WO2004009736A1 - Catalizador de hidrocraqueo que comprende un material sólido cristalino microporoso - Google Patents

Catalizador de hidrocraqueo que comprende un material sólido cristalino microporoso Download PDF

Info

Publication number
WO2004009736A1
WO2004009736A1 PCT/ES2003/000367 ES0300367W WO2004009736A1 WO 2004009736 A1 WO2004009736 A1 WO 2004009736A1 ES 0300367 W ES0300367 W ES 0300367W WO 2004009736 A1 WO2004009736 A1 WO 2004009736A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
group
matrix
oxide
catalyst according
Prior art date
Application number
PCT/ES2003/000367
Other languages
English (en)
French (fr)
Inventor
Avelino Corma Canos
Agustin Martinez Feliu
Fernando Rey Garcia
Maria José DIAZ CABANAS
Carlos LÓPEZ CRUZ
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Priority to DE60328999T priority Critical patent/DE60328999D1/de
Priority to EP03765121A priority patent/EP1535983B1/en
Priority to DK03765121T priority patent/DK1535983T3/da
Priority to CA2492516A priority patent/CA2492516C/en
Priority to AT03765121T priority patent/ATE440931T1/de
Priority to AU2003250254A priority patent/AU2003250254A1/en
Priority to JP2004522207A priority patent/JP4676760B2/ja
Publication of WO2004009736A1 publication Critical patent/WO2004009736A1/es
Priority to US11/036,964 priority patent/US7410924B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/14Inorganic carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding

Definitions

  • the present invention is framed in the area of catalysts for hydrocracking, more particularly catalysts comprising at least one metal of group VIB, and at least one metal of group VIII, a matrix, and a microporous crystalline solid.
  • Hydrocracking of heavy oil fractions is a process of great importance within the current refinery schemes, since it allows to obtain a wide variety of light products such as jet-fuel, medium distillates and light diesel from heavier and low feeds. intrinsic value.
  • An advantage of the hydrocracking process with respect to other conversion processes, such as catalytic cracking, is that it produces medium distillates of excellent quality, while hydrocracking gasoline usually has a lower octane rating than that obtained by catalytic cracking.
  • the great flexibility of the hydrocracking process allows the production of the different fractions to be adapted to market demand.
  • Conventional hydrocracking catalysts are bifunctional in nature, that is, they are formed by the combination of a hydrogenating function and an acidic function.
  • the hydrogenating function is given by the presence in the catalyst of one or more metals of group VIB of the periodic table of the elements such as molybdenum and tungsten, or by a combination of one or more metals of group VIII
  • the acid function is generally associated with a high specific surface porous support that has surface acidity, such as halogenated alumina, mixed oxides such as amorphous silica-alumina, and zeolites. Both the activity and the selectivity to the different products of a bifunctional hydrocracking catalyst are largely determined by the balance between the hydrogenating function and the acidic function.
  • the catalyst When the acid function is weak and the hydrogenating function is strong the catalyst is characterized by having a low hydrocracking activity, which forces to work at high reaction temperatures (above 400 ° C) or at space velocities (feed volume to be treated per unit volume of catalyst and per hour) very low (generally less than 2 h " ), and a high selectivity to medium distillates.
  • a good hydrocracking catalyst must have an adequate balance between the acidic function and the hydrogenating function
  • the supports with low acidic function most currently used in the formulation of conventional hydrocracking catalysts highlights the amorphous silica-alumina.
  • the amorphous silica-alumina hydrocracking catalysts pres They have a good selectivity to middle distillates, but as already mentioned, they are characterized by low activity.
  • the supports that have a stronger acid function are zeolites.
  • zeo litas and specifically the zeolite Y with a Faujasite structure, are part of the formulation of the latest generation hydrocracking catalysts.
  • zeolite-based hydrocracking catalysts have a higher activity than conventional amorphous silica-alumina-based catalysts, although their selectivity to medium distillates is generally lower than the latter.
  • Some hydrocracking processes using zeolite-based catalysts Y are described, for example, in patents US-3,269,934 and US-3,524,809.
  • the activity and selectivity of a hydrocracking catalyst based on zeolite Y can be altered by modifying the acidity of the zeolite, which depends largely on its chemical composition, and more specifically on the relationship between silicon atoms and aluminum atoms (ratio Si / Al) that are part of its crystalline structure. It is well known that the presence of an aluminum atom in tetrahedral coordination in the crystalline network of the zeolite generates a charge deficiency that is compensated by a proton, thus leading to the formation of an acid center of the Brónsted type. Therefore, it is possible, in principle, to control the acidity of the zeolite by varying the Si / Al ratio in the network.
  • Hydrocracking catalysts based on zeolite Y with high Al content in the network have a high activity because they have a high concentration of Bronsted acid centers.
  • these catalysts have a low selectivity to medium distillates since the presence of a large number of acid centers favors secondary cracking reactions favoring the formation of lighter products, such as gases and ⁇ afia.
  • hydrocracking catalysts containing zeolite Y with low network Al content are more selective to medium distillates although they have a lower hydrocracking activity .
  • zeolite Y In order to reduce the concentration of Al in the network and achieve the appropriate range of Si / Al ratios in hydrocracking catalysts, zeolite Y must undergo post-synthesis desaluminization treatments since this zeolite cannot be synthesized with a high Si / Al ratio . Such desaluminization treatments generally require the use of severe hydrothermal conditions that lead to a partial loss of the crystallinity of the zeolite.
  • hydrocracking catalyst with good activity and selectivity to medium distillates based on a microporous crystalline solid with a topology such that it has cavities of a high volume similar to that of large pore zeolites, such as zeolite Y , and that can be obtained with a high Si / Al ratio in a single synthesis stage, avoiding subsequent desaluminization processes.
  • microporous crystalline solid known as ITQ-21 is described in Spanish patent application P200101145. However, its use as a component of a hydrocracking catalyst is not described, nor is it suggested in said application.
  • the Spanish application P20012287 also refers to said crystalline solid material, specifically its use in cracking; but its use is not described therein as a component of a hydrocracking catalyst in conjunction with group VIB or VIII metals.
  • the present invention relates to a hydrocracking catalyst characterized in that it comprises - a hydrogenating component selected from at least one metal of group VIB, at least one metal of group VIII, and combinations thereof,
  • At least one matrix comprising at least one oxide selected from an amorphous oxide, a low crystallinity oxide, and mixture of both, and - at least one microporous crystalline solid material having a molar composition in its calcined and anhydrous state given by
  • the hydrocracking catalyst of the present invention comprises a hydrogenating component that is at least one metal from among the metals of groups VD3 and VIII of the periodic table.
  • the element of the VIB group may be chromium, molybdenum, tungsten or mixtures thereof. In a preferred embodiment of the present invention the element of group VIB is selected from molybdenum and tungsten.
  • the element of group VIII may be any of iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum and mixtures thereof.
  • group VIII metals non-noble metals are preferred, preferably iron, cobalt and nickel.
  • the hydrogenating component of the catalyst is given by the combination of at least one non-noble metal of group VIII and at least one metal of group VIB.
  • Preferred combinations are: nickel-molybdenum, cobalt-molybdenum and nickel-tungsten, although optionally combinations of three elements, such as nickel-cobalt-molybdenum, can be used.
  • the metals of group VIII and of the VLB group can be totally or partially in metallic form and / or in the form of oxide and / or in the form of sulphides.
  • the second essential component of the catalyst is the microporous crystalline solid material that has a molar composition in its calcined and anhydrous state:
  • X 2 O 3 «I 2 : ZO 2 , wherein preferably the trivalent element, X, is Al, B, Fe, In, Ga, Cr or mixtures thereof, preferably Al.
  • Y is preferably a tetravalent element such as Si, Ti, Sn or mixtures of them, although Si is preferred.
  • the crystalline solid material also has, in its calcined and synthesized form without calcining, an X-ray diffraction pattern that is different from other known crystalline solid materials, and whose most important diffraction lines are given in Table 1 for calcined form and in table 2 for the uncalcined form. It should be taken into account that the exact position of the diffraction peaks will depend on factors such as the chemical composition and crystal size of the material, among others.
  • the diffraction data listed for this sample as single or single lines may be formed by multiple overlaps or overlapping reflections that, under certain conditions, such as differences in crystallographic changes, may appear as resolved or partially resolved lines.
  • crystallographic changes may include small variations in the parameters of the unit cell and / or changes in the symmetry of the crystal, without a change in the connectivity between the atoms of the structure. These modifications, which also include changes in relative intensities may also be due to differences in the type and amount of compensation cations, network composition, crystal size and shape thereof, preferred orientation or the type of thermal or hydrothermal treatments suffered.
  • the crystalline solid material has a high pore volume and with a pore diameter measured by adsorption of Ar corresponding to that of a large pore zeolite.
  • this material can be synthesized directly with the appropriate Si / Al ratio without resorting to post-synthesis desaluminization processes.
  • the third component of the catalyst of the present invention is a matrix, as defined above.
  • Said matrix is preferably selected from one or more of the following groups: alumina, silica-alumina, silica, clays, magnesium oxide, titanium oxide, boron oxide, zirconium oxide, aluminum phosphates, zirconium phosphates, carbon and aluminates
  • the matrix is formed by an amorphous inorganic oxide containing some form of alumina, and more specifically gamma-alumina is preferred.
  • the catalyst of the present invention may contain, in addition to the three essential components, at least one acidity promoting element which is preferably selected from phosphorus and boron.
  • the catalyst of the present invention may comprise at least one element of the VILA group.
  • the element of the VIIA group is fluorine.
  • the catalyst of the present invention has in a preferred embodiment a composition expressed in% by weight with respect to the total catalyst weight, which corresponds to:
  • a hydrogenating component selected from at least one metal of group VIB, at least one metal of group VIII, and combinations thereof, preferably from 0.1 to 50%, and more preferably from 0.1 at 40%, - from 0.1 to 99% crystalline acid solid material, preferably from a
  • said promoter element may be present in a proportion of:
  • the catalyst comprises at least one element of the VIIA group
  • said element may be present in the catalyst in a proportion: from 0 to 20% by weight with respect to the total weight of the catalyst.
  • the VIIA group element is fluorine, and is present in the catalyst in a proportion of 0 to 20% by weight with respect to the total weight of the catalyst.
  • the present invention has as a further object a process for the preparation of a catalyst as defined above comprising at least
  • the hydrogenating component directly onto the matrix before being mixed with the crystalline acid solid.
  • the preparation stage of the microporous crystalline solid it can be prepared from a reaction mixture containing H 2 O, optionally an oxide or other source of the trivalent element X, such as Al and / or B, an oxide or other source of the tetravalent element or elements Y, such as Si; a source of Ge, Z, such as GeO 2 , and an organic agent structure director (R).
  • the structure directing agent is N (16) -methylparteinium hydroxide.
  • fluorides and more specifically HF, or OH groups "can be used as mobilizing agents for silica and germanium oxide.
  • Organic molecules and fluoride ions are occluded within the structure, if fluorides are used as a mobilizing agent, which can be removed by conventional means
  • the organic component can be removed, for example by extraction and / or by heat treatment by heating at a temperature above 250 ° C for a period of time between 2 minutes and 25 hours.
  • the crystalline solid material is preferably synthesized in the presence of an oxide or other source of a trivalent element, such as B and / or Al, preferably Al.
  • composition of the reaction mixture has the following composition in terms of molar ratios of oxides:
  • the crystallization of the microporous crystalline solid material can be carried out in static or stirring, in autoclaves at a temperature between 80 and 200 ° C, at times sufficient to achieve crystallization, for example between 12 hours and 30 days. It should be taken into account that the components of the synthesis mixture can come from different sources, and depending on these, crystallization times and conditions may vary.
