WO2002101304A1 - Circuit refrigerant - Google Patents

Circuit refrigerant Download PDF

Info

Publication number
WO2002101304A1
WO2002101304A1 PCT/JP2002/005337 JP0205337W WO02101304A1 WO 2002101304 A1 WO2002101304 A1 WO 2002101304A1 JP 0205337 W JP0205337 W JP 0205337W WO 02101304 A1 WO02101304 A1 WO 02101304A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
receiver
refrigerant circuit
compressor
pressure
Prior art date
Application number
PCT/JP2002/005337
Other languages
English (en)
French (fr)
Inventor
Shinichi Sakamoto
Hiroshi Nakayama
Mikihiko Kuroda
Yasuhiko Oka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP02728202A priority Critical patent/EP1396689A4/en
Priority to US10/479,597 priority patent/US6895768B2/en
Publication of WO2002101304A1 publication Critical patent/WO2002101304A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Definitions

  • the present invention relates to a refrigerant circuit used in a heat source unit of a hot water supply system. Background technology Details 1
  • a heat pump hot water supply apparatus includes a tank unit 7I having a hot water storage tank 70 and a heat source unit 73 having a refrigerant circuit 72, as shown in FIG.
  • the refrigerant circuit 72 also includes a compressor 74, a condenser (water heat exchanger) 75, a receiver 76, an expansion valve 77, and an evaporator 78.
  • the tank unit 7I includes the hot water storage tank 70 and a circulation path 79, and the circulation path 79 is provided with a pump 80 and a heat exchange path 8I.
  • the heat exchange path 8I is composed of the water heat exchanger 75.
  • the stored water flows out from the water intake provided at the bottom of the hot water storage tank 70 to the circulation path 79, and this heats. Circulate through the exchange 8 I. At that time, this hot water is heated (boiled) by the condenser (water heat exchanger) 75 and returned to the upper part of the hot water storage tank 70 from the hot water supply port. As a result, high temperature hot water is stored in the hot water storage tank 70 .
  • refrigerants such as dichlorodifluoromethane (R-12) and chlorodifluoromethane (R-22) have been used as refrigerants in the refrigerant circuit.
  • alternative refrigerants such as I,l,I,2-tetrafluoroethane (R-I34a) have come to be used.
  • R-I34a refrigerant
  • a supercritical refrigerant such as carbon dioxide gas is useful as the natural refrigerant.
  • the supercritical refrigerant referred to here means that the compressor reaches the critical pressure Refrigerant that performs a refrigeration cycle by compressing more than force.
  • FIG. 26 shows a refrigeration cycle of a refrigerant circuit using a supercritical refrigerant such as carbon dioxide gas.
  • a supercritical refrigerant such as carbon dioxide gas.
  • the present invention was made to solve the above-mentioned conventional drawbacks, and one object thereof is to provide a refrigerant circuit capable of maintaining an appropriate refrigerating cycle under various operating conditions. .
  • Invention disclosure
  • the refrigerant circuit of the first invention includes a compressor 15, a radiator 16, a receiver 18, an expansion valve 19, and an evaporator 20, and the compressor 15 raises the refrigerant to a critical pressure or higher. It is a refrigerant circuit that performs a refrigeration cycle by compressing.
  • a cooling unit 17 is provided on the upstream side of the receiver 18 to cool the bran that flows out from the radiator 16 .
  • the first invention comprises a compressor 15, a condenser 16, a receiver 18, an expansion valve 19, and an evaporator 20, and uses supercritical refrigerant as a refrigerant.
  • the circuit is characterized in that a cooling section 17 for cooling the refrigerant flowing out from the condenser 16 is provided on the upstream side of the receiver 18.
  • the refrigerant flowing into the receiver 18 can be cooled by the cooling unit 17, so the load fluctuations on the radiator 16 side and the evaporator 20 side due to various environments etc.
  • the sufficiently cooled high-density refrigerant can be stored in the receiver 18 .
  • an appropriate amount of refrigerant can be circulated in this refrigerant circuit.
  • the refrigerant circuit of the second invention is characterized in that part of the evaporator 20 functions as an air heat exchanger and this serves as the cooling section 17 .
  • the cooling unit 17 is configured by a part of the evaporator 20, it is possible to achieve simplification of the whole without requiring a separate heat exchanger. Obviously, since the cooling unit 17 is configured by a part of the evaporator 20, it is possible to achieve simplification of the whole without requiring a separate heat exchanger. Obviously, since the cooling unit 17 is configured by a part of the evaporator 20, it is possible to achieve simplification of the whole without requiring a separate heat exchanger. Become.
  • the refrigerant circuit of the third invention is characterized in that the cooling unit 17 exchanges heat with the refrigerant on the outlet side of the evaporator 20 .
  • the refrigerant on the outlet side of the evaporator 20 has a low temperature and a low pressure, and the refrigerant entering the receiver 18 can be reliably cooled with this refrigerant.
  • the refrigerant circuit of the fourth invention includes a compressor 15, a radiator 16, a receiver 18, an expansion valve 19, and an evaporator 20, and the compressor 15 compresses the refrigerant to a critical pressure or higher. It is a refrigerant circuit that performs a refrigeration cycle by A heat exchange means 30 is provided to exchange heat between the high-pressure refrigerant in the receiver 18 and the low-pressure refrigerant.
  • the fourth invention comprises a compressor 15, a condenser 16, a receiver 18, an expansion valve 19, and an evaporator 20, and uses a supercritical refrigerant as a refrigerant.
  • a heat exchange circuit that exchanges heat between the high-pressure refrigerant in the receiver 18 and the low-pressure refrigerant It is characterized by providing means 30.
  • the refrigerant in the receiver 18 can be reliably cooled with the low-pressure refrigerant. This can promote accumulation of the refrigerant in the receiver 18, and can prevent a surplus refrigerant state. Also, the low-pressure refrigerant is heated conversely, and wet compression of the compressor 15 can be prevented.
  • the refrigerant circuit of the fifth invention is characterized in that the low-pressure refrigerant is the refrigerant on the inlet side of the evaporator 20 .
  • the refrigerant on the inlet side of the evaporator 20 has a low temperature and a low pressure, and the refrigerant in the receiver 18 can be reliably cooled with this refrigerant.
  • the refrigerant circuit of the sixth invention is characterized in that the low-pressure refrigerant is refrigerant on the outlet side of the evaporator 20 .
  • the refrigerant on the outlet side of the evaporator 20 has a low temperature and a low pressure, and the refrigerant in the receiver 18 can be reliably cooled with this refrigerant.
  • the refrigerant circuit of the seventh invention comprises a main passage 54 for allowing high-pressure refrigerant from the compressor 15 to pass through the radiator 16 and flow into the expansion valve 19;
  • a bypass circuit 55 is provided for allowing the high-pressure refrigerant to flow into the receiver 18, and the refrigerant having a temperature higher than the refrigerant temperature on the outlet side of the radiator 16 flows into the receiver 18.
  • the seventh invention comprises a main passage 54 through which the high-pressure refrigerant from the compressor 15 passes through the condenser 16 and flows into the expansion valve 19;
  • a bypass circuit 55 is provided for the high-pressure refrigerant to flow into the receiver 18, and the refrigerant having a temperature higher than the refrigerant temperature on the outlet side of the condenser 16 flows into the receiver 18. .
  • the high-pressure refrigerant flowing into the receiver 18 passes through the bypass circuit 55, and the refrigerant having a higher temperature than the refrigerant at the outlet side of the radiator 16 Inflow this receiver 1 8 .
  • the refrigerant temperature change in the receiver 18 can be ensured, and a large refrigerant density difference for each operating area can be ensured.
  • the refrigerant circuit of the eighth invention is characterized in that the bypass circuit 55 is provided with a throttle mechanism S.
  • the throttle mechanism S can change the flow rate of refrigerant passing through the receiver 18 .
  • the refrigerant circuit of the ninth invention comprises a compressor 15, a radiator 16, a receiver 18, an expansion valve 19, and an evaporator 20, and the compressor 15 compresses the refrigerant to a critical pressure or higher. It is a refrigerant circuit that performs a refrigeration cycle by A bypass passage 55 is provided for allowing the high-pressure refrigerant from the compressor 15 to flow into the receiver 18, and the high-pressure refrigerant in the receiver 18 and the inlet side of the evaporator 20 Performs heat exchange with low-pressure refrigerant.
  • the refrigerant circuit of the ninth invention includes a compressor 15, a condenser 16, a receiver 18, an expansion valve 19, and an evaporator 20, and uses a supercritical refrigerant to be used as a supercritical refrigerant.
  • a bypass passage 55 is provided for allowing the high-pressure refrigerant from the compressor 15 to flow into the receiver 18, and the high-pressure refrigerant in the receiver 18 and the evaporator 2 It is characterized by performing heat exchange with the low-pressure refrigerant on the inlet side of 0.
  • the refrigerant in the receiver 18 can be reliably cooled with the low-pressure refrigerant. As a result, it is possible to promote accumulation of the refrigerant in the receiver 18, and to reliably prevent an excessive refrigerant state.
  • the refrigerant circuit of the tenth invention is characterized in that a flow control valve 56 is provided on the outlet side of the receiver 18 .
  • the refrigerant temperature when the flow control valve 56 is fully opened, the refrigerant temperature can be increased and the amount of refrigerant accommodated in the receiver 18 can be reduced. Further, when controlling the degree of opening of the flow rate regulating valve 56, the required refrigerant temperature can be maintained, and the appropriate amount of refrigerant can be accommodated in the receiver 18. Furthermore, when the flow regulating valve 56 is fully closed, the refrigerant temperature can be lowered and the amount of refrigerant accommodated in the receiver 18 can be increased.
  • the amount of refrigerant circulating in the refrigerant circuit can be maintained at an appropriate amount even when load fluctuations occur on the radiator 16 side and the evaporator 20 side, Stable operation is possible and COP does not decrease.
  • the recipe that should be set The capacity of the bar can be set small, and it is possible to reduce the size of the entire refrigerant circuit and reduce the manufacturing cost.
  • the refrigerant entering the receiver 18 can be reliably cooled. This ensures that a proper refrigeration cycle is maintained.
  • an appropriate amount of refrigerant can be circulated through the refrigerant circuit under the condition that surplus refrigerant is generated in the conventional refrigerant circuit.
  • the refrigerant on the low-pressure side is heated conversely, and wet compression 15 of the compressor can be prevented, so the reliability of the compressor 15 is improved.
  • surplus refrigerant can be treated more reliably, and C0P can be improved and costs can be reduced.
  • the refrigerant circuit of the seventh invention a large refrigerant density absorption difference can be obtained for each operating area.
  • the surplus refrigerant absorption capacity is increased, the decrease in the refrigerating effect is reliably prevented, and the C ⁇ P can be improved.
  • the refrigerant circuit of the eighth invention it is possible to surely improve the excess refrigerant absorption capacity, and it is possible to improve the reliability of the refrigerant circuit.
  • an appropriate amount of refrigerant can be circulated in this refrigerant circuit under the condition that surplus refrigerant is generated in the conventional refrigerant circuit.
  • surplus refrigerant generated due to differences in operating conditions can be treated, and COP can be improved and costs can be reduced.
  • FIG. 1 is a simplified diagram showing a first embodiment of the refrigerant circuit of the invention.
  • FIG. 2 is a perspective view of the cooling portion of the refrigerant circuit.
  • FIG. 3 is a graph showing a refrigeration cycle of the refrigerant circuit.
  • FIG. 4 is a simplified diagram of the refrigerant circuit using another cooling section.
  • FIG. 5 is a simplified diagram of the refrigerant circuit using another cooling section.
  • FIG. 6 is a front view of another cooling unit.
  • FIG. 7 is a simplified diagram showing a second embodiment of the refrigerant circuit of the invention.
  • FIG. 8 is a simplified diagram showing a modification of the refrigerant circuit.
