WO2003020787A1 - Integriertes verfahren zur herstellung von polyurethan-schäumen - Google Patents

Integriertes verfahren zur herstellung von polyurethan-schäumen Download PDF

Info

Publication number
WO2003020787A1
WO2003020787A1 PCT/EP2002/009781 EP0209781W WO03020787A1 WO 2003020787 A1 WO2003020787 A1 WO 2003020787A1 EP 0209781 W EP0209781 W EP 0209781W WO 03020787 A1 WO03020787 A1 WO 03020787A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
propylene oxide
polyether alcohol
oxide
catalysts
Prior art date
Application number
PCT/EP2002/009781
Other languages
English (en)
French (fr)
Inventor
Ulrich Müller
Joaquim Henrique Teles
Edward Bohres
Stephan Bauer
Raimund Ruppel
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP02797662A priority Critical patent/EP1440102B1/de
Priority to DE50213298T priority patent/DE50213298D1/de
Priority to JP2003525054A priority patent/JP2005501942A/ja
Priority to CA002459139A priority patent/CA2459139A1/en
Priority to US10/488,522 priority patent/US20040249107A1/en
Priority to MXPA04001787 priority patent/MX266186B/es
Publication of WO2003020787A1 publication Critical patent/WO2003020787A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4845Polyethers containing oxyethylene units and other oxyalkylene units containing oxypropylene or higher oxyalkylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the properties of the polyurethane such as mechanical properties, odor, depend particularly strongly on the isocyanates and polyether alcohols used for the preparation and, if appropriate, on the blowing agents used.
  • the structure of the polyether alcohols in particular has a major influence on the properties of the polyurethanes obtained.
  • the properties of the polyether alcohols are influenced by the production process of the polyether alcohols and in particular by the properties and the production process of the starting materials.
  • Propylene oxide produced by known processes for the production, which are described, for example, in Weissermel, Arpe "Industrial Organic Chemistry", VCH-Verlag, Weinheim, 4th edition, pages 288 to 318, has the disadvantage that significant impurities are contained in the propylene oxide , The contamination is in a range from 5 to 100 ppm.
  • Multimetal cyanide compounds are known from the prior art as catalysts for polyadditions, in particular for ring-opening polymerizations of alkylene oxides, as described, for example, in EP-A 0 892 002, EP-1 0 862 977 and in EP-A 0 755 716 described.
  • the propylene oxide obtained in step (1) may also contain up to 100 ppm, in particular up to 40 ppm of methanol and up to 10 ppm, preferably up to 4 ppm, of acetaldehyde as further secondary components.
  • propylene oxide is obtained by means of step (1) according to the invention contains very low impurities on C6 components and no chlorine-organic impurities.
  • the present invention therefore relates to an integrated process for producing a polyurethane, the epoxidation according to step (1) being carried out in the presence of a zeolite catalyst, in particular a titanium-containing zeolite catalyst.
  • k is a fractional or whole number greater than or equal to zero
  • multimetal cyanide catalysts made of metal [hexacyanometalate-hexanitrometalate] which are suitable according to the invention are mentioned in the application WO 01/04182.
  • the starting compounds mentioned there are less expensive than the zinc hexacyanocobaltates generally used.
  • the catalysts show shorter induction times and in some cases they show moderate exotherm.
  • the multimetal cyanide catalysts prepared in this way can, however, also be supported, as described in the applications WO 01/04180 (polycarboxylic acids) and WO 01/04177 (zeolites). A simple removal of the catalyst can thereby be achieved.
  • Suitable polyester polyols can be obtained, for example, from organic dicarboxylic acids with 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids with 4 to 6 carbon atoms, and polyhydric alcohols, preferably diols, with 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms getting produced.
  • suitable dicarboxylic acids are: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acids can be used both individually and in a mixture with one another.
  • modified polyisocyanates can be used together or with unmodified organic polyisocyanates such as. B. 2,4'-, 4,4'-diphenylmethane diisocyanate, crude MDI, 2,4- and / or 2,6-tolylene diisocyanate are optionally mixed.
  • these are ethylamine, n- Propylamine, i-propylamine, sec-propylamine, tert-butylamine, 1-aminoisobutane, substituted amines with two to about 20 carbon atoms such as 2- (N, N-dimethylamino) -1-aminoethane, aminomercaptans such as l-amino -2-mercaptoethane, diamines, aliphatic amino alcohols having 2 to about 20, preferably 2 to about 12 carbon atoms, for example methanolamine, l-amino-3,3-dimethyl-pentan-5-ol, 2-aminohexan-2 ', 2 "diethanolamine, 1-amino-2,5-dimethylcyclohexan-4-ol, 2-aminopropanol, 2-aminobutanol, 3-aminopropanol, l-amino-2-propanol, 2-amino-2-prop
  • customary substances can be used as auxiliaries and / or additives in the process according to the invention.
  • examples include surface-active substances, internal release agents (IMR), fillers, dyes, pigments, flame retardants, hydrolysis protection agents, fungistatic and bacteriostatic substances as well as UV stabilizers and antioxidants s. It is also possible to use pigments and / or dyes to obtain tinted / colored moldings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft ein integriertes Verfahren zur Herstellung eines Polyurethans aufweisend mindestens die folgenden Schritte: (1) Epoxidation von Propen mit mindestens einem Hydroperoxid zu Propylenoxid; (2) Umsetzung des Propylenoxids aus Schritt (1) oder eines Gemisches aus dem Propylenoxid aus Schritt (1) und mindestens einem weiteren Alkylenoxid zu einem Polyetheralkohol unter Verwendung mindestens einer Multimetallcyanidverbindung als Katalysator; (3) Umsetzung eines Polyetheralkohols aus Schritt (2) mit mindestens einem Isocyanat; sowie Polyurethane, die gemäss einem erfindungsgemässen Verfahren herstellbar sind und Formkörper, die ein erfindungsgemässes Polyurethan enthalten.