  • crystals of the previously synthesized microporous material, as seeds, in amounts of up to 15% by weight with respect to the total oxides, can be added to the synthesis mixture. These seeds can be added before or during the crystallization of the material.
  • the crystals of the solid are separated from the mother liquors, and recovered.
  • the compensation cations in the crystalline solid material in uncalcined form, or after thermal treatment, can be exchanged in the case of being present, by other cations such as metal ions, H + and precursors of H + such as NH + 4 .
  • cations that can be introduced by ion exchange those that can have a positive role in the activity of the material as a catalyst are preferred, and more specifically cations such as H + , rare earth cations, and group VIII metals are preferred, as well as of the HA, IIIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VIIB group of the periodic table of the elements.
  • the protonic (acid) form of the crystalline solid material is preferred.
  • the crystalline solid material can be subjected to a calcination treatment in the presence of water vapor and / or a mixture of water and air vapor or any of its components, at temperatures between 200 and 700 ° C for a time between 10 minutes and 5 hours.
  • the hydrogenation component is incorporated in various alternative ways.
  • step 2a) defined above the incorporation of the hydrogenating component is carried out on a mixture of the matrix and the microporous crystalline solid.
  • step 2b) defined above the incorporation of the hydrogenating component is carried out directly on the matrix before being mixed with the crystalline acid solid.
  • the incorporation of the hydrogenating component can be carried out by one or more ion exchange steps in case the incorporation is carried out on the mixture of the crystalline acid solid and the matrix.
  • the incorporation of the hydrogenating component can be carried out by impregnation both in the case that it is carried out directly on the matrix and in the case that it is carried out on the mixture of matrix and crystalline solid.
  • the impregnation can be carried out in one or more stages from a solution containing at least one precursor of at least one oxide of at least one metal among which groups VIB and VIII of the periodic table form.
  • impregnation of the precursor (or precursors) of the oxide (s) of the element (s) of group VIII is preferably performed then, or at the same time, that the impregnation of the precursor (s) of the oxide (s) of the element (s) of the group VIB.
  • the impregnation of these elements can be carried out by the pore volume method, also known as "dry” impregnation, in which the volume of the pores of the solid to be impregnated is filled with a solution containing at least one precursor of at least one of the metals of groups VIB and VIII.
  • the impregnation can also be carried out with an excess solution containing at least one precursor of at least one of the metals of groups VIB and VIII. In this case, the excess solvent is slowly removed by evaporation under controlled conditions.
  • nitrates, sulfates and halides are typically used as sources of the elements of group VIII.
  • the catalyst contains at least one promoter element such as phosphorus and / or boron, and at least one element of the VIIA group, such as fluorine, these can be incorporated into any time during the preparation of the catalyst, preferably on the support that already contains the crystalline solid material and the matrix. It is also possible to incorporate the promoter element (s) and the VIIA group on the matrix, and then mix with the crystalline solid. These elements can be incorporated by any of the known methods, although the impregnation method is preferred, either at pore volume (“dry" impregnation) or in excess of solvent.
  • orthophosphoric acid H 3 PO
  • H 3 PO is preferred, although some of its salts and esters, such as ammonium phosphates, can also be used.
  • Any source that is well known to those skilled in the art can be used as the source of the VIIA group element.
  • fluorine hydrofluoric acid or its salts can be used as a source.
  • fluorine compounds that can lead to the formation of fluoride by hydrolysis in the presence of water, such as ammonium fluorosilicate, (NH 4 ) 2 SiF 6 , silicon tetrafluoride, SiF 4 , or sodium tetrafluoride, Na 2 SiF 6 .
  • the fluoride can be incorporated into the catalyst, for example, by impregnation from an aqueous solution of hydrofluoric acid or ammonium fluoride.
  • calcination is carried out at temperatures between 150 ° C and 800 ° C.
  • the catalyst of the present invention is subjected to a sulphuration step before coming into contact with the feed in order to transform, at least partially, the metals of groups VLB and VIII into the corresponding sulphides.
  • the sulfuration treatment can be carried out by any of the methods described in the literature.
  • a typical method of sulfurization is to heat the catalyst in the presence of a stream of pure hydrogen sulfide or a mixture of hydrogen sulfide and hydrogen or a stream containing hydrogen and liquid hydrocarbons which in turn contain at least one sulfur-containing compound in its composition.
  • the sulfurization is preferably carried out at a temperature between 150 and 800 ° C. This process is generally carried out in a continuous fixed bed reactor.
  • the present invention also aims at the use of the catalyst defined above in a hydrocracking process of a feed formed by hydrocarbons
  • Said hydrocarbon feed may optionally contain sulfur and nitrogen in the form of organic compounds, as well as metals and oxygenated compounds.
  • the feed can be subjected to a hydrotreatment process prior to hydrocracking in order to reduce their concentration to levels not harmful to the catalyst of the invention.
  • the catalyst can be used for hydrocracking heavy fractions of hydrocarbons.
  • These fractions can be of different origin, such as vacuum gasoil.
  • these fractions contain at least 80% by volume of compounds with boiling points greater than 350 ° C, and preferably between 350 ° C and 580 ° C.
  • These fractions generally contain heteroatoms, such as sulfur and nitrogen.
  • the nitrogen content is usually between 1 and 5000 ppm (by weight), and the sulfur content is usually from 0.01% to 5% by weight.
  • these fractions can be subjected to a hydrotreatment process prior to hydrocracking in order to decrease the concentration of heteroatoms or to eliminate some contaminating metals they may contain.
  • the hydrocracking catalyst for hydrocarbon feeds of the present invention has high activity and selectivity to medium distillates.
  • the hydrocarbon feed is contacted with the hydrocracking catalyst in the presence of hydrogen, generally in a fixed bed reactor.
  • the conditions of the hydrocracking process may vary according to the nature of the food, the quality of the desired products, and the particular facilities of each refinery. Generally the temperature is usually higher than 200 ° C, and is often between 250 ° C and 480 ° C. The pressure is usually greater than 0.1 MPa and often greater than 1 MPa.
  • the H 2 / hydrocarbon ratio is usually higher than 50 and generally between 80 and 5000 Nm 3 of H 2 per m 3 of feed.
  • the spatial velocity (LHSV) is generally between 0.01 and 20 feed volumes per catalyst volume and per hour.
  • the hydrocracking process is carried out at temperatures of 300 ° C to 500 ° C, pressures of 5 to 20 MPa, H 2 / hydrocarbon ratios of 200 to 1500 Nm 3 / m 3 and LHSV of 0.05 to 5 h "1 .
  • Al-SC crystalline solid material containing aluminum in the network
  • ROH is N (16) -methylparteinium hydroxide.
  • the gel is heated at 175 ° C for 5 days in steel autoclaves with an internal Teflon sheath. After washing with distilled water and drying at 100 ° C, the Al-SC material is obtained. Subsequently, the Al-SC material is subjected to a calcination step at 500 ° C for 5 hours.
  • This example illustrates the preparation of a hydrocracking catalyst containing the Al-SC material obtained according to the procedure described in the example 1, a matrix of gamma-alumina and nickel-molybdenum as a hydrogenating component, according to the invention.
  • the Al-SC material obtained according to the procedure described in Example 1 is mixed with a gamma-alumina matrix (specific surface area of 122 m / g and pore volume of 0.21 cm / g) in a 1: 1 ratio by weight.
  • the mixture is homogenized by adding distilled water to form a paste containing gamma-alumina and the Al-SC material in the appropriate proportions and stirring the paste for at least 15 minutes.
  • the mixture is then dried in an oven at 100 ° C for 12 hours.
  • SC is impregnated by the "dry" pore volume or impregnation method with an aqueous solution of ammonium heptamolybdate.
  • the solid obtained is dried in an oven at 100 ° C for 12 hours and then calcined in muffle at 500 ° C for 3 hours.
  • the calcined solid formed by the support which contains a mixture of gamma-alumina and Al-SC material, and by molybdenum oxide, is impregnated by the pore volume method with a solution containing the required amount of nitrate. nickel.
  • the solid is dried in an oven at 100 ° C for 12 hours and then calcined in a flask at 500 ° C for 3 hours.
  • the chemical composition of the catalyst prepared under these conditions, given as% by weight, is as follows:
  • Example 3 This example shows the preparation of a hydrocracking catalyst containing the Al-SC material according to the invention in which the hydrogenating component is incorporated exclusively on the gamma-alumina matrix.
  • the gamma-alumina matrix is impregnated with an aqueous solution of ammonium heptamolybdate by the pore volume method, the solid is dried in an oven at 100 ° C and calcined in a flask at 500 ° C following the same procedure described in Example 2.
  • the solid formed by gamma-alumina and molybdenum oxide is impregnated with an aqueous solution of nickel nitrate at pore volume, oven dried at 100 ° C and subsequent calcination at 500 ° C under the conditions described in example 2.
  • the gamma-alumina matrix containing molybdenum oxide and nickel oxide is mixed with the Al-SC material in the appropriate proportions to obtain a catalyst with the following chemical composition, given as% by weight:
  • the hydrocracking experiments were carried out in a continuous fixed bed reactor loaded with 4.0 grams of catalyst diluted with silicon carbide to a total volume of 14 cm 3 . Before contacting the vacuum diesel with the catalyst, it was subjected to a sulphuration stage at 400 ° C for 8 hours in the presence of a mixture of H 2 S and H 2 (10% by volume of H 2 S) using a total gas flow of 442 cm 3 / min. Once the sulphidation stage was completed, the vacuum diesel was hydrocracked in the presence of hydrogen under the following reaction conditions: total pressure of 5.3 MPa, H 2 / diesel ratio of 1291 NmV, spatial velocity (WHSV) of 2.8 h "1. The conversion was adjusted by varying the reaction temperature between 385 ° C and 415 ° C.
  • the conversion results and yields were determined after a period of catalyst stabilization, which was generally observed after 8-10 hours of contacting the diesel feed with the catalyst.
  • the conversion has been calculated as the% by weight of products with a boiling point below 380 ° C present in the reactor effluent.
  • Kerosene 150 ° C - 250 ° C
  • Diesel 250 ° C - 380 ° C
  • the selectivity to middle distillates has been calculated as the sum of the selectivities to kerosene and diesel oil (boiling range between 150 ° C and 380 ° C).
  • the results of conversion and selectivity to the different product fractions obtained at different reaction temperatures are shown in Table 4.
  • This example illustrates the activity and selectivity of a catalyst prepared according to example 2 according to the invention, for the hydrocracking of a vacuum diesel oil whose main characteristics are shown in Table 3.
  • the hydrocracking experiments were carried out in a continuous fixed bed reactor loaded with 6.0 grams of catalyst diluted with silicon carbide to a total volume of 14 cm 3 . Before contacting the catalyst with the vacuum diesel, it was subjected to a sulphuration stage at 400 ° C for 8 hours in the presence of a mixture of H 2 S and H 2 (10% by volume of H 2 S) using a total gas flow of 442 cm 3 / min. Once the sulphidation stage was completed, the vacuum diesel was hydrocracked in the presence of hydrogen under the following reaction conditions: total pressure of 5.3 MPa, H 2 / diesel ratio of 1291 Nm / m, spatial velocity (WHSV) of 1.9 h "1. The conversion was adjusted by varying the reaction temperature between 385 ° C and 415 ° C. TABLE 5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

