WO2002093215A2 - SPLEIssEINRICHTUNG ZUM VERSPLEIssEN VON LICHTWELLENLEITERN - Google Patents

SPLEIssEINRICHTUNG ZUM VERSPLEIssEN VON LICHTWELLENLEITERN Download PDF

Info

Publication number
WO2002093215A2
WO2002093215A2 PCT/EP2002/004021 EP0204021W WO02093215A2 WO 2002093215 A2 WO2002093215 A2 WO 2002093215A2 EP 0204021 W EP0204021 W EP 0204021W WO 02093215 A2 WO02093215 A2 WO 02093215A2
Authority
WO
WIPO (PCT)
Prior art keywords
splicing
control device
determined
splice
data
Prior art date
Application number
PCT/EP2002/004021
Other languages
English (en)
French (fr)
Other versions
WO2002093215A3 (de
Inventor
Regina Menegozzi
Original Assignee
Ccs Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ccs Technology, Inc. filed Critical Ccs Technology, Inc.
Priority to AU2002319132A priority Critical patent/AU2002319132A1/en
Publication of WO2002093215A2 publication Critical patent/WO2002093215A2/de
Publication of WO2002093215A3 publication Critical patent/WO2002093215A3/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Definitions

  • the invention relates to a splicing device for splicing optical fibers.
  • the splicing data associated with the respective splicing processes such as splice attenuation, splicing program, splicing mode, date, time and splicing parameters, e.g. Assign welding current and splicing time, the splicing process to the respective location of the splice and record them in a corresponding file.
  • the splicing parameters mentioned as splicing data also depend indirectly on the splicing location.
  • the environmental conditions such as Air pressure and air humidity, on which the splicing result depends, differ, so that the splicing parameters to be set for controlling the splicing process, in the case of electrical welding devices in particular the welding current, are to be set differently in order to achieve an equally good splicing result.
  • the invention creates a splicing device by means of which documentation of optical fiber splicing can be reliably created in a simple manner and / or by means of which environmental conditions at the splicing location can be taken into account in a simple yet sufficiently reliable manner for controlling the splicing process.
  • the splicing device according to the invention for splicing optical fibers has: a splicer with splicing means for aligning and splicing optical fibers as well as a control device by means of which the splicing means can be controlled, and a position determining device associated with a navigation system, which is connected to the control device and by means of which The splicing position of the optical fibers to be spliced is determined using the associated navigation system.
  • the control device is designed in such a way that the respective splicing process is documented by it, in that the associated splicing data for the respective splicing process are determined together with the respectively associated one from the position determining device
  • Splicing position are stored, and / or wherein the control device is designed such that it controls the splicing process on the basis of the splicing position determined by the position determining device.
  • the splicing position ie the location of the respective splice
  • the control device from which the splice position coordinates supplied by the position determining device are then processed.
  • the position determining device detects its own position, but this defines the splice position with sufficient accuracy in the case of an adjacent splice.
  • the position determination device detects the splice position as the surrounding location of the splice (place of work), which is the position of a mast on which work is being carried out in the case of aerial cables, or the position of a shaft or a hole in which the cable is located in the case of underground cables or the splices are arranged. If the relative position between the position-determining device and the splice position is known, the control device can also take into account the relative position of the splice with respect to the position data acquired by the position-determining device and thus determine a more precise position of the splice; however, this is generally not necessary.
  • optical fibers are laid next to each other and the bundles of optical fibers are spliced parallel to each other, only one single splice position is determined using the position determination device for these splices, since the position determination device generally does not work so precisely to separate the splices lying next to each other by cables to be able to distinguish.
  • the documentary recording of the individual splices can then take place, for example, in that the splices are processed one after the other according to a predetermined method of operation, the associated splicing sequence being stored in the control device.
  • One possible way of working is, for example, that a bundle is marked in the respective cable, it being determined beforehand whether the remaining bundles in the cable are processed clockwise or counterclockwise starting from the marked bundle.
  • the fibers present in the respective bundle can be marked in different colors, for example, and are spliced together according to a predetermined color sequence.
  • bundle and fiber identification marks e.g. in the form of bundle numbers and fiber colors, before the respective splicing process or for a desired sequence of splicing processes in the
  • the splicing data (e.g. damping, splicing program, splice current, etc.) is assigned automatically to the individual splices in any case by the control device.
  • the splicer prefferably provides the user with a splicing sequence previously stored in the control device during the processing of the fibers of the cables, according to which the fibers are to be spliced.
  • a GPS receiver is particularly preferred as the position determining device, since GPS receivers are available at low cost and, in conjunction with the associated GPS (Global Position System) navigation system, provide sufficiently precise position data.
  • position determining devices can also be provided which are assigned to other satellite navigation systems, such as, for example, GLONASS (Global Navigation Satellite System) or EUTELTRACS (European Telecommunication and Tracking System) or INMARSAT (International Maritime Satellite Organization).
  • Position determination devices can also be provided, which are assigned to radio navigation systems, such as QUIKTRAK, NDB (Non Directional Beacon), VOR (Very High Frequency Omnidirectional Radio Range), DME (Distance Measuring Equipment), LORAN or OMEGA.
  • the position determining device is preferably provided integrated in the splicer.
  • the position determining device is in particular arranged adjacent to the splicer in order to be able to detect the position of the splice produced by the splicer with sufficient accuracy.
  • control device can automatically assign and save the splicing position supplied by the position determining device to the splicing data mentioned at the beginning. The probability of error is through this
  • Such a position-determining device is advantageously provided, which provides spatial coordinates in connection with the associated navigation system (for example, the case with satellite navigation systems), so that the location determined by the position-determining device and thus the detected splice position is three-dimensionally determined.
  • the position determining device in turn only supplies surface coordinates, such as longitude and latitude coordinates, so that a location on the surface of the earth is thereby only defined in two dimensions. This can be the case if the navigation system used only allows the determination of area coordination. If a three-dimensional position determination is nevertheless desired here, then one that is assigned to the surface coordinates, for example, in the control device Height profile can be stored, from which the control device then also determines the associated height coordinate depending on the determined surface coordinates.
  • the splicing data in particular the splicing parameters, on the basis of which the splicing process is controlled, can be determined independently of the position determining device on the basis of known criteria.
  • the splicing device is preferably designed in such a way that splicing data such as the splicing program, the splicing mode, the date and the time or
  • Splice parameters e.g. the welding current and the splicing time are automatically determined appropriately.
  • one or more splicing parameters in particular the welding current of an electrical splicing device and / or the welding time, are set on the basis of the splicing position determined by the position determining device and the splicing process is controlled thereby.
  • suitable splice parameters for the different splice locations have been determined and stored in the control device, e.g. in the form of a map.
  • the control device can access the stored splice parameters assigned to the splice location.
  • the splicing device according to the invention represents a particularly compact and therefore inexpensive device with which sufficiently good splicing results can nevertheless be achieved.
  • the height coordinate for example the height above, is determined by means of the position determining device Sea level, the respective splicing position determined and fed to the control device, which then determines a splicing parameter, in particular the welding current of an electrical splicer and / or the welding time, as a function of the determined height coordinate, for controlling the splicing process.
  • the position determining device can also be used exclusively to determine the height coordinate of the respective splice position in order to be able to determine splice parameters for controlling the splicing process.
