WO2003000963A1 - Substrat permettant de former une couche mince de monocristal de grenat magnetique, dispositif optique et procede de production associe - Google Patents

Substrat permettant de former une couche mince de monocristal de grenat magnetique, dispositif optique et procede de production associe Download PDF

Info

Publication number
WO2003000963A1
WO2003000963A1 PCT/JP2002/006223 JP0206223W WO03000963A1 WO 2003000963 A1 WO2003000963 A1 WO 2003000963A1 JP 0206223 W JP0206223 W JP 0206223W WO 03000963 A1 WO03000963 A1 WO 03000963A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
substrate
crystal film
magnetic garnet
garnet single
Prior art date
Application number
PCT/JP2002/006223
Other languages
English (en)
French (fr)
Inventor
Yukio Sakashita
Katsumi Kawasaki
Atsushi Ohido
Hiroki Morikoshi
Kiyoshi Uchida
Kazuhito Yamasawa
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to KR1020037016641A priority Critical patent/KR100552094B1/ko
Priority to EP02741236A priority patent/EP1403403A4/en
Priority to US10/481,632 priority patent/US20040177801A1/en
Priority to JP2003507338A priority patent/JPWO2003000963A1/ja
Publication of WO2003000963A1 publication Critical patent/WO2003000963A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets

Definitions

  • the present invention relates to a magnetic garnet for growing a magnetic garnet single crystal film such as a bismuth-substituted rare earth iron garnet (Bi-RIG) single crystal by liquid phase epitaxial growth, a substrate for forming a soto single crystal film,
  • a magnetic garnet single crystal film such as a bismuth-substituted rare earth iron garnet (Bi-RIG) single crystal by liquid phase epitaxial growth
  • a substrate for forming a soto single crystal film relates to a method for producing a single crystal film for performing crystal growth using the same, a single crystal film and an optical element produced by the production method.
  • Optical elements such as Faraday rotators used for optical isolators, optical sensors, optical magnetic field sensors, etc. are generally made of a magnetic garnet single crystal film grown epitaxially on a single crystal substrate.
  • Can be A large Faraday rotation coefficient is desired for a magnetic garnet single crystal film grown on a substrate so that a required Faraday effect can be obtained.
  • the lattice constant difference between the substrate single crystal and the growing single-crystal film is as small as possible in the temperature range from the film formation temperature to room temperature. Is required.
  • the Faraday rotation coefficient of a magnetic garnet single crystal film is significantly increased by replacing a part of the rare earth component with bismuth. Increasing the amount of bismuth substitution increases the lattice constant of the magnetic garnet single crystal film at the same time.Therefore, a larger lattice constant is also required for the substrate material used for film formation, such as Ca, Zr, and Mg. Gadolinium gallium garnet (GGG), which is added to increase the lattice constant, is used as a single crystal substrate material (Japanese Patent Publication No. 60-48583).
  • GGG Gadolinium gallium garnet
  • a bismuth-substituted rare earth iron ganet single crystal is grown in a thick film (for example, a film thickness of 200 m or more) on the GGG single crystal substrate to which Ca, Zr, Mg, etc. are added.
  • a thick film for example, a film thickness of 200 m or more
  • the substrate and the single crystal film during and after film formation are likely to be warped or cracked, which lowers the production yield during film formation and processing.
  • the present inventors have set the temperature range from room temperature to 850 ° C.
  • a garnet single crystal substrate of a specific composition has been proposed in which the coefficient of thermal expansion in a plane orthogonal to the crystal orientation ⁇ 111> is very close to that of a bismuth-substituted rare earth iron garnet single crystal (Japanese Unexamined Patent Publication No. 0-139, 996).
  • a thick bismuth-substituted rare earth iron garnet single crystal film free of crystal defects, warpage, and cracks can be formed by liquid phase epitaxial growth.
  • the garnet single crystal substrate of this specific composition is unstable with respect to the lead oxide flux used as a deposition solvent when growing a bismuth-substituted rare earth iron garnet (Bi-RIG) single crystal film by liquid phase epitaxial growth.
  • the present inventors have found that the yield of obtaining a high-quality bismuth-substituted rare earth iron garnet single crystal is poor. In particular, it has been found that this tendency is large in a substrate composition containing Nb or Ta. Disclosure of the invention
  • An object of the present invention is to form a magnetic garnet single crystal film capable of stably forming a thick magnetic single crystal film without liquid crystal defects, warping, cracking, and peeling by liquid phase epitaxial growth.
  • An object of the present invention is to provide a substrate for use, an optical element, and a method for manufacturing the same.
  • the substrate for forming a magnetic garnet single crystal film according to the present invention is a substrate for forming a magnetic garnet single crystal film according to the present invention.
  • a base substrate made of a garnet-based single crystal that is unstable with respect to flux used for liquid phase epitaxial growth
  • the flux is not particularly limited, but is, for example, a flux containing lead oxide as a constituent.
  • flux-unstable means that the solute component in the flux starts crystallization with the target (base substrate or buffer layer) as a nucleus, ie, in a so-called supersaturated state. At least a part of the constituent material elutes with respect to the flux and / or This means that at least a part of the silicon component diffuses into the object, thereby inhibiting liquid-phase epitaxial growth of the single crystal film.
  • “Stable to flux” means the opposite of “unstable to flux”.
  • a bismuth-substituted rare earth iron garnet single crystal film used for an optical element such as a Faraday rotator is formed with a high quality liquid phase epitaxial by suppressing the occurrence of crystal defects, warpage, cracking, and peeling. Can grow. That is, according to the present invention, a magnetic garnet single crystal film having a relatively large thickness (for example, 200 or more) and a large area (for example, 3 inches or more in diameter) can be obtained by liquid phase epitaxy. it can.
  • the base substrate has a thermal expansion coefficient substantially equal to a thermal expansion coefficient of the magnetic garnet single crystal film.
  • the thermal expansion coefficient of the base substrate with respect to the thermal expansion coefficient of the magnetic garnet single crystal film, ⁇ 2 xl 0 _ 6 / ° C It is in the following range.
  • the film after epitaxial growth may be peeled off from the substrate, the chip may be cracked, etc. Etc.) can be effectively prevented. This is because when a magnetic garnet single crystal film is formed by epitaxy, the temperature rises to about 100 ° C. and then returns to room temperature. This is because cracks and the like easily occur in the grown film.
  • the coefficient of thermal expansion of the buffer layer does not necessarily need to be substantially equal to the coefficient of thermal expansion of the magnetic garnet single crystal film. Because the thickness of the buffer layer is This is because the thickness of the film is extremely thin, and the influence of the difference in thermal expansion on the epitaxial growth film is small.
  • the base substrate has a lattice constant substantially equal to a lattice constant of the magnetic garnet single crystal film.
  • the lattice constant of the base substrate is within ⁇ 0.02 or less of the lattice constant of the magnetic garnet single crystal film.
  • the base substrate contains Nb or Ta.
  • Nb or Ta in the base substrate, it becomes easy to make the thermal expansion coefficient and / or the lattice constant of the base substrate approximately equal to the lattice constant of the magnetic garnet single crystal film.
  • Nb or Ta is included in the base substrate, the stability to the flux tends to deteriorate.
  • the buffer layer is a Ga-based single crystal thin film substantially free of Nb and Ta. This is because a garnet-based single crystal thin film substantially free of Nb and Ta is relatively stable to flux.
  • the buffer layer is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl buffer layer
  • R 3 M 5 0 12 (where R is at least one kind of rare earth metal, and M is one kind selected from Ga and Fe),
  • X-substituted gadolinium gallium garnet (where X is at least one of Ca and Mg s Zr).
  • a buffer layer made of such a material is preferable because it is relatively stable to flux and has a lattice constant close to the lattice constant of the magnetic garnet single crystal film.
  • the thickness of the buffer layer is 1 to 10,000 nm, more preferably 5 to 50 nm, and the thickness of the base substrate is 0.1 to 5 dragons, more preferably 0.2 to 2.0 thighs. is there. If the thickness of the buffer layer is too thin, the effect of the present invention is small. If the thickness is too thick, the cost increases and the difference in thermal expansion coefficient increases This tends to have an adverse effect, such as cracking, on the growth film. Also, if the thickness of the base substrate is too thin, the mechanical strength tends to be insufficient and handling operability tends to be poor. If the thickness is too thick, cracks and the like tend to increase.
  • the magnetic film according to the present invention the manufacturing method of the soto single crystal film,
  • a step of growing a magnetic garnet single crystal film on the buffer layer by a liquid phase epitaxial growth method using the substrate for forming a magnetic garnet single crystal film of the present invention is a step of growing a magnetic garnet single crystal film on the buffer layer by a liquid phase epitaxial growth method using the substrate for forming a magnetic garnet single crystal film of the present invention.
  • the method for manufacturing an optical element according to the present invention includes:
  • the optical element according to the present invention is obtained by the method for manufacturing an optical element according to the present invention.
  • FIG. 1 is a cross-sectional view showing a substrate for forming a magnetic garnet single crystal film according to an embodiment of the present invention, and a bismuth-substituted rare earth iron ganet single crystal film grown by using the substrate.
  • FIG. 2B is a cross-sectional SEM image of the substrate shown in FIG. 2A,
  • FIG. 3 is a cross-sectional SEM image of a state where a bismuth-substituted rare earth iron garnet single crystal film is formed on the surface of the magnetic garnet single crystal film forming substrate according to one embodiment of the present invention
  • FIG. 4A is a surface SEM image of a state in which a bismuth-substituted rare earth iron garnet single crystal film is formed on the surface of the substrate for forming a magnetic garnet single crystal film according to one embodiment of the present invention
  • FIG. 4B is a comparative example of the present invention.
  • FIGS. 5A and 5B are photographs showing a state in which a bismuth-substituted rare earth iron garnet single crystal film is formed on the surface of the substrate for forming a magnetic garnet single crystal film according to Examples and Comparative Examples of the present invention.
  • the substrate 2 for forming a magnetic garnet single crystal film includes a base substrate 10 and a buffer layer 11 formed by being laminated on the surface of the base substrate 10.
  • the base substrate 10 has a lattice constant and a thermal expansion coefficient extremely close to those of the magnetic garnet single crystal film 12 made of a bismuth-substituted rare earth iron garnet single crystal, but is unstable with respect to a lead oxide flux.
  • the wafer layer 11 is composed of a garnet-based single crystal thin film that is stable against a lead oxide flux.
  • a bismuth-substituted rare earth iron gating single crystal film 12 is grown by liquid phase epitaxy. Since the base substrate 10 grows the magnetic garnet single crystal film 12 via the buffer layer 11, the base substrate 10 has good lattice matching with the single crystal film 12, and has a coefficient of linear thermal expansion close to that of the single crystal film 12. have.
  • Base substrate 10 are constituted of a non-magnetic gas Ichine Uz preparative based single crystal represented e.g. by formula MlxM2 y M3 z 0 12.
  • Ml is, for example, a metal selected from Ca, Sr, Cd and Mn.
  • Ml is stable at a valence of 2+, can take a coordination number of 8, and preferably has an ionic radius in the range of 0.096 to 0.126 nm.
  • M2 is, for example, a metal selected from Nb, Ding & P 3) 3.
  • M2 is stably present at a valence of 5+, can take a coordination number of 6, and preferably has an ionic radius in the range of 0.060 to 0.064 nm.
  • M3 is a metal selected from, for example, Ga, Al, Fe, Ge, Si and V. M3 is stable with a valence of 3+, 4+, or 5+, can take a coordination number of 4, and has an ionic radius in this state in the range of 0.026 to 0.049 nm. preferable. These ionic radii are the effective ionic radii determined by Shannon (RD Shannon). These Ml, M2 and M3 may each be a single metal or a combination of two or more metals.
  • the metal of Ml may be used to adjust the valency and lattice constant, if necessary.
  • a part thereof within the range of less than 0 atomic% may be replaced with a metal M4 which can be replaced with Ca or Sr in its composition.
  • M4 is, for example, at least one selected from Cd, Mn, K, Na, Li Pb, Ba, Mg, Fe, Co, rare earth metal and Bi, preferably one having a coordination number of 8 It is preferable that
  • M5 is, for example, at least one selected from Zn, Mg, Mn, Ni, Cu, Cr, Co, Ga, Fe, Al, V, Sc, In, Ti, Zr, Si and Sn.
  • Zn Zn
  • Mg Mn
  • Ni Cu
  • Cr Co
  • Ga Fe
  • Al Al
  • V Sc
  • In Ti
  • Zr Si
  • Sn Sn
  • One type, preferably one having a coordination number of 6 can be exemplified.
  • the single crystal substrate having such a composition has a thermal expansion coefficient close to that of a bismuth-substituted rare earth iron ganet single crystal to be grown, and has good lattice matching with the single crystal. is there.
  • X is a number in the range of 2.98 to 3.02
  • y is 1.67 to 1.72
  • z is a number in the range of 3.15 to 3.21 are preferable.
  • Thermal expansion coefficient of the base substrate 10 having such a composition is at room temperature ⁇ 850 ° C, 1, 02 X 10- 5 / ° C ⁇ ;.
  • 09x 10_ 5 Z ° C ⁇ 1. are very close to 16 x 10- 5 Bruno.
  • the thickness of the base substrate 10 is not particularly limited, but when a thick bismuth-substituted rare earth iron ganet single crystal film having a thickness of 200 m or more is formed, The thickness is preferably 1.5 mm or less from the viewpoint that generation of cracks and warpage of the single crystal film is suppressed and a single crystal film of good quality can be obtained. If the thickness of the base substrate exceeds 1.5 mm, cracks tend to increase near the interface between the substrate and the single crystal film as the thickness increases. Further, if the thickness of the single crystal substrate 10 is too small, the mechanical strength is reduced and the handling property is deteriorated. Therefore, a substrate having a thickness of 0.1 mm or more is preferable.
  • the buffer layer 11 formed on the single crystal substrate 10 is made of a garnet single crystal thin film.