  • FIG. 9 is a simplified diagram showing a third embodiment of the refrigerant circuit of the invention.
  • FIG. 10 is a simplified diagram showing a modification of the refrigerant circuit.
  • FIG. 11 is a simplified diagram showing another modification of the refrigerant circuit.
  • FIG. 12 is a simplified diagram showing a fourth embodiment of the refrigerant circuit of this invention.
  • FIG. 13 is a simplified diagram showing a modification of the refrigerant circuit.
  • FIG. 14 is a simplified diagram showing another modification of the medium circuit.
  • 15 is a simplified schematic showing a receiver that can be used in the refrigerant circuits of FIGS. 7-14;
  • FIG. 16 is a simplified diagram showing another receiver.
  • FIG. 17 is a simplified diagram showing a fifth embodiment of the refrigerant circuit of the invention.
  • FIG. 18 is a simplified front view showing a receiver used in the refrigerant circuit of FIG. 17;
  • FIG. 19 is a simplified plan view showing a receiver used in the refrigerant circuit of FIG. 17.
  • FIG. 20 is a simplified diagram showing a sixth embodiment of the refrigerant circuit of the present invention.
  • FIG. 21 is a cross-sectional view of the heating means of the refrigerant circuit.
  • FIG. 22 is a simplified diagram showing the state of the refrigerant circuit at startup.
  • FIG. 23 is a simplified diagram showing a seventh embodiment of the refrigerant circuit of the invention.
  • FIG. 24 is a simplified diagram showing an eighth embodiment of the refrigerant circuit of the present invention.
  • FIG. 25 is a simplified diagram showing a ninth embodiment of the refrigerant circuit of the present invention.
  • FIG. 26 is a graph showing a refrigeration cycle of a conventional refrigerant circuit.
  • FIG. 27 is a simplified diagram of a conventional refrigerant circuit.
  • FIG. 28 is a graph of a refrigeration cycle for explaining the shortcomings of the conventional refrigerant circuit.
  • Fig. 29 is a graph diagram of a refrigeration cycle to explain the shortcomings of the conventional refrigerant circuit. is. Best Mode for Carrying Out the Invention
  • FIG. 1 shows a simplified diagram of a heat pump water heater using this refrigerant circuit. Use something that heats up.
  • the tank unit 1 includes a hot water storage tank 3, and hot water stored in the hot water storage tank 3 is supplied to a bathtub or the like (not shown). Therefore, the hot water storage tank 3 is provided with a water supply port 5 on its bottom wall and a hot water outlet 6 on its upper wall. of hot water comes out.
  • a water supply passage 8 having a check valve 7 is connected to the water supply port 5
  • a water intake 10 is opened in the bottom wall of the hot water storage tank 3
  • a side wall (peripheral wall) of the hot water storage tank 3 has a has a hot water supply port 11.
  • the water intake port 10 and the hot water supply port 11 are connected by a circulation path 12, and a water circulation pump 13 and a heat exchange path 14 are interposed in this circulation path 12.
  • the hot water storage tank 3 is provided with four remaining hot water detectors 47a, 47b, 47c, and 47d at a predetermined pitch in the vertical direction.
  • a temperature sensor 48 is provided.
  • Each of the remaining hot water detectors 47a, 47b, 47c, 47d and the temperature sensor 48 is, for example, a sensor.
  • the circulation path 12 is provided with a water intake unit 64 on the upstream side of the heat exchange path 14 (specifically, on the upstream side of the pump 13), and the heat exchange path 14
  • a discharge thermistor 65 is provided on the downstream side of the .
  • the heat source unit 2 includes a refrigerant circuit R according to the present invention
  • the refrigerant circuit R includes a compressor 15, a water heat exchanger (condenser) 16 constituting the heat exchange path 14, It is configured by connecting a cooling unit 17, a receiver 18, an expansion valve 19 constituting a decompression mechanism, an evaporator 20, and the like in this order.
  • the refrigerant of this refrigerant circuit R for example, carbon dioxide (CO 2 ) compressed to a critical pressure or higher is used, which is so-called supercritical carbon dioxide.
  • CO 2 carbon dioxide
  • the condenser 16 is the It has the function of cooling a high-temperature, high-pressure supercritical refrigerant, and is sometimes called a gas cooler or radiator.
  • the cooling unit 17 cools the refrigerant flowing out of the condenser 16, and is composed of the liquid-gas heat exchanger 21 shown in FIG.
  • This liquid-gas heat exchanger 21 has a double-pipe structure, and includes a first passage 22 through which the refrigerant from the condenser 16 passes and a second passage 23 through which the refrigerant from the evaporator 20 passes. and That is, the first passage 22 forms part of the refrigerant flow path 24 connecting the condenser 16 and the receiver 18, and the second passage 23 forms part of the evaporator 20 and the compressor 15. constitutes a part of the refrigerant channel 25 that connects the .
  • the cooling unit 17 functions as a refrigerant-refrigerant heat exchanger, and heat is exchanged between the high-pressure, high-temperature refrigerant passing through the first passage 22 and the low-pressure, low-temperature refrigerant passing through the second passage 23. and the refrigerant entering the receiver 18 is cooled. In addition, since the low-pressure refrigerant is heated, wet compression of the compressor 15 can be prevented.
  • this refrigerant circuit R includes a refrigerant flow path 40 connecting the compressor 15 and the water heat exchanger 16, a refrigerant flow path 41 connecting the expansion valve 19 and the evaporator 20, and are connected by a bypass circuit 42, and a defrost valve 43 is provided in the bypass circuit 42.
  • the refrigerant channel 40 is provided with an HPS 45 as a pressure protection switch and a pressure sensor 46 .
  • This bypass circuit 42 is for supplying hot gas discharged from the compressor 15 to the evaporator 20 to defrost the evaporator 20 for defrosting operation. Therefore, the heat source unit 2 is provided with a defrost control means (not shown) for switching between the normal water heating operation and the defrost operation.
  • the water heat exchanger 16 functions as a condenser and heats the hot water passing through the heat exchange path 14. Further, when the defrost operation is performed, the expansion valve 19 is fully closed, the defrost valve 43 is opened, hot gas is flowed to the evaporator 20, and the hot gas heats the evaporator 20. to keep the evaporator 20 from frosting.
  • the defrost control means is configured using, for example, a microphone mouth computer. Next, the operation operation (water heating operation) of the refrigerant circuit R will be described.
  • the compressor 15 is driven and the water circulation pump 13 is driven (actuated). Then, the stored water (hot water) flows out from the water intake 10 provided at the bottom of the hot water storage tank 3, and flows through the heat exchange path 14 of the circulation path 12. At that time, this hot water is heated (boiled) by the water heat exchanger, which is the condenser 16, and is returned from the hot water supply port 11 to the upper part of the hot water storage tank 3. By continuing such operations, hot water is stored in the hot water storage tank 3 . Under the current power rate system, the unit price of electricity at nighttime is set lower than during the daytime, so this operation should be carried out during the late-night hours, when the rate is low, to reduce costs. preferable.
  • the refrigerant circuit R shown in FIG. 1 since the cooling part 17 is provided, the refrigerant is sufficiently cooled, and high-density refrigerant is contained in the receiver 18 on the high-pressure side upstream of the expansion valve 19. accumulate. That is, surplus refrigerant can be treated, the amount of refrigerant circulating in the refrigerant circuit R becomes appropriate, and the refrigeration cycle as shown in FIG. 3 is realized. Therefore, stable operation is possible and COP does not decrease. Moreover, the capacity of the receiver to be provided can be set small, and it is possible to reduce the size of the entire refrigerant circuit and reduce the manufacturing cost. Stable refrigerating operation can be performed. Next, in the refrigerant circuit R shown in FIG.
  • the cooling unit 17 is configured with an air heat exchanger 26, and constitutes a part of the refrigerant flow path 24 connecting the condenser 16 and the receiver 18. It has a flow path, and the refrigerant exchanges heat with the air when passing through this flow path. Therefore, the cooling unit 17 can also adjust the amount of refrigerant accumulated in the receiver 18, and the amount of refrigerant circulating in the refrigerant circuit becomes appropriate, enabling stable refrigeration operation.
  • part of the evaporator 20 functions as an air heat exchanger. and this is the cooling part 17. That is, the evaporator 20 in this case, as shown in FIG. Prepare.
  • Refrigerant from the expansion valve 19 is passed through the first tube 28, and refrigerant from the condenser 16 is passed through the second tube 29.
  • the main body 27 and the first tube 28 etc. exhibit the original evaporating function, and the main body 27 and the second tube 29 etc. form a cooling part ( air heat exchanger) 1 7.
  • the first tube 28 has a meandering shape, and both openings 28a and 28b thereof are open to one side surface 27a of the main body 27.
  • the second tube 29 is U-shaped, and both openings 29a and 29b thereof are open to one side surface 27a of the main body 27.
  • a part of the evaporator 20 forming the cooling unit 17 is not limited to the one shown in FIG.
  • the length dimensions of the second tubes 28 and 29 can also be freely changed.
  • the refrigerant circuit R in FIG. 5 can treat surplus refrigerant generated due to environmental changes such as an increase in the temperature of incoming water (the temperature of water entering the water heat exchanger 16), as in the case of FIG. 1, etc.
  • the amount of refrigerant circulating in the refrigerant circuit R becomes appropriate, and stable refrigeration operation can be performed.
  • the cooling unit 17 can be configured, and the overall size of the refrigerant circuit R can be made compact and the manufacturing cost can be reduced.
  • the receiver 18 in this case is connected to an inflow pipe 50 into which the refrigerant from the condenser 16 flows, and an outflow pipe 51 into which the refrigerant from the receiver 18 flows into the expansion valve 19.
  • a refrigerant channel 41 connecting the expansion valve 19 and the evaporator 20 is passed through. This constitutes the heat exchange means 30 for exchanging heat between the high-pressure refrigerant flowing into the receiver 18 from the inflow pipe 50 and the low-pressure refrigerant flowing through the refrigerant channel 41 .
  • the refrigerant on the low-pressure side for heat exchange is the refrigerant on the inlet side of the evaporator 20, so heat exchange can be reliably performed, and the inside of the receiver 18 stagnation of the refrigerant can be promoted. Therefore, even under conditions where excess refrigerant is generated, the amount of refrigerant circulating in the refrigerant circuit R becomes an appropriate amount, which prevents wet operation and lowering of COP. Also, in the refrigerant circuit R shown in FIG.
  • the heat exchange means 30 for exchanging heat between the high-pressure refrigerant in the receiver 18 and the low-pressure refrigerant flowing through the refrigerant channel 25 can be configured, and the refrigerant in the receiver 18 It is possible to promote the accumulation of refrigerant and prevent the excessive refrigerant state.
  • the bypass circuit 55 has a connection pipe 57 connected to the expansion valve 19 via the heat exchanger 49, and the bypass circuit 55 branches from the refrigerant discharge passage 40 and connects to the receiver 18. It has a first pipe 58 and a second pipe 59 connected from the resin 18 to the main passage 54.
  • the heat exchanger 49 exchanges heat between the refrigerant flowing through the connection pipe 57 and the refrigerant flowing through the refrigerant channel 25.
  • the high-pressure refrigerant from the compressor 15 flows through the condenser 16 heat exchanger 49 - expansion valve 19 ⁇ evaporator 20 receiver 18 ⁇ heat exchanger Compressor 4 9 Compressor 1 5 and flows. Therefore, the hot water circulating in the circulation path 12 (not shown in this case) can be heated by the condenser 16 as a water heat exchanger.
  • the bypass circuit 55 the high-pressure refrigerant from the compressor 15 flows into the receiver 18, flows into the expansion valve 19 from the receiver 18, and further flows out of the evaporator 20. returns to the compressor 15 via the refrigerant flow path 25.
  • the heat exchange means 30 can be configured to exchange heat between the high-pressure refrigerant flowing into the receiver 18 from the first pipe 58 and the low-pressure refrigerant flowing through the refrigerant channel 25.