Description

Integriertes Verfahren zur Herstellung von Polyurethan-Schäumen
Die vorliegende Erfindung betrifft ein integriertes Verfahren zur Herstellung von Polyurethanen aus Isocyanaten und Polyetherpolyolen und/oder modifizierten Polyetherolen, die unter Verwendung von Propylenoxid erhältlich sind, insbesondere durch die Verwendung von Multimetallcyanid- Verbindungen als Katalysator, wobei das Propylenoxid durch Epoxidation von Propen mit mindestens einem Hydroperoxid hergestellt wird. Darüber hinaus betrifft die vorliegende Erfindung Polyurethane, die nach einem erfmdungsgemäßen Verfahren herstellbar sind, so- wie Formkörper, die ein erfindungsgemäß hergestelltes Polyurethan enthalten.
Erfindungsgemäß hergestellte Polyurethane eignen sich insbesondere zur Herstellung von Polyurethan-Schaumstoffen, Polyurethan Gießhäuten und Elastomeren.
Die Eigenschaften des Polyurethans, wie mechanische Eigenschaften, Geruch, hängen insbesondere stark von den zur Herstellung verwendeten Isocyanaten und Polyetheralkoholen und gegebenenfalls von den verwendeten Treibmitteln ab. Insbesondere die Struktur der Polyetheralkohole hat einen großen Einfluss auf die Eigenschaften der erhaltenen Polyurethane. Die Eigenschaften der Polyetheralkohole werden dabei durch das Herstellverfahren der Polyetheralkohole und insbesondere durch die Eigenschaften und das Herstellverfahren der Edukte beeinflusst.
Die Reduktion der Verunreinigungen in dem Propylenoxid und oder Herstellung der Polyetheralkohole und/oder Polyurethane ist von vielfältigem Interesse. Von der Automobil- und Möbelindustrie werden zunehmend Polyurethane verlangt, die möglichst frei von Geruchsstoffen und Emissionen sind. So schreibt zum Beispiel die Prüfvorschrift von DaimlerChrysler PB VWL 709 vom 11.01.2001 verbindlich vor, dass Fahrzeuginnenteile einen maximalen Emissionswert für flüchtige Substanzen von 100 ppm und für kondensierbare Substanzen von 250 pp aufweisen.
Zum einem fuhren die Verunreinigungen in den Polyurethanen in vielen Fällen zu geruchsintensiven Verbindungen. Dadurch sind die Polyurethane oder Polyurethan-Schaumstoffe nur eingeschränkt einsetzbar. Zum anderen fuhren die Verun- reinigungen zu monofunktionellen Nebenverbindungen, wie insbesondere Äthylalkohole, die die Funktionalität der Polyole gegenüber der theoretischen Starterfunktionalität herabsetzen und damit die mechanischen Eigenschaften signifikant verschlechtern, insbesondere beispielsweise Zugfestigkeit, Dehnung, Weiterreißfestigkeit, Härte und Abriebsfestigkeit.
Propylenoxid, hergestellt nach bekannten Verfahren zur Herstellung, die beispielsweise in Weissermel, Arpe "Industrielle Organische Chemie", VCH- Verlag, Weinheim, 4. Auflage, Seiten 288 bis 318 beschrieben sind, weist den Nachteil auf, dass deutliche Verunreinigungen im Propylenoxid enthalten sind. Die Verun- reinigung liegen in einem Bereich von 5 bis 100 ppm.
Polyetheralkohole können beispielsweise durch basen- oder säurekatalysierte Po- lyaddition von Alkylenoxiden an polyfunktionelle Starterverbindungen hergestellt werden. Als Starterverbindungen sind beispielsweise Wasser, Alkohole, Säuren oder Amine oder Gemischen aus zwei oder mehr davon geeignet. Der Nachteil derartiger Herstellungsverfahren liegt insbesondere darin, dass aufwendige Reinigungsschritte nötig sind, um die Katalysatorreste vom Reaktionsprodukt abzutrennen. Darüber hinaus steigt bei derartig hergestellten Polyetherpolyolen mit zunehmender Kettenlänge der Gehalt an monofunktionellem Produkt und geruch- sintensiven Verbindungen, die für die Polyurethanherstellung nicht erwünscht sind. Die Verringerung der Funktionalität ist insbesondere für Elastomere von Nachteil, da die verwendeten Polyetheralkohole in der Regel bifunktionell sind. Durch die monofunktionellen Verunreinigungen im Polyetheralkohol wird die Funktionalität kleiner als 2, was eine signifikante Verschlechterung der mechanischen Eigenschaften des Polyurethans, insbesondere Zugfestigkeit und Dehnung bewirkt.
Die durch die Nebenreaktionen der basen- oder säurekatalysierten Umsetzung entstehenden Nebenverbindungen sind darüber hinaus zum Teil als Geruchsträger im Polyurethan enthalten. Zu nennen sind beispielsweise Aldehyde, insbesondere Propionaldehyd, Cycloacetale, Allylalkohole und deren Umsetzungsprodukte. Von der Auto- und Möbelindustrie werden zunehmend geruchsarme oder geruchslose Polyetherole und Polyurethane gefordert.
Multimetallcyanid- Verbindungen sind aus dem Stand der Technik als Katalysatoren für Polyadditionen, insbesondere für Ring-öffhende Polymerisationen von Alkylenoxiden bekannt, wie beispielsweise in der EP-A 0 892 002, EP-1 0 862 977 und in der EP-A 0 755 716 beschrieben.
Die WO 01/16209 beschreibt ein Verfahren zur Herstellung von Polyetheralko- holen durch katalysierte Anlagerung von Ethylenoxid und Propylenoxid an H- funktionelle Starterverbindungen in Gegenwart einer Multimetallcyanidverbin- dung.
So beschreibt beispielsweise die WO 00/78837 die Verwendung von mittels Mul- timetallcyanid-Katalysatoren aus Propylenoxid hergestellten Polyetherpolyolen zur Herstellung von Polyurethan- Weichschäumen. Problematisch ist hierbei jedoch, dass bereits geringe Mengen von Verunreinigungen im Propylenoxid zur Belegung des Multimetallcyanid-Katalysators führen und damit die Aktivität des Katalysators senken. Darüber hinaus können Verunreinigungen im Polyetherpo- lyol, die bereits im Propylenoxid vorlagen, zu einer Verunreinigung des hergestellten Polyurethans führen. In diesem Zusammenhang sind insbesondere niedermolekulare Verbindungen zu nennen, die zu einer Geruchsbelästigung führen. Derartige Verunreinigungen können aus den Propylenoxid oder den daraus herge- stellten polymeren Produkten nur durch aufwendige Reinigungsschritte entfernt werden. Als Verunreinigungen sind insbesondere Aldehyde und Ketone zu nennen.
Eine Aufgabe der vorliegenden Erfindung lag daher darin, ein Verfahren zur Her- Stellung von Polyurethanen bereitzustellen, das ohne aufwendige Reinigungsschritte der Edukte und Zwischenprodukte Polyurethane liefert, die arm an Verunreinigungen, insbesondere an niedermolekularen geruchsintensiven Verbindungen, sind.
Erfindungsgemäß wird diese Aufgabe gelöst durch ein integriertes Verfahren zur Herstellung eines Polyurethans aufweisend mindestens die folgenden Schritte:
(1) Epoxidation von Propen mit mindestens einem Hydroperoxid zu Propylenoxid;
(2) Umsetzung des Propylenoxids aus Schritt (1) oder eines Gemisches aus dem Propylenoxid aus Schritt (1) und mindestens einem weiteren Alkylenoxid zu einem Polyetheralkohol, insbesondere durch die Verwendung von Multimetallcyanid-Verbindungen als Katalysator;
(3) Umsetzung eines Polyetheralkohols aus Schritt (2) mit mindestens einem Isocyanat.
Unter Polyetheralkoholen werden im Rahmen der vorliegenden Erfindung insbesondere Polyetherpolyole und modifizierte Polyetherole verstanden, die unter Verwendung von Propylenoxid erhältlich sind. Als besonders geeignetes Hydroperoxid für die Epoxidation gemäß Schritt (1) hat sich im Rahmen der vorliegenden Erfindung Wasserstoffperoxid erwiesen. Dieses kann außerhalb der Umsetzung gemäß (1) aus Wasserstoff und Sauerstoff oder in situ in der Umsetzung gemäß (1) hergestellt werden.
Daher betrifft die vorliegende Erfindung in einer bevorzugten Ausfuhrungsform ein integriertes Verfahren zur Herstellung eines Polyurethans, wobei das in Schritt (1) eingesetzte Hydroperoxid Wasserstoffperoxid ist.
Die Epoxidation gemäß Schritt (1) ist prinzipiell beispielsweise aus der DE 10055652.3 und weiteren Patentanmeldungen der Anmelderin wie z. B. DE 10032885.7, DE 10032884.9, DE 10015246.5, DE 19936547.4, DE 19926725.1, DE 19847629.9, DE 19835907.1, DE 19723950.1, deren diesbezüglicher Inhalt von vollumfänglich in den Kontext der vorliegenden Anmeldung einbezogen wird, bekannt. Mittels der Epoxidation gemäß Schritt (1) wird Propylenoxid in einer hohen Reinheit erhalten. So weist das Propylenoxid insbesondere einen Gehalt an C6-Verbindungen von < 1 ppm auf.
Unter C6-Verbindungen werden im Rahmen der vorliegenden Erfindung bei- spielsweise 2-Methylpentan, 4-Methylpenten-l, n-Hexan, Hexene wie 1 -Hexen, sowie Komponenten mit 6 C-Atomen und zusätzlich einer oder mehrerer funktioneilen Gruppen aus der Klasse der Aldehyde, Carbonsäuren, Alkohole, Ketone, Ether verstanden. Weitere unerwünschte Verunreinigungen sind Propanderivate, insbesondere chlorierte Propanderivate, Acetaldehyd, Propionaldehyd, Aceton, Dioxolane, AUylalkohol, Pentan, Methylpentane, Furan, Hexan, Hexen, Me- thoxypropan oder auch Methanol.
Als weitere Nebenkomponenten kann das in Schritt (1) erhaltene Propylenoxid auch noch bis zu 100 ppm, insbesondere bis zu 40 ppm Methanol und bis zu 10 ppm, bevorzugt bis zu 4 ppm Acetaldehyd enthalten. Gegenüber anderen bekannten Verfahren zur Herstellung von Propylenoxid, die beispielsweise in Weissermel, Arpe "Industrielle Organische Chemie", VCH- Verlag, Weinheim, 4. Auflage, Seiten 288 bis 318 beschrieben sind, wird mittels des erfindungsgemäßen Schritt (1) Propylenoxid erhalten, das sehr geringe Verun- reinigungen an C6-Komponenten und keine chlororganischen Verunreinigungen enthält.
In einer weiteren Ausfuhrungsform betrifft die vorliegende Erfindung daher ein integriertes Verfahren zur Herstellung eines Polyurethans, wobei das in Schritt (1) erhaltene Propylenoxid einen Gehalt an C6- Verunreinigungen < 1 ppm aufweist.
Geeignete Bedingungen für die Epoxidation gemäß Schritt (1) sind beispielsweise in der DE 100 55 652.3 beschrieben.
Die Umsetzung des Propens mit einem Hydroperoxid, insbesondere Wasserstoffperoxid, findet im Rahmen des erfindungsgemäßen Verfahrens bevorzugt in Gegenwart eines Katalysators statt. Als Katalysatoren zur Umsetzung des Propylens zu Propylenoxid sind prinzipiell alle, bevorzugt alle heterogenen Katalysatoren denkbar, die für die jeweilige Umsetzung geeignet sind.
