WO2002092511A1 - Un material cristalino poroso (zeolita itq-21), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos - Google Patents

Un material cristalino poroso (zeolita itq-21), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos Download PDF

Info

Publication number
WO2002092511A1
WO2002092511A1 PCT/ES2002/000223 ES0200223W WO02092511A1 WO 2002092511 A1 WO2002092511 A1 WO 2002092511A1 ES 0200223 W ES0200223 W ES 0200223W WO 02092511 A1 WO02092511 A1 WO 02092511A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline material
relative intensity
intensity
methylparteinium
weak
Prior art date
Application number
PCT/ES2002/000223
Other languages
English (en)
French (fr)
Inventor
Avelino Corma Canos
Fernando Rey Garcia
Maria Jose Diaz Cabanas
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Priority to DE60232724T priority Critical patent/DE60232724D1/de
Priority to JP2002589403A priority patent/JP4386643B2/ja
Priority to CA002447448A priority patent/CA2447448C/en
Priority to EP02730314A priority patent/EP1405825B1/en
Priority to AU2002302660A priority patent/AU2002302660B2/en
Priority to AT02730314T priority patent/ATE434589T1/de
Publication of WO2002092511A1 publication Critical patent/WO2002092511A1/es
Priority to US10/714,571 priority patent/US6849248B2/en
Priority to ZA2003/09511A priority patent/ZA200309511B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation

Definitions

  • the present invention pertains to the technical field of porous materials, and particularly to porous materials of a zeolitic nature useful in the catalytic conversion of organic compounds.
  • Zeolites are porous crystalline aluminosilicates that have found important applications such as catalysts, adsorbents and ion exchangers. Many of these zeolitic materials have well-defined structures that form channels and cavities inside them of uniform size and shape that allow the adsorption of certain molecules, while preventing the passage into the glass of other molecules of size too large to diffuse through of the pores. This characteristic gives these materials molecular sieve properties. These molecular sieves can include in the Si network and other elements of group IIIA of the periodic system, all of them tetrahedrally coordinated, the tetrahedra being joined by their vertices through oxygen forming a three-dimensional network.
  • the negative charge generated by the elements of the group IIIA tetrahedrally coordinated in network positions is compensated by the presence in the cation crystal, such as alkaline or alkaline earth.
  • cation crystal such as alkaline or alkaline earth.
  • One type of cation can be totally or partially exchanged for another type of cations by ion exchange techniques, thus being able to vary the properties of a given silicate by selecting the desired cations.
  • Many zeolites have been synthesized in the presence of an organic molecule that acts as a structure directing agent.
  • Organic molecules that act as structure directing agents (ADE) generally contain nitrogen in their composition, and can result in stable organic cations in the reaction medium.
  • the mobilization of the silica can be carried out in the presence of OH " groups and basic medium, which can be introduced as hydroxide of the same ADE, such as tetrapropylammonium hydroxide in the case of the zeolite ZSM-5.
  • the fluoride ions can act as mobilizing agents of silica in synthesis of zeolites, as described, for example, in EP-A-0337479 the use of HF in H 2 0 at low pH as the mobilizing agent of silica for the synthesis of ZSM- 5.
  • zeolitic structures have been described. However, only one of them has a structure that is characterized by containing cavities of relatively high volume in its structure, which are accessible through channels whose section corresponds to that formed by 12 silicon tetrahedra.
  • This zeolite called Faujasite, is generally used as a catalyst in catalytic cracking processes. However, this material cannot be synthesized with low aluminum content, which forces it to be subjected to post-synthesis desaluminization processes.
  • the present invention relates to a new porous crystalline material (hereinafter also identified as ITQ-21) having a molar composition in its calcined and anhydrous state that is given by the equation
  • X is a trivalent element such as Al, B, Fe, In, Ga, Cr or mixtures thereof,
  • Y is a tetravalent element such as Si, Ti, Sn or mixtures thereof, although Si, and
  • Z is Ge, the value of (n + m) is at least 5, and can be between 7 and ⁇ , and the value n / m is at least 1.
  • the ITQ-21 material also has, in its calcined and synthesized form without calcining, an X-ray diffraction pattern that is different from other known zeolitic materials, and whose most important diffraction lines are given in Table 1 for calcined form and in table 2 for the uncalcined form.
  • Table 1
  • the ITQ-21 material may additionally have the diffraction lines specified in Tables 1A (for the calcined form) and 2A (for the uncalcined form):
  • crystallographic changes may include small variations in the parameters of the unit cell and / or changes in the symmetry of the crystal, without a change in the connectivity between the atoms of the structure. These modifications, which also include changes in relative intensities may also be due to differences in the type and amount of compensation cations, network composition, crystal size and shape thereof, preferred orientation or the type of thermal or hydrothermal treatments suffered.
  • ITQ-21 fluorides can be used, and more specifically HF as a mobilizing agent for silicon and germanium oxide, leaving organic molecules and ions inside the structure fluoride, which can be removed by conventional means.
  • the organic component can be removed, for example by extraction or by heat treatment by heating at a temperature above 250 ° C for a period of time between 2 minutes and 25 hours.
  • the compensation cations in the material in its uncalcined form, or after thermal treatment can be exchanged in the case of being present, by other cations such as metal ions, H + and H + precursors such as NH + 4 .
  • cations that can be introduced by ion exchange those that can have a positive role in the activity of the material as a catalyst are preferred, and more specifically cations such as H + , rare earth cations, and group VIII metals are preferred, as well as Group IIA, IIIA, VAT, Va, IB, IIB, IIIB, INB, VB, NIIB of the periodic table of the elements.
  • the crystalline material of the present invention can be intimately combined with hydrogenating-deoxygenating components such as platinum, palladium, nickel, rhenium, cobalt, tungsten, molybdenum, vanadium, chromium, manganese, iron.
  • hydrogenating-deoxygenating components such as platinum, palladium, nickel, rhenium, cobalt, tungsten, molybdenum, vanadium, chromium, manganese, iron.
  • the introduction of these elements can be carried out in the crystallization stage, by exchange (if applicable), and / or by impregnation or by physical mixing.
  • These elements can be introduced in their cationic form and / or from salts or other compounds that by decomposition generate the metal component or oxide in its appropriate catalytic form.
  • the ITQ-21 crystalline material can be prepared from a reaction mixture containing H 2 0, optionally an oxide or a source of the trivalent element X, such as Al and / or B, an oxide or a source of the tetravalent element or elements Y, such as Si; a source of Ge, Z, such as Ge0 2 , an organic structure directing agent (R) generally a salt of N (16) -methylparteinium, preferably the hydroxide and a source of fluoride ions, preferably HF.
  • composition of the reaction mixture has the following composition in terms of molar ratios of oxides:
  • the crystallization of ITQ-21 can be carried out in static or stirring, in autoclaves at a temperature between 80 and 200 ° C, at times sufficient to achieve crystallization, for example between 12 hours and 30 days.
  • ITQ-21 crystals can be added as seeds, in amounts of up to 15% by weight with respect to the total oxides, to the synthesis mixture. These can be added before or during the crystallization of ITQ-21.
  • the ITQ-21 crystals are separated from the mother liquors, and recovered.
  • the material produced by this invention can be pelletized according to known techniques, and can be used as a component of catalytic hydrocarbon cracking catalysts, hydrocarbon catalytic hydro-cracking, aromatic alkylation with olefins and in esterification, acylation, reaction processes of aniline with formaldehyde in its acid form and / or exchanged with suitable cations.
  • the iodide is exchanged for hydroxide using ion exchange resin, according to the following procedure: 31.50 g of N (16) -methylparteinium iodide is dissolved in 92.38 g of water. To the solution obtained is added 85 g of resin Do is BR and kept under stirring until the next day. Subsequently, it is filtered, washed with distilled water and we obtain 124.36 g of N (16) -methylparteinium hydroxide solution with a concentration of 0.65 mol / Kg.
  • Example 2 0.32 g of Ge0 2 are dissolved in 11.25 g of N (16) -methylparteinium hydroxide solution with a concentration of 1.48 moles / Kg.
  • ROH is N (16) -methylparteinium hydroxide.
  • the gel is heated at 175 ° C under stirring for 48 hours in steel autoclaves with an internal Teflon sheath.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is ITQ-21 and whose list of diffraction peaks is included in Table 3.
  • the material is calcined at 540 ° C for 3 hours in air flow to remove organic matter and the fluoride ions occluded inside.
  • the powder X-ray diffraction pattern of the solid obtained coincides with the values in Table 1 and is shown in Figure 1 and whose list of diffraction peaks is included in Table 4
  • mf, f, m, d and md have the following meanings: mf a very strong relative intensity of 80-100, f a strong relative intensity of 60-80 m an average relative intensity of 40-60, d a weak intensity of 20-40, and md a very weak relative intensity of 0-20.
  • Example 3 In 15.35 g of N (16) -methylparteinium hydroxide solution with a concentration of 1.48 mol / kg 0.23 g of Ge0 2 are dissolved. 9.01 g of tetraethylorthosilicate are hydrolyzed in the solution obtained, and kept under stirring allowing the ethanol formed to evaporate. Subsequently, 0.94 g of a solution of hydrofluoric acid (48.1% HF by weight) is added and evaporated until the mixture reaches the composition:
  • ROH is N (16) -methylparteinium hydroxide.
  • the gel is heated for 12 days in steel autoclaves with an internal Teflon sheath at 175 ° C while stirring.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is ITQ-21.
  • Example 4 6.67 g of tetraethylorthosilicate are hydrolyzed in 11.43 g of N (16) -methylparteinium hydroxide solution with a concentration of 1.40 mol / kg, while stirring, allowing all the ethanol formed in the hydrolysis to evaporate. Subsequently, 0.67 g of a solution of hydrofluoric acid (48.1% HF by weight) is added and evaporation is continued until the reaction mixture reaches a final composition:
  • ROH is N (16) -methylparteinium hydroxide.
  • Example 5 0.21 g of aluminum isopropoxide and 0.24 g of GeO ⁇ are dissolved in 11.36 g of N (16) -methylparteinium hydroxide solution with a concentration of 1.1 moles / Kg. In the solution obtained 4.74 g of tetraethylorthosilicate are hydrolyzed, and it is kept under stirring, allowing all the alcohol formed in the hydrolysis to evaporate. Subsequently, 0.52 g of a solution of hydrofluoric acid (48.1% HF by weight) is added. The final composition of the synthesis gel is:
  • the gel is heated at 175 ° C under stirring for 5 days in steel autoclaves with an internal Teflon sheath.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is Al-ITQ-21.
  • Example 6 0.16 g of Ge0 2 and 0.26 g of aluminum isopropoxide are dissolved in 17.70 g of N (16) -methylparteinium hydroxide solution of concentration 0.89 mol / Kg. In the solution obtained, 6.25 g of tetraethylorthosilicate are hydrolyzed, and it is kept under stirring, allowing all the alcohol formed and the water necessary to reach the desired composition to evaporate. Subsequently, 0.65 g of a solution of hydrofluoric acid (48.1% HF by weight) is added. The final composition is as follows:
  • Example 7 0.73 g of Ge0 2 are dissolved in 35.00 g of N (16) -methylparteinium hydroxide solution with a concentration of 1.1 mol / kg. In the solution obtained, 14.58 g of tetraethylorthosilicate are hydrolyzed, and it is kept under stirring, allowing all the ethanol formed in the hydrolysis to evaporate until the desired composition is reached. Subsequently, 1.60 g of a solution of hydrofluoric acid (48.1% HF by weight) is added, so that the final composition is:
  • ROH is N (16) -methylparteinium hydroxide.
  • the gel is heated at 175 ° C under stirring for 3 days in steel autoclaves with an internal Teflon sheath.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is ITQ-21 with amorphous material.
  • Example 8 The solid obtained after heating the synthesis gel of Example 7 at 135 ° C under stirring for 7 days is ITQ-21.
  • Example 9 0.31 g of Ge0 2 are dissolved in 16.34 g of N (16) -methylparteinium hydroxide solution of 1.01 mol / Kg. In the solution obtained, 6.25 g of tetraethylorthosilicate and 0.15 g of tetraethylortotitanate are hydrolyzed. 0.32 g of H 2 O 2 (35% by weight) are added and kept under stirring allowing all the alcohol formed and the water necessary to achieve the desired composition to evaporate. Subsequently, 0.65 g of a solution of hydrofluoric acid (48.1% HF by weight) is added. The final composition is as follows: 0.91 Si0 2 : 0.09 Ge0 2 : 0.02 Ti0 2 : 0.10 H 2 0 2 : 0.50 ROH:
  • the gel is subjected to heating at 175 ° C under stirring in steel autoclaves with an internal Teflon sheath. After 4 days, we get Ti-ITQ-21.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