  • the refrigerant circuit R shown in FIG. 10 connects the condenser 16 and the receiver 18 with the first pipe 58, and the refrigerant circuit R shown in FIG. At 8, the outlet of the condenser 16 and the receiver 18 are connected.
  • heat exchange can be performed between the high-pressure refrigerant in the receiver 18 and the low-pressure refrigerant flowing through the refrigerant channel 25.
  • a throttle mechanism S (for example, a capillary tube) is interposed in the first pipe 58 of the refrigerant circuit I shown in FIG. 12 or the refrigerant circuit R shown in FIG.
  • the refrigerant circuit R shown has a throttle mechanism S (for example, a capillary tube) interposed in the second tube 59 of the refrigerant circuit R shown in FIG.
  • the flow rate of refrigerant passing through the receiver 18 can be changed. That is, surplus refrigerant generated due to differences in operating conditions can be reliably stored in the receiver 18, and surplus refrigerant absorption capacity can be improved.
  • the throttle mechanism S is configured by an electric valve instead of the capillary tube, and exhibits the same effects as the refrigerant circuit R shown in FIG. Therefore, in the refrigerant circuit R shown in FIG. 12 as well, a motor-operated valve may be used instead of the capillary tube. Furthermore, in the refrigerant circuits R shown in FIGS. 9 and 11, the bypass circuit 55 may be provided with a throttle mechanism S.
  • the state of the refrigerant in the receiver 18 is determined by the state of the outlet of the water heat exchanger (condenser) 16.
  • the surplus refrigerant absorption capacity of the receiver 18 is (refrigerant density at the outlet of the water heat exchanger 16) X volume. For this reason, they do not have a very large absorption capacity.
  • the refrigerant circuit R shown in FIGS. 9 to 13 (refrigerant circuit R shown in FIG. 11 is omitted)
  • the refrigerant Refrigerant with a temperature higher than the outlet temperature
  • the refrigerant density difference in each operating area is It can be made large, and the surplus refrigerant absorption capacity increases.
  • the refrigerant circuit R shown in FIG. 9 exhibits the greatest excess refrigerant absorption capacity.
  • the coolant temperature change width in the receiver 18 is the largest in the coolant circuit R shown in FIG.
  • the heat loss is compared for the refrigerant circuits R shown in FIGS. 9 to 11, the refrigerant circuit R shown in FIG.
  • the refrigerant circuit R shown is smaller than that, and the refrigerant circuit R shown in FIG. 11 is the smallest. This is because in the refrigerant circuit R shown in FIG. 11, the first pipe 58 branches from the outlet side of the condenser 16.
  • the receiver 18 in the refrigerant circuit R shown in FIGS. 7 to 14 may be the one shown in FIG.
  • the refrigerant flow path 41 or the refrigerant flow path 25 is arranged along the outer surface of the receiver 18, whereby the high-pressure refrigerant in the receiver 18 and the refrigerant flow path 41 (or It can exchange heat with the low-pressure refrigerant flowing through the refrigerant channel 25).
  • the refrigerant channel 41 or the refrigerant channel 25 is arranged along the receiver 18, as shown in FIG. It can be wrapped around the surface.
  • the first pipe 58 of the bypass circuit 55 is connected to the upstream portion of the water heat exchanger 16 as indicated by the phantom lines, and the bypass circuit 5
  • the second pipe 59 of 5 may be connected to the middle part of the water heat exchanger 16.
  • a bypass passage 55 branching from the condenser 16 and joining the condenser 16 is provided at a position downstream of the branched portion, and this bypass passage 5 A receiver 18 may be interposed at 5 to exchange heat between the high-pressure refrigerant in the receiver 18 and the low-pressure refrigerant on the inlet side of the evaporator 20 . That is, the main passage 54 through which the high-pressure refrigerant from the compressor 15 passes through the condenser 16 and flows into the expansion valve 19 is formed by connecting the refrigerant discharge passage 40 and the connecting pipe 57. and this main aisle 5 4 Bypass circuit 55 is connected to .
  • the bypass circuit 55 has its first pipe 58 connected slightly upstream from the middle of the condenser 16, and its second pipe 59 connected to the middle of the condenser 16.
  • a receiver 18 is interposed between the first pipe 58 and the second pipe 59. Therefore, the high-pressure refrigerant branched from the main passage 55 passes through the receiver 18 and joins (circulates) the main passage 55.
  • the refrigerant in the main passage 54 passes through the heat exchanger (a heat exchanger for supercooling the refrigerant flowing out of the condenser 16) 49 by flowing through the connecting pipe 57. It will flow into the expansion valve 19 via.
  • the heat exchanger a heat exchanger for supercooling the refrigerant flowing out of the condenser 16
  • the receiver 18 is installed in parallel with the refrigerant flow path (low-pressure pipe) 41 connecting the expansion valve 19 and the evaporator 20 so as to be capable of exchanging heat.
  • the portion of the refrigerant flow path 41 extending along the receiver 18 is formed in a so-called zigzag shape, and the protrusion 41a... is connected to the outer wall 18a of the receiver 18 by connecting means such as brazing.
  • heat is exchanged between the high-pressure refrigerant passing through the receiver 18 and the low-pressure refrigerant flowing through the refrigerant channel 41.
  • a second pipe 59 connecting the receiver 18 and the condenser 16 is provided with a flow control valve 56 comprising an electric valve.
  • this flow control valve 56 is provided on the outlet side of the receiver 18 . Therefore, when the flow control valve 56 is fully opened, the refrigerant temperature can be increased and the amount of refrigerant accommodated in the receiver 18 can be reduced. , the refrigerant capacity in the receiver 18 can be made appropriate, and when the flow control valve 56 is fully closed, the refrigerant temperature can be lowered and the refrigerant capacity in the receiver 18 can be increased. can be done. As a result, surplus refrigerant generated due to differences in operating conditions can be stably and reliably treated.
  • the refrigerant circuit of FIG. 17 includes a defrost pipe (bypass circuit) 42 in which a defrost valve 43 is interposed. That is, the defrosting pipe 42 branched from the refrigerant discharge passage 40 is connected to the refrigerant passage 41 on the inlet side of the evaporator 20 . This can prevent heat loss during defrosting.
  • the positions of the branching and merging portions of the bypass circuit 55 can be freely changed as indicated by the solid lines and phantom lines in FIGS.
  • the first pipe 58 of the bypass circuit 55 is connected to the upstream part of the condenser 16
  • the second pipe 59 of the bypass circuit 55 is connected to the downstream part of the condenser 16. The point is that a high-low pressure difference is generated between the first pipe 58 and the second pipe 59 in front of the expansion valve 19 .
  • the refrigerant circuit I may be provided with a liquid separator (accumulator) in order to prevent the liquid from returning to the compressor 15 .
  • accumulator liquid separator
  • the provision of the accumulator raises the cost, increases the suction pressure loss of the compressor 15, lowers the COP, and furthermore, there are problems such as the generation of abnormal noise in the accumulator.
  • the refrigerant suction path 32 of the compressor 15 (the flow path from the cooling part 17 to the compressor 15 in the refrigerant flow path 25) is provided with a liquid return prevention Heating means 33 are preferably provided.
  • the heating means 33 is an electromagnetic induction heater, and as shown in FIG. That is, the bobbin 34 is composed of a cylindrical portion 34a and outer flange portions 34b, 34b connected to both ends of the cylindrical portion 34a, and electromagnetic induction heating is applied to the cylindrical portion 34a. Hiichi 3 5 is wrapped around.
  • the iron pipe 36 and a heat insulating material 37 covering the iron pipe 36 are fitted inside the cylindrical portion 34a, and a heat insulating material 38 is fitted outside the electromagnetic induction heating heater 35.
  • the iron pipe 36 constitutes a part of the refrigerant suction path 32.
  • the heating means 33 has a power source (not shown) that supplies current to the electromagnetic induction heater 35, and the electromagnetic induction is generated from this power source. When a current is passed through the induction heating heater 35, countless eddy currents are generated in the iron pipe 36, which heats the iron pipe 36, thereby heating the refrigerant flowing through the iron pipe 36.
  • control section of this refrigerant circuit R includes control means (not shown) for controlling the heating means 33 . That is, as shown in FIG. 20, thermistors 60 and 61 are provided near the suction port of the refrigerant suction passage 32 and near the discharge port of the refrigerant discharge passage 40, respectively, and the evaporator 2 0 is provided with an evaporator thermistor 62, and based on this evaporator thermistor 62 and the thermistor 60 of the refrigerant suction path 32, the liquid back to the compressor 15 is Determine whether or not it occurs.
  • 63 is a thermistor for outside air. Although not shown, these thermistors 60, 61, 62, and 63 are also provided in the refrigerant circuit R in FIG. 1 and the like.
  • the control means operates the heating means 33 to heat the refrigerant in the refrigerant suction passage 32 during defrost operation, defrost recovery, and other transitional times. This prevents liquid return (liquid back) to the compressor 15.
  • the heating means 33 it is possible to prevent liquid backflow without providing an accumulator, and it is possible to reduce costs and prevent a decrease in C0P due to suction pressure loss. be able to. Furthermore, it is possible to eliminate the cause of abnormal noise generation, enabling quiet operation.
  • the flow rate is throttled by throttling the regulating valve 66 during transitions such as when starting operation, when defrost operation is started, during defrost operation, and when defrost is restored.
  • heating is performed by the heating means 33 to prevent liquid backflow, and more reliable liquid backflow prevention can be achieved.
  • the refrigerant circuit R shown in FIG. 24 is provided with a liquid return prevention valve 67, for example, an electromagnetic valve, between the compressor 15 and the condenser 16.
  • the expansion valve 19, which is a motor-operated valve, is fully closed or set to a predetermined angle or less for a predetermined time after the compressor 15 is started or during the defrost operation, and the liquid return prevention valve (solenoid valve) 67 is closed. is closed.
  • the liquid return prevention valve (solenoid valve) 67 is closed.
  • the heating means 33 since the heating means 33 is provided in the refrigerant suction path 32, the heating means 33 heats the refrigerant suction path 3 when the operation is started or the defrost operation is started.
  • refrigerant can be heated to prevent liquid backflow to the compressor 15. Furthermore, in the refrigerant circuit I shown in FIG. 24, as in the refrigerant circuit R shown in FIG. The flow rate may be throttled by the regulating valve 66. Next, in the refrigerant circuit R shown in FIG. 25, without providing the heating means 33, the refrigerant suction path 32 and the refrigerant discharge path 40 of the compressor 15 are provided with, for example, liquid return prevention valves 68 and 6, respectively. 9 is provided, and these liquid return prevention valves 68, 69 prevent liquid back to the compressor 15 after operation is stopped.
  • both the liquid return prevention valves 68 and 69 are closed to prevent the refrigerant from flowing into the compressor 15 from the refrigerant suction path 32 and the refrigerant discharge path 40, and the next compressor 1 This is to prevent the compressor 15 from being damaged due to start-up failure of 5 and liquid compression.
  • the heating means 33 is provided in the refrigerant suction path 32, and this heating means The refrigerant may be heated at 33 to prevent liquid backflow to the compressor 15.
  • the heating means 33 used in FIG. 20 and the like may be composed of a hexagonal wire made of nichrome wire or the like, other than the electromagnetic induction heater.
  • the inside of the compressor 15 It is also preferable to allow the refrigerant to evaporate.
  • the refrigerant may be a supercritical refrigerant such as ethylene, ethane, or nitrogen oxide.
  • the condenser 16 has a function of cooling the high-temperature, high-pressure supercritical refrigerant compressed by the compressor 15, and is called a gas cooler (radiator).
  • the bran medium circuit according to the present invention is useful for a hot water supply apparatus, and is particularly suitable for performing a refrigeration cycle by compressing the refrigerant to a critical pressure or higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