Bevorzugt werden dabei Katalysatoren verwendet, die ein poröses oxidisches Material wie z.B. einen Zeolith umfassen. Vorzugsweise werden Katalysatoren eingesetzt, die als poröses oxidisches Material ein Titan-, Vanadium-, Chrom-, Niob-, Zinn-, Germanium- oder Zirkonium-haltigen Zeolith umfassen.
Im besonderen existieren Zeolithe, die kein Aluminium enthalten und bei denen im Silikatgitter anstelle des Si(TV) teilweise Titan als Ti(TV) vorhanden ist. Die Titanzeolithe, insbesondere solche mit einer Ktistallstruktur vom MFI-Typ, sowie Möglichkeiten zu ihrer Herstellung sind beschrieben beispielsweise in der EP-A 0 311 983 oder der EP-A 0405 978. Titanzeolithe mit MFI-Struktur sind dafür bekannt, dass sie über ein bestimmtes Muster bei der Bestimmung ihrer Röntgenbeugungsaufnahmen sowie zusätzlich über eine Gerüstschwingungsbande im Infrarotbereich (TR) bei etwa 960 cm"1 identifiziert werden können und sich damit von Alkalimetalltitanaten oder kristallinen und amorphen TiO2-Phasen unterscheiden.
Dabei sind im einzelnen Titan-, Vanadium-, Chrom-, Mob-, Zinn-, Germanium-, Zirkonium enthaltende Zeolithe mit Pentasil-Zeolim-Struktur zu nennen, insbesondere die Typen mit röntgenografischer Zuordnung zur ABW-, ACO-, AEI-, AEL-, AEN-, AET-, AFG-, AFI-, AFN-, AFO-, AFR-, AFS-, AFT-, AFX-, AFY-, AHT-, ANA-, APC-, APD-, AST-, ATN-, ATO-, ATS-, ATT-, ATV-, AWO-, AWW-, BEA, BIK-, BOG-, BPH-, BRE-, CAN-, CAS-, CFI-, CGF-, CGS-, CHA-, CHI-, CLO-, CON-, CZP-, DAC-, DDR-, DFO-, DFT-, DOH-, DON-, EAB-, EDI-, EMT-, EPI-, ERI-, ESV-, EUO-, FAU-, FER-, GIS-, GME-, GOO-, HEU-, TFR-, ISV-, ITE-, JBW-, KFI-, LAU-, LEV-, LIO-, LOS-, LOV-, LTA-, LTL-, LTN-, MAZ-, MEI-, MEL-, MEP-, MER-, MFI-, MFS-, MON-, MOR-, MSO-, MTF-, MTN-, MTT-, MTW-, MWW-, NAT-, NES-, NON-, OFF-, OSI-, PAR-, PAU-, PFfl-, RHO-, RON-, RSN-, RTE-, RTH-, RUT-, SAO-, SAT-, SBE-, SBS-, SBT-, SFF-, SGT-, SOD-, STF-, STI-, STT-, TER-, THO-, TON-, TSC-, VET-, VFI-, VNI-, VSV-, WEI-, WEN-, YUG-, ZON-Struktur sowie zu Msclistrukturen aus zwei oder mehr der vorgenannten Strukturen. Denkbar sind für den Einsatz im erfindungsgemäßen Verfahren weiterhin titanhaltige Zeolithe mit der Struktur des UTD-1, CIT-1 oder CIT-5. Als weitere titanhaltige Zeolithe sind solche mit der Struktur des ZSM-48 oder ZSM-12 zu nennen.
Als besonders bevorzugt sind für das erfindungsgemäße Verfahren Ti-Zeolithe mit MFI-, MEL- oder MFI/MEL-Mischstruktur anzusehen. Als weiter bevorzugt sind im einzelnen die Ti-enthaltenden Zeolith-Katalysatoren, die im allgemeinen als „TS-1", „TS-2", „TS-3" bezeichnet werden, sowie Ti-Zeolithe mit einer zu beta-Zeolith isomorphen Gerüststruktur zu nennen. Insbesondere bevorzugt wird im erfindungsgemäßen Verfahren ein heterogener Katalysator, der das titanhaltige Silikalit TS-1 umfasst, verwendet.
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung daher eine integriertes Verfahren zur Herstellung eines Polyurethans, wobei die Epoxidation gemäß Schritt (1) in Gegenwart eines Zeolithkatalysators, insbesondere eines ti- tanhaltigen Zeolithkatalysators, durchgeführt wird.
Das durch die Epoxidation gemäß Schritt (1) erhaltene Propylenoxid wird erfindungsgemäß in Gegenwart von geeigeneten Katalysatoren zu einem Polyetheral- kohol umgesetzt. Als Katalysatoren sind dabei besonders (a) basische Katalysatoren, wie beispielsweise Alkali- und Erdalkalihydroxide, insbesondere Natrium- oder Kaliumhydroxid oder Alkalialkoholate, wie z. B. Natriummethylat, Natrium- oder Kaliumethylat oder Kaliumisopropylat, (b) saure Katalysatoren wie beispielsweise Lewis-Säuren, wie beispielsweise Antimonpentachlorid, Borfluorid- Etherat und Bleicherden, sowie heterogene Katalysatoren wie Multimetallcyanid- katalysatoren zu nennen.
Üblicherweise wird nach der Synthese der Katalysator durch Neutralisation, Destillation und Filtration entfernt. Im Falle der Multimetallcyanid-Katalyse wird der Katalysator abfiltriert, durch Filtration abgereichert und/oder verbleibt im Polye- therol.
In einer ganz bevorzugten Ausführungsform wird die Umsetzung zu Polyetheral- koholen in Gegenwart von Multimetallcyanidkatalysatoren durchgeführt.
Bei der Umsetzung zu Polyetheralkoholen kann das gemäß Schritt (1) erhaltene Propylenoxid direkt in die Umsetzung gemäß Schritt (2) eingesetzt werden. Es ist jedoch im Rahmen der vorliegenden Erfindung ebenso möglich, dass das Propylenoxid aus Schritt (1) zunächst behandelt wird, beispielsweise gereinigt wird. Als Reinigung kommt erfindungsgemäß beispielsweise Feindestillation in Frage. Geeignete Verfahren werden beispielsweise in der EP-B 0 557 116 beschrieben.
Das gemäß Schritt (1) erhaltene Propylenoxid kann im Rahmen der vorliegenden Erfindung alleine oder zusammen mit mindestens einem weiteren Alkylenoxid eingesetzt werden. Im Rahmen der vorliegenden Erfindung können zur Herstellung eines Polyetheralkohols gemäß Schritt (2) neben dem gemäß Schritt (1) erhaltenen Propylenoxid prinzipiell alle Alkylenoxide eingesetzt werden, die dem Fachmann bekannt sind. Insbesondere werden substituierte oder unsubstituierte Alkylenoxide mit 2 bis 24 C-Atomen, beispielsweise Alkylenoxide mit Halogen-, Hydroxy-, nicht cyclische Ether- oder Ammoniumsubstituenten eingesetzt.
Erfindungsgemäß geeignet sind beispielsweise: Ethylenoxid, 1,2-Epoxypropan, l,2-Epoxy-2-methylpropan, 1,2-Epoxybutan, 2,3-Epoxybutan, l,2-Epoxy-3- methylbutan, 1,2-Epoxypentan, l,2-Epoxy-3-methylpentan, 1,2-Epoxyhexan, 1,2- Epoxyheptan, 1,2-Epoxyoctan, 1,2-Epoxynonan, 1,2-Epoxydecan, 1,2- Epoxyundecan, 1,2-Epoxydodecan, 1,2-Epoxycyclopentan, 1,2-Epoxycyclohexan, (2,3-Epoxypropyl)benzol, Vinyloxiran, 3-Phenoxy-l,2-epoxypropan, 2,3- Epoxymethylether, 2,3-Epoxyethylether, 2,3-Epoxyisopropylether, 2,3-Epoxy-l- propanol, (3,4-Epoxybutyl)stearat, 4,5-Epoxypentylacetat, 2,3-
Epoxypropanmethacrylat, 2,3-Epoxypropanacrylat, Glycidylbutyrat, Methylglyci- dat, Ethyl-2,3-epoxybutanoat, 4-(Trimethylsilyl)butan-l,2-epoxid, 4- (Triethylsilyl)butan-l ,2-epoxid, 3-(Perfluoromethyl)propenoxid, 3-
(Perfluoroethyl)propenoxid, 3-(Perfluorobutyl)propenoxid, 4-(2,3- Epoxyρropyl)morpholin, l-(Oxiran-2-ylmethyl)pyrrolidin-2-on, sowie Gemische aus zwei oder mehr davon.
Insbesondere sind zu nennen: aliphatische 1,2-Alkylenoxide mit 2 bis 4 C-
Atomen, beispielsweise Ethylenoxid, 1,2-Butylenoxid, 2,3 -Butylenoxid oder Iso- butylenoxid, aliphatische 1,2- Alkylenoxide mit 5 bis 24 C-Atomen, cycloaliphati- sche Alkylenoxide, beispielsweise Cyclopentenoxid, Cyclohexenoxid oder Cyclo- dodecatrien-(l,5,9)-monoxid, araliphatische Alkylenoxide, beispielsweise Styroloxid.
Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung Ethylenoxid, 1,2-Epoxypropan, 1,2-Epoxybutan, 2,3-Epoxybutan, Styroloxid, Vinyloxiran und deren beliebige Mischungen untereinander, insbesondere Ethylenoxid, 1,2- Epoxypropan und Mischungen aus Ethylenoxid und 1,2-Epoxypropan.
Sofern neben dem gemäß Schritt (1) erhaltenen Propylenoxid mindestens ein weiteres Alkylenoxid eingesetzt wird, ist es erfindungsgemäß möglich, dass ein Gemisch aus dem gemäß Schritt (1) erhaltenen Propylenoxid und mindestens einem weiteren Alkylenoxid eingesetzt wird. Ebenso ist es im Rahmen der vorliegenden Erfindung jedoch möglich, dass das gemäß Schritt (1) erhaltene Propylenoxid und mindestens ein weiteres Alkylenoxid nacheinander zugesetzt werden.
Die durch die Umsetzung gemäß Schritt (2) erhaltenen Polyetheralkohole können beispielsweise auch Blockstrukturen aufweisen. Die Struktur der Polyetheralkohole kann dabei durch geeignete Reaktionsbedingungen in weiten Bereichen gesteuert werden. Geeignete Reaktionsbedingungen für die Umsetzung gemäß Schritt (2) sind beispielsweise in der WO 99/16775 beschrieben.
Die gemäß Schritt (2) erhaltenen Polyetheralkoholen können für die Umsetzung gemäß Schritt (3) gegebenenfalls modifiziert werden. Als modifizierte Polyethe- role sind insbesondere zu nennen Pfropfpolyetherpolyole, insbesondere solche, die durch Polymerisation von Styrol und Acrylnitril in Gegenwart von Polyetherolen hergestellt werden, Polyharnstoffdispersionen (PHD-Polyole), die durch Umsetzung von Diisocyanaten und Diaminen in Gegenwart von Polyetherolen hergestellt werden und Polyisocyanat-Polyadditions-Polyole (PIPA-Polyole), die durch Umsetzung von Diisocyanaten und Aminoalkoholen in Gegenwart von Polyetherolen hergestellt werden, zu nennen. Die Umsetzung gemäß Schritt (2) erfolgt in Gegenwart einer Multimetallcyanid- verbindung als Katalysator. Geeignete Katalysatoren sind beispielsweise in der WO 99/16775 und der DE 10117273.7 beschrieben. Erfindungsgemäß werden insbesondere Multimetallcyanidverbindung der allgemeinen Formel I als Kataly- sator für die Umsetzung gemäß Schritt (2) eingesetzt:
M1 a[M2(CN)b(A)c]d fM^Xn h(H2O) eLkP (I),
in der
M1 mindestens ein Metallion, ausgewählt aus der Gruppe bestehend aus Zn2+, Fe2+, Fe3+, Co3+, Ni2+, Mn2+, Co2+, Sn2+, Pb2+, Mo4+, Mo6+, Al3+, V4+, V5+, S W4+, W6+, Cr2+, Cr3+, Cd2+, Hg2+, Pd2+, Pt2+, V2+, Mg2+, Ca2+, Ba2+, Cu2+, La3+, Ce3+, Ce4+, Eu3+, Ti3+, Ti4+, Ag+, Rh2+, Rh3+, Ru2+, Ru3+ ist,
M2 mindestens ein Metallion, ausgewählt aus der Gruppe bestehend aus Fe2+, Fe3+, Co2+, Co3+, Mn2+, Mn3+, V4+, V5+, Cr2+, Cr3+, Rh3+, Ru2+, Ir3+ist,
A und X unabhängig voneinander ein Anion, ausgewählt aus der Gruppe, bestehend aus Halogenid, Hydroxid, Sulfat, Carbonat, Cy- anid, Thiocyanat, Isocyanat, Cyanat, Carboxylat, Oxalat, Nitrat, Nitrosyl, Hydrogensulfat, Phosphat, Dihydrogenphosphat, Hydro- genphosphat oder Hydrogencarbonat sind,
