WO2003012549A2 - Lithograph mit bewegtem zylinderlinsensystem - Google Patents

Lithograph mit bewegtem zylinderlinsensystem Download PDF

Info

Publication number
WO2003012549A2
WO2003012549A2 PCT/EP2002/008372 EP0208372W WO03012549A2 WO 2003012549 A2 WO2003012549 A2 WO 2003012549A2 EP 0208372 W EP0208372 W EP 0208372W WO 03012549 A2 WO03012549 A2 WO 03012549A2
Authority
WO
WIPO (PCT)
Prior art keywords
lens
moving
storage medium
movement
write beam
Prior art date
Application number
PCT/EP2002/008372
Other languages
English (en)
French (fr)
Other versions
WO2003012549A3 (de
Inventor
Steffen Noehte
Christoph Dietrich
Robert Thomann
Stefan Stadler
Jörn LEIBER
Original Assignee
Tesa Scribos Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa Scribos Gmbh filed Critical Tesa Scribos Gmbh
Priority to GB0403047A priority Critical patent/GB2395799B/en
Priority to DE10293414T priority patent/DE10293414B4/de
Priority to US10/485,009 priority patent/US20040257629A1/en
Publication of WO2003012549A2 publication Critical patent/WO2003012549A2/de
Publication of WO2003012549A3 publication Critical patent/WO2003012549A3/de

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0891Processes or apparatus adapted to convert digital holographic data into a hologram
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • G03H2001/0478Serial printer, i.e. point oriented processing