La presente invención se refiere a un catalizador para hidrocraqueo que comprende: - un componente hidrogenante seleccionado entre al menos un metal del grupo VIB, al menos un metal del grupo VIII, y combinaciones de ellos, - al menos una matriz que comprende al menos un óxido seleccionado entre un óxido amorfo, un óxido de baja cristalinidad, y mezcla de ambos, y -al menos un material sólido cristalino microporoso que presenta una composición molar en su estado calcinado y anhidro dada por X2O3: Nyo2: mZO2, en la que X es Ge, y que en su forma calcinada y anhidra presenta un difractograma de rayos X conteniendo al menos líneas de difracción a valores de d= 13.64, 7.87, 4.82, 4.55, 4.11 y 3.41 Ă, a su procedimiento de preparación y a su uso en procesos de hidrocraqueo de hidrocarburos.

Description

TITULO
CATALIZADOR DE HIDROCRAQUEO QUE COMPRENDE UN MATERIAL
SÓLIDO CRISTALINO MICROPOROSO
Campo de la Técnica
La presente invención se enmarca en el área de los catalizadores para hidrocraqueo, más particularmente catalizadores que comprenden al menos un metal del grupo VIB, y al menos un metal del grupo VIII, una matriz, y un sólido cristalino microporoso.
Antecedentes
El hidrocraqueo de fracciones pesadas del petróleo es un proceso de gran importancia dentro de los actuales esquemas de refinería, ya que permite obtener una gran variedad de productos ligeros como jet-fuel, destilados medios y gasóleos ligeros a partir de alimentaciones más pesadas y de bajo valor intrínseco. Una ventaja del proceso de hidrocraqueo con respecto a otros procesos de conversión, como el craqueo catalítico, es que produce destilados medios de una excelente calidad, mientras que la gasolina de hidrocraqueo suele tener un octanaje menor que la obtenida por craqueo catalítico. Por otra parte, la gran flexibilidad del proceso de hidrocraqueo permite adaptar la producción de las diferentes fracciones a la demanda del mercado.
Los catalizadores convencionales de hidrocraqueo son de naturaleza bifuncional, es decir, están formados por la combinación de una función hidrogenante y una función acida. La función hidrogenante viene dada por la presencia en el catalizador de uno o más metales del grupo VIB de la tabla periódica de los elementos como molibdeno y volframio, o por una combinación de uno o más metales del grupo VIII
(preferiblemente metales no-nobles) como níquel, cobalto y hierro con metales del grupo VIB. La función acida está generalmente asociada a un soporte poroso de elevada superficie específica que posee acidez superficial, como alúmina halogenada, óxidos mixtos como sílice-alúmina amorfa, y zeolitas. Tanto la actividad como la selectividad a los diferentes productos de un catalizador bifuncional de hidrocraqueo vienen determinadas en gran medida por el balance entre la función hidrogenante y la función acida. Cuando la función acida es débil y la función hidrogenante es fuerte el catalizador se caracteriza por poseer una actividad de hidrocraqueo baja, lo que obliga a trabajar a temperaturas de reacción elevadas (por encima de 400°C) o a velocidades espaciales (volumen de alimentación a tratar por unidad de volumen de catalizador y por hora) muy bajas (generalmente inferiores a 2 h" ), y una elevada selectividad a destilados medios. Por el contrario, si la función acida es fuerte y la función hidrogenante es débil el catalizador se caracteriza por poseer una elevada actividad de hidrocraqueo pero una baja selectividad a destilados medios. Por tanto, un buen catalizador de hidrocraqueo debe poseer un balance adecuado entre la función acida y la función hidrogenante. Entre los soportes con baja función acida más empleados actualmente en la formulación de catalizadores de hidrocraqueo convencionales destaca la sílice-alúmina amorfa. Los catalizadores de hidrocraqueo basados en sílice-alúmina amorfa presentan una buena selectividad a destilados medios, pero como ya se ha comentado, se caracterizan por poseer una baja actividad. Entre los soportes que poseen una función acida más fuerte se encuentran las zeolitas. Las zeo litas, y concretamente la zeolita Y con una estructura tipo Faujasita, forman parte de la formulación de catalizadores de hidrocraqueo de última generación. Así, los catalizadores de hidrocraqueo basados en zeolita Y presentan una mayor actividad que los catalizadores convencionales basados en sílice-alúmina amorfa, aunque su selectividad a destilados medios es generalmente inferior a estos últimos. Algunos procesos de hidrocraqueo que utilizan catalizadores basados en zeolita Y se describen, por ejemplo, en las patentes US-3,269,934 y US-3,524,809.
La actividad y selectividad de un catalizador de hidrocraqueo basado en zeolita Y se puede alterar modificando la acidez de la zeolita, la cual depende en gran medida de su composición química, y más concretamente de la relación entre átomos de silicio y átomos de aluminio (relación Si/ Al) que forman parte de su estructura cristalina. Es bien sabido que la presencia de un átomo de aluminio en coordinación tetraédrica en la red cristalina de la zeolita genera una deficiencia de carga que se compensa por un protón, dando lugar así a la formación de un centro ácido de tipo Brónsted. Por tanto, es posible, en principio, controlar la acidez de la zeolita variando la relación Si/ Al en la red. Los catalizadores de hidrocraqueo basados en zeolita Y con alto contenido en Al en la red (baja relación Si/ Al) presentan una elevada actividad debido a que poseen una gran concentración de centros ácidos Brónsted. Sin embargo, estos catalizadores presentan una baja selectividad a destilados medios ya que la presencia de una gran cantidad de centros ácidos favorece las reacciones de craqueo secundarias favoreciendo la formación de productos más ligeros, como gases y ñafia. Por el contrario, los catalizadores de hidrocraqueo que contienen zeolita Y con bajo contenido en Al de red (alta relación Si/ Al), y por tanto una baja concentración de centros ácidos, son más selectivos a destilados medios aunque presentan una menor actividad de hidrocraqueo. Con el objeto de disminuir la concentración de Al en la red y conseguir el rango de relaciones Si/ Al adecuado en catalizadores de hidrocraqueo, la zeolita Y debe someterse a tratamientos postsíntesis de desaluminización ya que esta zeolita no puede sintetizarse con alta relación Si/Al. Dichos tratamientos de desaluminización requieren generalmente el uso de condiciones hidrotérmicas severas que conllevan a una pérdida parcial de la cristalinidad de la zeolita.
Por tanto, sería altamente deseable disponer de un catalizador de hidrocraqueo con buena actividad y selectividad a destilados medios basado en un sólido cristalino microporoso con una topología tal que presente cavidades de un elevado volumen similar al de las zeolitas de poro grande, como la zeolita Y, y que pueda ser obtenido con alta relación Si/ Al en una única etapa de síntesis, evitando posteriores procesos de desaluminización.
El sólido cristalino microporoso conocido como ITQ-21 se describe en la solicitud de patente española P200101145. Sin embargo su uso como componente de un catalizador de hidrocraqueo no se describe, ni se sugiere en dicha solicitud. También la solicitud española P20012287 se refiere a dicho material sólido cristalino, concretamente a su uso en craqueo; pero no se describe en ella su uso como un componente de un catalizador de hidrocraqueo en conjunción con metales del grupo VIB u VIII.
Descripción de la Invención
La presente invención se refiere a un catalizador de hidrocraqueo caracterizado porque comprende - un componente hidrogenante seleccionado entre al menos un metal del grupo VIB, al menos un metal del grupo VIII, y combinaciones de ellos,
- al menos una matriz que comprende al menos un óxido seleccionado entre un óxido amorfo, un óxido de baja cristalinidad, y mezcla de ambos, y - al menos un material sólido cristalino microporoso que presenta una composición molar en su estado calcinado y anhidro dada por
X2O3 : «YO2 : wZO2, en la que X es un elemento trivalente, Y es al menos un elemento tetravalente distinto a
Ge, y Z es Ge, el valor (n+m) es al menos 5, y puede estar comprendido entre 5 e ∞, y el valor de n/m es al menos de 1, y que en su forma calcinada y anhidra presenta un difractograma de rayos X conteniendo al menos líneas de difracción a valores de d=
13.64, 7.87, 4.82, 4.55, 4.11 y 3.41 A.
Como se ha definido el catalizador de hidrocraqueo de la presente invención comprende un componente hidrogenante que es al menos un metal de entre los metales de los grupos VD3 y VIII de la tabla periódica. El elemento del grupo VIB puede ser cromo, molibdeno, volframio o mezclas de ellos. En una realización preferida de la presente invención el elemento del grupo VIB está seleccionado entre molibdeno y volframio.
El elemento del grupo VIII puede ser cualquiera entre hierro, rutenio, osmio, cobalto, rodio, iridio, níquel, paladio, platino y mezclas de ellos. De entre los metales del grupo VIII se prefieren metales no-nobles, preferentemente hierro, cobalto y níquel.
De manera especialmente preferida el componente hidrogenante del catalizador viene dado por la combinación de al menos un metal no-noble del grupo VIII y al menos un metal del grupo VIB. Las combinaciones preferidas son: níquel-molibdeno, cobalto- molibdeno y níquel-volframio, aunque opcionalmente se pueden usar combinaciones de tres elementos, como níquel-cobalto-molibdeno.
Los metales del grupo VIII y del grupo VLB pueden estar total o parcialmente en forma metálica y/o en forma de óxido y/o en forma de sulfuros.
El segundo componente esencial del catalizador es el material sólido cristalino microporoso que presenta una composición molar en su estado calcinado y anhidro:
X2O3 : «YO2 : ZO2, en la que de manera preferida el elemento trivalente, X, es Al, B, Fe, In, Ga, Cr o mezclas de estos, preferentemente Al. "Y" es preferentemente un elemento tetravalente tal como Si, Ti, Sn o mezclas de ellos, aunque se prefiere Si.
El material sólido cristalino tiene además, tanto en su forma calcinada como sintetizada sin calcinar, un patrón de difracción de rayos X que es diferente al de otros materiales sólidos cristalinos conocidos, y cuyas líneas de difracción más importantes vienen dadas en la tabla 1 para la forma calcinada y en la tabla 2 para la forma sin calcinar. Debe tenerse en cuenta que la posición exacta de los picos de difracción dependerá de factores como la composición química y tamaño de cristal del material, entre otros.
TABLA 1
Figure imgf000007_0001
TABLA 2
Figure imgf000007_0002
Estos difractogramas se obtuvieron con un difractómetro Philips X'Pert equipado con un monocromador de grafito y una rendija de divergencia automática utilizando la radiación Kα del cobre. Los datos de difracción se registraron mediante un paso de 2Θ de 0.01°, en el que θ es el ángulo de Bragg y un tiempo de cuenta de 10 segundos por paso. Los espaciados interplanares, d, se calcularon en Ángstrom y la intensidad relativa de las líneas se calcula como el porcentaje respecto del pico más intenso, y se considera: muy fuerte (mf)= 80-100, fuerte (f)=60-80, media (m)= 40-60, débil (d)=20-40, y muy débil (md)= 0-20.