明 冷媒回路 技術分野
この発明は、 例えば、 ヒー '。式給湯装置の熱源ュニッ トに使用される 冷媒回路に関するものである。 背景技術 細 1
一般に、 ヒートポンプ式給湯装置は、 図 2 7に示すように、 貯湯タンク 7 0 を有するタンクュニッ ト 7 Iと、 冷媒回路 7 2を有する熱源ュニッ ト 7 3とを備 えている。 また、 冷媒回路 7 2は、 圧縮機 7 4と凝縮器 (水熱交換器) 7 5とレ シ一バ 7 6と膨張弁 7 7と蒸発器 7 8とを備えている。 そして、 タンクユニッ ト 7 Iは、 上記貯湯タンク 7 0と循環路 7 9とを備え、 循環路 7 9には、 ポンプ 8 0と熱交換路 8 Iとが介設されている。 この場合、 熱交換路 8 Iは水熱交換器 7 5にて構成される。
従って、 圧縮機 7 4を駆動させると共に、 ポンプ 8 0を駆動 (作動) させる と、 貯湯タンク 7 0の底部に設けた取水口から貯溜水 (温湯) が循環路 7 9に流 出し、 これが熱交換路 8 Iを流通する。 そのときこの温湯は、 凝縮器 (水熱交換 器) 7 5によって加熱され (沸上げられ)、 給湯口から貯湯タンク 7 0の上部に 返流される。 これによつて、 貯湯タンク 7 0に高温の温湯を貯める。
また、 従来においては、 上記冷媒回路の冷媒として、 ジクロロジフルォロメ タン (R— 1 2 ) やクロロジフルォロメタン (R— 2 2 ) のような冷媒が使用さ れてきたが、 オゾン層の破壊、 環境汚染等の問題から、 I , l, I , 2—テトラ フルォロェタン (R— I 3 4 a ) のような代替冷媒が使用されるようになってい る。 しかしながら、 この: R— I 3 4 aにおいても、 依然として地球温暖化能が高 いなどの問題があることから、 近年では、 このような問題のない自然系冷媒を使 用することが推奨されつつある。 この自然系冷媒として炭酸ガス等の超臨界冷媒 が有用であることは、 公知である。 ここでいう超臨界冷媒とは、 圧縮機で臨界圧 力以上に圧縮して冷凍サイクルを行う冷媒をいう。 一解決課題一
そして、 炭酸ガス等の超臨界冷媒を使用した冷媒回路の冷凍サイクルは図 2 6に示すものとなる。 ところで、 温湯 (温水) を沸上げている場合において、 高 温の温水が貯湯タンクの下部にまで貯まっている状態では、 高温の温湯 (温水) が循環路へ流出することになる。 このため、 水熱交換器 7 5への入水温度が上昇 することになる。 水熱交換器 7 5への入水温度が上昇すれば、 図 2 8の実線で示 すような冷凍サイクルとなって、 凝縮過程 (放熱過程) でのェン夕ルビ差が狭く なり、 給湯能力及び C O Pが減少していた。
また、 外気温度が上昇することによつても、 その冷凍サイクルは図 2 9に示 すように、 運転範囲が小さくなつていた。
すなわち、各種環境により、凝縮側(放熱側)及び蒸発側の負荷変動が生じ、 この負荷変動により安定する冷媒サイクルも変動する。 そのため、 各冷媒サイク ルに必要とする冷媒量はそれぞれ異なり、 ある冷媒サイクルに合わせて冷媒を充 填したとしても、 運転状況により冷媒サイクルが変化する。 その結果、 充填した 冷媒量では、 過不足が生じて、 適切な冷媒サイクルを維持することができなくな るおそれがあった。
このように、 冷媒が臨界圧力以上に圧縮され、 高圧がいわゆる超臨界サイク ルとなる冷凍サイクルにおいては、 超臨界域での冷媒密度変化が連続的となる。 したがって、 従来では、 運転条件の違う運転エリアにより発生する余剰冷媒を処 理することが困難であるといえる。 そして、 余剰冷媒が処理できなければ、 湿り 運転となるおそれがある。 湿り運転となれば、 圧縮機 7 4の吐出温度が低下する ことになつて、 冷凍効果が減少して、 C O Pが低下する。 これを防止しようとす れば、 設計圧力を高くしなければならず、 コスト高となる。
この発明は、 上記従来の欠点を解決するためになされたものであって、 その 一の目的は、 各種の運転状況において適切な冷凍サイクルを維持することが可能 な冷媒回路を提供することにある。 発明の開示
そこで、 第 1の発明の冷媒回路は、 圧縮機 1 5と放熱器 1 6とレシーバ 1 8 と膨張弁 1 9と蒸発器 2 0とを備え、 上記圧縮機 1 5で冷媒を臨界圧力以上に圧 縮して冷凍サイクルを行う冷媒回路である。 そして、 上記レシーバ 1 8の上流側 に、 上記放熱器 1 6から流出した泠媒を冷却する冷却部 1 7を設けている。
換言すると、 第 1の発明は、 圧縮機 1 5と凝縮器 1 6とレシーバ 1 8と膨張 弁 1 9と蒸発器 2 0とを備え、 冷媒に超臨界で使用する超臨界冷媒を用いた冷媒 回路であって、 上記レシーバ 1 8の上流側に、 上記凝縮器 1 6から流出した冷媒 を冷却する冷却部 1 7を設けたことを特徴としている。
第 1の発明の冷媒回路では、 冷却部 1 7にて、 レシーバ 1 8に流入する冷媒 を冷却することができるので、 各種環境等により、 放熱器 1 6側及び蒸発器 2 0 側の負荷変動が生じる場合に、 十分冷却されて高密度状態となった冷媒をレシ一 バ 1 8に溜めることができる。 これにより、 適切な冷媒量でもってこの冷媒回路 を循環することができる。
第 2の発明の冷媒回路は、 上記蒸発器 2 0の一部を空気熱交換器として機能 させてこれを上記冷却部 1 7とすることを特徴としている。
上記第 2の発明の冷媒回路では、 冷却部 1 7を蒸発器 2 0の一部にて構成す るので、別途他の熱交換器を必要とせず、全体の簡素化を図ることが可能となる。
第 3の発明の冷媒回路は、 上記冷却部 1 7が蒸発器 2 0の出口側の冷媒と熱 交換を行うことを特徴としている。
上記第 3の発明の冷媒回路では、 蒸発器 2 0の出口側の冷媒は低温低圧であ り、 この冷媒にて、 レシ一バ 1 8に入る冷媒を確実に冷却することができる。
第 4の発明の冷媒回路は、 圧縮機 1 5と放熱器 1 6とレシーバ 1 8と膨張弁 1 9と蒸発器 2 0とを備え、 上記圧縮機 1 5で冷媒を臨界圧力以上に圧縮して冷 凍サイクルを行う冷媒回路である。 そして、 上記レシーバ 1 8内の高圧冷媒と、 低圧冷媒との熱交換を行う熱交換手段 3 0を設けている。
換言すると、 第 4の発明は、 圧縮機 1 5と凝縮器 1 6とレシーバ 1 8と膨張 弁 1 9と蒸発器 2 0とを備え、 冷媒に超臨界で使用する超臨界冷媒を用いた冷媒 回路であって、 レシーバ 1 8内の高圧冷媒と、 低圧冷媒との熱交換を行う熱交換 手段 3 0を設けたことを特徴としている。
上記第 4の発明の冷媒回路では、 低圧冷媒にてレシーバ 1 8内の冷媒を確実 に冷却することができる。 これにより、 レシーバ 1 8内の冷媒の溜まりを促進す ることができ、 余剰冷媒状態となるのを防止することができる。 また、 低圧冷媒 は逆に加熱され、 圧縮機 1 5の湿り圧縮を防止することができる。
第 5の発明の冷媒回路は、 上記低圧冷媒が、 上記蒸発器 2 0の入口側の冷媒 であることを特徴としている。
上記第 5の発明の冷媒回路では、 蒸発器 2 0の入口側の冷媒は低温低圧であ り、 この冷媒にてレシーバ 1 8内の冷媒を確実に冷却することができる。
第 6の発明の冷媒回路は、 上記低圧冷媒が、 上記蒸発器 2 0の出口側の冷媒 であることを特徴としている。
上記第 6の発明の冷媒回路では、 蒸発器 2 0の出口側の冷媒は低温低圧であ り、 この冷媒にてレシ一バ 1 8内の冷媒を確実に冷却することができる。
第 7の発明の冷媒回路は、 上記圧縮機 1 5からの高圧冷媒が上記放熱器 1 6 を通過して上記膨張弁 1 9に流入するための主通路 5 4と、 上記圧縮機 1 5から の高圧冷媒がレシーバ 1 8に流入するためのバイパス回路 5 5とを設け、 上記放 熱器 1 6の出口側の冷媒温度よりも高温の冷媒をレシーバ 1 8に流入させる。
換言すると、 第 7の発明は、 上記圧縮機 1 5からの高圧冷媒が上記凝縮器 1 6を通過して上記膨張弁 1 9に流入するための主通路 5 4と、 上記圧縮機 1 5か らの高圧冷媒がレシーバ 1 8に流入するためのバイパス回路 5 5とを設け、 上記 凝縮器 1 6の出口側の冷媒温度よりも高温の冷媒をレシーバ 1 8に流入させるこ とを特徴としている。
上記第 7の発明の冷媒回路では、 レシーバ 1 8に流入する高圧冷媒は、 バイ パス回路 5 5を通過するものであって、 放熱器 1 6出口側の冷媒の温度よりも高 温の冷媒がこのレシーバ 1 8を流入する。 これにより、 レシーバ 1 8内の冷媒温 度変化幅を大きくとることができ、 運転ェリァ毎での冷媒密度差を大きく取るこ とができる。
第 8の発明の冷媒回路は、 上記バイパス回路 5 5に絞り機構 Sを設けたこと を特徴としている。 上記第 8の発明の冷媒回路では、 絞り機構 Sにより、 レシーバ 1 8内を通過 する冷媒流量を変化させることができる。 これにより、 運転条件の違い等により 発生する余剩冷媒をレシーバ 1 8に確実に溜めることができ、 余剰泠媒吸収能力 を向上させることができる。
第 9の発明の冷媒回路は、 圧縮機 1 5と放熱器 1 6とレシーバ 1 8と膨張弁 1 9と蒸発器 2 0とを備え、 上記圧縮機 1 5で冷媒を臨界圧力以上に圧縮して冷 凍サイクルを行う冷媒回路である。 そして、 上記圧縮機 1 5からの高圧冷媒がレ シ一バ 1 8に流入するためのバイパス通路 5 5を設け、 このレシーバ 1 8内の高 圧冷媒と、 上記蒸発器 2 0の入口側の低圧冷媒との熱交換を行う。
換言すると、 第 9の発明の冷媒回路は、 圧縮機 1 5と凝縮器 1 6とレシーバ 1 8と膨張弁 1 9と蒸発器 2 0とを備え、 冷媒に超臨界で使用する超臨界冷媒を 用いた冷媒回路であって、 上記圧縮機 1 5からの高圧冷媒がレシーバ 1 8に流入 するためのバイパス通路 5 5を設け、 このレシ一バ 1 8内の高圧冷媒と、 上記蒸 発器 2 0の入口側の低圧冷媒との熱交換を行うことを特徴としている。
上記第 9の発明の冷媒回路では、 低圧冷媒にてレシーバ 1 8内の冷媒を確実 に冷却することができる。 これにより、 レシーバ 1 8内の冷媒の溜まりを促進す ることができ、 余剰冷媒状態となるのを確実に防止することができる。
第 1 0の発明の冷媒回路は、 上記レシーバ 1 8の出口側に流量調整弁 5 6を 設けたことを特徴としている。
上記第 1 0の発明の冷媒回路では、 この流量調整弁 5 6の全開時には、 冷媒 温度を高め、 レシーバ 1 8内の冷媒収容量を少なくすることができる。 また、 流 量調整弁 5 6の開度制御時には、 要求された冷媒温度に保持し、 レシーバ 1 8内 を適切な冷媒収容量とすることができる。さらに、流量調整弁 5 6の全閉時には、 冷媒温度を低くし、 レシーバ 1 8内の冷媒収容量を多くすることができる。 一発明の効果一