L ein mit Wasser mischbarer Ligand ist, ausgewählt aus der Gruppe, bestehend aus Alkoholen, Aldehyden, Ketonen, Ethern, Polye- thern, Estern, Polyestern, Polycarbonat, Harnstoffen, Amiden, pri- mären, sekundären und tertiären Aminen, Liganden mit Pyridin- Stickstoff, Nitrilen, Sulfiden, Phosphiden, Phosphiten, Phosphanen, Phosphonaten und Phosphaten,
k eine gebrochene oder ganze Zahl größer oder gleich Null ist, und
P ein organischer Zusatzstoff ist,
a, b, c, d, g und n so ausgewählt sind, dass die Elektroneutralität der Verbindung (I) gewährleistet ist, wobei c = 0 sein kann,
e die Anzahl der Ligandenmoleküle und eine gebrochenen oder ganze Zahl größer 0 oder 0 ist,
f, k, h und m unabhängig voneinander eine gebrochene oder ganze Zahl größer 0 oder 0 sind.
Als organische Zusatzstoffe P sind zu nennen: Polyether, Polyester, Polycarbona- te, Polyalkylenglykolsorbitanester, Polyakylenglykolglycidylether, Polyacryla- mid, Poly(acrylamid-co-acrylsäure), Polyacrylsäure, Poly(acrylamid-co- maleinsäure), Polyacrylnitril, Polyalkylacrylate, Polyalkylmethacrylate, Po- lyvinylmethylether, Polyvinylethylether, Polyvinylacetat, Polyvinylalkohol, Poly- N-vinylpyrrolidon, Poly(N-vinylpyrrolidon-co-acrylsäure), Polyvinylmethylketon, Poly(4-vinylphenol), Poly(acrylsäure-co-styrol), Oxazolinpolymere, Polyalky- lenimine, Maleinsäure- und Maleinsäureanhydridcopolymere, Hydroxyethylcel- ose, Polyacetate, ionische Oberflächen- und grenzflächenaktive Verbindungen, Gallensäure oder deren Salze, Ester oder Amide, Carbonsäureester mehrwertiger Alkohole und Glycoside.
Diese Katalysatoren können kristallin oder amorph sein. Für den Fall, dass k gleich null ist, sind kristalline Multimetallcyanidverbindungen bevorzugt. Im Fall, dass k größer null ist, sind sowohl kristalline, teilkristalline, als auch substantiell amorphe Katalysatoren bevorzugt.
Von den modifizierten Katalysatoren gibt es verschiedene bevorzugte Ausfüh- rungsformen. Eine bevorzugte Ausführungsform sind Katalysatoren der Formel (I), bei denen k größer null ist. Der bevorzugte Katalysator enthält dann mindestens eine Multimetallcyanidverbindung, mindestens einen organischen Liganden und mindestens einen organischen Zusatzstoff P.
Bei einer anderen bevorzugten Ausführungsform ist k gleich null, optional ist e auch gleich null und X ist ausschließlich ein Carboxylat, bevorzugt Formiat, Acetat und Propionat. Derartige Katalysatoren sind in der WO 99/16775 beschrieben. Bei dieser Ausführungsform sind kristalline Multimetallcyanid- Katalysatoren bevorzugt. Ferner bevorzugt sind Multimetallcyanid-Katalysatoren, wie in der WO 00/74845 beschrieben, die kristallin und plättchenförmig sind.
Die Herstellung der modifizierten Katalysatoren erfolgt durch Vereinigung einer Metallsalz-Lösung mit einer Cyanometallat-Lösung, die optional sowohl einen organischen Liganden L als auch einen organischen Zusatzstoff P enthalten kön- nen. Anschließend werden der organische Ligand und optional der organische Zusatzstoff zugegeben. Bei einer bevorzugten Ausführungsform der Katalysatorherstellung wird zunächst eine inaktive Multimetallcyanid-Phase hergestellt und diese anschließend durch Umkristallisation in eine aktive Multimetallcyanidphase überfuhrt, wie in der PCT/EP01/01893 beschrieben.
Bei einer anderen bevorzugten Ausführungsform der Katalysatoren sind f, e und k ungleich Null. Dabei handelt es sich um Multimetallcyanid-Katalysatoren, die einen mit Wasser mischbaren organischen Ligand (im allgemeinen in Mengen von 0,5 bis 30 Gew.%) und einen organischen Zusatzstoff (im allgemeinen in Mengen von 5 bis 80 Gew.%) enthalten (WO 98/06312). Die Katalysatoren können entweder unter starkem Rühren (24000U/Min mit Turrax) oder unter Rühren hergestellt werden (US 5,158,922).
Ebenfalls geeignete Katalysatoren werden in der Anmeldung WO 01/03830 beschrieben. Derartige Multimetallcyanid-Katalysatoren werden mit organischen Sulfonen der allgemeinen Form R-S(O)2-R oder Sulfoxiden der allgemeinen Form R-S(O)-R als organischem komplexierenden Agens hergestellt. Als Vorteile des Katalysators sind kurze Induktionszeiten und moderate Exothermie zu nennen. In WO 01/03831 wird eine weitere Variante der Katalysatorsynthese beschrieben. Dabei werden Multimetallcyanid-Katalysatoren durch eine „Incipient Wetness Method" synthetisiert. Diese Katalysatoren können ebenfalls für das erfindungsgemäße Verfahren eingesetzt werden.
Weitere erfindungsgemäß geeignete Multimetallcyanid-Katalysatoren aus Me- tal[hexacyanometallat-hexanitrometallat] werden in der Anmeldung WO 01/04182 erwähnt. Die dort genannten Ausgangsverbindungen sind kostengünstiger, als die in der Regel verwendete Zinkhexacyanocobaltate. Außerdem zeigen die Katalysatoren kürzere Induktionszeiten und in manchen Fällen zeigen sie eine moderate Exothermie. Die so hergestellte Multimetallcyanid-Katalysatoren können aber auch geträgert werden, wie in den Anmeldungen WO 01/04180 (Poly- carbonsäuren) und WO 01/04177 (Zeolithe) beschrieben wird. Dadurch kann eine einfache Abtrennung des Katalysators erreicht werden.
Ein ebenfalls erfindungsgemäß geeigneter Multimetallcyanid-Katalysator kann gemäß der WO 01/04181 auf Basis von Hexacyanocobaltat-Nitroferrocyanid hergestellt werden. Diese Katalysatoren zeigen kurze Induktionszeiten bei der Polymerisation von Alkylenoxide zu Polyethern. Insbesondere als Katalysator geeignet sind für das erfindungsgemäße Verfahren Multimetallcyanid- Verbindungen, die Zink, Kobalt oder Eisen oder zwei davon enthalten. Besonders geeignet ist beispielsweise Berliner Blau.
Daher betrifft die vorliegende Erfindung in einer bevorzugten Ausführungsform ein integriertes Verfahren zur Herstellung eines Polyurethans, wobei die Multi- metallcyanidverbindung Zink, Kobalt oder Eisen oder zwei davon enthält.
Erfindungsgemäß wird gemäß Schritt (2) Propylenoxid aus Schritt (1) oder ein Gemisch aus dem Propylenoxid aus Schritt (1) und mindestens einem weiteren Alkylenoxid mit einer Starterverbindung umgesetzt.
Als Startermoleküle kommen beispielsweise in Betracht: Wasser, organische Di- carbonsäuren, wie Bernsteinsäure, Adipinsäure, Phthalsäure und Terephthalsäure, aliphatische und aromatische, gegebenenfalls N-mono-, N,N- und N,N'- dialkylsubstituierte Diamine mit 1 bis 4 Kohlenstoffatomen im Alkylrest, wie gegebenenfalls mono- und dialkylsubstituiertes Ethylendiamin, Diethylentriamin, Triethylentetramin, 1,3-Propylendiamin, 1,3- bzw. 1,4-Butylendiamin, 1,2-, 1,3-, 1,4-, 1,5- und 1,6-Hexamethylendiamin, Phenylendiamine, 2,3-, 2,4- und 2,6- Toluylendiamin und 4,4'-, 2,4'- und 2,2'-Diamino-di-phenylmethan. Als Startermoleküle kommen ferner in Betracht: Alkanolamine, wie z. B. Ethanolamin, N- Methyl- und N-Ethyl-ethanolamin, Dialkanolamine, wie z. B. Diethanolamin, N- Methyl- und N-Ethyl-diethanolamin, und Trialkanolamine, wie z. B. Triethano- lamin, und Ammoniak sowie mehrwertige Alkohole, wie Monoethylenglykol, Propandiol-1,2 und- 1,3, Diethylenglykol, Dipropylenglykol, Butandiol-1,4, Hexandiol-1,6, Glycerin, Trimethylolpropan, Pentaerythrit, Sorbit und Saccharose. Bevorzugt werden als Polyetherpolyalkohole Anlagerungsprodukte von Ethylenoxid und/oder Propylenoxid an Wasser, Monoethylenglykol, Diethylenglykol, Propandiol-1,2, Diproplyenglykol Glycerin, Trimethylolpropan, Emylendiamin, Triethanolamin, Pentaerythrit, Sorbit und/oder Saccharose einzeln oder in Mischungen eingesetzt.
Die Startersubstanzen können erfindungsgemäß auch in Form von Alkoxylaten, insbesondere solche mit einem Molekulargewicht Mw in Bereich von 62 bis 15000 g /Mol zum Einsatz kommen.
Ebenso geeignet sind jedoch auch Makromoleküle mit funktioneilen Gruppen, die aktive Wasserstoff-Atome aufweisen, beispielsweise Hydroxylgruppen, insbesondere solche, die in der WO 01/16209 genannt sind.
Die gemäß Schritt (2) erhaltenen Polyetheralkohole können gemäß Schritt (3) mit Isocyanaten umgesetzt werden. Dabei kann Schritt (3) direkt an Schritt (2) anschließen. Es ist jedoch ebenso möglich, dass ein zusätzlicher Schritt, insbesondere ein Reinigungsschritt, zwischen Schritt (2) und Schritt (3) durchgeführt wird.
Im Rahmen der vorliegenden Erfindung können ein oder mehrere Isocyanate eingesetzt werden. Neben dem Polyetheralkohol, der aus Schritt (2) erhalten wird, können für die Umsetzung gemäß Schritt (3) auch noch weitere Verbindungen mit gegenüber Isocyanaten reaktiven Gruppen, insbesondere mit Hydroxylgruppen, eingesetzt werden.
Als weitere OH-Komponenten können beispielsweise Polyester, weitere Polyether, Polyacetale, Polycarbonate, Polyesterether und dergleichen eingesetzt wer- den.
