子に接続され、 前記演算増幅器の帰還路に前記コンデンサと前記インピーダンス変換 器とが挿入されたことを特徴とするセンサ容量検出装置。
2 . 前記第 1 の抵抗は、 前記信号線と前記第 1抵抗との間で、 ほぼ 電流の流入流出がなくなるように設定されていることを特徴とする請求 の範囲 1 記載のセンサ容量検出装置。
3 . 前記第 1 の抵抗は、 容量センサが信号線に接続され、 前記容量 センサの容量が変化するときに、 前記信号線から前記帰還路又は前記容 量センサを見たときのインピーダンスよりも、 前記信号線から前記第 1 の抵抗を見たときのインピーダンスが高くなるように設定されているこ とを特徴とする請求の範囲 1記載のセンサ容量検出装置。
4 . 物理量の変化に応じて容量が変化する容量センサの容量を検出 するセンサ容量検出装置であって、
交流電圧又は直流電圧の少なく とも一方を供給する電圧発生器と、 演算増幅器と、
コンデンサと、
インピーダンス変換器と、
一端に容量センサが接続可能なセンサ接続部と、 他端に前記ィンピー ダンス変換器の入力端子及び前記コンデンサがそれぞれ接続された信号 線と、
両端が前記信号線及び前記インピ一ダンス変換器の出力端子に接続さ れる第 2の抵抗と
を含み、
前記電圧発生器の出力端子は前記演算増幅器の入力端子に接続され、 前記演算増幅器の帰還路に前記コンデンザと前記ィンピーダンス変換 器とが挿入されたことを特徴とするセンサ容量検出装置。
5 . 前記第 2の抵抗は、 前記信号線と前記第 2抵抗との間で、 ほぼ 電流の流入流出がなくなるように設定されていることを特徴とする請求 の範囲 4記載のセンサ容量検出装置。
6 . 前記第 2の抵抗は、 容量センサが信号線に接続され、 前記容量 センサの容量が変化するときに、 前記信号線から前記帰還路又は前記容 量センサを見たときのインピーダンスよりも、 前記信号線から前記第 2 の抵抗を見たときのインピーダンスが高くなるように設定されているこ とを特徴とする請求の範囲 4記載のセンサ容量検出装置。
7 . 前記容量センサの容量の変化周波数がオーディオ周波数帯であ るとき、 前記第 1 の抵抗又は第 2の抵抗が "I 0 M Ω以上であることを特 徴とする請求の範囲 1 〜 6のいずれか 1 項に記載のセンサ容量検出装置,
8 . 前記インピーダンス変換器が、 ボルテージホロワによって形成 されていることを特徴とする請求の範囲 1 〜 7のいずれか 1項に記載の センサ容量検出装置。
9 . 前記センサ容量検出装置はさらに、
前記信号線の少なく とも一部を電気的にシールドするシールド手段と . 前記シールド手段に前記信号線の電圧と同電位の電圧を印加するガ一 ド電圧印加手段と
を備えていることを特徴とする請求の範囲 1 ~ 8のいずれか 1項に記載 のセンサ容量検出装置。
1 0 . 物理量の変化に応じて容量が変化する容量センサの容量を検 出するセンサ容量検出方法であって、
容量センサの一端及び抵抗の一端を、 演算増幅器の帰還路に直列に揷 入されたコンデンサ及びインピーダンス変換器の接続点に接続するス亍 ップと、
交流電圧又は直流電圧の少なく とも一方を前記演算増幅器に入力する ステップと、
前記演算増幅器の出力端子からセンサ容量に対応する出力電圧を出力 するステップと
からなり、
前記容量センサの容量が変化するとき、 前記信号線から前記帰還路又 は前記容量センサを見たときのインピーダンスよ り も、 前記信号線から 前記抵抗を見たときのインピーダンスの方が高いように設定されている ことを特徴とするセンサ容量検出方法。
1 1 . 物理量の変化に応じて容量が変化する容量センサの容量を検 出するセンサ容量検出方法であって、
容量センサの一端及び抵抗の一端を、 演算増幅器の帰還路に直列に揷 入されたコ ンデンサ及びイ ンピーダンス変換器の接続点に接続するス亍 ップと、
交流電圧又は直流電圧の少なく とも一方を前記演算増幅器に入力する ステップと、
前記演算増幅器の出力端子からセンサ容量に対応する出力電圧を出力 ステップとからなリ、
前記容量センサの容量が変化する時、 前記信号線と前記抵抗との間で ほぼ電流の流入流出がなく なるように設定されている
ことを特徴とするセンサ容量検出方法。
PCT/JP2002/009083 2001-09-06 2002-09-06 Sensor capacity sensing apparatus and sensor capacity sensing method WO2003023417A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP02765437A EP1424562B1 (en) 2001-09-06 2002-09-06 Sensor capacity sensing apparatus and sensor capacity sensing method
US10/488,598 US7088112B2 (en) 2001-09-06 2002-09-06 Sensor capacity sensing apparatus and sensor capacity sensing method
DE60227266T DE60227266D1 (de) 2001-09-06 2002-09-06 Vorrichtung und verfahren zur messung der sensorkapazität
KR1020047003333A KR100654472B1 (ko) 2001-09-06 2002-09-06 센서 용량 검출 장치 및 센서 용량 검출 방법
NO20032015A NO20032015L (no) 2001-09-06 2003-05-05 Anordning og fremgangsmate for sensorkapasitansdeteksjon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-270800 2001-09-06
JP2001270800 2001-09-06

Publications (1)

Publication Number Publication Date
WO2003023417A1 true WO2003023417A1 (en) 2003-03-20

Family

ID=19096408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009083 WO2003023417A1 (en) 2001-09-06 2002-09-06 Sensor capacity sensing apparatus and sensor capacity sensing method

Country Status (9)

Country Link
US (1) US7088112B2 (ja)
EP (1) EP1424562B1 (ja)
KR (1) KR100654472B1 (ja)
CN (1) CN1271416C (ja)
AT (1) ATE399327T1 (ja)
DE (1) DE60227266D1 (ja)
NO (1) NO20032015L (ja)
TW (1) TWI221194B (ja)
WO (1) WO2003023417A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533421A (ja) * 2002-07-16 2005-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 容量性フィードバック回路
DE102004018578B4 (de) * 2004-04-16 2007-02-22 Siemens Ag Verfahren und Vorrichtung zur Erfassung eines Verschmutzungsgrades eines betriebenen Umrichtergerätes
EP1790988B1 (en) * 2005-11-29 2017-01-18 STMicroelectronics Srl Detection circuit using a differential capacitive sensor with input-common-mode control in a sense interface
CN100593767C (zh) 2006-06-30 2010-03-10 深圳市大族激光科技股份有限公司 电容传感器的控制方法
FI121979B (fi) 2008-03-26 2011-06-30 Elsi Technologies Oy Sovitinkomponentti mittausjärjestelmään
EP2163887B1 (de) * 2008-09-15 2014-12-24 Ulrich Kuipers Verfahren und Schaltungsanordnung zur Messung physikalischer Grössen in Fluiden sowie deren Verwendung
US7986153B2 (en) * 2009-03-02 2011-07-26 Atmel Corporation Method and apparatus for sensing
US20110273189A1 (en) * 2010-05-06 2011-11-10 Steve Gerber Sensing apparatus for and associated methods
CN103649688B (zh) * 2011-06-30 2017-02-22 迈普尔平版印刷Ip有限公司 用于电容式测量系统的有源屏蔽
KR101497586B1 (ko) * 2012-07-05 2015-03-02 호쿠토 덴시 고교 가부시키가이샤 정전용량형의 수분 검출 장치
CN105277786A (zh) * 2014-07-25 2016-01-27 南京瀚宇彩欣科技有限责任公司 传感器的最大阻抗检测方法及检测装置
FR3072176B1 (fr) * 2017-10-10 2022-03-04 Fogale Nanotech Dispositif de mesure d'impedance
WO2019187515A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 静電容量検出装置
CN112394226A (zh) * 2019-08-16 2021-02-23 Oppo广东移动通信有限公司 信号检测电路和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280806A (ja) * 1996-04-09 1997-10-31 Nissan Motor Co Ltd 静電容量式変位計
WO1999038019A1 (en) * 1998-01-23 1999-07-29 Sumitomo Metal Industries, Ltd. Static capacitance-to-voltage converter and converting method
JP2001324520A (ja) * 2000-03-07 2001-11-22 Sumitomo Metal Ind Ltd インピーダンス検出回路、インピーダンス検出装置、及びインピーダンス検出方法
JP2002022785A (ja) * 2000-07-10 2002-01-23 Sumitomo Metal Ind Ltd インピーダンス検出回路及びインピーダンス検出方法
JP2002022786A (ja) * 2000-07-10 2002-01-23 Sumitomo Metal Ind Ltd インピーダンス検出回路及びインピーダンス検出方法
JP2002157671A (ja) * 2000-11-16 2002-05-31 Sumitomo Metal Ind Ltd センシングシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3007426A1 (de) 1980-02-28 1981-09-03 Ewald Max Christian Dipl.-Phys. 6000 Frankfurt Hennig Schaltungsanordnung mit einem kondensator im rueckkopplungszweig eines operationsverstaerkers
US5723980A (en) 1995-06-07 1998-03-03 Aerogage Corporation Clearance measurement system
US5744968A (en) * 1996-04-30 1998-04-28 Motorola Inc. Ratiometric circuit
DE19651402A1 (de) * 1996-12-11 1998-06-18 T E M Tech Entwicklung Und Man Apparat zur physikalischen Aufbereitung von Luft, insbesondere von Atemluft
TW526327B (en) * 1998-02-19 2003-04-01 Sumitomo Metal Ind Detection apparatus and method of physical variable
JP4124867B2 (ja) * 1998-07-14 2008-07-23 松下電器産業株式会社 変換装置
TW546480B (en) * 2000-03-07 2003-08-11 Sumitomo Metal Ind Circuit, apparatus and method for inspecting impedance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280806A (ja) * 1996-04-09 1997-10-31 Nissan Motor Co Ltd 静電容量式変位計
WO1999038019A1 (en) * 1998-01-23 1999-07-29 Sumitomo Metal Industries, Ltd. Static capacitance-to-voltage converter and converting method
JP2001324520A (ja) * 2000-03-07 2001-11-22 Sumitomo Metal Ind Ltd インピーダンス検出回路、インピーダンス検出装置、及びインピーダンス検出方法
JP2002022785A (ja) * 2000-07-10 2002-01-23 Sumitomo Metal Ind Ltd インピーダンス検出回路及びインピーダンス検出方法
JP2002022786A (ja) * 2000-07-10 2002-01-23 Sumitomo Metal Ind Ltd インピーダンス検出回路及びインピーダンス検出方法
JP2002157671A (ja) * 2000-11-16 2002-05-31 Sumitomo Metal Ind Ltd センシングシステム

Also Published As

Publication number Publication date
NO20032015L (no) 2003-07-03
EP1424562A4 (en) 2005-03-02
US7088112B2 (en) 2006-08-08
TWI221194B (en) 2004-09-21
KR100654472B1 (ko) 2006-12-05
KR20040053121A (ko) 2004-06-23
NO20032015D0 (no) 2003-05-05
EP1424562B1 (en) 2008-06-25
CN1551988A (zh) 2004-12-01
ATE399327T1 (de) 2008-07-15
CN1271416C (zh) 2006-08-23
US20050036271A1 (en) 2005-02-17
DE60227266D1 (de) 2008-08-07
EP1424562A1 (en) 2004-06-02

Similar Documents

Publication Publication Date Title
US8508217B2 (en) Output circuit of charge mode sensor
WO2003023417A1 (en) Sensor capacity sensing apparatus and sensor capacity sensing method
KR100654471B1 (ko) 임피던스 검출 회로 및 임피던스 검출 방법
WO2003023421A1 (en) Capacitance measuring circuit, capacitance measuring instrument, and microphone device
KR100637979B1 (ko) 임피던스 검출 회로
JP2002022786A (ja) インピーダンス検出回路及びインピーダンス検出方法
JP2003075487A (ja) インピーダンス検出装置及び静電容量検出装置
JP4072030B2 (ja) センサ容量検出装置及びセンサ容量検出方法
JP2005535900A (ja) 増幅器フィードバック経路に容量性圧力センサを備えた圧力測定装置
KR100738692B1 (ko) 전위 고정 장치, 용량 측정 장치 및 전위 고정 방법
JP2002157671A (ja) センシングシステム
JP2002022785A (ja) インピーダンス検出回路及びインピーダンス検出方法
JP2003075486A (ja) インピーダンス検出回路及び静電容量検出回路とその方法
JP4358976B2 (ja) マイクロフォン装置
JP2003075481A (ja) インピーダンス検出回路及び静電容量検出回路
JP4282321B2 (ja) インピーダンス検出装置及びインピーダンス検出方法
JP4071582B2 (ja) インピーダンス検出回路及びその方法
JP4676643B2 (ja) 電位固定装置および容量測定装置
JP4072401B2 (ja) インピーダンス検出回路及び静電容量検出回路
US7046016B2 (en) Potential fixing device, potential fixing method, and capacitance measuring instrument
KR100699627B1 (ko) 전위 고정 장치, 전위 고정 방법 및 용량 측정 장치
JP2003075484A (ja) 静電容量検出回路及び静電容量検出方法
JP2002044777A (ja) マイクロフォン装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002765437

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028173910

Country of ref document: CN

Ref document number: 1020047003333

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002765437

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10488598

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002765437

Country of ref document: EP