WO2003002630A2 - Verfahren zur herstellung von aliphatischen oligocarbonatdiolen - Google Patents

Verfahren zur herstellung von aliphatischen oligocarbonatdiolen Download PDF

Info

Publication number
WO2003002630A2
WO2003002630A2 PCT/EP2002/007106 EP0207106W WO03002630A2 WO 2003002630 A2 WO2003002630 A2 WO 2003002630A2 EP 0207106 W EP0207106 W EP 0207106W WO 03002630 A2 WO03002630 A2 WO 03002630A2
Authority
WO
WIPO (PCT)
Prior art keywords
dmc
diols
reaction
reactor
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2002/007106
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2003002630A3 (de
Inventor
Jörg TILLACK
Jörg LAUE
Herbert Witossek
Andreas Schlemenat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to EP02760199A priority Critical patent/EP1404740B1/de
Priority to KR1020037016995A priority patent/KR100900611B1/ko
Priority to CA2451467A priority patent/CA2451467C/en
Priority to HK05101211.6A priority patent/HK1068903B/xx
Priority to JP2003509008A priority patent/JP4288155B2/ja
Priority to AT02760199T priority patent/ATE283883T1/de
Priority to DE50201689T priority patent/DE50201689D1/de
Priority to AU2002325849A priority patent/AU2002325849A1/en
Priority to MXPA03011807 priority patent/MX233577B/es
Publication of WO2003002630A2 publication Critical patent/WO2003002630A2/de
Publication of WO2003002630A3 publication Critical patent/WO2003002630A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols

Definitions

  • the present invention relates to a new process for the preparation of aliphatic oligocarbonate diols by transesterification of aliphatic diols with dimethyl carbonate (DMC) at high pressures.
  • DMC dimethyl carbonate
  • the process according to the invention also enables large-scale production of aliphatic oligocarbonate diols starting from easily accessible DMC with high space-time yields (STA).
  • Aliphatic oligocarbonate diols are important primary products, for example in the production of plastics, paints and adhesives. You will e.g. implemented with isocyanates, epoxides, (cyclic) esters, acids or acid anhydrides. In principle, they can be obtained from aliphatic diols by reaction with phosgene (e.g. DE-A 1 595 446), bis-chlorocarbonic acid esters (e.g. DE-A 0 857 948), diaryl carbonates (e.g. DE-A 1 915 908), cyclic carbonates (e.g. DE-A 2 523 352: ethylene carbonate) or dialkyl carbonates (for example DE-A 2 555 805).
  • phosgene e.g. DE-A 1 595 446
  • bis-chlorocarbonic acid esters e.g. DE-A 0 857 948
  • diaryl carbonates e.g. DE-A 1 915 90
  • the diphenyl carbonate (DPC) which belongs to the diaryl carbonates
  • DPC diphenyl carbonate
  • aliphatic oligocarbonate diols of particularly high quality can be produced from DPC (e.g. US Pat. No. 3,444,524, EP-A 0 292 772).
  • DPC reacts quantitatively with aliphatic OH functions, so that after the phenol formed has been removed, all terminal OH groups of the oligocarbonate diol for reaction with e.g. Isocyanate groups are available. Only very low concentrations of soluble catalyst are required so that it can remain in the product.
  • Dialkyl carbonates in particular dimethyl carbonate (DMC), as starting components are notable for being easier to produce and better available.
  • DMC can be obtained by direct synthesis from MeOH and CO (e.g. EP-A 0 534 454, DE-A 19 510 909).
  • the state of the art is to initially introduce aliphatic diols together with a catalyst and the dialkyl carbonate (e.g. diethyl carbonate, diallyl carbonate, dibutyl carbonate) and to distill off the resulting alcohol (e.g. ethanol, butanol, allyl alcohol) from the reaction vessel via a column.
  • the higher-boiling, co-evaporated dialkyl carbonate is separated from the lower-boiling alcohol in the column and returned to the reaction mixture.
  • DMC dimethyl carbonate
  • EP-A 0 798 327 accordingly describes a two-stage process in which a diol is first reacted with an excess of DMC with distillation of the azeotrope under normal pressure to give an oligocarbonate, the terminal OH groups of which are completely inaccessible as methoxycarbonyl end groups.
  • the oligocarbonate diol is obtained in a second step by adding further amounts of the diol and a solvent (e.g. toluene) as a tug for methanol. Residues of the solvent must then be distilled off in vacuo (50 torr, 67 mbar). Disadvantages of this process are the complex implementation using a solvent and repeated distillation, and the very high DMC consumption.
  • DE-A 198 29 593 teaches how to react a diol with DMC by distilling off the methanol formed at normal pressure. On the entire azeotrope
  • the object of the invention is therefore to provide a simple and economical process which can also be carried out on an industrial scale and which allows oligocarbonate diols to be passed through
  • the invention therefore relates to a process for the preparation of aliphatic
  • Oligocarbonate diols characterized in that aliphatic diols with dimethyl carbonate, if appropriate accelerated by catalysts, are reacted at elevated pressure, and unreacted methanol and dimethyl carbonate are subsequently removed under reduced pressure, if appropriate with the introduction of inert gas, in order to complete the reaction and to decapitate (utilize) the terminal OH groups.
  • the process according to the invention is carried out at elevated pressure, preferably at a pressure of 1.5 to 100 bar and particularly preferably at a pressure of 3 to 16 bar and - depending on the respective pressure - at temperatures of 100 to 300 °, preferably at temperatures from 160 to 240 ° C.
  • the completion of the reaction and the decapping (utilization) of the terminal OH groups are achieved by the final removal of the last residues of methanol and traces of dimethyl carbonate under reduced pressure.
  • the completion of the reaction and the decapping (utilization) of the terminal OH groups is carried out by introducing an inert gas (for example N 2 ) into the oligocarbonate diol under only a slight vacuum of approximately 150 mbar.
  • an inert gas for example N 2
  • the gas bubbles are saturated with methanol or DMC and the methanol is almost completely expelled from the reaction mixture.
  • the quality of the resulting oligocarbonate diol can be increased to the level of DPC-based oligocarbonate diols, the degree of utilization of the terminal OH groups increases to more than 98%, preferably to 99.0 to 99.95%, particularly preferably to 99.5 to 99 , 9%.
  • These gas bubbles can be generated by introducing inert gases such as nitrogen, noble gases, for example argon, methane, ethane, propane, butane, dimethyl ether, dry natural gas or dry hydrogen into the reactor, the gas stream leaving the oligocarbonate containing methanol and dimethyl carbonate can be partially returned to the oligocarbonate for saturation. Nitrogen is preferably used. Air can be used due to the strong discoloration of the product in the production of end products that are undemanding in this regard.
  • gas bubbles can also be introduced by introducing inert low-boiling liquids such as pentane, cyclopentane, hexane, cyclohexane, petroleum ether, diethyl ether or
  • Methyl tert-butyl ether etc. are generated, the substances being able to be introduced in liquid or gaseous form and the gas stream leaving the oligocarbonate and containing methanol and dimethyl carbonate being able to be partially fed back to the oligocarbonate for saturation.
  • the substances for generating gas bubbles can be introduced into the oligocarbonate using simple immersion tubes, preferably using ring nozzles or gassing stirrers.
  • the degree of utilization of the terminal OH groups depends on the duration of the decapping and on the amount, size and distribution of the gas bubbles: With increasing duration of the decapping and better distribution (eg better distribution and larger phase interface due to the larger number of smaller gas bubbles in the Initiation via a gassing stirrer) the degree of utilization is better.
  • Nitrogen e.g. 150 mbar, 8 kettle volumes per hour
  • a gassing stirrer achieves a degree of utilization of approx. 99% after one hour and approx. 99.8% after approx. 5 to 10 hours.
  • the decapping is carried out at temperatures from 160 ° C. to 250 ° C., preferably at temperatures from 200 ° C. to 240 ° C., at pressures from 1 to 1000 mbar, preferably at pressures of 30 to 400 mbar, particularly preferably at pressures of