Debe tenerse en cuenta que los datos de difracción listados para esta muestra como líneas sencillas o únicas, pueden estar formados por múltiples solapamientos o superposición de reflexiones que, en ciertas condiciones, tales como diferencias en cambios cristalográficos, pueden aparecer como líneas resueltas o parcialmente resueltas. Generalmente, los cambios cristalográficos pueden incluir pequeñas variaciones en los parámetros de la celda unidad y/o cambios en la simetría del cristal, sin que se produzca un cambio en la conectividad entre los átomos de la estructura. Estas modificaciones, que incluyen también cambios en intensidades relativas pueden deberse también a diferencias en el tipo y cantidad de cationes de compensación, composición de red, tamaño de cristal y forma de los mismos, orientación preferente o al tipo de tratamientos térmicos o hidrotérmicos sufridos.
El material sólido cristalino posee un elevado volumen de poro y con un diámetro de poro medido por adsorción de Ar que corresponde al de una zeolita de poro grande. Además, este material puede sintetizarse directamente con la relación Si/ Al adecuada sin necesidad de recurrir a procesos postsíntesis de desaluminización.
El tercer componente del catalizador de la presente invención es una matriz, tal como se ha definido anteriormente. Dicha matriz preferentemente está seleccionada entre uno o más de los siguientes grupos: alúmina, sílice-alúmina, sílice, arcillas, óxido de magnesio, óxido de titanio, óxido de boro, óxido de circonio, fosfatos de aluminio, fosfatos de circonio, carbón y aluminatos. Preferiblemente la matriz está formada por un óxido inorgánico amorfo que contenga alguna forma de alúmina, y más específicamente se prefiere gamma-alúmina.
El catalizador de la presente invención puede contener, además de los tres componentes esenciales, al menos un elemento promotor de la acidez el cual está seleccionado preferentemente entre fósforo y boro. Opcionalmente, el catalizador de la presente invención puede comprender al menos un elemento del grupo VILA. Preferentemente el elemento del grupo VIIA es flúor.
El catalizador de la presente invención tiene en una realización preferida una composición expresada en % en peso respecto al peso total de catalizador, que corresponde a:
- de un 0.1 a un 60% de un componente hidrogenante seleccionado entre al menos un metal del grupo VIB, al menos un metal del grupo VIII, y combinaciones de ellos, preferiblemente de un 0.1 a un 50%, y más preferiblemente de un 0.1 a un 40%, - de un 0.1 a un 99% de material sólido ácido cristalino, preferiblemente de un
0.1 a un 80%, y más preferiblemente de un 0.1 a un 60%; y
- de un 0.1 a un 99% de al menos una matriz, preferiblemente de un 0.1 a un 98%
En el caso de comprender además un elemento promotor seleccionado entre fósforo y boro dicho elemento promotor puede estar presente en una proporción de:
- un 0 a un 20% en peso respecto al peso total del catalizador.
En una realización particular, en la que el catalizador comprende al menos un elemento del grupo VIIA, dicho elemento puede estar presente en el catalizador en una proporción: - de un 0 a un 20% en peso respecto al peso total del catalizador.
Según una realización preferente de la presente invención el elemento del grupo VIIA es flúor, y está presente en el catalizador en una proporción de un 0 a un 20% en peso respecto al peso total del catalizador.
La presente invención tiene como objeto adicional un procedimiento para la preparación de un catalizador tal como se ha definido anteriormente que comprende al menos
1) una etapa de preparación del sólido cristalino microporoso, y una segunda etapa seleccionada entre:
2a) incorporación del componente hidrogenante sobre una mezcla de la matriz y del sólido cristalino microporoso, e
2b) incorporación del componente hidrogenante directamente sobre la matriz antes de ser mezclada con el sólido ácido cristalino. En la etapa de preparación del sólido cristalino microporoso éste se puede preparar a partir de una mezcla de reacción que contiene H2O, opcionalmente un óxido u otra fuente del elemento trivalente X, como por ejemplo Al y/o B, un óxido u otra fuente del elemento o elementos tetravalentes Y, como por ejemplo Si; una fuente de Ge, Z, como por ejemplo GeO2, y un agente orgánico director de estructura (R). Preferentemente el agente director de estructura es el hidróxido de N(16)- metilesparteinio.
Además, pueden utilizarse fluoruros, y más específicamente HF, o grupos OH" como agentes movilizantes de la sílice y el óxido de germanio. En el interior de la estructura quedan ocluidos moléculas orgánicas e iones fluoruro, en caso de utilizar fluoruros como agente movilizante, que se pueden eliminar por medios convencionales. Así, el componente orgánico se puede eliminar, por ejemplo por extracción y/o por tratamiento térmico calentando a temperatura por encima de 250° C durante un periodo de tiempo comprendido entre 2 minutos y 25 horas.
Con el objeto de generar centros ácidos activos en las reacciones de hidrocraqueo, el material sólido cristalino se sintetiza preferentemente en presencia de un óxido u otra fuente de un elemento trivalente, como B y/o Al, preferiblemente Al.
La composición de la mezcla de reacción tiene la siguiente composición en términos de relaciones molares de óxidos:
Reactivos Útil
(YO2+ZO2)/X2O3 mayor de 5
H2O/(YO2+ZO2) 1-50
R/(YO2+ ZO2 ) 0.1-3.0
F/(YO2 +ZO2) 0.1-3.0
YO2/ZO2 mayor de 1
La cristalización del material sólido cristalino microporoso se puede llevar a cabo en estático o en agitación, en autoclaves a temperatura comprendida entre 80 y 200°C, a tiempos suficientes para conseguir la cristalización, por ejemplo entre 12 horas y 30 días. Debe tenerse en cuenta que los componentes de la mezcla de síntesis pueden provenir de distintas fuentes, y dependiendo de éstas pueden variar tiempos y condiciones de cristalización. Con el fin de facilitar la síntesis, se pueden añadir cristales del material microporoso previamente sintetizado, como semillas, en cantidades de hasta 15% en peso respecto del total de óxidos, a la mezcla de síntesis. Estas semillas pueden ser adicionadas previamente o durante la cristalización del material.
Al finalizar la etapa de cristalización, se separan los cristales del sólido de las aguas madres, y se recuperan. Los cationes de compensación en el material sólido cristalino en su forma sin calcinar, o después de un tratamiento térmico, pueden intercambiarse, en el caso de estar presentes, por otros cationes tales como iones metálicos, H+ y precursores de H+ como por ejemplo NH+ 4. Entre los cationes que pueden introducirse por intercambio iónico se prefieren aquellos que pueden tener un papel positivo en la actividad del material como catalizador, y más específicamente se prefieren cationes tales como H+, cationes de tierras raras, y metales del grupo VIII, así como del grupo HA, IIIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VIIB de la tabla periódica de los elementos.
Para su aplicación como componente ácido de un catalizador de hidrocraqueo se prefiere la forma protónica (acida) del material sólido cristalino. Opcionalmente, el material sólido cristalino puede ser sometido a un tratamiento de calcinación en presencia de vapor de agua y/o una mezcla de vapor de agua y aire o cualquiera de sus componentes, a temperaturas entre 200 y 700°C durante un tiempo comprendido entre 10 minutos y 5 horas.
Según la segunda etapa del procedimiento de preparación del catalizador se realiza la incorporación del componente hidrogenante de diversas formas alternativas.
Según la etapa 2a) definida anteriormente, la incorporación del componente hidrogenante se realiza sobre una mezcla de la matriz y del sólido cristalino microporoso.
Según la etapa 2b) definida anteriormente, la incorporación del componente hidrogenante se realiza directamente sobre la matriz antes de ser mezclada con el sólido ácido cristalino. La incorporación del componente hidrogenante puede realizarse mediante una o más etapas de intercambio iónico en el caso de que la incorporación se lleve a cabo sobre la mezcla del sólido ácido cristalino y la matriz.
La incorporación del componente hidrogenante se puede realizar por impregnación tanto en el caso de que se realice directamente sobre la matriz como en el caso de que se realice sobre la mezcla de matriz y sólido cristalino. La impregnación se puede llevar a cabo en una o más etapas a partir de una disolución que contiene al menos un precursor de al menos un óxido de al menos un metal de entre los que forman los grupos VIB y VIII de la tabla periódica. Cuando el componente hidrogenante está formado por la combinación de al menos un elemento del grupo VLB y al menos un elemento del grupo VIII, la impregnación del precursor (o precursores) del óxido(s) del elemento(s) del grupo VIII se realiza preferiblemente después, o al mismo tiempo, que la impregnación del precursor(es) del óxido(s) del elemento(s) del grupo VIB.
La impregnación de estos elementos puede llevarse a cabo mediante el método de volumen de poro, también conocido como impregnación "seca", en el cual el volumen de los poros del sólido que se va a impregnar se llena con una disolución que contiene al menos un precursor de al menos uno de los metales de los grupos VIB y VIII. La impregnación también puede realizarse con un exceso de disolución que contiene al menos un precursor de al menos uno de los metales de los grupos VIB y VIII. En este caso el exceso de disolvente se elimina lentamente por evaporación en condiciones controladas.
En el caso de que la incorporación de estos elementos se lleve a cabo en varias etapas de impregnación, es preferible realizar una etapa intermedia de calcinación entre cada impregnación a una temperatura comprendida entre 150°C y 800°C. Pueden usarse diferentes precursores para los elementos del grupo VIB. Por ejemplo, y sin que sirva de limitación del alcance de esta invención, en el caso de molibdeno y volframio pueden usarse diferentes óxidos y sales, tales como molibdato amónico, heptamolibdato amónico y volframato amónico.
Como fuentes de los elementos del grupo VIII suelen usarse típicamente los correspondientes nitratos, sulfatos y haluros.
Si el catalizador contiene al menos un elemento promotor como fósforo y/o boro, y al menos un elemento del grupo VIIA, como flúor, éstos pueden incorporarse en cualquier momento de la preparación del catalizador, preferiblemente sobre el soporte que ya contiene el material sólido cristalino y la matriz. También es posible incorporar el(los) elemento(s) promotor(es) y del grupo VIIA sobre la matriz, y a continuación realizar la mezcla con el sólido cristalino. Estos elementos pueden incorporarse mediante cualquiera de los métodos conocidos, aunque se prefiere el método de impregnación, bien a volumen de poro (impregnación "seca") o en exceso de disolvente.
Como fuente de fósforo se prefiere ácido ortofosfórico, H3PO , aunque también pueden utilizarse algunas de sus sales y esteres, como fosfatos amónicos. Como fuente del elemento del grupo VIIA puede utilizarse cualquiera de las que son bien conocidas por aquellos que son expertos en la técnica. Por ejemplo, en el caso de flúor puede utilizarse como fuente ácido fluorhídrico o sus sales. También es posible utilizar compuestos de flúor que pueden dar lugar a la formación de fluoruro por hidrólisis en presencia de agua, como fluorosilicato amónico, (NH4)2SiF6, tetrafluoruro de silicio, SiF4, o tetrafluoruro de sodio, Na2SiF6. El fluoruro puede incorporarse al catalizador, por ejemplo, por impregnación a partir de una solución acuosa de ácido fluorhídrico o fluoruro amónico.
