WO2002100899A2 - Arzneimittel zur behandlung von tumoren und deren metastasen unter verwendung eines bindemoleküls gegen das bone-sialoprotein - Google Patents

Arzneimittel zur behandlung von tumoren und deren metastasen unter verwendung eines bindemoleküls gegen das bone-sialoprotein Download PDF

Info

Publication number
WO2002100899A2
WO2002100899A2 PCT/EP2002/006456 EP0206456W WO02100899A2 WO 2002100899 A2 WO2002100899 A2 WO 2002100899A2 EP 0206456 W EP0206456 W EP 0206456W WO 02100899 A2 WO02100899 A2 WO 02100899A2
Authority
WO
WIPO (PCT)
Prior art keywords
bsp
bone
antibodies
medicament according
antibody
Prior art date
Application number
PCT/EP2002/006456
Other languages
English (en)
French (fr)
Other versions
WO2002100899A3 (de
Inventor
Franz Paul Armbruster
Markus Karmatschek
Werner Franz Nader
Ulf Jörg FORSMANN
Mats Paulsson
Martin R. Berger
Original Assignee
Osteopep-Pharma Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osteopep-Pharma Gmbh filed Critical Osteopep-Pharma Gmbh
Priority to EP02748771A priority Critical patent/EP1399186B1/de
Priority to AT02748771T priority patent/ATE448796T1/de
Priority to JP2003503665A priority patent/JP4570355B2/ja
Priority to US10/480,465 priority patent/US7825219B2/en
Priority to DE50214008T priority patent/DE50214008D1/de
Priority to AU2002319223A priority patent/AU2002319223A1/en
Priority to DK02748771.9T priority patent/DK1399186T3/da
Publication of WO2002100899A2 publication Critical patent/WO2002100899A2/de
Publication of WO2002100899A3 publication Critical patent/WO2002100899A3/de
Priority to US12/901,399 priority patent/US8808691B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/51Bone morphogenetic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/11Immunoglobulins specific features characterized by their source of isolation or production isolated from eggs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man