Un material poroso cristalino (ITQ-21) que en su forma calcinada tiene la composición química en la que (n + m) es por lo menos 5, X es un elemento rivalente, Z es Ge, y es al menos un elemento tetravalente distinto a Ge, y la relación Y/Z es de al menos 1, y presetna los valores de difracción de rayos X que se dan en la Tabla 1y un m?etodo de preparación del material en presencia de iones fluoruro y utilizando N(16)- metilesparteinio como agente director de estructura. El material es útil en su forma ácida y en forma de catalizado bifuncional en procesos de craqueo catalítico, hidrocraqueo, y alquilación de aromáticos.

Description

UN MATERIAL CRISTALINO POROSO (ZEOLITA ITQ-21) , SU
PROCEDIMIENTO DE PREPARACIÓN Y SU USO EN LA CONVERSIÓN
CATALÍTICA DE COMPUESTOS ORGÁNICOS
CAMPO DE LA TÉCNICA DE LA INVENCIÓN
La presente invención pertenece al campo técnico de los materiales porosos, y particularmente a los materiales porosos de naturaleza zeolitica útiles en la conversión catalítica de compuestos orgánicos. ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN
Las zeolitas son aluminosilicatos cristalinos porosos que han encontrado importantes aplicaciones como catalizadores, adsorbentes e intercambiadores iónicos. Muchos de estos materiales zeoliticos tienen estructuras bien definidas que forman canales y cavidades en su interior de tamaño y forma uniforme que permiten la adsorción de determinadas moléculas, mientras que impiden el paso al interior del cristal de otras moléculas de tamaño demasiado grande para difundir a través de los poros. Esta característica confiere a estos materiales propiedades de tamiz molecular. Estos tamices moleculares pueden incluir en la red Si y otros elementos del grupo IIIA del sistema periódico, todos ellos tetraédricamente coordinados, estando los tetraedros unidos por sus vértices a través de oxígenos formando una red tridimensional. La carga negativa generada por los elementos del grupo IIIA tetraédricamente coordinados en posiciones de red está compensada por la presencia en el cristal de cationes, como por ejemplo alcalinos o alcalinoterreos. Un tipo de catión puede ser intercambiado total o parcialmente por otro tipo de cationes mediante técnicas de intercambio iónico, pudiendo variar asi las propiedades de un silicato dado seleccionando los cationes deseados. Muchas zeolitas han sido sintetizadas en presencia de una molécula orgánica que actúa como agente director de estructura. Las moléculas orgánicas que actúan como agentes directores de estructura (ADE) contienen generalmente nitrógeno en su composición, y pueden dar lugar a cationes orgánicos estables en el medio de reacción.
La movilización de la sílice se puede llevar a cabo en presencia de grupos OH" y medio básico, que puede introducirse como hidróxido del mismo ADE, como por ejemplo hidróxido de tetrapropilamonio en el caso de la zeolita ZSM-5. También los iones fluoruro pueden actuar como agentes movilizantes de la silice en síntesis de zeolitas, como se describe, por ejemplo, en la patente EP-A-0337479 el uso de HF en H20 a bajo pH como agente movilizante de la silice para la síntesis de ZSM-5.
Actualmente, se han descrito unas 135 estructuras zeoliticas diferentes. Sin embargo, tan sólo una de ellas posee una estructura que se caracteriza por contener cavidades de volumen relativamente elevado en su estructura, que son accesibles a través de canales cuya sección corresponde a la formada por 12 tetraedros de silice. Esta zeolita, denominada Faujasita, es la generalmente empleada como catalizador en procesos de craqueo catalítico. Sin embargo, este material no puede ser sintetizado con bajo contenido de aluminio, lo que obliga a someterla a procesos postsintesis de desaluminización.
Por tanto, seria altamente deseable disponer de un material zeolitico con bajo contenido en Al y con una topología tal que presente cavidades de elevado volumen accesible a través de canales conformados por anillos de 12 tetraedros que puede obtenerse directamente en un único paso de síntesis. DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un nuevo material cristalino poroso (en lo siguiente también identificado como ITQ-21) que tiene una composición molar en su estado calcinado y anhidro que viene dado por la ecuación
X2O3 : n Y02 : m Z02
en la que X es un elemento trivalente tal como Al, B, Fe, In, Ga, Cr o mezclas de estos,
Y es un elemento tetravalente tal como Si, Ti, Sn o mezclas de ellos, aunque se prefiere Si, y
Z es Ge, el valor de (n+m) es al menos 5, y puede estar comprendido entre 7 e ∞ , y el valor n/m es de al menos 1.
De los valores dados se deduce claramente que el material cristalino ITQ-21 se puede sintetizar en ausencia de elementos trivalentes añadidos.
El material ITQ-21 tiene además, tanto en su forma calcinada como sintetizada sin calcinar, un patrón de difracción de rayos X que es diferente al de otros materiales zeoliticos conocidos, y cuyas lineas de difracción más importantes vienen dadas en la tabla 1 para la forma calcinada y en la tabla 2 para la forma sin calcinar. Tabla 1
Figure imgf000005_0001
Tabla 2
Figure imgf000005_0002
En una realización de la invención, el material ITQ-21 puede tener adicionalmente las lineas de difracción que se especifican en las tablas 1A (para la forma calcinada) y 2A (para la forma sin calcinar) :
Tabla 1A
Figure imgf000006_0001
Tabla 2A
Figure imgf000006_0002
Estos difractogramas se obtuvieron con un difractómetro Philips X'Pert equipado con un monocromador de grafito y una rendija de divergencia automática utilizando la radiación Kα del cobre. Los datos de difracción se registraron mediante un paso de 2θ de 0.01° en el que θ es el ángulo de Bragg y un tiempo de cuenta de 10 segundos por paso. Los espaciados interplanares, d, se calcularon en Ángstrom y la intensidad relativa de las lineas se calcula como el porcentaje respecto del pico más intenso, y se considera muy fuerte (mf)= 80-100, fuerte (f) =60-80, media (m)= 40-60, débil (d) =20-40, y muy débil (md)= 0-20.