Geeignete Polyesterpolyole können beispielsweise aus organischen Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise aliphatischen Dicarbonsäuren mit 4 bis 6 Kohlenstoffatomen, und mehrwertigen Alkoholen, vorzugsweise Dio- len, mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen hergestellt werden. Als Dicarbonsäuren kommen beispielsweise in Betracht: Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Decandicarbonsäure, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure und Terephthalsäure. Die Dicarbonsäuren können dabei sowohl einzeln als auch im Gemisch untereinander verwendet werden. Anstelle der freien Dicarbonsäuren können auch die entsprechenden Dicarbonsäurederivate, wie z. B. Dicarbonsäu- reester von Alkoholen mit 1 bis 4 Kohlenstoffatomen oder Dicarbonsäureanhydri- de eingesetzt werden. Beispiele für zwei- und mehrwertige Alkohole sind: Ethan- diol, Diethylenglykol, 1,2- bzw. 1,3-Propandiol, Dipropylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,10-Decandiol, 1,12-Dodecandiol, Glycerin und/oder Trimethylolpropan. Vorzugsweise verwendet werden Ethandiol, Diethylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, Glycerin und/oder Trimethylolpropan. Eingesetzt werden können ferner Polyesterpolyole aus Lacto- nen, z. B. Caprolacton oder Hydroxycarbonsäuren, z.B. Hydroxycapronsäure. Zur Herstellung der Polyesterpolyole können die organischen, z. B. aromatischen und vorzugsweise aliphatischen, Polycarbonsäuren und/oder -derivate und mehrwertigen Alkohole katalysatorfrei oder vorzugsweise in Gegenwart von Veresterungskatalysatoren, zweckmäßigerweise in einer Atmosphäre aus Inertgas, wie z. B. Stickstoff, Kohlenmonoxid, Helium, Argon u. a., in der Schmelze bei Temperatu- ren von 150 bis 250°C, vorzugsweise 180 bis 220°C gegebenenfalls unter vermindertem Druck bis zu der gewünschten Säurezahl, die vorteilhafterweise kleiner als 10, vorzugsweise kleiner als 2 ist, polykondensiert werden. Nach einer bevorzugten Ausführungsform wird das Veresterungsgemisch bei den obengenannten Temperaturen bis zu einer Säurezahl von 80 bis 30, vorzugsweise 40 bis 30, unter Normaldruck und anschließend unter einem Druck von kleiner als 500 mbar, vorzugsweise 50 bis 150 mbar, polykondensiert. Als Veresterungskatalysatoren kommen beispielsweise Eisen-, Cadmium-, Kobalt-, Blei-, Zink-, Antimon-, Magnesium-, Titan- und Zinnkatalysatoren in Form von Metallen, Metalloxiden oder Metallsalzen in Betracht. Die Polykondensation kann jedoch auch in flüssiger Phase in Gegenwart von Verdünnungs- und/oder Schleppmitteln, wie z. B. Benzol, Toluol, Xylol oder Chlorbenzol, zur azeotropen Abdestillation des Kondensationswassers durchgeführt werden. Zur Herstellung der Polyesterpolyole werden die organischen Polycarbonsäuren und/oder -derivate und mehrwertigen Alkohole vorteilhafterweise im Molverhältnis von 1 : 1 bis 1,8, vorzugsweise 1 : 1,05 bis 1,2, polykondensiert. Die erhaltenen Polyesterpolyole besitzen vorzugs- weise eine Funktionalität von 2 bis 4, insbesondere 2 bis 3, und eine Hydroxylzahl von bevorzugt 20 bis 200 mgKOH/g. Des weiteren können als gegenüber Isocyanaten reaktive Verbindungen Diole, Triole und/oder Polyole mit Molekulargewichten von 60 bis <400 eingesetzt werden, beispielsweise aliphatische, cycloali- phatische und/oder araliphatische Diole mit 2 bis 14, vorzugsweise 4 bis 10 Koh- lenstoffatomen, wie z. B. Ethylenglykol, Propandiol-1,3, Decandiol-10, o-, m-, p- Dihydroxycyclohexan, Diethylenglykol, Dipropylenglykol und vorzugsweise Butandiol-1,4, Hexandiol-1,6 und Bis-(2-hydroxyethyl)-hydrochinon, Triole, wie 1,2,4-, 1,3,5-Trihydroxy-cyclohexan, Glycerin und Trimethylol-Propan und niedermolekulare Hydroxylgruppen haltige Polyalkylenoxide auf Basis Ethylen- und/oder 1,2-Propylenoxid und den vorgenannten Diolen und/oder Triolen als Startermoleküle.
Erfindungsgemäß wird der Polyetheralkohol aus Schritt (2) mit mindestens einem Isocyanat umgesetzt. Prinzipiell sind erfindungsgemäß alle dem Fachmann bekannten Isocyanate geeignet. Insbesondere sind zu nennen: aromatische, araliphatische, aliphatische und/oder cycloaliphatische organische Isocyanate, bevorzugt Diisocyanate. Im einzelnen seien beispielhaft genannt: Alkylendiisocyanate mit 4 bis 12 Kohlenstoffatomen im Alkylenrest, wie 1,12-Dodecandiisocyanat, 2-Ethyl- tetramethylendiisocyanat-1,4, 2- Methylpentamethylendiisocyanat-1,5, Tetrame- thylendiisocyanat-1,4, Lysinesterdiisocyanate (LDI) und/oder Hexamethylendii- socyanat-1,6 (HDI); cycloaliphatische Diisocyanate wie Cyclohexan-1,3- und 1,4- diisocyanat sowie beliebige Gemische dieser Isomeren, 2,4- und 2,6- Hexahydrotoluylendiisocyanat sowie die entsprechenden Isomerengemische, 4,4'-, 2,2'- und 2,4'-Dicyclohexylmethandiisocyanat sowie die entsprechenden Isomerengemische und/oder l-lsocyanato-3,3,5-trimethyl-5- isocyanatomethylcyclohexan (IPDI). Des weiteren sind als Isocyanate beispielhaft zu nennen: 2,4- und 2,6-Toluylendiisocyanat und die entsprechenden Isomerengemische, 4,4'-, 2,4'- und 2,2'-Diphenylmethandiisocyanat und die entsprechenden Isomerengemische, Mischungen aus 4,4'- und 2,2'-Diphenylmethandiisocyanaten, Polyphenylpolymethylenpolyisocyanate, Mischungen aus 4,4'-, 2,4'- und 2,2'- Diphenylmethandiisocyanaten und Polyphenylpolymethylen-polyisocyanaten (Roh-MDI) und Mischungen aus Roh-MDl und Toluylendiisocyanaten. Außerdem können Mischungen enthaltend mindestens zwei der genannten Isocyanate eingesetzt werden. Des weiteren können modifizierte Isocyanate, d.h. Isocyanurat- , Biuret-, Ester-, Harnstoff-, Allophanat-, Carbodiimid-, Uretdion- und/oder Uret- hangruppen, letztere im Folgenden auch als Urethangruppen-modifiziert bezeichnet, enthaltende Di- und/oder Polyisocyanate in dem erfindungsgemäßen Verfahren eingesetzt werden. Im einzelnen kommen beispielsweise in Betracht: Uret- hangruppen enthaltende organische Polyisocyanate mit NCO-Gehalten von 50 bis 10 Gew.-%, vorzugsweise von 35 bis 15 Gew.-%, bezogen auf das Gesamtgewicht, beispielsweise mit niedermolekularen Diolen, Triolen, Dialkylenglykolen, Trialkylenglykolen oder Polyoxyalkylenglykolen mit Molekulargewichten bis 6000, insbesondere mit Molekulargewichten bis 1500, modifiziertes 4,4'- Diphenylmethandiisocyanat, modifizierte 4,4'- und 2,4'- Diphenylmethandiisocyanatmischungen, modifiziertes Roh-MDl oder 2,4- bzw. 2,6-Toluylendiisocyanat, wobei als Di- bzw. Polyoxyalkylenglykole, die einzeln oder als Gemische eingesetzt werden können, beispielsweise genannt seien: Die- thylen-, Dipropylenglykol, Polyoxyethylen-, Polyoxypropylen- und Polyoxypro- pylenpolyoxyethenglykole, -triole und/oder -tetrole. Geeignet sind auch NCO- Gruppen enthaltende Prepolymere mit NCO-Gehalten von 25 bis 3,5 Gew.-%, vorzugsweise von 21 bis 14 Gew.-%, bezogen auf das Gesamtgewicht, hergestellt aus den beschriebenen Polyester- und/oder vorzugsweise Polyetherpolyolen und 4,4'-Diphenylmethandiisocyanat, Mischungen aus 2,4'- und 4,4'- Diphenylmethandiisocyanat, 2,4- und/oder 2,6-Toluylendiisocyanaten oder Roh- MDl. Bewährt haben sich ferner flüssige, Carbodiimidgruppen enthaltende Polyisocyanate mit NCO-Gehalten von 33,6 bis 15, vorzugsweise 31 bis 21 Gew.-%, bezogen auf das Gesamtgewicht, z. B. auf Basis von 4,4'-, 2,4'- und/oder 2,2'- Diphenylmethandiisocyanat und/oder 2,4- und/oder 2,6-Toluylendiisocyanat. Die modifizierten Polyisocyanate können miteinander oder mit unmodifizierten organischen Polyisocyanaten wie z. B. 2,4'-, 4,4'-Diphenylmethandiisocyanat, Roh- MDl, 2,4- und/oder 2,6-Toluylendiisocyanat gegebenenfalls gemischt werden. Als modifizierte Isocyanate setzt man bevorzugt isocyanuratisierte, biuretisierte und/oder Urethangruppen-modifizierte aliphatische xind/oder cycloaliphatische Diisocyanate, beispielsweise die bereits genannten, ein, die nach allgemein bekannten Verfahren biuretisiert und/oder cyanuratisiert worden sein können und mindestens eine, bevorzugt mindestens zwei freie Isocyanatgruppen aufweisen, besonders bevorzugt drei freie Isocyanatgruppen aufweisen. Die Trimerisierung der Isocyanate zur Herstellung der Isocyanate mit Isocyanuratstrxiktur kann bei üblichen Temperaturen in Gegenwart bekannter Katalysatoren, beispielsweise Phosphinen und/oder Phosphinderivaten, Aminen, Alkalisalzen, Metallverbindun- gen und/oder Mannichbasen erfolgen. Trimerisierte Isocyanate enthaltend Isocya- nuratstrukturen sind zudem kommerziell erhältlich. Isocyanate mit Biuretstruktu- ren können nachallgemein bekannten Verfahren beispielsweise durch Reaktion von den genannten Diisocyanaten mit Wasser oder beispielsweise Diaminen hergestellt werden, wobei als Zwischenprodukt ein Harnstoffderivat gebildet wird. Auch biuretisierte Isocyanate sind kommerziell erhältlich.
Die Umsetzung gemäß Schritt (3) erfolgt unter den dem Fachmann bekannten Bedingungen. Geeignete Reaktionsbedingungen sind beispielsweise in Becker, Braun "Polyurethane", Kunststoffhandbuch, Band 7, Carl Hanser Verlag, Mün- chen, 3. Auflage, 1993, S. 139 bis 193 beschrieben.
Gegebenenfalls können bei der Umsetzung gemäß Schritt (3) noch weitere, niedermolekulare Verbindungen als Additive vorliegen. Solche Verbindungen können beispielsweise als Kettenverlängerer oder Abstoppreagenzien wirken. Hierzu geeignet sind beispielsweise primäre Aminoverbindungen mit zwei bis etwa 20, beispielsweise 2 bis etwa 12 C-Atomen. Beispielsweise sind dies Ethylamin, n- Propylamin, i-Propylamin, sek.-Propylamin, tert.-Butylamin, 1-Aminoisobutan, substituierte Amine mit zwei bis etwa 20 C-Atomen wie 2-(N,N-Dimethylamino)- 1-Aminoethan, Aminomercaptane wie l-Amino-2-mercaptoethan, Diamine, aliphatische Aminoalkohole mit 2 bis etwa 20, vorzugsweise 2 bis etwa 12 C- Atomen, beispielsweise Methanolamin, l-Amino-3,3-dimethyl-pentan-5-ol, 2- Aminohexan-2',2"-diethanolamin, 1 -Amino-2,5-dimethylcyclohexan-4-ol, 2- Aminopropanol, 2-Aminobutanol, 3-Aminopropanol, l-Amino-2-propanol, 2- Amino-2-methyl-l-propanol, 5-Aminopentanol, 3-Aminomethyl-3,5,5- trimethylcyclohexanol, 1 -Amino- 1 -cyclopentan-methanol, 2-Amino-2-ethyl- 1,3- propandiol, aromatisch-aliphatische oder aromatisch-cycloaliphatische Aminoalkohole mit 6 bis etwa 20 C-Atomen, wobei als aromatische Strukturen heterocy- clische Ringsysteme oder vorzugsweise isocyclische Ringsysteme wie Naphthalin- oder insbesondere Benzolderivate wie 2-Aminobenzylalkohol, 3- (Hydroxymethyl)anilin, 2-Amino-3-phenyl-l-propanol, 2- Amino- 1- phenylethanol, 2-Phenylglycinol oder 2-Amino-l-phenyl- 1,3 -propandiol sowie Gemische aus zwei oder mehr solcher Verbindungen in Betracht kommen.