Definitions

  • the invention relates to medicaments for the treatment and control of tumors and metastases, which are particularly often located in the bone tissue.
  • Bone metastases are not considered curable and treatable. There are attempts to fight their metastases by antibodies against surface antigens of tumor cells. Bone metastases are nevertheless the cause of death in breast tumors in 73% of cases and in tumors of the prostate in 68% of cases. The following figures apply to tumors from other tissues: cervix 50%, thyroid 42%, bladder 40%, lungs 36%, ovaries 9% and colon 6%. Tumor cells that express the so-called bone sialoprotein have the
  • Bone sialoprotein is a phosphorylated bone glycoprotein with a relative mass of approx. 80 kDa in the SDS-PAGE.
  • the cDNA for BSP encodes a peptide sequence of approximately 33 kDa (Fisher LW et al. (1990), J. Biol. Chem, 265, 2347-51; US 5 340 934).
  • BSP is one of the few matrix proteins whose presence is restricted to mineralizing tissues such as bone, dentin and calcifying cartilage.
  • the BSP represents approximately 10 to 15% of the total non-collagenous proteins in the bone matrix. It is usually expressed by cells that are involved in the formation of dentin, bone and cartilage, e.g. by osteoblasts, developing osteocytes, hypertrophic chondrocytes, odontoblasts and cementoblasts, but also by trophoblasts in the placenta and some types cancer cells, e.g. in lung, breast, prostate, kidney, thyroid and neuroblastoma primary and secondary tumors, in multiple myeloma and in bone metastases.
  • the degree of expression of BSP by the tumor correlates closely with the severity of the cancer (Waltregny D.
  • the BSP As an adhesion molecule, the BSP is said to cause cells to attach and spread on the tissue matrix, since it forms nuclei for biological apatite in vitro and is involved in mineralization in vivo. Switching off the BSP gene in knock-out mice did not lead to any discernible impairment of skeletal formation and function. In tumors, BSP becomes involved in microcalcification (Castronovo, V. et al., Evidence that breast cancer associated microcalcifications are mineralized malignant cells, in Int. J. Oncol., 1998, 12, 305-308) and bone colonization attributed by metastatic tumor cells (Bellahcene, A. et al, Expression of bone sialoprotein in primary breast cancer is associated with poor survival, in Int. J. Cancer, 1996, 69, 350-353).
  • the level of the concentration of BSP in the serum of patients with primary carcinomas is used to diagnose whether these patients have bone metastases or whether they are likely to originate from the primary tumor (thesis by Ms. Ina- Alexandra Meier, development of a radioimmunoassay for the determination of bonesialoprotein (BSP), 1996, Darmstadt, University of Applied Sciences, Department of Chemical Technology; PhD thesis by Mr.
  • the tumor cells When BSP is expressed, the tumor cells should then bind the factor H in the blood and in the tissue fluids to their cell surface or concentrate around them.
  • BSP protection against the mother's blood complement system is also suspected for trophoblasts in the placenta (Fedarko NS et al, Factor H binding of bone sialoprotein and osteopontin enables tumor cell evasion of complement-mediated attack, in J. Biol. Chem, 2000, 275, 16666-16672; WO 00/62065).
  • a function of the BSP is still suspected in angiogenesis.
  • BSP a starting point for all types of medication.
  • the binding of BSP via the RGD sequence to vitronectin and integrin receptors of tumor and epithelial cells can be inhibited by antagonists (US 6069 158; US 6008213; US 5849 865; van der Pluijm et al, Bonesialoprotein peptides are potent inhibitors of breast cancer cell adhesion to bone in vitro, in Cancer Res, 1996, 56, 1948-1955).
  • EP 1 084 719 A1 teaches a pharmaceutical composition with BSP as an active substance to support the repair of damaged bone and connective tissue.
  • WO 94/13310 teaches a composition with a BSP binding protein from Staphylococcus aureaus as an active ingredient.
  • WO 00/36919 discloses regulatory elements for the targeted control or suppression of the expression of BSP in tumor and connective tissue cells, which promote calcification.
  • the substances of regulation of cell growth and cell migration are of particular interest diagnostically and therapeutically.
  • Important stages here are invasion, adhesion, migration and cell division of the tumor cells.
  • adhesion molecules and chemotactic factors play a special role here.
  • a drug to fight and also to heal bone metastases based on antibodies and binding molecules against BSP is not known. It is also not known that the BSP from tumor cells is different from the BSP from normal healthy cells.
  • the invention relates to a medicament for the therapy of tumors and their metastases, which preferably settle in the bone tissue, comprising as active ingredient at least one binding molecule which binds to bone sialoprotein or a fragment thereof in serum or plasma.
  • the active ingredient is preferably an antibody or an aptamer or mirror bucket (Noxxon, Berlin, DE) based on DNA or RNA and, in the broader sense, binds a molecule which corresponds to a bone or sialoprotein chemically or naturally modified in glycosylation.
  • the binding molecule can be an antibody or an aptamer that specifically binds bone sialoprotein from tumor cells, or the binding structure of natural BSP receptor or the factor H molecule.
  • the binding molecule binds to or it can be produced against bone sialoprotein from bone material which has been changed in the glycosylation and whose donor was not capable of the normal glycosylation of bone proteins.
  • the medicament contains an antibody or a plurality of antibodies against the human bone sialoprotein (hBSP) as active substance, the antibodies binding epitopes which are present on human bone sialoprotein from tumor cells, the post-translational glycosylation of which in the region of Amino acids 120 to 135 (SWISSPROT: SIALJHUMAN, Acc.No. P21815, incl. Signal sequence), containing the amino acids TGLAA, modified or incomplete compared to normal bone sialoprotein from bone.
  • hBSP human bone sialoprotein
  • the medicament according to the invention can also contain an antibody and / or an aptamer as an active ingredient, produced against an hBSP epitope, comprising the amino acid sequence TGLAA or YTGLAA and optionally sugar groups and a carrier molecule.
  • the active ingredient is preferably a chicken IgY antibody.
  • the IgY antibody from chicken can also be a correspondingly human or humanized antibody.
  • Drugs are further preferred, the binding molecule also containing an additional paratope as bispecific antibody, which is preferably specific for epitopes of CD3.
  • the active ingredient can also be an immunotoxin, which is a conjugate of a binding molecule and a residue with cytotoxic activity.
  • the immunotoxin can, for example, be a conjugate which contains the ricin A chain or a non-binding fragment * of the diphtheria toxin.
  • the binding molecule can also be coupled to a radionuclide, so that the medicament can also be used for immunoscintigraphy or for the localization and follow-up of bone metastases.
  • the medicament according to the invention can additionally contain at least one antibody,
  • Ligands or inhibitors contain from the group with adhesion molecules, membrane-associated proteases, receptors that mediate chemotaxis, chemokine receptors, apoptosis- inducing substances.
  • the inhibitors can be chosen so that they at least partially block BSP and modulate its function.
  • the medicinal product according to the invention is therefore particularly suitable for the treatment of tumors from the group with tumors of the prostate, breast, lung, kidney and thyroid, tumor diseases of the blood system, the lymphatic system, the cardiovascular system, the Nervous system, the respiratory tract, the digestive tract, the endocrine system, the skin including appendages, the musculoskeletal system and the urogenital tract.
  • FIG. 3 shows the amino acid sequence of secreted BSP (SEQ ID No. 2) according to Fisher et al (1991); F Fiigg .. 4 4aa curve with lesion sizes in square millimeters of a bone metastasis in the tibia of the rat 988 over the observation and therapy period;
  • the invention thus relates to a medicament for the therapy of tumor diseases which contains as active ingredient a BSP-specific binding molecule such as an antibody, ligand or inhibitor.
  • the binding molecule is an antibody or an aptamer based on RNA or DNA that recognizes BSP in the presence of factor-H.
  • Particularly preferred binding molecules specifically recognize BSP from tumor cells.
  • the drug can be strengthened by the following substances: antibodies, ligands or inhibitors that interact with adhesion molecules, with membrane-associated proteases, or with receptors that mediate chemotaxis, such as the chemokine receptors, and apoptosis-inducing substances, such as preferably antibodies, Aptamers or proteins / peptides obtained from natural or artificial peptide banks.
  • a specific protein (peptide) interaction preferably with unspecific molecules that are obtained from natural extracts, from synthetic or recombinantly produced binding proteins and from other peptide-protein banks, is also sufficient to bring about the effect of apoptosis of tumor cells.
  • a specific therapy can be used.
  • anti-BSP antibodies or binding proteins are used, accelerated onset of tumor cell death (apoptosis) is observed.
  • Tumors that can be treated in this way are from the group with breast, prostate
  • Lymphatic system the cardiovascular system, the nervous system, the respiratory tract, the digestive tract, the endocrine system, the skin including appendages, the musculoskeletal system and the urogenital tract including the kidney.
  • the administration of the binding proteins and antibodies enables a new therapy for tumor diseases based on the BSP system and reinforcement including other tumor surface-associated proteome clusters.
  • the drug is based on the use of BSP-specific antibodies, aptamers, ligands or inhibitors against the primary or secondary tumor and scattering metastases, that is, to suppress cancer growth, including metastasis.
  • the medicament according to the invention is based on the finding that BSP acts on specific tumor cells through autocrine, paracrine and endocrine routes via the disease-specific constellation of the tumor cell proteome. Primary and certain secondary tumors are controlled in their adhesion, migration and proliferation behavior. Diagnostic evidence of the locally increased expressed and regulated factors as well as the presence of BSP offers the possibility of To significantly suppress or completely prevent growth, including tumor metastasis.
  • Another embodiment of the invention relates to the use of the antibodies according to the invention in pharmaceutical compositions for the treatment of tumors and metastases.
  • the antibodies according to the invention and their partial structures or conjugates can be applied by injection or via suppositories and can bind and neutralize BSP which is freely circulating or bound to factor H in the blood or in tissue fluid. If a protective function of the factor H complex against the alternative route of complement activation, which has not yet been demonstrated, is switched off, it is switched off and the tumor cells can be attacked by the immune system. It also eliminates the angiogenic effects of BSP.
  • the antibodies For binding to the complex of factor H and BSP, the antibodies must recognize epitopes of BSP which are not masked by the binding partner. The production of such antibodies has not previously been possible.
  • the invention provides such antibodies because the antibodies are directed against an isoform of the folded bone sialoprotein (BSP) and bind to epitopes that are formed only by a folded bone sialoprotein from tumor cells, the glycosylation of which in the range from amino acids 120 to 135 (with signal sequence), comprising the amino acid sequence TGLAA or YTGLAA, with respect to which normal bone sialoprotein from bones is changed or incomplete or missing.
  • BSP folded bone sialoprotein
  • the antibodies are preferably produced using BSP from tumor cells as the antigen. Since it is difficult to isolate the BSP from tumor cells in insufficient quantities, the genetic engineering expression of glycosylation-modified BSP in tumor cells is the method of choice. It has also been found that some patients contain glycosylation-altered BSP in the bone material. This means that these mostly very old patients suffering from severe osteoporosis produced a BSP, at least in part was not normally glycosylated. In principle, this BSP is also suitable as an antigen for obtaining the antibodies according to the invention.
  • the isolation of the partially glycosylated isoform which resembles the tumor isoform of the BSP, can be carried out analogously to the methods described (Karmatschek M et al, Improved purification of human bone sialoprotein and development of a homologous radioimmunoassay, in Clin Chem. 1997, 43 (11) , 2076-82).
  • the antibodies can be produced in mouse, guinea pig, rabbit, dog goat, pig, human, donkey or horse, but also in all mammals.
  • the immunization of birds, in particular chicken, is particularly preferred since, owing to the large differences in lineage, it is particularly easy to obtain antibodies against the tumor isoform of BSP.
  • the presence of IgY antibodies does not lead to an activation of the complement system, which can be problematic due to the possible binding between factor H and BSP.
  • the antibodies according to the invention recognize the tumor isoform of the BSP in the binding with factor-H.
  • the invention thus relates to isoforms of BSP, specific antibodies against the isoforms formed by tumors and their use for antibody therapy or also for immunoscintigraphy.
  • Possible side effects caused by anti-BSP antibodies are: direct and indirect damage to the bones and dentine through activation of the immune system against the bone matrix and
  • Antibodies are particularly suitable for tumor therapy and localization, since they do not bind or only bind to the bone matrix or to BSP-producing cells of the skeleton and dentin to a limited extent.
  • antibodies are used for tumor therapy which are specific for tumor BSP and additionally recognize BSP in a complex with factor H.
  • Such antibodies are provided by the invention.
  • free tumor BSP that is bound to factor H and is present in the blood and tissue fluid is marked, thus removing the protection against complement activation.
  • tumor cells are specifically marked for destruction by the immune system (e.g. through classic activation of the complement cascade) and side effects such as e.g. avoided by activating the immune system against the bone matrix or the dentin.
  • Immunoscintigraphy for example, polyclonal antibodies can be used, which can be produced by immunizing chickens with recombinant BSP or BSP isolated from bone and modified in glycosylation. The antibodies are then isolated from the egg yolk in a known manner and purified by affinity chromatography.
  • human polyclonal anti-BSP antibodies are isolated from the egg of transgenic chickens with a humanized immune system.
  • mouse or chicken monoclonal antibodies which meet the conditions described above and can be obtained by screening.
  • the monoclonal cell line described in Example is used for this.
  • fragments of antibodies such as e.g. proteolytically or genetically engineered Fab fragments.
  • Antibody fragments in conjugation with cell poisons and radioisotopes for the direct destruction of tumor cells after binding to BSP on the cell surface are particularly useful as antibody fragments.
  • Humanized poly- and monoclonal antibodies that recognize BSP in complex with factor H and do not bind to BSP in the bone matrix are particularly suitable.
  • mouse and chicken antibodies a special therapeutic effect is to be expected through the formation of human anti-mouse antibodies (HAMA) or anti-chicken antibodies (HACA).
  • HAMAs and HACAs can induce and strengthen an immune response of the organism to the tumor antigen.
  • interference occurs with the HAMAs and HACAs, which interfere with the in vitro measurement method. This leads to false high measurement values for tumor markers. This occurs after immunoscintigraphy or immunotherapy with appropriate antibodies, so that a correct tumor marker determination can only take place after absorption of the HAMAs or HACAs in vitro.
  • polyclonal humanized anti-BSP antibodies can be obtained, for example, by immunizing transgenic chickens with BSP, in which the gene region for the chicken-specific Fc part of the immunoglobulin (IgY) in the embryonic stem cells has been replaced by a human-specific one (US Pat. No. 5,340,740; US Pat. No. 5656479) ). The humanized antibodies are then deposited in the eggs of the chickens and can be isolated from the egg yolk (Mohammed S.M. et al, Deposition of genetically engineered human antibodies into the egg yolk ofhens. Immunotechnology, 1998, 4: 115-125)
  • hybridoma cells of the mouse or the chicken can be obtained with suitable anti-BSP antibodies by standard methods and humanized antibodies can be developed from the genetic material contained in these cells by recombination (US Pat. No. 5,585,089; US Pat. No. 5,565,332; US Pat. No. 5 225,539; US 5,693,761; US 5,585,089; US 5,530,101).
  • the BSP can use the overall sequence SEQ ID No 1 and the partial sequence ID No. 2 can be used in its entirety or with its specific epitopes to generate antibodies.
  • Preferred BSP fragments for the production of specific antibodies are:
  • SEQ ID NO: 2 X-FSMKNLHRRVKIEDSEENGVFKYRPRYYLYKHAYFYPHLKRFPVQGSSDSSEENGD DSSEEEEEEEEEETSNEGENNEESNEDEDSEAENTTLSATTLGYGEDATPGTGYTGLA AIQLPKKAGDITNKATKEKESDEEEEEEEEGNENEESEAEVDENEQGINGTSTNST EAENGNGSSGVDNGEEGEEESVTGANAEGTTETGGQGKGTSKTTTSPNGGFEPTTP PQVYRTTSPPFGKTTTVEYEGEYEYTYDNGYEIYESENGEPRGDNYRAYEGEYSYF KGQGYDGYDGQNYYHHQ-Z
  • T is not or incompletely or in another form glycosylated and X and Z stand for amino acid or peptide residues of up to 30 amino acids.
  • X and Z stand for amino acid or peptide residues of up to 30 amino acids.
  • SEQ ID No. 2 at position 179 Gly ⁇ Val; Position 252 Val ⁇ Ala; Position 254 Glu ⁇ Asp; Position 279 Asp ⁇ Gly.
  • the peptides which are normally not immunogenic, are coupled to the carrier protein KLH (Keyhole Limpet Hemocyanin). This coupling can be carried out by NBS (N-maleimidbenzoyl-N-hydroxysuccinimide ester) via a cysteine terminally added in the peptide, or directly by means of carbodiimide.
  • the antibodies are obtained by conventional methods by immunization, preferably from chickens, rabbits, mice, guinea pigs, etc. Molecular biological methods such as the recombinant production of the antibodies can also be used. The antibodies are then cleaned and galenically processed. Cell preparations, cell extracts and in particular membrane isolates from overexpressing, artificially transfected BSP-expressing cells can also be used to generate specific antibodies.
  • the medicaments according to the invention can be used in suitable galenical application forms, in particular in lyophilized form, ingested with mannitol or similar sugars, in sterile ampoules for dissolution in physiological saline and / or infusion solution for repeated single injection and / or continuous infusion in amounts of 300 mg to 30 mg of pure antibody or BSP ligands are administered per therapy unit.
  • the medicament according to the invention is preferably administered in a pharmaceutical form, where the drug is used in biocompatible microspheres, and administered systemically or locally via aerosol, intravenous or subcutaneous application.
  • Various routine methods can be used to determine that the tumor cells react anti-apoptotically, adhesively, mitotically and chemotactically when agonists that bind to the corresponding proteome molecules are administered.
  • the inhibition of their maintenance, adhesion, mitosis or migration is brought about by prior incubation with antagonists or antibodies.
  • nude mice or nude rats have a defective immune system, the metastatic behavior in a host body can be examined in a nude mouse / rat model without the known immune reaction between species taking place and the foreign cells being rejected.
  • Nude mice are vaccinated in a manner known per se with tumor cells or tumor cell lines, the BSP expression of which had been determined, and the metastasis by these cells is checked when treated with BSP antibodies and when treated with BSP ligands. Surprisingly, this results in the fact that metastasis formation is significantly inhibited or prevented in the BSP-positive tumors found, because the administration of antibodies leads to a modulation of the tumor growth.
  • the preparations analyzed by immunohistochemistry show a specific distribution of BSP and other tumor surface-associated proteome clusters in the tumor and surrounding tissue. This identified additional targeted intervention options.
  • tumor cell lines can also be stably transfected with BSP. After injection of these cells (in which BSP is overexpressed) into animals, such tumor cells preferentially settle in the bone matrix. Such modified cells thus in particular form metastases in bone tissue, on the basis of which the therapeutic
  • Serum-free supernatants of the human osteosarcoma cell lines UMR-108, MHH-ES1 and the breast cancer cell line MCF-7 (estrogen receptor positive) as well as human BSP (K-BSP) purified from bone were separated by SDS-PAGE on a 10% gel under reducing and denaturing conditions and transferred electrophoretically to nitrocellulose.
  • the membrane was incubated with the mouse monoclonal antibody.
  • the BSP was detected via an anti-mouse goat anti-mouse antibody coupled to peroxidase and chemiluminescence detection on an X-ray film. The result is shown in Fig. 1. Molecular weights and running distances of the markers are shown on the left.
  • the single and double arrowhead show the different running behavior of bone / osteosarcoma BSP and MCF-7-BSP.
  • the latter also contains a high molecular band (triple arrow), which is absent in the other tracks.
  • BSP from a tumor cell line thus has a significantly higher molecular weight than BSP from bone and from osteosarcoma cell lines, and a second isoform with an even higher molecular weight can also be observed.