  • the splicing parameter to be determined can, for example, be stored in a map from which the control device reads out the splicing parameter or a factor influencing it as a function of the determined height coordinate in order to carry out the welding process.
  • the control device can also be designed such that it can be determined from the height coordinate using an air pressure-height formula (e.g. the barometric
  • Altitude formula determines an associated air pressure (external ambient pressure), from which the control device then, e.g. determined via a map, the splice parameter or a factor for changing an output splice parameter.
  • earth climate data such as the average air humidity for different locations
  • the control device is designed in such a way that, depending on the splice position determined by the position-determining device, it can determine the average earth climate data from the stored earth climate data that are assigned to this splice position.
  • the control device is after this Embodiment designed such that it can determine a splicing parameter, in particular the welding current of an electrical splicer and / or the welding time, for controlling the splicing process as a function of the determined earth climate data.
  • the climatic conditions such as the air temperature and in particular the air humidity, like the air pressure, have an influence on the splicing process and thus the splice quality, with optimal splicing parameters being determined and stored in advance for certain conditions, e.g. in the form of a map.
  • the associated splice parameter can be derived from the stored data, i.e. the map can be read.
  • the map can also be designed such that both the air pressure or the associated height coordinate and the climatic conditions are taken into account.
  • control device Since the climatic conditions are also strongly season-dependent, the control device is designed in such a way that it automatically takes into account the splice date and possibly even the splicing time for determining the average climatic conditions, in particular the air humidity.
  • the control device has, in particular, a time clock which indicates the date and, if appropriate, the time of day; an associated map is then designed such that the
  • Control device the average air humidity depending on the location as well as on the date and possibly the time of day can be taken.
  • the splicing device has a weather data receiving device connected to the control device, from which the local weather data, in particular the air humidity and / or the air pressure, can be received by a weather service.
  • the control device is in turn designed such that it determines a splicing parameter, in particular the welding current of an electrical splicer or the welding time, for controlling the splicing process as a function of the weather data received from the weather data receiving device.
  • the splice parameter is determined e.g. As explained above, on the basis of maps prepared beforehand, in which, in addition to the climate data, the height coordinate of the splice location or the associated air pressure can also be taken into account.
  • FIG. 1 shows a splicing device according to a first embodiment of the invention
  • Figure 2 shows a splicing device according to another embodiment of the invention.
  • the splicing device 1 shown in FIG. 1 has a splicing device 2 with splicing means, not shown
  • the splicing agents have, for example, simply grooves opposite one another as alignment devices, in which the optical fibers are inserted and thereby aligned with each other.
  • driven positioning devices can also be provided as alignment devices, by means of which the optical waveguides can be moved relative to one another transversely to their longitudinal axis and can thereby be aligned with one another.
  • the splicing means for splicing the optical fibers have, for example, welding electrodes which are arranged opposite one another and between which the optical fibers to be spliced are arranged.
  • the splicer 2 also has a control device 4, by means of which the splicing process and also the dressing process are controlled.
  • the control device 4 comprises a computing unit CPU for performing calculation steps and a memory device 6, which is provided here in the form of a memory card and in which, for example, different welding programs and other data necessary for controlling and documenting the splicing process are stored.
  • a memory card instead of a memory card, other storage devices, e.g. other memory modules or a floppy disk can be provided.
  • the computing unit CPU and the memory device 6 are connected to one another via a data line 8.
  • the splicer 1 has a position determining device 10 integrated in the splicer 2 in the form of a GPS receiver, from which the position data, ie the location of the splicer into which it is integrated, can be detected, so that at the same time also approximately the position of the from the splices of the splicer 2 created splice is detected.
  • the position determining device 10 is connected to the control device 4, in particular to the arithmetic unit CPU, by means of a data line 12, via which the acquired position data are fed to the control device 4.
  • the computing unit CPU is designed in such a way that it automatically assigns the splicing parameters and other splicing data used to control the respective splicing process to the respectively associated splicing position data detected by the position determining device 10 and stores them in the storage device 6.
  • the computing unit CPU is designed in such a way that it sets at least one splicing parameter, in particular the welding current, from the position data obtained from the position determining device 10 before the respective splicing process, in order to thereby control the splicing process.
  • the splicing parameters are additionally or exclusively set on the basis of other criteria or also manually.
  • the splice parameter is determined, for example, by storing a plurality of splice parameter values in the memory device 6, which are assigned to respective height coordinates (eg height above sea level) or air pressures.
  • the computing device CPU determines the height coordinate of the splicing location from the splice position determined by the position determining device 6, and from this, if necessary after determining the air pressure assigned to the height coordinate, the associated splice parameter value for controlling the splice means, such as the electrodes, from the memory device 6. read.
  • climate data can be stored, which are assigned to the respective places on the earth and which include specific climatic conditions for these places, such as the average air humidity.
  • the associated climate data can then be read out by the computing unit CPU from the memory device 6.
  • the storage device 6 can then, for example from a map, associate these climate data
  • the control takes place e.g. by setting the welding current and / or the welding time as a splicing parameter.
  • the splicing data available during splicing e.g. the welding current, the welding time, the splice damping achieved etc. are then transferred from the computing device CPU to the storage device 6 and stored there.
  • a splicing device 100 according to another embodiment of the invention is shown schematically in FIG.
  • This splicing device 100 is constructed similarly to the splicing device 1 described above, that is to say it has a splicing device 102 which has a control device 104 with a computing unit CPU and a memory device 106 connected to it, which is provided here in the form of a memory card.
  • the splicer 102 has the splicer and alignment means corresponding to the splicer 1 described with reference to FIG. 1.
  • the splicing device 100 has a position determining device 110 which is also provided in the form of a GPS receiver and which is based on a associated navigation system (here a GPS system) determines its own position and thus approximately determines the position of neighboring devices.
  • the position determining device 110 is provided separately from the splicer 102 and is connected to the splicer 102 via a data line 112.
  • the data line 112 is connected to the control device 104 via data lines internal to the splicer, so that the position data acquired by the position determining device 110 are supplied to the control device 104.
  • the position determining device 110 is adjacent, that is to say arranged in the vicinity of the splicer 102, in such a way that the position data detected by it and corresponding to its own position correspond approximately to the position data of the splicer 102 and thus to the position data of the splice generated by the splicer 2.
  • the processing of the position data, which are determined by the position determination device 110 according to this embodiment, can be carried out as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Spleißeinrichtung und Verfahren zum Verspleißen von Lichtwellenleitern. Die Spleißeinrichtung (1) weist auf: ein Spleißgerät (2), welches Spleißmittel zum Ausrichten und Miteinanderverspleißen von Lichtwellenleitern sowie eine Steuereinrichtung (4) aufweist, mittels welcher die Spleißmittel steuerbar sind, und eine Positions-Bestimmeinrichtung (10), welche mit der Steuereinrichtung (4) verbunden ist und mittels welcher an Hand eines zugehörigen Navigationssystems die Spleißposition erfassbar ist, wobei die Steuereinrichtung (4) derart ausgebildet ist, dass von derselben der jeweilige Spleißvorgang dokumentiert wird, indem für den jeweiligen Spleißvorgang die zugehörigen Spleißparameter zusammen mit der jeweils zugehörigen Spleißposition gespeichert werden, und/oder wobei die Steuereinrichtung (4) derart ausgebildet ist, dass von derselben der Spleißvorgang auf Basis der von der Positions-Bestimmeinrichtung (10) erfassten Spleißposition gesteuert wird.