Como etapa final de la preparación del catalizador se lleva a cabo una calcinación a temperaturas comprendidas entre 150°C y 800°C. Preferiblemente el catalizador de la presente invención se somete a una etapa de sulfuración antes de entrar en contacto con la alimentación con el objeto de transformar, al menos parcialmente, los metales de los grupos VLB y VIII en los correspondientes sulfuras. El tratamiento de sulfuración puede llevarse a cabo por cualquiera de los métodos descritos en la literatura. Un método típico de sulfuración consiste en calentar el catalizador en presencia de una corriente de sulfuro de hidrógeno puro o una mezcla de sulfuro de hidrógeno e hidrógeno o una corriente conteniendo hidrógeno e hidrocarburos líquidos que contienen a su vez al menos un compuesto conteniendo azufre en su composición. La sulfuración se lleva a cabo preferentemente a una temperatura de entre 150 y 800°C. Este proceso se lleva a cabo, generalmente, en un reactor continuo de lecho fijo.
La presente invención también tiene como objeto el uso del catalizador definido anteriormente en un proceso de hidrocraqueo de una alimentación formada por hidrocarburos. Dicha alimentación de hidrocarburos puede opcionalmente contener azufre y nitrógeno en forma de compuestos orgánicos, así como metales y compuestos oxigenados. En el caso de que el contenido en estos compuestos sea elevado, la alimentación puede someterse a un proceso de hidrotratamiento previo al hidrocraqueo con el objeto de reducir la concentración de éstos a niveles no perjudiciales para el catalizador de la invención.
El catalizador puede usarse para el hidrocraqueo de fracciones pesadas de hidrocarburos. Estas fracciones pueden ser de distinto origen, como por ejemplo gasoil de vacío. En general estas fracciones contienen al menos un 80% en volumen de compuestos con puntos de ebullición superiores a 350°C, y preferiblemente entre 350°C y 580°C. Estas fracciones contienen generalmente heteroátomos, como azufre y nitrógeno. El contenido en nitrógeno suele estar comprendido entre 1 y 5000 ppm (en peso), y el contenido en azufre suele ser del 0.01% al 5% en peso. Opcionalmente estas fracciones pueden someterse a un proceso de hidrotratamiento previo al hidrocraqueo con el objeto de disminuir la concentración de heteroátomos o de eliminar algunos metales contaminantes que puedan contener.
El catalizador para el hidrocraqueo de alimentaciones de hidrocarburos de la presente invención presenta una elevada actividad y selectividad a destilados medios.
De acuerdo a la presente invención, la alimentación de hidrocarburos se pone en contacto con el catalizador de hidrocraqueo en presencia de hidrógeno, generalmente en un reactor de lecho fijo. Las condiciones del proceso de hidrocraqueo pueden variar según la naturaleza de la alimentación, la calidad de los productos deseada, y de las facilidades particulares de cada refinería. Generalmente la temperatura suele ser superior a 200°C, y a menudo está comprendida entre 250°C y 480°C. La presión suele ser mayor de 0.1 MPa y menudo mayor de 1 MPa. La relación H2/hidrocarburo suele ser superior a 50 y generalmente entre 80 y 5000 Nm3 de H2 por m3 de alimentación. La velocidad espacial (LHSV) está generalmente comprendida entre 0.01 y 20 volúmenes de alimentación por volumen de catalizador y por hora. Preferiblemente el proceso de hidrocraqueo se lleva a cabo a temperaturas de 300°C a 500°C, presiones de 5 a 20 MPa, relaciones H2/hidrocarburo de 200 a 1500 Nm3/m3 y LHSV de 0.05 a 5 h"1. EJEMPLOS
A continuación se ilustra la invención con algunos ejemplos específicos, sin que éstos puedan ser considerados como limitantes de la misma.
Ejemplo 1
En este ejemplo se ilustra un procedimiento típico para la síntesis del material sólido cristalino conteniendo aluminio en la red (en adelante Al-SC) de acuerdo con la invención.
Se disuelven 0.86 g de isopropóxido de aluminio y 0.53 g de GeO2 en 34.42 g de disolución de hidróxido de N(16)-metilesparteinio con una concentración de 1.53 moles/Kg. En la disolución obtenida se hidrolizan 4.74 g de tetraetilortosilicato, y se mantiene en agitación dejando evaporar todo el alcohol formado en la hidrólisis. Posteriormente, se añade 0.52 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso). La composición final del gel de síntesis es:
0.95 SiO2 : 0.05 GeO2 : 0.02 Al2O3 : 0.50 ROH : 0.50 HF : 2 H2O
donde ROH es hidróxido de N(16)-metilesparteinio.
El gel se calienta a 175°C durante 5 días en autoclaves de acero con una funda interna de teflón. Después de lavar con agua destilada y secar a 100°C se obtiene el material Al-SC. Posteriormente el material Al-SC se somete a una etapa de calcinación a 500°C durante 5 horas.
La composición química del material Al-SC calcinado y sintetizado por este procedimiento, dada como % en peso de los respectivos óxidos, es la siguiente:
3.4 % de Al2O3
90.6 % de SiO2
6.0 % de GeO2
Ejemplo 2
En este ejemplo se ilustra la preparación de un catalizador de hidrocraqueo conteniendo el material Al-SC obtenido según el procedimiento descrito en el ejemplo 1 , una matriz de gamma-alúmina y níquel -molibdeno como componente hidrogenante, de acuerdo con la invención.
En una primera etapa de la preparación, el material Al-SC obtenido según el procedimiento descrito en el ejemplo 1 se mezcla con una matriz de gamma-alúmina (superficie específica de 122 m /g y volumen de poro de 0.21 cm /g) en una proporción 1 :1 en peso. La mezcla se homogeneiza añadiendo agua destilada hasta formar una pasta que contiene gamma-alúmina y el material Al-SC en las proporciones adecuadas y agitando la pasta durante al menos 15 minutos. A continuación la mezcla se seca en una estufa a 100°C durante 12 horas. El soporte anterior formado por una mezcla de gamma-alúmina y el material Al-
SC se impregna mediante el método de volumen de poro o impregnación "seca" con una disolución acuosa de heptamolibdato amónico. El sólido obtenido se seca en una estufa a 100°C durante 12 horas y posteriormente se calcina en mufla a 500°C durante 3 horas. A continuación el sólido calcinado formado por el soporte, que contiene una mezcla de gamma-alúmina y material Al-SC, y por óxido de molibdeno, se impregna mediante el método de volumen de poro con una disolución que contiene la cantidad requerida de nitrato de níquel. Posteriormente el sólido se seca en estufa a 100°C durante 12 horas y seguidamente se calcina en mufla a 500°C durante 3 horas. La composición química del catalizador preparado en estas condiciones, dada como % en peso, es la siguiente:
11.8 % de MoO3 3.0 % de NiO 42.6 % de γ-alúmina 42.6% de material Al-SC
Ejemplo 3 En este ejemplo se muestra la preparación de un catalizador de hidrocraqueo conteniendo el material Al-SC de acuerdo con la invención en el que el componente hidrogenante se incorpora exclusivamente sobre la matriz de gamma-alúmina. En primer lugar se impregna la matriz de gamma-alúmina con una disolución acuosa de heptamolibdato amónico mediante el método de volumen de poro, se seca el sólido en estufa a 100°C y se calcina en mufla a 500°C siguiendo el mismo procedimiento descrito en el ejemplo 2. A continuación se procede a la impregnación del sólido formado por gamma-alúmina y óxido de molibdeno con una disolución acuosa de nitrato de níquel a volumen de poro, secado en estufa a 100°C y posterior calcinación a 500°C en las condiciones descritas en el ejemplo 2.
La matriz de gamma-alúmina conteniendo óxido de molibdeno y óxido de níquel se mezcla con el material Al-SC en las proporciones adecuadas para obtener un catalizador con la siguiente composición química, dada como % en peso:
8.3 % de MoO3
2.2 % de NiO
56.3 % de γ-alúmina
33.2% de material Al-SC
Ejemplo 4
En este ejemplo se ilustra la actividad y selectividad de un catalizador preparado según el ejemplo 1 de acuerdo con la invención, para el hidrocraqueo de un gasoil de vacío cuyas principales características vienen dadas en la tabla 3. TABLA 3 _
Densidad (cm /g), 20°C 0.83
Azufre, % en peso 2.61
Nitrógeno, ppm (en i peso) 1000
Destilación simulada:
Punto inicial de ebullición 219
5% 358
10% 375
30% 407
50% 423
70% 438
90% 457
95% 466 Punto final de ebullición 489
Los experimentos de hidrocraqueo se llevaron a cabo en un reactor continuo de lecho fijo cargado con 4.0 gramos de catalizador diluido con carburo de silicio hasta un volumen total de 14 cm3. Antes de poner en contacto el gasoil de vacío con el catalizador éste se sometió a una etapa de sulfuración a 400°C durante 8 horas en presencia de una mezcla de H2S e H2 (10% en volumen de H2S) utilizando un caudal total de gas de 442 cm3/min. Una vez completada la etapa de sulfuración, se procedió a hidrocraquear el gasoil de vacío en presencia de hidrógeno en las siguientes condiciones de reacción: presión total de 5.3 MPa, relación H2/gasoil de 1291 NmV, velocidad espacial (WHSV) de 2.8 h"1. La conversión se ajustó variando la temperatura de reacción entre 385°C y 415°C.
Los resultados de conversión y rendimientos se determinaron después de un periodo de estabilización del catalizador, el cual se observó generalmente después de 8- 10 horas de contactar la alimentación de gasoil con el catalizador. La conversión se ha calculado como el % en peso de productos con punto de ebullición inferior a 380°C presentes en el efluente del reactor.
Para el cálculo de selectividades se han considerado los siguientes rangos de puntos de ebullición:
Gases: < 65°C Nafta: 65°C - 150°C
Queroseno: 150°C - 250°C Gasoil: 250°C - 380°C
Las selectividades (en % en peso) a las diferentes fracciones de hidrocraqueo se han calculado de la siguiente manera:
Selectividad, (%)= (% en peso de la fracción i)/(% en peso de productos 380°C-)* 100
La selectividad a destilados medios se ha calculado como la suma de las selectividades a queroseno y gasoil (rango de puntos de ebullición entre 150°C y 380°C). Los resultados de conversión y selectividad a las diferentes fracciones de productos obtenidos a distintas temperaturas de reacción se muestran en la tabla 4.
TABLA 4
Temperatura de reacción (°C)
385 400 415
Conversión 380°C-, % 42.47 61.36 78.23 peso
Selectividad, % peso
Gases 13.47 14.28 15.66
Ñafia 23.95 28.98 32.19
Queroseno 20.87 22.94 23.28
Gasoil 41.71 33.80 28.87
Destilados medios 62.58 56.74 52.15
Ejemplo 5
En este ejemplo se ilustra la actividad y selectividad de un catalizador preparado según el ejemplo 2 de acuerdo con la invención, para el hidrocraqueo de un gasoil de vacío cuyas principales características se mostraron en la tabla 3.
Los experimentos de hidrocraqueo se llevaron a cabo en un reactor continuo de lecho fijo cargado con 6.0 gramos de catalizador diluido con carburo de silicio hasta un volumen total de 14 cm3. Antes de poner en contacto el catalizador con el gasoil de vacío éste se sometió a una etapa de sulfuración a 400°C durante 8 horas en presencia de una mezcla de H2S e H2 (10% en volumen de H2S) utilizando un caudal total de gas de 442 cm3/min. Una vez completada la etapa de sulfuración, se procedió a hidrocraquear el gasoil de vacío en presencia de hidrógeno en las siguientes condiciones de reacción: presión total de 5.3 MPa, relación H2/gasoil de 1291 Nm /m , velocidad espacial (WHSV) de 1.9 h"1. La conversión se ajustó variando la temperatura de reacción entre 385°C y 415°C. TABLA 5
Temperatura de reacción (°C)
385 400 415
Conversión 380°C-, 47.47 65.02 85.18
% peso
Selectividad, % peso
Gases 14.94 18.76 24.73
Ñafia 17.35 19.50 25.49
Queroseno 21.79 24.62 21.96
Gasoil 45.92 37.12 27.82
Destilados medios 67.71 61.74 49.78