  • Polyclonal immunoglobulins were isolated from the egg yolks and the sera and tested for binding in an ELISA method against various peptide partial structures of the BSP. Table 1 shows the results of this epitope mapping. Partial peptide structures were chemically synthesized from the 317 amino acid long peptide sequence of preproBSP (incl. Leader sequences), bound to a microtiter plate and the antibodies incubated on the plate. Binding was tested after incubation with a Conjugate of peroxidase with anti-IgY or anti-rabbit IgG immunoglobulins and subsequent enzyme reaction by reacting a chromogen as a substrate.
  • the results show that the chicken antibodies obtained preferentially bind to the C-terminal sequence of the BSP, while the rabbit antibodies bind over a larger area.
  • polyclonal antibodies were obtained by immunizing rabbits with the partial peptide structure TyrThrGlyLeuAlaAlalleGInLeuProLysLysAlaGlyAsp (positions 124-138) of the BSP, which react preferentially to this partial pep structure, but also specifically with human bone BSP.
  • AK BSP polyclonal antibodies
  • the polyclonal antibodies A002 obtained from L.W. Fisher
  • A003 obtained from Dr. van Ryden were also used for the experiments. These antibodies were made after
  • ArgAlaTyrGluAsp (A002) or LeuLysArgPheProValGInGlyGly won.
  • the former peptide is derived from the C-terminus of the BSP (position 278-295) of the BSP and contains the RGD (ArgGlyAsp) recognition sequence of the BSP for receptors of the integrin type.
  • the latter peptide comes from the N-terminus of the BSP primary structure.
  • Example 3 Obtaining recombinant BSP from breast cancer cells as an antigen
  • Plasmid B6-5g (Fisher LW et al. Human bone sialoprotein. Deduced protein sequence and chromosomal localization, in J. Biol. Chem, 1990, 265 (4), 2347-51) was used to produce the complete cDNA for human BSP (without Signal peptide) amplified by PCR and cloned into the episomal eukaryotic expression vector pCEP-Pu (Kohfeldt E et al, Properties of the extracellular caicium binding module of the proteoglycan testican, in FEBS Lett. 1997, 414 (3), 557-61).
  • the primers were as follows:
  • Nhe I and Not I sites inserted with the primers were used for cloning into the expression vector.
  • PCEP-PU required.
  • This vector is also equipped with different tags (e.g. His, Myc, G8T) to facilitate protein purification at the 5 'end of the multiple cloning site. These tags can be cleaved with a protease (e.g. factor X or enterokinase) after protein purification. Compliance with the correct reading frame was checked by sequencing.
  • the expression constructs were introduced into the following human cell lines using liposome-mediated stable transfection (FUGENE TM transfection reagent from Röche), inter alia: • the embryonic kidney cell line EBNA-293
  • Transient cells were cultured in serum-free medium two days 48 hours after transfection. So that the proteins in the FCS did not make the recombinant BSP more difficult to purify, BSP-expressing cells were cultivated under serum-free conditions after reaching confluence. Under these conditions, only EBNA-293 cells could survive longer than 2-4.
  • the expression of the recombinant BSP was controlled by SDS-PAGE and immunoblots.
  • the N-glycans were enzymatically separated from the recombinant BSP (rBSP) or the bone BSP with the peptide N-glycosidase F (PNGase F, Röche).
  • the enzyme catalytically cleaves all N-glycan types from the asparagines.
  • 20 to 200 ⁇ g of BSP were precipitated with ethanol and the precipitation pellet was incubated with an excess of enzyme in 1% SDS, ⁇ -mercaptoethanol, 0.1 M EDTA for 30 minutes at room temperature. Digestion with N-glycosidase F followed overnight at 37 ° C. To desalt the N-glycan solution, the digestion was passed through a 150 mg carbon column (Carbograph SPE, Alltech) and the N-glycans eluted with 25% aCN in 0.05% TFA.
  • the O-glycans were split off from the BSP using anhydrous hydrazinolysis using a kit (Oglycan relase kit, Glyco).
  • a kit Oglycan relase kit, Glyco.
  • about 200 ⁇ g of salt-free BSP were lyophilized for 24 hours, 50 ⁇ l of hydrazine reagent were added under argon protective gas, dissolved and incubated at 60 ° C. for 5 hours. The hydrazine was removed under vacuum. Re-N-acetylation of the N-acetyl groups with acetic anhydride follows.
  • N- and O-glycans were labeled with the fluorescent dye 2-aminobenzamide (Fluka) and the 2-AB labeled oligosaccharides were digested sequentially with specific terminal glycosidases and analyzed by MALDI-TOF mass spectrometry.
  • N-Glykan-Sturkutren Glycosylation sites at positions 88 (NTT), 161 (NGT), 166 (NST) and 174 (NGS). No comparable consensus sequence is known for O-glycosylation. All identified N-Glykan-Sturkutren were found on the BSP isolated from bone as well as on the recombinant EBNA-293 BSP. However, there were differences in the percentage of the respective structures in the total N-glycans. The majority of the BSP-N glycans in the bone consisted of triantennary structures (58%) and in the EBNA cell line consisted of tretraantennary structures (48%).
  • the O-glycans were removed by sequential digestion of the protein with neuraminidase, ⁇ -galactosidase, and ⁇ -N-acetylhexosaminidase down to the core GalNAc.
  • the partially deglycosylated protein was then cleaved into peptide fragment by treatment with trpysin and V8 protease.
  • the masses of the peptides were determined by means of MALDA-TOF mass spectrometry and some of the peptides were sequenced by means of PSD-MALDI-TOF mass spectrometry.
  • O-glycosylation sites of the recombinant BSP could be determined, 5 on the peptide 211-229 (TTTSP ... QVYR) and a maximum of three on the peptide between AS 120 and AS 135 with the sequence TGLAA ..
  • TTSP peptide 211-229
  • AS 120 AS 120 and AS 135 with the sequence TGLAA .
  • the recombinant BSP O-glycosylated the threonines in the DATPGTG sequence.
  • a third O-glycosylation occurs in the case of bone BSP.
  • Akita E. M et al Comparison of four purification methods for the production of immunoglobulins from eggs laid by hens immunized with an enterotoxigenic E. colistrain, in J Immunol Methods. 1993, 160 ( 2), 207-14).
  • a high-performance breed such as "Lohmann Cold" or
  • “Lohmann Braun” with an output of 4.5 eggs per week and a production of more than 10 mg specific IgY per yolk is used.
  • the immunization is carried out with human bone isolated or recombinant BSP antigen in Freund's adjuvant, after a basic immunization booster injections are given with about 0.1 mg of BSP every 6 weeks. About 30% of these chickens normally do not respond to the immunization.
  • the eggs are externally disinfected with peracetic acid, then broken up and the yolks are separated from the protein Whisk 5 to 10 volumes of ice-cold distilled water between pH 5 and 5.2 and incubate at 2 to 5 ° C for 2 to 6 h, during which the yolk granules, which consist essentially of lipoproteins, sediment.
  • the aqueous supernatant is then filtered through filter paper (e.g. Whatman No. 1) clear filtered. From this supernatant, the anti-BSP-IgY can be purified homogeneously directly via affinity chromatography.
  • BSP isolated from human bone or from culture supernatants of recombinant human cell lines is chemically covalently bound to a Sepharose 4B column activated with cyanogen bromide.
  • a Sepharose 4B column activated with cyanogen bromide.
  • the bound IgY is eluted over an acid gradient and then the solution is neutralized. This solution must then be desalted and the antibodies concentrated, which is possible on a large scale using the crossflow process (e.g. Amicon TM spiral filter SY100 with an exclusion of 100,000 Daltons).
  • the crossflow process e.g. Amicon TM spiral filter SY100 with an exclusion of 100,000 Daltons.
  • the low response of the chicken polyclonal antibodies to BSP in the bone matrix can be eliminated by selecting those antibodies that react with BSP complexed with factor H.
  • factor H either factor H or BSP isolated or genetically engineered BSP is chemically covalently bound to cyanogen bromide-activated Sepharose 4 B and then so much BSP or factor H is applied to the column and bound that all ligands in the matrix are complexed with the partner. Filtered yolk extract is then applied to this affinity column and, as in example 4, that antibody fraction is then obtained which specifically binds to the free epitope in the BSP factor-H complex.
  • Anti-BSP-IgY have some weaknesses in human therapy and diagnostics. Side effects such as foreign protein reactions can be expected and the biological half-life is only 12 to 24 hours compared to human antibodies. IgY also does not activate the complement system.
  • Human antibodies against BSP can be produced in special transgenic chickens in which the constant region for avian immunoglobulin in the genes responsible for antibody formation has been replaced by the constant region for human immunoglobulin by gene targeting. Suitable chicken stem cells and vector systems are described in U.S. Patents 5,340,740, No. 5,656,479 and No. 5,464,764. After immunization with BSP, such chickens react with the production of human antibodies in the egg.
  • Example 8 Immunoblot analysis of BSP expression in human breast cancer cell lines
  • the tumor cell lines MDA-MB-231 (breast cancer cell line, estrogen receptor negative), MCF-7 (breast cancer cell line, estrogen receptor positive) and T-47-D (breast cancer cell line, estrogen receptor positive) were extracted with immunoprecipitation buffer and BSP with the polyclonal antibody mixture A0001 Rabbits felled against human BSP. After denaturation, the precipitates were applied to SDS gels, electrophoresis was carried out and the proteins were transferred to nitrocellulose membranes.
  • the cell surfaces of the breast cancer cell lines MDA-MB-231 and MCF-7 were biotinylated, extracted with immunoprecipitation buffer and BSP was precipitated with the polyclonal antibody mixture A0001 from rabbits against human BSP. After denaturation, the precipitates were applied to SDS gels, electrophoresis was carried out and the proteins were transferred to a nitrocellulose membrane. Biotinylated proteins on this membrane were then detected with a conjugate of peroxidase and streptavidin with the ECL system (Amersham).
  • MRNA was isolated from the tumor cell lines MDA-MB-231 (breast cancer cell line, estrogen receptor negative), MCF-7 (breast cancer cell line, estrogen receptor positive) and T-47-D (breast cancer cell line, estrogen receptor positive) and human fibroblasts (HGF) as control cells , the complementary cDNA was produced by reverse transcriptase and the BSP cDNA was amplified by PCR with BSP-specific primers. The expression of BSP-mRNA was particularly high in the MCF-7 breast cancer cell line, low in the MDA-MB-231 and T-47-D cells and undetectable in the control cell line.
  • Example 10 Preparation of humanized monoclonal antibodies
  • the monoclonal antibody BSP 1.2 can be used for the therapy of primary tumors and metastases.
  • the antibody binds to BSP on the cell surface of certain tumor cells and stimulates the immune system to destroy these cells e.g. about the activation of the complement cascade.
  • the polyclonal or monoclonal anti-BSP IgY can be used for therapy.
  • the human immune system reacts with the formation of their own antibodies - human anti-mouse IgG antibodies (HAMAs) or human anti-chicken IgY antibodies (HACAs).
  • HAMAs and HACAs can induce and strengthen an immune response of the organism to the tumor antigen.
  • there are interferences with the HAMAs and HACAs which interfere with the in vitro measurement method. This leads to false high measurement values for tumor markers.
  • Humanized monoclonal antibodies are therefore particularly suitable for therapy and immunoscintigraphy. Several methods are described for deriving corresponding humanized antibodies from the hybridoma cell lines which produce monoclonal anti-BSP antibodies.
  • cell poisons and radioisotopes can be chemically covalently linked to the anti-BSP antibody or their Fab fragments.
  • Antibodies labeled with radioisotopes such as iodine 125 or iodine 131 are suitable for localization of tumors by immunoscintigraphy when applied in small quantities and for direct destruction of tumors when applied in large quantities.
  • Such chemical conjugates can be prepared, for example, by iodinating the antibodies with iodine 125 or 131 (Garvey, J.S et al, Methods in Immunology. 3rd ed, W.A. Benjamin Publ, 1977, 171-182).
  • An overview of suitable methods for radioimmunotherapy and immunoscintigraphy can be found in Vuillez, Radioimmunotargeting: diagnosis and therapeutic use, in Bull Cancer. 2000, 87 (11). 813-27.
  • Example 12 Therapy of tumors with expression of BSP on the cell surface
  • Tumor cells is expressed.
  • Patients in whom BSP can be detected on the surface of the tumor cells can be treated with anti-BSP antibodies from chickens, mice, the corresponding humanized antibodies and with conjugates of these antibodies with cell poisons or radioisotopes.
  • the treatment of tumors with therapeutic antibodies which are directed against tumor markers expressed on cell surfaces is state of the art.
  • With the humanized antibody Herceptin against the receptor for the human epithelial growth factor breast cancer can be successfully treated even in the metastatic form in approx. 25% of those affected (Hotaling TE et al, The humanized anti-HER2 antibody rhuMAb HER2 mediates antibody dependent cell-mediated cytotoxicity via FcgR III [abstract].
  • the corresponding anti-BSP antibody can be administered as an infusion, for example as a 90 minute infusion for the first application and later than a 30 minute infusion
  • the amount of antibodies depends on the half-life of the antibodies in the blood (approx. 6 days for a humanized antibody and less than 24 hours with a chicken antibody) and body weight.
  • Example 13 Therapy of tumors by neutralizing free, non-cell-bound BSP and the BSP factor-H complex
  • the patient's tumor cells express BSP that cannot be detected on the cell surface. With these tumors it can be assumed that the cells release BSP into the blood or tissue fluid and e.g. to bind factor H to inactivate the alternative route of the complement cascade or to immigrate to bone tissue.
  • Another possible indicator for this type of tumor is increased concentrations of BSP in the blood serum (> 20 ng / mL serum).
  • anti-BSP antibodies can be used to neutralize the free or factor H-complexed tumor BSP.
  • the dose can be matched to the amount of BSP freely available in the serum and in the tissue fluid.
  • Anti-BSP antibodies from chickens, mice and humanized anti-BSP antibodies that can recognize the free BSP epitope in complex with factor H are suitable for therapy.
  • Fab fragments of these antibodies which can be prepared by proteolytic digestion according to a standard method (Garvey, J.S et al, Methods in Immunology. 3rd ed., W.A. Benjamin Publ, 1977, 256-266). Genetically engineered Fab fragments derived from the above anti-BSP antibodies are also suitable for such therapy.
  • the invention thus provides antibodies against the human bone sialoprotein
  • hBSP which specifically only bind epitopes to hBSP from tumor cells, because tumor hBSP contains no post-translational O-glycosylation in the region of amino acids 120 to 135
  • SWISSPROT SIAL_HUMAN, Acc.No. P21815, without signal sequence
  • Amino acids TGLAA TGLAA.
  • the normal bone hBSP is different.
  • the antibodies can Recognize tumorigenic serum hBSP in the complex with the complement factor-H and thus form a diagnostically and therapeutically valuable instrument.
  • Example 14 Production of specific antibodies against BSP or other clusters of the tumor cell surface proteome.
  • mice type NZW X NZB
  • monoclonal antibodies which was done using the routine methods of Immundiagnostik AG and IPF PharmaCeuticals GmbH. After high purification, the antibodies checked by Western blot and ELISA can be used for the diagnostic and therapeutic purposes mentioned
  • Example 15 Initiation of apoptosis by BSP-specific antibodies in BSP-exposing cell lines.
  • Example 16 Reduction of bone metastases in the animal model.
  • Bone metastasis occurs regularly after the application of BSP-expressing tumor cell lines in immunodeficient nude mice / rats. Surprisingly, the simultaneous administration of the BSP-specific antibody resulted in a significant reduction in the formation of manifest bone metastases, which could be demonstrated by histological analysis of the tissue. 1. Material and methodology
  • Our animal model included the injection of breast cancer cells and the subsequent therapy of the resulting lytic lesions with the anti-BSP antibodies, which were a mixture of polyclonal IgY antibodies from chicken with predominant specificity for human BSP from tumor cells, which also hBSP in human serum in the presence bind factor-H quantitatively and bind predominantly to an epitope in the region of amino acids 120 to 135 of the hBSP, the post-translational glycosylation in this region being changed in hBSP from tumor cells compared to natural BSP from bone.
  • MDA-MB 231 cells ATCC, HTB-26
  • mice were administered intracardially (TAGuise, 1997; PTH-rP and Bone Metastases; American Cancer Society).
  • the cell line was obtained from a metastatic human adenocarcinoma and they also have no estrogen receptors. In our case it was labeled with green fluorescent protein (GFP), which makes it easier to find the cells in the histological preparation.
  • GFP green fluorescent protein
  • Naked rats aged 6 to 8 weeks (RNU, Charles River Breeding, Sulzfeld, Germany) were used as experimental animals, and their immune competence was reduced, so that the injected human cells were not recognized as such and controlled.
  • Our preliminary examinations with different cell numbers in males and females showed that the metastases in male rats become visible after approximately one month in the form of lytic lesions after injection of 10 5 MDA-MB 231 cells.
  • a side branch of this vessel was cannulated and tied off after the injection in order to prevent the introduced cells from escaping.
  • the animal easily compensates for the loss of the vessel through collateral formation.
  • the cancer cells then reach the fine branches of the supplying branches of the femur, tibia and fibula with the blood. It takes place here in the terminal current path extravasation and subsequent adhesion of the cells to the bone matrix. This is probably where the interaction with BSP takes place.
  • the subsequent monitoring of metastatic growth was carried out every 10 days with conventional x-rays anterior-posterior and posterior-anterior under anesthesia of the animal. The approximate quantification was done by measuring the length and width of the lesion.
  • the animals were treated with anti-BSP-Ak or standard.
  • the therapy was given subcutaneously once a week at a concentration of 10 mg / kg body weight.
  • the animals were also followed up by computer tomography and histology (not yet completed).
  • the CT allowed a three-dimensional reconstruction of the bone and the defect as well as an exact measurement of the lesion size.
  • the animals were sacrificed and examined histologically. Labeling with GFP shows the cells in the bone section under UV light. In addition, histologically more precise statements can be made about the previous remodeling of the bone tissue.
  • Animals 987 and 988 were treated subcutaneously with the anti-BSP-Ab (10 mg / kg) once a week. The total duration of treatment was approximately 50
  • Animal 987 was also treated with 10 mg / kg sc once a week from day 46 after 3 positive X-ray findings. Only one metastasis on the distal femur was shown here, which had healed to the bone from the 89th postoperative day (i.e. after 42 days under therapy). Other animals were treated up to five times a week with 10 mg / kg sc and up to twice a week with 10 mg / kg iv under the same conditions. But it was one
  • An increase in the size of the lesion can be observed during and after the end of therapy if the treatment induces an immune response against the injected BSP antibodies.
  • the present invention thus relates to a medicament containing antibodies or binding molecules such as aptamers against tumor-specific BSP or other ligands for the same protein.
  • the use of the proposed pharmaceutical application can be increased by using the following substances: antibodies, ligands or inhibitors that interact with adhesion molecules, membrane-associated proteases, or receptors that mediate chemotaxis, such as chemokine receptors, and apoptosis-inducing substances such as preferably antibodies or Proteins / peptides that can be obtained from natural or artificial peptide banks.
  • the medicament can be used individually or in combination with the abovementioned substances, in particular for the therapy of tumor diseases, preferably their bone metastases.
  • the invention further relates to a method for the therapy and the medical and commercial use of the above-mentioned antibodies against BSP or other ligands for the same protein or their combination with reinforcing antibodies, ligands or inhibitors which have chemotaxis with adhesion molecules, membrane-associated proteases, or receptors mediate how, for example, chemokine receptors interact, and apoptosis-inducing substances, such as preferably antibodies or proteins / peptides, which can be obtained from natural or artificial peptide banks in order to inhibit cancer growth, including metastasis.
  • the method is based on the finding that BSP can act on specific tumor cells via the disease-specific constellation of expression. Primary and secondary tumors are controlled, among other things, by BSP in their migration and proliferation behavior. This results in the possibility of decisively preventing or completely suppressing cancer growth and tumor metastasis using the aforementioned method / therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Diabetes (AREA)
  • Urology & Nephrology (AREA)
  • Endocrinology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Neurology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Neurosurgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dermatology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Reproductive Health (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Die Erfindung betrifft Arzneimittel zur Behandlung von Tumoren und deren Metastasen, die bevorzugt im Knochen-gewebe ansiedeln, umfassend als Wirkstoff mindestens ein Bindmolekül, das an Bone-Sialoprotein oder einem Fragment heivorn in serum oder Plasma bindet.