Definitions

  • the present invention relates to a lithograph for producing optical structures in a storage medium.
  • the lithograph has a source for generating a writing beam, a moving lens for focusing the writing beam onto the storage medium, means for moving the moving lens in a direction of movement that is perpendicular to the writing beam, and a means for moving the writing beam relative to that Storage medium perpendicular to the direction of movement.
  • optical structures to be generated are preferably computer-generated holograms.
  • microimages and microbarcodes that is to say directly readable information, as optical structures in the storage medium. If, therefore, the manufacture of computer-generated holograms is mentioned in the following, this does not limit the invention to this preferred application.
  • Computer-generated holograms are two-dimensional holograms which consist of individual points with different optical properties and from which, when illuminated with a coherent electromagnetic wave, in particular a light wave, by diffraction in transmission or reflection, images and / or Data to be reproduced.
  • the different optical properties of the individual points can be reflection properties, for example due to surface topography, varying optical path lengths in the material of the storage medium (refractive indices), different transmission properties or color values of the material.
  • the optical properties of the individual points are calculated by a computer, so they are so-called computer-generated holograms (CGH).
  • CGH computer-generated holograms
  • the individual points of the hologram are written into the material while the hologram is being written, the focus being in the region of the surface or in the material of the storage medium. Focusing in the area of the focus results in a small area of action on the material of the storage medium, so that a large number of points of the hologram can be written on a small area.
  • the optical property of the point written depends on the intensity of the write beam. For this purpose, the writing beam is scanned in two dimensions with varying intensity over the surface of the storage medium.
  • the intensity of the write beam is modulated either via an internal modulation of the light source, for example a laser diode, or via an external modulation of a write beam outside the light source, for example with the aid of optoelectronic elements.
  • the light source can be designed as a pulsed laser, the pulse lengths of which can be controlled, so that the intensity of the write beam can be controlled via the pulse lengths.
  • Scanning the intensity-modulated write beam thus creates an area with an irregular point distribution, the computer-generated hologram. This can be used to identify and individualize any object.
  • Scanning lithographic systems per se are widely used. For example, scanning optical systems are built into conventional laser printers. However, these systems cannot be used for the production of holograms since the requirements for this application differ significantly from those for laser printers. With good printing systems, the resolution is around 2500 dpi, while the production of holograms requires a resolution of around 25,000 dpi. In addition, only comparatively small areas are described in computer-generated holography. These are, for example, 1 to 5 mm 2 in size, although other sizes are also possible.
  • the accuracy of the writing grid in a lithograph for the production of computer-generated holograms of, for example, 1000 ⁇ 1000 dots on an area of 1 ⁇ 1 mm 2 must be approximately + 0.1 ⁇ m in both orthogonal directions.
  • the writing speed is approximately 1 Mpixel / s, so that each hologram can be written in a time of approx. 1 s.
  • the aforementioned sizes are exemplary and do not represent a limitation of the invention.
  • Computer-generated holograms can be produced using conventional scanning methods, in which the angle of the incident beam is varied using standing optics.
  • This principle is used, for example, by scanning mirror lithographs with galvo and polygon scanners.
  • Such scanners have the disadvantage that the implementation of this principle is associated with high optical and mechanical expenditure. This fact limits the maximization of the speed and the resolution ... optical ithographs, narrow limits, because for this purpose lenses are required that allow a large field angle and convert the deflection angle linearly into an x-deflection in the focal plane of the lens ("F-Theta" lenses).
  • the lenses used must be corrected with regard to the image curvature ("flat field” lenses), so that complex multi-part optics must be used, which prevent the lithograph from being compact.
  • Such complex optics continue to place high demands on the mechanics of the lithograph, since it has to move a relatively large mass. This also results from the fact that it is not possible to select scanning mirrors of any size because the aperture of the optical system always determines
  • the invention is therefore based on the technical problem of providing a lithograph according to the preamble of claim 1, in which disturbances in the movement of a lens perpendicular to the lens Direction of movement have no influence on the quality of the written hologram.
  • a lithograph with the features of claim 1 in that the moving lens has only substantially parallel to the direction of movement, that a second stationary lens is provided which has refractive power only in a second direction. the second direction being perpendicular to the direction of movement and to the write beam.
  • the focusing of the writing beam is achieved through the interaction of two lenses.
  • the fact that the lenses have refractive power essentially only in one direction means that the incident write beam is focused by one of the two lenses in each case only to one line. Since the directions in which the lenses have refractive power are perpendicular to one another, the write beam is bundled in a focal point as it passes through both lenses.
  • the line on which the stationary lens focuses the write beam defines the path along which the individual points of the hologram are written.
  • the stationary lens can due to the slower movement can be carried out with the help of a heavier guide, so that a more stable and precise line guidance results.
  • Disturbances in the movement of the moving lens perpendicular to its direction of movement have no influence on the position of the focal point due to the low or no refractive power of the lens in this direction.
  • the hologram can therefore be written line by line into the storage medium with high accuracy if such disturbances occur.
  • a linear guide can be used for the moving lens with an accuracy that is significantly worse than 0.1 ⁇ m. As a result, in particular the manufacturing costs and the associated costs can be reduced.
  • the individual lines can be approached by moving the write beam relative to the storage medium perpendicular to the direction of movement of the moving lens, with the result that the storage medium is scanned.
  • the lenses are preferably designed as two cylindrical lenses, which are preferably arranged perpendicular to one another. This realizes that the lenses have only one refractive power Have direction and these directions are perpendicular to each other.
  • the moving and the stationary lens are preferably arranged in such a way that the focal planes of both lenses coincide with the plane in which the computer-generated hologram is to be written. This ensures that the focal point into which the writing beam is focused when passing through both lenses is always in the plane of the hologram.
  • the means for detecting the position of the moving lens serve to enable control of certain points along the path determined by the stationary lens.
  • the storage medium By moving the storage medium perpendicular to the direction of movement of the moving lens it is achieved that the storage medium can be written line by line. If further means for detecting the position are provided, then certain lines can also be approached in a controlled manner.
  • the stationary lens can also be moved perpendicular to the direction of movement of the moving lens and parallel to the direction in which the stationary lens has essentially refractive power, in order to enable the storage medium to be written line by line.
  • a collimator lens which is arranged between the source for generating the write beam and the moving lens, the write beam can be collimated onto the two lenses to a predetermined beam cross section.
  • a laser diode as the source for generating the write beam allows the source to be modulated internally, and no further optically active elements are required for the modulation.
  • connection of the means for detecting the position of the storage medium and the moving lens with a computer unit and the connection of the computer unit with the laser diode make it possible to write optical structures and in particular computer-generated holograms into the storage medium.
  • Fig.l shows an embodiment of a lithograph according to the invention in a side view.
  • FIG. 1 an embodiment of a lithograph according to the invention is shown as a side view in a partial perspective view.
  • a laser diode 1 is arranged in the upper part as a source for generating a write beam 2.
  • a collimator lens 3 is attached below this in turn a moving lens 4, which is preferably designed as a cylindrical lens.
  • the moving lens 4 extends along the direction 5, the focal plane of the moving lens 4 being perpendicular to the writing beam 2.
  • the moving lens 4 is movable perpendicular to the write beam 2 along the
  • Direction of movement 6 means not shown here for moving the moving lens 4 are provided.
  • the moving lens 4 has refractive power only substantially in a direction that is essentially parallel to the direction of movement 6 of the moving lens 4.
  • a unit 7 detects the position of the moving lens 4 in the direction of movement 6 and is with a computer unit
  • Beneath the moving lens 4 is a stationary lens, which is also preferably designed as a cylindrical lens
  • the stationary lens 9 has refractive power essentially only in a second direction 5, which is perpendicular to the direction of movement 6 and the writing beam 2. Thus, the directions in which the lenses essentially have their refractive power are perpendicular to one another in a plane perpendicular to the write beam.
  • the stationary lens 9 designed as a cylindrical lens extends perpendicular to the second direction 5.
  • the refractive power of the moving lens 4 and the stationary lens 9 is selected such that the common focal point 10 of the lenses lies in the plane in which the storage medium 13 is arranged is or in which the points of the computer-generated hologram are to be written in the storage medium 13.
  • the storage medium 13 is attached movably along the direction 11, means (not shown) being provided for moving the storage medium 13 along this direction 11.
  • a unit 12 for detecting the position of the storage medium 13 along the direction 11 is also provided.
  • the unit 12 is connected to the computer unit 8.
  • the computer unit 8 is connected to the laser diode 1.
  • the write beam 2 generated by the laser diode 1 is first collimated by the collimator lens 3 to a predetermined beam cross section and directed onto the moving lens 4 and the stationary lens 9.
  • the stationary lens 9 focuses the incident collimated write beam 2 to a line that runs essentially parallel to the direction of movement 6. This line defines the path of the hologram line 14 to be written.
  • the moving lens 4 also focuses the writing beam 2 to a line which is perpendicular to the first line, so that the writing beam 2 in the common focal plane of the lenses 4 and 9 at a focal point 10 is bundled, which lies in the plane of the storage medium 13.
  • This focal point 10 can be shifted by moving the moving lens 4 along the direction of movement 6 and the interaction of the write beam 2 with the material of the storage medium 13 in the area of the focal point 10 can change the optical properties of the material if the intensity of the write beam 2 is sufficiently high there.
  • Area-wise writing of the storage medium 13 is achieved by moving the storage medium 13 along the direction 11, so that the individual hologram lines 14 can be written in the manner shown above.
  • the respective position of the moving lens and thus that of the focal point 10 is transmitted by the units 7 and 12 to the computer unit 8, which processes the information obtained in this way with the hologram to be written and from this the control of the laser 1 generated.
  • the storage medium 13 can be moved essentially parallel to the direction of propagation of the write beam 2 relative to the lenses 4 and 9. This makes it possible to write the computer-generated holographic information into different depths of the material of the storage medium 13.

Abstract

Die Erfindung betrifft einen Lithographen zum Herstellen digitaler Hologramme in einem Speichermedium (13) mit einer Quelle zur Erzeugung eines Schreibstrahls (2), mit einer bewegten Linse (4) zum Fokussieren des Schreibstrahls (2), mit Mitteln zum Bewegen der bewegten Linse (4) entlang einer Bewegungsrichtung (6) und mit einem Mittel zum Verfahren des Schreibstrahls (2) relativ zu dem Speichermedium (13) senkrecht zu der Bewegungsrichtung (6). Das technische Problem, einen Lithographen bereitzustellen, bei dem Störungen der Bewegung einer Linse senkrecht zu deren Bewegungsrichtung keinen Einfluss auf die Qualität des Hologramms haben, wird dadurch gelöst, dass die bewegte Linse 4 nur im wesentlichen in einer ersten Richtung Brechkraft aufweist, die parallel zu der Bewegungsrichtung (6) ist, dass eine stationäre Linse (9) vorgesehen ist und dass die stationäre Linse (9) nur im wesentlichen in einer zweiten Richtung (5) Brechkraft aufweist, wobei die zweite Richtung (5) senkrecht zu der ersten Richtung und zu dem Schreibstrahl (2) steht.