Die Umsetzung gemäß Schritt (3) kann gegebenenfalls in Gegenwart eines Katalysators vorgenommen werden. Als Katalysator geeignet sind prinzipiell alle Ver- bindungen, die die Reaktion von Isocyanaten mit den gegenüber Isocyanaten reaktiven Verbindungen stark beschleunigen, wobei vorzugsweise ein Gesamtkatalysatorgehalt von 0,001 bis 15 Gew.-%, insbesondere 0,05 bis 6 Gew.-%, bezogen auf das Gewicht der insgesamt eingesetzten gegenüber Isocyanaten reaktiven Verbindungen (b), verwendet wird. Im Folgenden seien mögliche Katalysatoren (c) beispielhaft genannt: tertiäre Amine, beispielsweise Triethylamin, Tri- butylamin, Dimethylbenzylamin, Dicyclohexylmethylamin, Dimethylcyclohexy- lamin, N,N,N',N'-Tetramethyl-diamino-diethylether, Bis-(dimethylaminopropyl)- harnstoff, N-Methyl- bzw. N-Ethylmorpholin, N-Cyclohexylmorpholin, N,N,N',N'-Tetramethylethylendiamin, N,N,N',N'- Tetramethylbutandiamin, N,N,N',N'-Tetramethylhexandiamin-1,6, Pentamethyldiethylentriamin, Dimethyl- piperazin, N-Dimethylaminoethylpiperidin, l,8-Diazabicyclo(5.4.0)undecen-7, 1 ,2-Dimethylimidazol, 1 - Azabicyclo-(2,2,0)-octan, 1 ,4-Diazabicyclo-(2,2,2)- octan (DABCO), Alkanolaminverbindungen, wie Triethanolamin, Triisopropa- nolamin, N-Methyl- und N-Ethyl-diethanolamin, Dimethylaminoethanol, 2-(N,N- Di-methylaminoethoxy)ethanol, N,N',N"-Tris-
(dialkylaminoalkyl)hexahydrotriazine, z. B. N,N',N"-Tris-(dimethylamino- propyl)-s-hexahydrotriazin, bevorzugt Triethylendiamin, Pentamethylendiethy- lentriamin und/oder Bis(dimethylamino)ether; Metallsalze, beispielsweise anorganische und/oder organische Verbindungen des Eisens, Bleis, Zinks, und/oder Zinns in üblichen Oxidationsstufen des Metalls, beispielsweise Eisen(II)-chlorid, Zinkchlorid, Bleioctoat und vorzugsweise Zinnverbindungen, wie Zinn(II)- Verbindungen, insbesondere Zinndioctoat, Zinndiethylhexanoat und/oder Zinn(IV)-Verbiundungen, wie Di-alkyl-zinn-di(isooctylmercaptoacetat), Di-alkyl- Λzinn-di(2-ethyl-hexylmaleat), Di-alkyl-zinn-di(2-ethyl-hexylmercaptoacetat), Di- alkyl-zinn-di(isooctylmercaptoacetat), Di-alkyl-zinn-dilaurat, Di-alkyl-zinn- dimaleat, Di-alkyl-zinn-di(mercaptoacetat); Weiterhin können Amidine, wie 2,3- Dimethyl-3,4,5,6-tetrahydropyrimidin, Tetraalkylammonium-hydroxide, wie Te- ttamemylammoniumhydroxid, Alkalihydroxide, wie Natriumhydroxid und Alka- lialkoholate, wie Natriummethylat und Kaliumisopropylat, sowie Alkalisalze von langkettigen Fettsäuren mit 10 bis 20 C-Atomen und gegebenenfalls seitenständigen OH-Gruppen als Katalysatoren verwendet werden. Die beispielhaft genannten Katalysatoren können einzeln oder in Mischungen enthaltend mindestens zwei der genannten Katalysatoren eingesetzt werden.
Als Hilfs- und/oder Zusatzstoffe können gegebenenfalls übliche Substanzen in dem erfindungsgemäßen Verfahren verwendet werden. Genannt seien beispielsweise oberflächenaktive Substanzen, interne Trennmittel (IMR), Füllstoffe, Farbstoffe, Pigmente, Flammschutzmittel, Hydrolyseschutzmittel, fungistatische und bakteriostatisch wirkende Substanzen sowie UV-Stabilisatoren und Antioxidanti- en. Möglich ist auch der Einsatz von Pigmenten und/oder Farbstoffen, um getönte/farbige Formkörper zu erhalten.
Die Mitverwendung eines Löse- oder Verdünnungsmittels für die Umsetzung ge- maß Schritt (3) ist in der Regel nicht erforderlich. Im Rahmen einer bevorzugten Ausführungsform wird jedoch ein Lösemittel oder ein Gemisch aus zwei oder mehr Lösemitteln eingesetzt. Geeignete Lösemittel sind beispielsweise Kohlenwasserstoffe, insbesondere Toluol, Xylol oder Cyclohexan, Ester, insbesondere Ethylglykolacetat, Ethylacetat oder Butylacetat, Amide, insbesondere Dimethyl- formamid oder N-Methylpyrrolidon, Sulfoxide, insbesondere Dimethylsulfoxid, Ether, insbesondere Diisopropylether oder Methyl-tert.-butylether oder bevorzugt cyclische Ether, insbesondere Tetrahydrofuran oder Dioxan.
Darüber hinaus betrifft die vorliegende Erfindung auch ein Polyurethan, erhältlich durch ein integriertes Verfahren aufweisend mindestens die folgenden Schritte:
(1) Epoxidation von Propen mit mindestens einem Hydroperoxid zu Propylenoxid;
(2) Umsetzung des Propylenoxids aus Schritt (1) oder eines Gemisches aus dem Propylenoxid aus Schritt (1) und mindestens einem weite- ren Alkylenoxids zu einem Polyetheralkohol unter Verwendung mindestens einer Multimetallcyanidverbindung als Katalysator;
(3) Umsetzung eines Polyetheralkohols aus Schritt (2) mit mindestens einem Isocyanat.
Erfindungsgemäße Polyurethane zeichnen sich insbesondere durch einen niedrigen Gehalt an Verunreinigungen wie beispielsweise C6- Verbindungen aus. Damit sind die erfindungsgemäßen Polyurethane besonders für die Herstellung von Polyurethan-Schaum, Polyurethangießhäuten und Elastomeren geeignet. Unter Polyurethan-Schaumstoffen werden insbesondere Schaumstoffe bevorzugt, die in der Automobil- und Möbelindustrie verwendet werden, wie Halbhart- Schaumstoffe, Hartintegral- und Weichintegralschaumstoffe oder RIM- Werkstoffe (RIM = ReactionlnjectionMouldiung).
Daher betrifft die vorliegende Erfindung auch einen Polyurethan-Schaum, erhältlich durch ein integriertes Verfahren aufweisend mindestens die folgenden Schritte:
(1) Epoxidation von Propen mit mindestens einem Hydroperoxid zu Propylenoxid;
(2) Umsetzung des Propylenoxids aus Schritt (1) oder eines Gemisches aus dem Propylenoxid aus Schritt (1) und mindestens einem weiteren Alkylenoxid zu einem Polyetheralkohol, insbesondere durch die Verwendung von Multimetallcyanid- Verbindungen als Katalysator;
(3) Umsetzung eines Polyetheralkohols aus Schritt (2) mit mindestens einem Isocyanat;
(4) Verschäumen des durch die Umsetzung gemäß Schritt (3) erhaltenen Polyurethans.
Verfahren zur Herstellung von Polyurethan-Schäumen sind beispielsweise beschrieben in Becker, Braun, "Polyurethane", Kunststoffhandbuch Bd. 7, Carl- Hanser- Verlag, München, 3. Auflage, 1993, Seite 193 bis 265.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung ein Polyurethan, wobei das zur Herstellung des Polyurethans eingesetzte Polyetheralkohol erhältlich gemäß Schritt (2) mindestens einen Mischblock aus Ethylenoxid- Propylenoxid-Einheiten aufweist. Ebenso betrifft die Erfindung ein Polyurethan, wobei der zur Herstellung des Polyurethans eingesetzte Polyetheralkohol erhältlich gemäß Schritt (2) mindestens einen terminalen Propylenoxid-Block aufweist.
Derartige Polyurethane sind beispielsweise geeignet zur Herstellung von Formkörpern, insbesondere Formkörpern aus Polyurethan-Blockweichschaum. Vorteilhaft ist hier der geringe Gehalt an Verunreinigungen, da so keine störenden Gerüche auftreten, die aus dem Weichschaum-Formteil austreten können.
Die engeren Molekulargewichtsverteilungen aufgrund des geringen Gehaltes an monofunktionellen Nebenverbindungen fuhrt außerdem zu einer besseren Verarbeitungsbreite beim Verschäumen.
Daher betrifft die vorliegende Erfindung in einer weiteren Ausführungsform auch Formkörper umfassend ein Polyurethan oder einen Polyurethan-Schaum herstellbar mittels eines erfindungsgemäßen integrierten Verfahrens, sowie die Verwendung eines erfindungsgemäß hergestellten Polyurethans oder Polyurethanschaums zur Herstellung von Formkörpern.
Erfindungsgemäße Formkörper sind beispielsweise Matratzen, Kissen, Formteile für den Automobil-Innenausbau oder Polstermöbel.
Im einzelnen sind als erfindungsgemäße Formkörper zu nennen:
- Weichschaumstoffe, insbesondere Matratzen, Formteile für den Automobilinnenausbau, wie zum Beispiel Autositze, schallabsorbierende Formkörper, wie zum Beispiel Bodenteppiche und/oder Polstermöbel, Schwämme, Kissen, Kopfkissen, Sitzmöbeln, Bürostuhlpolstern, Rückenlehnen, orthopädischen Produkten; thermoplastische Polyurethane, insbesondere für die Verwendung von Kabel, Schläuche, Tiermarken, Schienenunterlagen, Folien, Schuhsohlen und Zubehör, Rollenbandagen, Skispitzen;
Kaltgießelastomere, insbesondere für die Verwendung von Ummantelung von Hebe- und Tragegurten, Gewebebeschichtung, Beschichtung von
Transportbändern, Prallschutzelemente, Industrielle Kantenschoner, Zahnriemen, Siebe für abrasive Schüttgüter, Abstreifer und Scharleisten, Fördersterne und Walzen, Walzenbeschichtung, Bodenschutzplatten für schwere Baumaschinen, Gehäuseteile, Beschichtung von Entgra- tungstrommeln, Pumpenelemente und Pumpengehäuse, Außenrohrbe- schichtungen, Behälterauskleidungen, Fahrzeugbodenmatten, Molche, Zyklone, Schwerlastrollen, Umlenkrollen, Leitrollen, Lenk- und Bockrollen, Führungsrollen, Spezialbeschichtungen von Förderbändern, Hydrolyse- und abriebfeste Beschichtungen von Rinnen, Beschichtungen von LKW- Ladeflächen, Stoßfanger, Kupplungsteile, Bojenbeschichtungen, Inline-
Skater-Rollen, Spezialrollen, Hochbelastbare Pumpenelemente;
Weichintegralschaumstoffe, insbesondere Lenkräder, Luftfilterdichtungen, Schaltknopf, Kabelumschäumung, Behälterummantelung, Armlehnen, Schuhsohlen aus Polyurethan; - Polyurethanbeschichteungen, insbesondere für Bodenbeläge, Veredlungen von Materialien wie Holz, Leder, Blechen;
Polyurethan-Gießhäute, insbesondere für die Verwendungen als Einlagen für Formteile wie Autoarmaturen, Autotürverkleidungen, LKW- und Autositze, Bodenmatten; - Polyurethan-Hartschaumstoffe, insbesondere für die Verwendung als
Wärmedämmaterial oder als Konstruktionsmaterial;
Hartintegral-Schaumstoffe, insbesondere für die Verwendung als Bau- und Dekorelemente im Innen- und Außenbereich, komplexe Möbel, Autoinnenraumelemente, Skier und Snowboards sowie technische Funktionsteile; RIM-Schaumstoffe, insbesondere zur Herstellung von Fertigteilen für die Verwendung im Automobilsektor im Außenbereich, wie Front- und Heckschürzen, Seitenschweller und im Nutzfahrzeugsektor, wie großflächige Verkleidungen, Kotflügel, Radverbreiterungen; Thermoformschaumstoffe, insbesondere zur Herstellung von ultraleichten
Verbundkonstruktionen, für die Verwendung im Fahrzeugbau als Dachverkleidungselement;
Halbhartschaumstoffe, insbesondere für die Hinterschäumung von Folien, Häuten oder Leder und Faser verstärkte Trägerbauteile, Halbhartschaum- Stoffen zur Herstellung von Auto-Schiebehimmeln für Auto-Glasdächer oder -Türseitenteilen.