Debe tenerse en cuenta que los datos de difracción listados para esta muestra como lineas sencillas o únicas, pueden estar formados por múltiples solapamientos o superposición de reflexiones que, en ciertas condiciones, tales como diferencias en cambios cristalográficos, pueden aparecer como lineas resultas o parcialmente resueltas. Generalmente, los cambios cristalográficos pueden incluir pequeñas variaciones en los parámetros de la celda unidad y/o cambios en la simetría del cristal, sin que se produzca un cambio en la conectividad entre los átomos de la estructura. Estas modificaciones, que incluyen también cambios en intensidades relativas pueden deberse también a diferencias en el tipo y cantidad de cationes de compensación, composición de red, tamaño de cristal y forma de los mismos, orientación preferente o al tipo de tratamientos térmicos o hidrotérmicos sufridos.
En el proceso de síntesis de ITQ-21 pueden utilizarse fluoruros, y más específicamente HF como agente movilizante de la silice y el óxido de germanio, quedando ocluido en el interior de la estructura moléculas orgánicas e iones fluoruro, que se pueden eliminar por medios convencionales. Asi, el componente orgánico se puede eliminar, por ejemplo por extracción o por tratamiento térmico calentando a temperatura por encima de 250° C durante un periodo de tiempo comprendido entre 2 minutos y 25 horas.
Los cationes de compensación en el material en su forma sin calcinar, o después de un tratamiento térmico, pueden intercambiarse, en el caso de estar presentes, por otros cationes tales como iones metálicos, H+ y precursores de H+ como por ejemplo NH+ 4. Entre los cationes que pueden introducirse por intercambio iónico se prefieren aquellos que pueden tener un papel positivo en la actividad del material como catalizador, y más específicamente se prefieren cationes tales como H+, cationes de tierras raras, y metales del grupo VIII, asi como del grupo IIA, IIIA, IVA, Va, IB, IIB, IIIB, INB, VB, NIIB de la tabla periódica de los elementos.
Con el fin de preparar catalizadores, el material cristalino de la presente invención puede combinarse intimamente con componentes hidrogenantes-desoxigenantes como platino, paladio, níquel, renio, cobalto, tungsteno, molibdeno, vanadio, cromo, manganeso, hierro. La introducción de estos elementos se puede llevar a cabo en la etapa de cristalización, por intercambio (si ha lugar) , y/o por impregnación o por mezcla física. Estos elementos pueden ser introducidos en su forma catiónica y/o a partir de sales u otros compuestos que por descomposición generen el componente metálico u óxido en su forma catalítica adecuada. El material cristalino ITQ-21, se puede preparar a partir de una mezcla de reacción que contiene H20, opcionalmente un óxido o una fuente del elemento trivalente X, como por ejemplo Al y/o B, un óxido o una fuente del elemento o elementos tetravalentes Y, como por ejemplo Si; una fuente de Ge, Z, como por ejemplo Ge02, un agente orgánico director de estructura (R) generalmente una sal de N(16) -metilesparteinio, preferentemente el hidróxido y una fuente de iones fluoruro, preferentemente HF.
La composición de la mezcla de reacción tiene la siguiente composición en términos de relaciones molares de óxidos:
Relación molar Reactivos Útil Preferida
(Y02+Z02)/X2θ3 mayor de 5 mayor de 7 H20/ (Y02+Z02) 1-50 2-20 R/ (Y02 + Z0 ) 0.1-3.0 0.1-1.0 F/ (Y02 +Z02) 0.1-3.0 0.1-1.0 YO2/ZO2 mayor de 1 mayor de 5
La cristalización de ITQ-21 se puede llevar a cabo en estático o en agitación, en autoclaves a temperatura comprendida entre 80 y 200°C, a tiempos suficientes para conseguir la cristalización, por ejemplo entre 12 horas y 30 dias.
Debe tenerse en cuenta que los componentes de la mezcla de síntesis pueden provenir de distintas fuentes, y dependiendo de estos pueden variar tiempos y condiciones de cristalización. Con el fin de facilitar la síntesis, se pueden añadir cristales de ITQ-21 como semillas, en cantidades de hasta 15% en peso respecto del total de óxidos, a la mezcla de síntesis. Estas pueden ser adicionadas previamente o durante la cristalización de ITQ- 21.
Al finalizar la etapa de cristalización, se separan los cristales de ITQ-21 de las aguas madres, y se recuperan. El material producido mediante esta invención puede ser peletizado de acuerdo con técnicas conocidas, y puede ser utilizado como componente de catalizadores de craqueo catalítico de hidrocarburos, hidro-craqueo catalítico de hidrocarburos, alquilación de aromáticos con olefinas y en procesos de esterificación, acilación, reacción de anilina con formaldehido en su forma acida y/o intercambiado con cationes adecuados.
EJEMPLOS A continuación y para contribuir a la comprensión de la invención, se describirán unos ejemplos que forman parte integrante de la presente memoria descriptiva.
Ejemplo 1: Preparación de hidróxido de N(16)- metilesparteinio.
20.25 g de (-) -esparteina se mezclan con lOOml de acetona. Sobre esta mezcla se va añadiendo 17.58 g de yoduro de metilo, gota a gota, mientras se agita la mezcla. Después de 24 horas aparece un precipitado de color crema. Se añaden 200ml de éter dietilico a la mezcla de reacción, se filtra y el sólido obtenido se seca a vacio. El producto es yoduro de N (16) -metilesparteinio con un rendimiento superior al 95 %.
El yoduro se intercambia por hidróxido utilizando resina de intercambio iónico, según el siguiente procedimiento: 31.50 g de yoduro de N (16) -metilesparteinio se disuelven en 92.38 g de agua. A la disolución obtenida se añade 85 g de resina Do es BR y se mantiene en agitación hasta el dia siguiente. Posteriormente, se filtra, se lava con agua destilada y obtenemos 124.36 g de disolución de hidróxido de N (16) -metilesparteinio con una concentración de 0.65 moles/Kg. Ejemplo 2: Se disuelven 0.32 g de Ge02 en 11.25 g de disolución de hidróxido de N (16) -metilesparteinio con una concentración de 1.48 moles/Kg. En la disolución obtenida se hidrolizan 6.30 g de tetraetilortosilicato, y se mantiene en agitación dejando evaporar todo el etanol formado en la hidrólisis. Posteriormente, se añade 0.69 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla de reacción alcanza una composición final:
0.91 Si02 : 0.09 Ge02 : 0.50 ROH : 0.50 HF : 3 H20
donde ROH es hidróxido de N (16) -metilesparteinio.
El gel se calienta a 175°C en agitación durante 48 horas en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-21 y cuyo listado de picos de difracción se incluye en la tabla 3.
El material se calcina a 540°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El patrón de difracción de rayos X de polvo del sólido obtenido coincide con los valores de la tabla 1 y se muestra en la figura 1 y cuyo listado de picos de difracción se incluye en la tabla 4
Tabla 3
Figure imgf000012_0001
Tabla 4
Figure imgf000013_0001
En estas tablas, las abreviaciones mf, f, m, d y md tienen los siguientes significados: mf una intensidad relativa muy fuerte de 80-100, f una intensidad relativa fuerte de 60-80 m una intensidad relativa media de 40-60, d una intensidad débil de 20-40, y md una intensidad relativa muy débil de 0-20.
Ejemplo 3: En 15.35 g de disolución de hidróxido de N (16) -metilesparteinio con una concentración de 1.48 moles/kg se disuelven 0.23 g de Ge02. Se hidrolizan 9.01 g de tetraetilortosilicato en la disolución obtenida, y se mantiene en agitación dejando evaporar el etanol formado. Posteriormente, se añade 0.94 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición:
0.95 Si02 : 0.05 Ge02 : 0.50 ROH : 0.50 HF : 3 H20
donde ROH es hidróxido de N (16) -metilesparteinio.
El gel se calienta durante 12 dias en autoclaves de acero con una funda interna de teflón a 175°C en agitación. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-21.
Ejemplo 4: Se hidrolizan 6.67 g de tetraetilortosilicato en 11.43 g de disolución de hidróxido de N( 16) -metilesparteinio con una concentración de 1.40 moles/kg, manteniendo en agitación dejando evaporar todo el etanol formado en la hidrólisis. Posteriormente, se añade 0.67 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso) y se continúa evaporando hasta que la mezcla de reacción alcanza una composición final:
Si02 : 0.50 ROH : 0.50 HF : 3 H20
donde ROH es hidróxido de N(16) -metilesparteinio.
Tras 14 dias de cristalización a 175°C en agitación en autoclaves de acero con una funda interna de teflón, se obtiene un sólido cuyo difractograma coincide con el descrito para la zeolita CIT-5.
Ejemplo 5: Se disuelven 0.21 g de isopropóxido de aluminio y 0.24 g de GeO∑ en 11.36 g de disolución de hidróxido de N (16) -metilesparteinio con una concentración de 1.1 moles/Kg. En la disolución obtenida se hidrolizan 4.74 g de tetraetilortosilicato, y se mantiene en agitación dejando evaporar todo el alcohol formado en la hidrólisis. Posteriormente, se añade 0.52 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso). La composición final del gel de síntesis es:
0.91 Si02 : 0.09 Ge02 : 0.02 A1203 : 0.50 ROH : 0.50 HF : 3
H20 donde ROH es hidróxido de N (16) -metilesparteinio.
El gel se calienta a 175°C en agitación durante 5 dias en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es Al-ITQ-21.
Ejemplo 6: Se disuelven 0.16 g de Ge02 y 0.26 g de isopropóxido de aluminio en 17.70 g de disolución de hidróxido de N (16) -metilesparteinio de concentración 0.89 moles/Kg. En la disolución obtenida se hidrolizan 6.25 g de tetraetilortosilicato, y se mantiene en agitación dejando evaporar todo el alcohol formado y el agua necesaria para alcanzar la composición deseada. Posteriormente, se añade 0.65 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso) . La composición final es la siguiente:
0.95 Si02 : 0.05 Ge02 : 0.02 A1203 : 0.50 ROH : 0.50 HF :
7.5 H20 donde ROH es hidróxido de N (16) -metilesparteinio.
El gel se calienta a 150°C en agitación en autoclaves de acero con una funda interna de teflón. Tras 11 dias, obtenemos un sólido cuyo difractograma de rayos X corresponde con el descrito para ITQ-21. Ejemplo 7: Se disuelven 0.73 g de Ge02 en 35.00 g de disolución de hidróxido de N( 16) -metilesparteinio con una concentración de 1.1 moles/Kg. En la disolución obtenida se hidrolizan 14.58 g de tetraetilortosilicato, y se mantiene en agitación dejando evaporar todo el etanol formado en la hidrólisis hasta que se alcanza la composición deseada. Posteriormente, se añade 1.60 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso), de forma que la composición final es:
0.91 SiQ2 : 0.09 Ge02 : 0.50 ROH : 0.50 HF : 7.5 H20
donde ROH es hidróxido de N (16) -metilesparteinio.
El gel se calienta a 175°C en agitación durante 3 dias en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es ITQ-21 con material amorfo.
Ejemplo 8: El sólido obtenido tras calentar el gel de síntesis del ejemplo 7 a 135°C en agitación durante 7 dias es ITQ-21.
Ejemplo 9: Se disuelven 0.31 g de Ge02 en 16.34 g de disolución de hidróxido de N (16) -metilesparteinio de concentración 1.01 moles/Kg. En la disolución obtenida se hidrolizan 6.25 g de tetraetilortosilicato y 0.15 g de tetraetilortotitanato. Se añaden 0.32 g de H2O2 (35 % en peso) y se mantiene en agitación dejando evaporar todo el alcohol formado y el agua necesaria para alcanzar la composición deseada. Posteriormente, se añade 0.65 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso). La composición final es la siguiente: 0.91 Si02 : 0.09 Ge02 : 0.02 Ti02 : 0.10 H202 : 0.50 ROH :
0.50 HF : 3 H20 donde ROH es hidróxido de N( 16) -metilesparteinio.
El gel se somete a calentamiento a 175°C en agitación en autoclaves de acero con una funda interna de teflón. Tras 4 dias, obtenemos Ti-ITQ-21.