  • This garnet-based single crystal thin film —A general formula R 3 M 5 0 1 2 (where R is at least one kind of rare earth metal and M is one kind selected from Ga and Fe),
  • X-substituted gadolinium gallium garnet (where X is at least one of Ca, Mg, and Zr).
  • neodymium gallium garnet, samarium, gallium garnet, gadolinium gallium garnet, and X-substituted gadolinium gallium garnet (where X is at least Ca, Mg, Zr) It is preferable to use one selected from the group consisting of (1), but the material is not limited to this as long as it is a Ga-based material that is stable to the lead oxide flux.
  • the method of manufacturing the base substrate 10 in the magnetic garnet single crystal film forming substrate of the present invention is not particularly limited, and a method commonly used in manufacturing a conventional GGG single crystal substrate or the like can be employed.
  • a homogeneous molten mixture containing one or more metals selected from among the metals represented by M4 and the metals represented by M5 is prepared at predetermined ratios.
  • a GGG seed crystal having a major axis direction of ⁇ 111> is immersed perpendicularly to the liquid surface, and pulled up while slowly rotating, so that the polycrystal is obtained. Let it form.
  • the above-described group is formed by sputtering, CVD, pulsed laser deposition, solution, or other thin film deposition techniques.
  • a buffer layer 11 made of a garnet-based single crystal thin film is formed.
  • a magnetic garnet single crystal J3 Mo12 composed of a bismuth-substituted rare earth iron garnet single crystal film is formed by a liquid phase epitaxial growth method.
  • the composition of the formed bismuth-substituted rare earth iron garnet single crystal film is, for example, a general formula Bi m R 3 — m Fe 5 -n Mn 0 12 (where R is at least one kind of rare earth metal and M is Ga, Al, In, Sc, Si, Ti, Ge, and at least one metal selected from the group consisting of Mg and m and n, 0 ⁇ m ⁇ 3.0, 0 ⁇ n ⁇ 1.5).
  • examples of the rare earth metal represented by R include Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like. These may be included alone or in combination of two or more.
  • a part of the rare earth metal represented by R is substituted by bismuth, and the ratio of the substitution by bismuth is represented by m.
  • the value of m is 0 and m ⁇ 3.0. Although it is in the range, especially in the range of 0.5 to 1.5, the coefficient of thermal expansion of the single crystal and the coefficient of linear thermal expansion of the single crystal substrate are very similar, which is advantageous.
  • M is a non-magnetic metal element which can be substituted for Fe, and is Ga, Al, In, Sc, Si, Ti, Ge, Mg, and these may be included alone. More than one species may be included.
  • the substitution ratio n of this nonmagnetic metal element with Fe is selected in the range of 0 to 1.5.
  • a bismuth-substituted rare earth iron garnet single crystal film by liquid phase epitaxy for example, (1) bismuth oxide, (2) at least one rare earth metal oxide, and (3) oxide Iron and (4) oxides of at least one metal selected from Ga, Al, In, Sc, Si, Ti, Ge and Mg, each of which may be Prepare a homogeneous molten mixture containing the proportions.
  • lead oxide is usually used as a main component, but other deposition media such as bismuth oxide may be used.
  • boron oxide or the like may be contained as a crystal growth improver.
  • a single crystal is epitaxially grown from the molten mixture on the surface of the buffer layer 11 to form a magnetic garnet single crystal film.
  • the temperature of the molten mixture at this time varies depending on the composition of the raw material mixture and the like, but is usually selected in the range of 600 to 1000 ° C.
  • the substrate 2 may be allowed to stand still in the molten mixture and be grown epitaxially, or may be grown while being rotated appropriately. When the substrate 2 is rotated, the number of rotation is advantageously about 10 to 200 rpm.
  • the film forming speed is usually about 0.08 to 0.8 / m / min.
  • the immersion time varies depending on the film forming speed and the desired film thickness, and cannot be determined unconditionally, but is usually about 10 to 100 hours.
  • the substrate 2 is pulled out of the molten mixture, the attached molten mixture is sufficiently shaken off, and then cooled to room temperature. Next, it is immersed in an aqueous solution of a mineral acid such as dilute nitric acid to remove the solidified melt mixture adhering to the surface of the formed single crystal film, and then washed with water and dried.
  • a mineral acid such as dilute nitric acid
  • the thickness of the magnetic garnet single crystal film 12 formed of the bismuth-substituted rare earth iron garnet single crystal formed on the substrate 2 is usually in the range of 100 to 1000 m. Further, its thermal expansion coefficient at room temperature ⁇ 850 ° C, 1. 0 x 10- 5 Z ° C ⁇ 1. 2 X 10- 5 /.
  • the crystal structure and composition of the bismuth-substituted rare earth iron garnet single crystal film formed on the substrate 2 should be identified by composition analysis using X-ray diffraction and X-ray fluorescence. Can be.
  • the performance of the single-crystal film 12 is such that the substrate 2 is removed from the single-crystal film 12 by polishing or the like, and then the both surfaces of the film 12 are polished, and then a non-reflection film is provided on both surfaces, and the Faraday rotation It can be evaluated by determining the coefficient, transmission loss, temperature characteristics, etc.
  • This CNGG single crystal substrate by a sputtering method to form a Nd 3 Ga 5 0 12 (NGG ) thin (Badzufa layer 1 1). Specifically, using an NGG sintered body as a gate, sputtering film formation was performed under the following film formation conditions, and then annealing treatment was performed.
  • NGG Nd 3 Ga 5 0 12
  • Atmosphere Ar + 0 2 (10 volume%), l Pa,
  • Atmosphere 0 2 , 1 atm
  • Figure 2A shows an SEM image of the NGG film surface.
  • Fig. 2B shows an SEM image of the cross section. It was confirmed that a smooth NGG film was obtained. The results of composition analysis by X-ray fluorescence of NGG film, it was confirmed that the Nd 3 Ga 5 0 12 (NGG ) thin film of substantially stoichiometric composition is obtained.
  • NGG Nd 3 Ga 5 0 12
  • a bismuth-substituted rare earth iron garnet single crystal film was formed by liquid phase epitaxy. More specifically, a platinum Rudzubo, Ho 2 0 3 to 5. 747 g, Gd 2 0 3 to 6. 724 g, B 2 0 3 to 43.
  • the composition of the single crystal film was analyzed by X-ray fluorescence method, B i ⁇ Gd L! H o 0. 8 Fe 5 .. 0 12 (B i— RIG).
  • Fig. 3 shows a cross-sectional SEM image of this single crystal film
  • Fig. 4A shows the surface SEM image. It has been confirmed that a high quality Bi-RIG film having a smooth surface and a dense, nearly stoichiometric composition can be epitaxially grown.
  • the difference between the lattice constant of this single crystal film and the lattice constant of the CNGG substrate serving as the base substrate was measured, the difference was 0.009, and was confirmed to be within ⁇ 0.02.
  • the difference between the lattice constant of this single crystal film and the lattice constant of the NGG thin film serving as the buffer layer was 0.007.
  • the measurement of the lattice constant was performed by the X-ray diffraction method.
  • liquid layer epitaxial growth was performed for 30 hours under the same conditions as above to form a bismuth-substituted rare earth iron ganet single crystal film having a thickness of about 470 m on the substrate.
  • FIG. 5A shows a photograph of the single crystal film formed on the substrate.
  • the substrate from the single crystal film is removed by polishing, and polishing both surfaces of the single crystal film, with a non-reflective film made of S i 0 2 or T a 2 0 5 on both sides thereof, the wavelength 1.
  • Evaluation of the transmission loss and the temperature characteristics at a Faraday rotation angle of 55 m and a Faraday rotation angle of 45 deg showed that the Faraday rotation coefficient was 0.119 de g / m and the transmission was The excess loss was 0.03 (18, and the temperature characteristics were 0.065 deg / ° C. In each case, the optical characteristics of the optical isolator were satisfactory.
  • the Faraday rotation angle was obtained by applying polarized laser light having a wavelength of 1.55 ⁇ m to the single crystal film and measuring the angle of the plane of polarization of the emitted light.
  • the transmission loss was determined from the difference between the laser light intensity at a wavelength of 1.55 Aim transmitted through the single crystal film and the light intensity without the single crystal film.
  • the temperature characteristics were measured by changing the sample temperature from _40 ° C to 85 ° C, measuring the rotation angle, and calculating from the measured values.
  • the thermal expansion coefficient at room temperature ⁇ 850 ° C of the single crystal film is 1.
  • Difference in thermal expansion coefficient between the base substrate and the single crystal film was 0. 03 X 10- 5 / ° C . No crack was observed in the obtained single crystal film.
  • a CNGG single crystal substrate was produced in the same manner as in Example 1 above.
  • a 35 Ga 0 5 Mgo. 3 Zr 0 0 (GCGMZG) thin film was formed. Specifically, a GCG MZG single crystal target was irradiated with a KrF excimer laser at a laser density of 2.0 J / cm 2 , and an oxygen partial pressure of 1 Pa was applied on a CNGG substrate maintained at a substrate temperature of 800 ° C. A GCGMZG thin film having an irradiation time of 5 minutes and a film thickness of about 10 nm was formed. X-ray fluorescence analysis of the GCGMZG thin film confirmed that it had the same composition as Yuichi Get.
  • a CNGG single-crystal substrate was prepared in the same manner as in Example 1, and a liquid phase barrier similar to that of Example 1 was formed without forming a buffer layer composed of a single-crystal thin film that was stable against lead oxide.
  • a bismuth-substituted rare-earth iron garnet single crystal film was formed by the epitaxial growth method.
  • FIG. 4B is a SEM image of the surface of the substrate after the experiment, and it was confirmed that the surface was etched. Also, X-ray fluorescence analysis showed that no bismuth-substituted rare earth iron gane or soto single crystal film was formed.
  • FIG. 5B is an entire photograph of the bismuth-substituted rare earth iron garnet single crystal film grown in Comparative Example 1, in which the film was formed unevenly on the surface of the substrate and partially peeled off. Was confirmed.
  • Example 2 In the same manner as in Example 1, a CNGG single crystal substrate with an NGG thin film was produced. Using the CNGG single crystal substrate with the NGG thin film, a bismuth-substituted rare earth iron garnet single crystal film was formed by a liquid phase epitaxial growth method.
  • a single-crystal substrate material formed by forming a 250-nm NGG thin film on a 0.6-mm-thick CNGG substrate was immersed, and the single-crystal film was formed while rotating the substrate at 100 rpm.
  • Liquid epitaxy was performed for 43 hours to form a 560 m-thick bismuth-substituted rare earth iron garnet single crystal film on the substrate.
  • the Faraday rotation angle at a wavelength of 1.55111, the transmission loss at a Faraday rotation angle of 45 degrees, and the temperature characteristics of this single crystal film were evaluated in the same manner as in Example 1.
  • the Faraday rotation coefficient was 0. 102deg / m, transmission loss was 0.09 dB, and temperature characteristic was 0.051 deg / ° C.
  • the thermal expansion coefficient of this single crystal film is 1. was 09 10- 5 / ° C. Difference in thermal expansion coefficient between the base substrate and the single crystal film was 0. 02 X 10- 5 / ° C . No crack was observed in the obtained single crystal film.
  • Example 2 In the same manner as in Example 1, a CNGG single crystal substrate with an NGG thin film was produced. Using the CNGG single crystal substrate with the NGG thin film, a bismuth-substituted rare earth iron garnet single crystal film was formed by liquid phase epitaxy.
  • a platinum crucible GcU0 3 to 7. 653 g, Yb 2 0 3 and 6. 77 8 g, B 2 0 3 to 43. 21 g, F e 2 0 3 to 1 13. 2 g the Ga 2 0 3 19. 02 g, the a 1 2 0 3 3. 35 g , PbO and 869.
  • ⁇ g, the B i 2 0 3 946. 3 g input is, dissolved at about 1000 ° C, After stirring and homogenizing, the temperature was lowered at a rate of 120 ° C / hr to maintain a supersaturated state of 829 ° C.
  • a single-crystal substrate material having a 250-nm NGG film formed on a 0.6-mm-thick CNGG substrate is immersed, and the single-crystal substrate is rotated at 100 rpm while The crystal film was subjected to liquid phase epitaxial growth for 43 hours to form a 520 m-thick bismuth-substituted rare earth iron garnet single crystal film on the substrate.
  • the difference between the lattice constant of this single crystal film and the lattice constant of the CNGG substrate serving as the base substrate was measured. As a result, it was 0.014, which was within ⁇ 0.02.
  • the difference between the lattice constant of this single crystal film and the lattice constant of the NGG thin film serving as the buffer layer was 0.013.
  • the single crystal film was evaluated for the Faraday rotation angle at a wavelength of 55 111, the transmission loss at a Faraday rotation angle of 45 degrees, and the temperature characteristics in the same manner as in Example 1.
  • the Faraday rotation coefficient was 0.1.
  • the transmission loss was 13 deg / m, the transmission loss was 0.02 dB, and the temperature characteristics were 0.096 deg / ° C.
  • the thermal expansion coefficient of this single crystal film was 1.05 xl O- 5 / ° C. Difference in thermal expansion coefficient between the base substrate and the single crystal film was 0. 02 X 10- 5 Z ° C . No crack was observed in the obtained single crystal film.
  • the single-crystal film grew uniformly as shown in FIG. 5A and the crystal surface was smooth and glossy, whereas according to Comparative Example 1, the growth film It was observed that a reaction occurred at the interface between the substrate and the substrate, so that the single crystal film did not grow uniformly and partial peeling occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