Description

Spleißeinrichtung zum Verspleißen von Lichtwellenleitern
Die Erfindung betrifft eine Spleißeinrichtung zum Verspleißen von Lichtwellenleitern.
Beim Verspleißen von Lichtwellenleitern besteht ein Bedarf, die den jeweiligen Spleißvorgängen zugehörigen Spleißdaten, wie Spleißdämpfung, Spleißprogramm, Spleißmodus, Datum, Uhrzeit und Spleißparameter, wie z.B. Schweißstrom und Spleißzeit, des Spleißvorgangs dem jeweiligen Ort des Spleißes zuzuordnen und in einer entsprechenden Datei gesammelt festzuhalten. Umgekehrt sind auch die als Spleißdaten genannten Spleißparameter indirekt vom Spleißort abhängig. So sind je nach Spleißort die Umgebungsbedingungen, wie z.B. Luftdruck und Luftfeuchte, von welchen das Spleißergebnis abhängig ist, unterschiedlich, so dass die zur Steuerung des Spleißvorgangs einzustellenden Spleißparameter, bei elektrischen Schweißgeräten insbesondere der Schweißstrom, zur Erzielung eines gleichguten Spleißergebnisses unterschiedlich einzustellen sind.
Bislang erfolgt eine Dokumentation in der Regel manuell . Das heißt, die Spleißdaten des jeweiligen Spleißvorgangs werden zusammen mit dem zugehörigen Spleißort, d.h. der Spleißposition, manuell in eine Datei, z.B. in Form eines Notizbuchs, eingetragen. Hierbei kann es jedoch bei einer Vielzahl von durchzuführenden Spleißvorgängen leicht zu Fehlern in der Dokumentation kommen.
Durch die Erfindung wird eine Spleißeinrichtung geschaffen, mittels welcher in einfacher Weise eine Dokumentation von Lichtwellenleiter-Spleißen zuverlässig erstellbar ist und/oder mittels welcher Umgebungsbedingungen am Spleißort in einfacher und dennoch ausreichend zuverlässiger Weise für die Steuerung des Spleißvorgangs berücksichtigbar sind. Die erfindungsgemäße Spleißeinrichtung zum Verspleißen von Lichtwellenleitern weist auf: ein Spleißgerät mit Spleißmitteln zum Ausrichten und Miteinanderverspleißen von Lichtwellenleitern sowie eine Steuereinrichtung, mittels welcher die Spleißmittel steuerbar sind, und eine einem Navigationssystem zugeordnete Positions-Bestimmeinrichtung, welche mit der Steuereinrichtung verbunden ist und mittels welcher an Hand des zugehörigen Navigationssystems die Spleißposition der jeweils zu verspleißenden Lichtwellenleiter bestimmt wird. Die Steuereinrichtung ist hierbei derart ausgestaltet, dass von derselben der jeweilige Spleißvorgang dokumentiert wird, indem für den jeweiligen Spleißvorgang die zugehörigen Spleißdaten zusammen mit der jeweils zugehörigen, von der Positions-Bestimmeinrichtung ermittelten
Spleißposition gespeichert werden, und/oder wobei die Steuereinrichtung derart ausgebildet ist, dass von derselben der Spleißvorgang auf Basis der von der Positions- Bestimmeinrichtung ermittelten Spleißposition gesteuert wird.
Bei der erfindungsgemäßen Spleißeinrichtung wird die Spleißposition, d.h. der Ort des jeweiligen Spleißes, mittels der Positions-Bestimmeinrichtung automatisch ermittelt und der Steuereinrichtung zugeführt, von welcher dann die von der Positions-Bestimmeinrichtung gelieferten Spleißpositions- Koordinaten verarbeitet werden. In der Regel erfasst die Positions-Bestimmeinrichtung hierbei ihre eigene Position, wobei diese aber bei benachbart angeordnetem Spleiß ausreichend genau die Spleißposition definiert. Das heißt, die Positions-Bestimmeinrichtung erfasst als Spleißposition den Umgebungsort des Spleißes (Ort des Arbeitseinsatzes) , welcher bei Luftkabeln z.B. die Position eines Mastes ist, an dem gearbeitet wird, oder bei Erdkabeln die Position eines Schachts oder eines Erdlochs ist, in dem der oder die Spleiße angeordnet sind. Bei bekannter Relativlage zwischen der Positions-Bestimmeinrichtung und der Spleißposition kann die Steuereinrichtung auch die Relativlage des Spleißes bezüglich den von der Positions-Bestimmeinrichtung erfassten Positionsdaten berücksichtigen und so eine genauere Position des Spleißes ermitteln; dies ist jedoch im Allgemeinen nicht erforderlich.
Im Falle dass mehrere Spleiße am gleichen Ort vorliegen, z.B. wenn mehrere Kabel mit eweils mehreren Bündeln von
Lichtleitfasern nebeneinander verlegt werden und die Bündel von Lichtleitfasern parallel zueinander verspleißt werden, wird an Hand der Positions-Bestimmeinrichtung für diese Spleisse nur eine einzige gemeinsame Spleißposition ermittelt, da die Positions-Bestimmeinrichtung in der Regel nicht so genau arbeitet, um die kabelweise nebeneinanderliegenden Spleiße voneinander unterscheiden zu können. Die dokumentarische Erfassung der einzelnen Spleiße kann dann z.B. dadurch erfolgen, dass die Spleiße nach einer vorgegebenen Arbeitsweise nacheinander abgearbeitet werden, wobei die zugehörige Verspleißreihenfolge in der Steuereinrichtung abgespeichert ist. Eine mögliche Arbeitsweise besteht z.B. darin, dass ein Bündel im jeweiligen Kabel markiert ist, wobei vorab feststeht, ob die restlichen Bündel im Kabel ausgehend von dem markierten Bündel im Uhrzeigersinn oder gegen den Uhrzeigersinn abgearbeitet werden. Die im jeweiligen Bündel vorliegenden Fasern können z.B. unterschiedlich farblich markiert sein und werden nach einer vorgegebenen Farbabfolge miteinanderverspleißt . Bei dieser Arbeitsweise müssen dann z.B. nur die Identifikationszeichen der jeweiligen miteinander zu verspleißenden Kabel oder einer zugehörigen Kabelmuffe in die Steuereinrichtung des Spleißgeräts manuell eingegeben werden; diesbezüglich kann es. auch vorgesehen sein, dass die Reihenfolge, in der die Kabel miteinander zu verspleißen sind, bereits vorgegeben und in der Steuereinrichtung vorab abgespeichert ist, so dass die manuelle Eingabe in die Steuereinrichtung auch hier entfällt.