第 1の発明の冷媒回路によれば、 放熱器 1 6側及び蒸発器 2 0側の負荷変動 が生じる場合にも、冷媒回路を循璟する冷媒量を適切な量に維持することができ、 安定した運転が可能であり、 C O Pの低下を招かない。 しかも、 設けるべきレシ —バの容量を小さく設定でき、 冷媒回路全体のコンパクト化及び製造コストの低 減を図ることが可能である。
第 2の発明の冷媒回路によれば、 別途他の熱交換器を必要とせず、 全体の簡 素化を図ることが可能となり、 製造コストの低減を一層図ることができる。
第 3の発明の冷媒回路によれば、 レシーバ 1 8に入る冷媒を確実に冷却する ことができる。 これによつて、 適切な冷凍サイクルを確実に維持することができ る。
第 4の発明の冷媒回路によれば、 従来の冷媒回路では余剰冷媒が発生する条 件下において、適切な冷媒量でこの冷媒回路を循環することができる。すなわち、 運転条件の違いにて発生する余剰泠媒を処理することができ、 C O Pの向上とコ ストの低減が可能となる。 また、 低圧側の冷媒は逆に加熱され、 圧縮機の湿り圧 縮 1 5を防止することができるので、 圧縮機 1 5の信頼性が向上する。
第 5の発明又は第 6の発明の冷媒回路によれば、 余剰冷媒を一層確実に処理 することができ、 C 0 Pの向上とコストの低減が可能となる。
第 7の発明の冷媒回路によれば、 運転エリァ毎での冷媒密度吸差を大きく取 れる。 これにより、 余剰冷媒吸収能力が大きくなつて、 冷凍効果の減少を確実に 防止して、 C〇Pの向上を図ることができる
第 8の発明の冷媒回路によれば、 余剰冷媒吸収能力の向上を確実に図ること ができ、 冷媒回路としての信頼性の向上を図ることができる
第 9の発明の冷媒回路によれば、 従来の冷媒回路では余剰冷媒が発生する条 件下において、適切な冷媒量でこの冷媒回路を循環することができる。すなわち、 運転条件の違いにて発生する余剰冷媒を処理することができ、 C O Pの向上とコ ストの低減が可能となる。
第 1 0の発明冷媒回路によれば、 運転条件の違いにて発生する余剰冷媒を安 定して確実に処理することができる。 図面の簡単な説明
図 1は、 この発明の冷媒回路の第 1の実施形態を示す簡略図である。
図 2は、 上記冷媒回路の冷却部の斜視図である。 図 3は、 上記冷媒回路の冷凍サイクルを示すグラフ図である。
図 4は、 他の冷却部を使用した上記冷媒回路の簡略図である。
図 5は、 別の冷却部を使用した上記冷媒回路の簡略図である。
図 6は、 上記別の冷却部の正面図である。
図 7は、 この発明の冷媒回路の第 2の実施形態を示す簡略図である。
図 8は、 上記冷媒回路の変形例を示す簡略図である。
図 9は、 この発明の冷媒回路の第 3の実施形態を示す簡略図である。
図 1 0は、 上記冷媒回路の変形例を示す簡略図である。
図 1 1は、 上記冷媒回路の他の変形例を示す簡略図である。
図 1 2は、 この発明の冷媒回路の第 4の実施形態を示す簡略図である。 図 1 3は、 上記冷媒回路の変形例を示す簡略図である。
図 1 4は、 上記泠媒回路の他の変形例を示す簡略図である。 ' 図 1 5は、 図 7〜図 1 4の冷媒回路に使用可能なレシーバを示す簡略図であ る,
図 1 6は、 他のレシーバを示す簡略図である。
図 1 7は、 この発明の冷媒回路の第 5の実施形態を示す簡略図である。 図 1 8は、 図 1 7の冷媒回路に使用したレシーバを示す簡略正面図である。 図 1 9は、 図 1 7の冷媒回路に使用したレシーバを示す簡略平面図である 図 2 0は、 この発明の冷媒回路の第 6の実施形態を示す簡略図である。 図 2 1は、 上記冷媒回路の加熱手段の断面図である。
図 2 2は、 上記冷媒回路の起動時の状態を示す簡略図である。
図 2 3は、 この発明の冷媒回路の第 7の実施形態を示す簡略図である。 図 2 4は、 この発明の冷媒回路の第 8の実施形態を示す簡略図である。 図 2 5は、 この発明の冷媒回路の第 9の実施形態を示す簡略図である。 図 2 6は、 従来の冷媒回路の冷凍サイクルを示すグラフ図である。
図 2 7は、 従来の冷媒回路の簡略図である。
図 2 8は、 従来の冷媒回路の欠点を説明するための冷凍サイクルのグラフ図 である。
図 2 9は、 従来の冷媒回路の欠点を説明するための冷凍サイクルのグラフ図 である。 発明を実施するための最良の形態
次に、 この発明の冷媒回路の具体的な実施の形態について、 図面を参照しつ つ詳細に説明する。 図 1はこの冷媒回路を使用したヒートポンプ式給湯装置の簡 略図を示し、 このヒートポンプ式給湯装置は、 タンクユニット 1と熱源ユニット 2を備え、 タンクュニヅ ト 1の水 (温湯) を熱源ュニヅ ト 2にて加熱するもので める。
タンクユニット 1は、 貯湯タンク 3を備え、 この貯湯タンク 3に貯湯された 温湯が図示省略の浴槽等に供給される。 そのため、 貯湯タンク 3には、 その底壁 に給水口 5が設けられ、 その上壁に出湯口 6が設けられ、 給水口 5から貯^タン ク 3に水が供給され、 出湯口 6から高温の温湯が出湯する。 この場合、 給水口 5 には逆止弁 7を有する給水用流路 8が接続され、 貯湯タンク 3の底壁には取水口 1 0が開設され、 貯湯タンク 3の側壁 (周壁) の上部には給湯口 1 1が開設され ている。 そして、 取水口 1 0と給湯口 1 1とが循環路 1 2にて連結され、 この循 環路 1 2に水循環用ポンプ 1 3と熱交換路 1 4とが介設されている。
ところで、 貯湯タンク 3には、 上下方向に所定ピッチで 4個の残湯量検出器 4 7 a、 4 7 b , 4 7 c , 4 7 dが設けられ、 さらには、 貯湯タンク 3の上壁に 温度センサ 4 8が設けられている。上記各残湯量検出器 4 7 a、 4 7 b、 4 7 c、 4 7 d及び温度センサ 4 8は、 例えば、 それぞれサ一ミス夕からなる。 また、 上 記循環路 1 2には、 熱交換路 1 4の上流側 (具体的には、 ポンプ 1 3の上流側) に取水サ一ミス夕 6 4が設けられると共に、 熱交換路 1 4の下流側に出湯サーミ ス夕 6 5が設けられている。
また、 熱源ユニッ ト 2はこの発明に係る冷媒回路 Rを備え、 この冷媒回路 R は、 圧縮機 1 5と、 上記熱交換路 1 4を構成する水熱交換器 (凝縮器) 1 6と、 冷却部 1 7と、 レシーバ 1 8と、 減圧機構を構成する膨張弁 1 9と、 蒸発器 2 0 等を順に接続して構成される。そして、 この冷媒回路 Rの冷媒としては、例えば、 臨界圧力以上に圧縮される二酸化炭素 (C O 2 ) を用い、 いわゆる超臨界で使用 する二酸化炭素である。 なお、 上記凝縮器 1 6とは、 圧縮機 1 5にて圧縮された 高温 ·高圧の超臨界冷媒を冷却する機能を有するものであり、 ガス冷却器あるい は放熱器と呼ばれることもある。
上記冷却部 1 7は、 凝縮器 1 6から流出した冷媒を冷却するものであって、 図 2に示す液ガス熱交換器 2 1にて構成される。 この液ガス熱交換器 2 1は、 二 重管構造であって、 凝縮器 1 6からの冷媒が通過する第 1通路 2 2と、 蒸発器 2 0からの冷媒が通過する第 2通路 2 3とを備える。 すなわち、 第 1通路 2 2が、 凝縮器 1 6とレシーバ 1 8とを連結する冷媒流路 2 4の一部を構成し、 第 2通路 2 3が、 蒸発器 2 0と圧縮機 1 5とを連結する冷媒流路 2 5の一部を構成する。 このため、 この冷却部 1 7は冷媒—冷媒の熱交換器となり、 第 1通路 2 2を通過 する高圧高温の冷媒と第 2通路 2 3を通過する低圧低温の冷媒との間で熱交換さ れ、 レシーバ 1 8に入る冷媒が冷却される。 また、 低圧冷媒は加熱されるため、 圧縮機 1 5の湿り圧縮を防止することができる。
ところで、 この冷媒回路 Rは、 圧縮機 1 5と水熱交換器 1 6とを接続する冷 媒流路 4 0と、 膨張弁 1 9と蒸発器 2 0とを接続する冷媒流路 4 1とをバイパス 回路 4 2にて接続し、 このバイパス回路 4 2にデフロスト弁 4 3を設けている。 なお、 上記冷媒流路 4 0には、 圧力保護スィヅチとしての H P S 4 5と、 圧力セ ンサ 4 6とが設けられている。 このバイパス回路 4 2は、 圧縮機 1 5から吐出し たホッ トガスを蒸発器 2 0に供給して、 この蒸発器 2 0の除霜を行うデフロスト 運転を行うためのものである。 そのため、 この熱源ユニッ ト 2には、 通常の湯沸 運転と、 デフロスト運転との切換を行うためのデフロス卜制御手段 (図示省略) を備える。 すなわち、 通常の湯沸運転の場合、 水熱交換器 1 6が凝縮器として機 能し、 熱交換路 1 4を通過する温湯を加熱するものである。 また、 デフロスト運 転を行う場合、 膨張弁 1 9を全閉状態とすると共に、 デフロスト弁 4 3を開状態 として、 ホヅトガスを蒸発器 2 0に流し、 このホッ トガスにて蒸発器 2 0を加熱 して、 蒸発器 2 0に霜を発生させない。 デフロスト制御手段は、 例えば、 マイク 口コンピュータを用いて構成される。 次に、 上記冷媒回路 Rの運転動作 (湯沸かし運転) を説明する。
圧縮機 1 5を駆動させると共に、水循環用ポンプ 1 3を駆動(作動)させる。 すると、 貯湯タンク 3の底部に設けた取水口 1 0から貯溜水 (温湯) が流出し、 これが循環路 1 2の熱交換路 1 4を流通する。 そのときこの温湯は凝縮器 1 6で ある水熱交換器によって加熱され (沸上げられ)、 給湯口 1 1から貯湯タンク 3 の上部に返流される。 そしてこのような動作を継続して行うことによって、 貯湯 タンク 3に温湯が貯湯されることになる。 なお、 現状の電力料金制度は夜間の電 力料金単価が昼間に比べて低く設定されているので、 この運転は、 低額である深 夜時間帯に行い、 コストの低減を図るようにするのが好ましい。
このように、 温水を沸上げている場合において、 高温の温水が貯湯タンク 3 の下部にまで貯まっている状態では、 貯湯タンク 3内の高温の温湯が取水口 1 0 から循環路 1 2に流出することになる。 このような場合には、 水熱交換器 1 6の 入水温度が上昇する。 従来の冷媒回路では、 氷熱交換器 1 6の入水温度が上昇す れば、 図 2 6に示される冷凍サイクルが図 2 8の実線で示すように冷凍サイクル となる。 このため、 循環する冷媒が過多状態 (余剰冷媒状態) となる。