Description

ARZN EIMITTEL ZUR BEHANDLU NG VON TU MOREN U N D DEREN METASTASEN
GEBIET DER ERFINDUNG
Die Erfindung betrifft Arzneimittel zur Behandlung und Bekämpfung von Tumoren und von Metastasen, die besonders häufig im Knochengewebe ansiedeln.
HINTERGRUND DER ERFINDUNG
Es sind viele zur Zeit zahlreiche Arzneimittel in der Entwicklung, die Tumore und deren in Knochen streuende Metastasen bekämpfen sollen. Trotz aller medikamentösen Fortschritte gelten aber Knochenmetastasen nicht als heil- und therapierbar. Es gibt Versuche, durch Antikörper gegen Oberflächenantigene von Tumorzellen deren Metastasen zu bekämpfen. Knochen metastasen sind aber trotzdem bei Tumoren der Mamma in 73% der Fälle und bei Tumoren der Prostata in 68% der Fälle die Todesursache. Für Tumoren von anderen Geweben gelten folgende Zahlen: Cervix 50%, Schilddrüse 42%, Blase 40%, Lunge 36%, Ovarien 9% und Kolon 6%. Tumorzellen, die das sogenannte Bone-Sialoprotein exprimieren, haben die
Besonderheit, dass sie bevorzugt in Knochengewebe einnisten und dort Metastasen bilden, besonders bei Tumoren der Prostata, Mamma, Lunge, Niere und Schilddrüse und weniger häufig bei malignen und semimalignen Tumoren. Das Bone-Sialoprotein (BSP) ist ein phosphoryliertes Knochen-Glykoprotein mit einer relativen Masse von ca. 80 kDa in der SDS- PAGE. Die cDNA für BSP kodiert für eine Peptidsequenz von ca. 33 kDa (Fisher L.W. et al. (1990), J. Biol. Chem, 265, 2347-51 ; US 5 340 934). BSP ist eines der wenigen Matrixproteine, deren Vorkommen auf mineralisierende Gewebe wie Knochen, Dentin und kalzifizie- rendem Knorpel beschränkt ist. Das BSP stellt ca. 10 bis 15 % der gesamten nicht-kollagenen Proteine in der Knochenmatrix. Es wird in der Regel von Zellen exprimiert, die an der Bildung von Dentin, Knochen und Knorpel beteiligt sind, bspw. von Osteoblasten, sich entwickelnden Osteozyten, hypertrophen Chondrozyten, Odontoblasten und Zementoblasten, aber auch von den Trophoblasten in der Placenta sowie von einigen Typen von Krebszellen, z.B. bei Lungen- , Brust-, Prostata-, Nieren-, Schilddrüsen- und Neuroblastoma-Primär- und Sekundärtumoren, beim Multiplen Myelom und in Knochenmetastasen. Der Grad der Expression von BSP durch den Tumor korreliert eng mit der Schwere der Krebserkrankung (Waltregny D. et al., Increased expression of bone sialoprotein in bone metastases compared with visceral metastases in human breast and prostate cancers, in J. Bone Miner. Res., 2000, 15(5). 834- 43; Bellahcene, A. et al., Bone sialoprotein expression in primary human breast cancer is associated with bone metastases development, in J. Bone Miner. Res., 1996, H, 665-670; Waltregny, D. et al., Prognostic value of bone sialoprotein expression in dinically localized human prostate cancer, in Journal of the National Cancer Institute, 1998, 90, 1000-1008; Bellahcene, A. et al., Expression of bone sialoprotein in primary breast cancer is associated with poor survival, in Int. J. Cancer, 1996, 69, 350-353).
Das BSP soll als Adhäsionsmolekül die Anheftung und Ausbreitung von Zellen auf der Gewebematrix bewirken, da es in vitro Kristallisationskeime für biologisches Apatit bildet und in vivo an den Mineralisationen beteiligt ist. Das Ausschalten des BSP-Gens in Knock-out- Mäusen führte zu keiner erkennbaren Störung der Skelettbildung und -funktion. In Tumoren wird BSP eine Beteiligung an der Mikrokalzifikation (Castronovo, V. et al., Evidence that breast cancer associated microcalcifications are mineralized malignant cells, in Int. J. Oncol., 1998, 12, 305-308) und der Besiedlung von Knochen durch metastasierende Tumorzellen zugeschrieben (Bellahcene, A. et al, Expression of bone sialoprotein in primary breast cancer is associated with poor survival, in Int. J. Cancer, 1996, 69, 350-353).
Die Höhe der Konzentration an BSP im Serum von Patienten mit primärem Karzinomen dient der Diagnostik, ob diese Patienten Knochenmetastasen besitzen oder solche wahrscheinlich vom primären Tumor ausgehen werden (Diplomarbeit von Frau Ina- Alexandra Meier, Entwicklung eines Radioimmunoassays zur Bestimmung von Bonesialoprotein (BSP), 1996, Darmstadt, Fachhochschule, FB Chemische Technologie; Dissertation von Herrn Markus Karmatschek, Isolierung von Bonesialoprotein aus humanem Knochen, Aufbau eines Radioimmunoassays zu dessen Messung im Serum, 1996; FB Biologie der Technischen Hochschule Darmstadt; Diel I.J. et al., Elevated bone sialoprotein in primary breast cancer patients is a potent marker for bone metastases; in Proceedings of ASCO, 1998, 17, Abstract 461; Diel I.J. et al., Serum bone sialoprotein in patients with primary breast cancer is a prognostic marker for subsequent bone metastasis, in Clin. Cancer Res., 1999, 5, 3914-19; DE 198 13633; DE 19821 533; WO 99/50666).
Freies BSP wird aber in Körperflüssigkeiten vom Komplementfaktor-H mit hoher Affinität gebunden. Zudem kann das BSP an verschiedene Rezeptoren binden. So wurden gegen verschiedene Peptidteilstrukturen des BSP (Fisher, L.W. et al., Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop Scand Suppl. 1995, 266, 61-655), gegen rekombinantes BSP (Stubbs JT 3 et al, et al, Characterization of native and recombinant bone sialoprotein: delineation of the mineral- binding and cell adhesion domains and structural analysis of the RGD domain. J. Bone Miner. Res. 1997, 12(8), 1210-22) und gegen aus Knochen isoliertes BSP Antikörper im Kaninchen hergestellt, die sämtlich BSP in Humanserum nicht erkennen. Das größere Faktor-H-Molekül mit 150 kDa maskiert vermutlich das kleinere BSP (von ca. 65 kDa) so, dass Antikörper nicht binden können. Zudem liegt Faktor-H im Serum im Überschuss vor (0,5 mg Faktor-H / mL im Vergleich zu BSP mit < 20 ng / ml Serum beim gesunden Menschen und max. 160 ng/ ml bei Tumorpatienten). Es wird behauptet, dass der immunologische Direktnachweis von BSP in Körperflüssigkeiten wegen der Bindung an den Faktor-H ohne reduzierende Probenaufbereitung unmöglich ist und möglicherweise Trophoblasten und BSP-produzierenden Tumor- zellen hierdurch vor einem Angriff des Immunsystems geschützt werden, denn der Faktor-H gehört zum Komplementsystem und bewirkt bekanntlich die Hemmung des alternativen Weges zur Komplementlyse (Fedarko N.S. et al, Factor H binding of bone sialoprotein and osteopontin enables tumor cell evasion of complement-mediated attack, in J. Biol. Chem, 2000, 275, 16666-16672; WO 00/062065). Ferner kann das BSP über die eigene Erkennungssequenz (Arginin-Glycin-Aspartat, RGD) spezifisch an die Integrinrezeptoren auf Zelloberflächen binden. Bei einer Expression von BSP sollen dann die Tumorzellen den Faktor-H im Blut und in den Gewebsflüssigkeiten an ihre Zelloberfläche binden bzw. um sich herum konzentrieren. Ein derartiger BSP-Schutz vor dem Komplementsystem des Blutes der Mutter wird auch für die Trophoblasten in der Placenta vermutet (Fedarko N.S. et al, Factor H binding of bone sialoprotein and osteopontin enables tumor cell evasion of complement- mediated attack, in J. Biol. Chem, 2000, 275, 16666-16672; WO 00/62065). Eine Funktion des BSP wird weiterhin bei der Angiogenese vermutet. Neben der Adhäsion von Osteoklasten und Osteoblasten an die Knochenmatrix - durch das Binden der RGD-Erkennungssequenz in der Matrix an die alpha(v)beta(3) Integrin-Rezeptoren auf der Zellwand - wird auch beobachtet, dass die Adhäsion, Ausbreitung und Orientierung der Endothelzellen vermutlich von BSP vermittelt wird. Die Blutgefäßbildung um einen Tumor geht nämlich einher mit der BSP-Expression in den Tumorzellen (Bellahcene A et al, Bone sialoprotein mediates human endothelial cell attachment and migration and promotes angiogenesis, in Circ. Res. 2000, 86(8). 885-91)
Diese Eigenschaften machen das BSP somit zu einem Ausgangspunkt für Medikamente aller Art. So kann die Bindung von BSP über die RGD-Sequenz an Vitronectin- bzw. Integrin-Rezeptoren von Tumor- und Epithelzellen durch Antagonisten gehemmt werden (US 6069 158; US 6008213; US 5849 865; van der Pluijm et al, Bonesialoprotein peptides are potent inhibitors of breast cancer cell adhesion to bone in vitro, in Cancer Res, 1996, 56, 1948-1955). EP 1 084 719 A1 lehrt eine pharmazeutische Zusammensetzung mit BSP als Wirksubstanz zur Unterstützung der Reparatur von geschädigten Knochen- und Bindegewebe. WO 94/13310 lehrt eine Zusammensetzung mit einem BSP-Bindeprotein aus Staphylococcus aureaus als Wirkstoff. WO 00/36919 offenbart regulatorische Elemente zur zielgerichteten Kontrolle bzw. Unterdrückung der Expression von BSP in Tumor- und Bindegewebszellen, welche die Kalzifizierung fördern. Allgemein sind also die Stoffe der Regulation des Zellwachstums und der Zellmigration diagnostisch und therapeutisch besonders interessant. Es gibt aber noch sehr viele unbekannte Faktoren, die das Krebswachstum steuern, wobei Primär- und Sekundärtumoren und besiedelte Organe interagieren. Wichtige Stufen sind hierbei die Invasion, die Adhäsion, die Migration und die Zellteilung der Tumorzellen. Neben Matrixmetalloproteinasen spielen hier Adhäsionsmoleküle und chemotaktische Faktoren eine besondere Rolle. Ein Medikament zur Bekämpfung und auch zur Heilung von Knochenmetastasen auf Grundlage von Antikörpern und Bindemolekülen gegen BSP ist nicht bekannt. Es ist auch nicht bekannt, dass das BSP aus Tumorzellen von dem BSP aus normalen gesunden Zellen verschieden ist.
ZUSAMMENFASSUNG DER ERFINDUNG
Gegenstand der Erfindung ist ein Arzneimittel zur Therapie von Tumoren und deren Metastasen, die sich bevorzugt im Knochengeweben ansiedeln, umfassend als Wirkstoff mindestens ein Bindemolekül, das an Bone-Sialoprotein oder einem Fragment hiervon in Serum oder Plasma bindet. Der Wirkstoff ist bevorzugt ein Antikörper oder ein Aptamer oder Spiegeimer (Noxxon, Berlin, DE) auf DNA oder RNA-Basis und bindet im weiteren Sinn ein Molekül, das einem chemisch oder natürlich in der Glykosylierung veränderten Bone- Sialoprotein entspricht. Das Bindemolekül kann ein Antikörper oder ein Aptamer sein, das spezifisch Bone-Sialoprotein aus Tumorzellen bindet, oder auch die Bindungsstruktur von natürlichen BSP-Rezeptor oder des Faktor-H-Moleküls. Das Bindemolekül bindet an bzw. es kann hergestellt werden gegen in der Glykosylierung verändertes Bone-Sialoprotein aus Knochen material, dessen Spender nicht zur normalen Glykosylierung von Knochenproteinen fähig war.
In einer besonders bevorzugten Ausführungsform enthält das Arzneimittel als Wirkstoff einen Antikörper oder eine Mehrzahl von Antikörper gegen das humane Bone- Sialoprotein (hBSP), wobei die Antikörper Epitope binden, die auf humanem Bone- Sialoprotein aus Tumorzellen vorhanden sind, dessen posttranslationale Glykosylierung im Bereich der Aminosäuren 120 bis 135 (SWISSPROT: SIALJHUMAN, Acc.No. P21815, inkl. Signalsequenz), beinhaltend die Aminosäuren TGLAA, gegenüber normalem Bone- Sialoprotein aus Knochen verändert oder unvollständig ist. Das erfindungsgemäße Arzneimittel kann als Wirkstoff auch einen Antikörper und/oder ein Aptamer enthalten, erzeugt gegen ein hBSP-Epitop, umfassend die Aminosäuresequenz TGLAA oder YTGLAA und optional Zuckergruppen sowie ein Trägermolekül. Der Wirkstoff ist bevorzugt ein IgY- Antikörper aus Huhn. Der IgY-Antikörper aus Huhn kann auch ein entsprechend humaner oder humanisierter Antikörper sein. Weiterhin bevorzugt sind Arzneimittel, wobei das Bindemolekül als bispezifischer Antikörper noch ein zusätzliches Paratop beinhaltet, das vorzugsweise spezifisch für Epitope von CD3 ist. Der Wirkstoff kann auch ein Immunotoxin sein, das ein Konjugat aus Bindemolekül und einem Rest mit zytotoxischer Aktivität ist. Das Immunotoxin kann bspw. ein Konjugat sein, das die Ricin-A-Kette oder ein nicht bindendes Fragment* des Diphtherietoxins beinhaltet. Das Bindemolekül kann ferner mit einem Radionuklid gekoppelt sein, so dass das Arzneimittel auch zur Immunszintigraphie bzw. zur Lokalisation und Verlaufsbeobachtung der Knochen metastasen eingesetzt werden kann. Das erfindungsgemäße Arzneimittel kann zusätzlich mindestens einen Antikörper,
Liganden oder Inhibitor enthalten aus der Gruppe mit Adhäsionsmolekülen, membranassoziierten Proteasen, Rezeptoren, die Chemotaxis vermitteln, Chemokinrezeptoren, Apoptose- induzierenden Substanzen. Die Inhibitoren können so gewählt werden, dass sie zumindest teilweise BSP blockieren und dessen Funktion modulieren. Das erfindungsgemäße Arzneimittel ist dem Anwendungsgebiet nach somit besonders geeignet zur Behandlung von Tumoren aus der Gruppe mit Prostata-, Mamma-, Lungen-, Nieren- und Schilddrüsen tumo- ren, Tumorerkrankungen des Blutsystems, des Lymphsystems, des Herz-Kreislauf-Systems, des Nervensystems, des Respirationstraktes, des Verdauungstraktes, des endokrinen Systems, der Haut einschließlich Anhangsgebilde, des Bewegungsapparates und des Urogenitaltraktes.
Es werden nun weitere Merkmale und Vorteile der Erfindung mit Bezug auf die Beispiele und die anliegenden Abbildungen beschrieben.
KURZE BESCHREIBUNG DER ABBILDUNGEN
Es zeigt:
Fig. 1 einen Westernblot mit tumor- und knochenspezifischen Isoformen des BSP;
Fig. 2 einen Westernblot des Zellkulturüberstands von untransfizierten EBNA-293- zellen (Negativkontrolle) und transfizierter EBNA-293-Zellen mit den
Expressionskonstrukten GST-EK-BSP und his6-myc-EK-BSP unter Verwendung eines monoklonalen Maus-Anti-BSP-Antikörpers;
Fig. 3 die Aminosäuresequenz von sekretiertem BSP (SEQ ID Nr. 2) nach Fisher et al (1991); F Fiigg.. 4 4aa Kurve mit Läsionsgrößen in Quadratmillimeter einer Knochen metastase in der Tibia von der Ratte 988 über den Beobachtungs- und Therapiezeitraum;
Fig. 4b Röntgenaufnahme 31 Tage post-OP von der Läsion in der Tibia vor Therapiebeginn;
Fig. 4c Röntgenaufnahme 52 Tage post-OP von der Läsion mit noch fortschreitender Lyse des Knochen nach Therapiebeginn;
Fig. 4d Röntgenaufnahme 73 Tage post-OP von der sich rückbildenden Läsion;
Fig. 4e Röntgenaufnahme 126 Tage post-OP von der verheilten Läsion:
Fig. 4f CT-Rekonstruktion der Läsion 31 Tage post-OP;
Fig. 4g CT-Rekonstruktion der sich rückbildenen Läsion 80 Tage post-OP; F Fiigg.. 5 5aa Kurve mit Läsionsgrößen in Quadratmillimeter einer Knochenmetastase am distalen Femur von der Ratte 987 über den Beobachtungs- und Therapiezeitraum;
Fig. 5b Röntgenaufnahme 52 Tage post OP von der Läsion am distalen Femur; Fig. 5c Röntgenaufnahme 96 Tage post OP von der rückgebildeten Läsion und der
Kallusbildung.
EINGEHENDE BESCHREIBUNG DER ERFINDUNG
Gegenstand der Erfindung ist somit ein Arzneimittel zur Therapie von Tumor- erkrankungen, das als Wirkstoff einen BSP-spezifisches Bindemoleküle wie einen Antikörper, Liganden oder Inhibitor enthält. In einer Ausführungsform ist das Bindemoleküle ein Antikörper oder ein Aptamer auf der Basis von RNA oder DNA, das BSP in Gegenwart von Faktor-H erkennt. Besonders bevorzugte Bindemoleküle erkennen spezifisch BSP aus Tumorzellen. Das Arzneimittel kann durch folgende Substanzen verstärkt werden: Antikörper, Liganden oder Inhibitoren, die mit Adhäsionsmolekülen interagieren, mit membran-asso- ziierten Proteasen, oder mit Rezeptoren, welche eine Chemotaxis vermitteln wie beispielsweise die Chemokinrezeptoren, sowie Apoptose-induzierende Substanzen wie vorzugsweise Antikörper, Aptamere oder Proteine/Peptide, die aus natürlichen oder künstlichen Peptidbanken gewonnen sind. Eine spezifische Protein(Peptid)-lnteraktion vorzugsweise mit unspezifischen Molekülen, die aus natürlichen Extrakten, aus synthetischen oder rekombinant hergestellten Bindungsproteinen sowie aus anderen Peptid-Protein-Banken gewonnen werden, reicht aber auch aus, um den Effekt der Apoptose von Tumorzellen herbeizuführen. Nach entsprechender Diagnostik kann eine spezifische Therapie angewendet werden. Hierbei wird überraschend bei Einsatz von Anti-BSP-Antikörper oder Bindeproteinen ein beschleunigter Eintritt des Tumorzelltodes (Apoptose) beobachtet.
Insbesondere so behandelbare Tumoren sind aus der Gruppe mit Mamma-, Prostata-
, Lungen-, Nieren- und Schilddrüsentumoren sowie Tumorerkrankungen des Blutsystems, des
Lymphsystems, des Herz-Kreislauf-Systems, des Nervensystems, des Respirationstraktes, des Verdauungstraktes, des endokrinen Systems, der Haut einschließlich Anhangsgebilde, des Bewegungsapparates und des Urogenitaltraktes einschließlich Niere.