Es ist ferner denkbar, dass die Bündel pro Kabel und/oder die einzelnen Fasern nicht in vorgegebener Reihenfolge abgearbeitet werden; hierzu sind dann Bündel- und Faseridentifikationszeichen, z.B. in Form von Bündelnummern und Faserfarben, vor dem jeweiligen Spleißvorgang oder für eine gewünschte Reihenfolge von Spleißvorgängen in das
Spleißgerät einzugeben. Die Zuordnung der Spleißdaten (z.B. Dämpfung, Spleißprogramm, Spleißstrom usw.) zu den einzelnen Spleißen erfolgt in jedem Falle automatisch durch die Steuervorrichtung .
Es ist auch möglich, dass das Spleißgerät dem Benutzer bei der Abarbeitung der Fasern der Kabel eine in der Steuereinrichtung vorab gespeicherte Spleißreihenfolge vorgibt, nach der die Fasern zu verspleißen sind.
Als Positions-Bestimmeinrichtung ist insbesondere ein GPS- Empfänger bevorzugt, da GPS-Empfänger kostengünstig erhältlich sind und in Verbindung mit dem zugehörigen Navigationssystem GPS (Global Position System) ausreichend genaue Positionsdaten liefern. Es können jedoch auch Positions-Bestimmeinrichtungen vorgesehen sein, die anderen Satelliten-Navigationssystemen, wie z.B. GLONASS (Global Navigation Satellite System) oder EUTELTRACS (European Telecommunication and Tracking System) oder INMARSAT (International Maritime Satellite Organization) , zugeordnet sind. Es können auch Positions-Bestimmeinrichtungen vorgesehen sein, die Funk-Navigationssystemen, wie z.B. QUIKTRAK, NDB (Non Directional Beacon) , VOR (Very High Frequency Omnidirectional Radio Range) , DME (Distance Measuring Equipment) , LORAN oder OMEGA, zugeordnet sind. Die Positions-Bestimmeinrichtung ist bevorzugt in dem Spleißgerät integriert vorgesehen. Sie kann aber auch eine vom Spleißgerät separate Einrichtung sein, welche dann z.B. über eine Kabel- oder Funkverbindung mit dem Spleißgerät zur Datenübertragung verbunden ist. Die Positions- Bestimmeinrichtung ist jedoch insbesondere benachbart zu dem Spleißgerät angeordnet, um die Position des vom Spleißgerät erzeugten Spleißes ausreichend genau erfassen zu können.
Die Steuereinrichtung kann zur Dokumentation des jeweiligen Spleißvorgangs und des jeweils zugehörigen Spleißes die von der Positions-Bestimmeinrichtung gelieferte Spleißposition den eingangs 'genannten Spleißdaten automatisch zuordnen und abspeichern. Die Fehlerwahrscheinlichkeit ist durch diese
Automatisierung der Spleiß-Dokumentation stark reduziert und hängt im wesentlichen nur noch von der Genauigkeit des Positions-Bestimmungssystems ab.
Vorteilhafterweise ist eine solche Positions- Bestimmeinrichtung vorgesehen, die in Verbindung mit dem zugehörigen Navigationssystem Raumkoordinaten liefert (z.B. bei Satelliten-Navigationssystemen der Fall) , so dass der von der Positions-Bestimmeinrichtung bestimmte Ort und damit die erfasste Spleißposition dreidimensional festgelegt ist. Es ist aber auch denkbar, dass die Positions-Bestimmeinrichtung ihrerseits nur Flächenkoordinaten liefert, wie z.B. Längen- und Breitengrad-Koordinaten, so dass ein Ort auf der Oberfläche der Erde hierdurch lediglich zweidimensional festgelegt ist. Dies kann der Fall sein, wenn das verwendete Navigationssystem nur die Ermittlung von Flächenkoordination erlaubt. Falls hierbei dennoch eine dreidimensionale Positionsbestimmung gewünschtOst , dann kann z.B. in der Steuereinrichtung ein den Flächenkoordinaten zugeordnetes Höhenprofil abgespeichert sein, woraus die Steuereinrichtung dann in Abhängigkeit von den bestimmten Flächenkoordinaten auch die zugehörige Höhenkoordinate bestimmt.
Die Spleißdaten, insbesondere die Spleißparameter, auf deren Basis der Spleißvorgang gesteuert wird, können unabhängig von der Positions-Bestimmeinrichtung auf Basis bekannter Kriterien ermittelt werden. Bevorzugt ist die Spleißeinrichtung derart ausgebildet, daß von ihr Spleißdaten, wie das Spleißprogramm, der Spleißmodus, das Datum und die Uhrzeit oder
Spleißparameter, wie z.B. der Schweißstrom und die Spleißzeit, automatisch geeignet ermittelt werden. Hierbei ist es nach einer Ausführungsform der Erfindung vorgesehen, dass ein oder mehrere Spleißparameter, insbesondere der Schweißstrom eines elektrischen Spleißgeräts und/oder die Schweißzeit, auf Basis der von der Positions-Bestimmeinrichtung ermittelten Spleißposition eingestellt werden und hierüber der Spleißvorgang gesteuert wird. Hierzu sind beispielsweise vorab geeignete Spleißparameter für die unterschiedlichen Spleißorte ermittelt und in der Steuereinrichtung gespeichert worden, z.B. in Form eines Kennfelds. Die Steuereinrichtung kann hierbei nach Ermittlung des Spleißortes durch die Positions- Bestimmeinrichtung auf die dem Spleißort zugeordneten, gespeicherten Spleißparameter zurückgreifen. Im Falle dass die Positions-Bestimmeinrichtung sowohl zur Steuerung der Spleißeinrichtung als auch zur Spleißdokumentation herangezogen wird, stellt die erfindungsgemäße Spleißeinrichtung eine besonders kompakte und damit kostengünstige Einrichtung dar, mit welcher dennoch ausreichend gute Spleißergebnisse erzielbar sind.