Claims

REIVINDICACIONES
1. Un material cristalino poroso con una composición química
X203: n Y02 : m Z02 en la que
(n + m) es por lo menos 5,
X es un elemento trivalente,
Z es Ge,
Y es al menos un elemento tetravalente distinto a Ge, y la relación Y/Z es de al menos 1, teniendo dicho material, en su forma calcinada, un patrón de difracción de rayos X cuyos picos de difracción más característicos aparecen a valores sustancialmente coincidentes con
Figure imgf000018_0001
donde d son espaciados interplanares en Ángstrom y la intensidad relativa de las lineas está calculada como un porcentaje respecto del pico más intenso, siendo mf una intensidad relativa muy fuerte de 80-100, m una intensidad relativa media de 40-60, y d una intensidad débil de 20-40.
2. Un material cristalino poroso según la reivindicación 1, que en su forma sintetizada sin calcinar tiene un patrón de difracción de rayos X cuyos picos de difracción más característicos son sustancialmente coincidentes con
Figure imgf000019_0001
donde d son espaciados interplanares en Ángstrom y la intensidad relativa de las lineas está calculada como un porcentaje respecto del pico más intenso, siendo mf una intensidad relativa muy fuerte de 80-100, f una intensidad relativa fuerte de 60-80, y m una intensidad relativa media de 40-60.
3. Un material cristalino según la reivindicación 1, caracterizado porque en su estado calcinado presenta además picos de difracción sustancialmente coincidentes con
Figure imgf000020_0001
donde md es una intensidad relativa muy débil de 0-20,
4. Un material cristalino según la reivindicación 2, caracterizado porque en su estado sin calcinar presenta además picos de difracción sustancialmente coincidentes con
Figure imgf000021_0001
donde d es una intensidad débil de 20-40, y md es una intensidad relativa muy débil de 0-20.
5. Un material cristalino según la reivindicación 1, en el que X es al menos un elemento trivalente seleccionado del grupo del Al, B, In, Ga, Fe; e
Y es al menos un elemento tetravalente seleccionado entre Si, Sn, Ti, V.
6. Un material cristalino según la reivindicación 1, en el que X está seleccionado entre B, Al y combinaciones de los mismos, e
Y es Si.
7. Un procedimiento para sintetizar el material cristalino según una cualquiera de las reivindicaciones 1 a 6, que comprende: una primera etapa de hacer reaccionar una mezcla de síntesis que comprende una fuente del material trivalente X, H20, un óxido u otra fuente del material tetravalente Y, un óxido u otra fuente del material tetravalente Z, un agente director de estructura (R) y una fuente de iones fluoruro, y que tiene una composición, en termino de relaciones molares de óxidos, de (Y02 + Z02) /X203 > 5 H20/(Y02+Z02) = 1 y 50 R/ (Y02 + Z02 ) = 0.1 y 3.0 F/(Y02 +Z02) = 0.1 y 3.0 Y02/ZOz > 1 una segunda etapa de mantener la mezcla de síntesis en condiciones de reacción incluyendo temperatura entre 80 y 200°C hasta que se formen cristales de dicho material cristalino; una tercera etapa de recuperar dicho material cristalino.
8. Un procedimiento según la reivindicación 7, que comprende una cuarta etapa en la que se elimina materia orgánica y iones fluoruro ocluidos en el interior del material cristalino mediante un tratamiento seleccionado entre tratamientos de extracción, tratamientos térmicos a temperaturas superiores a 250 °C durante un periodo de tiempo comprendido entre 2 minutos y 25 horas, y combinaciones de los mismos.
9. Un procedimiento según la reivindicación 7, en el que la mezcla de síntesis tiene una composición, en términos de relación molar, de
(Y02+Z02) /X203 > H2θ/ (Y02+Z02) = 2 y 20 R/(Y02 + Z02 ) = 0.1 y 1.0
F/(Y02 +Z02) = 0.1 y 1.0 Y02/Z02 > 5
10. Un procedimiento según la reivindicación 7, en el que el agente director de estructura es una sal de N(16)- metilesparteinio .
11. Un procedimiento según la reivindicación 7, en el que el agente director de estructura es hidróxido de N(16)- metilesparteinio.
12. Un método para convertir una alimentación formadas por al menos un compuesto orgánico que comprende poner en contacto la alimentación con una cantidad catalíticamente activa de un material cristalino tal como se reivindica en una cualquiera de las reivindicaciones 1 a 6.
13. Un método para convertir una alimentación formadas por al menos un compuesto orgánico que comprende poner en contacto la alimentación con una cantidad catalíticamente activa de un material cristalino obtenido de acuerdo con el procedimiento reivindicado en una cualquiera de las reivindicaciones 7 a 11.
PCT/ES2002/000223 2001-05-14 2002-05-10 Un material cristalino poroso (zeolita itq-21), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos WO2002092511A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE60232724T DE60232724D1 (de) 2001-05-14 2002-05-10 Poröses kristallines material (zeolith itq-21), herstellungsverfahren dafür und verwendung davon beingen
JP2002589403A JP4386643B2 (ja) 2001-05-14 2002-05-10 多孔質結晶性物質(ゼオライトitq−21)、その製造方法および有機化合物の触媒変換におけるその使用
CA002447448A CA2447448C (en) 2001-05-14 2002-05-10 Porous crystalline material (zeolite itq-21), the preparation method thereof and use of same in the catalytic conversion of organic compounds
EP02730314A EP1405825B1 (en) 2001-05-14 2002-05-10 Porous crystalline material (zeolite itq-21), the preparation method thereof and the use of same in the catalytic conversion of organic compounds
AU2002302660A AU2002302660B2 (en) 2001-05-14 2002-05-10 Porous crystalline material (zeolite itq-21), the preparation method thereof and use of the same in the catalytic conversion of organic compounds
AT02730314T ATE434589T1 (de) 2001-05-14 2002-05-10 Poröses kristallines material (zeolith itq-21), herstellungsverfahren dafür und verwendung davon bei der katalytischen umwandlung organischer verbindungen
US10/714,571 US6849248B2 (en) 2001-05-14 2003-11-14 Porous crystalline material (zeolite ITQ-21), the preparation method thereof and use of same in the catalytic conversion of organic compounds
ZA2003/09511A ZA200309511B (en) 2001-05-14 2003-12-08 Porous crystalline material (zeolite itq-21) the preparation method thereof and the use of same in the catalytic conversion of organic compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200101145 2001-05-14
ES200101145A ES2192935B1 (es) 2001-05-14 2001-05-14 Sintesis de zeolita itq-21.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/714,571 Continuation US6849248B2 (en) 2001-05-14 2003-11-14 Porous crystalline material (zeolite ITQ-21), the preparation method thereof and use of same in the catalytic conversion of organic compounds