Die Verabreichung der Bindeproteine und Antikörper erlaubt eine neue Therapie von Tumorerkrankungen auf Basis des BSP-Systems und Verstärkung unter Einschluss weiterer tumoroberflächen-assoziierten Proteomcluster. Das Arzneimittel beruht in der Verwendung von BSP-spezifischen Antikörpern, Aptameren, Liganden oder Inhibitoren gegen den Primär- oder Sekundartumor und streuende Metastasen, das heißt, zur Unterdrückung des Krebswachstums, inklusive Metastasierung. Das erfindungsgemäße Arzneimittel beruht auf der Feststellung, dass BSP durch autokrine, parakrine und endokrine Wege über die krankheitsspezifische Konstellation des Tumorzellproteoms auf spezifische Tumorzellen wirkt. Primär- und bestimmte Sekundärtumore werden in ihrem Adhäsions-, Migrations- und Pro- liferationsverhalten gesteuert. Durch diagnostischen Nachweis der lokal erhöht exprimierten und regulierten Faktoren sowie der Präsenz der BSP ergibt sich die Möglichkeit, das Krebs- Wachstum, einschließlich Tumormetastasierung entscheidend zu unterdrücken oder vollständig zu verhindern.
Eine weitere Ausführungsform der Erfindung betrifft die Verwendung der erfindungsgemäßen Antikörper in pharmazeutischen Zusammensetzungen zur Behandlung von Tumoren und Metastasen. Die erfindungsgemäßen Antikörper sowie ihre Teilstrukturen oder Konjugate können durch Injektion oder über Zäpfchen appliziert werden und im Blut oder in Gewebeflüssigkeit frei zirkulierendes oder an Faktor-H gebundenes BSP binden und neutralisieren. Sollte eine bislang durch nichts belegte Schutzfunktion des Faktor-H- Komplexes gegen den alternativen Weg der Komplementaktivierung bestehen, so wird diese ausgeschaltet und die Tumorzellen für das Immunsystem angreifbar. Außerdem wird die angiogene Wirkung von BSP ausgeschaltet.
Für die Bindung an den Komplex aus Faktor-H und BSP müssen die Antikörper Epitope von BSP erkennen, welche nicht durch den Bindungspartner maskiert sind. Die Herstellung von solchen Antikörper war bisher nicht möglich. Die Erfindung stellt solche Antikörper zur Verfügung, weil die Antikörper gegen eine Isoform des gefalteten Bone- Sialoprotein (BSP) gerichtet sind und an Epitope binden, die nur von einem gefalteten Bone- Sialoprotein aus Tumorzellen gebildet werden, dessen Glykosylierungen im Bereich der Aminosäuren 120 bis 135 (mit Signalsequenz), umfassend die Aminosäuresquenz TGLAA oder YTGLAA, gegenüber dem normalem Bone-Sialoprotein aus Knochen verändert oder unvollständig sind oder fehlen. Normalerweise lassen sich keine spezifischen Antikörper gegen posttranslationale oder komplexe Zuckerstrukturen auf Proteinen erhalten, denn derartige Zuckerstrukturen werden in gleicher Weise und Form auf vielen verschiedenen Proteinen angefügt. Entsprechend reagieren Antikörper gegen bestimmte Zuckerstrukturen mit vielen verschiedene Proteinen und gelten dann in der Regel als unspezifisch und wertlos. Anders beim Bone-Sialoprotein aus Tumorzellen. Die veränderte bzw. fehlende Zuckerstruktur bewirkt eine andere Faltung des Bone-Sialoproteins und schafft neue Epitope, an denen sowohl Aminosäuren bzw. Peptidstruktur als auch die vielfältigen verbliebenen Zuckerreste beteiligt sind. Diese Epitope sind aber charakteristisch für BSP aus entarteten Tumorzellen. Antikörper gegen diese Epitope können erzeugt werden mit einem chemisch oder natürlich in der Glykosylierung veränderten BSP als Antigen, und gegebenenfalls durch Aufreinigung bzw. Absorption an der Isoform des Knochen-BSP. Bevorzugt werden die Antikörper hergestellt unter Verwendung von BSP aus Tumorzellen als Antigen. Nachdem das BSP aus Tumorzellen schwer hinreichenden Mengen isoliert werden kann, ist die gentechnische Expression von in der Glykosylierung verändertem BSP in Tumorzellen die Methode der Wahl. Es wurde auch gefunden, dass einige Patienten in der Glykosylierung verändertes BSP im Knochenmaterial enthalten. Das heißt, diese zumeist sehr alten und an schwerer Osteoporose leidenden Patienten produzierten ein BSP, das zumindest in Teilen nicht normal glykosyliert war. Auch dieses BSP ist prinzipiell als Antigen zur Gewinnung der erfindungsgemäßen Antikörper geeignet. Die Isolierung der partiell glykosylierten Isoform, welcher der Tumor-Isoform des BSP gleicht, kann analog beschriebener Verfahren erfolgen (Karmatschek M et al, Improved purification of human bone sialoprotein and development of a homologous radioimmunoassay, in Clin Chem. 1997, 43(11), 2076-82).
Die Antikörper können hergestellt werden in Maus, Meerschweinchen, Kaninchen, Hund Ziege, Schwein, Mensch, Esel oder Pferd, aber auch in allen Säugetieren. Besonders bevorzugt ist die Immunisierung von Vögeln, insbesondere Huhn, da sich hier wegen der großen abstammungsgeschichtlichen Unterschiede besonders leicht Antikörper gegen die Tumor-Isoform des BSP erhalten lassen. Zudem führt die Gegenwart IgY-Antikörper nicht zu einer Aktivierung des Komplementsystems, was wegen der möglichen Bindung zwischen Faktor-H und BSP problematisch sein kann. Die erfindungsgemäßen Antikörper erkennen die Tumor-Isoform des BSP in der Bindung mit Faktor-H.
Gegenstand der Erfindung sind somit Isoformen des BSP, spezifische Antikörper gegen die von Tumoren gebildeten Isoformen und ihre Nutzung für eine Antikörpertherapie oder auch zur Immunszintigraphie. Als Nebenwirkungen, die durch Anti-BSP Antikörper hergerufen werden, kommen in Frage: direkte und indirekte Schädigung der Knochen und des Zahnbeins durch Aktivierung des Immunsystems gegen die Knochenmatrix und
Knochenzellen und/oder direkte Zerstörung, bei Verwendung von Konjugaten der Antikörper mit Zellgiften oder Radioisotopen. Weiterhin ist eine Immunszintigraphie mit Anti-BSP-
Antikörpern undenkbar, welche an die Knochenmatrix binden. Die Matrix würde radioaktiv markiert und die Lokalisierung von Tumoren wäre unmöglich. Die für Tumor-BSP spezifischen
Antikörper eignen sich in besonderer Weise für eine Tumortherapie und -Lokalisierung, da sie nicht oder nur in geringem Ausmaß an die Knochenmatrix oder an BSP-produzierende Zellen des Skeletts und des Zahnbeins binden.
In einer besonders bevorzugten Anwendung der Erfindung werden Antikörper zur Tumortherapie eingesetzt, welche spezifisch für Tumor-BSP sind und zusätzlich BSP im Komplex mit Faktor H erkennen. Solche Antikörper werden durch die Erfindung bereitgestellt. Nach Applikation von solchen spezifischen Antikörpern in Tumorpatienten wird im Blut und in Gewebsflüssigkeit vorhandenes freies und an Faktor H gebundenes Tumor-BSP markiert und damit der Schutz gegen die Komplementaktivierung aufgehoben. Somit werden Tumorzellen spezifisch für die Zerstörung durch das Immunsystem markiert (z.B. durch klassische Aktivierung der Komplementkaskade) und Nebenwirkungen wie z.B. durch Aktivierung des Immunsystems gegen die Knochenmatrix oder das Zahnbein vermieden. Für die durch die Erfindung möglich gewordene Tumortherapie und
Immunszintigraphie können beispielsweise polyklonale Antikörper verwendet werden, welche hergestellt werden können durch Immunisierung von Hühnern mit rekombinantem BSP oder aus Knochen isoliertem in der Glykosylierung verändertem BSP. Die Antikörper werden dann in bekannter weise aus dem Eidotter isoliert und über Affinitätschromatographie aufgereinigt.
In einer weiteren Anwendung der Erfindung werden humane polyklonale Anti-BSP Antikörper aus dem Ei von transgenen Hühnern mit humansiertem Immunsystem isoliert. Ebenfalls geeignet sind monoklonale Antikörper aus der Maus oder dem Huhn, welche die oben beschriebenen Bedingungen erfüllen und durch ein Screening gewonnen werden können. In einer speziellen Anwendung des Patentes werden hierzu die in Beispiel beschriebene monoklonale Zelllinie verwendet. Weiterhin geeignet sind durch Fragmente von Antikörpern wie z.B. proteolytisch oder gentechnisch gewonnene Fab-Fragmente.. Für die Tumortherapie eignen sich weiterhin oben beschrieben Antikörper oder
Antikörperfragmente in Konjugation mit Zellgiften und Radioisotopen zur direkten Zerstörung von Tumorzellen nach Bindung an BSP auf der Zelloberfläche.
Besonders geeignet sind humanisierte poly- und monoklonale Antikörper, die BSP im Komplex mit Faktor H erkennen und nicht an BSP in der Knochenmatrix binden. Bei der Ver- wendung von Antikörpern der Maus und des Huhns ist zwar ein besonderer therapeutischer Effekt durch Bildung humaner Anti-Maus-Antikörper (HAMA) oder Anti-Huhn-Antikörper (HACA) zu erwarten. HAMAs und HACAs können eine Immunantwort des Organismus auf das Tumorantigen induzieren und verstärken. Bei der Bestimmung von Tumormarkern entstehen jedoch Interferenzen mit den HAMAs und HACAs, welche die in vitro Messmethode stören. Auf diese Weise kommt es zu falsch hohen Meßwerten für Tumormarker. Dies tritt nach Immunszintigraphie oder Immuntherapie mit entsprechenden Antikörpern auf, so dass eine korrekte Tumormarkerbestimmung erst nach Absorption der HAMAs oder HACAs in vitro erfolgen kann.
Diese Effekte können durch Verwendung von humanisierten Antikörpern ausgeschaltet werden. Polyklonale humanisierte Anti-BSP Antikörper können beispielsweise durch Immunisierung von transgenen Hühnern mit BSP gewonnen werden, bei denen in den embryonalen Stammzellen der Genbereich für den hühnerspezifischen Fc-Teil des Immunglobulin (IgY) durch einen humanspezifischen ausgetauscht wurde (US 5 340 740; US 5656479). Die humanisierten Antikörper werden dann in den Eiern der Hühner abgelegt und können aus dem Eidotter isoliert werden (Mohammed S.M. et al, Deposition of genetically engineered human antibodies into the egg yolk ofhens. Immunotechnology, 1998, 4: 115-125)
Zur Herstellung von humanisierten monoklonalen Antikörpern können Hybridomazellen der Maus oder des Huhns mit geeigneten Anti-BSP Antikörpern nach Standardmethoden gewonnen werden und aus dem in diesen Zellen enthaltenem Genmaterial durch Rekombination humanisierte Antikörper entwickelt werden (US 5 585 089; US 5 565 332; US 5 225 539; US 5 693 761; US 5 585 089; US 5 530 101). Das BSP kann mit der Gesamtsequenz SEQ ID No 1 und der Teilsequenz ID No. 2 in seiner Gesamtheit oder mit seinen spezifischen Epitopen zur Generierung von Antikörpern eingesetzt werden.
Bevorzugte BSP-Fragmente zur Herstellung spezifischer Antikörper sind:
SEQ ID NR : 1 X-YTGLAAIQLPKKAGD-Z
SEQ ID NR 2 : X-FSMKNLHRRVKIEDSEENGVFKYRPRYYLYKHAYFYPHLKRFPVQGSSDSSEENGD DSSEEEEEEEETSNEGENNEESNEDEDSEAENTTLSATTLGYGEDATPGTGYTGLA AIQLPKKAGDITNKATKEKESDEEEEEEEEGNENEESEAEVDENEQGINGTSTNST EAENGNGSSGVDNGEEGEEESVTGANAEGTTETGGQGKGTSKTTTSPNGGFEPTTP PQVYRTTSPPFGKTTTVEYEGEYEYTYDNGYEIYESENGEPRGDNYRAYEGEYSYF KGQGYDGYDGQNYYHHQ-Z
wobei das markierte T nicht oder unvollständig oder in anderer Form glykosyliert ist und X und Z für Aminosäure- bzw. Peptidrest von bis zu 30 Aminosäuren stehen. In SEQ ID Nr. 2 können folgende Variationen vorliegen: an Position 179 Gly → Val; Position 252 Val → Ala; Position 254 Glu → Asp; Position 279 Asp → Gly.
Zur Herstellung der Antikörper werden die Peptide, die normalerweise nicht immuno- gen sind, an das Trägerprotein KLH (Keyhole Limpet Hemocyanin) gekoppelt. Diese Kopplung kann durch NBS (N-Maleimidbenzoyl-N-hydroxysuccinimidester) über ein im Peptid terminal addiertes Cystein, oder direkt mittels Carbodiimid erfolgen. Die Antikörper werden mit herkömmlichen Verfahren durch Immunisierung vorzugsweise von Hühnern, Kaninchen, Mäuse, Meerschweinchen, etc. gewonnen. Es können auch molekularbiologische Verfahren wie die rekombinante Herstellung der Antikörper eingesetzt werden. Die Antikörper werden dann mit gereinigt und galenisch aufbereitet. Es können auch Zellpräparationen, Zellextrakte sowie insbesondere Membranisolate aus überexprimierenden, künstlich transfizierten BSP-exprimierenden Zellen zur Generierung spezifischer Antikörper eingesetzt werden.
Die erfindungsgemäßen Arzneimittel können in geeigneten galenischen Applikationsformen, insbesondere in lyophilisierter, mit Mannit oder ähnlichen Zuckern aufgenommener Form in sterilen Ampullen zur Auflösung in physiologischer Kochsalzlösung und/oder Infusionslösung zur wiederholten Einzelinjektion und/oder Dauerinfusion in Mengen von 300 mg bis 30 mg reiner Antikörper oder BSP-Liganden pro Therapieeinheit verabreicht werden. Vorzugsweise wird das erfindungsgemäße Arzneimittel in einer galenischen Applikationsform, bei der das Medikament in biokompatiblen Mikrosphären eingesetzt wird, und über Aerosol, intravenöse oder subkutane Applikation systemisch oder lokal verabreicht.
Mit verschiedenen Routine-Verfahren ist feststellbar, dass die Tumorzellen bei Gabe von Agonisten, die an die entsprechenden Proteommoleküle binden, anti-apoptotisch, ad- häsiv, mitotisch und chemotaktisch reagieren. Die Hemmung ihrer Erhaltung, Adhäsion, Mitose bzw. Migration wird durch vorherige Inkubation mit Antagonisten oder Antikörper bewirkt.
Bei Verwendung hochgereinigter Antikörper gegen BSP in Zellkulturen BSP-expri- mierender Tumorzelllinien konnte festgestellt werden, dass diese bei in vitro Modellen in der Lage sind die Apoptose von Tumorzellen zu bewirken. Züchtet man Zelllinien oder entnommene Tumorzellen unter Benutzung der üblichen Zellkulturverfahren, wird deren Überlebenszeit in vitro durch Beigabe von BSP-Antikörpern, wenn auf deren korrespondierende Zelloberfläche BSP nachgewiesen wurde, stark reduziert. Dabei ist eine Apoptose einer großen Zahl dieser kultivierten Zellen zu beobachten. Auch bei in vivo Modellen kann man überraschenderweise eine Tumorzellabnahme durch Apoptose feststellen.
Des weiteren kann bei Versuchen in der Zellkultur bei Tumorzellen die BSP exprimieren ein Einsatz von spezifischen BSP-Antikörpern die komplementvermittelte Zelllyse, als auch die zellulärvermittelte Tumorzelllyse eingeleitet werden.
Da Nacktmäuse bzw. Nacktratten ein defizientes Immunsystem besitzen, kann das Metastasierungsverhalten in einem Wirts körper in einem Nacktmaus/-ratten-Modell untersucht werden, ohne dass die zwischen Spezies bekannten Immunreaktion stattfinden und eine Abstoßung der Fremdzellen erfolgt. Nacktmäuse werden in an sich bekannter Weise mit Tumorzellen oder Tumor-Zelllinien, deren BSP-Expression bestimmt worden war, geimpft und die Metastasierung durch diese Zellen bei Behandlung mit BSP-Antikörpern und bei Behandlung mit BSP-Liganden überprüft. Dabei ergibt sich überraschenderweise, dass bei den gefundenen BSP-positiven Tumoren eine Metastasenbildung deutlich gehemmt oder verhindert wird, weil die Antikörpergabe zu einer Modulation des Tumorwachstums führt. Überraschenderweise ergibt sich ebenfalls, dass die durch Immunhistochemie analysierten Präparate eine spezifische Verteilung von BSP und anderen tumoroberflächen-assoziierten Proteomclustern im Tumor und tumorumgebenden Gewebe zeigen. Damit wurden weitere gezielte Eingriffsmöglichkeiten erkannt.
Es ergibt sich die Erweiterung des therapeutischen Ansatzes, insbesondere gegen weitere Cluster des Tumorzelloberflächenproteoms gerichtete Antagonisten additiv anzuwenden. Eine Verstärkung dieser Effekte kann besonders durch eine Kombination von BSP- Antikörpern mit Antikörper, Liganden oder Inhibitoren die mit (1) Adhäsionsmolekülen, (2) membran-assoziierten Proteasen, oder (3) Rezeptoren die Chemotaxis vermitteln, wie beispielsweise Chemokinrezeptoren, interagieren, sowie (4) Apoptose-induzierende Substan- zen wie vorzugsweise Antikörper oder Proteine/Peptide, die aus natürlichen oder künstlichen Peptidbanken gewonnen werden können, erreicht werden.
Um diese Befunde zu bestätigen, können auch Tumorzelllinien mit BSP stabil trans- fiziert werden. Nach Injektion dieser Zellen (bei denen BSP überexprimiert ist) in Tiere, siedeln sich solche Tumorzellen bevorzugt in der Knochenmatrix an. Solche modifizierten Zellen bilden damit insbesondere Metastasen in Knochengewebe, anhand derer das therapeutische
Prinzip ebenfalls nachweisbar ist.
Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert:
Beispiel 1 - Charakterisierung von tumor- und knochenspezifischen BSP-lsoformen im l/l/esternb/of