Nach einer bevorzugten Vorgehensweise beim Verspleißen von Lichtwellenleitern werden mittels der Positions- Bestimmeinrichtung die Höhenkoordinate, z.B. die Höhe über dem Meeresspiegel, der jeweiligen Spleißposition bestimmt und der Steuereinrichtung zugeführt, welche dann in Abhängigkeit von der ermittelten Höhenkoordinate einen Spleißparameter, insbesondere den Schweißstrom eines elektrischen Spleißgeräts und/oder die Schweißzeit, zum Steuern des Spleißvorgangs ermittelt. Im Falle dass keine Spleiß-Dokumentation erfolgen soll, kann die Positions-Bestimmeinrichtung auch ausschließlich zur Ermittlung der Höhenkoordinate der jeweiligen Spleißposition herangezogen werden, um damit Spleißparameter zur Steuerung des Spleißvorgangs ermitteln zu können.
Der zu ermittelnde Spleißparameter kann beispielsweise in einem Kennfeld abgelegt sein, aus welchem die Steuereinrichtung den Spleißparameter oder einen diesen beeinflussenden Faktor in Abhängigkeit von der ermittelten Höhenkoordinate ausliest, um damit den Schweißvorgang durchzuführen. Die Steuereinrichtung kann aber auch derart ausgebildet sein, dass sie aus der Höhenkoordinate an Hand einer Luftdruck-Höhen-Formel (z.B. der barometrischen
Hδhenformel) einen zugehörigen Luftdruck (Außenumgebungsdruck) ermittelt, aus welchem die Steuereinrichtung dann, z.B. über ein Kennfeld, den Spleißparameter oder einen Faktor zum Ändern eines Ausgangs-Spleißparameters ermittelt.
Nach einer anderen Ausführungsform der Erfindung sind in der Steuereinrichtung Erdklimadaten gespeichert, wie z.B. die durchschnittlichen Luftfeuchtigkeiten für unterschiedliche Orte. Die Steuereinrichtung ist hierbei derart ausgebildet, dass von ihr in Abhängigkeit von der von der Positions- Bestimmeinrichtung bestimmten Spleißposition jene durchschnittlichen Erdklimadaten aus den gespeicherten Erdklimadaten ermittelbar sind, die dieser Spleißposition zugeordnet sind. Ferner ist die Steuereinrichtung nach dieser Ausführungsform derart ausgebildet, dass von ihr in Abhängigkeit von den ermittelten Erdklimadaten ein Spleißparameter, insbesondere der Schweißstrom eines elektrischen Spleißgeräts und/oder die Schweißzeit, zum Steuern des Spleißvorgangs ermittelt werden kann.
Die klimatischen Bedingungen, wie die Lufttemperatur und insbesondere die Luftfeuchte, haben wie der Luftdruck einen Einfluß auf den Spleißvorgang und damit die Spleißgüte, wobei vorab für bestimmte Bedingungen optimale Spleißparameter ermittelt und abgespeichert werden, z.B. in Form eines Kennfelds. Beim Verspleißen kann dann, nachdem die durchschnittliche Luftfeuchte am Spleißort an Hand der bestimmten Spleißposition und der zugehörigen, gespeicherten Klimadaten ermittelt wurde, der zugehörige Spleißparameter aus den gespeicherten Daten, das heißt z.B. dem Kennfeld, abgelesen werden. Diesbezüglich kann das Kennfeld auch derart ausgebildet sein, dass sowohl der Luftdruck oder die zugehörige Höhenkoordinate als auch die klimatischen Bedingungen darin berücksichtigt sind.
Nachdem die klimatischen Bedingungen auch stark jahreszeitabhängig sind, ist die Steuereinrichtung insbesondere derart ausgebildet, dass von ihr für die Ermittlung der durchschnittlichen Klimabedingungen, insbesondere der Luftfeuchte, automatisch auch das Spleißdatum und ggf. sogar der Spleißzeitpunkt berücksichtigt werden. Hierzu weist die Steuereinrichtung insbesondere eine Zeituhr auf, welche Datum und ggf. Tageszeit angibt; ein zugehöriges Kennfeld ist dann derart ausgebildet, dass von der
Steuereinrichtung daraus die durchschnittliche Luftfeuchte in Abhängigkeit vom Ort sowie vom Datum und ggf. von der Tageszeit entnommen werden kann. Alternativ zur Ermittlung von Klimadaten aus der bestimmten Spleißposition und den vorab gespeicherten Klimadaten, hat die Spleißeinrichtung eine mit der Steuereinrichtung verbundene Wetterdaten-Emfangseinrichtung, von welcher die lokalen Wetterdaten, insbesondere die Luftfeuchtigkeit und/oder der Luftdruck, von einem Wetterdienst empfangen werden kann. Die Steuereinrichtung ist hierbei wiederum derart ausgebildet ist, dass von ihr in Abhängigkeit von den von der Wetterdaten- Empfangseinrichtung empfangenen Wetterdaten ein Spleißparameter, insbesondere der Schweißstrom eines elektrischen Spleißgeräts oder die Schweißzeit, zum Steuern des Spleißvorgangs ermittelt wird.
Die Ermittlung des Spleißparameters erfolgt z.B. wie oben erläutert an Hand von vorab erstellten Kennfeldern, in denen neben den Klimadaten auch die Hδhenkoordinate des Spleißorts oder der zugehörige Luftdruck berücksichtigt sein kann.
Die Erfindung wird im Folgenden an Hand von bevorzugten Ausführungsformen mit Bezugnahme auf die Zeichnung erläutert . In der Zeichnung zeigen:
Figur 1 eine Spleißeinrichtung nach einer ersten Ausführungsform der Erfindung und
Figur 2 eine Spleißeinrichtung nach einer anderen Ausführungsform der Erfindung.
Die in Figur 1 gezeigte Spleißeinrichtung 1 hat ein Spleißgerät 2 mit nicht dargestellten Spleißmitteln zum
Ausrichten und Miteinanderverspleißen von nicht dargestellten Lichtwellenleitern, wie insbesondere Lichtwellenleiterfasern. Die Spleißmittel weisen als Ausrichteinrichtungen beispielsweise einfach einander gegenüberliegende Nuten auf, in welche die Lichtwellenleiter eingelegt und dadurch fluchtend zueinander ausgerichtet werden. Als Ausrichteinrichtungen können jedoch auch angetriebene Positioniereinrichtungen vorgesehen sein, mittels denen die Lichtwellenleiter quer zu ihrer Längsachse relativ zueinander bewegbar und hierdurch zueinander ausrichtbar sind. Ferner weisen die Spleißmittel zum Verspleißen der Lichtwellenleiter beispielsweise Schweißelektroden auf, die einander gegenüberliegend angeordnet sind und zwischen denen die zu verspleißenden Lichtwellenleiter angeordnet werden.