Claims

REIVINDICACIONES
1. Un catalizador para hidrocraqueo caracterizado porque comprende:
- un componente hidrogenante seleccionado entre al menos un metal del grupo VLB, al menos un metal del grupo VIII, y combinaciones de ellos,
- al menos una matriz que comprende al menos un óxido seleccionado entre un óxido amorfo, un óxido de baja cristalinidad, y mezcla de ambos, y
- al menos un material sólido cristalino microporoso que presenta una composición molar en su estado calcinado y anhidro dada por X2O : «YO2 : mZO2, en la que X es un elemento trivalente, Y es al menos un elemento tetravalente distinto a Ge, y Z es Ge, el valor (n+m) es al menos 5, y puede estar comprendido entre 5 e α>, y el valor de n/m es al menos de 1 , y que en su forma calcinada y anhidra presenta un difractograma de rayos X conteniendo al menos líneas de difracción a valores de d= 13.64, 7.87, 4.82, 4.55, 4.11 y 3.41 A.
2. Un catalizador según la reivindicación 1, caracterizado porque el elemento trivalente X del material sólido cristalino microporoso es Al.
3. Un catalizador según la reivindicación 1 caracterizado porque el metal del grupo VLB está seleccionado entre molibdeno y volframio y el metal del grupo VIII está seleccionado entre hierro, cobalto y níquel.
4. Un catalizador según la reivindicación 1, caracterizado porque el componente hidrogenante está seleccionado entre una combinación de níquel-molibdeno, cobalto- molibdeno, níquel- volframio y níquel-voframio-molibdeno.
5. Un catalizador según una de las reivindicaciones 1 a 3, caracterizado porque comprende al menos un elemento promotor de la acidez.
6. Un catalizador según la reivindicación 5, caracterizado porque el elemento promotor está seleccionado entre fósforo y boro.
7. Un catalizador según una de las reivindicaciones 1 a 6, caracterizado porque comprende al menos un elemento del grupo VIIA.
8. Un catalizador según la reivindicación 7, caracterizado porque el elemento del grupo VIIA es flúor.
9. Un catalizador según una de las reivindicaciones 1 a 8, caracterizado porque su composición expresada en % en peso respecto al peso total de catalizador, es:
- de un 0.1 a un 60% de un componente hidrogenante seleccionado entre al menos un metal del grupo VLB, al menos un metal del grupo VIII, y combinaciones de ellos,
- de un 0.1 a un 99% de material sólido ácido cristalino microporoso, y
- de un 0.1 a un 99% de al menos una matriz.
10. Un catalizador según la reivindicación 9, caracterizado porque comprende: - de un 0 a un 20% de al menos un elemento promotor seleccionado entre fósforo y boro
- de un 0 a un 20% de al menos un elemento del grupo VILA.
11. Un catalizador según la reivindicación 10, caracterizado porque el elemento del grupo VIIA es flúor.
12. Un catalizador según la reivindicación 1 caracterizado porque la matriz está seleccionada entre uno o más de los siguientes grupos: alúmina, sílice- alúmina, sílice, arcillas, óxido de magnesio, óxido de titanio, óxido de boro, óxido de circonio, fosfatos de aluminio, fosfatos de circonio, carbón y aluminatos.
13. Un catalizador según la reivindicación 1 ó 12 caracterizado porque la matriz es gamma-alúmina.
14. Un procedimiento para la preparación de un catalizador definido según una de las reivindicaciones 1 a 13, caracterizado porque comprende al menos 1) una etapa de preparación del sólido cristalino microporoso, y una segunda etapa seleccionada entre:
2a) incorporación del componente hidrogenante sobre una mezcla de la matriz y del sólido cristalino microporoso, e
2b) incorporación del componente hidrogenante directamente sobre la matriz antes de ser mezclada con el sólido ácido cristalino.
15. Un procedimiento según la reivindicación 14, caracterizado porque la incorporación del componente hidrogenante se realiza mediante una etapa seleccionada entre impregnación e intercambio iónico.
16. Un procedimiento según la reivindicación 14, caracterizado porque se realiza además una etapa adicional de incorporación al catalizador de un elemento promotor de la acidez y de al menos un elemento del grupo VIIA.
17. Un procedimiento según la reivindicación 16, caracterizado porque el elemento promotor y el elemento del grupo VIIA se incorporan sobre la matriz.
18. Un procedimiento según la reivindicación 14, caracterizado porque el catalizador se somete a una etapa de calcinación, a una temperatura de entre 150°C y 800°C.
19. Un procedimiento según la reivindicación 14, caracterizado porque comprende además una etapa de sulfuración a una temperatura de entre 150 y 800°C.
20. Uso de un catalizador según una de las reivindicaciones 1 a 13 en un proceso de hidrocraqueo de una alimentación formada por hidrocarburos.
21. Uso según la reivindicación 20, caracterizado porque el proceso de hidrocraqueo se lleva a cabo a una temperatura mayor de 200°C, a una presión superior a 0.1 MPa, usando una cantidad de hidrógeno de al menos 50 litros de hidrógeno por litro de alimentación, y una velocidad espacial de entre 0.1 a 20 volúmenes de alimentación por volumen de catalizador y hora.
22. Uso según la reivindicación 21, caracterizado porque el proceso de hidrocraqueo se lleva a cabo a cabo a una presión de 0.1 a 12 MPa y a una temperatura entre 300 y 480°C.
23. Uso según la reivindicación 20, caracterizado porque la alimentación se somete a un proceso de hidrotratamiento previo.
PCT/ES2003/000367 2002-07-16 2003-07-15 Catalizador de hidrocraqueo que comprende un material sólido cristalino microporoso WO2004009736A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE60328999T DE60328999D1 (de) 2002-07-16 2003-07-15 Verwendung eines katalysators zum hydrocracken bestehend aus einem mikroporösen kristallinen feststoff
EP03765121A EP1535983B1 (en) 2002-07-16 2003-07-15 Use of a hydrocracking catalyst comprising a microporous crystalline solid material
DK03765121T DK1535983T3 (da) 2002-07-16 2003-07-15 Anvendelse af en hydrocraking katalysator der omfatter et mikroporöst krystallinsk fast materiale
CA2492516A CA2492516C (en) 2002-07-16 2003-07-15 Hydrocracking catalyst comprising a microporous crystalline solid material
AT03765121T ATE440931T1 (de) 2002-07-16 2003-07-15 Verwendung eines katalysators zum hydrocracken bestehend aus einem mikroporísen kristallinen feststoff
AU2003250254A AU2003250254A1 (en) 2002-07-16 2003-07-15 Hydrocracking catalyst comprising a microporous crystalline solid material
JP2004522207A JP4676760B2 (ja) 2002-07-16 2003-07-15 微孔性結晶質固体を含有する水素化分解用触媒
US11/036,964 US7410924B2 (en) 2002-07-16 2005-01-14 Hydrocracking catalyst comprising a microporous crystalline solid material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200201753A ES2200701B1 (es) 2002-07-16 2002-07-16 Catalizador de hidrocraqueo conteniendo un material solido cristalino microporoso y uso de dicho catalizador para el hidrocraqueo de alimentacion de hidrocarburos.
ESP200201753 2002-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/036,964 Continuation US7410924B2 (en) 2002-07-16 2005-01-14 Hydrocracking catalyst comprising a microporous crystalline solid material