Serumfreie Überstände der humanen Osteosarkomzellinien UMR-108, MHH-ES1 und der Brustkrebszellinie MCF-7 (östrogenrezeptor positiv) als auch aus Knochen gereinigtes humanes BSP (K-BSP) wurden mittels SDS-PAGE auf einem 10 % Gel unter reduzierenden und denaturierenden Bedingungen aufgetrennt und elektrophoretisch auf Nitrozellulose übertragen. Die Membran wurde mit dem monoklonalen Maus-Antikörper inkubiert. Die Detektion des BSP erfolgte über einen an Peroxidase gekoppelten Anti-Maus-Antikörper der Ziege und Chemoluminiszenz-Detektion auf einem Röntgenfilm. Das Ergebnis ist in Abb. 1 dargestellt. Molekulargewichte und Laufstrecken der Marker sind auf der linken Seite angegeben. Die einzelne und doppelte Pfeilspitze zeigen das unterschiedliche Laufverhalten von Knochen/Osteosarkom-BSP und MCF-7-BSP. Letzteres enthält zusätzlich eine hochmolekulare Bande (Tripelpfeil), die in den anderen Spuren abwesend ist. BSP aus einer Tumorzelllinie weist somit ein deutlich höheres Molekulargewicht als BSP aus Knochen und aus Osteosarkomzellinien auf, wobei außerdem eine zweite Isoform mit noch höherem Molekulargewicht zu beobachten ist.
Beispiel 2 - Herstellung von polyklonalen Antikörpern durch Immunisierung von Hühnern mit Knochen-BSP und BSP-Peptidteilstrukturen
Hühner und Kaninchen wurden mit BSP immunisiert, das nach dem von Karmatschek et al. (1997) beschriebenen Verfahren von Patienten isoliert worden war.
Aus den Eidottern und den Seren wurden polyklonale Immunglobuline isoliert und in einem ELISA-Verfahren gegen verschiedene Peptidteilstrukturen des BSP auf Bindung getestet. Tabelle 1 zeigt die Ergebnisse dieses Epitopmapping. Dabei wurden Peptidteilstrukturen aus der insgesamt 317 Aminosäuren langen Peptidsequenz des preproBSP (inkl. Leadersequenzen) chemisch synthetisiert, an eine Mikrotiterplatte gebunden und die Antikörper auf der Platte inkubiert. Der Test auf Bindung erfolgte nach Inkubation mit einem Konjugat von Peroxidase mit Anti-lgY- bzw Anti-Kaninchen-lgG-lmmunglobulinen und nachfolgender Enzymreaktion durch Umsetzung eines Chromogens als Substrat.
Tabelle 1
Epitopmapping der gewonnenen anti-BSP-IgG und-lgY
Figure imgf000014_0001
Die Ergebnisse zeigen, dass die gewonnenen Hühnerantikörper bevorzugt an die C- terminale Sequenz des BSP binden, während die Kaninchenantikörper über einen größeren Bereich binden.
Weiterhin wurden polyklonale Antikörper (A0001) durch Immunisierung von Kaninchen mit der Pepfidteilstruktur TyrThrGlyLeuAlaAlalleGInLeuProLysLysAlaGlyAsp (Position 124-138) des BSP gewonnen, die bevorzugt an diese Pepfidteilstruktur, aber auch spezifisch mit humanem Knochen-BSP reagieren.
Polyklonale Antikörper (AK BSP) jedoch, die durch Immunisierung von Kaninchen mit den Peptidteilstrukturen ThrGlyLeuAlaAla (Position 125-130) bspw TyrThrGlyLeuAlaAla (Position 124 bis 130) gewonnen wurden, das heißt nach Kopplung an Rinder-Thyreoglobulin als Träger, reagierten zwar mit der synthetischen Peptidteilstruktur, nicht aber mit human Knochen-BSP. Diese Antikörper erkennen überraschenderweise ausschließlich BSP aus Tumorzellen.
Für die Versuche wurden weiterhin die polyklonalen Antikörper A002 (erhalten von L.W.Fisher) und A003 (erhalten von Dr. van Ryden) verwendet. Diese Antikörper wurden nach
Immunisierung mit den Peptidteilstrukturen TyrGluSerGluAsnGlyGluProArgGlyAspAsnTyr-
ArgAlaTyrGluAsp (A002) bzw. LeuLysArgPheProValGInGlyGly gewonnen. Ersteres Peptid stammt vom C-Terminus des BSP (Position 278-295) des BSP und enthält die RGD (ArgGlyAsp)-Erkennungssequenz des BSP für Rezeptoren des Integrin-Typs. Letzteres Pep- tid stammt vom N-Terminus der BSP-Primärstruktur. Auch diese Peptide erkannten bevorugt die jeweiligen Teilstrukturen und reagierten spezifisch mit humanem Knochen-BSP.
Beispiel 3 - Gewinnung von rekombinantem BSP aus Brustkrebszellen als Antigen
Aus dem Plasmid B6-5g (Fisher L.W. et al. Human bone sialoprotein. Deduced protein sequence and chromosomal localisation, in J. Biol. Chem, 1990, 265(4), 2347-51) wurde die komplette cDNA für humanes BSP (ohne Signalpeptid) mittels PCR amplifiziert und in den episomalen eukaryotischen Expressionsvektor pCEP-Pu (Kohfeldt E et al, Properties of the extracellular caicium binding module of the proteoglycan testican, in FEBS Lett. 1997, 414(3), 557-61) kloniert. Die Primer waren wie folgt:
Nhe I BSP (sense): 5'-GCCCGCTAGCCπCTCMTGAAAMTTTGCATCG-3'
Not I BSP (antisense): 5'-CAATGACTGCGGCCGCTCACTGGTGGTGGTAGTAATTC-3"
Die mit den Primern eingefügte Nhe I- und Not I-Schnittstellen wurden für die Klonierung in den Expressionsvektor. PCEP-PU benötigt. Dieser Vektor ist zudem zur Erleichterung der Proteinaufreinigung am 5'-Ende der multiplen Klonierungsstelle mit verschiedenen tags (z.B. His, Myc, G8T) ausgestattet, Diese tags können nach Aufreinigung des Proteins mit einer Protease (z.B. Faktor X oder Enterokinase) abgespalten werden. Die Einhaltung des korrekten Leserahmens wurde mittels Sequenzierung überprüft.
Die Expressionskonstrukte wurden mittels Liposomen-vermittelter stabiler Transfektion (FUGENE™-Transfektionsreagenz der Firma Röche) unter anderem in folgende humane Zellinien eingeführt: • die embryonale Nierenzellinie EBNA-293
• die Osteosarkomzellinien SAOS-2 und MG-63
• die humane Brustkrebszellinie MCF-7.
Eine rekombinante Expression wurde nur in MCF-7 und EBNA-293-Zellen erhalten (siehe Figur 2). Die Osteosarkomzelllinen exprimiert auch nach wiederholten Transfektions- versuchen nicht. Beispiel 4 - Analyse der Glykosylierung von rekombinantem BSP aus entarteten Zellen und Knochen-BSP
Transiente Zellen wurde 48 Stunden nach Transfektion zwei Tage in serumfreiem Medium kultiviert. Damit die Proteine im FCS die Aufreinigung des rekombinanten BSP nicht erschwerten, wurden BSP-exprimierende Zellen nach Erreichen der Konfluenz unter serumfreien Bedingungen kultiviert. Unter diesen Bedingungen konnten nur EBNA-293 Zellen länger als 2 bis 4 überleben. Die Expression des rekombinanten BSP wurde durch SDS- PAGE und Immunoblots kontrolliert.
Die Untersuchung von serumfreien Zellkulturüberständen ergab mit all diesen Zelllinien im Westernblot positive Signale sowohl in Bezug auf BSP wie auch auf die Anwesenheit der verschiedenen tags.
2,5 Liter serumfreier Kulturüberstand der transfizierten MCF-7 Zelllinie wurde über eine Sepharose™-Säule aufgereinigt und daraus 250 μg homogenes His-myc-EK-BSP gewonnen. Das so aufgereinigte Expressionsprodukt war partiell glykosyliert, besaß aber keine Glykosylierung an Threonin 125, das heißt dem Threonin in der BSP-Sequenz
YT125LPAA.
Für die Glykoanalytik wurden die N-Glykane vom rekombinanten BSP (rBSP) bzw. dem Knochen-BSP enzymatisch mit dem Peptid N-Glykosidase F (PNGase F, Röche) abgetrennt. Das Enzym bewirkt eine katalytische Spaltung allen N-Glykan-Typen von den Asparaginen. Für den Verdau wurden 20 bis 200 μg BSP mit Ethanol gefällt und das Fällungspellet in 1% SDS, ß-Mercaptoethanol, 0,1 M EDTA 30 Minuten bei Raumtemperatur mit einem Überschuß an Enzym inkubiert. Es folgte ein Verdau mit N-Glykosidase F über Nacht bei 37°C. Zum Entsalzen der N-Glykan-Lösung wurde der Verdau über eine 150 mg Carbonsäule (Carbograph SPE, Alltech) gegeben und die N-Glykane mit 25% aCN in 0,05% TFA eluiert.
Die O-Glykane wurde mittels wasserfreier Hydrazinolyse unter eines Kits (Oglycan relase kit, Glyco) vom BSP abgspalten. Hierzu wurden etwa 200 μg salzfreies BSP 24 Studen lyophilisiert, unter Argon-Schutzgas mit 50μl Hydrazin-Reagenz versetzt, gelöst und 5 Stunden bei 60°C inkubiert. Das Hydrazin wurde unter Vakuum abgezogen. Es folgt eine Re-N- Acetylierung der N-AcetylGruppen mit Essigsäureanhydrid.
Die N- und O-Glykane wurde mit dem Fluoreszenzfarbstoff 2-Aminobenzamid (Fluka) markiert und die 2-AB markierten Oligosaccharide sequenziell mit spezfischen terminalen Glykosidasen verdaut und mittels MALDI-TOF-Massenspektrometrie analysiert.
Diskussion der Analytik Die Aminosäuresequenz von humanem BSP enthält vier potentielle N-
Glykosylierungsstellen an den Positionen 88 (NTT), 161 (NGT), 166 (NST) und 174 (NGS). Für O-Glykosylierungen ist keine vergleichbare Konsensussequenz bekannt. Alle identifizierten N-Glykan-Sturkutren waren sowohl auf dem aus Knochen isolierten BSP als auch auf dem rekombinanten EBNA-293 BSP zu finden. Unterschiede gab es jedoch im prozentualen Anteil der jeweiligen Strukturen an den gesamten N-Glykanen. So bestand der Hauptanteil der BSP-N-Glykane im Knochen aus triantennären Strukturen (58%) und in der EBNA-zelllinie aus tretraantennären Strukturen (48%).
Zur Lokalsierung der O-Glykosylierungsstellen von rekombinantem BSP wurden die O-Glykane durch sequenziellen Verdau des Proteins mit Neuraminidase, ß-Galactosidase, und ß-N-Acetylhexosaminidase bis auf das core-GalNAc entfernt. Das partiell deglykosylierte Protein wurde dann durch Behandlung mit Trpysin und V8-Protease in Peptidfragment gespalten. Mittels MALDA-TOF-Massenspektrometrie wurden die Massen der Peptide bestimmt und ein Teil der Peptide mittels PSD-MALDI-TOF-Massenspektrometrie sequenziert. Mit diesem Verfahren konnten acht O-Glykosylierungsstellen des rekombinanten BSP bestimmt werden, 5 auf dem Peptid 211-229 (TTTSP ... QVYR) und maximal drei auf dem Peptid zwischen AS 120 und AS 135 mit der Sequenz TGLAA.. Hiervon sind im rekombinanten BSP die Threonine in der Sequenz DATPGTG O-glykosyliert. Bei Knochen-BSP erfolgt eine dritte O-Glykosylierung. Bei rekombinantem BSP ist keine dritte Glykosylierungsstelle vorhanden. Vermutlich liegt diese Glykosylierungsstelle auf der TGLAA-BSP-Teilstruktur.
Beispiel 5 - Herstellung von Anti-BSP-lgY aus Eidottern
Für die Aufreinigung größerer Mengen von Anti-BSP-lgY für die Therapie und
Immunszintigraphie sind verschiedene Verfahren beschrieben. Bevorzugt wird das Verfahren von Akita und Nakai benutzt (Akita E..M et al, Comparison of four purification methods for the production of immunoglobulins from eggs laid by hens immunized with an enterotoxigenic E. colistrain, in J Immunol Methods. 1993, 160(2), 207-14). Für die Eiproduktion wird eine Hochleistungsrasse wie „Lohmann Weiß" oder
„Lohmann Braun" mit einer Leistung von 4,5 Eiern pro Woche und einer Produktion von über 10 mg spezifischen IgY pro Dotter verwendet. Die Immunisierung erfolgt mit aus menschlichem Knochen isoliertem oder rekombinantem BSP-Antigen in Freund'schen Adjuvans, wobei nach einer Grundimmunisierung mit ca. 0,1 mg BSP alle 6 Wochen Boosterinjektionen gesetzt werden. Ca. 30 % dieser Hühner reagieren normalerweise nicht auf die Immunisierung. Die Eier werden äußerlich mit Peressigsäure desinfiziert, dann aufgeschlagen und die Dotter vom Eiweiß abgetrennt. Die Dotter werden dann mit 5 bis 10 Volumina eiskaltem destilliertem Wasser zwischen pH 5 und 5,2 verquirlt und bei 2 bis 5 ° C über 2 bis 6 h inkubiert. Dabei sedimentieren die Dottergranula, die im wesentlichen aus Lipoproteinen bestehen. Der wässrige Überstand wird dann durch Filterpapier (z.B. Whatman No. 1) klar filtriert. Aus diesem Überstand können die Anti-BSP-lgY direkt über Affinitätschromatographie homogen aufgereinigt werden. An eine mit Cyanogenbromid aktivierte Sepharose-4B-Säule wird aus menschlichem Knochen oder aus Kulturüberständen von rekombinanten humanen Zelllinien isoliertes BSP chemisch kovalent gebunden. Zur Bindung von 1 g IgY ist 0,5 g immobilisiertes BSP erforderlich (kovalent an ca. 5 ml Sepharose™ gebunden).
Das gebundene IgY wird über einen Säuregradienten eluiert und danach die Lösung neutralisiert. Diese Lösung muss dann entsalzt und die Antikörper konzentriert werden, was im Crossflow- Verfahren im großen Maßstab möglich ist (z.B. Amicon™ Spiralfilter SY100 mit einem Ausschluss von 100.000 Dalton).
Beispiel 6 - Isolierung von Anti-BSP-lgY, das an den BSP-Faktor-H-Komplex bindet
Die geringe Reaktion der polyklonalen Hühnerantikörper mit BSP in der Knochenmatrix kann durch Selektion jener Antikörper ausgeschaltet werden, die mit BSP im Komplex mit Faktor H reagieren. Dazu wird entweder Faktor H oder aus Knochen isoliertes oder gentechnisch hergestelltes BSP an Cyanogenbromid aktivierte Sepharose 4 B chemisch kovalent gebunden und danach soviel BSP bzw. Faktor H auf die Säule aufgetragen und gebunden, dass sämtliche Liganden in der Matrix mit dem Partner komplexiert sind. Filtrierter Dotterextrakt wird dann auf dieser Affinitätssäule aufgetragen und wie in Beispiel 4 wird nun jene Antikörperfraktion gewonnen, die spezifisch an das freie Epitop im BSP-Faktor-H Komplex bindet.
Beispiel 7 - Herstellung von humanen Anti-BSP Antikörpern in transgenen Hühnern
Anti-BSP-lgY weisen in der Humantherapie bzw. Diagnostik einige Schwächen auf. So sind Nebenwirkungen wie Fremdeiweißreaktionen zu erwarten und die biologische Halbwertszeit beträgt im Vergleich zu humanen Antikörpern nur 12 bis 24 Stunden. IgY aktiviert auch nicht das Komplementsystem.
Humane Antikörper gegen BSP können in speziellen transgenen Hühnern hergestellt werden, in denen durch Gene-Targeting die konstante Region für aviäres Immunglobulin in den für die Antikörperbildung verantwortlichen Genen durch die konstante Region für humanes Immunglobulin ausgetauscht wurde. Geeignete Huhnstammzellen und Vektorsysteme sind in den US-Patenten 5,340,740, Nr. 5,656,479 und Nr. 5,464,764 beschrieben. Nach Immunisierung mit BSP reagieren solche Hühner mit der Produktion von humanen Antikörpern im Ei. Beispiel 8 - Immunblotanalyse der Expression von BSP in menschlichen Brustkrebszellinien
Die Tumorzellinien MDA-MB-231 (Brustkrebszellinie, östrogenrezeptor-negativ), MCF-7 (Brustkrebszellinie, östrogenrezeptor-positiv) und T-47-D (Brustkrebszellinie, östrogenrezeptor-positiv) wurden mit Immunpräzipitationspuffer extrahiert und BSP mit dem polyklonalen Antikörpergemisch A0001 aus Kaninchen gegen humanes BSP gefällt. Die Präzipitate wurden nach Denaturierung auf SDS-Gelen aufgetragen, die Elektrophorese durchgeführt und die Proteine auf Nitrozellulosemembranen übertragen. Danach erfolgte eine Immunfärbung mit dem anti-BSP-Kaninchenantiserum A001 und einem monoklonalen Maus- Anti-BSP-Antikörper (BSP 1.2), wobei als Zweitantikörper Peroxidasekonjugate von Antikörper der Ziege gegen Kaninchen IgG und gegen Maus IgG verwendet wurden. Auf beiden Blots A und B war die Bande des immunpräzipitieren BSP bei 70.000 Dalton deutlich zu erkennen.
Um die Anwesenheit bzw. Abwesenheit von BSP auf der Zelloberfläche von Tumorzellen zu zeigen, wurden die Zelioberflächen der Brustkrebszellinien MDA-MB-231 und MCF-7 biotinyliert, mit Immunpräzipitationspuffer extrahiert und BSP mit dem polyklonalen Antikörpergemisch A0001 aus Kaninchen gegen humanes BSP gefällt. Die Präzipitate wurden nach Denaturierung auf SDS-Gelen aufgetragen, die Elektrophorese durchgeführt und die Proteine auf eine Nitrozellulosemembran übertragen. Biotinylierte Proteine auf dieser Membran wurden dann mit einem Konjugat aus Peroxidase und Streptavidin mit dem ECL- System (Amersham) nachgewiesen.
Menschliche Brustkrebszellen der Linien T-47-D und MDA-MB-231 wurden mit und ohne vorherige Permeabilisierung mit einem anti-Schweine-BSP-Antikörper aus Kaninchen und einem mit Fluorescein konjugierten anti-Kaninchenantikörper der Ziege immunfluoreszent markiert. Fluoreszent markiertes BSP ist in beiden Zellinien nach Permeabilisierung zu erkennen Nur auf den T-47-D Zellen ließ sich auch ohne Permeabilisierung BSP über Immunfluoreszenz nachweisen.
Beispiel 9 - Nachweis der BSP-Expression in Tumorzellen über RT-PCR
Aus den Tumorzellinien MDA-MB-231 (Brustkrebszellinie, östrogenrezeptor-negativ), MCF-7 (Brustkrebszellinie, östrogenrezeptor-positiv) und T-47-D (Brustkrebszellinie, östrogenrezeptor-positiv) und humanen Fibroblasten (HGF) als Kontrollzellen wurde mRNA isoliert, durch Reverse Transkriptase die komplementäre cDNA hergestellt und die BSP-cDNA durch PCR mit BSP-spezifischen Primern amplifiziert. Die Expression von BSP-mRNA war in der Brustkrebszellinie MCF-7 besonders hoch, bei den MDA-MB-231und T-47-D Zellen gering und bei der Kontrollzellinie nicht nachweisbar. Beispiel 10 - Herstellung von humanisierten monoklonalen Antikörpern