Das Spleißgerät 2 hat ferner eine Steuereinrichtung 4, mittels welcher der Spleißvorgang und auch der AusriehtVorgang gesteuert werden. Die Steuereinrichtung 4 umfasst eine Recheneinheit CPU zum Durchführen von Berechnungsschritten sowie eine Speichereinrichtung 6, die hier in Form einer Speicherkarte vorgesehen ist und in der zum Beispiel unterschiedliche Schweißprogramme und sonstige für die Steuerung und Dokumentation des Spleißvorgangs notwendige Daten abgespeichert sind. Anstelle einer Speicherkarte können auch andere Speichereinrichtungen, wie z.B. sonstige Speicherbausteine oder eine Diskette, vorgesehen sein. Die Recheneinheit CPU und die Speichereinrichtung 6 sind über eine Datenleitung 8 miteinander verbunden.
Die Spleißeinrichtung 1 weist eine in das Spleißgerät 2 integrierte Positions-Bestimmeinrichtung 10 in Form eines GPS- Empfängers auf, von welchem die Positionsdaten, d.h. der Ort des Spleißgeräts, in welches er integriert ist, erfassbar sind, so dass gleichzeitig auch annähernd die Position des von den Spleißmitteln des Spleißgeräts 2 erstellten Spleißes erfasst wird. Die Positions-Bestimmeinrichtung 10 ist mit der Steuereinrichtung 4, insbesondere mit der Recheneinheit CPU mittels einer Datenleitung 12 verbunden, über welche die erfassten Positionsdaten der Steuereinrichtung 4 zugeführt werden.
Die Recheneinheit CPU ist derart ausgestaltet, dass sie die zur Steuerung des jeweiligen Spleißvorgangs verwendeten Spleißparameter und sonstige Spleißdaten den jeweils zugehörigen, von der Positions-Bestimmeinrichtung 10 erfassten Spleißpositionsdaten automatisch zuordnet und in der Speichereinrichtung 6 abspeichert.
Alternativ oder zusätzlich hierzu ist die Recheneinheit CPU derart ausgestaltet, dass sie aus den von der Positions- Bestimmeinrichtung 10 erhaltenen Positionsdaten wenigstens einen Spleißparameter, insbesondere den Schweißstrom, vor dem jeweiligen Spleißvorgang einstellt, um damit den Spleißvorgang zu steuern. Es ist jedoch auch denkbar, dass die Spleißparameter zusätzlich oder ausschließlich auf Basis anderer Kriterien oder auch manuell eingestellt werden.
Die Ermittlung des Spleißparameters erfolgt z.B. dadurch, dass in der Speichereinrichtung 6 eine Mehrzahl von Spleißparameterwerten gespeichert sind, die jeweiligen Höhenkoordinaten (z.B. Höhe über dem Meeresspiegel) oder Luftdrücken zugeordnet sind. Von der Recheneinrichtung CPU wird aus der von der Positions-Bestimmeinrichtung 6 ermittelten Spleißposition die Höhenkoordinate des Spleißorts ermittelt und daraus, ggf. nach Ermittlung des der Höhenkoordinate zugeordneten Luftdrucks, aus der Speichereinrichtung 6 der zugehörige Spleißparameterwert zur Steuerung der Spleißmittel, wie z.B. der Elektroden, ausgelesen. In der Speichereinrichtung 6 können auch Klimadaten gespeichert sein, welche jeweiligen Orten der Erde zugeordnet sind und welche für diese Orte spezifische klimatische Bedingungen, wie z.B. die durchschnittliche Luftfeuchte, umfassen. Aus der von der Positions- Bestimmeinrichtung 6 bestimmten Position, welche hierzu allein in Form von Flächenkoordinaten bestimmt sein kann, können dann von der Recheneinheit CPU aus der Speichereinrichtung 6 die zugehörigen Klimadaten ausgelesen werden. Mittels der ausgelesen Klimadaten kann die Speichereinrichtung 6 dann z.B. aus einem Kennfeld diesen Klimadaten zugehörige
Spleißparameterwerte zur Steuerung des Spleißvorgangs entnehmen. Die Steuerung erfolgt z.B. durch Einstellen des Schweißstroms und/oder der Schweißzeit als Spleißparameter.
Die beim Spleißen vorliegenden Spleißdaten, wie z.B. der Schweißstrom, die Schweißzeit, die erzielte Spleißdämpfung usw. werden dann von der Recheneinrichtung CPU in die Speichereinrichtung 6 übertragen und dort gespeichert.
In Figur 2 ist eine Spleißeinrichtung 100 nach einer anderen Ausführungsform der Erfindung schematisch dargestellt.
Diese Spleißeinrichtung 100 ist ähnlich der vorstehend beschriebenen Spleißeinrichtung 1 aufgebaut, das heißt, sie weist ein Spleißgerät 102 auf, welches eine Steuereinrichtung 104 mit einer Recheneinheit CPU und einer damit verbundenen Speichereinrichtung 106 aufweist, die hier in Form einer Speicherkarte vorgesehen ist. Das Spleißgerät 102 hat dem an Hand von Figur 1 beschriebenen Spleißgerät 1 entsprechende Spleißmittel und Ausrichtmittel .
Die Spleißeinrichtung 100 hat nach dieser Ausführungsform eine Positions-Bestimmeinrichtung 110, die ebenfalls in Form eines GPS-Empfängers vorgesehen ist und die an Hand eines zugehörigen Navigationssystems (hier eines GPS-Systems) ihre eigene Position bestimmt und damit die Position von benachbarten Geräten annähernd mitbestimmt. Die Positions- Bestimmeinrichtung 110 ist nach dieser Ausführungsform separat von dem Spleißgerät 102 vorgesehen und über eine Datenleitung 112 an das Spleißgerät 102 angeschlossen. Über spleißgerätinterne Datenleitungen ist die Datenleitung 112 mit der Steuereinrichtung 104 verbunden, so dass die von der Positions-Bestimmeinrichtung 110 erfassten Positionsdaten der Steuereinrichtung 104 zugeführt werden.
Die Positions-Bestimmeinrichtung 110 ist derart benachbart, das heißt, in der Nähe des Spleißgeräts 102 angeordnet, dass die von ihr erfassten und ihrer eigenen Position entsprechenden Positionsdaten annähernd den Positionsdaten des Spleißgeräts 102 und damit den Positionsdaten des vom Spleißgerät 2 erzeugten Spleißes entsprechen.
Die Verarbeitung der Positionsdaten, die von der Positions- Bestimmeinrichtung 110 nach dieser Ausführungsform ermittelt werden, kann wie in der oben beschriebenen Weise erfolgen.