Claims

Patentansprüche
1. Integriertes Verfahren zur Herstellung eines Polyurethans aufweisend mindestens die folgenden Schritte:
(1) Epoxidation von Propen mit mindestens einem Hydroperoxid zu Propylenoxid;
(2) Umsetzung des Propylenoxids aus Schritt (1) oder eines Gemisches aus dem Propylenoxid aus Schritt (1) xind mindestens einem weiteren Alkylenoxid zu einem Polyetheralkohol unter Verwendung mindestens einer Multimetallcyanidverbindung als Katalysator;
(3) Umsetzung eines Polyetheralkohols aus Schritt (2) mit mindestens einem Isocyanat.
2. Integriertes Verfahren zur Herstellung eines Polyurethans nach Anspruch 1, dadurch gekennzeichnet, dass das in Schritt (1) eingesetzte Hydroperoxid Wasserstoffperoxid ist.
3. Integriertes Verfahren zur Herstellung eines Polyurethans nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das in Schritt (1) erhaltenen Propylenoxid einen Gehalt an C6-Komponenten < 1 ppm aufweist.
4. Integriertes Verfahren zur Herstellung eines Polyurethans nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Epoxidation gemäß Schritt (1) in Gegenwart eines titanhaltigen Zeolithkatalysators durchgeführt wird.
5. Integriertes Verfahren zur Herstellung eines Polyurethans nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Multimetallcyanidverbindung Zink, Kobalt oder Eisen oder zwei davon enthält.
6. Polyurethan, erhältlich durch ein integriertes Verfahren aufweisend mindestens die folgenden Schritte:
(1) Epoxidation von Propen mit mindestens einem Hydroperoxid zu Propylenoxid;
(2) Umsetzung des Propylenoxids aus Schritt (1) oder eines Gemisches aus dem Propylenoxid aus Schritt (1) und mindestens einem weiteren Alkylenoxid zu einem Polyetheralkohol unter Verwendung mindestens einer Multimetallcyanidverbindung als Katalysator; (3) Umsetzung eines Polyetheralkohols aus Schritt (2) mit mindestens einem Isocyanat.
7. Polyurethan nach Anspruch 6, dadurch gekennzeichnet, dass der zur Herstellung des Polyurethans eingesetzte Polyetheralkohol erhältlich gemäß Schritt (2) mindestens einen Mischblock aus Ethylenoxid-Propylenoxid-
Einheiten aufweist.
8. Polyurethan nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der zur Herstellung des Polyurethans eingesetzte Polyetheralkohol erhältlich ge- maß Schritt (2) mindestens einen terminalen Propylenoxid-Block aufweist.
9. Polyurethan-Schaum, erhältlich durch ein integriertes Verfahren aufweisend mindestens die folgenden Schritte:
(1) Epoxidation von Propen mit mindestens einem Hydroperoxid zu Propylenoxid;
(2) Umsetzung des Propylenoxids aus Schritt (1) oder eines Gemisches aus dem Propylenoxid aus Schritt (1) und mindestens einem weiteren Alkylenoxid zu einem Polyetheralkohol unter Verwendung mindestens einer Multimetallcyanidverbindung als Katalysator; (3) Umsetzung eines Polyetheralkohols aus Schritt (2) mit mindestens einem Isocyanat; (4) Verschäumen des durch die Umsetzung gemäß Schritt (3) erhaltenen Polyurethans.
10. Formkörper umfassend ein Polyurethan herstellbar mittels eines integrier- ten Verfahrens gemäß einem der Ansprüche 1 bis 5 oder ein Polyurethan gemäß einem der Ansprüche 6 bis 8 oder einen Polyurethan-Schaum gemäß Anspruch 9.
PCT/EP2002/009781 2001-09-04 2002-09-02 Integriertes verfahren zur herstellung von polyurethan-schäumen WO2003020787A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP02797662A EP1440102B1 (de) 2001-09-04 2002-09-02 Integriertes verfahren zur herstellung von polyurethan-schäumen
DE50213298T DE50213298D1 (de) 2001-09-04 2002-09-02 Integriertes verfahren zur herstellung von polyurethan-schäumen
JP2003525054A JP2005501942A (ja) 2001-09-04 2002-09-02 ポリウレタンフォームの製造方法
CA002459139A CA2459139A1 (en) 2001-09-04 2002-09-02 Integrated method for the production of polyurethane foams
US10/488,522 US20040249107A1 (en) 2001-09-04 2002-09-02 Intergrated method for the production of polyurethane foams
MXPA04001787 MX266186B (es) 2001-09-04 2002-09-02 Metodo integrado para la produccion de espumas de poliuretano.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10143195A DE10143195A1 (de) 2001-09-04 2001-09-04 Integriertes Verfahren zur Herstellung von Polyurethan-Schäumen
DE10143195.3 2001-09-04