Description

Lithograph mit bewegtem Zylinderlinsensystem
Die vorliegende Erfindung betrifft einen Lithographen zum Herstellen von optischen Strukturen in einem Speichermedium. Insbesondere weist der Lithograph eine Quelle zur Erzeugung eines Schreibstrahls auf, eine bewegte Linse zum Fokussieren des Schreibstrahls auf das Speichermedium, Mittel zum Bewegen der bewegten Linse in einer Bewegungsrichtung, die senkrecht zu dem Schreibstrahl steht, und ein Mittel zum Verfahren des Schreibstrahls relativ zu dem Speichermedium senkrecht zu der Bewegungsrichtung .
Die zu erzeugenden optischen Strukturen sind vorzugsweise computergenerierte Hologramme . Es können aber auch Mikrobilder und Mikrobarcodes , also direkt lesbare Informationen als optische Strukturen im Speichermedium eingeschrieben werden. Wenn also im folgenden vom Herstellen computergenerierter Hologramme die Rede ist, dann stellt dieses keine Beschränkung der Erfindung auf diese bevorzugte Anwendung dar.
Computergenerierte Hologramme sind zweidimensionale Hologramme, die aus einzelnen Punkten mit unterschiedlichen optischen Eigenschaften bestehen und aus denen bei Beleuchtung mit einer kohärenten elektromagnetischen Welle, insbesondere Lichtwelle, durch Beugung in Transmission oder Reflexion Bilder und/oder Daten reproduziert werden. Die unterschiedlichen optischen Eigenschaften der einzelnen Punkte können Reflexionseigenschaften beispielsweise durch Oberflächentopographie, variierende optische Weglängen im Material des Speichermediums (Brechungsindizes) , unterschiedliche Transmissionseigenschaften oder Farbwerte des Materials sein.
Die optischen Eigenschaften der einzelnen Punkte werden von einem Computer berechnet, es handelt sich somit um sogenannte computergenerierte Hologramme (CGH) . Mit Hilfe des fokussierten Schreibstrahls werden während des Schreibens des Hologramms die einzelnen Punkte des Hologramms in das Material eingeschrieben, wobei der Fokus im Bereich der Oberfläche oder im Material des Speichermediums liegt. Eine Fokussierung bewirkt im Bereich des Fokus eine geringe Einwirkungsfläche auf das Material des Speichermediums, so dass eine Vielzahl von Punkten des Hologramms auf einer kleinen Fläche geschrieben werden kann. Die optische Eigenschaft des jeweils geschriebenen Punktes hängt dabei von der Intensität des Schreibstrahls ab. Dazu wird der Schreibstrahl in zwei Dimensionen mit variierender Intensität über die Oberfläche des Speichermediums gescannt . Die Modulation der Intensität des Schreibstrahls erfolgt dabei entweder über eine interne Modulation der Lichtquelle, beispielsweise eine Laserdiode, oder über eine externe Modulation eines Schreibstrahls außerhalb der Lichtquelle, beispielsweise mit Hilfe von optoelektronischen Elementen. Darüber hinaus kann die Lichtquelle als gepulster Laser ausgebildet sein, dessen Pulslängen steuerbar sind, so dass über die Pulslängen eine Steuerung der Intensität des Schreibstrahls erfolgen kann.
Durch das Abscannnen des intensitätsmodulierten Schreibstrahls entsteht somit eine Fläche mit einer unregelmäßigen Punkteverteilung, das computergenerierte Hologramm. Dieses kann zum Kennzeichnen und Individualisieren beliebiger Gegenstände eingesetzt werden.
Scannende lithographische Systeme sind an sich weit verbreitet. Beispielsweise werden scannende optische Systeme in herkömmliche Laserdrucker eingebaut. Diese Systeme können jedoch zur Herstellung von Hologrammen nicht eingesetzt werden, da sich die Anforderungen für diesen Anwendungszweck gegenüber denen bei Laserdruckern deutlich unterscheiden. Die Auflösung liegt bei guten Drucksystemen bei etwa 2500 dpi, während bei der Herstellung von Hologrammen eine Auflösung von etwa 25.000 dpi erforderlich ist. Außerdem werden bei der computergenerierten Holographie nur vergleichsweise kleine Flächen beschrieben. Diese sind beispielsweise 1 bis 5 mm2 groß, wobei auch andere Größen möglich sind. Die Genauigkeit des Schreibrasters muss bei einem Lithographen zur Herstellung computergenerierter Hologramme von beispielsweise 1000 x 1000 Punkten auf einer Fläche von l x l mm2 etwa + 0,1 μm in beide orthogonale Richtungen betragen. Darüber hinaus sollte die Schreibgeschwindigkeit etwa 1 Mpixel/s betragen, damit jeweils ein Hologramm in einer Zeit von ca. 1 s geschrieben werden kann. Die vorgenannten Größen sind beispielhaft und stellen keine Beschränkung der Erfindung dar.
Computergenerierte Hologramme können mittels konventioneller Scanmethoden hergestellt werden, bei denen mit stehender Optik der Winkel des einfallenden Strahles variiert wird. Auf diesem Prinzip arbeiten beispielsweise Scanspiegellithographen mit Galvo- und Polygonscannern. Derartige Scanner haben jedoch den Nachteil, dass die Umsetzung dieses Prinzips mit einem hohen optischen und mechanischen Aufwand verbunden ist. Dieser Umstand setzt der Maximierung der Geschwindigkeit und der Auflösung ...optischer ithographen enge .Grenzen,..da zu diesem Zweck Objektive benötigt werden, die einen großen Feldwinkel zulassen und den Ablenkwinkel vorzugsweise linear in eine x-Ablenkung in der Fokusebene des Objektives umsetzen (,,F-Theta"-Objektive) . Überdies müssen die verwendeten Objektive hinsichtlich der Bildwölbung korrigiert werden („flat field"-Objektive) , so dass aufwändige mehrteilige Optiken eingesetzt werden müssen, die einer kompakten Gestaltung des Lithographen entgegenstehen. Derartige komplexe Optiken stellen weiterhin hohe Ansprüche an die Mechanik des Lithographen, da diese eine relativ große Masse bewegen muss. Dieses ergibt sich auch daraus, dass es nicht möglich ist, beliebig kleine Scannspiegel zu wählen, da die Apertur des optischen Systems immer auch die Auflösung bestimmt.