Publications (1)

Publication Number Publication Date
WO2004009736A1 true WO2004009736A1 (es) 2004-01-29

Family

ID=30470585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000367 WO2004009736A1 (es) 2002-07-16 2003-07-15 Catalizador de hidrocraqueo que comprende un material sólido cristalino microporoso

Country Status (9)

Country Link
EP (1) EP1535983B1 (es)
JP (1) JP4676760B2 (es)
AT (1) ATE440931T1 (es)
AU (1) AU2003250254A1 (es)
CA (1) CA2492516C (es)
DE (1) DE60328999D1 (es)
DK (1) DK1535983T3 (es)
ES (1) ES2200701B1 (es)
WO (1) WO2004009736A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686787A (zh) * 2020-06-10 2020-09-22 中国石油天然气集团有限公司 加氢裂化催化剂载体及其制备方法与应用
CN113731475A (zh) * 2020-05-27 2021-12-03 中国石油天然气股份有限公司 一种加氢裂化催化剂及其制备方法与应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2303449B1 (es) * 2006-08-01 2009-06-22 Universidad Politecnica De Valencia Hidrocraqueo de compuestos organicos utilizando la zeolita itq-33.
FR2963360B1 (fr) * 2010-07-29 2012-07-27 IFP Energies Nouvelles Procede d'hydrocraquage d'une charge hydrocarbonnee en presence d'un catalyseur sulfure prepare au moyen d'un oligosaccharide cyclique
FR2963358B1 (fr) 2010-07-29 2012-07-27 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une coupe essence en presence d'un catalyseur sulfure supporte prepare au moyen d'au moins un oligosaccharide cyclique
CN102861601B (zh) * 2011-07-07 2015-08-26 中国石油化工股份有限公司 一种含氟的加氢催化剂及其制备
FR2981066B1 (fr) 2011-10-11 2015-04-17 Total Raffinage Marketing Procede de preparation de jet fuel a partir de molecules issues de la biomasse.
RU2742031C1 (ru) * 2019-10-03 2021-02-01 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Состав и способ приготовления катализатора - ловушки кремния
CN111672534B (zh) * 2020-06-10 2023-10-03 中国石油天然气集团有限公司 加氢裂化催化剂及其制备方法与应用
CN112973718B (zh) * 2021-02-22 2022-10-25 安徽工业大学 一种煤油共加氢催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959140A (en) * 1989-03-27 1990-09-25 Amoco Corporation Two-catalyst hydrocracking process
US5219814A (en) * 1990-12-19 1993-06-15 Mobil Oil Corporation Catalyst for light cycle oil upgrading
EP0911077A1 (fr) * 1997-10-20 1999-04-28 Institut Français du Pétrole Catalyseur et procédé d'hydrocraquage de coupes hydrocarbonées
EP0913195A1 (en) * 1996-06-28 1999-05-06 China Petro-Chemical Corporation A hydrocracking catalyst of a distillate oil and production method thereof
WO2002092511A1 (es) * 2001-05-14 2002-11-21 Consejo Superior De Investigaciones Cientificas Un material cristalino poroso (zeolita itq-21), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos
WO2003029387A1 (es) * 2001-10-04 2003-04-10 Consejo Superior De Investigaciones Cientificas Uso de la zeolita itq-21 en craqueo catalitico de compuestos organicos

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959140A (en) * 1989-03-27 1990-09-25 Amoco Corporation Two-catalyst hydrocracking process
US5219814A (en) * 1990-12-19 1993-06-15 Mobil Oil Corporation Catalyst for light cycle oil upgrading
EP0913195A1 (en) * 1996-06-28 1999-05-06 China Petro-Chemical Corporation A hydrocracking catalyst of a distillate oil and production method thereof
EP0911077A1 (fr) * 1997-10-20 1999-04-28 Institut Français du Pétrole Catalyseur et procédé d'hydrocraquage de coupes hydrocarbonées
WO2002092511A1 (es) * 2001-05-14 2002-11-21 Consejo Superior De Investigaciones Cientificas Un material cristalino poroso (zeolita itq-21), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos
WO2003029387A1 (es) * 2001-10-04 2003-04-10 Consejo Superior De Investigaciones Cientificas Uso de la zeolita itq-21 en craqueo catalitico de compuestos organicos

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CORMA A. ET AL.: "A large-activity zeolite with wide pore windows and potential as an oil refining catalys", NATURE, vol. 418, no. 6897, 2002, pages 514 - 517, XP002276873 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731475A (zh) * 2020-05-27 2021-12-03 中国石油天然气股份有限公司 一种加氢裂化催化剂及其制备方法与应用
CN111686787A (zh) * 2020-06-10 2020-09-22 中国石油天然气集团有限公司 加氢裂化催化剂载体及其制备方法与应用
CN111686787B (zh) * 2020-06-10 2023-10-03 中国石油天然气集团有限公司 加氢裂化催化剂载体及其制备方法与应用

Also Published As

Publication number Publication date
DE60328999D1 (de) 2009-10-08
EP1535983B1 (en) 2009-08-26
AU2003250254A8 (en) 2004-02-09
CA2492516C (en) 2012-05-22
JP2005532905A (ja) 2005-11-04
AU2003250254A1 (en) 2004-02-09
EP1535983A1 (en) 2005-06-01
CA2492516A1 (en) 2004-01-29
JP4676760B2 (ja) 2011-04-27
ES2200701A1 (es) 2004-03-01
ATE440931T1 (de) 2009-09-15
DK1535983T3 (da) 2009-12-07
ES2200701B1 (es) 2005-05-01

Similar Documents

Publication Publication Date Title
US7410924B2 (en) Hydrocracking catalyst comprising a microporous crystalline solid material
US7709408B2 (en) Catalyst based on a solid microporous crystalline material and method of improving diesel fraction quality using said catalyst
ES2387864T3 (es) Catalizador a base de zeolita IZM-2 y procedimiento de hidroconversión/hidrocraqueo de cargas hidrocarbonadas
US7179366B2 (en) Catalyst based on a group VI metal and a group VIII metal at least partially present in the form of heteropolyanions in the oxide precursor
US8821714B2 (en) Catalyst based on a material with a hierarchical porosity comprising silicon, and a process for hydrocracking/hydroconversion and hydrotreatment of hydrocarbon feeds
CA1149307A (en) Midbarrel hydrocracking
US10518256B2 (en) High charge density metallophosphate molecular sieves
JPH06509375A (ja) 高粘度指数潤滑剤の製造
JPS62201993A (ja) チタノアルミノシリケートモレキュラーシーブを用いた脱ろう方法
JPS60225646A (ja) 炭化水素仕込物の新規水素化クラツキングまたはクラツキング触媒
KR20000006454A (ko) 베타제올라이트및vb족원소를포함하는수소화분해증류촉매
RU2617987C2 (ru) Способ получения катализатора гидроконверсии, содержащего по меньшей мере один цеолит nu-86
US6136180A (en) Catalyst comprising a NU-88 zeolite, a group VB element and its use for hydroconverting hydrocarbon-containing petroleum feeds
WO2004009736A1 (es) Catalizador de hidrocraqueo que comprende un material sólido cristalino microporoso
US5281328A (en) Hydrocracking with ultra large pore size catalysts
EP1405825B1 (en) Porous crystalline material (zeolite itq-21), the preparation method thereof and the use of same in the catalytic conversion of organic compounds
JP2003500194A (ja) 部分非晶質ゼオライトyを含む触媒、および炭化水素石油仕込原料の水素化転換におけるその使用
JP3388737B2 (ja) 超大孔寸法触媒による水素化分解
KR100695184B1 (ko) 부분 무정형 제올라이트 y 및 vb족 원소를 포함하는촉매, 및 이것을 탄화수소 오일 공급원료의 수소화 전환및 수소화 정제에 사용하는 방법
Glotov et al. Bimetallic sulfur-reducing additives based on Al–MCM-41 structured aluminosilicate for cracking catalysts
ES2303449B1 (es) Hidrocraqueo de compuestos organicos utilizando la zeolita itq-33.
Corma et al. Use of hydrocracking catalyst comprising a microporous crystalline solid material
US6117307A (en) Catalyst comprising a NU-88 zeolite and its use for hydroconverting hydrocarbon-containing petroleum feeds
JPH05504539A (ja) 結晶質シリコアルミノ燐酸塩の合成
CN111097508A (zh) 含复合Beta分子筛的加氢裂化催化剂及其制备方法和应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2492516

Country of ref document: CA

Ref document number: 11036964

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004522207

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003765121

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003765121

Country of ref document: EP