明 細 書 磁性ガーネット単結晶膜形成用基板、 光学素子およびその製造方法 技術分野
本発明は、 たとえばビスマス置換希土類鉄ガーネッ ト (B i— R I G ) 単結晶 などの磁性ガーネット単結晶膜を液相ェビタキシャル成長させるための磁性ガー ネ、ソト単結晶膜形成用基板と、 この基板を用いて結晶成長を行う単結晶膜の製造 方法と、 この製造方法により製造される単結晶膜および光学素子に関する。 背景技術
光アイソレータ、 光サ一キユレ一夕、 光磁界センサ等に用いられるファラデー 回転子などの光学素子の材料としては、 一般に、 単結晶基板上に磁性ガーネット 単結晶膜をェピタキシャル成長させたものが用いられる。 基板上に成長させる磁 性ガーネット単結晶膜としては、 所要のファラデー効果が得られるように大きな ファラデー回転係数が望まれる。 また、 ェビタキシャル成長によって良質の単結 晶膜を成膜するためには、 成膜温度から室温までの温度域において、 基板単結晶 と、 成長する単結晶膜との間の格子定数差が極力小さいことが要求される。
磁性ガーネット単結晶膜のファラデー回転係数は、 希土類成分の一部をビスマ スで置換することにより著しく増加することが知られている。 ビスマス置換量の 増加は、 同時に磁性ガーネット単結晶膜の格子定数の増加をもたらすため、 成膜 に用いる基板材料にも、 より大きな格子定数が要求され、 たとえば C a、 Z r、 M g等を添加して格子定数を大きくしたガドリニウム ·ガリウムガーネヅト (G G G) が単結晶基板材料として用いられている (特公昭 6 0— 4 5 8 3号公報) 。 しかしながら、 この C a、 Z r、 M g等を添加した G G G単結晶基板上にビス マス置換希土類鉄ガ一ネット単結晶を厚膜状に (たとえば 2 0 0 m以上の膜厚) に成長させようとした場合、 成膜中および成膜後の基板や単結晶膜に反りや割れ などを生じやすく、 成膜時および加工時の製造歩留り低下の原因となっている。 この問題を解消すべく、 本発明者等は、 室温から 8 5 0 °Cまでの温度領域で、 結晶方位 < 1 1 1 >に直交する面内の熱膨張係数がビスマス置換希土類鉄ガ―ネ ット単結晶に極めて近い値を有する特定組成のガーネット単結晶基板を提案して いる (特開平 1 0— 1 3 9 5 9 6号公報) 。 この単結晶基板を用いることにより、 結晶欠陥や反り、 割れなどが発生しない厚膜状のビスマス置換希土類鉄ガーネヅ ト単結晶膜を液相ェビタキシャル成長により形成させることができる。
しかしながら、 この特定組成のガーネット単結晶基板は、 ビスマス置換希土類 鉄ガーネット (B i— R I G ) 単結晶膜を液相ェビタキシャル成長させる際に析 出溶媒質として用いられる酸化鉛フラックスに対して不安定であり、 良質なビス マス置換希土類鉄ガーネット単結晶を得る歩留まりが悪いということが本発明者 等により見出された。 特に、 N bまたは T aを含む基板組成でこの傾向は大きい ことが判明した。 発明の開示
本発明の目的は、 結晶欠陥や反り、 割れ、 剥離などが発生しない厚膜状の磁性 ガ一ネット単結晶膜を、 液相ェビタキシャル成長により安定して形成することが できる磁性ガーネツト単結晶膜形成用基板、 光学素子およびその製造方法を提供 することにある。
本発明に係る磁性ガ一ネット単結晶膜形成用基板は、
磁性ガーネッ .ト単結晶膜を液相ェピタキシャル成長させるための磁性ガ一ネッ ト単結晶膜形成用基板であって、
液相ェビタキシャル成長させるために用いるフラックスに対して不安定なガー ネット系単結晶から成るベース基板と、
前記べ一ス基板上に形成され、 前記フラックスに対して安定なガーネット系単 結晶薄膜から成るバッファ層とを有する。
前記フラックスとしては、 特に限定されないが、 たとえば酸化鉛を構成成分と するフラックスである。 なお、 本発明において、 「フラヅクスに対して不安定」 とは、 フラックス中の溶質成分が、 対象物 (ベース基板またはバッファ層) を核 として結晶化を開始する、 いわゆる過飽和状態において、 対象物を構成する材質 の少なくとも一部がフラックスに対して溶出すること、 および/またはフラック ス成分の少なくとも一部が対象物に拡散することで、 単結晶膜の液相ェビタキシ ャル成長を阻害することを意味する。 また、 「フラックスに対して安定」 とは、 「フラックスに対して不安定」 の逆の現象を意味する。
本発明によれば、
液相ェピタキシャル成長により形成する対象となる磁性ガーネット単結晶、 た とえばビスマス置換希土類鉄ガ一ネット単結晶、 に極めて近い熱膨張係数を有す る特定組成のガーネット単結晶基板を選択し、 その基板がフラックスに対して不 安定であるとしても、 安定して液相ェピタキシャル成長を行うことができる。 な ぜなら、 ベース基板の上には、 フラヅクスに対して安定なバッファ層が形成して あるからである。
そのため、 本発明では、 ファラデー回転子などの光学素子に用いられるビスマ ス置換希土類鉄ガーネット単結晶膜を、 結晶欠陥や反り、 割れ、 剥離などの発生 を抑制して、 高品質に液相ェピタキシャル成長させることができる。 すなわち、 本発明によれば、 比較的に厚膜 (たとえば 2 0 0 以上) で、 大面積 (たとえ ば直径 3インチ以上) の磁性ガーネット単結晶膜を、 液相ェピタキシャル成長に より得ることができる。
好ましくは、 前記べ一ス基板が、 前記磁性ガーネット単結晶膜の熱膨張係数と ほぼ等しい熱膨張係数を有している。 たとえば、 0 ° C ~ 1 0 0 0 ° Cの温度範 囲において、 前記ベース基板の熱膨張係数が、 前記磁性ガーネット単結晶膜の熱 膨張係数に対して、 ± 2 x l 0 _6/° C以下の範囲にある。
ベース基板の熱膨張係数を磁性ガーネット単結晶膜の熱膨張係数と略等しくす ることで、 ェピ夕キシャル成長後の膜が基板に対して剥離することやクラヅクゃ 欠けなど (以下、 「クラヅクなど」 とも称する) の品質低下を有効に防止するこ とができる。 なぜなら、 磁性ガーネット単結晶膜をェピタキシャル成長により形 成する際には、 温度が 1 0 0 0 ° C近くまで上昇し、 その後に室温に戻されるた め、 熱膨張係数が相違すると、 ェピタキシャル成長膜にクラックなどが発生しや すくなるからである。
なお、 バッファ層の熱膨張係数は、 必ずしも、 磁性ガーネット単結晶膜の熱膨 張係数と略等しくする必要はない。 なぜなら、 バッファ層の膜厚は、 ベース基板 の厚みに対して極端に薄く、 ェビタキシャル成長膜に対する熱膨張差による影響 が小さいからである。
好ましくは、 前記べ一ス基板が、 前記磁性ガーネット単結晶膜の格子定数とほ ぼ等しい格子定数を有している。 たとえば前記ベース基板の格子定数が、 前記磁 性ガーネット単結晶膜の格子定数に対して、 ±0. 02人以下の範囲にある。 ベース基板の格子定数を、 磁性ガーネット単結晶膜の格子定数とほぼ等しくす ることで、 バッファ層の上に、 磁性ガーネット単結晶膜を、 液相ェピタキシャル 成長させやすくなる。
好ましくは、 前記ベース基板が、 Nbまたは Taを含む。 前記ベース基板に、 Nbまたは Taを含ませることで、 ベース基板の熱膨張係数および/または格子 定数を、 前記磁性ガーネット単結晶膜の格子定数とほぼ等しくさせることが容易 になる。 ただし、 前記ベース基板に Nbまたは T aを含ませると、 フラックスに 対する安定性が劣化する傾向にある。
好ましくは、 前記バッファ層が、 Nbおよび T aを実質的に含まないガ一ネヅ ト系単結晶薄膜である。 N bおよび T aを実質的に含まないガーネット系単結晶 薄膜は、 フラックスに対して比較的に安定だからである。
好ましくは、 前記バッファ層は、
一般式 R3M5012 (ただし、 Rは希土類金属の少なくとも 1種、 Mは Ga, F eから選ばれた 1種) で表されるものであり、
あるいは、
X置換ガドリニウム ·ガリウムガーネット (ただし、 Xは、 Ca、 Mgs Zrの 少なくとも 1種) である。
このような材質から成るバッファ層は、 フラックスに対して比較的に安定であ り、 しかも、 磁性ガーネット単結晶膜の格子定数に近い格子定数を持つので好ま しい。
好ましくは、 前記バッファ層の厚みが 1〜10000 nm、 さらに好ましくは 5〜50nmであり、 前記べ一ス基板の厚みが 0. 1〜5龍、 さらに好ましくは 0. 2〜2. 0腿である。 バッファ層の厚みが薄すぎると、 本発明の効果が小さ く、 厚すぎると、 コスト高になると共に、 熱膨張係数の違いなどからェビ夕キシ ャル成長膜に対してクラックなどの悪影響を与える傾向にある。 また、 ベース基 板の厚みが薄すぎると、 機械的強度が不足して取扱い作業性が悪くなる傾向にあ り、 厚すぎると、 クラックなどの発生が増加する傾向にある。
本発明に係る磁性ガ一ネ、ソト単結晶膜の製造方法は、
本発明の磁性ガーネット単結晶膜形成用基板を用いて、 前記バッファ層の上に、 液相ェピタキシャル成長法によって磁性ガーネット単結晶膜を成長させる工程を 有する。
本発明に係る光学素子の製造方法は、
本発明の磁性ガーネツ卜単結晶膜の製造方法を用いて、 前記磁性ガーネッ卜単 結晶膜を形成した後、
前記ベース基板およびバッファ層を除去し、 前記磁性ガーネット単結晶膜から 成る光学素子を形成する工程を有する。
本発明に係る光学素子は、 本発明の光学素子の製造方法により得られる。 図面の簡単な説明
図 1は本発明の一実施形態に係る磁性ガーネット単結晶膜形成用基板と、 これ を用いて成長したビスマス置換希土類鉄ガ一ネット単結晶膜を示す断面図、 図 2 Aは本発明の一実施例に係る磁性ガーネット単結晶膜形成用基板の表面 S E M像、
図 2 Bは図 2 Aに示す基板の断面 S E M像、
図 3は本発明の一実施例に係る磁性ガーネット単結晶膜形成用基板の表面にビ スマス置換希土類鉄ガ一ネット単結晶膜を成膜した状態の断面 S E M像、
図 4 Aは本発明の一実施例に係る磁性ガーネット単結晶膜形成用基板の表面に ビスマス置換希土類鉄ガーネット単結晶膜を成膜した状態の表面 S E M像、 図 4 Bは本発明の比較例に係る磁性ガーネ、ソド単結晶膜形成用基板の表面にビ スマス置換希土類鉄ガーネット単結晶膜を成膜した状態の表面 S E M像、
図 5 Aおよび図 5 Bは本発明の実施例および比較例に係る磁性ガーネット単結 晶膜形成用基板の表面にビスマス置換希土類鉄ガーネット単結晶膜を成膜した状 態の写真である。 発明を実施するための最良の態様
以下、 本発明を図面に示す実施例に基づき詳細に説明する。
図 1に示すように、 本実施形態における磁性ガーネット単結晶膜形成用基板 2 は、 ベース基板 10と、 このベース基板 10の表面上に積層して形成されたバヅ ファ層 11とを有する。 ベース基板 10は、 ビスマス置換希土類鉄ガーネット単 結晶からなる磁性ガーネット単結晶膜 12に極めて近い値の格子定数および熱膨 張係数を有するが、 酸化鉛フラックスに対して不安定である。 ノ、'ヅファ層 11は、 酸化鉛フラックスに対して安定なガーネット系単結晶薄膜で構成してある。
この基板 2におけるバヅファ層 1 1上に、 ビスマス置換希土類鉄ガ一ネヅ ト単 結晶膜 12が液相ェピタキシャル成長される。 ベース基板 10は、 バヅファ層 1 1を介して磁性ガーネット単結晶膜 12を成長させるために、 単結晶膜 12との 格子整合性が良く、 かつ線熱膨張係数が単結晶膜 12のそれに近い特性を有して いる。