ところが、図 1に示す冷媒回路 Rにおいては、冷却部 1 7を備えているので、 冷媒が十分冷却され、 膨張弁 1 9の前位の高圧側において、 レシーバ 1 8内に高 密度の冷媒が溜まる。 すなわち、 余剰冷媒処理を行うことができ、 冷媒回路 Rを 循環する冷媒量は適切なものとなって、 図 3に示すような冷凍サイクルとなる。 そのため、 安定した運転が可能であり、 C O Pの低下を招かない。 しかも、 設け るべきレシーバの容量を小さく設定でき、 冷媒回路全体のコンパクト化及び製造 コストの低減を図ることが可能である。 安定した冷凍運転を行うことができる。 次に、 図 4に示す冷媒回路 Rでは、 冷却部 1 7は空気熱交換器 2 6でもって 構成され、 凝縮器 1 6とレシーバ 1 8を連結する冷媒流路 2 4の一部を構成する 流路を有し、 冷媒がこの流路を通過する際に空気と熱交換を行う。 このため、 こ の冷却部 1 7によっても、レシーバ 1 8内に溜まる冷媒量を調整することができ、 冷媒回路; を循環する冷媒量は適切なものとなって、 安定した冷凍運転を行うこ とができる。 また、 図 5の冷媒回路 Rでは、 蒸発器 2 0の一部を空気熱交換器として機能 させてこれを冷却部 1 7としている。 すなわち、 この場合の蒸発器 2 0は、 図 6 に示すように、 多数のフィンを有する本体 2 7と、 この本体 2 7内に配設される 第 1 ·第 2チューブ 2 8、 2 9とを備える。 そして、 第 1チューブ 2 8内を膨張 弁 1 9からの冷媒を通過させ、 第 2チューブ 2 9内を凝縮器 1 6からの冷媒を通 過させる。 このため、 本体 2 7と第 1チューブ 2 8等でもって本来の蒸発機能を 発揮し、 本体 2 7と第 2チューブ 2 9等でもって、 凝縮器 1 6から流出した冷媒 を冷却する冷却部 (空気熱交換器) 1 7としての機能を発揮する。
この場合、 第 1チューブ 2 8は蛇行状とされ、 その両開口部 2 8 a、 2 8 b が本体 2 7の一方の側面 2 7 a側に開口している。 また、 第 2チューブ 2 9は U 字状とされ、 その両開口部 2 9 a、 2 9 bが本体 2 7の一側面 2 7 a側に開口し ている。 なお、 このように、 蒸発器 2 0の一部が冷却部 1 7を構成するものとし ては、 この図 6に示すものに限るものではなく、 例えば、 本体 2 7の大きさ、 第 1 ·第 2チューブ 2 8、 2 9の長さ寸法等の変更も自由である。
このため、 図 5の冷媒回路 Rは、 上記図 1等と同様、 入水温度 (水熱交換器 1 6への入水温度) の上昇等の環境変化により発生する余剰冷媒を処理すること ができ、 冷媒回路 Rを循環する冷媒量は適切なものとなって、 安定した冷凍運転 を行うことができる。 しかも、 図 1に示すような熱交換器 2 1や図 4に示すよう な熱交換器 2 6等を必要とせず、 この種の冷媒回路に当然必要とされる蒸発器 2 0の一部をもって冷却部 1 7を構成することができ、 冷媒回路 Rの全体のコンパ クト化及び製造コストの低減を図ることができる。 次に、 図 7に示す冷媒回路 Rでは、 図 1 5に示すレシーバ 1 8を使用して、 レシーバ 1 8内の高圧冷媒と、 低圧冷媒との熱交換を行うように構成している。 すなわち、 この場合のレシーバ 1 8には、 凝縮器 1 6からの冷媒が流入する流入 管 5 0と、 レシーバ 1 8からの冷媒が膨張弁 1 9に流入する流出管 5 1とが夫々 接続されると共に、 膨張弁 1 9と蒸発器 2 0とを接続する冷媒流路 4 1が揷通さ れている。 これにより、 流入管 5 0からレシーバ 1 8に流入する高圧冷媒と、 冷 媒流路 4 1を流れる低圧冷媒との間で熱交換を行う熱交換手段 3 0が構成され る。 この図 7の冷媒回路 Rによれば、 熱交換を行うための低圧側の冷媒が、 蒸発 器 2 0の入口側の冷媒であるので、 熱交換を確実に行うことができ、 レシーバ 1 8内の冷媒の溜まりを促進することができる。 このため、 余剰冷媒が発生する条 件下においても冷媒回路 Rを循環する泠媒量は適切量となって、 湿り運転となる ことなく、 C O Pの低下を招くことがない。 また、 図 8に示す冷媒回路 Rでは、 蒸発器 2 0と圧縮機 1 5とを接続する冷 媒流路 (吸込流路) 2 5がレシーバ 1 8に揷通されている。 これによつて、 レシ ーバ 1 8の高圧冷媒と、 冷媒流路 2 5を流通する低圧冷媒との熱交換を行う熱交 換手段 3 0を構成することができ、 レシーバ 1 8内の冷媒の溜まりを促進するこ とができ、 余剰冷媒状態となることを防止することができる。 次に、 図 9に示す冷媒回路 Rは、 圧縮機 1 5からの冷媒が凝縮器 1 6及び熱 交換器 4 9を介して膨張弁 1 9に流入する主通路 5 4と、 冷媒が主通路 5 4から 分流してレシーバ 1 8を介して主通路 5 4に合流するバイパス回路 5 5とを備え る。 すなわち、 主通路 5 4は、 冷媒流路 4 0 (圧縮機 1 5の冷媒吐出路) と、 凝 縮器 1 6から熱交換器 (凝縮器 1 6から流出する冷媒に過冷却を付与するための 熱交換器) 4 9を介して膨張弁 1 9に接続される接続管 5 7を有し、 バイパス回 路 5 5は、冷媒吐出路 4 0から分岐してレシーバ 1 8に接続される第 1管 5 8と、 レシ一ノ 1 8から主通路 5 4に接続される第 2管 5 9とを有する。 なお、 熱交換 器 4 9は接続管 5 7を流れる冷媒と、 冷媒流路 2 5を流れる冷媒との熱交換を行 うものである。
この冷媒回路 Rによれば、 主通路 5 4においては、 圧縮機 1 5からの高圧冷 媒が凝縮器 1 6 熱交換器 4 9 - 膨張弁 1 9→蒸発器 2 0 レシーバ 1 8→熱交 換器 4 9 圧縮機 1 5と流れる。このため、水熱交換器としての凝縮器 1 6にて、 循環路 1 2 (この場合においては図示省略している) を循環している温湯を加熱 することができる。 また、 バイパス回路 5 5においては、 圧縮機 1 5からの高圧 冷媒がレシーバ 1 8に流入して、レシ一バ 1 8から膨張弁 1 9に流入し、さらに、 蒸発器 2 0から流出した冷媒が冷媒流路 2 5を介して圧縮機 1 5に戻る。 このた め、 第 1管 5 8からレシーバ 1 8に流入した高圧冷媒と、 冷媒流路 2 5を流れる 低圧冷媒との間で熱交換を行う熱交換手段 3 0を構成することができる。 次に、 図 1 0に示す冷媒回路 Rは、 第 1管 5 8にて凝縮器 1 6とレシーバ 1 8とを連結したものであり、 図 1 1に示す冷媒回路 Rは、 第 1管 5 8にて凝縮器 1 6の出口とレシ一バ 1 8とを連結したものである。 これらにおいても、 レシ一 バ 1 8内の高圧冷媒と、 冷媒流路 2 5を流通する低圧泠媒との熱交換を行うこと ができる。 また、 図 1 2に示す泠媒回路 I ま、 図 1 0に示す冷媒回路 Rの第 1管 5 8に 絞り機構 S (例えば、 キヤピラリーチューブ) を介設したものであり、 図 1 3に 示す冷媒回路 Rは、図 1 0に示す冷媒回路 Rの第 2管 5 9に絞り機構 S (例えば、 キヤピラリーチューブ) を介設したものである。 これらの場合、 レシーバ 1 8内 を通過する冷媒流量を変化させることができる。 すなわち、 運転条件の違いによ り発生する余剰冷媒をレシーバ 1 8に確実に溜めることができ、 余剰冷媒吸収能 力を向上させることができる。 また、 図 1 4に示す冷媒回路 Rでは絞り機構 Sを キヤビラリーチューブに代えて電動弁にて構成するものであって、 図 1 3に示す 冷媒回路 Rと同様の作用効果を呈する。 このため、 図 1 2に示す冷媒回路 Rにお いても、 キヤピラリーチューブに代えて、 電動弁を使用してもよい。 さらに、 図 9と図 1 1に示す冷媒回路 Rにおいても、 バイパス回路 5 5に絞り機構 Sを設け てもよい。 ところで、 図 7と図 8の冷媒回路 Rでは、 レシーバ 1 8内の冷媒状態は、 水 熱交換器 (凝縮器) 1 6の出口状態で決まる。 そのため、 レシーバ 1 8の余剰冷 媒吸収能力は、 (水熱交換器 1 6出口の冷媒密度) X容積となる。 このため、 こ れらにおいてはあまり大きな吸収能力にならない。 これに対して、 図 9から図 1 3に示す冷媒回路 R (図 1 1に示す冷媒回路 Rを省く) では、 水熱交換器 (凝縮 器) 1 6の出口温度と相違する温度の冷媒 (出口温度よりの高い温度の冷媒) を レシーバ 1 8に溜めることができる。 このため、 運転エリア毎での冷媒密度差を 大きくとれ、 余剰冷媒吸収能力が大きくなる。 この場合、 図 9に示す冷媒回路 R が最も大きな余剩冷媒吸収能力を示す。 これは、 この図 9に示す冷媒回路 Rがレ シ一バ 1 8内の冷媒温度変化幅が最も大きいためである。 また、 熱ロス (水熱交 換器で水以外に放熱する量) を、 図 9から図 1 1の冷媒回路 Rについて比較した 場合、 図 9に示す冷媒回路 Rが最も大きく、 図 1 0の示す冷媒回路 Rがそれより 小さく、 図 1 1に示す冷媒回路 Rが最も小さくなる。 これは、 図 1 1に示す冷媒 回路 Rでは、 第 1管 5 8が凝縮器 1 6の出口側から分岐しているからである。
図 7〜図 1 4に示す冷媒回路 Rにおけるレシーバ 1 8としては、 図 1 6に示 すものであってもよい。 この場合、 冷媒流路 4 1又は冷媒流路 2 5をレシ一バ 1 8の外面に沿わせたものであり、 これにより、 レシーバ 1 8内の高圧冷媒と、 冷 媒流路 4 1 (又は冷媒流路 2 5 ) を流通する低圧冷媒との熱交換を行うことがで きる。 冷媒流路 4 1又は冷媒流路 2 5をレシ一バ 1 8に沿わせる場合、 この図 1 6に示すように、 直線状に並列状に配設させてもよく、 又はレシーバ 1 8の外周 面に巻き付けてもよい。
また、 図 9〜図 1 4に示す冷媒回路 Rにおいて、 それぞれ仮想線で示すよう に ィパス回路 5 5の第 1管 5 8を水熱交換器 1 6の上流部に接続すると共に、 バイパス回路 5 5の第 2管 5 9を水熱交換器 1 6の中間部に接続するようにして もよい。 このように接続することにより、 熱ロスの低減及びレシーバ 1 8の入口 冷媒温度の上昇の最適化を図ることが可能となる。 この場合、 主通路 5 4はこれ ら図 9〜図 1 4の実線で示すままの流路である。 なお、 図 9〜図 1 4に示す冷媒 回路 Rのように、 レシーバ 1 8と熱交換器 (液ガス熱交換器) 4 9とを備えたも のでは、 これらの配置順序を図例と逆順序となるようにしてもよい。 ところで、 図 1 7に示すように、 凝縮器 1 6から分岐し、 この分岐部よりも 下流側の位置において、 この凝縮器 1 6に合流するバイパス通路 5 5を設けると 共に、 このバイパス通路 5 5にレシ一バ 1 8を介設して、 このレシ一バ 1 8内の 高圧冷媒と、 蒸発器 2 0の入口側の低圧冷媒との熱交換を行ってもよい。 すなわ ち、 圧縮機 1 5からの高圧冷媒が凝縮器 1 6を通過して上記膨張弁 1 9に流入す るための主通路 5 4は、 冷媒吐出路 4 0と接続管 5 7とを有し、 この主通路 5 4 にバイパス回路 5 5が接続されている。