Publications (1)

Publication Number Publication Date
WO2002092511A1 true WO2002092511A1 (es) 2002-11-21

Family

ID=8497771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000223 WO2002092511A1 (es) 2001-05-14 2002-05-10 Un material cristalino poroso (zeolita itq-21), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos

Country Status (11)

Country Link
US (1) US6849248B2 (es)
EP (1) EP1405825B1 (es)
JP (1) JP4386643B2 (es)
AT (1) ATE434589T1 (es)
AU (1) AU2002302660B2 (es)
CA (1) CA2447448C (es)
DE (1) DE60232724D1 (es)
ES (2) ES2192935B1 (es)
RU (1) RU2296104C2 (es)
WO (1) WO2002092511A1 (es)
ZA (1) ZA200309511B (es)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046264A2 (es) * 2001-11-30 2003-06-05 Consejo Superior De Investigaciones Cientificas Un material cristalino poroso (itq-21) y su procedimiento de obtención en ausencia de iones fluoruro
WO2004007646A1 (es) * 2002-07-16 2004-01-22 Consejo Superior De Investigaciones Cientificas Catalizador basado en un material sólido cristalino microporoso y procedimiento para mejorar la calidad de fracciones diesel utilizando dicho catalizador
WO2004007072A1 (es) * 2002-07-11 2004-01-22 Consejo Superior De Investigaciones Cientificas Catalizador zeolítico para alquilación de compuestos aromáticos con olefinas, alcoholes o compuestos aromáticos polialquilados
WO2004009736A1 (es) * 2002-07-16 2004-01-29 Consejo Superior De Investigaciones Cientificas Catalizador de hidrocraqueo que comprende un material sólido cristalino microporoso
EP1510501A1 (fr) 2003-07-30 2005-03-02 Institut Francais Du Petrole Solide cristallisé IM-11 de type structural LTA et son procédé de preparation.
US7410924B2 (en) 2002-07-16 2008-08-12 Consejo Superior De Investigaciones Cientificas Hydrocracking catalyst comprising a microporous crystalline solid material
WO2009090338A1 (fr) 2007-11-12 2009-07-23 Ifp Solide cristallise im-17 et son procede de preparation
WO2009090337A1 (fr) 2007-11-12 2009-07-23 Ifp Solide cristallise im-18 et son procede de preparation
WO2010076399A1 (fr) 2008-12-18 2010-07-08 Ifp Solide cristallise im-20 et son procédé de préparation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2195744B1 (es) 2001-10-04 2005-02-16 Universidad Politecnica De Valencia Aplicacion de la zeolita itq-21 en craqueo catalitico de hidrocarburos.
US7439411B2 (en) 2002-07-11 2008-10-21 Consejo Superior De Investigaciones Clentificas Zeolite catalyst for the alkylation of aromatic compounds with olefins, alcohols or polyalkylated aromatic compounds
ES2246704B1 (es) 2004-05-28 2007-06-16 Universidad Politecnica De Valencia Zeolita itq-30.
ES2430404B1 (es) * 2012-04-18 2014-09-29 Consejo Superior De Investigaciones Científicas (Csic) Material ITQ-49, su procedimiento de obtención y su uso
KR102321624B1 (ko) * 2014-05-23 2021-11-04 에스케이이노베이션 주식회사 디젤 수율을 극대화할 수 있는 rfcc 공정용 접촉분해촉매 및 이의 제조방법
ES2554648B1 (es) * 2014-06-20 2016-09-08 Consejo Superior De Investigaciones Científicas (Csic) Material ITQ-55, procedimiento de preparación y uso

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271922A (en) * 1992-10-09 1993-12-21 Chevron Research And Technology Company Process for preparing molecular sieves using a sparteine template
US6043179A (en) * 1997-08-13 2000-03-28 California Institute Of Technology Zeolite CIT-5 and method of making