ベース基板 10は、 たとえば一般式 MlxM2yM3z012で示される非磁性ガ一ネ ヅト系単結晶で構成してある。 この一般式において、 Mlは、 たとえば Ca、 S r、 Cdおよび Mnの中から選ばれる金属である。 Mlは、 価数 2+で安定に存在し、 配位数 8を取ることができ、 この状態でのイオン半径が 0. 096〜0. 126 nmの範囲にあるものが好ましい。 M2は、 たとえば Nb、 丁&ぉょび3)3の中か ら選ばれる金属である。 M2は、 価数 5+で安定に存在し、 配位数 6を取ること ができ、 この状態でのイオン半径が 0. 060~0. 064 nmの範囲にあるも のが好ましい。 M3は、 たとえば Ga、 Al、 Fe、 Ge、 S iおよび Vの中から 選ばれる金属である。 M3は、 価数 3+、 4+または 5 +で安定に存在し、 配位 数 4を取ることができ、 この状態でのイオン半径が 0. 026〜0. 049 nm の範囲にあるものが好ましい。 なお、 これらのイオン半径は、 シャノン (R. D. Shannon) により定められた有効イオン半径の値である。 これらの Ml、 M 2および M3は、 それそれ単独の金属であってもよいし、 また 2種以上の金属の組 み合せであってもよい。
さらに、 Mlの金属は、 価数および格子定数を調整するために、 必要に応じ、 5 0ァトミヅク%未満の範囲内でその一部を、 その組成において Caまたは S rと 置換可能な金属 M4で置換しても良い。 M4としては、 たとえば Cd、 Mn、 K、 Na、 L i Pb、 Ba、 Mg、 Fe、 Co、 希土類金属および B iの中から選 ばれた少なくとも 1種、 好ましくは配位数 8を取り得るものであることが好まし い。
また、 M2は、 Mlの場合と同じように、 50アトミヅク%未満の範囲で、 その 一部を、 その組成において、 Nb、 T aまたは Sbと置換可能な金属 M5で置換し ても良い。 M5としては、 たとえば Zn、 Mg、 Mn、 Ni、 Cu、 Cr、 Co、 Ga、 Fe、 Al、 V、 S c、 I n、 T i、 Zr、 S iおよび S nの中から選ば れた少なくとも 1種、 好ましくは配位数 6を取りうるものが例示される。
このような組成の単結晶基板は、 熱膨張係数が、 成長されるビスマス置換希土 類鉄ガ一ネット単結晶の熱膨張係数に近似し、 また、 この単結晶との格子整合性 が良好である。 特に、 前記の一般式において、 Xが 2. 98〜3. 02、 yが 1· 67〜1. 72および zが 3. 15〜3. 21の範囲の数であるものが好適であ る。
このような組成のベース基板 10の熱膨張係数は、 室温〜 850°Cにおいて、 1, 02 X 10— 5/°C〜; L . 07 X 10_5Z°C程度であり、 ビスマス置換希土類 鉄ガ一ネット単結晶膜の同じ温度範囲の線熱膨張係数 1. 09x 10_5Z°C〜1. 16 x 10— 5ノ に非常に近似している。
また、 このベース基板 10の厚さについては特に制限はないが、 膜厚が 200 m以上の厚膜のビスマス置換希土類鉄ガ一ネット単結晶膜を成膜する場合には、 成膜時における基板および単結晶膜の割れや反りなどの発生が抑制され、 品質の 良好な単結晶膜が得られる点で、 厚さ 1. 5mm以下にするのが良い。 ベース基 板の厚さが 1. 5 mmを超えると、 厚さの増加に伴い、 基板と単結晶膜の界面近 傍でクラックの発生が増加する傾向がみられる。 また、 単結晶基板 10の厚さが あまり薄すぎると機械的強度が小さくなり取扱い性が悪くなるので、 厚さ 0. 1 mm以上のものが好ましい。
単結晶基板 10上に形成されるバッファ層 1 1は、 ガ一ネット系単結晶薄膜で 構成してある。 このガーネット系単結晶薄膜としては、 —般式 R 3M 50 1 2 (ただし、 Rは希土類金属の少なくとも 1種、 Mは G a , F eから選ばれた 1種) で表されるものであり、
あるいは、
X置換ガドリニウム 'ガリウムガーネット (ただし、 Xは、 C a、 M g、 Z rの 少なくとも 1種) などが例示される。
これらの中でも、 ネオジゥム 'ガリウムガ一ネヅ ト、 サマリウム,ガリウムガー ネット、 ガドリニウム 'ガリウムガーネット、 および X置換ガドリニウム'ガリウ ムガ一ネヅ ト (ただし、 Xは、 C a、 M g、 Z rの少なくとも 1種) から選ばれ た 1種を用いることが好ましいが、 酸化鉛フラックスに対して安定なガ一ネヅ ト 系材料であれば、 これに限定されることはない。
本発明の磁性ガーネット単結晶膜形成用基板におけるベース基板 1 0の製造方 法については特に制限はなく、 従来の G G G単結晶基板などの製造において慣用 されている方法を採用することができる。
たとえば、 まず、 前述の一般式における Mlで示される金属、 M2で示される金 属、 および M3で示される金属の中から、 それそれ 1種または 2種以上選ばれた金 属と、 場合により用いられる M4で示される金属および M5で示される金属の中か ら、 それそれ 1種または 2種以上選ばれた金属とを、 それそれ所定の割合で含有 する均質な溶融混合物を調製する。 次いで、 この溶融混合物中に、 たとえば長軸 方向が < 1 1 1 >である G G G種子結晶などを液面に対して垂直に浸漬し、 ゆつ く り回転させながら引き上げることにより、 多結晶体を形成させる。
この多結晶体にはクラヅクが多数存在するので、 その中からクラックのない単 結晶部分を選択し、 結晶方位を確認したのち、 種子結晶として、 再度、 上記溶融 混合物中に、 結晶方位く 1 1 1 >が液面に対して垂直になるように浸漬し、 ゆつ く り回転させながら引き上げることにより、 クラックの存在しない単結晶を形成 させる。 次に、 この単結晶を成長方向と垂直に所定の厚さに切断し、 両面を鏡面 研磨したのち、 たとえば熱リン酸などでエッチング処理し、 ベース基板 1 0が得 られる。
このようにして得られたベース基板 1 0上に、 スパッタリング法、 C V D法、 パルスレーザ蒸着法、 溶液法、 またはその他の薄膜成膜技術により、 前述した組 成のガーネット系単結晶薄膜から成るバッファ層 1 1を成膜する。
このようにして得られた磁性ガーネット単結晶膜形成用基板 2を用い、 液相ェ ビ夕キシャル成長法によって、 ビスマス置換希土類鉄ガーネット単結晶膜から成 る磁性ガーネット単結晶 J3莫 12が形成される。 この形成されるビスマス置換希土 類鉄ガーネット単結晶膜の組成は、 たとえば、 一般式 BimR3mFe5-nMn012 (式中の Rは、 希土類金属の少なくとも 1種、 Mは Ga、 Al、 I n、 S c、 S i、 T i、 Geおよび Mgの中から選ばれた少なくとも 1種の金属であり、 mお よび nは、 0<m<3. 0、 0≤n≤ 1. 5の範囲である) で表わされる。
この一般式において、 Rで示される希土類金属としては、 たとえば Y、 La、 P r、 Nd、 Sm、 Eu、 Gd、 Tb、 D y、 Ho、 Er、 Tm、 Yb、 Luな どが挙げられ、 これらは 1種含まれていてもよいし、 2種以上含まれていてもよ い。
この単結晶においては、 Rで示される希土類金属の一部はビスマスで置換され ており、 このビスマスによる置換の割合は mで表わされ、 この mの値は、 0く m <3. 0の範囲であるが、 特に 0. 5〜1. 5の範囲にある場合、 単結晶の熱膨 張係数と単結晶基板の線熱膨張係数とが極めて近似したものになるので、 有利で ある。 また、 Mは F eと置換可能な非磁性金属元素で、 Ga、 Al、 I n、 S c、 S i、 T i、 Ge、 Mgであり、 これらは 1種含まれていてもよく、 2種以上含 まれていてもよい。 この非磁性金属元素の F eとの置換の割合 nは 0〜 1. 5の 範囲で選ばれる。
液相ェピタキシャル成長法により、 ビスマス置換希土類鉄ガーネツト単結晶膜 を形成させるには、 たとえば、 まず、 (1) 酸化ビスマスと、 (2) 少なくとも 1種の希土類金属酸化物と、 (3) 酸化鉄と、 (4) 場合により用いられる Ga、 Al、 I n、 S c、 S i、 T i、 Geおよび Mgの中から選ばれた少なくとも 1 種の金属の酸化物とを、 それそれ所定の割合で含有する均質な溶融混合物を調製 する。 析出用溶質としては、 通常、 主要構成成分として酸化鉛が用いられるが、 酸化ビスマスなどのその他の析出用媒質であっても良い。 また、 所望に応じ、 結 晶成長向上剤として、 酸化ホウ素などを含有させてもよい。
次に、 この溶融混合物中に、 本発明の基板 2を浸漬することにより、 基板 2に おけるバッファ層 1 1の表面に、 溶融混合物から単結晶をェピタキシャル成長さ せて、 磁性ガーネット単結晶膜を成膜する。 この際の溶融混合物の温度は、 原料 混合物の組成などにより異なるが、 通常は 600〜1000°Cの範囲で選ばれる。 また、 基板 2は、 溶融混合物中に静置してェビタキシャル成長させてもよいし、 適当に回転させながらェピタキシャル成長させてもよい。 基板 2を回転させる場 合、 その回転数は 10〜200 r pm程度が有利である。 また、 成膜速度は、 通 常 0. 08〜0. 8 /m/分程度である。 浸漬時間は、 成膜速度および所望の膜 厚などにより異なり、 一概に定めることはできないが、 通常は、 10〜100時 間程度である。
ェピタキシャル成長終了後、 基板 2を溶融混合物から引き上げ、 付着している 溶融混合物を十分に振り切つたのち、 室温まで冷却する。 次いで、 希硝酸などの 鉱酸水溶液中に浸潰して、 形成した単結晶膜表面に付着している溶融混合物の固 化物を取り除いたのち、 水洗、 乾燥する。 このようにして、 基板 2上に形成され るビスマス置換希土類鉄ガーネツト単結晶から成る磁性ガーネット単結晶膜 12 の厚さは、 通常 100〜 1000 mの範囲である。 また、 その熱膨張係数は、 室温〜 850°Cにおいて、 1. 0 x 10— 5Z°C〜1. 2 X 10— 5/。C程度である c このようにして、 基板 2上に形成されたビスマス置換希土類鉄ガーネット単結 晶膜の結晶構造および組成は、 それそれ X線回折および蛍光 X線による組成分析 などにより同定することができる。 また、 この単結晶膜 12の性能は、 単結晶膜 12から基板 2を研磨加工などで除去し、 その後、 膜 12の両面を研磨加工処理 したのち、 その両面に無反射膜を設け、 ファラデー回転係数、 透過損失および温 度特性などを求めることにより、 評価することができる。
以下、 実施例および比較例により本発明をさらに詳細に説明する。
実施例 1
溶融液の組成が Ca3Nbし 7Ga3.2012となるように、 CaC03、 Nb205 および Ga 203を秤量して、 大気中 1350 ° Cで焼成し、 ガ一ネヅト単相を確 認した後、 イリジウムルヅボ中に仕込み、 窒素ガス 98容量%と酸素ガス 2容量 %との混合ガス雰囲気中で、 高周波誘導により約 1450°Cに加熱して溶融させ た。 その後、 この溶融液に長軸方向が < 1 1 1 >である 5 mm角柱状の上記組成 の種子結晶を液面に対し垂直に浸潰し、 これを 20 rpmの回転下に 3 mm/時 の速度で引き上げたところ、 全体にクラックの全く存在しない透明な単結晶が得 られた。
次に、 この結晶の上部と下部から各約 1 gの試料を切出し、 蛍光 X線分析装置 で各成分金属元素について定量分析を行ったところ、 結晶上部および結晶下部共 に、 C a3Nbし 7Ga3.2012 (CNGG) の組成を有することが確認された。 得られた単結晶を、 成長方向と垂直に所定の厚さに切断し、 両面を鏡面研磨し たのち、 熱リン酸でエッチング処理して、 CNGG単結晶基板 (ベース基板 10) を作製した。 この単結晶基板の室温〜 850°Cにおける熱膨張係数 (ひ) は 1. 07 X 10— 5/°Cであった。 この CNGG単結晶基板の厚みは、 0. 6麵であつ た。