Der monoklonale Antikörper BSP 1.2 kann aufgrund seiner spezifischen Bindung an Tumor-BSP für die Therapie von Primärtumoren und Metastasen eingesetzt werden. Dabei bindet der Antikörper an BSP auf der Zelloberfläche bestimmter Tumorzellen und stimuliert das Immunsystem zur Zerstörung dieser Zellen z.B. über die Aktivierung der Komplementkaskade. Ähnlich lassen sich auch die polyklonalen oder monoklonale Anti-BSP IgY für die Therapie einsetzen. Beim Einsatz dieser Antikörper reagiert das menschliche Immunsystem mit der Bildung von eigenen Antikörper - humane Anti-Maus-IgG Antikörper (HAMAs) bzw. humane Anti-Huhn-lgY Antikörper (HACAs). HAMAs und HACAs können eine Immunantwort des Organismus auf das Tumorantigen induzieren und verstärken. Bei der Bestimmung von Tumormarkern entstehen jedoch Interferenzen mit den HAMAs und HACAs, die die in vitro Messmethode stören. Auf diese Weise kommt es zu falsch hohen Meßwerten für Tumormarker.
Deshalb eignen sich für die Therapie und Immunszintigraphie besonders humanisierte monoklonale Antikörper. Mehrere Verfahren sind beschrieben, wie man aus den Hybridomazeillinien, welche monoklonale Anti-BSP Antikörper produzieren, entsprechende humanisierte Antikörper ableitet.
Beispiel 11 - Konjugate von Anti-BSP Antikörpern mit Zellgiften und Radioisotopen
In einer weiteren Anwendung der Erfindung können Zellgifte und Radioisotope chemisch kovalent mit den Anti-BSP Antikörper oder deren Fab-Fragmente verbunden werden. Mit Radioisotopen wie Jod 125 oder Jod 131 markierte Antikörper eignen sich bei Applikation geringer Mengen zur Tumorlokalisation über die Immunszintigraphie und bei Applikation großer Mengen zur direkten Zerstörung der Tumore. Solche chemischen Konjugate können zum Beispiel durch Jodierung der Antikörper mit Jod 125 oder 131 hergestellt werden (Garvey, J.S et al, Methods in Immunology. 3rd ed, W.A.Benjamin Publ, 1977, 171-182). Eine Übersicht über geeignete Verfahren zur Radioimmuntherapie und Immunszintigraphie findet sich bei Vuillez, Radioimmunotargeting: diagnosis and therapeutic use, in Bull Cancer. 2000, 87(11). 813-27.
Beispiel 12 - Therapie von Tumoren mit Expression von BSP auf der Zelloberfläche
Es wurde an Biopsiematerial zunächst festgestellt, ob BSP auf der Oberfläche der
Tumorzellen exprimiert wird. Patienten, bei denen BSP auf der Oberfläche der Tumorzellen nachweisbar ist, kommen für eine Therapie mit Anti-BSP Antikörpern des Huhns, der Maus, den entsprechenden humanisierten Antikörpern und mit Konjugaten dieser Antikörper mit Zellgiften oder Radioisotopen in Frage. Die Behandlung von Tumoren mit therapeutischen Antikörpern, die gegen auf Zelloberflächen exprimierte Tumormarker gerichtet sind, ist Stand der Technik. So kann mit dem humanisierten Antikörper Herceptin gegen den Rezeptor für den humanen Epithelwachstumsfaktor Brustkrebs selbst in der metastasierten Form bei ca. 25 % der Betroffenen erfolgreich therapiert werden (Hotaling TE et al, The humanized anti-HER2 antibody rhuMAb HER2 mediates antibody dependent cell-mediated cytotoxicity via FcgR III [abstract]. Proc Annu Meet Am Assoc Cancer Res 1996; 37:47; Pegram MD et al, Antibody dependent cell- mediated cytotoxicity in breast cancer patients in Phase III clinical trials of a humanized anti- HER2 antibody [abstract]. Proc Am Assoc Cancer Res 1997; 38:602. Ähnlich wie bei Herceptin kann der entsprechende Anti-BSP Antikörper als Infusion appliziert werden, z.B. als 90 Minuten Infusion bei der Erstapplikation und später als 30 Minuten Infusion. Die Häufigkeit der Infusionen und die Menge der Antikörper richten sich nach der Halbwertszeit der Antikörper im Blut (ca. 6 Tage bei einem humanisierten Antikörper und weniger als 24 Stunden bei einem Hühnerantikörper) und dem Körpergewicht.
Beispiel 13 - Therapie von Tumoren durch Neutralisierung von freiem, nicht an Zellen gebundenen BSP und des BSP-Faktor-H Komplexes
Mit den oben beschriebenen Verfahren wurde festgestellt, dass die Tumorzellen des Patienten BSP exprimieren, das nicht auf der Zelloberfläche nachgewiesen werden kann. Bei diesen Tumoren kann davon ausgegangen werden, dass die Zellen BSP in das Blut oder die Gewebsflüssigkeit abgeben und z.B. zur Bindung von Faktor H zur Inaktivierung des alternativen Wegs der Kompiementkaskade oder zur Einwanderung in Knochengewebe nutzen. Ein weiterer möglicher Indikator für diesen Tumortyp sind erhöhte Konzentrationen des BSP im Blutserum (> 20 ng / mL Serum). In diesen Fällen können Anti-BSP Antikörper zur Neutralisierung des freien bzw. mit Faktor H komplexierten Tumor-BSP eingesetzt werden. Die Dosis kann dabei auf die Menge des frei im Serum und in der Gewebsflüssigkeit vorhandenen BSP abgestimmt werden. Für die Therapie kommen Anti-BSP Antikörper aus dem Huhn, der Maus und humanisierte Anti-BSP Antikörper in Frage, die das freie BSP- Epitop im Komplex mit Faktor H erkennen können. Auch in Frage kommen Fab-Fragmente dieser Antikörper, die nach einem Standardverfahren durch proteolytischen Verdau präpariert werden können (Garvey, J.S et al, Methods in Immunology. 3rd ed., W.A.Benjamin Publ, 1977, 256 - 266). Auch gentechnisch hergestellte aus den obigen Anti-BSP Antikörpern abgeleitete Fab Fragmente kommen für eine solche Therapie in Frage.
Die Erfindung stellt somit Antikörper bereit gegen das humane Bone-Sialoprotein
(hBSP), die spezifisch nur Epitope auf hBSP von Tumorzellen binden, denn Tumor-hBSP enthält keine posttranslationale O-Glykosylierung im Bereich der Aminosäuren 120 bis 135
(SWISSPROT: SIAL_HUMAN, Acc.No. P21815, ohne Signalsequenz), beinhaltend die
Aminosäuren TGLAA. Anders das normale hBSP aus Knochen. Die Antikörper können tumorgenes Serum-hBSP im Komplex mit dem Komplementfaktor-H erkennen und bilden somit ein diagnostisch und therapeutisches wertvolles Instrument.
Beispiel 14: Herstellung spezifischer Antikörper gegen BSP- oder andere Cluster des Tumorzelloberflächenproteoms.
Zur Herstellung spezifischer Antikörper gegen die genannten Proteine hat sich überraschenderweise gezeigt, dass neben der Benutzung von Gesamtmolekülen auch spezifische Aminosäuresequenzen von Epitopen besonders für die Immunisierung geeignet sind, wenn die synthetisierten Peptide nach den üblichen Verfahren an Trägermoleküle gekoppelt sind und bei Mäuse injiziert werden. Des weiteren eignen sich auch multiple antigene Peptide (Sequenzen siehe oben), die mittels Lysin zu größeren Molekülen verbunden sind, oder BSP- transfizierte Zelllinien, um diese Antikörper herzustellen. Als weitere Methode hat sich die Verwendung von Immunogenen aus stabil transfizierten, BSP-exprimierenden Zellen überraschend gut bewährt, wobei Membranisolate, Zellextrakte mit kompletten oder fragmentierten Rezeptoren oder auch lyophilisierte Gesamtpräparate benutzt wurden. Die Mäuse (Typ NZW X NZB) wurden zur Herstellung monoklonaler Antikörper eingesetzt, was mit den Routinemethoden der Immundiagnostik AG und IPF PharmaCeuticals GmbH erfolgte. Die durch Western-Blot und ELISA überprüften Antikörper können nach Hochaufreiniguung für die genannten diagnostischen und therapeutischen Zwecke eingesetzt werden
Beispiel 15: Einleitung der Apoptose durch BSP-spezifische Antikörper in BSP-expήmie- renden Zelllinien.
Expressionsanalysen an verschiedene Zelllinien haben unter anderem gezeigt, dass Prostatatumor-Zelllinien, als auch Mammatumor-Zelllinien BSP exprimieren. Diese Expression wurde auf mRNA-Ebene mittels RT-PCR und auf Proteinebene mittels Western- Blot und FACS-Analyse durchgeführt. Eine Behandlung dieser BSP-exprimierenden Tumor- Zelllinien mit BSP-spezifischen Antikörpern hat in kultivierten Zellen zum programmierten Zelltod geführt, was unter anderem durchflusszytometrisch nachgewiesen werden konnte.
Beispiel 16: Reduktion von Knochenmetastasen im Tiermodell.
Nach der Applikation von BSP-exprimierenden Tumor-Zeil linien in immundefizienten Nacktmäusen/-ratten kommt es regelmäßig zu einer Knochenmetastasierung. Bei gleichzeitiger Gabe des BSP-spezifischen Antikörpers kam es überraschenderweise zu einer deutlichen Reduktion der Ausbildung von manifesten Knochenmetastasen, was durch histologische Analyse der Gewebe belegt werden konnte. 1. Material und Methodik
Unser Tiermodell beinhaltete die Injektion von Brustkrebszellen und die anschließende Therapie der entstandenen lytischen Läsionen mit dem Anti-BSP-Antikörpern, welche ein Gemisch dargestellten von polyklonalen IgY-Antikörpern aus Huhn mit überwiegender Spezifität für humanes BSP aus Tumorzellen, die zudem hBSP in Humanserum in Gegenwart von Faktor-H quantitativ binden und die vorwiegend an ein Epitop im Bereich der Aminosäuren 120 bis 135 des hBSP binden, wobei die posttranslationale Glykosylierung in diesem Bereich bei hBSP aus Tumorzellen gegenüber natürlichem BSP aus Knochen verändert ist. Injiziert wurden MDA-MB 231 -Zellen (ATCC, HTB-26), die in einer vorausgegangenen
Studie bei Nacktmäusen intracardial appliziert wurden (T.A.Guise, 1997; PTH-rP and Bone Metastases; American Cancer Society). Die Zelllinie wurde aus einem metastasiertem humanen Adenocarcinom gewonnen, sie besitzen zudem keine Östrogenrezeptoren. In unserem Falle war sie mit Green-Fluorescent Protein (GFP) markiert, was die Auffindung der Zellen im histologischen Präparat erleichtert. Als Versuchstiere wurden Nacktratten im Alter von 6 bis 8 Wochen (RNU, Charles River Breeding, Sulzfeld, Deutschland) verwendet, die in ihrer Immun kompetenz gemindert sind, so dass die injizierten humanen Zellen nicht als solche erkannt und bekämpft wurden. Unsere Voruntersuchungen mit verschiedenen Zellzahlen bei Männchen und Weibchen ergaben, dass die Metastasen bei männlichen Ratten nach Injektion von 105 MDA-MB 231 -Zellen nach ungefähr einem Monat in Form von lytischen Läsionen Sichtbar werden.
Die Zellen (1 x 105 in PBS-Puffer) wurden intraarteriell in die A. femoralis gespritzt (o,2 ml; n=8). Hierzu wurde ein Seitenast dieses Gefäßes kanüliert und nach der Injektion abgebunden, um ein Austreten der eingebrachten Zellen zu verhindern. Das Tier kompensiert den Verlust des Gefäßes durch Kollateralenbildung problemlos. Die Krebszellen gelangen dann mit dem Blut zu den feinen Aufzweigungen der versorgenden Äste von Femur, Tibia und Fibula. Es findet hier in der terminalen Strombahn Extravasation und drauffolgende Adhäsion der Zellen an die Knochenmatrix statt. Hier erfolgt wahrscheinlich auch die Interaktion mit BSP. Die anschließende Überwachung des Metastasenwachstums erfolgte 10-tägig mit konventionellen Röntgenaufnahmen anterior-posterior und posterior-anterior unter Ether- narkose des Tiers. Die ungefähre Quantifizierung wurde durch Vermessung der Läsion in Länge und Breite ihrer Ausdehnung vorgenommen.
Nach zweimalig positiver Röntgenkontrolle wurden die Tiere mit Anti-BSP-Ak oder Standard therapiert. Die Therapie erfolgte bei den beschriebenen Tieren einmalig pro Woche subcutan in einer Konzentration von 10 mg/kg Körpergewicht. Die Nachbeobachtung der Tiere erfolgte ferner durch Computertomographie und Histologie (noch nicht abgeschlossen). Die CT erlaubte eine dreidimensionele Rekonstruktion des Knochens und des Defekts sowie eine exakte Vermessung der Läsionsgröße. Nach der Beobachtungszeit wurden die Tiere getötet und histologisch untersucht. Durch die Markierung mit GFP sind die Zellen unter UV-Licht im Knochenschnittpräparat sichtbar. Außerdem können histologisch genauere Aussagen über den vorausgegangenen Umbau des Knochengewebes getroffen werden.
2. Ergebnisse
Die Ergebnisse sind in den nachstehenden Abbildungsreihen 4 und 5 beispielhaft dokumentiert. Die Tiere wurden nach der Operation mehr als 3 Monate röntgendiagnostisch
(Siemens Opti 150/30/50 HC-100) beobachtet. Bei den Kurvenverläufen ist darauf zu achten, dass die auf der Ordinate aufgetragenen Flächenangaben der Läsionsgrößen in mm2 bei den beiden gezeigten Tieren unterschiedlich sind. Insgesamt wurden 8 Tiere therapiert.
Die Tiere 987 und 988 (siehe Abbildungen) wurden subcutan mit dem Anti-BSP-Ak (10 mg/kg) einmal wöchentlich behandelt. Die Gesamtdauer der Behandlung betrug ca. 50
Tage. Die Therapie wurde nach 2 bzw. 3 positiven Röntgenkontrollen begonnen. Dies entspricht bei Tier 987 Tag 46 nach der Operation und bei Tier 988 dem 32. postoperativen
Tag.
Einer raschen Läsionsgrößenzunahme ab dem 24. postoperativen Tag bei Tier 988 folgte eine fortschreitende Lyse des Knochens, die ab Tag 38 zu einer Fraktur im mittleren Drittel der Tibia führte. Diese fand unter begonnener Therapie (ab Tag 32) statt. Erste Heilungstendenzen zeigten sich ab dem 52. Tag in Form von Kallusbildung an der Frakturstelle und auch die Läsionen an der proximalen Tibia und dem distalen Femur wurden kleiner. Die äußeren Begrenzungen der Läsionen waren anfangs scharf abgegrenzt, später während der Heilung zunehmend unschärfer begrenzt. Die Neubildung des Knochens erfolgte vom äußeren Rand her ausgehend hin zum Zentrum der Läsion. Ab Tag 89 war die Läsionsgröße nur schwer quantifizierbar, da durch die zunehmende Kallusbildung die genauen Ränder nicht mehr erkennbar waren. Nach dem 126. Tag kann man von einer Vollremission sprechen, wie das beigelegte Bild zeigt (komplettes Verschwinden der röntgenologisch erkennbaren lytischen Läsion). Die dreidimensionalen CT-Rekonstruktionen (Siemens Somato Plus 4, Volume Zoom) zeigen die Veränderungen der Tibia-Läsion nach 31 und 80 Tagen post OP. Es ist eine deutliche Zunahme an Knochengewebe sichtbar.
Das Tier 987 wurde nach 3 positiven Röntgenbefunden auch mit 10 mg/kg s.c. einmal wöchentlich ab Tag 46 therapiert. Hier zeigte sich nur eine Metastase am distalen Femur, die schon ab dem 89. postoperativen Tag (also nach 42 Tagen unter Therapie) knöchern verheilt war. Andere Tiere wurden unter gleichen Bedingungen bis zu fünfmal pro Woche mit 10 mg/kg s.c. und bis zu zweimal pro Woche 10 mg/kg i.v. therapiert. Es war aber eine
Größenzunahme der Läsion während und nach Beendigung der Therapie zu beobachten, wenn durch die Behandlung eine Immunreaktion gegen die injizierten BSP-Antikörper induziert wird.
Vergleichend wurden Tiere mit dem Alkylphosphocholin Er-PC3 mit 40 iMol/kg i.v. zweimal wöchentlich therapiert, das mit dieser Konzentration primäre Mamakarzinome regre- dieren lässt (Positivkontrolle), aber bei Knochenmetastasen keine Wirkung zeigt [Berger, M.R. et al, (1998) Erucylphosphocholine is the prototype of i.V. injectable alkylphosphocholines. Drugs of Today, 34 (Sppl. F), 73-81] . Hier zeigte sich nach Beendigung der Therapie bei einem Tier keine Veränderung, bei einem anderen sogar eine Verschlechterung der Situation (Progression) im Vergleich zum Therapiebeginn.
Gegenstand der vorliegenden Erfindung ist somit ein Arzneimittel, enthaltend Antikörper oder Bindemoleküle wie Aptamere gegen tumorspezifisches BSP oder andere Liganden für das gleiche Protein. Weiter kann die Verwendung der vorgeschlagenen Arzneianwendung durch Einsatz folgender Substanzen verstärkt werden: Antikörper, Liganden oder Inhibitoren die mit Adhäsionsmolekülen, membran-assoziierten Proteasen, oder Rezeptoren, die Chemotaxis vermitteln, wie beispielsweise Chemokinrezeptoren, interagieren, sowie Apoptose-induzierende Substanzen wie vorzugsweise Antikörper oder Proteine/Peptide, die aus natürlichen oder künstlichen Peptidbanken gewonnen werden können. Das Arzneimittel kann einzeln oder in Kombination mit oben genannten Substanzen insbesondere zur Therapie von Tumorerkrankungen, vorzugsweise deren Knochenmetastasen, angewendet werden. Die Erfindung betrifft weiterhin ein Verfahren zur Therapie und der medizinischen und gewerblichen Verwendung der genannten Antikörpern gegen BSP oder andere Liganden für das gleiche Protein bzw. deren Kombination mit verstärkenden Antikörpern, Liganden oder Inhibitoren die mit Adhäsionsmolekülen, membran-assoziierten Proteasen, oder Rezeptoren die Chemotaxis vermitteln, wie beispielsweise Chemokinrezeptoren, interagieren, sowie Apoptose-induzierende Substanzen wie vorzugsweise Antikörper oder Proteine/Peptide, die aus natürlichen oder künstlichen Peptidbanken gewonnen werden können, um das Krebswachstum inklusive Metastasierung zu hemmen. Das Verfahren beruht auf der Feststellung, dass BSP über die krankheitsspezifische Konstellation der Expression auf spezifische Tumorzellen wirken kann. Primär- und Sekundärtumore werden unter anderem durch BSP in ihrem Migrations- und Proliferationsverhalten gesteuert. Daraus ergibt sich die Möglichkeit, das Krebswachstum sowie die Tumormetastasierung mittels genanntem Verfahren/Therapie entscheidend zu verhindern oder vollständig zu unterdrücken.