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411874A (en) * 1964-11-09 1968-11-19 Mobil Oil Corp Zsm-2 zeolite and preparation thereof
DE3812592A1 (de) 1988-04-15 1989-10-26 Deggendorfer Werft Eisenbau Verfahren zur herstellung von zeolithen
US5393511A (en) * 1988-10-10 1995-02-28 Societe Nationale Elf Aquitaine Synthesis of zeolites of faujasite structure
KR20000062390A (ko) * 1996-12-31 2000-10-25 알. 더블류. 윌리암스 제올라이트 에스에스제트-48

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271922A (en) * 1992-10-09 1993-12-21 Chevron Research And Technology Company Process for preparing molecular sieves using a sparteine template
US6043179A (en) * 1997-08-13 2000-03-28 California Institute Of Technology Zeolite CIT-5 and method of making

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BARRETT P.A.: "Synthesis in fluoride and hydroxide media and structure of the extra-large pore pure silica zeolite CIT-S", JOURNAL OF THE CHEMICAL SOCIETY, FARADAY TRANSACTIONS, vol. 94, no. 16, 1998, pages 2475 - 2481, XP000776076 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008612B2 (en) 2001-11-30 2006-03-07 Consejo Superior De Investigaciones Cientificas Porous crystalline material (ITQ-21) and the method of obtaining the same in the absence of fluoride ions
WO2003046264A2 (es) * 2001-11-30 2003-06-05 Consejo Superior De Investigaciones Cientificas Un material cristalino poroso (itq-21) y su procedimiento de obtención en ausencia de iones fluoruro
WO2003046264A3 (es) * 2001-11-30 2004-04-01 Consejo Superior Investigacion Un material cristalino poroso (itq-21) y su procedimiento de obtención en ausencia de iones fluoruro
EP2017005A3 (en) * 2002-07-11 2010-11-24 Consejo Superior de Investigaciones Cientificas Zeolite catalyst for the alkylation of aromatic compounds with polyalkylated aromatic compounds
WO2004007072A1 (es) * 2002-07-11 2004-01-22 Consejo Superior De Investigaciones Cientificas Catalizador zeolítico para alquilación de compuestos aromáticos con olefinas, alcoholes o compuestos aromáticos polialquilados
WO2004009736A1 (es) * 2002-07-16 2004-01-29 Consejo Superior De Investigaciones Cientificas Catalizador de hidrocraqueo que comprende un material sólido cristalino microporoso
US7410924B2 (en) 2002-07-16 2008-08-12 Consejo Superior De Investigaciones Cientificas Hydrocracking catalyst comprising a microporous crystalline solid material
US7709408B2 (en) 2002-07-16 2010-05-04 Consejo Superior De Investigaciones Cientificas Catalyst based on a solid microporous crystalline material and method of improving diesel fraction quality using said catalyst
WO2004007646A1 (es) * 2002-07-16 2004-01-22 Consejo Superior De Investigaciones Cientificas Catalizador basado en un material sólido cristalino microporoso y procedimiento para mejorar la calidad de fracciones diesel utilizando dicho catalizador
US7854834B2 (en) 2002-07-16 2010-12-21 Consejo Superior de Invetigaciones Cientificas Catalyst based on solid microporous crystalline material and method of improving diesel fraction quality using said catalyst
EP1510501A1 (fr) 2003-07-30 2005-03-02 Institut Francais Du Petrole Solide cristallisé IM-11 de type structural LTA et son procédé de preparation.
WO2009090338A1 (fr) 2007-11-12 2009-07-23 Ifp Solide cristallise im-17 et son procede de preparation
WO2009090337A1 (fr) 2007-11-12 2009-07-23 Ifp Solide cristallise im-18 et son procede de preparation
WO2010076399A1 (fr) 2008-12-18 2010-07-08 Ifp Solide cristallise im-20 et son procédé de préparation

Also Published As

Publication number Publication date
ES2192935A1 (es) 2003-10-16
ATE434589T1 (de) 2009-07-15
ZA200309511B (en) 2005-07-27
EP1405825B1 (en) 2009-06-24
JP2004525065A (ja) 2004-08-19
CA2447448C (en) 2009-11-17
RU2003135790A (ru) 2005-05-20
US6849248B2 (en) 2005-02-01
RU2296104C2 (ru) 2007-03-27
DE60232724D1 (de) 2009-08-06
AU2002302660B2 (en) 2007-03-29
ES2327395T3 (es) 2009-10-29
ES2192935B1 (es) 2004-08-16
US20040149964A1 (en) 2004-08-05
EP1405825A1 (en) 2004-04-07
JP4386643B2 (ja) 2009-12-16
CA2447448A1 (en) 2002-11-21

Similar Documents

Publication Publication Date Title
ES2259537B1 (es) Sintesis de la zeolita itq-33.
WO2002092511A1 (es) Un material cristalino poroso (zeolita itq-21), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos
ES2392048T3 (es) Material cristalino poroso (zeolita ITQ-24), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos
US20030229257A1 (en) Microporous crystalline material (ITQ-17), method for the preparation thereof and its use in processes for separating and transforming organic compounds
ES2204257B1 (es) Sintesis de itq-21 en ausencia de iones fluoruro.
ES2284379B1 (es) Un material cristalino microporoso, zeolita itq-37, procedimiento de preparacion y uso.
US7344697B2 (en) Microporous crystalline zeolite material, zeolite ITQ-28, production method thereof and use of same
US6409986B1 (en) Zeolite ITQ-5
ES2241463B1 (es) Procedimiento de sintesis de la zeolita itq-13 en medio basico y en ausencia de iones fluoruro.
WO1999040026A1 (es) Sintesis de zeolitas y zeotipos de poro grande
WO2013110838A1 (es) Material itq-38, su procedimiento de obtención y su uso
Corma et al. Process for the synthesis of zeolite ITQ-13 in a basic medium and in the absence of fluoride ions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002589403

Country of ref document: JP

Ref document number: 10714571

Country of ref document: US

Ref document number: 2447448

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1550/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003/09511

Country of ref document: ZA

Ref document number: 200309511

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2002730314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002302660

Country of ref document: AU

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2002730314

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002302660

Country of ref document: AU