この CNGG単結晶基板上に、 スパッタリング法で、 Nd3Ga5012 (NGG) 薄膜 (バヅファ層 1 1) を形成した。 具体的には、 NGG焼結体を夕一ゲヅトと して用い、 下記の成膜条件でスパッタリング成膜を行い、 その後にァニール処理 を行った。
(スパッタリング成膜条件)
基板温度: 600° C、
入力: 300 W、
雰囲気: Ar + 02 ( 10容積%) 、 l Pa、
成膜時間: 30分、
膜厚: 250 nm。
(ァニール処理)
雰囲気: 02、 1 a t m、
温度: 800 ° C
時間: 30分。
NGG膜表面の SEM像を図 2 Aに示す。 また、 その断面 S EM像を図 2 Bに 示す。 平滑な NGG膜が得られることが確認できた。 また、 NGG膜の蛍光 X線 による組成分析を行ったところ、 ほぼ化学量論組成の Nd3Ga5012 (NGG) 薄膜が得られていることが確認できた。 このようにして得られた N G G膜付き C N G G基板を用いて、 液相ェピ夕キシ ャル成長法により、 ビスマス置換希土類鉄ガーネット単結晶膜を形成した。 具体 的には、 白金製ルヅボに、 Ho 203を 5. 747 g、 Gd 203を 6. 724 g、 B203を 43. 2 1 g、 Fe 203を 126. 84 g、 PbOを 989. 6 g、 B ;1203を826. 4 g入れ、 約 1000°Cで溶融し、 かきまぜて均質化したのち、 120°C/hrの速度で降温して、 832 °Cの過飽和状態を保持した。 次いで、 この溶融液中に、 厚さ 0. 6111111の〇 00基板上に厚さ 25011111の 00薄 膜を形成してなる基板を浸潰し、 100 rpmで基板を回転させながら、 単結晶 膜を 10分間液相ェピタキシャル成長させ、 基板上に膜厚約 4 mのビスマス置 換希土類鉄ガーネット単結晶膜を形成させた。
この単結晶膜の組成を、 蛍光 X線法により分析したところ、 B i ^Gd L !H o0.8Fe5.。012 (B i— R I G) であることが確認できた。 この単結晶膜の断 面 SEM画像を図 3に示し、 その表面 SEM画像を図 4 Aに示す。 表面が平滑で 緻密な良質の、 ほぼ化学量論組成の B i— R I G膜をェピタキシャル成長させる ことができることが確認できた。 また、 この単結晶膜の格子定数と、 ベース基板 である CNGG基板との格子定数の差異を測定したところ、 0. 009人であり、 ±0. 02人以内であることが確認できた。 なお、 この単結晶膜の格子定数と、 バッファ層である NGG薄膜との格子定数の差異を測定したところ、 0. 007 人であった。 格子定数の測定は、 X線回折法により行った。
また、 別のサンブルで、 上記と同じ条件で、 液層ェビタキシャル成長を 30時 間行い、 基板上に膜厚約 470 mのビスマス置換希土類鉄ガ一ネット単結晶膜 を形成させた。 この基板上に成膜された単結晶膜の写真を図 5 Aに示す。
得られた単結晶膜および単結晶基板の両方共、 クラックの発生は認められなか つた。 この単結晶膜の組成を蛍光 X線法により分析したところ、 B i ^Gdu H oo.8F e 5·。012であることが確認できた。
また、 この単結晶膜から基板を研磨加工により除去し、 単結晶膜の両面を研磨 加工し、 その両面に S i 02または T a205から成る無反射膜を付けて、 波長 1. 55 mのファラデー回転角、 ファラデー回転角 45 d e gでの透過損失および 温度特性を評価したところ、 ファラデー回転係数は 0. 1 19de g/ m、 透 過損失は 0. 03 (18、 温度特性は0. 065 d e g/°Cであった。 いずれも、 光アイソレー夕の光学特性として満足できるレベルであった。
なお、 ファラデー回転角は波長 1. 55〃mの偏光したレーザー光を単結晶膜 に入射させ、 出射した光の偏光面の角度を測定し求めた。 透過損失は単結晶膜を 透過した波長 1. 55 Aimのレーザー光強度と単結晶膜のない状態の光強度の差 より求めた。 温度特性は試料の温度を _40°Cから 85°Cまで変化させて回転角 を測定し、 その測定値より算出した。
さらに、 この単結晶膜の室温〜 850°Cにおける熱膨張係数 (ひ) は、 1. 1 0 X 10— 5 であった。 ベース基板と単結晶膜との熱膨張係数の差異は、 0. 03 X 10— 5/°Cであった。 また、 得られた単結晶膜にはクラックの発生は認め られなかった。
実施例 2
前記実施例 1と同様な手法で、 CNGG単結晶基板を作製した。
この CNGG単結晶基板上に、 パルスレ一ザ蒸着法で、 Gd2.65C a。.35Ga 05Mgo.3Z r 0 0 (GCGMZG) 薄膜を形成した。 具体的には、 GCG MZG単結晶ターゲットに KrFエキシマレ一ザを照射レーザ密度 2. 0 J/c m2で照射し、 基板温度 800°Cに保持された CNGG基板上に、 酸素分圧 1 P a、 照射時間 5分、 膜厚約 10 nmの GCGMZG薄膜を形成した。 この GCGMZ G薄膜の蛍光 X線分析を行ったところ、 夕一ゲットと同組成の GCGMZGであ ることが確認された。
このようにして得られた GCGMZ G薄膜付き CNGG単結晶基板を用い、 実 施例 1と同様な液相ェピタキシャル成長法により、 ビスマス置換希土類鉄ガ一ネ ット単結晶膜を形成した。 得られた単結晶膜にはクラックの発生は認められなか つた。
比較例 1
実施例 1と同様な手法で、 CNGG単結晶基板を作製し、 その上に酸化鉛に対 して安定な単結晶薄膜から成るバッファ層を形成することなく、 実施例 1と同様 な液相ェピタキシャル成長法により、 ビスマス置換希土類鉄ガーネット単結晶膜 を形成した。 図 4Bは、 実験後の基板の表面 S EM画像であり、 表面がエッチングされてい ることが確認された。 また、 蛍光 X線分析により、 ビスマス置換希土類鉄ガーネ 、ソト単結晶膜が形成されていないことが分かった。
また、 図 5Bは、 この比較例 1によって成長したビスマス置換希土類鉄ガーネ ット単結晶膜の全体写真であり、 基板の表面に対して不均一に膜が形成され、 一 部で剥がれていることが確認された。
実施例 3
前記実施例 1と同様な手法で、 NGG薄膜付き CNGG単結晶基板を作製した。 この N G G薄膜付き C N G G単結晶基板を用いて、 液相ェビタキシャル成長法に より、 ビスマス置換希土類鉄ガーネッ ト単結晶膜を形成した。
具体的には、 白金製ルツポに、 Tb407を 12. 431 g、 Yb203を 1. 4 64 g、 B 203を 43. 21 g、 Fe 203を 121. 56 g、 PbOを 989. 6 g、 B i203を 826. 4 g入れ、 約 1000°Cで溶解し、 かきまぜて均質化 したのち、 120°C/hrの速度で降温して、 840°Cの過飽和状態を保持した。 次いで、 この溶液中に、 基板厚 0. 6 mmの CNGG基板上に 250 nmの NG G薄膜を形成してなる単結晶基板材料を浸潰し、 100 rpmで基板を回転させ ながら、 単結晶膜を 43時間液相ェピタキシャル成長させ、 基板上に膜厚 560 mのビスマス置換希土類鉄ガーネット単結晶膜を形成させた。
得られた単結晶膜および単結晶基板の両方とも、 クラックの発生は認められな かった。 この単結晶膜の組成を蛍光 X線法により分析したところ、 B i!. 。 Tbし 9Yb0. e5.。012であることが確認できた。
また、 この単結晶膜の格子定数と、 ベース基板である CNGG基板との格子定 数の差異を測定したところ、 0. 005人であり、 ±0. 02人以内であること が確認できた。 なお、 この単結晶膜の格子定数と、 バッファ層である NGG薄膜 との格子定数の差異を測定したところ、 0. 004人であった。
また、 この単結晶膜について、 実施例 1と同様にして、 波長 1. 55 111のフ ァラデー回転角、 ファラデー回転角 45度での透過損失および温度特性を評価し たところ、 ファラデー回転係数は 0. 102deg/ m、 透過損失は 0. 09 dB、 温度特性は 0. 051 d e g/°Cであった。 さらに、 この単結晶膜の熱膨張係数は 1. 09 10— 5/°Cであった。 ベース基板と単結晶膜との熱膨張係数の差異は、 0. 02 X 10— 5/°Cであった。 また、 得られた単結晶膜にはクラヅクの発生は 認められなかった。
実施例 4
前記実施例 1と同様な手法で、 NGG薄膜付き CNGG単結晶基板を作製した。 この NGG薄膜付き CNGG単結晶基板を用いて、 液相ェピタキシャル成長法に より、 ビスマス置換希土類鉄ガーネット単結晶膜を形成した。
具体的には、 白金製ルツボに、 GcU03を 7. 653 g、 Yb 203を 6. 77 8 g、 B 203を 43. 21 g、 F e 203を 1 13. 2 g、 Ga203を 19. 02 g、 A 1203を 3. 35 g、 PbOを 869. Ί g、 B i 203を 946. 3 g入 れ、 約 1000°Cで溶解し、 かきまぜて均質化したのち、 120°C/hrの速度で 降温して、 829°Cの過飽和状態を保持した。 次いで、 この溶液中に、 基板厚 0. 6 mmの CNGG基板上に 250 nmの N GG簿膜を形成してなる単結晶基板材 料を浸漬し、 100 r pmで基板を回転させながら、 単結晶膜を 43時間液相ェ ビタキシャル成長させ、 基板上に膜厚 520 mのビスマス置換希土類鉄ガーネ ット単結晶膜を形成させた。
得られた単結晶膜および単結晶基板の両方とも、 クラックの発生は認められな かった。 この単結晶膜の組成を蛍光 X線法により分析したところ、 B i
Figure imgf000017_0001
2Ybo. 5 F e 4.2Gao.6A lo.2O 12であった。
また、 この単結晶膜の格子定数と、 ベース基板である CNGG基板との格子定 数の差異を測定したところ、 0. 014人であり、 ±0. 02人以内であること が確認できた。 なお、 この単結晶膜の格子定数と、 バッファ層である NGG薄膜 との格子定数の差異を測定したところ、 0. 013人であった。
また、 この単結晶膜を、 実施例 1と同様にして、 波長 55 111のファラデ —回転角、 ファラデー回転角 45度での透過損失および温度特性を評価したとこ ろ、 ファラデー回転係数は 0. 1 13deg/ m、 透過損失は 0. 02 dB、 温度特 性は 0. 096 de g/°Cであった。 さらにこの単結晶膜の熱膨張係数は 1. 05 x l O— 5/°Cであった。 ベース基板と単結晶膜との熱膨張係数の差異は、 0. 02 X 10— 5Z°Cであった。 また、 得られた単結晶膜にはクラヅクの発生は認められ なかった < 実施例 1〜4によれば、 図 5 Aに示すように単結晶膜が均一に成長し、 結晶表 面が滑らかで光沢が見られるのに対し、 比較例 1によると、 成長膜と基板との界 面で反応が生じたため、 単結晶膜が均一に成長せず、 部分的な剥離が生じている ことが観察された。
以上述べた実施形態および実施例は全て本発明を例示的に示すものであって限 定的に示すものではなく、 本発明は他の種々の変形態様および変更態様で実施す ることができる。