Claims

Ansprüche
1. Spleißeinrichtung (1; 100) zum Verspleißen von Lichtwellenleitern, mit einem Spleißgerät (2; 102), welches Spleißmittel zum Ausrichten und Miteinanderverspleißen von Lichtwellenleitern sowie eine Steuereinrichtung (4; 104) aufweist, mittels welcher die Spleißmittel steuerbar sind, und einer einem Navigationssystem zugeordneten Positions- Bestimmeinrichtung (10; 110), welche mit der Steuereinrichtung (4; 104) verbunden ist und von welcher an Hand des zugehörigen Navigationssystems die Spleißposition der jeweils zu verspleißenden Lichtwellenleiter bestimmbar ist, wobei die Steuereinrichtung (4; 104) derart ausgebildet ist, dass von derselben der jeweilige Spleißvorgang dokumentiert wird, indem für den jeweiligen Spleißvorgang die zugehörigen Spleißdaten zusammen mit der jeweils zugehörigen, von der Positions-Bestimmeinrichtung (10; 110) bestimmten Spleißposition gespeichert werden, und/oder wobei die Steuereinrichtung (4; 104) derart ausgebildet ist, dass von derselben der Spleißvorgang steuerbar ist, indem aus vorab gespeicherten Spleißparameterwerten ein der von der Positions-Bestimmeinrichtung (10; 110) bestimmten Spleißposition zugeordneter Spleißparameterwert ermittelt wird.
2. Spleißeinrichtung (1; 100) nach Anspruch 1, wobei die Positions-Bestimmeinrichtung (10; 110) ein GPS-Empfänger ist .
3. Spleißeinrichtung (1; 100) nach Anspruch 1 oder 2, wobei mittels der Positions-Bestimmeinrichtung (10; 110) die Höhenkoordinate der Spleißposition der jeweils zu verspleißenden Lichtwellenleiter bestimmbar ist, und wobei die Steuereinrichtung (4; 104) derart ausgebildet ist, das von ihr in Abhängigkeit von der bestimmten Höhenkoordinate ein Spleißparameter, insbesondere der Schweißstrom eines elektrischen Spleißgeräts, zum Steuern des Spleißvorgangs ermittelbar ist .
4. Spleißeinrichtung (1; 100) nach einem der Ansprüche 1 bis 3, wobei in der Steuereinrichtung (4, 104) Erdklimadaten, insbesondere die durchschnittliche Luftfeuchtigkeit, gespeichert sind, und wobei die Steuereinrichtung (4; 104) derart ausgebildet ist, dass von ihr jene Erdklimadaten aus den gespeicherten Erdklimadaten ermittelbar sind, welche der von der Positions-Bestimmeinrichtung (10; 110) bestimmten Spleißposition zugeordnet sind, und dass von ihr in Abhängigkeit von den ermittelten Erdklimadaten ein Spleißparameter, insbesondere der Schweißstrom eines elektrischen Spleißgeräts, zum Steuern des Spleißvorgangs ermittelbar ist .
5. Spleißeinrichtung (1; 100) nach einem der Ansprüche 1 bis 3, welche ferner eine mit der Steuereinrichtung (4; 104) verbundene Wetterdaten-Empfangseinrichtung aufweist, von welcher die lokalen Wetterdaten, insbesondere die Luftfeuchtigkeit und/oder der Luftdruck, von Wetterdiensten empfangbar sind, wobei die Steuereinrichtung (4; 104) derart ausgebildet ist, dass von ihr in Abhängigkeit von den von der Wetterdaten-Empfangseinrichtung empfangenen Wetterdaten ein Spleißparameter, insbesondere der Schweißstrom eines elektrischen Spleißgeräts, zum Steuern des Spleißvorgangs ermittelbar ist .
PCT/EP2002/004021 2001-05-11 2002-04-11 SPLEIssEINRICHTUNG ZUM VERSPLEIssEN VON LICHTWELLENLEITERN WO2002093215A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002319132A AU2002319132A1 (en) 2001-05-11 2002-04-11 Splicing device for splicing optical waveguides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001122840 DE10122840B4 (de) 2001-05-11 2001-05-11 Spleißeinrichtung zum Verspleißen von Lichtwellenleitern
DE10122840.6 2001-05-11

Publications (2)

Publication Number Publication Date
WO2002093215A2 true WO2002093215A2 (de) 2002-11-21
WO2002093215A3 WO2002093215A3 (de) 2004-03-11

Family

ID=7684363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/004021 WO2002093215A2 (de) 2001-05-11 2002-04-11 SPLEIssEINRICHTUNG ZUM VERSPLEIssEN VON LICHTWELLENLEITERN

Country Status (3)