Es sind jedoch auch scannende optische Systeme bekannt, bei denen die Scanbewegung nicht über einen bewegten Strahl, sondern über eine bewegte Optik erreicht wird. Aber auch hier wird nicht die Genauigkeit der Positionierung des Schreibstrahls erreicht, die es für die zu erreichenden Schreibgeschwindigkeiten ermöglicht, ein vorgegebenes Punktraster des computergenerierten Hologramms einzuhalten. Wird eine Linse senkrecht zum Schreibstrahl linear bewegt, um eine Bewegung des fokussierten Schreibstrahles auf dem Speichermedium zu erzeugen, ist eine hohe Führungsgenauigkeit der Linse erforderlich. Das bedeutet, dass die Abweichungen senkrecht zu der vorgegebenen Bahn, „Wobbel" genannt, kleiner als 0,1 μm sein müssen, damit eine hinreichende Genauigkeit des Schreibrasters erreicht wird. Eine Linearführung mit einer solchen Führungsgenauigkeit ist nur mit erheblichem Aufwand herzustellen. Außerdem treten in mechanischen Systemen Störungen in Form von Stößen und Vibrationen auf, die ebenfalls die Größenordnung von 0,1 μm erreichen können.
Der Erfindung liegt daher das technische Problem zugrunde, einen Lithographen gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, bei dem Störungen der Bewegung einer Linse senkrecht zur deren Bewegungsrichtung keinen Einfluss auf die Qualität des geschriebenen Hologramms haben.
Das zuvor aufgezeigte technische Problem wird durch einen Lithographen mit den Merkmalen des Anspruchs 1 dadurch gelöst, dass die bewegte Linse nur im wesentlichen parallel zu der Bewegungsrichtung aufweist, dass eine zweite stationäre Linse vorgesehen ist, die nur im wesentlichen in einer zweiten Richtung Brechkraft aufweist, wobei die zweite Richtung senkrecht zu der Bewegungsrichtung und zu dem Schreibstrahl steht.
In einem erfindungsgemäßen Lithographen wird die Fokussierung des Schreibstrahls durch das Zusammenwirken zweier Linsen erreicht. Dadurch, dass die Linsen nur im wesentlichen in einer Richtung Brechkraft aufweisen, ergibt sich, dass der einfallende Schreibstrahl durch eine der beiden Linsen jeweils nur zur einer Linie fokussiert wird. Da die Richtungen, in denen die Linsen Brechkraft aufweisen, senkrecht zueinander stehen, wird der Schreibstrahl beim Durchgang durch beide Linsen in einem Fokuspunkt gebündelt.
Die Linie, auf die die stationäre Linse den Schreibstrahl fokussiert, definiert die Bahn, entlang derer die einzelnen Punkte des Hologramms geschrieben werden. Durch Verfahren der bewegten Linse wird der Fokuspunkt auf der Bahn verschoben und es werden so die Orte auf der Bahn festgelegt, an denen die Punkte geschrieben werden sollen. Die stationäre Linse kann aufgrund der langsameren Bewegung mit Hilfe eines schwereren Führung geführt werden, so dass sich eine stabilere und genauere Linienführung ergibt .
Störungen der Bewegung der bewegten Linse senkrecht zu ihrer Bewegungsrichtung haben aufgrund der geringen oder fehlenden Brechkraft der Linse in dieser Richtung keinen Einfluss auf die Lage des Fokuspunktes. Das Hologramm kann daher auch dann mit hoher Genauigkeit zeilenweise in das Speichermedium geschrieben werden, wenn derartige Störungen auftreten. Damit kann für die bewegte Linse eine Linearführung mit einer Genauigkeit verwendet werden, die deutlich schlechter als 0,1 μm ist. Dadurch lassen sich insbesondere der Herstellungsauf and und die damit verbundenen Kosten verringern.
Die einzelnen Zeilen können durch ein Verfahren des Schreibstrahls relativ zum Speichermedium senkrecht zu der Bewegungsrichtung der bewegten Linse angefahren werden, womit ein Abscannen des Speichermediums erreicht wird.
Nachstehend wird die Erfindung anhand bevorzugter Ausführungsbeispiele ausführlicher erläutert.
In bevorzugter Weise sind die Linsen als zwei Zylinderlinsen ausgeführt, die vorzugsweise senkrecht zueinander angeordnet sind. Dadurch wird realisiert, dass die Linsen Brechkraft nur im wesentlichen in einer Richtung aufweisen und diese Richtungen senkrecht zueinander stehen.
Die bewegte und die stationäre Linse sind bevorzugt in der Weise angeordnet, dass die Brennebenen beider Linsen mit der Ebene zusammenfallen, in der das computergenerierte Hologramm geschrieben werden soll . Dies stellt sicher, dass der Fokuspunkt, in den der Schreibstrahl beim Durchgang durch beide Linsen fokussiert wird, immer in der Ebene des Hologramms liegt.
Die Mittel zum Erfassen der Position der bewegten Linse dienen dazu, ein Ansteuern bestimmter Punkte entlang der durch die stationäre Linse bestimmten Bahn zu ermöglichen.
Durch das Verfahren des Speichermediums senkrecht zur Bewegungsrichtung der bewegten Linse wird erreicht, dass das Speichermedium zeilenweise beschrieben werden kann. Sind weiter Mittel zum Detektieren der Position vorgesehen, so können auch hier bestimmte Zeilen kontrolliert angefahren werden.