Claims

請 求 の 範 囲
1 . 磁性ガーネット単結晶膜を液相ェピタキシャル成長させるための磁 性ガーネ、ソト単結晶膜形成用基板であって、
液相ェピタキシャル成長させるために用いるフラックスに対して不安定なガー ネット系単結晶から成るベース基板と、
前記ベース基板上に形成され、 前記フラックスに対して安定なガーネット系単 結晶薄膜から成るバッファ層とを有する磁性ガ一ネット単結晶膜形成用基板。
2 . 前記フラックスの主成分として、 酸化鉛および/または酸化ビスマ スを含有していることを特徴とする請求項 1に記載の磁性ガーネット単結晶膜形 成用基板。
3 . 前記ベース基板が、 前記磁性ガーネット単結晶膜の熱膨張係数とほ ぼ等しい熱膨張係数を有していることを特徴とする請求項 1または 2に記載の磁 性ガーネ、ソト単結晶膜形成用基板。
4 . 0 ° C〜 1 0 0 0 ° Cの温度範囲において、 前記べ一ス基板の熱膨 張係数が、 前記磁性ガーネツト単結晶膜の熱膨張係数に対して、 ± 2 X 1 0— 6/ ° C以下の範囲にあることを特徴とする請求項 3に記載の磁性ガーネット単結晶 膜形成用基板。
5 . 前記ベース基板が、 前記磁性ガーネット単結晶膜の格子定数とほぼ 等しい格子定数を有していることを特徴とする請求項 1〜4のいずれかに記載の 磁性ガーネツト単結晶膜形成用基板。
6 . 前記ベース基板の格子定数が、 前記磁性ガーネット単結晶膜の格子 定数に対して、 ± 0 . 0 2人以下の範囲にあることを特徴とする請求項 5に記載 の磁性ガーネット単結晶膜形成用基板。
7. 前記ベース基板が、 Nbまたは T aを含むことを特徴とする請求項 1〜 6のいずれかに記載の磁性ガーネット単結晶膜形成用基板。
8. 前記バッファ層が、 Nbおよび T aを実質的に含まないガ一ネヅ ト 系単結晶薄膜であることを特徴とする請求項 1〜 7のいずれかに記載の磁性ガー ネ、ソト単結晶膜形成用基板。
9. 前記バ'ソファ層は、
一般式 R3M5012 (ただし、 Rは希土類金属の少なくとも 1種、 Mは Ga, F eから選ばれた 1種) で表されるものであり、
あるいは、
X置換ガドリニウム 'ガリウムガーネヅ ト (ただし、 Xは、 Ca、 Mg Zrの 少なくとも 1種) であることを特徴とする請求項 1〜8のいずれかに記載の磁性 ガ一ネット単結晶膜形成用基板。
10. 前記バッファ層の厚みが 1〜 10000 nmであり、 前記べ一ス 基板の厚みが 0. 1〜5醒である請求項 1〜9のいずれかに記載の磁性ガ一ネヅ ト単結晶膜形成用基板。
1 1. 請求項 1〜 10のいずれかに記載の磁性ガーネット単結晶膜形成 用基板を用いて、 前記バッファ層の上に、 液相ェピタキシャル成長法によって磁 性ガーネット単結晶膜を成長させる工程を有する磁性ガーネット単結晶膜の製造 方法。
12. 請求項 1 1に記載の磁性ガーネット単結晶膜の製造方法を用いて、 前記磁性ガーネット単結晶膜を形成した後、
前記ベース基板およびバッファ層を除去し、 前記磁性ガ一ネット単結晶膜から 成る光学素子を形成する工程を有する、 光学素子の製造方法。
1 3 . 請求項 1 2に記載の光学素子の製造方法により得られた光学素子 (
PCT/JP2002/006223 2001-06-22 2002-06-21 Substrat permettant de former une couche mince de monocristal de grenat magnetique, dispositif optique et procede de production associe WO2003000963A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020037016641A KR100552094B1 (ko) 2001-06-22 2002-06-21 자성 가닛 단결정막 형성용 기판, 광학 소자 및 그 제조방법
EP02741236A EP1403403A4 (en) 2001-06-22 2002-06-21 SUBSTRATE FOR MANUFACTURING A MAGNETIC GRANATE INKRISTAL FILM; OPTICAL DEVICE AND MANUFACTURING METHOD THEREFOR
US10/481,632 US20040177801A1 (en) 2001-06-22 2002-06-21 Substrate for forming magnetic garnet single crystal film, optical device, and its production method
JP2003507338A JPWO2003000963A1 (ja) 2001-06-22 2002-06-21 磁性ガーネット単結晶膜形成用基板、光学素子およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-189587 2001-06-22
JP2001189587 2001-06-22

Publications (1)

Publication Number Publication Date
WO2003000963A1 true WO2003000963A1 (fr) 2003-01-03

Family

ID=19028484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006223 WO2003000963A1 (fr) 2001-06-22 2002-06-21 Substrat permettant de former une couche mince de monocristal de grenat magnetique, dispositif optique et procede de production associe

Country Status (6)

Country Link
US (1) US20040177801A1 (ja)
EP (1) EP1403403A4 (ja)
JP (1) JPWO2003000963A1 (ja)
KR (1) KR100552094B1 (ja)
CN (1) CN1547627A (ja)
WO (1) WO2003000963A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067813A1 (ja) * 2003-01-29 2004-08-12 Tdk Corporation 磁性ガーネット単結晶膜形成用基板、光学素子およびその製造方法
WO2004070091A1 (ja) * 2003-02-04 2004-08-19 Tdk Corporation 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法
US6997986B2 (en) 2003-02-05 2006-02-14 Tdk Corporation Method for preparing single crystal
JP2007226192A (ja) * 2006-01-27 2007-09-06 Tdk Corp 光学素子の製造方法
WO2022004077A1 (ja) * 2020-07-03 2022-01-06 信越化学工業株式会社 ビスマス置換希土類鉄ガーネット単結晶膜の製造方法、ファラデー回転子及び光アイソレータ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI300811B (en) * 2004-11-19 2008-09-11 Tdk Corp Magnetic garnet single crystal and optical device using the same, and method of single crystal
JP5729182B2 (ja) 2010-08-31 2015-06-03 株式会社リコー n型III族窒化物単結晶の製造方法、n型III族窒化物単結晶および結晶基板
JP5580777B2 (ja) 2011-04-25 2014-08-27 浜松ホトニクス株式会社 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法
CN105133015B (zh) * 2015-08-06 2017-10-13 中国科学院理化技术研究所 一种掺杂钒酸铽磁光晶体、生长方法及其应用
CN115418711B (zh) * 2022-07-05 2023-08-29 电子科技大学 一种改善磁性石榴石液相外延生长过程中晶片碎裂的方法
CN115537915B (zh) * 2022-09-30 2024-03-12 电子科技大学 一种单晶外延生长中重复使用石榴石衬底的方法
CN115522262B (zh) * 2022-09-30 2024-03-12 电子科技大学 一种磁光传感用成像单晶晶片快速生产的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176429A (ja) * 1993-12-21 1995-07-14 Murata Mfg Co Ltd 磁性ガーネット単結晶膜およびその製造方法
JPH09202696A (ja) * 1996-01-23 1997-08-05 Murata Mfg Co Ltd 磁性ガーネット単結晶およびその製造方法
JPH10139596A (ja) * 1996-11-08 1998-05-26 Tdk Corp 単結晶基板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134801A (en) * 1976-05-17 1979-01-16 U.S. Philips Corporation Terminal connections on microcircuit chips
JPS5957990A (ja) * 1982-09-27 1984-04-03 Nec Corp 液相エピタキシヤルガ−ネツト厚膜の育成方法
US4612587A (en) * 1982-12-23 1986-09-16 Sony Corporation Thermomagnetic recording and reproducing system
DE69409215T2 (de) * 1993-12-06 1998-07-16 Matsushita Electric Ind Co Ltd Hybrid Magnetstruktur und deren Herstellungsverfahren
JPH07206593A (ja) * 1994-01-07 1995-08-08 Mitsubishi Gas Chem Co Inc 光アイソレータ用ファラデー回転子
JP3137659B2 (ja) * 1997-05-15 2001-02-26 ティーディーケイ株式会社 静磁波装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176429A (ja) * 1993-12-21 1995-07-14 Murata Mfg Co Ltd 磁性ガーネット単結晶膜およびその製造方法
JPH09202696A (ja) * 1996-01-23 1997-08-05 Murata Mfg Co Ltd 磁性ガーネット単結晶およびその製造方法
JPH10139596A (ja) * 1996-11-08 1998-05-26 Tdk Corp 単結晶基板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067813A1 (ja) * 2003-01-29 2004-08-12 Tdk Corporation 磁性ガーネット単結晶膜形成用基板、光学素子およびその製造方法
WO2004070091A1 (ja) * 2003-02-04 2004-08-19 Tdk Corporation 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法
EP1595979A1 (en) * 2003-02-04 2005-11-16 TDK Corporation Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same
EP1595979A4 (en) * 2003-02-04 2012-05-09 Tdk Corp SUBSTRATE FOR MANUFACTURING A MAGNETIC GRANATEINE CRYSTAL FILM, PRODUCTION METHOD THEREFOR, OPTICAL DEVICE AND PRODUCTION METHOD THEREFOR
US6997986B2 (en) 2003-02-05 2006-02-14 Tdk Corporation Method for preparing single crystal
JP2007226192A (ja) * 2006-01-27 2007-09-06 Tdk Corp 光学素子の製造方法
WO2022004077A1 (ja) * 2020-07-03 2022-01-06 信越化学工業株式会社 ビスマス置換希土類鉄ガーネット単結晶膜の製造方法、ファラデー回転子及び光アイソレータ
JP2022013228A (ja) * 2020-07-03 2022-01-18 信越化学工業株式会社 ビスマス置換希土類鉄ガーネット単結晶膜の製造方法、ファラデー回転子及び光アイソレータ
JP7348142B2 (ja) 2020-07-03 2023-09-20 信越化学工業株式会社 ビスマス置換希土類鉄ガーネット単結晶膜の製造方法

Also Published As

Publication number Publication date
JPWO2003000963A1 (ja) 2004-10-14
US20040177801A1 (en) 2004-09-16
KR20040018278A (ko) 2004-03-02
EP1403403A4 (en) 2007-07-11
CN1547627A (zh) 2004-11-17
KR100552094B1 (ko) 2006-02-13
EP1403403A1 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
JPWO2004067813A1 (ja) 磁性ガーネット単結晶膜形成用基板、光学素子およびその製造方法
Wang et al. Microwave and magnetic properties of double-sided hexaferrite films on (111) magnesium oxide substrates
WO2003000963A1 (fr) Substrat permettant de former une couche mince de monocristal de grenat magnetique, dispositif optique et procede de production associe
JP2004269305A (ja) 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法
JP2014189472A (ja) ビスマス置換希土類鉄ガーネット単結晶及びその製造方法
WO2004070091A1 (ja) 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法
US4057458A (en) Method of making nickel zinc ferrite by liquid-phase epitaxial growth
US4293371A (en) Method of making magnetic film-substrate composites
CN114318536B (zh) 铋掺杂稀土铁石榴石单晶薄膜、其制备方法以及光学器件
US4202930A (en) Lanthanum indium gallium garnets
JP3816591B2 (ja) ビスマス置換希土類鉄ガーネット単結晶膜の製造方法
JP2004269283A (ja) 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法
TW202208703A (zh) 鉍取代稀土類鐵石榴石單結晶膜之製造方法、法拉第旋轉器及光隔離器
JPH09202697A (ja) Bi置換型ガーネットの製造方法
JPH10139596A (ja) 単結晶基板
JP2007210879A (ja) 磁性ガーネット単結晶及びその製造方法並びにそれを用いた光学素子
JP2002308696A (ja) ガーネット単結晶基板およびそれを用いたビスマス置換希土類ガーネット単結晶膜の製造方法
JPS6065511A (ja) 磁性酸化物単結晶の製造方法
US4293372A (en) Growth of single-crystal magnetoplumbite
JP3743440B2 (ja) 置換型ガーネット磁性体薄膜形成用液体組成物およびそれを用いた磁性体薄膜とその薄膜の製造方法
JPH0354454B2 (ja)
JP2763040B2 (ja) 酸化物ガーネット単結晶
JPH05339099A (ja) 磁気光学ガーネット
JPH1192290A (ja) ビスマス置換型ガーネット厚膜材料及びその製造方法
JP2005314135A (ja) ビスマス置換型磁性ガーネット膜の製造方法および膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003507338

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037016641

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002741236

Country of ref document: EP

Ref document number: 10481632

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028164989

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002741236

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002741236

Country of ref document: EP