Publications (1)

Publication Number Publication Date
WO2003020787A1 true WO2003020787A1 (de) 2003-03-13

Family

ID=7697597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/009781 WO2003020787A1 (de) 2001-09-04 2002-09-02 Integriertes verfahren zur herstellung von polyurethan-schäumen

Country Status (14)

Country Link
US (1) US20040249107A1 (de)
EP (1) EP1440102B1 (de)
JP (1) JP2005501942A (de)
KR (1) KR100854059B1 (de)
CN (1) CN1261478C (de)
AR (1) AR036416A1 (de)
AT (1) ATE423155T1 (de)
CA (1) CA2459139A1 (de)
DE (2) DE10143195A1 (de)
ES (1) ES2319973T3 (de)
MX (1) MX266186B (de)
PT (1) PT1440102E (de)
RU (1) RU2004110235A (de)
WO (1) WO2003020787A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508406A (ja) * 2003-10-10 2007-04-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ ポリエーテルポリオールの製造方法
WO2010101700A1 (en) 2009-03-05 2010-09-10 Dow Global Technologies Inc. Polyols from hppo and polyurethane products made therefrom
EP1942051A3 (de) * 2007-01-02 2011-05-11 In novo d.o.o. Tiefenboje für Maritimanwendungen und Herstellungsverfahren dafür

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088148A1 (en) 2001-04-30 2002-11-07 The Regents Of The University Of Michigan Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein,with application for gas storage
US20030078311A1 (en) 2001-10-19 2003-04-24 Ulrich Muller Process for the alkoxylation of organic compounds in the presence of novel framework materials
WO2004101575A2 (en) 2003-05-09 2004-11-25 The Regents Of The University Of Michigan Implementation of a strategy for achieving extraordinary levels of surface and porosity in crystals
WO2006047423A2 (en) 2004-10-22 2006-05-04 The Regents Of The University Of Michigan Covalently linked organic frameworks and polyhedra
DE102005008263A1 (de) * 2005-02-22 2006-08-24 Basf Ag Verfahren zur Herstellung von zylindrischen Formkörpern auf der Basis von zelligen Polyurethanelastomeren
PT1874459E (pt) 2005-04-07 2016-02-08 Univ Michigan Alta adsorção de gás numa estrutura microporosa organometálica com locais metálicos abertos
WO2007004549A1 (ja) * 2005-07-01 2007-01-11 Mitsubishi Gas Chemical Company, Inc. 2-ヒドロキシイソ酪酸グリシジルの製造法及び該製造物を含む組成物
WO2007038508A2 (en) 2005-09-26 2007-04-05 The Regents Of The University Of Michigan Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room-temperature
UA93699C2 (ru) * 2006-02-07 2011-03-10 Басф Се Пористый полиуретан, способ получения антистатического пористого полиизоцианатного полиаддитивного продукта и применение ионных жидкостей kak антистатической добавки для пористых полиуретанов
KR20090004891A (ko) 2006-02-28 2009-01-12 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 관능화된 제올라이트 골격들의 제조
US8692030B1 (en) * 2006-04-20 2014-04-08 Pittsburg State University Biobased-petrochemical hybrid polyols
JP5371881B2 (ja) * 2009-12-10 2013-12-18 三井化学株式会社 カバー材の製造方法およびカバー材
SG181448A1 (en) * 2010-01-15 2012-08-30 Basf Se "process for the dmc-catalyzed preparation of polyols"
BR112016014640B1 (pt) * 2013-12-23 2021-09-14 Shell Internationale Research Maatschappij B.V Processo para fazer uma espuma de poliuretano retardante de chama, espuma de poliuretano, artigo conformado, e, uso de um poliol
WO2017001543A1 (en) 2015-07-02 2017-01-05 Shell Internationale Research Maatschappij B.V. Improvements relating to polyurethanes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599956A (en) * 1996-02-22 1997-02-04 Uop Integrated process for the production of propylene oxide
WO1999051661A1 (en) * 1998-04-03 1999-10-14 Bayer Antwerpen N.V. Molded and slab polyurethane foam prepared from double metal cyanide complex-catalyzed polyoxyalkylene polyols and polyols suitable for the preparation thereof
EP1022300A1 (de) * 1998-07-10 2000-07-26 Asahi Glass Company Ltd. Katalysator für ringöffnende polymerisation von alkylenoxid, verfahren zu seiner herstellung und seine verwendung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158922A (en) * 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
US5627122A (en) * 1995-07-24 1997-05-06 Arco Chemical Technology, L.P. Highly active double metal cyanide complex catalysts
DE19723950A1 (de) * 1997-06-06 1998-12-10 Basf Ag Verfahren zur Oxidation einer mindestens eine C-C-Doppelbindung aufweisenden organischen Verbindung
US5912367A (en) * 1997-07-01 1999-06-15 Arco Chemical Technology, L.P. High efficiency epoxidation process
DE19730467A1 (de) * 1997-07-16 1999-01-21 Bayer Ag Neue Zink/Metall-Hexacyanocobaltat-Katalysatoren für die Herstellung von Polyetherpolyolen
DE19742978A1 (de) * 1997-09-29 1999-04-01 Basf Ag Multimetallcyanidkomplexe als Katalysatoren
DE19835907A1 (de) * 1998-08-07 2000-02-17 Basf Ag Verfahren zur Umsetzung einer organischen Verbindung mit einem Hydroperoxid
DE19847629A1 (de) * 1998-10-15 2000-04-20 Basf Ag Verfahren zur Oxidation einer mindestens eine C-C-Doppelbindung aufweisenden organischen Verbindung
US6613714B2 (en) * 1999-06-02 2003-09-02 Basf Aktiengesellschaft Multimetal cyanide compounds, their preparation and their use
DE19928156A1 (de) * 1999-06-19 2000-12-28 Bayer Ag Aus Polyetherpolyolen hergestellte Polyurethan-Weichschäume
DE19936547A1 (de) * 1999-08-04 2001-02-15 Basf Ag Verfahren zur Umsetzung einer organischen Verbindung mit einem Hydroperoxid
US6365761B1 (en) * 1999-08-18 2002-04-02 Shell Oil Company Process for preparing alkylene oxide
ATE272666T1 (de) * 2000-02-29 2004-08-15 Basf Ag Verfahren zur herstellung von multimetallcyanidverbindungen
DE10015246A1 (de) * 2000-03-28 2001-10-04 Basf Ag Verfahren zur Umsetzung einer organischen Verbindung mit einem Hydroperoxid
DE10032884A1 (de) * 2000-07-06 2002-01-24 Basf Ag Verfahren zur Herstellung von Propylenoxid
DE10032885A1 (de) * 2000-07-06 2002-01-17 Basf Ag Verfahren zur Herstellung von Propylenoxid
JP2004530681A (ja) * 2001-05-08 2004-10-07 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー アルキレンオキシド(エポキシド、オキシラン)を調製する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599956A (en) * 1996-02-22 1997-02-04 Uop Integrated process for the production of propylene oxide
WO1999051661A1 (en) * 1998-04-03 1999-10-14 Bayer Antwerpen N.V. Molded and slab polyurethane foam prepared from double metal cyanide complex-catalyzed polyoxyalkylene polyols and polyols suitable for the preparation thereof
EP1022300A1 (de) * 1998-07-10 2000-07-26 Asahi Glass Company Ltd. Katalysator für ringöffnende polymerisation von alkylenoxid, verfahren zu seiner herstellung und seine verwendung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508406A (ja) * 2003-10-10 2007-04-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ ポリエーテルポリオールの製造方法
EP1942051A3 (de) * 2007-01-02 2011-05-11 In novo d.o.o. Tiefenboje für Maritimanwendungen und Herstellungsverfahren dafür
WO2010101700A1 (en) 2009-03-05 2010-09-10 Dow Global Technologies Inc. Polyols from hppo and polyurethane products made therefrom

Also Published As

Publication number Publication date
KR100854059B1 (ko) 2008-08-26
ES2319973T3 (es) 2009-05-18
US20040249107A1 (en) 2004-12-09
DE50213298D1 (de) 2009-04-02
AR036416A1 (es) 2004-09-08
EP1440102B1 (de) 2009-02-18
RU2004110235A (ru) 2005-10-20
MXPA04001787A (es) 2004-07-08
JP2005501942A (ja) 2005-01-20
MX266186B (es) 2009-04-21
CN1261478C (zh) 2006-06-28
EP1440102A1 (de) 2004-07-28
DE10143195A1 (de) 2003-03-20
ATE423155T1 (de) 2009-03-15
KR20040029144A (ko) 2004-04-03
CN1564836A (zh) 2005-01-12
CA2459139A1 (en) 2003-03-13
PT1440102E (pt) 2009-03-06

Similar Documents

Publication Publication Date Title
EP1440102B1 (de) Integriertes verfahren zur herstellung von polyurethan-schäumen
US7279517B2 (en) Process for the alkoxylation of organic compounds in the presence of novel framework materials
EP1432751B1 (de) Verfahren zur herstellung von polycarbonathomo- und copolymeren mittels doppel metallcyanid-katalyse
EP1228117B1 (de) Polyester-polyetherblockcopolymere
EP2448996B2 (de) Verfahren zur herstellung von polyetherpolyolen mit primären hydroxyl-endgruppen
EP2569349B1 (de) Verfahren zur herstellung von polyetherolen
EP2726534B1 (de) Verfahren zur herstellung von hochmolekularen polyetherpolyolen
EP2655475A1 (de) Verfahren zur herstellung von polyetheresterpolyolen
DE10001779A1 (de) Verfahren zur Herstellung von Polyetheralkoholen
DE19748359A1 (de) Verfahren zur Herstellung teilkristalliner Polyetherpolyole
US8680002B2 (en) Double metal cyanide catalyst having a controlled reactivity for preparing a polyol and preparation thereof
EP1175454B1 (de) Verfahren zur herstellung von polyurethanen
US12054581B2 (en) Method for producing a polyoxyalkylene polyester polyol
EP3889204A1 (de) Verfahren zur herstellung eines polyoxyalkylencarbonatpolyols
EP3287476A1 (de) Verfahren zur herstellung von polyoxymethylen-block-copolymeren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/001787

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2459139

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10488522

Country of ref document: US

Ref document number: 2003525054

Country of ref document: JP

Ref document number: 1020047003172

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002797662

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028195469

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002797662

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)