  • DMC is distilled off during the manufacturing process.
  • the amount of DMC which was removed from the reaction mixture during the distillation is determined by determining the DMC contents of the distillate. This missing amount must be replenished before stripping the methanol with inert gases in a vacuum to make the end groups usable. This in turn produces a mixture of DMC and methanol. This lost DMC is replenished again, and part is distilled off again. With each descendant, the amount of DMC distilled off becomes less, so the desired stoichiometry is approached.
  • the total amount of DMC required, the sum of the amount stipulated by the stoichiometry of the desired product, and the amount of DMC which is distilled off during the reaction are fed in directly in the first step.
  • an excess of DMC so measured is added at the beginning of the reaction that after the azeotrope has been distilled off and after the decapping, a product is formed which has a complete radio tionality of the terminal OH groups, but is too high in the degree of polymerization.
  • the correction is then made by adding a further amount of the diol component and another short transesterification step.
  • the correction amount can be determined on the one hand via the mass balance - determination of the DMC amounts in all distillates and comparison with the total amount fed in - or from a measurable property (e.g. OH number, viscosity, average molecular weight, etc.) of the product, the is too high in the degree of polymerization.
  • a new decapping is not necessary after the correction, since all terminal OH groups were already available before the correction and no new capping is built up by adding the diol components.
  • a correction by adding DMC after uncapping by gassing with an inert gas for a product that contains too little DMC leads to a new build-up of the capping.
  • the diols and any catalysts present were introduced, the reactor was heated, the pressure was applied and the DMC was then metered in.
  • the method according to the invention thus comprises the following method steps:
  • the amount of DMC is such that after distillation in all steps (feeding in DMC and decapping) exactly the required amount of DMC or alternatively a small excess remains in the reaction solution.
  • the metering can be carried out according to two different strategies: a) The complete amount of DMC is quickly added in one step. The result is an optimization of the RZA.
  • a DMC-methanol mixture with a relatively high DMC content for example the azeotrope
  • the DMC is metered in in two steps. First, the DMC is slowly metered in, so that DMC-methanol mixtures with low DMC contents are distilled off. Only if at a later point in time even with the slow dosing speed
  • DMC content in the distillate rises significantly, the DMC is metered in quickly, so that a distillate with a high DMC content (e.g. DMC-methanol azeotrope) is formed.
  • Control strategy b) leads to better DMC utilization and lower RZA.
  • Decapping Utilization of the terminal OH groups by discharging the last methanol and DMC residues under reduced pressure, if necessary by generating gas bubbles (eg introducing inert gases such as N 2 ).
  • gas bubbles eg introducing inert gases such as N 2 .
  • the reactor is then closed, heated and pressure applied.
  • the distillate is first returned 100% to the reactor (circulated).
  • the DMC content can be determined from the distillate stream.
  • DMC yield or STA you can, for example, run with a reflux ratio of 100% until a minimum DMC content in the distillate is reached, or you can set a certain time and then switch to distilling (DMC / Methanol mixture is distilled off).
  • the remaining DMC is then metered in, capped and any necessary correction of the stoichiometry is carried out by adding further amounts of the diol components and another short transesterification.
  • Aliphatic diols with 3 to 20 carbon atoms in the chain are used in the process according to the invention, for example: 1,7-heptanediol, 1,8-octanediol, 1,6-hexanediol, 1,5-pentanediol, 1,4-butanediol, 1,3-butanediol, 1,3-propanediol, 2-methyl-l, 3-propanediol, 3-methyl-l, 5-pentanediol, 2-methylpentanediol, 2,2,4-trimethyl-l, 6-hexanediol, 3,3,5
  • Lactones whereby an initial transesterification of lactone and the diols is not necessary.
  • dicarboxylic acids such as, for example: adipic acid, glutaric acid, succinic acid, malonic acid etc. or esters of dicarboxylic acids and mixtures of the diols with dicarboxylic acids or esters of dicarboxylic acids can also be used, an initial transesterification of dicarboxylic acid and the diols not is necessary.
  • polyether polyols such as polyethylene glycol, polypropylene glycol, polybutylene glycol and polyether polyols which are obtained by copolymer tion of, for example, ethylene oxide and propylene oxide or polytetra-methylene glycol, which was obtained by ring-opening polymerization of tetrahydrofuran (THF).
  • polyether polyols such as polyethylene glycol, polypropylene glycol, polybutylene glycol and polyether polyols which are obtained by copolymer tion of, for example, ethylene oxide and propylene oxide or polytetra-methylene glycol, which was obtained by ring-opening polymerization of tetrahydrofuran (THF).
  • 1,6-hexanediol, 1,5-pentanediol and / or mixtures of 1,6-hexanediol and caprolactone are preferably used in the process according to the invention.
  • the ⁇ -caprolactone esters were preferably formed in situ from the raw materials during the oligocarbonate diol production without prior reaction.
  • hydroxides, oxides, metal alcoholates, carbonates and organometallic compounds of the metals of L are particularly suitable for the process according to the invention.
  • IL III. and IV.
  • Main group of the Periodic Table of the Elements the III. and IV.
  • Subgroup and the elements from the group of rare earths in particular the compounds of Ti, Zr, Pb, Sn and Sb.
  • Examples include: LiOH, Li 2 CO 3 , K 2 CO 3 , KOH, NaOH, KOMe, NaOMe,
  • Aromatic Stickstoffhetero- may further process of the invention cyclen and tertiary amines having RiR 2 R 3 N where R 1-3 as C ⁇ -C 3 o-hydroxyalkyl, C 4 -C 10 - aryl or Ci-Cs alkyl ö be used, particularly Trimethylamine, triethylamine, tributylamine, N, N-dimethylcyclohexylamine, N, N-dimethylethanolamine, 1,8-diazabicyclo- (5.4.0) undec-7-ene, 1,4-diazabicyclo (2.2.2) octane, l , 2-bis (N, N-dimethylamino) ethane, 1,3-bis (N, N-dimethylamino) propane and pyridine.
  • R 1-3 as C ⁇ -C 3 o-hydroxyalkyl, C 4 -C 10 - aryl or Ci-Cs alkyl ö be used, particularly Trimethylamine, trie
  • the alcoholates and hydroxides of sodium and potassium (NaOH, KOH, KOMe, NaOMe), the alcoholates of titanium, tin or zirconium (e.g. Ti (OPr)) and organic tin compounds are preferably used, the titanium,
  • Tin and zirconium tetraalcoholates are preferably used for diols which contain ester functions or mixtures of diols with lactones.
  • the homogeneous catalyst is concentrated (given in percent by weight of metal based on the aliphatic used
  • Diol up to 1000 ppm (0.1%), preferably between 1 ppm and 500 ppm (0.05%), particularly preferably between 5 ppm and 100 ppm (0.01%).
  • the catalyst can be left in the product, separated off, neutralized or masked. The catalyst is preferably left in the product.
  • the molecular weight of the oligocarbonate diols produced by the process according to the invention can be adjusted via the molar ratio of diol to DMC, the molar ratio of diol / DMC between 1.01 and 2.0, preferably between 1.02 and 1.8, and particularly preferably can be between 1.05 and 1.6.
  • the amounts of DMC that are used are correspondingly higher due to the azeotropic distillation of the DMC.
  • the calculated molecular weights of the oligocarbonate diols produced by the process according to the invention are then e.g. in the case of 1,6-hexanediol as diol
  • the process according to the invention enables oligocarbonate diols of the formula with carbon numbers from 7 to 1300, preferably from 9 to 600, particularly preferably from 11 to 300, in which R 1 is a symbol for alkyl (from corresponding aliphatic diols) with a carbon number from 3 to 50, preferably from 4 to 40, particularly preferably from 4 to 20.
  • the diols can additionally contain esters, ethers, amides and / or nitrile functions. Diols or diols with ester functions, such as those e.g. obtained through the use of caprolactone and 1,6-hexanediol. If two or more diol components are used (e.g. mixtures of different diols or mixtures of diols with lactones), two neighboring groups R1 in one molecule may well differ (statistical distribution).
  • the process according to the invention allows the production of high-quality oligocarbonate diols from DMC with good space-time yields and a low degree of capping of the terminal OH groups.
  • the oligocarbonate diols produced by the process according to the invention can be used, for example, for the production of polymers of plastics, fibers, coatings, lacquers and adhesives, for example by reaction with isocyanates, epoxides, (cyclic) esters, acids or acid anhydrides. They can be used as a binder, binder component and / or reactive thinner in polyurethane coatings. They are suitable as building blocks for moisture-curing coatings, as binders or binder components in solvent-based or aqueous polyurethane coatings. You can NEN can also be used as a building block for polyurethane prepolymers containing free NCO groups or in polyurethane dispersions.
  • the oligocarbonate diols produced by the process according to the invention can also be used for the production of thermoplastic materials such as aliphatic and / or aromatic polycarbonates, thermoplastic polyurethanes etc.
  • Examples 1-6 according to the invention show examples of some syntheses of oligocarbonate diols with an OH number of 53-58 mg KOH / g and a residual methanol content of ⁇ 10 ppm, produced using the printing procedure.
  • the comparative example demonstrates a synthesis with an unpressurized driving style.
  • a 200 1 stirred kettle with a blade stirrer was fitted with a 2.5 m long packed column (0 11 cm, filled with palled articles), a condenser and a 100 1 Original equipped. Distillates collected in the receiver can be fed back into the reactor via a bottom mirror pump via a base flange.
  • a further 33.49 kg of DMC are metered into the stirred tank at 194 ° C. in the course of 2 h. After the addition of the DMC, the mixture is heated to 196 ° C. within 30 minutes and this temperature is maintained for 5 hours. The mixture is then heated to 200 ° C. in 30 minutes and the entire DMC / methanol mixture (31 kg with a
  • the runtime is thus 40 hours and the DMC content in the distillate is 25.7%.
  • the OHZ is 65.5 mg KOH / g.
  • the pressure is increased to 5.2 bar, 96 g of DMC are metered in, the mixture is stirred for 2 h, depressurized, evacuated to 100 mbar and distilled while passing nitrogen through.
  • a product with an OHN of 56.0 mg KOH / g and a viscosity of 1,699 mPas (75 ° C.) is finally obtained.
  • Reactor 20 1 Hagemann reactor with cross bar stirrer, column and downstream cooler and receiver.
  • the dimethyl carbonate is dosed directly into the reactor (not immersed) via a membrane pump.
  • Titanium tetraisopropylate are added.
  • the boiler pressure is then raised to 5.2 bar absolute by introducing nitrogen, and the mixture is then heated to 200 ° C. 7300 kg of dimethyl carbonate are now metered in uniformly within 15 h.
  • the resulting methanol is distilled off with a dimethyl carbonate content of 15-19% by weight.
  • the temperature is then reduced to 180 ° C. and the pressure is released to normal pressure in 3 h.
  • the vacuum is then reduced to 60 mbar absolute in 12 h.
  • 2 Nm 3 / h of nitrogen are introduced into the reaction mixture through a through-pipe to remove residual methanol, and the vacuum is reduced to 20 mbar.
  • the mixture was stirred at 180 ° C.
  • Reactor 20 1 Hagemann reactor with cross bar stirrer, column and downstream cooler and receiver. Dimethyl carbonates were metered directly into the reactor (not immersed) via a membrane pump.
  • the OH number is 52.5 mg KOH / g and the viscosity is 15,737 mPa's.
  • the total reaction time is approx. 56 h. In comparison to Example 5, a longer reaction time, a higher catalyst requirement and a greater DMC loss were found.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
PCT/EP2002/007106 2001-06-27 2002-06-27 Verfahren zur herstellung von aliphatischen oligocarbonatdiolen Ceased WO2003002630A2 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP02760199A EP1404740B1 (de) 2001-06-27 2002-06-27 Verfahren zur herstellung von aliphatischen oligocarbonatdiolen
KR1020037016995A KR100900611B1 (ko) 2001-06-27 2002-06-27 지방족 올리고카르보네이트 디올의 제조 방법
CA2451467A CA2451467C (en) 2001-06-27 2002-06-27 A process for producing aliphatic oligocarbonate diols
HK05101211.6A HK1068903B (en) 2001-06-27 2002-06-27 Method for the production of aliphatic oligocarbonate diols
JP2003509008A JP4288155B2 (ja) 2001-06-27 2002-06-27 脂肪族オリゴカーボネートジオールの製造方法
AT02760199T ATE283883T1 (de) 2001-06-27 2002-06-27 Verfahren zur herstellung von aliphatischen oligocarbonatdiolen
DE50201689T DE50201689D1 (de) 2001-06-27 2002-06-27 Verfahren zur herstellung von aliphatischen oligocarbonatdiolen
AU2002325849A AU2002325849A1 (en) 2001-06-27 2002-06-27 Method for the production of aliphatic oligocarbonate diols
MXPA03011807 MX233577B (es) 2001-06-27 2002-06-27 Procedimiento para la fabricacion de oligocarbonatodioles alifaticos.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10130882.5 2001-06-27
DE10130882A DE10130882A1 (de) 2001-06-27 2001-06-27 Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen

Publications (2)

Publication Number Publication Date
WO2003002630A2 true WO2003002630A2 (de) 2003-01-09
WO2003002630A3 WO2003002630A3 (de) 2003-03-20

Family

ID=7689561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/007106 Ceased WO2003002630A2 (de) 2001-06-27 2002-06-27 Verfahren zur herstellung von aliphatischen oligocarbonatdiolen

Country Status (12)

Country Link
US (1) US6818784B2 (enExample)
EP (1) EP1404740B1 (enExample)
JP (1) JP4288155B2 (enExample)
KR (1) KR100900611B1 (enExample)
CN (1) CN1255452C (enExample)
AT (1) ATE283883T1 (enExample)
AU (1) AU2002325849A1 (enExample)
CA (1) CA2451467C (enExample)
DE (2) DE10130882A1 (enExample)
ES (1) ES2233851T3 (enExample)
MX (1) MX233577B (enExample)
WO (1) WO2003002630A2 (enExample)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1518879A2 (de) * 2003-09-19 2005-03-30 Bayer MaterialScience AG Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen
JP2005089463A (ja) * 2003-09-19 2005-04-07 Bayer Materialscience Ag 脂肪族オリゴカーボネートポリオールの製造方法
EP1637513A3 (de) * 2004-07-20 2006-04-26 LANXESS Deutschland GmbH Herstellung von Ytterbium(III)-Beta-diketonaten
CN1315904C (zh) * 2003-05-12 2007-05-16 拜尔材料科学股份公司 乙酰丙酮镱(iii)作为催化剂在制备脂族低聚碳酸酯多元醇中的应用
EP2305691A1 (de) 2009-10-01 2011-04-06 Bayer MaterialScience AG Hochfunktionelle Allophanat- und Silangruppen enthaltende Polyisocyanate
WO2019062383A1 (en) 2017-09-26 2019-04-04 Covestro Deutschland Ag TWO-COMPONENT SYSTEM FOR ELASTIC COATINGS
WO2019158455A1 (en) 2018-02-13 2019-08-22 Covestro Deutschland Ag Aromatic polyisocyanates with a high solids content
WO2022144200A1 (en) 2020-12-29 2022-07-07 Covestro Deutschland Ag Two-component coating system
EP4056616A1 (en) 2021-03-08 2022-09-14 Covestro Deutschland AG Two-component coating system
WO2023175014A1 (en) 2022-03-16 2023-09-21 Covestro Deutschland Ag Nco-terminated prepolymer for coating applications
EP4303246A1 (de) 2022-07-04 2024-01-10 Covestro Deutschland AG Polyisocyanatgemisch

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381479C (zh) 2003-09-12 2008-04-16 巴斯福股份公司 高官能度高度支化或超支化聚碳酸酯、其制备及用途
DE102004031900A1 (de) * 2004-07-01 2006-02-16 Bayer Materialscience Ag Oligocarbonatpolyole mit endständig sekundären Hydroxylgruppen
DE102004042843A1 (de) * 2004-09-04 2006-03-09 Bayer Materialscience Ag Metallacetylacetonate als Umesterungskatalysatoren
DE102004054632A1 (de) * 2004-11-11 2006-05-18 Basf Ag Polymerblends aus Polyestern und linearen oligomeren Polycarbonaten
DE102005009166A1 (de) 2005-02-25 2006-08-31 Basf Ag Hochfunktionelle, hoch- oder hyperverzweigte Polycarbonate sowie deren Herstellung und Verwendung
DE102005010694A1 (de) 2005-03-09 2006-09-14 Bayer Materialscience Ag Wässrige Copolymerisatdispersionen mit Reaktivverdünner
DE102005018691A1 (de) * 2005-04-22 2006-10-26 Bayer Materialscience Ag Niederviskose Oligocarbonatpolyole
DE102006002156A1 (de) * 2006-01-17 2007-07-19 Bayer Materialscience Ag Polyurethan-Polyharnstoff-Dispersionen auf Basis von Polyether-Polycarbonat-Polyolen
DE102006002154A1 (de) * 2006-01-17 2007-07-19 Bayer Materialscience Ag Polyurethan-Polyharnstoff-Beschichtungen
DE102006053740A1 (de) * 2006-11-15 2008-05-21 Bayer Materialscience Ag Beschichtungsmittel
SE531577C2 (sv) * 2006-12-04 2009-05-26 Perstorp Specialty Chem Ab Förfarande för att uppnå ökad molekylvikt hos en polymer samt användning av nämnd polymer
KR100973549B1 (ko) * 2008-09-24 2010-08-02 한국전력공사 영상 전류를 제한하기 위한 방법 및 장치
EP2216352A1 (de) 2009-02-10 2010-08-11 Bayer MaterialScience AG 2K-Polyurethan-Lack für Trägerfolien
EP2216353A1 (de) 2009-02-10 2010-08-11 Bayer MaterialScience AG Trägerfolie mit Polyurethan-Beschichtung
DE102009060552A1 (de) 2009-12-23 2011-06-30 Bayer MaterialScience AG, 51373 Polyurethan-Bindemittel
BR112012033611B1 (pt) 2010-06-30 2020-11-10 Dow Global Technologies Llc composição compreendendo um polímero com terminação silano reticulável e método para produzir uma composição compreendendo um polímero com terminação silano reticulável
WO2012020027A1 (de) 2010-08-12 2012-02-16 Bayer Materialscience Ag Lichtechte polyurethane und ihre verwendung
CN103314043B (zh) 2010-09-07 2015-07-08 拜耳知识产权有限责任公司 发泡耐光聚氨酯成型件
US9598596B2 (en) 2010-10-19 2017-03-21 Covestro Deutschland Ag Aqueous preparations having soft-feel properties
ES2641090T3 (es) 2011-03-29 2017-11-07 Covestro Deutschland Ag Uso de una preparación acuosa para el revestimiento de superficies de madera para lograr un efecto de tacto natural
WO2012130764A1 (en) 2011-03-29 2012-10-04 Bayer Materialscience Ag Use of an aqueous preparation for the coating of wood surfaces to achieve a natural-touch effect
WO2013148192A1 (en) * 2012-03-28 2013-10-03 Dow Global Technologies Llc Yield optimization of polycarbonate polyols
KR101326916B1 (ko) 2012-11-09 2013-11-11 아주대학교산학협력단 고분자량의 지방족 폴리카보네이트 공중합체 및 이의 제조 방법
CN103937538A (zh) * 2014-03-27 2014-07-23 胜利油田胜利化工有限责任公司 一种新型不含有机氯破乳剂及其制备方法
ES2708202T3 (es) 2015-06-25 2019-04-09 Covestro Deutschland Ag Dispersiones de poliuretano desprovistas de urea
US9879114B2 (en) * 2015-12-22 2018-01-30 Covestro Llc Process for the production of low molecular weight polyoxyalkylene polyols
CN106800646A (zh) * 2017-01-16 2017-06-06 美瑞新材料股份有限公司 一种制备高收率高羟基封端率的聚碳酸酯多元醇的工艺方法
CN109957101B (zh) * 2017-12-21 2020-07-28 万华化学集团股份有限公司 一种聚碳酸酯多元醇及其合成方法和应用
EP3560972A1 (en) 2018-04-27 2019-10-30 Covestro Deutschland AG Coating composition
CN111683985B (zh) 2018-02-11 2022-08-16 科思创德国股份有限公司 涂料组合物
EP3749701A1 (en) 2018-02-11 2020-12-16 Covestro Deutschland AG Coating composition
EP3560973A1 (en) 2018-04-27 2019-10-30 Covestro Deutschland AG Coating composition
CN113292714B (zh) * 2021-06-01 2023-01-31 山东元利科技有限公司 一种聚碳酸酯二醇的制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2210817A (en) 1939-04-19 1940-08-06 Du Pont Superpolycarbonate
DE857948C (de) 1943-12-25 1952-12-04 Basf Ag Verfahren zur Herstellung von neutralen Estern der Kohlensaeure
US2787632A (en) 1954-07-07 1957-04-02 Columbia Southern Chem Corp Polycarbonates
DE1568248A1 (de) 1966-02-11 1970-02-05 Huels Chemische Werke Ag Verfahren zur Herstellung von Carbonatgruppen enthaltenden Dihydroxyverbindungen
DE1694080B1 (de) 1966-10-13 1971-09-30 Bayer Ag Verfahren zur herstellung von vernetzten polyurethanen auf grundlage von hydroxylpolykohlensaeureestern
CH525920A (de) 1969-03-28 1972-07-31 Bayer Ag Verfahren zur Herstellung difunktioneller aliphatischer endständige Hydroxylgruppen aufweisender Polycarbonate
FR2294199A1 (fr) 1974-12-11 1976-07-09 Poudres & Explosifs Ste Nale Procede perfectionne de preparation de polycarbonates en deux etapes
US4105641A (en) 1975-05-27 1978-08-08 Bayer Aktiengesellschaft Process for the preparation of aliphatic polycarbonates and polyurethanes therefrom
DE3717060A1 (de) 1987-05-21 1988-12-01 Bayer Ag Polyether-polycarbonat-diole, ihre herstellung und verwendung als ausgangsprodukte fuer polyurethankunststoffe
IT1227136B (it) 1988-10-14 1991-03-19 Enichem Sintesi Policarbonati copoliesteri dioli, procedimento per la loro produzione e loro impiego.
US5171830A (en) 1991-08-16 1992-12-15 Arco Chemical Technology, L.P. Catalytic process for the preparation of polyalkylene carbonates
IT1251853B (it) 1991-09-23 1995-05-26 Enichem Sintesi Procedimento per la produzione di carbonati alchilici
IT1269916B (it) 1994-03-25 1997-04-16 Enichem Spa Procedimento migliorato per la sintesi di dimetilcarbonato
IT1283314B1 (it) 1996-03-28 1998-04-16 Enichem Spa Processo per la preparazione di policarbonati copolieteri polioli
IT1283315B1 (it) 1996-03-28 1998-04-16 Enichem Spa Processo a due stadi per la preparazione di policarbonati copolieteridioli.
DE19829593A1 (de) 1998-07-02 2000-01-05 Henkel Kgaa Verfahren zur Herstellung von Verbindungen mit terminalen OH-Gruppen
DE19900554A1 (de) * 1999-01-09 2000-07-13 Bayer Ag Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen aus Dimethylcarbonat und aliphatischen Diolen
JP2001277417A (ja) 2000-03-29 2001-10-09 Dainippon Printing Co Ltd バリア性フィルムおよびそれを使用した積層材
JP4372953B2 (ja) 2000-03-29 2009-11-25 大日本印刷株式会社 透明バリア性フィルムおよびそれを使用した積層材

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315904C (zh) * 2003-05-12 2007-05-16 拜尔材料科学股份公司 乙酰丙酮镱(iii)作为催化剂在制备脂族低聚碳酸酯多元醇中的应用
KR101124906B1 (ko) * 2003-09-19 2012-03-27 바이엘 머티리얼사이언스 아게 지방족 올리고카르보네이트 폴리올의 제법
EP1518879A2 (de) * 2003-09-19 2005-03-30 Bayer MaterialScience AG Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen
JP2005089464A (ja) * 2003-09-19 2005-04-07 Bayer Materialscience Ag 脂肪族オリゴカーボネートジオールの製造方法
JP2005089463A (ja) * 2003-09-19 2005-04-07 Bayer Materialscience Ag 脂肪族オリゴカーボネートポリオールの製造方法
CN100384809C (zh) * 2003-09-19 2008-04-30 拜尔材料科学股份公司 制备脂肪族低聚碳酸酯二醇的方法
EP1637513A3 (de) * 2004-07-20 2006-04-26 LANXESS Deutschland GmbH Herstellung von Ytterbium(III)-Beta-diketonaten
EP2305691A1 (de) 2009-10-01 2011-04-06 Bayer MaterialScience AG Hochfunktionelle Allophanat- und Silangruppen enthaltende Polyisocyanate
DE102009047964A1 (de) 2009-10-01 2011-04-21 Bayer Materialscience Ag Hochfunktionelle Allophanat- und Silangruppen enthaltende Polyisocyanate
WO2019062383A1 (en) 2017-09-26 2019-04-04 Covestro Deutschland Ag TWO-COMPONENT SYSTEM FOR ELASTIC COATINGS
WO2019158455A1 (en) 2018-02-13 2019-08-22 Covestro Deutschland Ag Aromatic polyisocyanates with a high solids content
WO2022144200A1 (en) 2020-12-29 2022-07-07 Covestro Deutschland Ag Two-component coating system
EP4056616A1 (en) 2021-03-08 2022-09-14 Covestro Deutschland AG Two-component coating system
WO2023175014A1 (en) 2022-03-16 2023-09-21 Covestro Deutschland Ag Nco-terminated prepolymer for coating applications
EP4303246A1 (de) 2022-07-04 2024-01-10 Covestro Deutschland AG Polyisocyanatgemisch
WO2024008544A1 (de) 2022-07-04 2024-01-11 Covestro Deutschland Ag Polyisocyanatgemisch

Also Published As

Publication number Publication date
KR20040030711A (ko) 2004-04-09
DE10130882A1 (de) 2003-01-16
EP1404740B1 (de) 2004-12-01
MXPA03011807A (es) 2004-07-01
EP1404740A2 (de) 2004-04-07
CN1522270A (zh) 2004-08-18
CA2451467C (en) 2011-08-09
DE50201689D1 (de) 2005-01-05
JP2004533474A (ja) 2004-11-04
CA2451467A1 (en) 2003-01-09
JP4288155B2 (ja) 2009-07-01
ES2233851T3 (es) 2005-06-16
MX233577B (es) 2006-01-09
KR100900611B1 (ko) 2009-06-02
US20030009047A1 (en) 2003-01-09
WO2003002630A3 (de) 2003-03-20
US6818784B2 (en) 2004-11-16
CN1255452C (zh) 2006-05-10
AU2002325849A1 (en) 2003-03-03
ATE283883T1 (de) 2004-12-15
HK1068903A1 (en) 2005-05-06

Similar Documents

Publication Publication Date Title
EP1404740B1 (de) Verfahren zur herstellung von aliphatischen oligocarbonatdiolen
DE69513159T2 (de) Verfahren zur herstellung von polycarbonaten mit hydroxylendgruppen
EP1292630B1 (de) Verfahren zur herstellung von aliphatischen oligocarbonatdiolen
DE60112347T2 (de) Verfahren zur Herstellung von Polycarbonatdiolen mit hohem Molekulargewicht
EP1518879A2 (de) Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen
EP1477508A1 (de) Ytterbium(III)acetylacetonat als Katalysator zur Herstellung von aliphatischen Oligocarbonatpolyolen
JP2017014427A (ja) ポリカーボネートポリオール、及びポリウレタン
US7112693B2 (en) Process for producing aliphatic oligocarbonate diols
EP1520869B1 (de) Verfahren zur Herstellung von aliphatischen Oligocarbonatpolyolen
EP1018504B1 (de) Verfahren zur Herstellung von aliphatischen Oligocarbonatdiolen aus Dimethylcarbonat und aliphatischen Diolen
EP1663941A1 (de) Zwischenprodukt bestehend aus einer mischung von organischen carbonaten und carbamaten und ein verfahren zu seiner herstellung
EP1765909B1 (de) Oligocarbonatpolyole mit endständig sekundären hydroxylgruppen
EP3880731A1 (de) Verfahren zur herstellung von präpolymeren umfassend einen polyoxymethylen-block
EP1663938A1 (de) Verfahren zur herstellung von organischen carbonaten
EP4263653B1 (de) Verfahren zur herstellung eines monols oder polyols umfassend einen polyoxymethylen-block
EP4389740B1 (de) Polymerisierbares tetramethylglycolid
EP2447244A1 (de) Verfahren zur kontinuierlichen Herstellung von Dialkylcarbonat
DE10314648A1 (de) Verfahren zur Herstellung von Tetrahydrofuran-Copolymeren
HK1068903B (en) Method for the production of aliphatic oligocarbonate diols

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW GH GM KE LS MW

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002760199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/011807

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2451467

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020037016995

Country of ref document: KR

Ref document number: 2003509008

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 028132335

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002760199

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002760199

Country of ref document: EP