Claims

P A T E N T A N S P R Ü C H E
1. Arzneimittel gegen Tumoren und deren Metastasen, die bevorzugt im Knochenge- weben ansiedeln, umfassend als Wirkstoff mindestens ein Bindemolekül, das an
Bone-Sialoprotein oder einem Fragment hiervon in Serum oder Plasma bindet.
2. Arzneimittel nach Anspruch 1, wobei der Wirkstoff ein Antikörper oder ein Aptamer oder Spiegeimer auf DNA oder RNA-Basis ist .
3. Arzneimittel nach Anspruch 2, wobei der Wirkstoff ein Molekül bindet, das einem chemisch oder natürlich in der Glykosylierung veränderten Bone-Sialoprotein entspricht.
4. Arzneimittel nach Anspruch 1, wobei das Bindemolekül ein Antikörper oder ein Aptamer ist, das spezifisch Bone-Sialoprotein aus Tumorzellen bindet.
5. Arzneimittel nach Anspruch 1 , wobei das Bindemolekül in der Glykosylierung verän- dertes Bone-Sialoprotein aus Knochenmaterial, dessen Spender nicht zur normalen
Glykosylierung von Knochenproteinen fähig war, bindet.
6. Arzneimittel nach Anspruch 1 , umfassend als Wirkstoff einen Antikörper oder eine Mehrzahl von Antikörper gegen das humane Bone-Sialoprotein (hBSP), wobei die Antikörper Epitope binden, die auf humanem Bone-Sialoprotein aus Tumorzellen vorhanden sind, dessen posttranslationale Glykosylierung im Bereich der
Aminosäuren 120 bis 135 (SWISSPROT: SIAL HUMAN, Acc.No. P21815, inkl. Signalsequenz), beinhaltend die Aminosäuren TGLAA, gegenüber normalem Bone- Sialoprotein aus Knochen verändert oder unvollständig ist.
7. Arzneimittel nach Anspruch 1, umfassend als Wirkstoff einen Antikörper und/oder ein Aptamer, erzeugt gegen ein hBSP-Epitop, umfassend die Aminosäuresequenz
TGLAA oder YTGLAA und optional Zuckergruppen.
8. Arzneimittel nach Anspruch 1 , umfassend als Wirkstoff IgY-Antikörper aus Huhn.
9. Arzneimittel nach Anspruch 8, umfassend als Wirkstoff IgY-Antikörper aus Huhn, die human oder humanisiert sind.
10. Arzneimittel nach Anspruch 1, wobei das Bindemolekül als bispezifischer Antikörper noch ein zusätzliches Paratop beinhaltet, das vorzugsweise spezifisch für Epitope von CD3 ist.
11. Arzneimittel nach Anspruch 1, wobei der Wirkstoff ein Immunotoxin ist, welches ein Konjugat aus Bindemolekül und einem Rest mit zytotoxischer Aktivität ist.
12. Arzneimittel nach Anspruch 11 , wobei das Konjugat die Ricin-A-Kette oder ein nicht bindendes Fragment des Diphtherietoxins beinhaltet.
13. Arzneimittel nach Anspruch 1 , wobei das Bindemolekül mit einem Radionuklid gekoppelt ist.
14. Arzneimittel nach Anspruch 1 , enthaltend zusätzlich mindestens einen Antikörper, Liganden oder Inhibitor, ausgewählt aus der Gruppe mit Adhäsionsmolekülen, membranassoziierten Proteasen, Rezeptoren, die Chemotaxis vermitteln, Chemokinrezeptoren, Apoptose-induzierenden Substanzen.
15. Arzneimittel nach Anspruch 14, wobei die Inhibitoren zumindest teilweise BSP blockieren und somit dessen Funktion modulieren.
16. Arzneimittel nach einem der vorhergehenden Ansprüche zur Behandlung von Tumoren aus der Gruppe mit Prostata-, Mamma-, Lungen-, Nieren- und Schilddrüsentumoren, Tumorerkrankungen des Blutsystems, des Lymphsystems, des
Herz-Kreislauf-Systems, des Nervensystems, des Respirationstraktes, des Verdauungstraktes, des endokrinen Systems, der Haut einschließlich Anhangsgebilde, des Bewegungsapparates und des Urogenitaltraktes, einschließlich der Niere.
PCT/EP2002/006456 2001-06-13 2002-06-12 Arzneimittel zur behandlung von tumoren und deren metastasen unter verwendung eines bindemoleküls gegen das bone-sialoprotein WO2002100899A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP02748771A EP1399186B1 (de) 2001-06-13 2002-06-12 Arzneimittel zur behandlung von tumoren und deren metastasen unter verwendung eines bindemoleküls gegen das bone-sialoprotein
AT02748771T ATE448796T1 (de) 2001-06-13 2002-06-12 Arzneimittel zur behandlung von tumoren und deren metastasen unter verwendung eines bindemoleküls gegen das bone-sialoprotein
JP2003503665A JP4570355B2 (ja) 2001-06-13 2002-06-12 腫瘍およびその転移の治療のための医薬
US10/480,465 US7825219B2 (en) 2001-06-13 2002-06-12 Medicament for treating tumours and their metastases
DE50214008T DE50214008D1 (de) 2001-06-13 2002-06-12 Arzneimittel zur behandlung von tumoren und deren metastasen unter verwendung eines bindemoleküls gegen das bone-sialoprotein
AU2002319223A AU2002319223A1 (en) 2001-06-13 2002-06-12 Medicament for treating tumours and their metastases using a binding molecule against bone-sialoprotein
DK02748771.9T DK1399186T3 (da) 2001-06-13 2002-06-12 Lægemiddel til behandling af tumorer og disses metastaser under anvendelse af et bindemolekyle mod knogle-sialoprotein
US12/901,399 US8808691B2 (en) 2001-06-13 2010-10-08 Method for treating tumors and their metastases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01114388.0 2001-06-13
EP01114388 2001-06-13
DE10128639 2001-06-15
DE10128639.2 2001-06-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10480465 A-371-Of-International 2002-06-12
US12/901,399 Division US8808691B2 (en) 2001-06-13 2010-10-08 Method for treating tumors and their metastases

Publications (2)

Publication Number Publication Date
WO2002100899A2 true WO2002100899A2 (de) 2002-12-19
WO2002100899A3 WO2002100899A3 (de) 2003-12-18

Family

ID=26009516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/006456 WO2002100899A2 (de) 2001-06-13 2002-06-12 Arzneimittel zur behandlung von tumoren und deren metastasen unter verwendung eines bindemoleküls gegen das bone-sialoprotein

Country Status (10)

Country Link
US (2) US7825219B2 (de)
EP (1) EP1399186B1 (de)
JP (1) JP4570355B2 (de)
AT (1) ATE448796T1 (de)
AU (1) AU2002319223A1 (de)
DE (1) DE50214008D1 (de)
DK (1) DK1399186T3 (de)
ES (1) ES2336770T3 (de)
PT (1) PT1399186E (de)
WO (1) WO2002100899A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514929A1 (de) * 2003-09-12 2005-03-16 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Antisense Oligonukleotide zur Hemmung der Krebsmetastasierung
WO2006128689A2 (de) * 2005-05-31 2006-12-07 Ralf Jochem Therapeutsche zusammensetzung zur vorbeugung und bekämpfung von knochenmetastasen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1931994A2 (de) * 2005-09-26 2008-06-18 Novartis AG Mit knochenmetastasen assoziierte molekulare marker
BRPI0917352A2 (pt) * 2008-08-29 2017-08-22 Symphogen As Métodos para produção de uma biblioteca de pares cognatos que compreende sequências ligadas que codificam regiões variáveis e para gerar um vetor que codifica um anticorpo quimérico com regiões de seres humanos constantes e regiões variáveis não humanas, biblioteca de vetores, e método para produção de uma biblioteca de sequências de imunoglobulina derivadas de aves
JP6675383B2 (ja) * 2014-08-19 2020-04-01 イムーンダイアグノスティック・アー・ゲー 慢性腎疾患の治療のための医薬および装置
WO2023004348A1 (en) * 2021-07-20 2023-01-26 William Marsh Rice University Engineered compositions for bone-targeted therapy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062065A1 (en) * 1999-04-09 2000-10-19 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services, The National Institutes Of Health Complex formed by n-linked glycoproteins (siblings) and factor h

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853219A (en) * 1987-08-06 1989-08-01 President And Fellows Of Harvard College Antibodies to angiogenin: immunotherapeutic agents
US5601819A (en) * 1988-08-11 1997-02-11 The General Hospital Corporation Bispecific antibodies for selective immune regulation and for selective immune cell binding
US5340934A (en) * 1989-11-03 1994-08-23 The United States Of Americas As Represented By The Secretary Of Health & Human Services CDNA sequences of human bone matrix proteins
US6407213B1 (en) * 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062065A1 (en) * 1999-04-09 2000-10-19 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services, The National Institutes Of Health Complex formed by n-linked glycoproteins (siblings) and factor h

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DIEL I J ET AL: "Serum bone sialoprotein in patients with primary breast cancer is a prognostic marker for subsequent bone metastasis." CLINICAL CANCER RESEARCH: AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH. UNITED STATES DEC 1999, Bd. 5, Nr. 12, Dezember 1999 (1999-12), Seiten 3914-3919, XP002230791 ISSN: 1078-0432 *
FEDARKO N S ET AL: "FACTOR H BINDING TO BONE SIALOPROTEIN AND OSTEOPONTIN ENABLES TUMORCELL EVASION OF COMPLEMENT-MEDIATED ATTACK" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, Bd. 275, Nr. 22, 2. Juni 2000 (2000-06-02), Seiten 16666-16672, XP000938681 ISSN: 0021-9258 *
FISHER L W ET AL: "ANTISERA AND CDNA PROBES TO HUMAN AND CERTAIN ANIMAL MODEL BONE MATRIX NONCOLLAGENOUS PROTEINS" ACTA ORTHOPAEDICA SCANDINAVICA, MUNKSGAARD, COPENHAGEN, DK, Bd. 66, Nr. SUPPL 266, 1995, Seiten 61-65, XP000937776 ISSN: 0001-6470 *
WITHOLD W ET AL: "BONE SIALOPROTEIN IN SERUM OF PATIENTS WITH MALIGNANT BONE DISEASES" CLINICAL CHEMISTRY, AMERICAN ASSOCIATION FOR CLINICAL CHEMISTRY. WINSTON, US, Bd. 43, Nr. 1, 1997, Seiten 85-91, XP002923940 ISSN: 0009-9147 *
WUTTKE MARTINA ET AL: "Structural characterization of human recombinant and bone-derived bone sialoprotein: Functional implications for cell attachment and hydroxyapatite binding." JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 276, Nr. 39, 28. September 2001 (2001-09-28), Seiten 36839-36848, XP002230944 ISSN: 0021-9258 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514929A1 (de) * 2003-09-12 2005-03-16 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Antisense Oligonukleotide zur Hemmung der Krebsmetastasierung
WO2005026357A1 (en) * 2003-09-12 2005-03-24 Deutsches Krebsforschungszentrum Antisense oligonucleotides for prevention of metastasis formation of cancer cells
WO2006128689A2 (de) * 2005-05-31 2006-12-07 Ralf Jochem Therapeutsche zusammensetzung zur vorbeugung und bekämpfung von knochenmetastasen
WO2006128689A3 (de) * 2005-05-31 2007-08-23 Ralf Jochem Therapeutsche zusammensetzung zur vorbeugung und bekämpfung von knochenmetastasen
EP2128173A1 (de) 2005-05-31 2009-12-02 Ralf Jochem Therapeutische Zusammensetzung zur Vorbeugung und Bekämpfung von Knochenmetastasen
US8282943B2 (en) 2005-05-31 2012-10-09 Ralf Jochem Therapeutic composition for use in the prevention and treatment of bone metastases

Also Published As

Publication number Publication date
US20110091379A1 (en) 2011-04-21
ES2336770T3 (es) 2010-04-16
EP1399186B1 (de) 2009-11-18
WO2002100899A3 (de) 2003-12-18
PT1399186E (pt) 2010-02-23
ATE448796T1 (de) 2009-12-15
JP2005506959A (ja) 2005-03-10
US20050069547A1 (en) 2005-03-31
US8808691B2 (en) 2014-08-19
US7825219B2 (en) 2010-11-02
JP4570355B2 (ja) 2010-10-27
DK1399186T3 (da) 2010-03-29
DE50214008D1 (de) 2009-12-31
AU2002319223A1 (en) 2002-12-23
EP1399186A2 (de) 2004-03-24

Similar Documents

Publication Publication Date Title
DE69726404T2 (de) Mesothelinantigen, verfahren und testsatz zur targetierung
DE60116753T2 (de) Humanisierte antikörper gegen den epidermalen wachstumsfaktorrezeptor
DE69737683T2 (de) Antikörper gegen die ed-b domäne von fibronektin, ihre herstellung und verwendungen
DE69727558T2 (de) Humanes CYR61, ein Signalmolekül der extrazellularen Matrix
JP5301152B2 (ja) 神経成長因子アンタゴニストを投与することによって骨癌の疼痛を処置するための方法
US8987205B2 (en) Polynucleotides encoding recombinant lubricin molecules and uses thereof
DE60107815T2 (de) Methode zur behandlung von tumoren welche den vaskulären endothelialen wachstumsfaktor d exprimieren
US8808691B2 (en) Method for treating tumors and their metastases
JPH09510605A (ja) Egfレセプターに対する抗体及びその抗腫瘍効果
MX2011000455A (es) Anticuerpos monoclonales especificos al receptor 2 del factor de crecimiento de fibroblastos.
DE69818106T2 (de) Immunologische zusammensetzungen und verfahren zur transienten änderung des zentralnervensystem-myelins der saügetiere und förderung der nerven-regenerierung
AT500648B1 (de) Set zur behandlung von krebspatienten
DE60033690T2 (de) Dns impfung
EP0805204A2 (de) Nebenhoden-spezifisches Rezeptorprotein und dessen Verwendung
EP1399482B1 (de) Bestimmung von bone-sialoprotein in körperflüssigkeiten für onkologische fragestellungen
EP1888631B1 (de) Therapeutsche zusammensetzung zur vorbeugung und bekämpfung von knochenmetastasen
JPH02504512A (ja) アンジオゲニンに対する抗体:免疫療法剤
EP1528934B1 (de) Verwendung von antikörpern gegen ein tumor-assoziiertes antigen
JP2005508870A6 (ja) 腫瘍学的目的のための体液中の骨シアロ蛋白(bonesialoprotein)の測定方法
DE69233668T2 (de) HVEGF Rezeptor als VEGF Antagonist
EP1171464A2 (de) Von interleukin 12 abgeleitete peptid-homodimere und peptid-heterodimere
DE102005024836A1 (de) Arzneimittel zur Vorbeugung und Bekämpfung von Knochenmetastasen
AT505028A4 (de) Neuer antikörper gegen ein retrovirales epitop

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003503665

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002748771

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002748771

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10480465

Country of ref document: US