具体的には、 バイパス回路 5 5は、 その第 1管 5 8が凝縮器 1 6の中間部よ りもやや上流寄りに接続されると共に、 その第 2管 5 9が凝縮器 1 6の中間部よ りもやや下流寄りに接続され、 この第 1管 5 8と第 2管 5 9とに間にレシーバ 1 8が介設されている。 このため、 主通路 5 5から分岐した高圧冷媒はレシーバ 1 8を通過して主通路 5 5に合流 (還流) することになる。
なお、 この場合も、主通路 5 4の冷媒は、接続管 5 7を流れることによって、 熱交換器 (凝縮器 1 6から流出する冷媒に過冷却を付与するための熱交換器) 4 9を介して膨張弁 1 9に流入することになる。
そして、 図 1 8と図 1 9に示すように、 膨張弁 1 9と蒸発器 2 0とを接続す る冷媒流路 (低圧配管) 4 1にレシーバ 1 8が熱交換可能に並設されている。 す なわち、 冷媒流路 4 1のうち、 レシ一バ 1 8に沿って延びる部位がいわゆるジグ ザグ状に形成され、 そのレシ一バ 1 8に対して近接乃至接触する突部 4 1 a…が ロウ付け等の接続手段にてレシーバ 1 8の外壁 1 8 aに接続されている。 これに よって、 レシーバ 1 8内を通過する高圧冷媒と、 冷媒流路 4 1を流れる低圧冷媒 とで熱交換が行われる。 この際、 冷媒流路 4 1のレシ一バ 1 8との接触部位を分 散させているため、 局部的な熱交換が防止されて全体的な熱交換が行われる。 も ちろん、 冷媒流路 4 1にジグザグ部を設けることなく、 直線状のままレシーバ 1 8の外壁 1 8 aに沿わせてその近接乃至接触をロウ付け等の接続手段にて接続し てもよい。
また、 図 1 7に示すように、 レシーバ 1 8と凝縮器 1 6とを接続する第 2管 5 9には電動弁から成る流量調整弁 5 6が介設されている。 つまり、 この流量調 整弁 5 6はレシーバ 1 8の出口側に設けられている。 このため、 この流量調整弁 5 6の全開時には、 冷媒温度を高め、 レシーバ 1 8内の冷媒収容量を少なくする ことができ、 流量調整弁 5 6の開度制御時には、 要求された泠媒温度に保持し、 レシーバ 1 8内を適切な冷媒収容量とすることができ、 流量調整弁 5 6の全閉時 には、冷媒温度を低くし、レシーバ 1 8内の冷媒収容量を多くすることができる。 これによつて、 運転条件の違い等にて発生する余剰冷媒を安定して確実に処理す ることができる。 この図 1 7の冷媒回路では、 デフロスト弁 4 3が介設されたデフロスト用配 管 (バイパス回路) 4 2を備えている。 すなわち、 冷媒吐出路 4 0から分岐され たデフロスト用配管 4 2は、 蒸発器 2 0の入口側において、 冷媒流路 4 1に接続 されている。 これによつて、 デフロスト時に熱ロスを防止することができる。
このように、 図 1 7の冷媒回路においても、 レシーバ 1 8内の冷媒の溜まり を促進することができ、余剰冷媒状態となることを防止することができる。なお、 この図 1 7の冷媒回路においても、 図 9〜図 1 4の実線、 及び仮想線で示すよう に、 バイパス回路 5 5の分岐部や合流部の位置変更は自由である。 例えば、 バイ パス回路 5 5の第 1管 5 8を凝縮器 1 6の上流部に接続すると共に、 バイパス回 路 5 5の第 2管 5 9を凝縮器 1 6の下流部に接続するようにしてもよく、 要は膨 張弁 1 9の前位において、 第 1管 5 8と第 2管 5 9との間に高低圧差が生じるよ うにすればよい。 ところで、 冷媒回路 I では、 圧縮機 1 5への液バヅク (液戻り) を防止する ために、 液分離器 (アキュムレータ) を設ける場合がある。 しかしながら、 アキ ュムレ一夕を設けることによって、 コスト高となると共に、 圧縮機 1 5の吸入圧 損が増加して C O Pが低下し、 さらには、 アキュムレ一夕において異音が発生す る等の問題点があった。
そのため、 図 2 0に示すように、 圧縮機 1 5の冷媒吸入路 3 2 (冷媒流路 2 5のうちで冷却部 1 7から圧縮機 1 5までの流路) に、 液戻り防止用の加熱手段 3 3を設けるのが好ましい。この場合、加熱手段 3 3は、電磁誘導加熱器であり、 図 2 1に示すように、 ボビン 3 4と、 このボビン 3 4に巻き付けられる電磁誘導 加熱ヒー夕 (コイル) 3 5とを備える。 すなわち、 ボビン 3 4は、 筒部 3 4 aと、 この筒部 3 4 aの両端に連設される外鍔部 3 4 b、 3 4 bとからなり、 筒部 3 4 aに電磁誘導加熱ヒ一夕 3 5が巻き付けられている。
そして、 筒部 3 4 aに、 鉄管 3 6と、 この鉄管 3 6を覆う断熱材 3 7とが内 嵌され、 電磁誘導加熱ヒー夕 3 5に断熱材 3 8が外嵌されている。 そして、 鉄管 3 6は上記冷媒吸入路 3 2の一部を構成する。 また、 この加熱手段 3 3には、 電 磁誘導加熱ヒータ 3 5に電流を流す図示省略の電源を有し、 この電源から電磁誘 導加熱ヒー夕 3 5に電流を流せば、 鉄管 3 6に無数のうず電流が発生し、 これに よって、 鉄管 3 6が加熱され、 この鉄管 3 6を流れる冷媒が加熱される。
また、 この冷媒回路 Rの制御部は、 加熱手段 3 3を制御する図示省略の制御 手段を備える。 すなわち、 図 2 0に示すように、 冷媒吸入路 3 2の吸込口近傍及 び冷媒吐出路 4 0の吐出口近傍には、 それぞれサーミス夕 6 0、 6 1が設けられ ると共に、 蒸発器 2 0には、 蒸発器用サ一ミス夕 6 2が設けられ、 この蒸発器用 サーミス夕 6 2と冷媒吸入路 3 2のサ一ミス夕 6 0とに基づいて、 圧縮機 1 5へ の液バックが発生するか否かを判断する。 そして、 液バックが発生するおそれが ある場合に、 加熱手段 3 3に電流を流して、 冷媒吸入路 3 2の冷媒を加熱する。 図 2 0において、 6 3は外気用サーミス夕である。 なお、 図示省略しているが、 上記図 1等の冷媒回路 Rにおいてもこれらのサーミス夕 6 0、 6 1、 6 2、 6 3 は設けられている。
すなわち、 この図 2 0に示す冷媒回路では、 デフロスト運転中、 デフロスト 復帰時等の過渡時に、 上記制御手段により上記加熱手段 3 3を作動させて、 冷媒 吸入路 3 2の冷媒を加熱し、 これによつて、 圧縮機 1 5への液戻り (液バック) を防止するものである。 このように、 加熱手段 3 3を設ければ、 アキュムレータ を設けることなく、 液バックを防止することができ、 コス卜の低減を図ることが できると共に、吸入圧損による C 0 Pの低下を防止することができる。さらには、 異音発生の原因を除去することができ、 静かな運転が可能となる。
また、 この場合、 加熱手段 3 3に電磁誘導加熱器を使用しているので、 清潔 かつ安全であり、熱効率も高い利点がある。 ところで、 この冷媒回路 Rにおいて、 圧縮機 1 5の起動から所定時間の間、 電動弁である膨張弁 1 9を全閉又は所定開 角度以下とすれば、 図 2 2の太線部 (高圧部) に存在する冷媒の圧縮機 1 5への 急激な液戻りを防止することができる。 また、 図 2 3の冷媒回路 Rでは、 冷媒吸入路 3 2において、 加熱手段 3 3よ りも上流側に流量調整のための調整弁(電動弁) 6 6を介設している。すなわち、 この冷媒回路 Rでは、 運転起動時、 デフロス ト運転開始時、 デフロスト運転中、 デフロスト復帰時等の過渡時に、 この調整弁 6 6を絞ることによって、 流量を絞 ると共に、 加熱手段 3 3による加熱を行って、 液戻りを防止するものであって、 より確実な液バック防止を達成することができる。 次に、 図 2 4に示す冷媒回路 Rは、 圧縮機 1 5と凝縮器 1 6との間に、 例え ば電磁弁からなる液戻り防止弁 6 7を設けたものである。 この場合、 圧縮機 1 5 の起動から所定時間の間、 又はデフロスト運転時に、 電動弁である膨張弁 1 9を 全閉又は所定閧角度以下とすると共に、 液戻り防止弁 (電磁弁) 6 7を閉状態と する。 このことによって、 太線部 (高圧部) (液戻り防止弁 6 7から膨張弁 9ま での範囲) に存在する冷媒の圧縮機 1 5への急激な液戻りを防止することができ る。 なお、 この図 2 4の冷媒回路 Rにおいても、 冷媒吸入路 3 2に加熱手段 3 3 を設けているので、 運転起動時やデフロスト運転開始時等に、 加熱手段 3 3にて 冷媒吸入路 3 2の冷媒を加熱して圧縮機 1 5への液バックを防止することができ る。 さらに、 この図 2 4に示す泠媒回路 I こおいても、 図 2 3の冷媒回路 Rのよ うに、 冷媒吸入路 3 2に調整弁 6 6を設け、 加熱手段 3 3による加熱に加えてこ の調整弁 6 6による流量の絞りを行うようにしてもよい。 次に、 図 2 5に示す冷媒回路 Rは、 加熱手段 3 3を設けることなく、 圧縮機 1 5の冷媒吸入路 3 2と冷媒吐出路 4 0とにそれぞれ例えば液戻り防止弁 6 8、 6 9を設け、 この液戻り防止弁 6 8、 6 9にて運転停止後の圧縮機 1 5への液バ ックを防止するものである。 すなわち、 運転停止後において、 両液戻り防止弁 6 8、 6 9を閉状態として、 冷媒吸入路 3 2及び冷媒吐出路 4 0から圧縮機 1 5に 流れ込むことを防止し、 次回の圧縮機 1 5の起動時の起動不良や液圧縮による圧 縮機 1 5の破損を防止するものである。 なお、 この図 2 5の冷媒回路 Rにおいて も、冷媒吸入路 3 2に加熱手段 3 3を設け、運転起動時、デフロスト運転開始時、 デフロスト運転中、 デフロスト復帰時等の過渡時に、 この加熱手段 3 3にて冷媒 を加熱して、 圧縮機 1 5への液バックを防止するようにしてもよい。 . ところで、 上記図 2 0等において使用される加熱手段 3 3としては、 電磁誘 導加熱器以外に、 ニクロム線等からなるヒ一夕線にて構成してもよい。 また、 上 記液バック防止運転の他に、 圧縮機 1 5の電源投入後から所定時間経過するまで に、 この圧縮機 1 5のインバー夕回路の欠相予熱運転を行うことによって、 圧縮 機 1 5内の冷媒を蒸発させるようにすることも好ましい。 以上、 この発明の具体的な実施の形態について説明したが、 この発明は上記 形態に限定されるものではなく、 この発明の範囲内で種々変更して実施すること ができる。 例えば、 ヒートポンプ式給湯装置以外の冷媒回路に使用することが可 能である。 また、 冷媒としては、 二酸化炭素以外に、 エチレンゃェタン、 酸化窒 素等の超臨界で使用する冷媒であってもよい。 なお、 本発明において、 凝縮器 1 6とは、 圧縮機 1 5にて圧縮された高温,高圧の超臨界冷媒を冷却する機能を有 するものであり、 ガス冷却器 (放熱器) と呼ばれることもある。 + 産業上の利用可能性
以上のように、 本発明に係る泠媒回路は、 給湯装置に有用であり、 特に、 冷 媒を臨界圧力以上に圧縮して冷凍サイクルを行う場合に適している。

Claims

請 求 の 範 囲
1. 圧縮機 ( 15) と放熱器 (16) とレシーバ (18) と膨張弁 (19) と蒸 発器 (20) とを備え、 上記圧縮機 (15) で冷媒を臨界圧力以上に圧縮して冷 凍サイクルを行う冷媒回路であって、
上記レシーバ (18) の上流側に、 上記放熱器 (16) から流出した冷媒を 冷却する冷却部 ( 17) を設けたことを特徴とする冷媒回路。
2. 上記蒸発器 (20) の一部を空気熱交換器とし、 該空気熱交換器を上記冷却 部 ( 17) とすることを特徴とする請求項 1の冷媒回路。
3. 上記冷却部 (17) が放熱器 ( 16) から流出した泠媒と蒸発器 (20) の 出口側の冷媒とを熱交換させることを特徴とする請求項 1の冷媒回路。
4. 圧縮機 ( 15) と放熱器 (1 6) とレシーバ (18) と膨張弁 (19) と蒸 発器 (20) とを備え、 上記圧縮機 (15) で冷媒を臨界圧力以上に圧縮して冷 凍サイクルを行う冷媒回路であって、
上記レシーバ (18) 内の高圧冷媒と、 低圧冷媒との熱交換を行う熱交換手 段 (30) を設けたことを特徴とする冷媒回路。
5. 上記低圧冷媒が、 上記蒸発器 (20) の入口側の冷媒であることを特徴とす る請求項 4の冷媒回路。
6. 上記低圧冷媒が、 上記蒸発器 (20) の出口側の冷媒であることを特徴とす る請求項 4の冷媒回路。
7. 上記圧縮機 ( 15) からの高圧冷媒が上記放熱器 ( 16) を通過して上記膨 張弁 (19) に流入するための主通路 (54) と、 上記圧縮機 (15) からの高 圧冷媒がレシーバ (18) に流入するためのバイパス回路 (55) とを設け、 上 記放熱器 ( 16) の出口側の冷媒温度よりも高温の冷媒をレシーバ (18) に流 入させることを特徴とする請求項 4の冷媒回路。
8. 上記バイパス回路 (55) に絞り機構 (S) を設けたことを特徴とする請求 項 7の冷媒回路。
9. 圧縮機 (15) と放熱器 (16) とレシーバ ( 18) と膨張弁 (19) と蒸 発器 (20) とを備え、 上記圧縮機 (15) で冷媒を臨界圧力以上に圧縮して冷 凍サイクルを行う冷媒回路であって、
上記圧縮機 (15) からの高圧冷媒がレシーバ (18) に流入するためのバ ィパス通路 (55) を設け、 このレシーバ ( 18) 内の高圧冷媒と、 上記蒸発器 (20) の入口側の低圧冷媒との熱交換を行うことを特徴とする冷媒回路。
10. 上記レシーバ (18) の出口側に流量調整弁 (56) を設けたことを特徴 とする請求項 9の冷媒回路。
PCT/JP2002/005337 2001-06-11 2002-05-31 Circuit refrigerant WO2002101304A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02728202A EP1396689A4 (en) 2001-06-11 2002-05-31 REFRIGERANT CIRCUIT
US10/479,597 US6895768B2 (en) 2001-06-11 2002-05-31 Refrigerant circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001175670 2001-06-11
JP2001-175670 2001-06-11
JP2001-293304 2001-09-26
JP2001293304A JP3801006B2 (ja) 2001-06-11 2001-09-26 冷媒回路

Publications (1)

Publication Number Publication Date
WO2002101304A1 true WO2002101304A1 (fr) 2002-12-19

Family

ID=26616697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005337 WO2002101304A1 (fr) 2001-06-11 2002-05-31 Circuit refrigerant

Country Status (4)

Country Link
US (1) US6895768B2 (ja)
EP (1) EP1396689A4 (ja)
JP (1) JP3801006B2 (ja)
WO (1) WO2002101304A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316267B2 (en) * 2002-02-12 2008-01-08 Matsushita Electric Industrial Co., Ltd. Heat pump water device
WO2020008620A1 (ja) * 2018-07-06 2020-01-09 三菱電機株式会社 冷凍サイクル装置および空気調和装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222391A (ja) * 2002-01-29 2003-08-08 Daikin Ind Ltd ヒートポンプ式給湯機
TWI332073B (en) * 2004-02-12 2010-10-21 Sanyo Electric Co Heating/cooling system
US20050279127A1 (en) * 2004-06-18 2005-12-22 Tao Jia Integrated heat exchanger for use in a refrigeration system
US20060005571A1 (en) * 2004-07-07 2006-01-12 Alexander Lifson Refrigerant system with reheat function provided by auxiliary heat exchanger
JP2007071478A (ja) * 2005-09-08 2007-03-22 Sanden Corp ヒートポンプ装置
WO2007046812A2 (en) * 2005-10-18 2007-04-26 Carrier Corporation Economized refrigerant vapor compression system for water heating
JP2007155229A (ja) * 2005-12-06 2007-06-21 Sanden Corp 蒸気圧縮式冷凍サイクル
JP4899489B2 (ja) * 2006-01-19 2012-03-21 ダイキン工業株式会社 冷凍装置
JP2007191057A (ja) * 2006-01-19 2007-08-02 Sanden Corp 冷凍システム及び車両用空調装置
JP4592616B2 (ja) * 2006-02-27 2010-12-01 三洋電機株式会社 冷凍サイクル装置
JP5224041B2 (ja) * 2007-06-27 2013-07-03 ダイキン工業株式会社 ヒートポンプ式給湯装置
JP5076745B2 (ja) * 2007-08-31 2012-11-21 パナソニック株式会社 換気空調装置
JP5473922B2 (ja) 2007-10-09 2014-04-16 ビーイー・エアロスペース・インコーポレーテッド 熱制御システム
JP2009257652A (ja) * 2008-02-29 2009-11-05 Daikin Ind Ltd 冷凍装置
DE102008046620B4 (de) * 2008-09-10 2011-06-16 Thermea. Energiesysteme Gmbh Hochtemperaturwärmepumpe und Verfahren zu deren Regelung
US20110204042A1 (en) * 2008-09-17 2011-08-25 Daikin Industries, Ltd. Electromagnetic induction heating unit and air conditioning apparatus
KR20110053479A (ko) * 2008-09-17 2011-05-23 다이킨 고교 가부시키가이샤 공기 조화기의 실외기
JPWO2010086954A1 (ja) * 2009-01-27 2012-07-26 三菱電機株式会社 空気調和装置及び冷凍機油の返油方法
GB2469616B (en) * 2009-02-11 2013-08-28 Star Refrigeration A refrigeration system operable under transcritical conditions
JP5647396B2 (ja) * 2009-03-19 2014-12-24 ダイキン工業株式会社 空気調和装置
JP4826643B2 (ja) * 2009-03-19 2011-11-30 ダイキン工業株式会社 空気調和装置
CN102348944B (zh) * 2009-03-19 2014-06-25 大金工业株式会社 空调装置
US20120000228A1 (en) * 2009-03-19 2012-01-05 Daikin Industries, Ltd. Air conditioning apparatus
KR101283284B1 (ko) * 2009-03-19 2013-07-11 다이킨 고교 가부시키가이샤 공기 조화 장치
JP2011002189A (ja) * 2009-06-19 2011-01-06 Daikin Industries Ltd 冷凍装置
CN101608849B (zh) * 2009-07-18 2012-07-25 山东美琳达再生能源开发有限公司 一种可实现采暖功能的双源热泵装置
KR101280381B1 (ko) * 2009-11-18 2013-07-01 엘지전자 주식회사 히트 펌프
US20120102989A1 (en) 2010-10-27 2012-05-03 Honeywell International Inc. Integrated receiver and suction line heat exchanger for refrigerant systems
JP5758913B2 (ja) * 2010-12-24 2015-08-05 株式会社前川製作所 ヒートポンプ装置の運転制御方法
EP2468947B1 (en) * 2010-12-27 2018-10-03 Electrolux Home Products Corporation N.V. A heat pump system for a laundry dryer and a method for operating a heat pump system of a laundry dryer
JP5769684B2 (ja) 2012-10-18 2015-08-26 三菱電機株式会社 ヒートポンプ装置
US9631826B2 (en) * 2012-12-11 2017-04-25 Mistubishi Electric Corporation Combined air-conditioning and hot-water supply system
JP5963970B2 (ja) * 2013-09-27 2016-08-03 パナソニックヘルスケアホールディングス株式会社 冷凍装置
EP2952832A1 (en) * 2014-06-06 2015-12-09 Vaillant GmbH Heat pump system with integrated economizer
US10508835B2 (en) 2014-07-23 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
AU2014410881B2 (en) 2014-11-04 2018-01-18 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2016102601A (ja) * 2014-11-27 2016-06-02 株式会社デンソー 冷凍サイクル装置
US20230314049A1 (en) * 2022-03-31 2023-10-05 Brian R. Workman Heat pump capable of operating at subzero ambient temperatures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164661A (ja) * 1989-11-24 1991-07-16 Toshiba Corp 空気調和機
JPH0623878Y2 (ja) * 1987-07-28 1994-06-22 富士重工業株式会社 冷凍装置
JPH09145184A (ja) * 1995-11-24 1997-06-06 Hitachi Ltd 空気調和装置
EP0779481A2 (en) * 1995-12-15 1997-06-18 Showa Aluminum Corporation Refrigeration cycle system
JP2945364B2 (ja) * 1998-02-09 1999-09-06 幸司 伊藤 温度制御装置
JP2000337722A (ja) * 1999-05-26 2000-12-08 Sanden Corp 蒸気圧縮式冷凍サイクル
US6189334B1 (en) * 1998-07-09 2001-02-20 Behr Gmbh & Co. Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773234A (en) * 1987-08-17 1988-09-27 Kann Douglas C Power saving refrigeration system
DE9205480U1 (de) 1992-04-22 1993-08-19 Windmöller & Hölscher, 49525 Lengerich Vorrichtung zum Siegeln von Folienbahnen aus thermoplastischem Kunststoff
US5245833A (en) * 1992-05-19 1993-09-21 Martin Marietta Energy Systems, Inc. Liquid over-feeding air conditioning system and method
JP3965717B2 (ja) * 1997-03-19 2007-08-29 株式会社日立製作所 冷凍装置及び冷凍機
DE69917262T2 (de) * 1999-09-22 2005-05-19 Carrier Corp. Reversible Wärmepumpe mit einem Sammler zum Unterkühlen
US6467300B1 (en) * 2001-03-27 2002-10-22 John O. Noble, III Refrigerated intercooler

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623878Y2 (ja) * 1987-07-28 1994-06-22 富士重工業株式会社 冷凍装置
JPH03164661A (ja) * 1989-11-24 1991-07-16 Toshiba Corp 空気調和機
JPH09145184A (ja) * 1995-11-24 1997-06-06 Hitachi Ltd 空気調和装置
EP0779481A2 (en) * 1995-12-15 1997-06-18 Showa Aluminum Corporation Refrigeration cycle system
JP2945364B2 (ja) * 1998-02-09 1999-09-06 幸司 伊藤 温度制御装置
US6189334B1 (en) * 1998-07-09 2001-02-20 Behr Gmbh & Co. Air conditioner
JP2000337722A (ja) * 1999-05-26 2000-12-08 Sanden Corp 蒸気圧縮式冷凍サイクル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316267B2 (en) * 2002-02-12 2008-01-08 Matsushita Electric Industrial Co., Ltd. Heat pump water device
WO2020008620A1 (ja) * 2018-07-06 2020-01-09 三菱電機株式会社 冷凍サイクル装置および空気調和装置

Also Published As

Publication number Publication date
JP2003065616A (ja) 2003-03-05
EP1396689A1 (en) 2004-03-10
JP3801006B2 (ja) 2006-07-26
US20040134225A1 (en) 2004-07-15
EP1396689A4 (en) 2012-08-01
US6895768B2 (en) 2005-05-24

Similar Documents

Publication Publication Date Title
WO2002101304A1 (fr) Circuit refrigerant
JP5121922B2 (ja) 空調給湯複合システム
JP5427428B2 (ja) ヒートポンプ式給湯・空調装置
EP2381178A2 (en) Heat pump type speed heating apparatus
JP2001082802A (ja) ヒートポンプ式給湯器
KR19990067577A (ko) 열에너지 저장 공조기
US7210303B2 (en) Transcritical heat pump water heating system using auxiliary electric heater
JP3952769B2 (ja) ヒートポンプ式チラー
WO2010143373A1 (ja) ヒートポンプシステム
JP3443702B2 (ja) ヒートポンプ給湯機
JP5264936B2 (ja) 空調給湯複合システム
JP4178446B2 (ja) ヒートポンプシステム
JP2004003801A (ja) 二酸化炭素を冷媒として用いた冷凍装置
JP2007155259A (ja) 冷媒加熱装置
JP2003240369A (ja) 多機能給湯装置
JP4033788B2 (ja) ヒートポンプ装置
JP2007322084A (ja) ヒートポンプ給湯機
JP2009085479A (ja) 給湯装置
JP4417396B2 (ja) ヒートポンプ装置
JP3070223B2 (ja) 冷媒加熱式空気調和機
JP2005127711A (ja) 冷媒回路
JP2002310497A (ja) ヒートポンプ給湯機
JP3841051B2 (ja) ヒートポンプ給湯装置
JP3475293B2 (ja) ヒートポンプ給湯機
JP3802238B2 (ja) 氷蓄熱槽を備えた空気調和装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002728202

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10479597

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002728202

Country of ref document: EP