Alternativ zum Verfahren des Speichermediums kann auch die stationäre Linse senkrecht zur Bewegungsrichtung der bewegten Linse und parallel zu der Richtung, in der die stationäre Linse im wesentlichen Brechkraft aufweist, verfahren werden, um ein zeilenweises Beschreiben des Speichermediums zu ermöglichen. Mit Hilfe einer Kollimatorlinse, die zwischen der Quelle zur Erzeugung des Schreibstrahls und der bewegten Linse angeordnet ist, kann der Schreibstrahl auf die beiden Linsen auf einen vorgegebenen Strahlquerschnitt kollimiert werden.
Die Verwendung einer Laserdiode als Quelle zur Erzeugung des Schreibstrahls erlaubt die interne Modulation der Quelle und es sind keine weiteren optisch aktiven Elemente zur Modulation notwendig.
Die Verbindung der Mittel zum Detektieren der Position des Speichermediums und der bewegten Linse mit einer Rechnereinheit sowie die Verbindung der Rechnereinheit mit der Laserdiode ermöglichen es, optische Strukturen und insbesondere computergenerierte Hologramme in das Speichermedium einzuschreiben.
Die Erfindung wird im folgenden nur beispielhaft anhand der Zeichnung beschrieben. In dieser Zeichnung zeigt
Fig.l ein Ausführungsbeispiel eines erfindungsgemäßen Lithographen in einer Seitenansicht.
In Fig. 1 ist ein Ausführungsbeispiel eines erfindungsgemäßen Lithographen als Seitenansicht in teilweise perspektivischer Darstellung gezeigt. Im oberen Teil ist eine Laserdiode 1 als Quelle zur Erzeugung eines Schreibstrahls 2 angeordnet . Unterhalb der Laserdiode 1 ist eine Kollimatorlinse 3 angebracht und unterhalb dieser wiederum eine bevorzugt als Zylinderlinse ausgebildete bewegte Linse 4. Die bewegte Linse 4 erstreckt sich entlang der Richtung 5, wobei die Brennebene der bewegten Linse 4 senkrecht zum Schreibstrahl 2 steht. Die bewegte Linse 4 ist beweglich senkrecht zum Schreibstrahl 2 entlang der
Bewegungsrichtung 6, wobei hier nicht dargestellte Mittel zum Bewegen der bewegten Linse 4 vorgesehen sind. Die bewegte Linse 4 weist nur im wesentlichen in einer Richtung Brechkraft auf, die im wesentlichen parallel zu der Bewegungsrichtung 6 der bewegten Linse 4 ist. Eine Einheit 7 detektiert die Position der bewegten Linse 4 in der Bewegungsrichtung 6 und ist mit einer Rechnereinheit
8 verbunden.
Unterhalb der bewegten Linse 4 ist eine ebenfalls bevorzugt als Zylinderlinse ausgebildete stationäre Linse
9 angeordnet. Die stationäre Linse 9 weist Brechkraft im wesentlichen nur in einer zweiten Richtung 5 auf, die senkrecht zu der Bewegungsrichtung 6 und dem Schreibstrahl 2 steht. Somit stehen die Richtungen, in denen die Linsen im wesentlichen ihre Brechkraft aufweisen, senkrecht zueinander in einer Ebene senkrecht zum Schreibstrahl. Die als Zylinderlinse ausgebildete stationäre Linse 9 erstreckt sich senkrecht zu der zweiten Richtung 5. Die Brechkraft der bewegten Linse 4 und der stationären Linse 9 ist dabei derart gewählt, dass der gemeinsame Fokuspunkt 10 der Linsen in der Ebene liegt, in der das Speichermedium 13 angeordnet ist bzw. in der im Speichermedium 13 die Punkte des computergenerierten Hologramms eingeschrieben werden sollen.
Das Speichermedium 13 ist beweglich entlang der Richtung 11 angebracht, wobei nicht dargestellte Mittel zum Bewegen des Speichermediums 13 entlang dieser Richtung 11 vorgesehen sind. Weiter ist eine Einheit 12 zum Detektieren der Position des Speichermediums 13 entlang der Richtung 11 vorgesehen. Die Einheit 12 ist mit der Rechnereinheit 8 verbunden. Außerdem ist die Rechnereinheit 8 mit der Laserdiode 1 verbunden.
Beim Herstellen eines computergenerierten Hologramms in dem Speichermedium 13 wird der von der Laserdiode 1 erzeugte Schreibstrahl 2 zunächst durch die Kollimatorlinse 3 auf einen vorgegebenen Strahlquerschnitt kollimiert und auf die bewegte Linse 4 und die stationäre Linse 9 gelenkt. Die stationäre Linse 9 fokussiert den einfallenden kollimierten Schreibstrahl 2 zu einer Linie, die im wesentlichen parallel zu der Bewegungsrichtung 6 verläuft. Diese Linie definiert die Bahn der zu schreibenden Hologrammzeile 14. Die bewegte Linse 4 fokussiert den Schreibstrahl 2 ebenfalls zu einer Linie, die senkrecht zu der ersten Linie verläuft, so dass der Schreibstrahl 2 in der gemeinsamen Brennebene der Linsen 4 und 9 in einem Fokuspunkt 10 gebündelt wird, der in der Ebene des Speichermediums 13 liegt. Durch Bewegen der bewegten Linse 4 entlang der Bewegungsrichtung 6 kann dieser Fokuspunkt 10 verschoben werden und es können durch die Wechselwirkung des Schreibstrahls 2 mit dem Material des Speichermediums 13 im Bereich des Fokuspunktes 10 die optischen Eigenschaften des Materials verändert werden, wenn dort die Intensität des Schreibstrahls 2 hinreichend hoch ist.
Ein flächenhaftes Beschreiben des Speichermediums 13 wird durch ein Verfahren des Speichermediums 13 entlang der Richtung 11 erreicht, so dass die einzelnen Hologrammzeilen 14 in der oben dargestellten Weise geschrieben werden können.
Während der Bewegung der bewegten Linse 4 wird die jeweilige Position der bewegten Linse und damit die des Fokuspunktes 10 durch die Einheiten 7 und 12 an die Rechnereinheit 8 übermittelt, die die so gewonnene Information mit dem zu schreibenden Hologramm verarbeitet und daraus die Ansteuerung des Lasers 1 generiert.
Wie in der Fig. 1 weiter mit dem Doppelpfeil 15 dargestellt ist, kann das Speichermedium 13 im wesentlichen parallel zur Ausbreitungsrichtung des Schreibstrahls 2 relativ zu den Linsen 4 und 9 bewegt werden. Dadurch wird es ermöglicht, in unterschiedlichen Tiefen des Materials des Speichermediums 13 die computergenerierten holographischen Informationen einzuschreiben.

Claims

P A T E N T AN S P RÜ C H E
Lithograph zum Herstellen von optischen Strukturen, in einem Speichermedium (13) , insbesondere von computergenerierten Hologrammen, mit einer Quelle zur Erzeugung eines Schreibstrahls (2), mit einer bewegten Linse (4) zum Fokussieren des Schreibstrahls (2) auf das Speichermedium (13), mit einem Mittel zum Bewegen der bewegten Linse (4) in einer Bewegungsrichtung (6) , die senkrecht zu dem Schreibstrahl (2) steht, und mit einem Mittel zum Verfahren des Schreibstrahls (2) relativ zu dem Speichermedium (13) senkrecht zu der Bewegungsrichtung (6) , dadurch gekennzeichnet, dass die bewegte Linse (4) nur im wesentlichen parallel zu der Bewegungsrichtung (6) Brechkraft aufweist, dass eine stationäre Linse (9) vorgesehen ist und dass die stationäre Linse (9) nur im wesentlichen in einer zweiten Richtung (5) Brechkraft aufweist, wobei die zweite Richtung (5) senkrecht zu der Bewegungsrichtung (6) und dem Schreibstrahl (2) steht.
2. Lithograph nach Anspruch 1, dadurch gekennzeichnet, dass die bewegte Linse (4) und die stationäre Linse (9) als Zylinderlinsen ausgebildet sind.
3. Lithograph nach Anspruch 2, dadurch gekennzeichnet, dass sich die bewegte Linse (4) senkrecht zu der ersten Richtung erstreckt und dass sich die stationäre Linse (9) senkrecht zu der zweiten Richtung (5) erstreckt.
4. Lithograph nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Brennebenen der bewegten Linse (4) und der stationären Linse (9) im wesentlichen mit der Ebene, in der das computergenerierte Hologramm in dem Speichermedium (13) angeordnet ist, zusammenfallen.
5. Lithograph nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Mittel (7) zum Detektieren der Position der bewegten Linse (4) in der Bewegungsrichtung (6) vorgesehen ist.
6. Lithograph nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Mittel zum Verfahren des Schreibstrahls (2) senkrecht zu der Bewegungsrichtung (6) ein Mittel zum Verfahren des Speichermediums (13) vorgesehen ist .
7. Lithograph nach Anspruch 6, dadurch gekennzeichnet, dass ein Mittel (12) zum Detektieren einer Verfahrposition des Speichermediums (13) vorgesehen ist .
8. Lithograph nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Mittel zum Verfahren des Schreibstrahls (2) senkrecht zu der Bewegungsrichtung (6) ein Mittel zum Verfahren der stationären Linse (9) vorgesehen ist .
9. Lithograph nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zwischen der Quelle zur Erzeugung des Schreibstrahls (2) und der bewegten Linse (4) eine Kollimatorlinse (3) angeordnet ist.
10. Lithograph nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als Quelle zur Erzeugung des Schreibstrahls (2) eine Laserdiode (1) vorgesehen ist.
11. Lithograph nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass eine Rechnereinheit (8) vorgesehen ist, wobei die Rechnereinheit (8) mit der Laserdiode (1) , dem Mittel (7) zum Detektieren der Position der bewegten Linse (4) und dem Mittel (12) zum Detektieren der Verfahrposition des Speichermediums (13) verbunden ist.
12. Lithograph nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Speichermedium (13) im wesentlichen parallel zur Ausbreitungsrichtung des Schreibstrahls (2) relativ zu den Linsen (4, 9) bewegbar ist.
PCT/EP2002/008372 2001-07-27 2002-07-26 Lithograph mit bewegtem zylinderlinsensystem WO2003012549A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB0403047A GB2395799B (en) 2001-07-27 2002-07-26 Lithograph having a moving cylindrical lens system
DE10293414T DE10293414B4 (de) 2001-07-27 2002-07-26 Lithograph mit bewegtem Zylinderlinsensystem
US10/485,009 US20040257629A1 (en) 2001-07-27 2002-07-26 Lithograph comprising a moving cylindrical lens system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10136569 2001-07-27
DE10136569.1 2001-07-27

Publications (2)

Publication Number Publication Date
WO2003012549A2 true WO2003012549A2 (de) 2003-02-13
WO2003012549A3 WO2003012549A3 (de) 2003-10-09

Family

ID=7693264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/008372 WO2003012549A2 (de) 2001-07-27 2002-07-26 Lithograph mit bewegtem zylinderlinsensystem

Country Status (4)

Country Link
US (1) US20040257629A1 (de)
DE (1) DE10293414B4 (de)
GB (1) GB2395799B (de)
WO (1) WO2003012549A2 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826632A1 (de) 2006-02-22 2007-08-29 tesa scribos GmbH Verfahren zum Berechnen von Speichermedium mit und Vorrichtung zum Auslesen von computergenerierten Hologrammen auf einer unebenen Fläche
WO2007115720A1 (de) 2006-04-04 2007-10-18 Tesa Scribos Gmbh Speichermedium mit einem sicherheitsmerkmal sowie verfahren zur herstellung eines speichermediums mit einem sicherheitsmerkmal
WO2008006459A1 (de) 2006-07-12 2008-01-17 Tesa Scribos Gmbh Verfahren zum aufbringen eines sicherheitsmerkmals auf ein sicherheitsdokument sowie sicherheitsdokument mit einem sicherheitsmerkmal
DE102007004857A1 (de) 2007-01-31 2008-08-07 Tesa Scribos Gmbh Datenträger und Etikett sowie deren Herstellung
DE102007006120A1 (de) 2007-02-02 2008-08-07 Tesa Scribos Gmbh Speichermedium mit einer optisch veränderbaren Speicherschicht
DE102007006119A1 (de) 2007-02-02 2008-08-14 Tesa Scribos Gmbh Datenspeicher
EP2071401A2 (de) 2006-04-04 2009-06-17 tesa scribos GmbH Vorrichtung und Verfahren zur Mikrostrukturierung eines Speichermediums sowie Speichermedium mit einem mikrostrukturierten Bereich
DE102009040112A1 (de) 2009-09-04 2011-03-10 Tesa Scribos Gmbh Etikettenbahn mit einer Mehrzahl von Etiketten
US8192920B2 (en) 2008-04-26 2012-06-05 Rolith Inc. Lithography method
US8425789B2 (en) 2007-06-09 2013-04-23 Rolith, Inc. Method and apparatus for anisotropic etching
US8518633B2 (en) 2008-01-22 2013-08-27 Rolith Inc. Large area nanopatterning method and apparatus
US9069244B2 (en) 2010-08-23 2015-06-30 Rolith, Inc. Mask for near-field lithography and fabrication the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2243722T3 (es) * 2001-04-12 2005-12-01 Tesa Scribos Gmbh Litografo y microscopio con mascar4a de disparo unidimensional y procedimiento para la fabricacion de hologramas digitales de un medio de almacenamiento.
DE102006037216B4 (de) * 2006-04-04 2017-07-13 Tesa Scribos Gmbh Verfahren zur Herstellung einer Punkteverteilung in einem Speichermedium sowie ein Speichermedium
DE102006025335A1 (de) * 2006-05-31 2007-12-06 Tesa Scribos Gmbh Etikett mit einem Sicherheitsmerkmal und Behälter mit einem Etikett
TWI427431B (zh) 2008-09-22 2014-02-21 Asml Netherlands Bv 微影裝置、可程式化圖案化器件及微影方法
US20110210480A1 (en) * 2008-11-18 2011-09-01 Rolith, Inc Nanostructures with anti-counterefeiting features and methods of fabricating the same
TWI448830B (zh) 2010-02-09 2014-08-11 Asml Netherlands Bv 微影裝置及元件製造方法
KR101419330B1 (ko) 2010-02-23 2014-07-15 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 디바이스 제조 방법
CN102770811B (zh) 2010-02-25 2015-05-20 Asml荷兰有限公司 光刻设备和器件制造方法
WO2011128162A1 (en) 2010-04-12 2011-10-20 Asml Netherlands B.V. Substrate handling apparatus and lithographic apparatus
CN103238113B (zh) 2010-12-08 2015-09-09 Asml荷兰有限公司 光刻设备和器件制造方法
NL2008329A (en) 2011-03-29 2012-10-02 Asml Netherlands Bv Lithographic apparatus, method for measuring radiation beam spot position, device manufacturing method, and radiation detector system for a lithographic apparatus.
CN103597404B (zh) 2011-04-08 2017-04-26 Asml荷兰有限公司 光刻设备、可编程图案形成装置以及光刻方法
NL2008500A (en) 2011-04-21 2012-10-23 Asml Netherlands Bv Lithographic apparatus, method for maintaining a lithographic apparatus and device manufacturing method.
KR101633744B1 (ko) 2011-08-18 2016-06-27 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 디바이스 제조 방법
NL2009342A (en) 2011-10-31 2013-05-07 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
WO2013079316A2 (en) 2011-11-29 2013-06-06 Asml Netherlands B.V. Apparatus and method for converting a vector-based representation of a desired device pattern for a lithography apparatus, apparatus and method for providing data to a programmable patterning device, a lithography apparatus and a device manufacturing method
WO2013079285A1 (en) 2011-11-29 2013-06-06 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program
JP5840303B2 (ja) 2011-12-05 2016-01-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
WO2013083383A1 (en) 2011-12-06 2013-06-13 Asml Netherlands B.V. A lithography apparatus, an apparatus for providing setpoint data, a device manufacturing method, a method of calculating setpoint data and a computer program
NL2009902A (en) 2011-12-27 2013-07-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
CN104040434B (zh) 2012-01-12 2016-10-19 Asml荷兰有限公司 光刻装置、用于提供设置点数据的装置、设备制造方法、用于提供设置点数据的方法
JP5905126B2 (ja) 2012-01-17 2016-04-20 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
CN104115068B (zh) 2012-02-23 2017-04-05 Asml荷兰有限公司 装置、光刻设备、用于引导辐射的方法以及装置制造方法
NL2012052A (en) 2013-01-29 2014-08-04 Asml Netherlands Bv A radiation modulator for a lithography apparatus, a lithography apparatus, a method of modulating radiation for use in lithography, and a device manufacturing method.
KR102517037B1 (ko) * 2020-11-03 2023-04-04 경북대학교 산학협력단 실린드리컬 렌즈를 이동하여 호겔 위치를 조정하는 홀로그램 프린터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001517A1 (en) * 1989-07-18 1991-02-07 Massachusetts Institute Of Technology Improving holographic lithography
WO2002079881A2 (de) * 2001-03-30 2002-10-10 Tesa Scribos Gmbh Lithographischer apparat mit bewegter linse zum herstellen digitaler hologramme
WO2002084404A1 (de) * 2001-04-12 2002-10-24 Tesa Scribos Gmbh Lithograph mit eindimensionaler triggermaske und verfahren zum herstellen digitaler hologramme in einem speichermedium

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2222937A (en) * 1937-09-21 1940-11-26 Rca Corp Scanning device
US3976354A (en) * 1973-12-14 1976-08-24 Honeywell Inc. Holographic memory with moving memory medium
JPS544856B2 (de) * 1974-01-17 1979-03-10
GB1545234A (en) * 1975-10-31 1979-05-02 Hitachi Ltd Information play-back apparatus
US5142385A (en) * 1989-07-18 1992-08-25 Massachusetts Institute Of Technology Holographic lithography
US5109149A (en) * 1990-03-15 1992-04-28 Albert Leung Laser, direct-write integrated circuit production system
US5095386A (en) * 1990-05-01 1992-03-10 Charles Lescrenier Optical system for generating lines of light using crossed cylindrical lenses
JP2991097B2 (ja) * 1995-12-20 1999-12-20 富士ゼロックス株式会社 画像形成装置
JPH1078554A (ja) * 1996-09-05 1998-03-24 Asahi Optical Co Ltd カスケード走査光学系の調整機構
US6014270A (en) * 1998-11-23 2000-01-11 Lucent Technologies Inc Cylindrical lenses for alignment of optical sources and destinations
US6692030B1 (en) * 2000-07-21 2004-02-17 Verify First Technologies, Inc. Security document with nano-pattern
JP2004516011A (ja) * 2000-07-25 2004-06-03 コーサン バイオサイエンシーズ, インコーポレイテッド エポチロンのための発酵プロセス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001517A1 (en) * 1989-07-18 1991-02-07 Massachusetts Institute Of Technology Improving holographic lithography
WO2002079881A2 (de) * 2001-03-30 2002-10-10 Tesa Scribos Gmbh Lithographischer apparat mit bewegter linse zum herstellen digitaler hologramme
WO2002084404A1 (de) * 2001-04-12 2002-10-24 Tesa Scribos Gmbh Lithograph mit eindimensionaler triggermaske und verfahren zum herstellen digitaler hologramme in einem speichermedium

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826632A1 (de) 2006-02-22 2007-08-29 tesa scribos GmbH Verfahren zum Berechnen von Speichermedium mit und Vorrichtung zum Auslesen von computergenerierten Hologrammen auf einer unebenen Fläche
EP2523052A1 (de) 2006-02-22 2012-11-14 tesa scribos GmbH Speichermedium mit einem computergenerierten Reflektionshologramm auf einer unebenen Fläche
US8120996B2 (en) 2006-04-04 2012-02-21 Tesa Scribos Gmbh Device and method for microstructuring a storage medium and storage medium comprising a microstructured region
WO2007115720A1 (de) 2006-04-04 2007-10-18 Tesa Scribos Gmbh Speichermedium mit einem sicherheitsmerkmal sowie verfahren zur herstellung eines speichermediums mit einem sicherheitsmerkmal
EP2071401A2 (de) 2006-04-04 2009-06-17 tesa scribos GmbH Vorrichtung und Verfahren zur Mikrostrukturierung eines Speichermediums sowie Speichermedium mit einem mikrostrukturierten Bereich
US8248908B2 (en) 2006-04-04 2012-08-21 Tesa Scribos Gmbh Storage medium comprising a security feature and method for producing a storage medium comprising a security feature
WO2008006459A1 (de) 2006-07-12 2008-01-17 Tesa Scribos Gmbh Verfahren zum aufbringen eines sicherheitsmerkmals auf ein sicherheitsdokument sowie sicherheitsdokument mit einem sicherheitsmerkmal
DE102007004857A1 (de) 2007-01-31 2008-08-07 Tesa Scribos Gmbh Datenträger und Etikett sowie deren Herstellung
DE102007006120A1 (de) 2007-02-02 2008-08-07 Tesa Scribos Gmbh Speichermedium mit einer optisch veränderbaren Speicherschicht
DE102007006119A1 (de) 2007-02-02 2008-08-14 Tesa Scribos Gmbh Datenspeicher
US8425789B2 (en) 2007-06-09 2013-04-23 Rolith, Inc. Method and apparatus for anisotropic etching
US8518633B2 (en) 2008-01-22 2013-08-27 Rolith Inc. Large area nanopatterning method and apparatus
US9645504B2 (en) 2008-01-22 2017-05-09 Metamaterial Technologies Usa, Inc. Large area nanopatterning method and apparatus
US8192920B2 (en) 2008-04-26 2012-06-05 Rolith Inc. Lithography method
DE102009040112A1 (de) 2009-09-04 2011-03-10 Tesa Scribos Gmbh Etikettenbahn mit einer Mehrzahl von Etiketten
US9069244B2 (en) 2010-08-23 2015-06-30 Rolith, Inc. Mask for near-field lithography and fabrication the same

Also Published As

Publication number Publication date
GB0403047D0 (en) 2004-03-17
DE10293414B4 (de) 2007-03-01
WO2003012549A3 (de) 2003-10-09
GB2395799A (en) 2004-06-02
DE10293414D2 (de) 2004-08-19
US20040257629A1 (en) 2004-12-23
GB2395799B (en) 2005-06-15

Similar Documents

Publication Publication Date Title
DE10293414B4 (de) Lithograph mit bewegtem Zylinderlinsensystem
DE3137031C2 (de) Mehrfachstrahlenbündel-Abtastoptiksystem
DE10116059B4 (de) Lithograph mit bewegter Linse und Verfahren zum Herstellen digitaler Hologramme in einem Speichermedium
DE3047822C2 (de) Vorrichtung zur Verarbeitung optischer Information
DE3314963C2 (de)
DE19827423C2 (de) Zweidimensionale Laserdiodenanordnung
DE10116058B4 (de) Verfahren zum Herstellen digitaler Hologramme in einem Speichermedium und Lithograph zum Herstellen digitaler Hologramme in einem Speichermedium
WO2007116000A2 (de) Vorrichtung und verfahren zur mikrostrukturierung eines speichermediums sowie speichermedium mit einem mikrostrukturierten bereich
EP1377880B1 (de) Lithograph und mikroskop mit eindimensionaler triggermaske und verfahren zum herstellen digitaler hologramme in einem speichermedium
DE2724181A1 (de) Zweidimensionales laserabtastgeraet
DE102019109437A1 (de) Verfahren und Vorrichtung zur Herstellung eines computergenerierten Hologramms, Hologramm sowie Beleuchtungsvorrichtung für ein Fahrzeug
DE10116060B4 (de) Lithograph mit Triggermaske und Verfahren zum Herstellen digitaler Hologramme in einem Speichermedium
DE2722935A1 (de) Vorrichtung zur optischen abtastung von auf der oberflaeche eines traegers gespeicherter information
DE112015003920T5 (de) Optisches Bilderzeugungssystem, Beleuchtungsvorrichtung und Mikroskopvorrichtung
DE19961918A1 (de) Variables Doppelfokusformungsmodul und Verfahren zu seiner Anwendung
DE69730169T2 (de) Gegenläufig rotierendes abtastgerät
EP1377883B8 (de) Verfahren zum herstellen von individualisierten hologrammen
DE4127919A1 (de) Lichtaufzeichnungsvorrichtung mit im durchmesser veraenderbaren aufzeichnungspunkten
DE3743837C2 (de)
DE3423883A1 (de) Projektionsvorrichtung
DE10137860A1 (de) Verfahren und Vorrichtung zum Herstellen von individualisierten Hologrammen
DE102009020320A1 (de) Verfahren und Vorrichtung zur Steigerung der Auflösung und/oder der Geschwindigkeit von Belichtungssystemen
WO2010043304A1 (de) Verfahren zur herstellung von mikrostrukturen in einem speichermedium
DE102019133009A1 (de) Vorrichtung zum Beleuchten eines Werkstücks, Verfahren zu dessen Modifizierung und Verfahren zum Vermessen seiner Oberfläche
DE10137859A1 (de) Lithograph mit eindimensionaler Triggermaske und Verfahren zum Herstellen digitaler Hologramme in einem Speichermedium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: GB0403047.4

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 10485009

Country of ref document: US

REF Corresponds to

Ref document number: 10293414

Country of ref document: DE

Date of ref document: 20040819

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10293414

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607