Country Link
AU (1) AU2002319132A1 (de)
DE (1) DE10122840B4 (de)
WO (1) WO2002093215A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106548A1 (en) * 2004-04-23 2005-11-10 Corning Cable Systems Llc Optical fiber fusion splicer with personal computer functionality
US7519258B2 (en) 2006-12-21 2009-04-14 Corning Cable Systems Llc Preconnectorized fiber optic local convergence points
US7702208B2 (en) 2005-05-18 2010-04-20 Corning Cable Systems Llc High density optical fiber distribution enclosure
US8755663B2 (en) 2010-10-28 2014-06-17 Corning Cable Systems Llc Impact resistant fiber optic enclosures and related methods
US8873926B2 (en) 2012-04-26 2014-10-28 Corning Cable Systems Llc Fiber optic enclosures employing clamping assemblies for strain relief of cables, and related assemblies and methods
US9069151B2 (en) 2011-10-26 2015-06-30 Corning Cable Systems Llc Composite cable breakout assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006052432A1 (de) * 2006-11-07 2008-05-08 CCS Technology, Inc., Wilmington Vorrichtung zum Spleißen von Lichtwellenleitern
DE102006053606B3 (de) * 2006-11-14 2008-06-19 CCS Technology, Inc., Wilmington Vorrichtung zum Spleißen von Lichtwellenleitern
DE102006056601A1 (de) * 2006-11-30 2008-06-05 CCS Technology, Inc., Wilmington Gerät zum thermischen Verbinden von Lichtwellenleitern
DE202007010785U1 (de) 2007-08-03 2007-09-27 CCS Technology, Inc., Wilmington Vorrichtung zum Verspleißen von Lichtwellenleitern

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504519A1 (de) * 1991-03-22 1992-09-23 Fujikura Ltd. Vorrichtung zum Schmelzverbinden von optischen Fasern
EP0864889A2 (de) * 1997-02-14 1998-09-16 Telefonaktiebolaget Lm Ericsson Automatische Stromauswahl zum Monofaserpleissen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230206A (ja) * 1989-03-03 1990-09-12 Fujikura Ltd 光ファイバ融着接続機
JP2951483B2 (ja) * 1992-07-17 1999-09-20 古河電気工業株式会社 光ファイバ融着接続機
DE19712780A1 (de) * 1997-03-26 1998-10-01 Siemens Ag Verfahren und Vorrichtung zum Verbinden mindestens zweier Lichtleitfasern mittels Lichtbogen-Schweißen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504519A1 (de) * 1991-03-22 1992-09-23 Fujikura Ltd. Vorrichtung zum Schmelzverbinden von optischen Fasern
EP0864889A2 (de) * 1997-02-14 1998-09-16 Telefonaktiebolaget Lm Ericsson Automatische Stromauswahl zum Monofaserpleissen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 542 (P-1137), 30. November 1990 (1990-11-30) & JP 02 230206 A (FUJIKURA LTD), 12. September 1990 (1990-09-12) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 253 (P-1737), 13. Mai 1994 (1994-05-13) & JP 06 034835 A (FURUKAWA ELECTRIC CO LTD:THE), 10. Februar 1994 (1994-02-10) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106548A1 (en) * 2004-04-23 2005-11-10 Corning Cable Systems Llc Optical fiber fusion splicer with personal computer functionality
US7702208B2 (en) 2005-05-18 2010-04-20 Corning Cable Systems Llc High density optical fiber distribution enclosure
US7936962B2 (en) 2005-05-18 2011-05-03 Corning Cable Systems Llc High density optical fiber distribution enclosure
US7519258B2 (en) 2006-12-21 2009-04-14 Corning Cable Systems Llc Preconnectorized fiber optic local convergence points
US8050529B2 (en) 2006-12-21 2011-11-01 Corning Cable Systems Llc Preconnectorized fiber optic local convergence points
US8755663B2 (en) 2010-10-28 2014-06-17 Corning Cable Systems Llc Impact resistant fiber optic enclosures and related methods
US9069151B2 (en) 2011-10-26 2015-06-30 Corning Cable Systems Llc Composite cable breakout assembly
US8873926B2 (en) 2012-04-26 2014-10-28 Corning Cable Systems Llc Fiber optic enclosures employing clamping assemblies for strain relief of cables, and related assemblies and methods

Also Published As

Publication number Publication date
WO2002093215A3 (de) 2004-03-11
AU2002319132A1 (en) 2002-11-25
DE10122840B4 (de) 2007-10-25
DE10122840A1 (de) 2002-11-14

Similar Documents

Publication Publication Date Title
EP3056923B1 (de) Scananordnung und verfahren zum scannen eines objektes
DE60319016T2 (de) Überwachungssystem und verfahren zu dessen verwendung
DE2526504A1 (de) Verfahren und geraet zur programmierung eines computergesteuerten roboterarmes
DE69818440T2 (de) Vermessungsverfahren und system mit einer funknavigationseinheit
DE10308525A1 (de) Vermessungssystem
DE10122840B4 (de) Spleißeinrichtung zum Verspleißen von Lichtwellenleitern
EP4016212A1 (de) Werkzeugmaschinensystem und verfahren zur steuerung einer mobilen werkzeugmaschine
DE3124991C2 (de) Digitaldaten-Magnetbandaufzeichnungsvorrichtung
DE19654122C1 (de) Anordnung mit einem Schweißgerät
EP3475934B1 (de) Konzept zum betreiben eines parkplatzes
DE19940404A1 (de) Verfahren und Vorrichtung zum dreidimensionalen Steuern einer Baumaschine
DE202004004945U1 (de) Lotstab für Vermessungssysteme
DE10233653A1 (de) Verfahren für die Kalibrierung und Ausrichtung von mehreren Mehrachsenbewegungsstufen für eine optische Ausrichtung auf eine Planar-Wellenleiter-Vorrichtung und ein Planar-Wellenleiter-System
EP1153314A1 (de) Verfahren und vorrichtung zur positionsbestimmung
EP2225734A1 (de) Verfahren und system zur übertragung von daten
DE102012208202A1 (de) Verfahren zum Verwalten von Werkzeugdaten
DE102018126056A1 (de) Verfahren und Computerprogramm zum Transkribieren einer aufgezeichneten Sprachkommunikation
DE4423369C2 (de) Verfahren zum Positionieren, Orientieren und Navigieren und Navigationsgerät
EP1983394A2 (de) Abgleichen von Daten eines Steuer- und/oder Datenübertragungssystems und eines dieses repräsentierenden Systemmodells
WO2021105010A1 (de) Verfahren und system zum zuordnen von koordinaten
EP1801610B1 (de) System zur Ermittlung des Standortes von Teilnehmern eines satellitengestützten Mobilfunksystems
WO2014139768A1 (de) Netzwerksystem und verfahren zum aufrufen und darstellen von netzwerkinformationen oder dokumentation von netzwerkkomponenten in einer industriellen prozessumgebung
EP1325661B1 (de) Endeinrichtung, daten- und/oder kommunikationssystem sowie verfahren zum lokalisieren einer übertragungseinrichtung einer endeinrichtung
DE202019103774U1 (de) Geräteverbund zur Veranschaulichung des Baufortschritts auf den Baustellen einer Linienbaustelle
DE102014114529B4 (de) Sensorarray und Verfahren zur Lokalisierung einer Schallquelle und/oder zum Empfang eines Schallsignals von einer Schallquelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP